WorldWideScience

Sample records for solving multi-objective crop

  1. New approach for solving intuitionistic fuzzy multi-objective ...

    Indian Academy of Sciences (India)

    SANKAR KUMAR ROY

    2018-02-07

    Feb 7, 2018 ... Transportation problem; multi-objective decision making; intuitionistic fuzzy programming; interval programming ... MOTP under multi-choice environment using utility func- ... theory is an intuitionistic fuzzy set (IFS), which was.

  2. Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation

    CSIR Research Space (South Africa)

    Greeff, M

    2008-06-01

    Full Text Available Many optimisation problems are multi-objective and change dynamically. Many methods use a weighted average approach to the multiple objectives. This paper introduces the usage of the vector evaluated particle swarm optimiser (VEPSO) to solve dynamic...

  3. Accelerating solving the dynamic multi-objective nework design problem using response surface methods

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel C.J.; Viti, F.; Immers, B.; Tampere, C.

    2011-01-01

    Multi objective optimization of externalities of traffic solving a network design problem in which Dynamic Traffic Management measures are used, is time consuming while heuristics are needed and solving the lower level requires solving the dynamic user equilibrium problem. Use of response surface

  4. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  5. Intuitionistic Fuzzy Goal Programming Technique for Solving Non-Linear Multi-objective Structural Problem

    Directory of Open Access Journals (Sweden)

    Samir Dey

    2015-07-01

    Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.

  6. A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems

    NARCIS (Netherlands)

    Hamdy, M.; Nguyen, A.T. (Anh Tuan); Hensen, J.L.M.

    2016-01-01

    Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently. Many multi-objective optimization algorithms have been developed; however few of them are tested in solving building design

  7. Multi-objective genetic algorithm for solving N-version program design problem

    International Nuclear Information System (INIS)

    Yamachi, Hidemi; Tsujimura, Yasuhiro; Kambayashi, Yasushi; Yamamoto, Hisashi

    2006-01-01

    N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost

  8. Multi-objective genetic algorithm for solving N-version program design problem

    Energy Technology Data Exchange (ETDEWEB)

    Yamachi, Hidemi [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan) and Department of Production and Information Systems Engineering, Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191-0065 (Japan)]. E-mail: yamachi@nit.ac.jp; Tsujimura, Yasuhiro [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan)]. E-mail: tujimr@nit.ac.jp; Kambayashi, Yasushi [Department of Computer and Information Engineering, Nippon Institute of Technology, Miyashiro, Saitama 345-8501 (Japan)]. E-mail: yasushi@nit.ac.jp; Yamamoto, Hisashi [Department of Production and Information Systems Engineering, Tokyo Metropolitan Institute of Technology, Hino, Tokyo 191-0065 (Japan)]. E-mail: yamamoto@cc.tmit.ac.jp

    2006-09-15

    N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently. We formulate the optimal design problem of NVP as a bi-objective 0-1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process. The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost.

  9. A Pareto archive floating search procedure for solving multi-objective flexible job shop scheduling problem

    Directory of Open Access Journals (Sweden)

    J. S. Sadaghiani

    2014-04-01

    Full Text Available Flexible job shop scheduling problem is a key factor of using efficiently in production systems. This paper attempts to simultaneously optimize three objectives including minimization of the make span, total workload and maximum workload of jobs. Since the multi objective flexible job shop scheduling problem is strongly NP-Hard, an integrated heuristic approach has been used to solve it. The proposed approach was based on a floating search procedure that has used some heuristic algorithms. Within floating search procedure utilize local heuristic algorithms; it makes the considered problem into two sections including assigning and sequencing sub problem. First of all search is done upon assignment space achieving an acceptable solution and then search would continue on sequencing space based on a heuristic algorithm. This paper has used a multi-objective approach for producing Pareto solution. Thus proposed approach was adapted on NSGA II algorithm and evaluated Pareto-archives. The elements and parameters of the proposed algorithms were adjusted upon preliminary experiments. Finally, computational results were used to analyze efficiency of the proposed algorithm and this results showed that the proposed algorithm capable to produce efficient solutions.

  10. Application of Multi-Objective Human Learning Optimization Method to Solve AC/DC Multi-Objective Optimal Power Flow Problem

    Science.gov (United States)

    Cao, Jia; Yan, Zheng; He, Guangyu

    2016-06-01

    This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.

  11. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    Science.gov (United States)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  12. Performance of a genetic algorithm for solving the multi-objective, multimodel transportation network design problem

    NARCIS (Netherlands)

    Brands, Ties; van Berkum, Eric C.

    2014-01-01

    The optimization of infrastructure planning in a multimodal network is defined as a multi-objective network design problem, with accessibility, use of urban space by parking, operating deficit and climate impact as objectives. Decision variables are the location of park and ride facilities, train

  13. Technology of solving multi-objective problems of control of systems with distributed parameters

    Science.gov (United States)

    Rapoport, E. Ya.; Pleshivtseva, Yu. E.

    2017-07-01

    A constructive technology of multi-objective optimization of control of distributed parameter plants is proposed. The technology is based on a single-criterion version in the form of the minimax convolution of normalized performance criteria. The approach under development is based on the transition to an equivalent form of the variational problem with constraints, with the problem solution being a priori Pareto-effective. Further procedures of preliminary parameterization of control actions and subsequent reduction to a special problem of semi-infinite programming make it possible to find the sought extremals with the use of their Chebyshev properties and fundamental laws of the subject domain. An example of multi-objective optimization of operation modes of an engineering thermophysics object is presented, which is of independent interest.

  14. Solving multi-objective job shop problem using nature-based algorithms: new Pareto approximation features

    Directory of Open Access Journals (Sweden)

    Jarosław Rudy

    2015-01-01

    Full Text Available In this paper the job shop scheduling problem (JSP with minimizing two criteria simultaneously is considered. JSP is frequently used model in real world applications of combinatorial optimization. Multi-objective job shop problems (MOJSP were rarely studied. We implement and compare two multi-agent nature-based methods, namely ant colony optimization (ACO and genetic algorithm (GA for MOJSP. Both of those methods employ certain technique, taken from the multi-criteria decision analysis in order to establish ranking of solutions. ACO and GA differ in a method of keeping information about previously found solutions and their quality, which affects the course of the search. In result, new features of Pareto approximations provided by said algorithms are observed: aside from the slight superiority of the ACO method the Pareto frontier approximations provided by both methods are disjoint sets. Thus, both methods can be used to search mutually exclusive areas of the Pareto frontier.

  15. A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization

    International Nuclear Information System (INIS)

    Zhang, Enze; Wu, Yifei; Chen, Qingwei

    2014-01-01

    This paper proposes a practical approach, combining bare-bones particle swarm optimization and sensitivity-based clustering for solving multi-objective reliability redundancy allocation problems (RAPs). A two-stage process is performed to identify promising solutions. Specifically, a new bare-bones multi-objective particle swarm optimization algorithm (BBMOPSO) is developed and applied in the first stage to identify a Pareto-optimal set. This algorithm mainly differs from other multi-objective particle swarm optimization algorithms in the parameter-free particle updating strategy, which is especially suitable for handling the complexity and nonlinearity of RAPs. Moreover, by utilizing an approach based on the adaptive grid to update the global particle leaders, a mutation operator to improve the exploration ability and an effective constraint handling strategy, the integrated BBMOPSO algorithm can generate excellent approximation of the true Pareto-optimal front for RAPs. This is followed by a data clustering technique based on difference sensitivity in the second stage to prune the obtained Pareto-optimal set and obtain a small, workable sized set of promising solutions for system implementation. Two illustrative examples are presented to show the feasibility and effectiveness of the proposed approach

  16. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    Science.gov (United States)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  17. Multi-objective Optimization Algorithms with the Island Metaheuristic for Effective Project Management Problem Solving

    Directory of Open Access Journals (Sweden)

    Brester Christina

    2017-12-01

    Full Text Available Background and Purpose: In every organization, project management raises many different decision-making problems, a large proportion of which can be efficiently solved using specific decision-making support systems. Yet such kinds of problems are always a challenge since there is no time-efficient or computationally efficient algorithm to solve them as a result of their complexity. In this study, we consider the problem of optimal financial investment. In our solution, we take into account the following organizational resource and project characteristics: profits, costs and risks.

  18. Analysis of the efficiency of the linearization techniques for solving multi-objective linear fractional programming problems by goal programming

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2017-01-01

    Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.

  19. FGP Approach for Solving Multi-level Multi-objective Quadratic Fractional Programming Problem with Fuzzy parameters

    Directory of Open Access Journals (Sweden)

    m. s. osman

    2017-09-01

    Full Text Available In this paper, we consider fuzzy goal programming (FGP approach for solving multi-level multi-objective quadratic fractional programming (ML-MOQFP problem with fuzzy parameters in the constraints. Firstly, the concept of the ?-cut approach is applied to transform the set of fuzzy constraints into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into quadratic objective functions based on a proposed transformation. Secondly, the FGP approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach.

  20. Optimal allocation of SVC and TCSC using quasi-oppositional chemical reaction optimization for solving multi-objective ORPD problem

    Directory of Open Access Journals (Sweden)

    Susanta Dutta

    2018-05-01

    Full Text Available This paper presents an efficient quasi-oppositional chemical reaction optimization (QOCRO technique to find the feasible optimal solution of the multi objective optimal reactive power dispatch (RPD problem with flexible AC transmission system (FACTS device. The quasi-oppositional based learning (QOBL is incorporated in conventional chemical reaction optimization (CRO, to improve the solution quality and the convergence speed. To check the superiority of the proposed method, it is applied on IEEE 14-bus and 30-bus systems and the simulation results of the proposed approach are compared to those reported in the literature. The computational results reveal that the proposed algorithm has excellent convergence characteristics and is superior to other multi objective optimization algorithms. Keywords: Quasi-oppositional chemical reaction optimization (QOCRO, Reactive power dispatch (RPD, TCSC, SVC, Multi-objective optimization

  1. New multi-objective decision support methodology to solve problems of reconfiguration in the electric distribution systems

    NARCIS (Netherlands)

    Santos, S.F.; Paterakis, N.G.; Catalao, J.P.S.; Camarinha-Matos, L.M.; Baldissera, T.A.; Di Orio, G.; Marques, F.

    2015-01-01

    The distribution systems (DS) reconfiguration problem is formulated in this paper as a multi-objective mixed-integer linear programming (MILP) multiperiod problem, enforcing that the obtained topology is radial in order to exploit several advantages those configurations offer. The effects of

  2. Multi objective Flower Pollination Algorithm for solving capacitor placement in radial distribution system using data structure load flow analysis

    Directory of Open Access Journals (Sweden)

    Tamilselvan V.

    2016-06-01

    Full Text Available The radial distribution system is a rugged system, it is also the most commonly used system, which suffers by loss and low voltage at the end bus. This loss can be reduced by the use of a capacitor in the system, which injects reactive current and also improves the voltage magnitude in the buses. The real power loss in the distribution line is the I2R loss which depends on the current and resistance. The connection of the capacitor in the bus reduces the reactive current and losses. The loss reduction is equal to the increase in generation, necessary for the electric power provided by firms. For consumers, the quality of power supply depends on the voltage magnitude level, which is also considered and hence the objective of the problem becomes the multi objective of loss minimization and the minimization of voltage deviation. In this paper, the optimal location and size of the capacitor is found using a new computational intelligent algorithm called Flower Pollination Algorithm (FPA. To calculate the power flow and losses in the system, novel data structure load flow is introduced. In this, each bus is considered as a node with bus associated data. Links between the nodes are distribution lines and their own resistance and reactance. To validate the developed FPA solutions standard test cases, IEEE 33 and IEEE 69 radial distribution systems are considered.

  3. Solving a multi-objective location routing problem for infectious waste disposal using hybrid goal programming and hybrid genetic algorithm

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2018-01-01

    Full Text Available Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-Northeastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP. After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP, namely the HGP model, was tested. Finally, the vehicle routing problem (VRP for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA which hybridizes the push forward insertion heuristic (PFIH, genetic algorithm (GA and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles

  4. Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA

    International Nuclear Information System (INIS)

    Khalili-Damghani, Kaveh; Amiri, Maghsoud

    2012-01-01

    In this paper, a procedure based on efficient epsilon-constraint method and data envelopment analysis (DEA) is proposed for solving binary-state multi-objective reliability redundancy allocation series-parallel problem (MORAP). In first module, a set of qualified non-dominated solutions on Pareto front of binary-state MORAP is generated using an efficient epsilon-constraint method. In order to test the quality of generated non-dominated solutions in this module, a multi-start partial bound enumeration algorithm is also proposed for MORAP. The performance of both procedures is compared using different metrics on well-known benchmark instance. The statistical analysis represents that not only the proposed efficient epsilon-constraint method outperform the multi-start partial bound enumeration algorithm but also it improves the founded upper bound of benchmark instance. Then, in second module, a DEA model is supplied to prune the generated non-dominated solutions of efficient epsilon-constraint method. This helps reduction of non-dominated solutions in a systematic manner and eases the decision making process for practical implementations. - Highlights: ► A procedure based on efficient epsilon-constraint method and DEA was proposed for solving MORAP. ► The performance of proposed procedure was compared with a multi-start PBEA. ► Methods were statistically compared using multi-objective metrics.

  5. Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure

    Directory of Open Access Journals (Sweden)

    Adrián A. Toncovich

    2019-01-01

    Full Text Available The competition manufacturing companies face has driven the development of novel and efficient methods that enhance the decision making process. In this work, a specific flow shop scheduling problem of practical interest in the industry is presented and formalized using a mathematical programming model. The problem considers a manufacturing system arranged as a work cell that takes into account the transport operations of raw material and final products between the manufacturing cell and warehouses. For solving this problem, we present a multiobjective metaheuristic strategy based on simulated annealing, the Pareto Archived Simulated Annealing (PASA. We tested this strategy on two kinds of benchmark problem sets proposed by the authors. The first group is composed by small-sized problems. On these tests, PASA was able to obtain optimal or near-optimal solutions in significantly short computing times. In order to complete the analysis, we compared these results to the exact Pareto front of the instances obtained with augmented ε-constraint method. Then, we also tested the algorithm in a set of larger problems to evaluate its performance in more extensive search spaces. We performed this assessment through an analysis of the hypervolume metric. Both sets of tests showed the competitiveness of the Pareto Archived Simulated Annealing to efficiently solve this problem and obtain good quality solutions while using reasonable computational resources.

  6. Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, Hassan; Moradinasab, Nazanin; Gerami, Ali

    2017-07-01

    Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.

  7. Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    International Nuclear Information System (INIS)

    Jafarzadeh, Hassan; Moradinasab, Nazanin; Gerami, Ali

    2017-01-01

    Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.

  8. Benchmarks for dynamic multi-objective optimisation

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available When algorithms solve dynamic multi-objective optimisation problems (DMOOPs), benchmark functions should be used to determine whether the algorithm can overcome specific difficulties that can occur in real-world problems. However, for dynamic multi...

  9. Solving multi-objective facility location problem using the fuzzy analytical hierarchy process and goal programming: a case study on infectious waste disposal centers

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    Full Text Available The selection of a suitable location for infectious waste disposal is one of the major problems in waste management. Determining the location of infectious waste disposal centers is a difficult and complex process because it requires combining social and environmental factors that are hard to interpret, and cost factors that require the allocation of resources. Additionally, it depends on several regulations. Based on the actual conditions of a case study, forty hospitals and three candidate municipalities in the sub-Northeast region of Thailand, we considered multiple factors such as infrastructure, geological and social & environmental factors, calculating global priority weights using the fuzzy analytical hierarchy process (FAHP. After that, a new multi-objective facility location problem model which combines FAHP and goal programming (GP, namely the FAHP-GP model, was tested. The proposed model can lead to selecting new suitable locations for infectious waste disposal by considering both total cost and final priority weight objectives. The novelty of the proposed model is the simultaneous combination of relevant factors that are difficult to interpret and cost factors, which require the allocation of resources. Keywords: Multi-objective facility location problem, Fuzzy analytic hierarchy process, Infectious waste disposal centers

  10. Irrigation water allocation optimization using multi-objective evolutionary algorithm (MOEA) - a review

    Science.gov (United States)

    Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian

    2018-03-01

    This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.

  11. Multi-Objective Nonlinear Model Predictive Control: Lexicographic Method

    OpenAIRE

    Zheng, Tao; Wu, Gang; Liu, Guang-Hong; Ling, Qing

    2010-01-01

    In this chapter, to avoid the disadvantages of weight coefficients in multi-objective dynamic optimization, lexicographic (completely stratified) and partially stratified frameworks of multi-objective controller are proposed. The lexicographic framework is absolutely prioritydriven and the partially stratified framework is a modification of it, they both can solve the multi-objective control problem with the concept of priority for objective’s relative importance, while the latter one is mo...

  12. Multi-objective convex programming problem arising in multivariate ...

    African Journals Online (AJOL)

    user

    Multi-objective convex programming problem arising in ... However, although the consideration of multiple objectives may seem a novel concept, virtually any nontrivial ..... Solving multiobjective programming problems by discrete optimization.

  13. Fuzzy Multi-objective Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    Amna Rehmat

    2007-07-01

    Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.

  14. Enhanced Multi-Objective Energy Optimization by a Signaling Method

    OpenAIRE

    Soares, João; Borges, Nuno; Vale, Zita; Oliveira, P.B.

    2016-01-01

    In this paper three metaheuristics are used to solve a smart grid multi-objective energy management problem with conflictive design: how to maximize profits and minimize carbon dioxide (CO2) emissions, and the results compared. The metaheuristics implemented are: weighted particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II). The performance of these methods with the use of multi-dimensi...

  15. Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense

    Science.gov (United States)

    2010-03-01

    David A. Van Veldhuizen . Evo- lutionary Algorithms for Solving Multi-Objective Problems. Springer, New York, NY, 2nd edition, 2007. [9] Dean, Thomas...J.I. van Hemert, E. Marchiori, and A. G. Steenbeek. “Solving Binary Constraint Satisfaction Problems using Evolutionary Algorithms with an Adaptive

  16. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  17. Multi-objective optimization in computer networks using metaheuristics

    CERN Document Server

    Donoso, Yezid

    2007-01-01

    Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...

  18. MOPSO-based multi-objective TSO planning considering uncertainties

    DEFF Research Database (Denmark)

    Wang, Qi; Zhang, Chunyu; Ding, Yi

    2014-01-01

    factors, i.e. load growth, generation capacity and line faults, and aims to enhance the transmission system via the multi-objective TSO planning (MOTP) approach. The proposed MOTP approach optimizes three objectives simultaneously, namely the probabilistic available transfer capability (PATC), investment...... cost and power outage cost. A two-phase MOPSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity ofPareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach...

  19. Approximating multi-objective scheduling problems

    NARCIS (Netherlands)

    Dabia, S.; Talbi, El-Ghazali; Woensel, van T.; Kok, de A.G.

    2013-01-01

    In many practical situations, decisions are multi-objective by nature. In this paper, we propose a generic approach to deal with multi-objective scheduling problems (MOSPs). The aim is to determine the set of Pareto solutions that represent the interactions between the different objectives. Due to

  20. Non-convex multi-objective optimization

    CERN Document Server

    Pardalos, Panos M; Žilinskas, Julius

    2017-01-01

    Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in...

  1. An Evolutionary Approach for Bilevel Multi-objective Problems

    Science.gov (United States)

    Deb, Kalyanmoy; Sinha, Ankur

    Evolutionary multi-objective optimization (EMO) algorithms have been extensively applied to find multiple near Pareto-optimal solutions over the past 15 years or so. However, EMO algorithms for solving bilevel multi-objective optimization problems have not received adequate attention yet. These problems appear in many applications in practice and involve two levels, each comprising of multiple conflicting objectives. These problems require every feasible upper-level solution to satisfy optimality of a lower-level optimization problem, thereby making them difficult to solve. In this paper, we discuss a recently proposed bilevel EMO procedure and show its working principle on a couple of test problems and on a business decision-making problem. This paper should motivate other EMO researchers to engage more into this important optimization task of practical importance.

  2. Distribution Network Expansion Planning Based on Multi-objective PSO Algorithm

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Wu, Qiuwei

    2013-01-01

    This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO...... algorithm was proposed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified...

  3. Multi-Objective Weather Routing of Sailing Vessels

    Directory of Open Access Journals (Sweden)

    Życzkowski Marcin

    2017-12-01

    Full Text Available The paper presents a multi-objective deterministic method of weather routing for sailing vessels. Depending on a particular purpose of sailboat weather routing, the presented method makes it possible to customize the criteria and constraints so as to fit a particular user’s needs. Apart from a typical shortest time criterion, safety and comfort can also be taken into account. Additionally, the method supports dynamic weather data: in its present version short-term, mid-term and long-term term weather forecasts are used during optimization process. In the paper the multi-objective optimization problem is first defined and analysed. Following this, the proposed method solving this problem is described in detail. The method has been implemented as an online SailAssistance application. Some representative examples solutions are presented, emphasizing the effects of applying different criteria or different values of customized parameters.

  4. Recent advances in evolutionary multi-objective optimization

    CERN Document Server

    Datta, Rituparna; Gupta, Abhishek

    2017-01-01

    This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include:< optimization in dynamic environments, multi-objective bilevel programming, handling high ...

  5. Conflicting Multi-Objective Compatible Optimization Control

    OpenAIRE

    Xu, Lihong; Hu, Qingsong; Hu, Haigen; Goodman, Erik

    2010-01-01

    Based on ideas developed in addressing practical greenhouse environmental control, we propose a new multi-objective compatible control method. Several detailed algorithms are proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC framework is presented for problems with a precise model; 2) To deal with situations

  6. Multi-objective Transmission Planning Paper

    DEFF Research Database (Denmark)

    Xu, Zhao; Dong, Zhao Yang; Wong, Kit Po

    2009-01-01

    This paper describes a transmission expansion planning method based on multi-objective optimization (MOOP). The method starts with constructing a candidate pool of feasible expansion plans, followed by selection of the best candidates through MOOP, of which multiple objectives are tackled...

  7. Multi-objective evacuation routing optimization for toxic cloud releases

    International Nuclear Information System (INIS)

    Gai, Wen-mei; Deng, Yun-feng; Jiang, Zhong-an; Li, Jing; Du, Yan

    2017-01-01

    This paper develops a model for assessing the risks associated with the evacuation process in response to potential chemical accidents, based on which a multi-objective evacuation routing model for toxic cloud releases is proposed taking into account that the travel speed on each arc will be affected by disaster extension. The objectives of the evacuation routing model are to minimize travel time and individual evacuation risk along a path respectively. Two heuristic algorithms are proposed to solve the multi-objective evacuation routing model. Simulation results show the effectiveness and feasibility of the model and algorithms presented in this paper. And, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency route selection in other cases (fires, nuclear accidents). - Highlights: • A model for assessing and visualizing the risks is developed. • A multi-objective evacuation routing model is proposed for toxic cloud releases. • A modified Dijkstra algorithm is designed to obtain an solution of the model. • Two heuristic algorithms have been developed as the optimization tool.

  8. EFFICIENT MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR JOB SHOP SCHEDULING

    Institute of Scientific and Technical Information of China (English)

    Lei Deming; Wu Zhiming

    2005-01-01

    A new representation method is first presented based on priority rules. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority rule. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed,in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling.

  9. Multi-objective group scheduling optimization integrated with preventive maintenance

    Science.gov (United States)

    Liao, Wenzhu; Zhang, Xiufang; Jiang, Min

    2017-11-01

    This article proposes a single-machine-based integration model to meet the requirements of production scheduling and preventive maintenance in group production. To describe the production for identical/similar and different jobs, this integrated model considers the learning and forgetting effects. Based on machine degradation, the deterioration effect is also considered. Moreover, perfect maintenance and minimal repair are adopted in this integrated model. The multi-objective of minimizing total completion time and maintenance cost is taken to meet the dual requirements of delivery date and cost. Finally, a genetic algorithm is developed to solve this optimization model, and the computation results demonstrate that this integrated model is effective and reliable.

  10. Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mengjun Ming

    2017-05-01

    Full Text Available Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes is maximized. To effectively solve this multi-objective problem (MOP, the multi-objective evolutionary algorithm based on decomposition (MOEA/D using localized penalty-based boundary intersection (LPBI method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified.

  11. Interactive Approach for Multi-Level Multi-Objective Fractional Programming Problems with Fuzzy Parameters

    Directory of Open Access Journals (Sweden)

    M.S. Osman

    2018-03-01

    Full Text Available In this paper, an interactive approach for solving multi-level multi-objective fractional programming (ML-MOFP problems with fuzzy parameters is presented. The proposed interactive approach makes an extended work of Shi and Xia (1997. In the first phase, the numerical crisp model of the ML-MOFP problem has been developed at a confidence level without changing the fuzzy gist of the problem. Then, the linear model for the ML-MOFP problem is formulated. In the second phase, the interactive approach simplifies the linear multi-level multi-objective model by converting it into separate multi-objective programming problems. Also, each separate multi-objective programming problem of the linear model is solved by the ∊-constraint method and the concept of satisfactoriness. Finally, illustrative examples and comparisons with the previous approaches are utilized to evince the feasibility of the proposed approach.

  12. A procedure for multi-objective optimization of tire design parameters

    OpenAIRE

    Nikola Korunović; Miloš Madić; Miroslav Trajanović; Miroslav Radovanović

    2015-01-01

    The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zo...

  13. Connected Component Model for Multi-Object Tracking.

    Science.gov (United States)

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  14. Multi-objective ant algorithm for wireless sensor network positioning

    International Nuclear Information System (INIS)

    Fidanova, S.; Shindarov, M.; Marinov, P.

    2013-01-01

    It is impossible to imagine our modern life without telecommunications. Wireless networks are a part of telecommunications. Wireless sensor networks (WSN) consist of spatially distributed sensors, which communicate in wireless way. This network monitors physical or environmental conditions. The objective is the full coverage of the monitoring region and less energy consumption of the network. The most appropriate approach to solve the problem is metaheuristics. In this paper the full coverage of the area is treated as a constrain. The objectives which are optimized are a minimal number of sensors and energy (lifetime) of the network. We apply multi-objective Ant Colony Optimization to solve this important telecommunication problem. We chose MAX-MIN Ant System approach, because it is proven to converge to the global optima

  15. Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Lee, K Y

    2009-01-01

    In this paper the state-of-the-art extended particle swarm optimization (PSO) methods for solving multi-objective optimization problems are represented. We emphasize in those, the co-evolution technique of the parallel vector evaluated PSO (VEPSO), analysed and applied in a multi-objective problem...

  16. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.

    Science.gov (United States)

    Elhossini, Ahmed; Areibi, Shawki; Dony, Robert

    2010-01-01

    This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

  17. MONSS: A multi-objective nonlinear simplex search approach

    Science.gov (United States)

    Zapotecas-Martínez, Saúl; Coello Coello, Carlos A.

    2016-01-01

    This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.

  18. A scalable coevolutionary multi-objective particle swarm optimizer

    Directory of Open Access Journals (Sweden)

    Xiangwei Zheng

    2010-11-01

    Full Text Available Multi-Objective Particle Swarm Optimizers (MOPSOs are easily trapped in local optima, cost more function evaluations and suffer from the curse of dimensionality. A scalable cooperative coevolution and ?-dominance based MOPSO (CEPSO is proposed to address these issues. In CEPSO, Multi-objective Optimization Problems (MOPs are decomposed in terms of their decision variables and are optimized by cooperative coevolutionary subswarms, and a uniform distribution mutation operator is adopted to avoid premature convergence. All subswarms share an external archive based on ?-dominance, which is also used as a leader set. Collaborators are selected from the archive and used to construct context vectors in order to evaluate particles in a subswarm. CEPSO is tested on several classical MOP benchmark functions and experimental results show that CEPSO can readily escape from local optima and optimize both low and high dimensional problems, but the number of function evaluations only increases linearly with respect to the number of decision variables. Therefore, CEPSO is competitive in solving various MOPs.

  19. Towards lexicographic multi-objective linear programming using grossone methodology

    Science.gov (United States)

    Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.

    2016-10-01

    Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.

  20. Optimization of externalities using DTM measures: a Pareto optimal multi objective optimization using the evolutionary algorithm SPEA2+

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart

    2010-01-01

    Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.

  1. Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems

    CERN Document Server

    2015-01-01

    This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field ...

  2. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp

    2009-04-15

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.

  3. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    International Nuclear Information System (INIS)

    Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji

    2009-01-01

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets

  4. Multi-objective engineering design using preferences

    Science.gov (United States)

    Sanchis, J.; Martinez, M.; Blasco, X.

    2008-03-01

    System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).

  5. The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Science.gov (United States)

    2013-06-01

    144 [38] Coello, Carlos A. Coello, Gary B Lamont, and David A Van Veldhuizen . Evolutionary Algorithms for Solving Multi-Objective Problems. Springer...Traveling Repairperson Problem (DTRP) Policies Proposed by Bertsimas and Van Ryzin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3...queuing theory perspective. Table 3.2: DTRP Policies Proposed by Bertsimas and Van Ryzin. Name Description First Come First Serve (FCFS) vehicles

  6. Multi-Objective Optimization of Managed Aquifer Recharge.

    Science.gov (United States)

    Fatkhutdinov, Aybulat; Stefan, Catalin

    2018-04-27

    This study demonstrates the utilization of a multi-objective hybrid global/local optimization algorithm for solving managed aquifer recharge (MAR) design problems, in which the decision variables included spatial arrangement of water injection and abstraction wells and time-variant rates of pumping and injection. The objective of the optimization was to maximize the efficiency of the MAR scheme, which includes both quantitative and qualitative aspects. The case study used to demonstrate the capabilities of the proposed approach is based on a published report on designing a real MAR site with defined aquifer properties, chemical groundwater characteristics as well as quality and volumes of injected water. The demonstration problems include steady-state and transient scenarios. The steady-state scenario demonstrates optimization of spatial arrangement of multiple injection and recovery wells, whereas the transient scenario was developed with the purpose of finding optimal regimes of water injection and recovery at a single location. Both problems were defined as multi-objective problems. The scenarios were simulated by applying coupled numerical groundwater flow and solute transport models: MODFLOW-2005 and MT3D-USGS. The applied optimization method was a combination of global - the Non-Dominated Sorting Genetic Algorithm (NSGA-2), and local - the Nelder-Mead Downhill Simplex search algorithms. The analysis of the resulting Pareto optimal solutions led to the discovery of valuable patterns and dependencies between the decision variables, model properties and problem objectives. Additionally, the performance of the traditional global and the hybrid optimization schemes were compared. This article is protected by copyright. All rights reserved.

  7. An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Rafał Dreżewski

    2017-08-01

    Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.

  8. Design for Sustainability of Industrial Symbiosis based on Emergy and Multi-objective Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2016-01-01

    approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable...... performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied...

  9. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling

    DEFF Research Database (Denmark)

    Soares, Joao; Vale, Zita; Canizes, Bruno

    2013-01-01

    This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle-To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming...... to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow...

  10. Multi-Objective Bidding Strategy for Genco Using Non-Dominated Sorting Particle Swarm Optimization

    Science.gov (United States)

    Saksinchai, Apinat; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes a multi-objective bidding strategy for a generation company (GenCo) in uniform price spot market using non-dominated sorting particle swarm optimization (NSPSO). Instead of using a tradeoff technique, NSPSO is introduced to solve the multi-objective strategic bidding problem considering expected profit maximization and risk (profit variation) minimization. Monte Carlo simulation is employed to simulate rivals' bidding behavior. Test results indicate that the proposed approach can provide the efficient non-dominated solution front effectively. In addition, it can be used as a decision making tool for a GenCo compromising between expected profit and price risk in spot market.

  11. Image de-noising based on mathematical morphology and multi-objective particle swarm optimization

    Science.gov (United States)

    Dou, Liyun; Xu, Dan; Chen, Hao; Liu, Yicheng

    2017-07-01

    To overcome the problem of image de-noising, an efficient image de-noising approach based on mathematical morphology and multi-objective particle swarm optimization (MOPSO) is proposed in this paper. Firstly, constructing a series and parallel compound morphology filter based on open-close (OC) operation and selecting a structural element with different sizes try best to eliminate all noise in a series link. Then, combining multi-objective particle swarm optimization (MOPSO) to solve the parameters setting of multiple structural element. Simulation result shows that our algorithm can achieve a superior performance compared with some traditional de-noising algorithm.

  12. Effect of objective function on multi-objective inverse planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Wu Yican; Song Gang; Wang Shifang

    2006-01-01

    There are two kinds of objective functions in radiotherapy inverse planning: dose distribution-based and Dose-Volume Histogram (DVH)-based functions. The treatment planning in our days is still a trial and error process because the multi-objective problem is solved by transforming it into a single objective problem using a specific set of weights for each object. This work investigates the problem of objective function setting based on Pareto multi-optimization theory, and compares the effect on multi-objective inverse planning of those two kinds of objective functions including calculation time, converge speed, etc. The basis of objective function setting on inverse planning is discussed. (authors)

  13. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    Science.gov (United States)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  14. Design of a centrifugal compressor impeller using multi-objective optimization algorithm

    International Nuclear Information System (INIS)

    Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong; Choi, Jae Ho

    2009-01-01

    This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with ε-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.

  15. Design of a centrifugal compressor impeller using multi-objective optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyuk; Husain, Afzal; Kim, Kwang Yong [Inha University, Incheon (Korea, Republic of); Choi, Jae Ho [Samsung Techwin Co., Ltd., Changwon (Korea, Republic of)

    2009-07-01

    This paper presents a design optimization of a centrifugal compressor impeller with hybrid multi-objective evolutionary algorithm (hybrid MOEA). Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. Two objectives, i.e., isentropic efficiency and total pressure ratio are selected with four design variables defining impeller hub and shroud contours in meridional contours to optimize the system. Non-dominated Sorting of Genetic Algorithm (NSGA-II) with {epsilon}-constraint strategy for local search coupled with Radial Basis Neural Network model is used for multi-objective optimization. The optimization results show that isentropic efficiencies and total pressure ratios of the five cluster points at the Pareto-optimal solutions are enhanced by multi-objective optimization.

  16. A procedure for multi-objective optimization of tire design parameters

    Directory of Open Access Journals (Sweden)

    Nikola Korunović

    2015-04-01

    Full Text Available The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zones inside the tire. It consists of four main stages: pre-analysis, design of experiment, mathematical modeling and multi-objective optimization. Advantage of the proposed procedure is reflected in the fact that multi-objective optimization is based on the Pareto concept, which enables design engineers to obtain a complete set of optimization solutions and choose a suitable tire design. Furthermore, modeling of the relationships between tire design parameters and objective functions based on multiple regression analysis minimizes computational and modeling effort. The adequacy of the proposed tire design multi-objective optimization procedure has been validated by performing experimental trials based on finite element method.

  17. The multi-objective decision making methods based on MULTIMOORA and MOOSRA for the laptop selection problem

    Science.gov (United States)

    Aytaç Adalı, Esra; Tuş Işık, Ayşegül

    2017-06-01

    A decision making process requires the values of conflicting objectives for alternatives and the selection of the best alternative according to the needs of decision makers. Multi-objective optimization methods may provide solution for this selection. In this paper it is aimed to present the laptop selection problem based on MOORA plus full multiplicative form (MULTIMOORA) and multi-objective optimization on the basis of simple ratio analysis (MOOSRA) which are relatively new multi-objective optimization methods. The novelty of this paper is solving this problem with the MULTIMOORA and MOOSRA methods for the first time.

  18. Convex hull ranking algorithm for multi-objective evolutionary algorithms

    NARCIS (Netherlands)

    Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.

    2012-01-01

    Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity

  19. Determination of Pareto frontier in multi-objective maintenance optimization

    International Nuclear Information System (INIS)

    Certa, Antonella; Galante, Giacomo; Lupo, Toni; Passannanti, Gianfranco

    2011-01-01

    The objective of a maintenance policy generally is the global maintenance cost minimization that involves not only the direct costs for both the maintenance actions and the spare parts, but also those ones due to the system stop for preventive maintenance and the downtime for failure. For some operating systems, the failure event can be dangerous so that they are asked to operate assuring a very high reliability level between two consecutive fixed stops. The present paper attempts to individuate the set of elements on which performing maintenance actions so that the system can assure the required reliability level until the next fixed stop for maintenance, minimizing both the global maintenance cost and the total maintenance time. In order to solve the previous constrained multi-objective optimization problem, an effective approach is proposed to obtain the best solutions (that is the Pareto optimal frontier) among which the decision maker will choose the more suitable one. As well known, describing the whole Pareto optimal frontier generally is a troublesome task. The paper proposes an algorithm able to rapidly overcome this problem and its effectiveness is shown by an application to a case study regarding a complex series-parallel system.

  20. Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems

    International Nuclear Information System (INIS)

    Cao, Dingzhou; Murat, Alper; Chinnam, Ratna Babu

    2013-01-01

    This paper proposes a decomposition-based approach to exactly solve the multi-objective Redundancy Allocation Problem for series-parallel systems. Redundancy allocation problem is a form of reliability optimization and has been the subject of many prior studies. The majority of these earlier studies treat redundancy allocation problem as a single objective problem maximizing the system reliability or minimizing the cost given certain constraints. The few studies that treated redundancy allocation problem as a multi-objective optimization problem relied on meta-heuristic solution approaches. However, meta-heuristic approaches have significant limitations: they do not guarantee that Pareto points are optimal and, more importantly, they may not identify all the Pareto-optimal points. In this paper, we treat redundancy allocation problem as a multi-objective problem, as is typical in practice. We decompose the original problem into several multi-objective sub-problems, efficiently and exactly solve sub-problems, and then systematically combine the solutions. The decomposition-based approach can efficiently generate all the Pareto-optimal solutions for redundancy allocation problems. Experimental results demonstrate the effectiveness and efficiency of the proposed method over meta-heuristic methods on a numerical example taken from the literature.

  1. A linear bi-level multi-objective program for optimal allocation of water resources.

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    Full Text Available This paper presents a simple bi-level multi-objective linear program (BLMOLP with a hierarchical structure consisting of reservoir managers and several water use sectors under a multi-objective framework for the optimal allocation of limited water resources. Being the upper level decision makers (i.e., leader in the hierarchy, the reservoir managers control the water allocation system and tend to create a balance among the competing water users thereby maximizing the total benefits to the society. On the other hand, the competing water use sectors, being the lower level decision makers (i.e., followers in the hierarchy, aim only to maximize individual sectoral benefits. This multi-objective bi-level optimization problem can be solved using the simultaneous compromise constraint (SICCON technique which creates a compromise between upper and lower level decision makers (DMs, and transforms the multi-objective function into a single decision-making problem. The bi-level model developed in this study has been applied to the Swat River basin in Pakistan for the optimal allocation of water resources among competing water demand sectors and different scenarios have been developed. The application of the model in this study shows that the SICCON is a simple, applicable and feasible approach to solve the BLMOLP problem. Finally, the comparisons of the model results show that the optimization model is practical and efficient when it is applied to different conditions with priorities assigned to various water users.

  2. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  3. Culture belief based multi-objective hybrid differential evolutionary algorithm in short term hydrothermal scheduling

    International Nuclear Information System (INIS)

    Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang

    2013-01-01

    Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.

  4. Catchment scale multi-objective flood management

    Science.gov (United States)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    techniques will include: controlling headwater drainage, increasing evapotranspiration and interception by creating new woodlands in the upper catchment areas, enabling coarse woody debris dams to slow down water flows through steep valleys, improving soil water storage potential by appropriate soil and crop management, retaining water on lowland flood meadows and wet woodland creation within the floodplain. The project, due to run from 2009 until 2013, incorporates hydrometric and water quality monitoring, together with hydrologic and hydraulic modelling in order to attempt to demonstrate the effect of land management changes on flood dynamics and flood risk management. To date, the project team have undertaken the fundamental catchment characterisation work to understand its physical setting and the interaction of the physical processes that influence the hydrological response of the catchment to incident precipitation. The results of this initial work has led to the identification of a suitably robust hydrometric monitoring network within the catchments to meet the needs of providing both quantitative evidence of the impacts of land management change on flood risk, together with generating good quality datasets for the validation and testing of the new hydrologic models. As the project aims to demonstrate ‘best practice' in all areas, the opportunity has been taken to install a network of automatic hydrometric monitoring equipment, together with an associated telemetry system, in order to maximise data coverage, accuracy and reliability. Good quality datasets are a critical requirement for reliable modelling. The modelling will also be expanded to incorporate climate change scenarios. This paper will describe the catchment characterisation work undertaken to date, the proposed land management changes in relation to flood risk management, the initial catchment hydraulic modelling work and the implementation of the new hydrometric monitoring network within the study area.

  5. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  6. A new multi objective optimization model for designing a green supply chain network under uncertainty

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Saffar

    2015-01-01

    Full Text Available Recently, researchers have focused on how to minimize the negative effects of industrial activities on environment. Consequently, they work on mathematical models, which minimize the environmental issues as well as optimizing the costs. In the field of supply chain network design, most managers consider economic and environmental issues, simultaneously. This paper introduces a bi-objective supply chain network design, which uses fuzzy programming to obtain the capability of resisting uncertain conditions. The design considers production, recovery, and distribution centers. The advantage of using this model includes the optimal facilities, locating them and assigning the optimal facilities to them. It also chooses the type and the number of technologies, which must be bought. The fuzzy programming converts the multi objective model to an auxiliary crisp model by Jimenez approach and solves it with ε-constraint. For solving large size problems, the Multi Objective Differential Evolutionary algorithm (MODE is applied.

  7. Multi-objective optimization problems concepts and self-adaptive parameters with mathematical and engineering applications

    CERN Document Server

    Lobato, Fran Sérgio

    2017-01-01

    This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.

  8. A hybrid multi-objective evolutionary algorithm approach for ...

    Indian Academy of Sciences (India)

    V K MANUPATI

    for handling sequence- and machine-dependent set-up times ... algorithm has been compared to that of multi-objective particle swarm optimization (MOPSO) and conventional ..... position and cognitive learning factor are considered for.

  9. Multi-objective optimization of inverse planning for accurate radiotherapy

    International Nuclear Information System (INIS)

    Cao Ruifen; Pei Xi; Cheng Mengyun; Li Gui; Hu Liqin; Wu Yican; Jing Jia; Li Guoli

    2011-01-01

    The multi-objective optimization of inverse planning based on the Pareto solution set, according to the multi-objective character of inverse planning in accurate radiotherapy, was studied in this paper. Firstly, the clinical requirements of a treatment plan were transformed into a multi-objective optimization problem with multiple constraints. Then, the fast and elitist multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) was introduced to optimize the problem. A clinical example was tested using this method. The results show that an obtained set of non-dominated solutions were uniformly distributed and the corresponding dose distribution of each solution not only approached the expected dose distribution, but also met the dose-volume constraints. It was indicated that the clinical requirements were better satisfied using the method and the planner could select the optimal treatment plan from the non-dominated solution set. (authors)

  10. Issues with performance measures for dynamic multi-objective optimisation

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), Mexico, 20-23 June 2013 Issues with Performance Measures for Dynamic Multi-objective Optimisation Mard´e Helbig CSIR: Meraka Institute Brummeria, South Africa...

  11. Scalable and practical multi-objective distribution network expansion planning

    NARCIS (Netherlands)

    Luong, N.H.; Grond, M.O.W.; Poutré, La J.A.; Bosman, P.A.N.

    2015-01-01

    We formulate the distribution network expansion planning (DNEP) problem as a multi-objective optimization (MOO) problem with different objectives that distribution network operators (DNOs) would typically like to consider during decision making processes for expanding their networks. Objectives are

  12. Comparative Study of Evolutionary Multi-objective Optimization Algorithms for a Non-linear Greenhouse Climate Control Problem

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...

  13. Investigation on multi-objective performance optimization algorithm application of fan based on response surface method and entropy method

    Science.gov (United States)

    Zhang, Li; Wu, Kexin; Liu, Yang

    2017-12-01

    A multi-objective performance optimization method is proposed, and the problem that single structural parameters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved. In this method, three structural parameters are selected as the optimization variables. Besides, the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance. Furthermore, the response surface method and the entropy method are used to establish the optimization function between the optimization variables and the multi-objective performances. Finally, the optimized model is found when the optimization function reaches its maximum value. Experimental data shows that the optimized model not only enhances the static characteristics of the fan but also obviously reduces the noise. The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.

  14. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Qin Hui [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou Jianzhong, E-mail: jz.zhou@hust.edu.c [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Youlin; Wang Ying; Zhang Yongchuan [College of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-04-15

    A new multi-objective optimization method based on differential evolution with adaptive Cauchy mutation (MODE-ACM) is presented to solve short-term multi-objective optimal hydro-thermal scheduling (MOOHS) problem. Besides fuel cost, the pollutant gas emission is also optimized as an objective. The water transport delay between connected reservoirs and the effect of valve-point loading of thermal units are also taken into account in the presented problem formulation. The proposed algorithm adopts an elitist archive to retain non-dominated solutions obtained during the evolutionary process. It modifies the DE's operators to make it suit for multi-objective optimization (MOO) problems and improve its performance. Furthermore, to avoid premature convergence, an adaptive Cauchy mutation is proposed to preserve the diversity of population. An effective constraints handling method is utilized to handle the complex equality and inequality constraints. The effectiveness of the proposed algorithm is tested on a hydro-thermal system consisting of four cascaded hydro plants and three thermal units. The results obtained by MODE-ACM are compared with several previous studies. It is found that the results obtained by MODE-ACM are superior in terms of fuel cost as well as emission output, consuming a shorter time. Thus it can be a viable alternative to generate optimal trade-offs for short-term MOOHS problem.

  15. Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem

    Science.gov (United States)

    Omagari, Hiroki; Higashino, Shin-Ichiro

    2018-04-01

    In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

  16. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    Science.gov (United States)

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  17. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    Science.gov (United States)

    Trianni, Vito; López-Ibáñez, Manuel

    2015-01-01

    The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  18. Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Kangji Li

    2017-02-01

    Full Text Available Numerous conflicting criteria exist in building design optimization, such as energy consumption, greenhouse gas emission and indoor thermal performance. Different simulation-based optimization strategies and various optimization algorithms have been developed. A few of them are analyzed and compared in solving building design problems. This paper presents an efficient optimization framework to facilitate optimization designs with the aid of commercial simulation software and MATLAB. The performances of three optimization strategies, including the proposed approach, GenOpt method and artificial neural network (ANN method, are investigated using a case study of a simple building energy model. Results show that the proposed optimization framework has competitive performances compared with the GenOpt method. Further, in another practical case, four popular multi-objective algorithms, e.g., the non-dominated sorting genetic algorithm (NSGA-II, multi-objective particle swarm optimization (MOPSO, the multi-objective genetic algorithm (MOGA and multi-objective differential evolution (MODE, are realized using the propose optimization framework and compared with three criteria. Results indicate that MODE achieves close-to-optimal solutions with the best diversity and execution time. An uncompetitive result is achieved by the MOPSO in this case study.

  19. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    Directory of Open Access Journals (Sweden)

    Vito Trianni

    Full Text Available The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled. However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  20. Study on multi-objective flexible job-shop scheduling problem considering energy consumption

    Directory of Open Access Journals (Sweden)

    Zengqiang Jiang

    2014-06-01

    Full Text Available Purpose: Build a multi-objective Flexible Job-shop Scheduling Problem(FJSP optimization model, in which the makespan, processing cost, energy consumption and cost-weighted processing quality are considered, then Design a Modified Non-dominated Sorting Genetic Algorithm (NSGA-II based on blood variation for above scheduling model.Design/methodology/approach: A multi-objective optimization theory based on Pareto optimal method is used in carrying out the optimization model. NSGA-II is used to solve the model.Findings: By analyzing the research status and insufficiency of multi-objective FJSP, Find that the difference in scheduling will also have an effect on energy consumption in machining process and environmental emissions. Therefore, job-shop scheduling requires not only guaranteeing the processing quality, time and cost, but also optimizing operation plan of machines and minimizing energy consumption.Originality/value: A multi-objective FJSP optimization model is put forward, in which the makespan, processing cost, energy consumption and cost-weighted processing quality are considered. According to above model, Blood-Variation-based NSGA-II (BVNSGA-II is designed. In which, the chromosome mutation rate is determined after calculating the blood relationship between two cross chromosomes, crossover and mutation strategy of NSGA-II is optimized and the prematurity of population is overcome. Finally, the performance of the proposed model and algorithm is evaluated through a case study, and the results proved the efficiency and feasibility of the proposed model and algorithm.

  1. The Worst-Case Weighted Multi-Objective Game with an Application to Supply Chain Competitions.

    Science.gov (United States)

    Qu, Shaojian; Ji, Ying

    2016-01-01

    In this paper, we propose a worst-case weighted approach to the multi-objective n-person non-zero sum game model where each player has more than one competing objective. Our "worst-case weighted multi-objective game" model supposes that each player has a set of weights to its objectives and wishes to minimize its maximum weighted sum objectives where the maximization is with respect to the set of weights. This new model gives rise to a new Pareto Nash equilibrium concept, which we call "robust-weighted Nash equilibrium". We prove that the robust-weighted Nash equilibria are guaranteed to exist even when the weight sets are unbounded. For the worst-case weighted multi-objective game with the weight sets of players all given as polytope, we show that a robust-weighted Nash equilibrium can be obtained by solving a mathematical program with equilibrium constraints (MPEC). For an application, we illustrate the usefulness of the worst-case weighted multi-objective game to a supply chain risk management problem under demand uncertainty. By the comparison with the existed weighted approach, we show that our method is more robust and can be more efficiently used for the real-world applications.

  2. The Worst-Case Weighted Multi-Objective Game with an Application to Supply Chain Competitions.

    Directory of Open Access Journals (Sweden)

    Shaojian Qu

    Full Text Available In this paper, we propose a worst-case weighted approach to the multi-objective n-person non-zero sum game model where each player has more than one competing objective. Our "worst-case weighted multi-objective game" model supposes that each player has a set of weights to its objectives and wishes to minimize its maximum weighted sum objectives where the maximization is with respect to the set of weights. This new model gives rise to a new Pareto Nash equilibrium concept, which we call "robust-weighted Nash equilibrium". We prove that the robust-weighted Nash equilibria are guaranteed to exist even when the weight sets are unbounded. For the worst-case weighted multi-objective game with the weight sets of players all given as polytope, we show that a robust-weighted Nash equilibrium can be obtained by solving a mathematical program with equilibrium constraints (MPEC. For an application, we illustrate the usefulness of the worst-case weighted multi-objective game to a supply chain risk management problem under demand uncertainty. By the comparison with the existed weighted approach, we show that our method is more robust and can be more efficiently used for the real-world applications.

  3. Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Lvjiang Yin

    2016-12-01

    Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.

  4. A multi-objective genetic approach to domestic load scheduling in an energy management system

    International Nuclear Information System (INIS)

    Soares, Ana; Antunes, Carlos Henggeler; Oliveira, Carlos; Gomes, Álvaro

    2014-01-01

    In this paper a multi-objective genetic algorithm is used to solve a multi-objective model to optimize the time allocation of domestic loads within a planning period of 36 h, in a smart grid context. The management of controllable domestic loads is aimed at minimizing the electricity bill and the end-user’s dissatisfaction concerning two different aspects: the preferred time slots for load operation and the risk of interruption of the energy supply. The genetic algorithm is similar to the Elitist NSGA-II (Nondominated Sorting Genetic Algorithm II), in which some changes have been introduced to adapt it to the physical characteristics of the load scheduling problem and improve usability of results. The mathematical model explicitly considers economical, technical, quality of service and comfort aspects. Illustrative results are presented and the characteristics of different solutions are analyzed. - Highlights: • A genetic algorithm similar to the NSGA-II is used to solve a multi-objective model. • The optimized time allocation of domestic loads in a smart grid context is achieved. • A variable preference profile for the operation of the managed loads is included. • A safety margin is used to account for the quality of the energy services provided. • A non-dominated front with the solutions in the two-objective space is obtained

  5. Multi objective optimization of line pack management of gas pipeline system

    International Nuclear Information System (INIS)

    Chebouba, A

    2015-01-01

    This paper addresses the Line Pack Management of the ''GZ1 Hassi R'mell-Arzew'' gas pipeline. For a gas pipeline system, the decision-making on the gas line pack management scenarios usually involves a delicate balance between minimization of the fuel consumption in the compression stations and maximizing gas line pack. In order to select an acceptable Line Pack Management of Gas Pipeline scenario from these two angles for ''GZ1 Hassi R'mell- Arzew'' gas pipeline, the idea of multi-objective decision-making has been introduced. The first step in developing this approach is the derivation of a numerical method to analyze the flow through the pipeline under transient isothermal conditions. In this paper, the solver NSGA-II of the modeFRONTIER, coupled with a matlab program was used for solving the multi-objective problem

  6. A multi-objective particle swarm optimization for production-distribution planning in supply chain network

    Directory of Open Access Journals (Sweden)

    Alireza Pourrousta

    2012-04-01

    Full Text Available Integrated supply chain includes different components of order, production and distribution and it plays an important role on reducing the cost of manufacturing system. In this paper, an integrated supply chain in a form of multi-objective decision-making problem is presented. The proposed model of this paper considers different parameters with uncertainty using trapezoid numbers. We first implement a ranking method to covert the fuzzy model into a crisp one and using multi-objective particle swarm optimization, we solve the resulted model. The results are compared with the performance of NSGA-II for some randomly generated problems and the preliminary results indicate that the proposed model of the paper performs better than the alternative method.

  7. Multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge

    Directory of Open Access Journals (Sweden)

    Z. Du

    2016-05-01

    Full Text Available Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.

  8. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    Science.gov (United States)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  9. Multiple utility constrained multi-objective programs using Bayesian theory

    Science.gov (United States)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  10. Multi-objective optimal power flow with FACTS devices

    International Nuclear Information System (INIS)

    Basu, M.

    2011-01-01

    This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.

  11. Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies

    International Nuclear Information System (INIS)

    Safari, Jalal

    2012-01-01

    This paper proposes a variant of the Non-dominated Sorting Genetic Algorithm (NSGA-II) to solve a novel mathematical model for multi-objective redundancy allocation problems (MORAP). Most researchers about redundancy allocation problem (RAP) have focused on single objective optimization, while there has been some limited research which addresses multi-objective optimization. Also all mathematical multi-objective models of general RAP assume that the type of redundancy strategy for each subsystem is predetermined and known a priori. In general, active redundancy has traditionally received greater attention; however, in practice both active and cold-standby redundancies may be used within a particular system design. The choice of redundancy strategy then becomes an additional decision variable. Thus, the proposed model and solution method are to select the best redundancy strategy, type of components, and levels of redundancy for each subsystem that maximizes the system reliability and minimize total system cost under system-level constraints. This problem belongs to the NP-hard class. This paper presents a second-generation Multiple-Objective Evolutionary Algorithm (MOEA), named NSGA-II to find the best solution for the given problem. The proposed algorithm demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker (DM) with a complete picture of the optimal solution space. After finding the Pareto front, a procedure is used to select the best solution from the Pareto front. Finally, the advantages of the presented multi-objective model and of the proposed algorithm are illustrated by solving test problems taken from the literature and the robustness of the proposed NSGA-II is discussed.

  12. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    sadegh sadeghitabas

    2015-12-01

    Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.

  13. Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach

    International Nuclear Information System (INIS)

    Wei, F.; Wu, Q.H.; Jing, Z.X.; Chen, J.J.; Zhou, X.X.

    2016-01-01

    This paper proposes a comprehensive framework including a multi-objective interval optimization model and evidential reasoning (ER) approach to solve the unit sizing problem of small-scale integrated energy systems, with uncertain wind and solar energies integrated. In the multi-objective interval optimization model, interval variables are introduced to tackle the uncertainties of the optimization problem. Aiming at simultaneously considering the cost and risk of a business investment, the average and deviation of life cycle cost (LCC) of the integrated energy system are formulated. In order to solve the problem, a novel multi-objective optimization algorithm, MGSOACC (multi-objective group search optimizer with adaptive covariance matrix and chaotic search), is developed, employing adaptive covariance matrix to make the search strategy adaptive and applying chaotic search to maintain the diversity of group. Furthermore, ER approach is applied to deal with multiple interests of an investor at the business decision making stage and to determine the final unit sizing solution from the Pareto-optimal solutions. This paper reports on the simulation results obtained using a small-scale direct district heating system (DH) and a small-scale district heating and cooling system (DHC) optimized by the proposed framework. The results demonstrate the superiority of the multi-objective interval optimization model and ER approach in tackling the unit sizing problem of integrated energy systems considering the integration of uncertian wind and solar energies. - Highlights: • Cost and risk of investment in small-scale integrated energy systems are considered. • A multi-objective interval optimization model is presented. • A novel multi-objective optimization algorithm (MGSOACC) is proposed. • The evidential reasoning (ER) approach is used to obtain the final optimal solution. • The MGSOACC and ER can tackle the unit sizing problem efficiently.

  14. Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2017-01-01

    Highlights: • Efficient multi-objective optimization algorithm F-YYPO demonstrated. • Three Stirling engine applications with a total of eight cases. • Improvements in the objective function values of up to 30%. • Superior to the popularly used gamultiobj of MATLAB. • F-YYPO has extremely low time complexity. - Abstract: In this work, we demonstrate the performance of Front-based Yin-Yang-Pair Optimization (F-YYPO) to solve multi-objective problems related to Stirling engine systems. The performance of F-YYPO is compared with that of (i) a recently proposed multi-objective optimization algorithm (Multi-Objective Grey Wolf Optimizer) and (ii) an algorithm popularly employed in literature due to its easy accessibility (MATLAB’s inbuilt multi-objective Genetic Algorithm function: gamultiobj). We consider three Stirling engine based optimization problems: (i) the solar-dish Stirling engine system which considers objectives of output power, thermal efficiency and rate of entropy generation; (ii) Stirling engine thermal model which considers the associated irreversibility of the cycle with objectives of output power, thermal efficiency and pressure drop; and finally (iii) an experimentally validated polytropic finite speed thermodynamics based Stirling engine model also with objectives of output power and pressure drop. We observe F-YYPO to be significantly more effective as compared to its competitors in solving the problems, while requiring only a fraction of the computational time required by the other algorithms.

  15. Ensemble based multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Jansen, J.D.

    2012-01-01

    In a recent study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this previous study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  16. Multi-objective evolutionary optimisation for product design and manufacturing

    CERN Document Server

    2011-01-01

    Presents state-of-the-art research in the area of multi-objective evolutionary optimisation for integrated product design and manufacturing Provides a comprehensive review of the literature Gives in-depth descriptions of recently developed innovative and novel methodologies, algorithms and systems in the area of modelling, simulation and optimisation

  17. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  18. Evolving intelligent vehicle control using multi-objective NEAT

    NARCIS (Netherlands)

    Willigen, W.H. van; Haasdijk, E.; Kester, L.J.H.M.

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective algorithm based on NEAT and SPEA2 that evolves controllers for such

  19. Multi-objective optimization approach for air traffic flow management

    Directory of Open Access Journals (Sweden)

    Fadil Rabie

    2017-01-01

    The decision-making stage was then performed with the aid of data clustering techniques to reduce the sizeof the Pareto-optimal set and obtain a smaller representation of the multi-objective design space, there by making it easier for the decision-maker to find satisfactory and meaningful trade-offs, and to select a preferred final design solution.

  20. A multi-objective decision framework for lifecycle investment

    NARCIS (Netherlands)

    Timmermans, S.H.J.T.; Schumacher, J.M.; Ponds, E.H.M.

    2017-01-01

    In this paper we propose a multi-objective decision framework for lifecycle investment choice. Instead of optimizing individual strategies with respect to a single-valued objective, we suggest evaluation of classes of strategies in terms of the quality of the tradeoffs that they provide. The

  1. Analysing the performance of dynamic multi-objective optimisation algorithms

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available and the goal of the algorithm is to track a set of tradeoff solutions over time. Analysing the performance of a dynamic multi-objective optimisation algorithm (DMOA) is not a trivial task. For each environment (before a change occurs) the DMOA has to find a set...

  2. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  3. Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm

    Science.gov (United States)

    2009-03-10

    xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences

  4. Computing Convex Coverage Sets for Faster Multi-Objective Coordination

    NARCIS (Netherlands)

    Roijers, D.M.; Whiteson, S.; Oliehoek, F.A.

    2015-01-01

    In this article, we propose new algorithms for multi-objective coordination graphs (MO-CoGs). Key to the efficiency of these algorithms is that they compute a convex coverage set (CCS) instead of a Pareto coverage set (PCS). Not only is a CCS a sufficient solution set for a large class of problems,

  5. Multi-objective decision-making model based on CBM for an aircraft fleet

    Science.gov (United States)

    Luo, Bin; Lin, Lin

    2018-04-01

    Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.

  6. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  7. Short-term economic environmental hydrothermal scheduling using improved multi-objective gravitational search algorithm

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Lu, Peng; Wang, Chao

    2015-01-01

    Highlights: • Improved multi-objective gravitational search algorithm. • An elite archive set is proposed to guide evolutionary process. • Neighborhood searching mechanism to improve local search ability. • Adopt chaotic mutation for avoiding premature convergence. • Propose feasible space method to handle hydro plant constrains. - Abstract: With growing concerns about energy and environment, short-term economic environmental hydrothermal scheduling (SEEHS) plays a more and more important role in power system. Because of the two objectives and various constraints, SEEHS is a complex multi-objective optimization problem (MOOP). In order to solve the problem, we propose an improved multi-objective gravitational search algorithm (IMOGSA) in this paper. In IMOGSA, the mass of the agent is redefined by multiple objectives to make it suitable for MOOP. An elite archive set is proposed to keep Pareto optimal solutions and guide evolutionary process. For balancing exploration and exploitation, a neighborhood searching mechanism is presented to cooperate with chaotic mutation. Moreover, a novel method based on feasible space is proposed to handle hydro plant constraints during SEEHS, and a violation adjustment method is adopted to handle power balance constraint. For verifying its effectiveness, the proposed IMOGSA is applied to a hydrothermal system in two different case studies. The simulation results show that IMOGSA has a competitive performance in SEEHS when compared with other established algorithms

  8. Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification.

    Science.gov (United States)

    Zhang, Yong; Gong, Dun-Wei; Cheng, Jian

    2017-01-01

    Feature selection is an important data-preprocessing technique in classification problems such as bioinformatics and signal processing. Generally, there are some situations where a user is interested in not only maximizing the classification performance but also minimizing the cost that may be associated with features. This kind of problem is called cost-based feature selection. However, most existing feature selection approaches treat this task as a single-objective optimization problem. This paper presents the first study of multi-objective particle swarm optimization (PSO) for cost-based feature selection problems. The task of this paper is to generate a Pareto front of nondominated solutions, that is, feature subsets, to meet different requirements of decision-makers in real-world applications. In order to enhance the search capability of the proposed algorithm, a probability-based encoding technology and an effective hybrid operator, together with the ideas of the crowding distance, the external archive, and the Pareto domination relationship, are applied to PSO. The proposed PSO-based multi-objective feature selection algorithm is compared with several multi-objective feature selection algorithms on five benchmark datasets. Experimental results show that the proposed algorithm can automatically evolve a set of nondominated solutions, and it is a highly competitive feature selection method for solving cost-based feature selection problems.

  9. Multi-objective optimal strategy for generating and bidding in the power market

    International Nuclear Information System (INIS)

    Peng Chunhua; Sun Huijuan; Guo Jianfeng; Liu Gang

    2012-01-01

    Highlights: ► A new benefit/risk/emission comprehensive generation optimization model is established. ► A hybrid multi-objective differential evolution optimization algorithm is designed. ► Fuzzy set theory and entropy weighting method are employed to extract the general best solution. ► The proposed approach of generating and bidding is efficient for maximizing profit and minimizing both risk and emissions. - Abstract: Based on the coordinated interaction between units output and electricity market prices, the benefit/risk/emission comprehensive generation optimization model with objectives of maximal profit and minimal bidding risk and emissions is established. A hybrid multi-objective differential evolution optimization algorithm, which successfully integrates Pareto non-dominated sorting with differential evolution algorithm and improves individual crowding distance mechanism and mutation strategy to avoid premature and unevenly search, is designed to achieve Pareto optimal set of this model. Moreover, fuzzy set theory and entropy weighting method are employed to extract one of the Pareto optimal solutions as the general best solution. Several optimization runs have been carried out on different cases of generation bidding and scheduling. The results confirm the potential and effectiveness of the proposed approach in solving the multi-objective optimization problem of generation bidding and scheduling. In addition, the comparison with the classical optimization algorithms demonstrates the superiorities of the proposed algorithm such as integrality of Pareto front, well-distributed Pareto-optimal solutions, high search speed.

  10. Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm.

    Science.gov (United States)

    Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li

    2017-03-01

    The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.

  11. Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

    Science.gov (United States)

    Kowalczuk, Zdzisław; Białaszewski, Tomasz

    2018-01-01

    A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.

  12. A fuzzy approach to the generation expansion planning problem in a multi-objective environment

    International Nuclear Information System (INIS)

    Abass, S. A.; Massoud, E. M. A.; Abass, S. A.)

    2007-01-01

    In many power system problems, the use of optimization techniques has proved inductive to reducing the costs and losses of the system. A fuzzy multi-objective decision is used for solving power system problems. One of the most important issues in the field of power system engineering is the generation expansion planning problem. In this paper, we use the concepts of membership functions to define a fuzzy decision model for generating an optimal solution for this problem. Solutions obtained by the fuzzy decision theory are always efficient and constitute the best compromise. (author)

  13. The System of Simulation and Multi-objective Optimization for the Roller Kiln

    Science.gov (United States)

    Huang, He; Chen, Xishen; Li, Wugang; Li, Zhuoqiu

    It is somewhat a difficult researching problem, to get the building parameters of the ceramic roller kiln simulation model. A system integrated of evolutionary algorithms (PSO, DE and DEPSO) and computational fluid dynamics (CFD), is proposed to solve the problem. And the temperature field uniformity and the environment disruption are studied in this paper. With the help of the efficient parallel calculation, the ceramic roller kiln temperature field uniformity and the NOx emissions field have been researched in the system at the same time. A multi-objective optimization example of the industrial roller kiln proves that the system is of excellent parameter exploration capability.

  14. A probabilistic multi objective CLSC model with Genetic algorithm-ε_Constraint approach

    Directory of Open Access Journals (Sweden)

    Alireza TaheriMoghadam

    2014-05-01

    Full Text Available In this paper an uncertain multi objective closed-loop supply chain is developed. The first objective function is maximizing the total profit. The second objective function is minimizing the use of row materials. In the other word, the second objective function is maximizing the amount of remanufacturing and recycling. Genetic algorithm is used for optimization and for finding the pareto optimal line, Epsilon-constraint method is used. Finally a numerical example is solved with proposed approach and performance of the model is evaluated in different sizes. The results show that this approach is effective and useful for managerial decisions.

  15. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  16. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions

    Science.gov (United States)

    Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao

    2017-12-01

    Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.

  17. Multi-objective Design Method for Hybrid Active Power Filter

    Science.gov (United States)

    Yu, Jingrong; Deng, Limin; Liu, Maoyun; Qiu, Zhifeng

    2017-10-01

    In this paper, a multi-objective optimal design for transformerless hybrid active power filter (HAPF) is proposed. The interactions between the active and passive circuits is analyzed, and by taking the interactions into consideration, a three-dimensional objective problem comprising of performance, efficiency and cost of HAPF system is formulated. To deal with the multiple constraints and the strong coupling characteristics of the optimization model, a novel constraint processing mechanism based on distance measurement and adaptive penalty function is presented. In order to improve the diversity of optimal solution and the local searching ability of the particle swarm optimization (PSO) algorithm, a chaotic mutation operator based on multistage neighborhood is proposed. The simulation results show that the optimums near the ordinate origin of the three-dimension space make better tradeoff among the performance, efficiency and cost of HAPF, and the experimental results of transformerless HAPF verify the effectiveness of the method for multi-objective optimization and design.

  18. Improved multi-objective clustering algorithm using particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Congcong Gong

    Full Text Available Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  19. Improved multi-objective clustering algorithm using particle swarm optimization.

    Science.gov (United States)

    Gong, Congcong; Chen, Haisong; He, Weixiong; Zhang, Zhanliang

    2017-01-01

    Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO) is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  20. Multi-objective optimization using genetic algorithms: A tutorial

    International Nuclear Information System (INIS)

    Konak, Abdullah; Coit, David W.; Smith, Alice E.

    2006-01-01

    Multi-objective formulations are realistic models for many complex engineering optimization problems. In many real-life problems, objectives under consideration conflict with each other, and optimizing a particular solution with respect to a single objective can result in unacceptable results with respect to the other objectives. A reasonable solution to a multi-objective problem is to investigate a set of solutions, each of which satisfies the objectives at an acceptable level without being dominated by any other solution. In this paper, an overview and tutorial is presented describing genetic algorithms (GA) developed specifically for problems with multiple objectives. They differ primarily from traditional GA by using specialized fitness functions and introducing methods to promote solution diversity

  1. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    Science.gov (United States)

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Efficient solution of a multi objective fuzzy transportation problem

    Science.gov (United States)

    Vidhya, V.; Ganesan, K.

    2018-04-01

    In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.

  3. A Bayesian alternative for multi-objective ecohydrological model specification

    Science.gov (United States)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior

  4. Multi-objective Search-based Mobile Testing

    OpenAIRE

    Mao, K.

    2017-01-01

    Despite the tremendous popularity of mobile applications, mobile testing still relies heavily on manual testing. This thesis presents mobile test automation approaches based on multi-objective search. We introduce three approaches: Sapienz (for native Android app testing), Octopuz (for hybrid/web JavaScript app testing) and Polariz (for using crowdsourcing to support search-based mobile testing). These three approaches represent the primary scientific and technical contributions of the thesis...

  5. Development of a multi-objective PBIL evolutionary algorithm applied to a nuclear reactor core reload optimization problem

    International Nuclear Information System (INIS)

    Machado, Marcelo D.; Dchirru, Roberto

    2005-01-01

    The nuclear reactor core reload optimization problem consists in finding a pattern of partially burned-up and fresh fuels that optimizes the plant's next operation cycle. This optimization problem has been traditionally solved using an expert's knowledge, but recently artificial intelligence techniques have also been applied successfully. The artificial intelligence optimization techniques generally have a single objective. However, most real-world engineering problems, including nuclear core reload optimization, have more than one objective (multi-objective) and these objectives are usually conflicting. The aim of this work is to develop a tool to solve multi-objective problems based on the Population-Based Incremental Learning (PBIL) algorithm. The new tool is applied to solve the Angra 1 PWR core reload optimization problem with the purpose of creating a Pareto surface, so that a pattern selected from this surface can be applied for the plant's next operation cycle. (author)

  6. Multi-objective superstructure-free synthesis and optimization of thermal power plants

    International Nuclear Information System (INIS)

    Wang, Ligang; Lampe, Matthias; Voll, Philip; Yang, Yongping; Bardow, André

    2016-01-01

    The merits of superstructure-free synthesis are demonstrated for bi-objective design of thermal power plants. The design of thermal power plants is complex and thus best solved by optimization. Common optimization methods require specification of a superstructure which becomes a tedious and error-prone task for complex systems. Superstructure specification is avoided by the presented superstructure-free approach, which is shown to successfully solve the design task yielding a high-quality Pareto front of promising structural alternatives. The economic objective function avoids introducing infinite numbers of units (e.g., turbine, reheater and feedwater preheater) as favored by pure thermodynamic optimization. The number of feasible solutions found per number of mutation tries is still high even after many generations but declines after introducing highly-nonlinear cost functions leading to challenging MINLP problems. The identified Pareto-optimal solutions tend to employ more units than found in modern power plants indicating the need for cost functions to reflect current industrial practice. In summary, the multi-objective superstructure-free synthesis framework is a robust approach for very complex problems in the synthesis of thermal power plants. - Highlights: • A generalized multi-objective superstructure-free synthesis framework for thermal power plants is presented. • The superstructure-free synthesis framework is comprehensively evaluated by complex bi-objective synthesis problems. • The proposed framework is effective to explore the structural design space even for complex problems.

  7. MULTI-OBJECTIVE OPTIMISATION OF LASER CUTTING USING CUCKOO SEARCH ALGORITHM

    Directory of Open Access Journals (Sweden)

    M. MADIĆ

    2015-03-01

    Full Text Available Determining of optimal laser cutting conditions for improving cut quality characteristics is of great importance in process planning. This paper presents multi-objective optimisation of the CO2 laser cutting process considering three cut quality characteristics such as surface roughness, heat affected zone (HAZ and kerf width. It combines an experimental design by using Taguchi’s method, modelling the relationships between the laser cutting factors (laser power, cutting speed, assist gas pressure and focus position and cut quality characteristics by artificial neural networks (ANNs, formulation of the multiobjective optimisation problem using weighting sum method, and solving it by the novel meta-heuristic cuckoo search algorithm (CSA. The objective is to obtain optimal cutting conditions dependent on the importance order of the cut quality characteristics for each of four different case studies presented in this paper. The case studies considered in this study are: minimisation of cut quality characteristics with equal priority, minimisation of cut quality characteristics with priority given to surface roughness, minimisation of cut quality characteristics with priority given to HAZ, and minimisation of cut quality characteristics with priority given to kerf width. The results indicate that the applied CSA for solving the multi-objective optimisation problem is effective, and that the proposed approach can be used for selecting the optimal laser cutting factors for specific production requirements.

  8. Identification of mutated driver pathways in cancer using a multi-objective optimization model.

    Science.gov (United States)

    Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng

    2016-05-01

    New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Probing optimal measurement configuration for optical scatterometry by the multi-objective genetic algorithm

    Science.gov (United States)

    Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2018-04-01

    Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.

  10. Multi-objective flexible job shop scheduling problem using variable neighborhood evolutionary algorithm

    Science.gov (United States)

    Wang, Chun; Ji, Zhicheng; Wang, Yan

    2017-07-01

    In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.

  11. Multi-objective optimization design method of radiation shielding

    International Nuclear Information System (INIS)

    Yang Shouhai; Wang Weijin; Lu Daogang; Chen Yixue

    2012-01-01

    Due to the shielding design goals of diversification and uncertain process of many factors, it is necessary to develop an optimization design method of intelligent shielding by which the shielding scheme selection will be achieved automatically and the uncertainties of human impact will be reduced. For economical feasibility to achieve a radiation shielding design for automation, the multi-objective genetic algorithm optimization of screening code which combines the genetic algorithm and discrete-ordinate method was developed to minimize the costs, size, weight, and so on. This work has some practical significance for gaining the optimization design of shielding. (authors)

  12. Multi-objective optimization in quantum parameter estimation

    Science.gov (United States)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  13. Multi-objective optimization of GENIE Earth system models.

    Science.gov (United States)

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  14. Multi-objective optimization under uncertainty for sheet metal forming

    Directory of Open Access Journals (Sweden)

    Lafon Pascal

    2016-01-01

    Full Text Available Aleatory uncertainties in material properties, blank thickness and friction condition are inherent and irreducible variabilities in sheet metal forming. Optimal design configurations, which are obtained by conventional design optimization methods, are not always able to meet the desired targets due to the effect of uncertainties. This paper proposes a multi-objective robust design optimization that aims to tackle this problem. Results obtained on a U shape draw bending benchmark show that spring-back effect can be controlled by optimizing process parameters.

  15. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

    International Nuclear Information System (INIS)

    Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei

    2014-01-01

    Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and

  16. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.

    2017-07-01

    The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world

  17. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Directory of Open Access Journals (Sweden)

    Muhammad Hashim

    2017-05-01

    Full Text Available Purpose:  The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM. Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM with fuzzy coefficients constructed in present research should be helpful for

  18. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    International Nuclear Information System (INIS)

    Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.

    2017-01-01

    The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world

  19. Multi-objective genetic optimization of linear construction projects

    Directory of Open Access Journals (Sweden)

    Fatma A. Agrama

    2012-08-01

    Full Text Available In the real world, the majority cases of optimization problems, met by engineers, are composed of several conflicting objectives. This paper presents an approach for a multi-objective optimization model for scheduling linear construction projects. Linear construction projects have many identical units wherein activities repeat from one unit to another. Highway, pipeline, and tunnels are good examples that exhibit repetitive characteristics. These projects represent a large portion of the construction industry. The present model enables construction planners to generate optimal/near-optimal construction plans that minimize project duration, total work interruptions, and total number of crews. Each of these plans identifies, from a set of feasible alternatives, optimal crew synchronization for each activity and activity interruptions at each unit. This model satisfies the following aspects: (1 it is based on the line of balance technique; (2 it considers non-serial typical activities networks with finish–start relationship and both lag or overlap time between activities is allowed; (3 it utilizes a multi-objective genetic algorithms approach; (4 it is developed as a spreadsheet template that is easy to use. Details of the model with visual charts are presented. An application example is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the scheduling of linear construction projects.

  20. PARETO OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE GENERALIZED ASSIGNMENT PROBLEM

    Directory of Open Access Journals (Sweden)

    S. Prakash

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The Multi-Objective Generalized Assignment Problem (MGAP with two objectives, where one objective is linear and the other one is non-linear, has been considered, with the constraints that a job is assigned to only one worker – though he may be assigned more than one job, depending upon the time available to him. An algorithm is proposed to find the set of Pareto optimal solutions of the problem, determining assignments of jobs to workers with two objectives without setting priorities for them. The two objectives are to minimise the total cost of the assignment and to reduce the time taken to complete all the jobs.

    AFRIKAANSE OPSOMMING: ‘n Multi-doelwit veralgemeende toekenningsprobleem (“multi-objective generalised assignment problem – MGAP” met twee doelwitte, waar die een lineêr en die ander nielineêr is nie, word bestudeer, met die randvoorwaarde dat ‘n taak slegs toegedeel word aan een werker – alhoewel meer as een taak aan hom toegedeel kan word sou die tyd beskikbaar wees. ‘n Algoritme word voorgestel om die stel Pareto-optimale oplossings te vind wat die taaktoedelings aan werkers onderhewig aan die twee doelwitte doen sonder dat prioriteite toegeken word. Die twee doelwitte is om die totale koste van die opdrag te minimiseer en om die tyd te verminder om al die take te voltooi.

  1. A multi-objective approach to solid waste management.

    Science.gov (United States)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.

  2. A multi-objective approach to solid waste management

    International Nuclear Information System (INIS)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).

  3. Effective multi-objective optimization of Stirling engine systems

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2016-01-01

    Highlights: • Multi-objective optimization of three recent Stirling engine models. • Use of efficient crossover and mutation operators for real coded Genetic Algorithm. • Demonstrated supremacy of the strategy over the conventionally used algorithm. • Improvements of up to 29% in comparison to literature results. - Abstract: In this article we demonstrate the supremacy of the Non-dominated Sorting Genetic Algorithm-II with Simulated Binary Crossover and Polynomial Mutation operators for the multi-objective optimization of Stirling engine systems by providing three examples, viz., (i) finite time thermodynamic model, (ii) Stirling engine thermal model with associated irreversibility and (iii) polytropic finite speed based thermodynamics. The finite time thermodynamic model involves seven decision variables and consists of three objectives: output power, thermal efficiency and rate of entropy generation. In comparison to literature, it was observed that the used strategy provides a better Pareto front and leads to improvements of up to 29%. The performance is also evaluated on a Stirling engine thermal model which considers the associated irreversibility of the cycle and consists of three objectives involving eleven decision variables. The supremacy of the suggested strategy is also demonstrated on the experimentally validated polytropic finite speed thermodynamics based Stirling engine model for optimization involving two objectives and ten decision variables.

  4. Joint Conditional Random Field Filter for Multi-Object Tracking

    Directory of Open Access Journals (Sweden)

    Luo Ronghua

    2011-03-01

    Full Text Available Object tracking can improve the performance of mobile robot especially in populated dynamic environments. A novel joint conditional random field Filter (JCRFF based on conditional random field with hierarchical structure is proposed for multi-object tracking by abstracting the data associations between objects and measurements to be a sequence of labels. Since the conditional random field makes no assumptions about the dependency structure between the observations and it allows non-local dependencies between the state and the observations, the proposed method can not only fuse multiple cues including shape information and motion information to improve the stability of tracking, but also integrate moving object detection and object tracking quite well. At the same time, implementation of multi-object tracking based on JCRFF with measurements from the laser range finder on a mobile robot is studied. Experimental results with the mobile robot developed in our lab show that the proposed method has higher precision and better stability than joint probabilities data association filter (JPDAF.

  5. Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Xi JIN; Jie ZHANG; Jin-liang GAO; Wen-yan WU

    2008-01-01

    Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Aigorithm-Ⅱ (NSGA-Ⅱ) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-Ⅱ into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by introduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated; this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.

  6. An Integrated Method for Interval Multi-Objective Planning of a Water Resource System in the Eastern Part of Handan

    Directory of Open Access Journals (Sweden)

    Meiqin Suo

    2017-07-01

    Full Text Available In this study, an integrated solving method is proposed for interval multi-objective planning. The proposed method is based on fuzzy linear programming and an interactive two-step method. It cannot only provide objectively optimal values for multiple objectives at the same time, but also effectively offer a globally optimal interval solution. Meanwhile, the degree of satisfaction related to different objective functions would be obtained. Then, the integrated solving method for interval multi-objective planning is applied to a case study of planning multi-water resources joint scheduling under uncertainty in the eastern part of Handan, China. The solutions obtained are useful for decision makers in easing the contradiction between supply of multi-water resources and demand from different water users. Moreover, it can provide the optimal comprehensive benefits of economy, society, and the environment.

  7. Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-07-01

    Full Text Available Carbon Dioxide Removal Assembly (CDRA is one of the most important systems in the Environmental Control and Life Support System (ECLSS for a manned spacecraft. With the development of adsorbent and CDRA technology, solid amine is increasingly paid attention due to its obvious advantages. However, a manned spacecraft is launched far from the Earth, and its resources and energy are restricted seriously. These limitations increase the design difficulty of solid amine CDRA. The purpose of this paper is to seek optimal design parameters for the solid amine CDRA. Based on a preliminary structure of solid amine CDRA, its heat and mass transfer models are built to reflect some features of the special solid amine adsorbent, Polyethylenepolyamine adsorbent. A multi-objective optimization for the design of solid amine CDRA is discussed further in this paper. In this study, the cabin CO2 concentration, system power consumption and entropy production are chosen as the optimization objectives. The optimization variables consist of adsorption cycle time, solid amine loading mass, adsorption bed length, power consumption and system entropy production. The Improved Non-dominated Sorting Genetic Algorithm (NSGA-II is used to solve this multi-objective optimization and to obtain optimal solution set. A design example of solid amine CDRA in a manned space station is used to show the optimal procedure. The optimal combinations of design parameters can be located on the Pareto Optimal Front (POF. Finally, Design 971 is selected as the best combination of design parameters. The optimal results indicate that the multi-objective optimization plays a significant role in the design of solid amine CDRA. The final optimal design parameters for the solid amine CDRA can guarantee the cabin CO2 concentration within the specified range, and also satisfy the requirements of lightweight and minimum energy consumption.

  8. Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g

    Directory of Open Access Journals (Sweden)

    Guozheng Li

    2018-03-01

    Full Text Available The integration of renewable energies into combined cooling, heating, and power (CCHP systems has become increasingly popular in recent years. However, the optimization of renewable energies integrated CCHP (RECCHP systems (i.e., optimal component configurations is far from being well addressed, especially in isolated mode. This study aims to fill this research gap. A multi-objective optimization model characterizing the system reliability, system cost, and environmental sustainability is constructed. In this model, the objectives include minimization of annual total cost (ATC, carbon dioxide emission (CDE, and loss of energy supply probability (LESP. The decision variables representing the configuration of the RECCHP system include the number of photovoltaic (PV panels and wind turbines (WTs, the tilt angle of PV panels, the height of WTs, the maximum fuel consumption, and the capacity of battery and heat storage tanks (HSTs. The multi-objective model is solved by a multi-objective evolutionary algorithm, namely, the preference-inspired coevolutionary algorithm (PICEA-g, resulting in a set of Pareto optimal (trade-off solutions. Then, a decision-making process is demonstrated, selecting a preferred solution amongst those trade-off solutions by further considering the decision-maker preferences. Furthermore, on the optimization of the RECCHP system, operational strategies (i.e., following electric load, FEL, and following thermal load, FTL are considered, respectively. Experimental results show that the FEL and FTL strategies lead to different optimal configurations. In general, the FTL is recommended in summer and winter, while the FEL is more suitable for spring and autumn. Compared with traditional energy systems, RECCHP has better economic and environmental advantages.

  9. ℓ0 -based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation

    Science.gov (United States)

    Xu, Xia; Shi, Zhenwei; Pan, Bin

    2018-07-01

    Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.

  10. Impact of fuel cell power plants on multi-objective optimal operation management of distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, T. [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Zeinoddini-Meymand, H. [Islamic Azad University, Kerman Branch, Kerman (Iran, Islamic Republic of)

    2012-06-15

    This paper presents an interactive fuzzy satisfying method based on hybrid modified honey bee mating optimization and differential evolution (MHBMO-DE) to solve the multi-objective optimal operation management (MOOM) problem, which can be affected by fuel cell power plants (FCPPs). The objective functions are to minimize total electrical energy losses, total electrical energy cost, total pollutant emission produced by sources, and deviation of bus voltages. A new interactive fuzzy satisfying method is presented to solve the multi-objective problem by assuming that the decision-maker (DM) has fuzzy goals for each of the objective functions. Through the interaction with the DM, the fuzzy goals of the DM are quantified by eliciting the corresponding membership functions. Then, by considering the current solution, the DM acts on this solution by updating the reference membership values until the satisfying solution for the DM can be obtained. The MOOM problem is modeled as a mixed integer nonlinear programming problem. Evolutionary methods are used to solve this problem because of their independence from type of the objective function and constraints. Recently researchers have presented a new evolutionary method called honey bee mating optimization (HBMO) algorithm. Original HBMO often converges to local optima, in order to overcome this shortcoming, we propose a new method that improves the mating process and also, combines the modified HBMO with DE algorithm. Numerical results for a distribution test system have been presented to illustrate the performance and applicability of the proposed method. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Multi-objective optimization in the presence of practical constraints using non-dominated sorting hybrid cuckoo search algorithm

    Directory of Open Access Journals (Sweden)

    M. Balasubbareddy

    2015-12-01

    Full Text Available A novel optimization algorithm is proposed to solve single and multi-objective optimization problems with generation fuel cost, emission, and total power losses as objectives. The proposed method is a hybridization of the conventional cuckoo search algorithm and arithmetic crossover operations. Thus, the non-linear, non-convex objective function can be solved under practical constraints. The effectiveness of the proposed algorithm is analyzed for various cases to illustrate the effect of practical constraints on the objectives' optimization. Two and three objective multi-objective optimization problems are formulated and solved using the proposed non-dominated sorting-based hybrid cuckoo search algorithm. The effectiveness of the proposed method in confining the Pareto front solutions in the solution region is analyzed. The results for single and multi-objective optimization problems are physically interpreted on standard test functions as well as the IEEE-30 bus test system with supporting numerical and graphical results and also validated against existing methods.

  12. A guide to multi-objective optimization for ecological problems with an application to cackling goose management

    Science.gov (United States)

    Williams, Perry J.; Kendall, William L.

    2017-01-01

    Choices in ecological research and management are the result of balancing multiple, often competing, objectives. Multi-objective optimization (MOO) is a formal decision-theoretic framework for solving multiple objective problems. MOO is used extensively in other fields including engineering, economics, and operations research. However, its application for solving ecological problems has been sparse, perhaps due to a lack of widespread understanding. Thus, our objective was to provide an accessible primer on MOO, including a review of methods common in other fields, a review of their application in ecology, and a demonstration to an applied resource management problem.A large class of methods for solving MOO problems can be separated into two strategies: modelling preferences pre-optimization (the a priori strategy), or modelling preferences post-optimization (the a posteriori strategy). The a priori strategy requires describing preferences among objectives without knowledge of how preferences affect the resulting decision. In the a posteriori strategy, the decision maker simultaneously considers a set of solutions (the Pareto optimal set) and makes a choice based on the trade-offs observed in the set. We describe several methods for modelling preferences pre-optimization, including: the bounded objective function method, the lexicographic method, and the weighted-sum method. We discuss modelling preferences post-optimization through examination of the Pareto optimal set. We applied each MOO strategy to the natural resource management problem of selecting a population target for cackling goose (Branta hutchinsii minima) abundance. Cackling geese provide food security to Native Alaskan subsistence hunters in the goose's nesting area, but depredate crops on private agricultural fields in wintering areas. We developed objective functions to represent the competing objectives related to the cackling goose population target and identified an optimal solution

  13. Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power

    Institute of Scientific and Technical Information of China (English)

    Feng Zhao; Chenghui Zhang; Bo Sun

    2016-01-01

    This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization operation strategy of CCHP system in the cooling season,the heating season and the transition season was formulated.The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency,minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy.Furthermore,the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm.Ultimately,the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution(TOPSIS) method.A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method.The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method.The CCHP system has achieved better energy efficiency,environmental protection and economic benefits.

  14. Multi-objective trajectory optimization of Space Manoeuvre Vehicle using adaptive differential evolution and modified game theory

    Science.gov (United States)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios; Chai, Senchun

    2017-07-01

    Highly constrained trajectory optimization for Space Manoeuvre Vehicles (SMV) is a challenging problem. In practice, this problem becomes more difficult when multiple mission requirements are taken into account. Because of the nonlinearity in the dynamic model and even the objectives, it is usually hard for designers to generate a compromised trajectory without violating strict path and box constraints. In this paper, a new multi-objective SMV optimal control model is formulated and parameterized using combined shooting-collocation technique. A modified game theory approach, coupled with an adaptive differential evolution algorithm, is designed in order to generate the pareto front of the multi-objective trajectory optimization problem. In addition, to improve the quality of obtained solutions, a control logic is embedded in the framework of the proposed approach. Several existing multi-objective evolutionary algorithms are studied and compared with the proposed method. Simulation results indicate that without driving the solution out of the feasible region, the proposed method can perform better in terms of convergence ability and convergence speed than its counterparts. Moreover, the quality of the pareto set generated using the proposed method is higher than other multi-objective evolutionary algorithms, which means the newly proposed algorithm is more attractive for solving multi-criteria SMV trajectory planning problem.

  15. Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model

    Directory of Open Access Journals (Sweden)

    Yongpeng Shen

    2016-02-01

    Full Text Available Auxiliary power units (APUs are widely used for electric power generation in various types of electric vehicles, improvements in fuel economy and emissions of these vehicles directly depend on the operating point of the APUs. In order to balance the conflicting goals of fuel consumption and emissions reduction in the process of operating point choice, the APU operating point optimization problem is formulated as a constrained multi-objective optimization problem (CMOP firstly. The four competing objectives of this CMOP are fuel-electricity conversion cost, hydrocarbon (HC emissions, carbon monoxide (CO emissions and nitric oxide (NO x emissions. Then, the multi-objective particle swarm optimization (MOPSO algorithm and weighted metric decision making method are employed to solve the APU operating point multi-objective optimization model. Finally, bench experiments under New European driving cycle (NEDC, Federal test procedure (FTP and high way fuel economy test (HWFET driving cycles show that, compared with the results of the traditional fuel consumption single-objective optimization approach, the proposed multi-objective optimization approach shows significant improvements in emissions performance, at the expense of a slight drop in fuel efficiency.

  16. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    Science.gov (United States)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Optimum analysis of pavement maintenance using multi-objective genetic algorithms

    Directory of Open Access Journals (Sweden)

    Amr A. Elhadidy

    2015-04-01

    Full Text Available Road network expansion in Egypt is considered as a vital issue for the development of the country. This is done while upgrading current road networks to increase the safety and efficiency. A pavement management system (PMS is a set of tools or methods that assist decision makers in finding optimum strategies for providing and maintaining pavements in a serviceable condition over a given period of time. A multi-objective optimization problem for pavement maintenance and rehabilitation strategies on network level is discussed in this paper. A two-objective optimization model considers minimum action costs and maximum condition for used road network. In the proposed approach, Markov-chain models are used for predicting the performance of road pavement and to calculate the expected decline at different periods of time. A genetic-algorithm-based procedure is developed for solving the multi-objective optimization problem. The model searched for the optimum maintenance actions at adequate time to be implemented on an appropriate pavement. Based on the computing results, the Pareto optimal solutions of the two-objective optimization functions are obtained. From the optimal solutions represented by cost and condition, a decision maker can easily obtain the information of the maintenance and rehabilitation planning with minimum action costs and maximum condition. The developed model has been implemented on a network of roads and showed its ability to derive the optimal solution.

  18. Environment-Aware Production Schedulingfor Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach.

    Science.gov (United States)

    Zhang, Rui

    2017-12-25

    The traditional way of scheduling production processes often focuses on profit-driven goals (such as cycle time or material cost) while tending to overlook the negative impacts of manufacturing activities on the environment in the form of carbon emissions and other undesirable by-products. To bridge the gap, this paper investigates an environment-aware production scheduling problem that arises from a typical paint shop in the automobile manufacturing industry. In the studied problem, an objective function is defined to minimize the emission of chemical pollutants caused by the cleaning of painting devices which must be performed each time before a color change occurs. Meanwhile, minimization of due date violations in the downstream assembly shop is also considered because the two shops are interrelated and connected by a limited-capacity buffer. First, we have developed a mixed-integer programming formulation to describe this bi-objective optimization problem. Then, to solve problems of practical size, we have proposed a novel multi-objective particle swarm optimization (MOPSO) algorithm characterized by problem-specific improvement strategies. A branch-and-bound algorithm is designed for accurately assessing the most promising solutions. Finally, extensive computational experiments have shown that the proposed MOPSO is able to match the solution quality of an exact solver on small instances and outperform two state-of-the-art multi-objective optimizers in literature on large instances with up to 200 cars.

  19. Multi-objective scheduling of electric vehicles in smart distribution system

    International Nuclear Information System (INIS)

    Zakariazadeh, Alireza; Jadid, Shahram; Siano, Pierluigi

    2014-01-01

    Highlights: • Environmental/economic operational scheduling of electric vehicles. • The Vehicle to Grid capability and the actual patterns of drivers are considered. • A novel conceptual model for an electric vehicle management system is proposed. - Abstract: When preparing for the widespread adoption of Electric Vehicles (EVs), an important issue is to use a proper EVs’ charging/discharging scheduling model that is able to simultaneously consider economic and environmental goals as well as technical constraints of distribution networks. This paper proposes a multi-objective operational scheduling method for charging/discharging of EVs in a smart distribution system. The proposed multi-objective framework, based on augmented ε-constraint method, aims at minimizing the total operational costs and emissions. The Vehicle to Grid (V2G) capability as well as the actual patterns of drivers are considered in order to generate the Pareto-optimal solutions. The Benders decomposition technique is used in order to solve the proposed optimization model and to convert the large scale mixed integer nonlinear problem into mixed-integer linear programming and nonlinear programming problems. The effectiveness of the proposed resources scheduling approach is tested on a 33-bus distribution test system over a 24-h period. The results show that the proposed EVs’ charging/discharging method can reduce both of operation cost and air pollutant emissions

  20. A multi-objective chaotic particle swarm optimization for environmental/economic dispatch

    International Nuclear Information System (INIS)

    Cai Jiejin; Ma Xiaoqian; Li Qiong; Li Lixiang; Peng Haipeng

    2009-01-01

    A multi-objective chaotic particle swarm optimization (MOCPSO) method has been developed to solve the environmental/economic dipatch (EED) problems considering both economic and environmental issues. The proposed MOCPSO method has been applied in two test power systems. Compared with the conventional multi-objective particle swarm optimization (MOPSO) method, for the compromising minimum fuel cost and emission case, the fuel cost and pollutant emission obtained from MOCPSO method can be reduced about 50.08 $/h and 2.95 kg/h, respectively, in test system 1, about 0.02 $/h and 1.11 kg/h, respectively, in test system 2. The MOCPSO method also results in higher quality solutions for the minimum fuel cost case and the minimum emission case in both of the test power systems. Hence, MOCPSO method can result in great environmental and economic effects. For EED problems, the MOCPSO method is more feasible and more effective alternative approach than the conventional MOPSO method.

  1. Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter

    Directory of Open Access Journals (Sweden)

    Tao Lei

    2018-05-01

    Full Text Available With the development of More Electrical Aircraft (MEA, the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB converter is the power interface for the energy storage system with the high voltage direct current (HVDC bus in aircraft electrical power systems. In this paper, a DAB DC-DC converter is designed to meet aviation requirements. The extended dual phase shifted control strategy is adopted, and a multi-objective genetic algorithm is applied to optimize its operating performance. Considering the three indicators of inductance current root mean square root (RMS value, negative reverse power and direct current (DC bias component of the current for the high frequency transformer as the optimization objectives, the DAB converter’s optimization model is derived to achieve soft switching as the main constraint condition. Optimized methods of controlling quantity for the DAB based on the evolution and genetic algorithm is used to solve the model, and a number of optimal control parameters are obtained under different load conditions. The results of digital, hard-in-loop simulation and hardware prototype experiments show that the three performance indexes are all suppressed greatly, and the optimization method proposed in this paper is reasonable. The work of this paper provides a theoretical basis and researching method for the multi-objective optimization of the power converter in the aircraft electrical power system.

  2. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    Directory of Open Access Journals (Sweden)

    M. Amiri

    2012-10-01

    Full Text Available Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnover rate, Treynor index and Sharpe index. Semivariance is used as a downside risk measure. The proposed model of this paper uses fuzzy variables for return rate and semivariance. A multi-objective fuzzy mean-semivariance portfolio optimization model is implemented and fuzzy programming technique is adopted to solve the resulted problem. The proposed model of this paper has gathered the information of mutual fund traded on Nasdaq from 2007 to 2009 and Pareto optimal solutions are obtained considering different weights for objective functions. The results of asset allocation, rate of return and risk of each cluster are also determined and they are compared with the results of two clustering methods.

  3. An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Xuanhu He

    2015-03-01

    Full Text Available Optimal power flow (OPF objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.

  4. Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms

    Science.gov (United States)

    Zhong, Shuya; Pantelous, Athanasios A.; Beer, Michael; Zhou, Jian

    2018-05-01

    Offshore wind farm is an emerging source of renewable energy, which has been shown to have tremendous potential in recent years. In this blooming area, a key challenge is that the preventive maintenance of offshore turbines should be scheduled reasonably to satisfy the power supply without failure. In this direction, two significant goals should be considered simultaneously as a trade-off. One is to maximise the system reliability and the other is to minimise the maintenance related cost. Thus, a non-linear multi-objective programming model is proposed including two newly defined objectives with thirteen families of constraints suitable for the preventive maintenance of offshore wind farms. In order to solve our model effectively, the nondominated sorting genetic algorithm II, especially for the multi-objective optimisation is utilised and Pareto-optimal solutions of schedules can be obtained to offer adequate support to decision-makers. Finally, an example is given to illustrate the performances of the devised model and algorithm, and explore the relationships of the two targets with the help of a contrast model.

  5. Multi objective multi refinery optimization with environmental and catastrophic failure effects objectives

    Science.gov (United States)

    Khogeer, Ahmed Sirag

    2005-11-01

    Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not

  6. Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks

    DEFF Research Database (Denmark)

    Bode, Felix; Binning, Philip John; Nowak, Wolfgang

    Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...

  7. COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

    Science.gov (United States)

    Oemler, A.; Clardy, K.; Kelson, D.; Walth, G.; Villanueva, E.

    2017-05-01

    COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

  8. Multi-Objective Optimization in Physical Synthesis of Integrated Circuits

    CERN Document Server

    A Papa, David

    2013-01-01

    This book introduces techniques that advance the capabilities and strength of modern software tools for physical synthesis, with the ultimate goal to improve the quality of leading-edge semiconductor products.  It provides a comprehensive introduction to physical synthesis and takes the reader methodically from first principles through state-of-the-art optimizations used in cutting edge industrial tools. It explains how to integrate chip optimizations in novel ways to create powerful circuit transformations that help satisfy performance requirements. Broadens the scope of physical synthesis optimization to include accurate transformations operating between the global and local scales; Integrates groups of related transformations to break circular dependencies and increase the number of circuit elements that can be jointly optimized to escape local minima;  Derives several multi-objective optimizations from first observations through complete algorithms and experiments; Describes integrated optimization te...

  9. Evaluation of cephalogram using multi-objective frequency processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Sakae; Takizawa, Tsutomu; Osako, Miho; Kaneda, Takashi; Kasai, Kazutaka [Nihon Univ., Chiba (Japan). School of Dentistry at Matsudo

    2002-12-01

    A diagnosis with cephalogram is important for orthodontic treatment. Recently, computed radiography (CR) has been performed to the cephalogram. However, evaluation of multi-objective frequency processing (MFP) for cephalograms has been received little attention. The purpose of this study was to evaluate the cephalogram using MFP CR. At first, 450 lateral cephalograms were made, from 50 orthodontic patients, with 9 possible spatial frequency parameter combinations and a contrast scale held fixed in images processing. For each film, the clarity of radiographic images were estimated and scored with respect to landmark identification (total 26 points, 20 points of hard tissue and 6 points of soft tissue). A specific combination of spatial frequency scales (multi-frequency balance types (MRB) F-type, multi-frequency enhancement (MRE) 8) was proved to be adequate to achieve the optimal image quality in the cephalogram. (author)

  10. Evaluation of cephalogram using multi-objective frequency processing

    International Nuclear Information System (INIS)

    Hagiwara, Sakae; Takizawa, Tsutomu; Osako, Miho; Kaneda, Takashi; Kasai, Kazutaka

    2002-01-01

    A diagnosis with cephalogram is important for orthodontic treatment. Recently, computed radiography (CR) has been performed to the cephalogram. However, evaluation of multi-objective frequency processing (MFP) for cephalograms has been received little attention. The purpose of this study was to evaluate the cephalogram using MFP CR. At first, 450 lateral cephalograms were made, from 50 orthodontic patients, with 9 possible spatial frequency parameter combinations and a contrast scale held fixed in images processing. For each film, the clarity of radiographic images were estimated and scored with respect to landmark identification (total 26 points, 20 points of hard tissue and 6 points of soft tissue). A specific combination of spatial frequency scales (multi-frequency balance types (MRB) F-type, multi-frequency enhancement (MRE) 8) was proved to be adequate to achieve the optimal image quality in the cephalogram. (author)

  11. Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf

    of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...

  12. Multi objective decision making in hybrid energy system design

    Science.gov (United States)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component

  13. Investigating multi-objective fluence and beam orientation IMRT optimization

    Science.gov (United States)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  14. Multi-objective three stage design optimization for island microgrids

    International Nuclear Information System (INIS)

    Sachs, Julia; Sawodny, Oliver

    2016-01-01

    Highlights: • An enhanced multi-objective three stage design optimization for microgrids is given. • Use of an optimal control problem for the calculation of the optimal operation. • The inclusion of a detailed battery model with CC/CV charging control. • The determination of a representative profile with optimized number of days. • The proposed method finds its direct application in a design tool for microgids. - Abstract: Hybrid off-grid energy systems enable a cost efficient and reliable energy supply to rural areas around the world. The main potential for a low cost operation and uninterrupted power supply lies in the optimal sizing and operation of such microgrids. In particular, sudden variations in load demand or in the power supply from renewables underline the need for an optimally sized system. This paper presents an efficient multi-objective model based optimization approach for the optimal sizing of all components and the determination of the best power electronic layout. The presented method is divided into three optimization problems to minimize economic and environmental objectives. This design optimization includes detailed components models and an optimized energy dispatch strategy which enables the optimal design of the energy system with respect to an adequate control for the specific configuration. To significantly reduce the computation time without loss of accuracy, the presented method contains the determination of a representative load profile using a k-means clustering method. The k-means algorithm itself is embedded in an optimization problem for the calculation of the optimal number of clusters. The benefits in term of reduced computation time, inclusion of optimal energy dispatch and optimization of power electronic architecture, of the presented optimization method are illustrated using a case study.

  15. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    Science.gov (United States)

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  16. Principal-subordinate hierarchical multi-objective programming model of initial water rights allocation

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2009-06-01

    Full Text Available The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.

  17. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms

    International Nuclear Information System (INIS)

    Zio, E.; Golea, L.R.; Rocco S, C.M.

    2012-01-01

    In this paper, an analysis of the vulnerability of the Italian high-voltage (380 kV) electrical transmission network (HVIET) is carried out for the identification of the groups of links (or edges, or arcs) most critical considering the network structure and flow. Betweenness centrality and network connection efficiency variations are considered as measures of the importance of the network links. The search of the most critical ones is carried out within a multi-objective optimization problem aimed at the maximization of the importance of the groups and minimization of their dimension. The problem is solved using a genetic algorithm. The analysis is based only on information on the topology of the network and leads to the identification of the most important single component, couples of components, triplets and so forth. The comparison of the results obtained with those reported by previous analyses indicates that the proposed approach provides useful complementary information.

  18. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    Science.gov (United States)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  19. Multi-objective optimization of cellular scanning strategy in selective laser melting

    DEFF Research Database (Denmark)

    Ahrari, Ali; Deb, Kalyanmoy; Mohanty, Sankhya

    2017-01-01

    The scanning strategy for selective laser melting - an additive manufacturing process - determines the temperature fields during the manufacturing process, which in turn affects residual stresses and distortions, two of the main sources of process-induced defects. The goal of this study is to dev......The scanning strategy for selective laser melting - an additive manufacturing process - determines the temperature fields during the manufacturing process, which in turn affects residual stresses and distortions, two of the main sources of process-induced defects. The goal of this study......, the problem is a combination of combinatorial and choice optimization, which makes the problem difficult to solve. On a process simulation domain consisting of 32 cells, our multi-objective evolutionary method is able to find a set of trade-off solutions for the defined conflicting objectives, which cannot...

  20. A multi-objective framework for dynamic transmission expansion planning in competitive electricity market

    International Nuclear Information System (INIS)

    Foroud, Asghar Akbari; Abdoos, Ali Akbar; Keypour, Reza; Amirahmadi, Meisam

    2010-01-01

    Restructuring of power system has changed the traditional planning objectives and introduced challenges in the field of Transmission Expansion Planning (TEP). Due to these changes, new approaches and criteria are needed for transmission planning in deregulated environment. Therefore, in this paper, a dynamic expansion methodology is presented using a multi-objective optimization framework. Investment cost, congestion cost and reliability are considered in the optimization as three objectives. To overcome the difficulties in solving the non-convex and mixed integer nature of the optimization problems, a Non-Dominated Sorting Genetic Algorithm (NSGA II) approach is used followed by a fuzzy decision making analysis to obtain the final optimal solution. The planning methodology has been demonstrated on the IEEE 24-bus test system and north-east of Iran national 400 kV transmission grid to show the feasibility and capabilities of the proposed algorithm in electricity market environment. (author)

  1. A multi-objective optimization for brush monofilament tufting process design

    Directory of Open Access Journals (Sweden)

    Ali Salmasnia

    2018-01-01

    Full Text Available This paper addresses the optimization of monofilament tufting process as the most important and the main stage of toothbrush production in sanitary industries. In order to minimize both process time and depreciation costs, and ultimately increase the production efficiency in such an industrial unit, we propose a metaheuristic based optimization approach to solve it. The Traveling Salesman Problem (TSP is used to formulate the proposed problem. Then by using multi-objective evolutionary algorithms, NSGA-II and MOPSO, we seek to obtain the best solution and objective functions described above. Extensive computational experiments on three different kinds of toothbrush handles are performed and the results demonstrate the applicability and appropriate performance of algorithms. The comparison metrics like spacing, number of Pareto solutions, time, mean distance from the ideal solution and diversity are used to evaluate the quality of solutions. Moreover a sensitivity analysis is done for investigation of the performance in various setting of parameters.

  2. Dynamic population artificial bee colony algorithm for multi-objective optimal power flow

    Directory of Open Access Journals (Sweden)

    Man Ding

    2017-03-01

    Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.

  3. Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China

    Directory of Open Access Journals (Sweden)

    Xiaoya Ma

    2015-11-01

    Full Text Available As the main feature of land use planning, land use allocation (LUA optimization is an important means of creating a balance between the land-use supply and demand in a region and promoting the sustainable utilization of land resources. In essence, LUA optimization is a multi-objective optimization problem under the land use supply and demand constraints in a region. In order to obtain a better sustainable multi-objective LUA optimization solution, the present study proposes a LUA model based on the multi-objective artificial immune optimization algorithm (MOAIM-LUA model. The main achievements of the present study are as follows: (a the land-use supply and demand factors are analyzed and the constraint conditions of LUA optimization problems are constructed based on the analysis framework of the balance between the land use supply and demand; (b the optimization objectives of LUA optimization problems are defined and modeled using ecosystem service value theory and land rent and price theory; and (c a multi-objective optimization algorithm is designed for solving multi-objective LUA optimization problems based on the novel immune clonal algorithm (NICA. On the basis of the aforementioned achievements, MOAIM-LUA was applied to a real case study of land-use planning in Anlu County, China. Compared to the current land use situation in Anlu County, optimized LUA solutions offer improvements in the social and ecological objective areas. Compared to the existing models, such as the non-dominated sorting genetic algorithm-II, experimental results demonstrate that the model designed in the present study can obtain better non-dominated solution sets and is superior in terms of algorithm stability.

  4. Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking.

    Science.gov (United States)

    Bae, Seung-Hwan; Yoon, Kuk-Jin

    2018-03-01

    Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.

  5. A new method for solving single and multi-objective fuzzy minimum ...

    Indian Academy of Sciences (India)

    in internet transmission (Liu & Kao 2004) petroleum industry (Ghatee ... A number has been proposed for the ranking of fuzzy numbers. ...... Chanas S and Kuchta D 1998 Fuzzy integer transportation problem. Fuzzy ... Model 32: 1289–1297.

  6. Environmental/economic dispatch problem of power system by using an enhanced multi-objective differential evolution algorithm

    International Nuclear Information System (INIS)

    Lu Youlin; Zhou Jianzhong; Qin Hui; Wang Ying; Zhang Yongchuan

    2011-01-01

    An enhanced multi-objective differential evolution algorithm (EMODE) is proposed in this paper to solve environmental/economic dispatch (EED) problem by considering the minimal of fuel cost and emission effects synthetically. In the proposed algorithm, an elitist archive technique is adopted to retain the non-dominated solutions obtained during the evolutionary process, and the operators of DE are modified according to the characteristics of multi-objective optimization problems. Moreover, in order to avoid premature convergence, a local random search (LRS) operator is integrated with the proposed method to improve the convergence performance. In view of the difficulties of handling the complicated constraints of EED problem, a new heuristic constraints handling method without any penalty factor settings is presented. The feasibility and effectiveness of the proposed EMODE method is demonstrated for a test power system. Compared with other methods, EMODE can get higher quality solutions by reducing the fuel cost and the emission effects synthetically.

  7. Optimal Allocation of Generalized Power Sources in Distribution Network Based on Multi-Objective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Li Ran

    2017-01-01

    Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.

  8. Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Directory of Open Access Journals (Sweden)

    Kaveh Khalili-Damghani

    2017-07-01

    Full Text Available In this paper a multi-period multi-product multi-objective aggregate production planning (APP model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method.

  9. Conserving energy in smallholder agriculture. A multi-objective programming case-study of northwest India

    International Nuclear Information System (INIS)

    Thankappan, Samarthia; Midmore, Peter; Jenkins, Tim

    2006-01-01

    In semi-arid conditions in Northwest India, smallholder agriculture has made increasing use of subsidised mechanisation and energy inputs to reduce short-term risks. However, detrimental environmental consequences have occurred, not least a rapidly falling water table, and energy-intensive production is threatened by the prospect of increasing scarcity and expense of energy supplies, especially as urban demands are forecast to grow rapidly. This paper describes the energy flows through four subsystems of smallholder agricultural villages: the crop system; non-crop land uses; livestock systems; and households. It employs a multi-objective programming model to demonstrate choices available for maximands either of net solar energy capture or financial surpluses. Applied to three villages selected to represent major settlement types in the Saurashtra region of Gujarat, the results demonstrate that both energy conservation and financial performance can be improved. Although these results need qualifying because of the reductionist, linear character of the model used, they do provide important insights into the cultural role of mechanisation and the influence of traditional agricultural practices. They also underline the need for local energy conservation strategies as part of an overall approach to improved self-determination in progress towards rural sustainability. (author)

  10. DMD-based multi-object spectrograph on Galileo telescope

    Science.gov (United States)

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca

    2013-03-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.

  11. Multi-objective optimization of the reactor coolant system

    International Nuclear Information System (INIS)

    Chen Lei; Yan Changqi; Wang Jianjun

    2014-01-01

    Background: Weight and size are important criteria in evaluating the performance of a nuclear power plant. It is of great theoretical value and engineering significance to reduce the weight and volume of the components for a nuclear power plant by the optimization methodology. Purpose: In order to provide a new method for the optimization of nuclear power plant multi-objective, the concept of the non-dominated solution was introduced. Methods: Based on the parameters of Qinshan I nuclear power plant, the mathematical models of the reactor core, the reactor vessel, the main pipe, the pressurizer and the steam generator were built and verified. The sensitivity analyses were carried out to study the influences of the design variables on the objectives. A modified non-dominated sorting genetic algorithm was proposed and employed to optimize the weight and the volume of the reactor coolant system. Results: The results show that the component mathematical models are reliable, the modified non-dominated sorting generic algorithm is effective, and the reactor inlet temperature is the most important variable which influences the distribution of the non-dominated solutions. Conclusion: The optimization results could provide a reference to the design of such reactor coolant system. (authors)

  12. Multi-objective evolutionary emergency response optimization for major accidents

    International Nuclear Information System (INIS)

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2010-01-01

    Emergency response planning in case of a major accident (hazardous material event, nuclear accident) is very important for the protection of the public and workers' safety and health. In this context, several protective actions can be performed, such as, evacuation of an area; protection of the population in buildings; and use of personal protective equipment. The best solution is not unique when multiple criteria are taken into consideration (e.g. health consequences, social disruption, economic cost). This paper presents a methodology for multi-objective optimization of emergency response planning in case of a major accident. The emergency policy with regards to protective actions to be implemented is optimized. An evolutionary algorithm has been used as the optimization tool. Case studies demonstrating the methodology and its application in emergency response decision-making in case of accidents related to hazardous materials installations are presented. However, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency response procedures in other cases (nuclear accidents, transportation of hazardous materials) or for land-use planning issues.

  13. Designing optimal degradation tests via multi-objective genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Cipollone, Maurizio

    2003-01-01

    The experimental determination of the failure time probability distribution of highly reliable components, such as those used in nuclear and aerospace applications, is intrinsically difficult due to the lack, or scarce significance, of failure data which can be collected during the relatively short test periods. A possibility to overcome this difficulty is to resort to the so-called degradation tests, in which measurements of components' degradation are used to infer the failure time distribution. To design such tests, parameters like the number of tests to be run, their frequency and duration, must be set so as to obtain an accurate estimate of the distribution statistics, under the existing limitations of budget. The optimisation problem which results is a non-linear one. In this work, we propose a method, based on multi-objective genetic algorithms for determining the values of the test parameters which optimise both the accuracy in the estimate of the failure time distribution percentiles and the testing costs. The method has been validated on a degradation model of literature

  14. Multi-objective optimal operation of smart reconfigurable distribution grids

    Directory of Open Access Journals (Sweden)

    Abdollah Kavousi-Fard

    2016-02-01

    Full Text Available Reconfiguration is a valuable technique that can support the distribution grid from different aspects such as operation cost and loss reduction, reliability improvement, and voltage stability enhancement. An intelligent and efficient optimization framework, however, is required to reach the desired efficiency through the reconfiguration strategy. This paper proposes a new multi-objective optimization model to make use of the reconfiguration strategy for minimizing the power losses, improving the voltage profile, and enhancing the load balance in distribution grids. The proposed model employs the min-max fuzzy approach to find the most satisfying solution from a set of nondominated solutions in the problem space. Due to the high complexity and the discrete nature of the proposed model, a new optimization method based on harmony search (HS algorithm is further proposed. Moreover, a new modification method is suggested to increase the harmony memory diversity in the improvisation stage and increase the convergence ability of the algorithm. The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus distribution system.

  15. EMIR, the GTC NIR multi-object imager-spectrograph

    Science.gov (United States)

    Garzón, F.; Abreu, D.; Barrera, S.; Becerril, S.; Cairós, L. M.; Díaz, J. J.; Fragoso, A. B.; Gago, F.; Grange, R.; González, C.; López, P.; Patrón, J.; Pérez, J.; Rasilla, J. L.; Redondo, P.; Restrepo, R.; Saavedra, P.; Sánchez, V.; Tenegi, F.; Vallbé, M.

    2007-06-01

    EMIR, currently entering into its fabrication and AIV phase, will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish and French institutes led by the Instituto de Astrofísica de Canarias (IAC). EMIR is designed to realize one of the central goals of 10m class telescopes, allowing observers to obtain spectra for large numbers of faint sources in a time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band, but offers a wide range of observing modes, including imaging and spectroscopy, both long slit and multi-object, in the wavelength range 0.9 to 2.5 μm. It is equipped with two innovative subsystems: a robotic reconfigurable multi-slit mask and dispersive elements formed by the combination of high quality diffraction grating and conventional prisms, both at the heart of the instrument. The present status of development, expected performances, schedule and plans for scientific exploitation are described and discussed. The development and fabrication of EMIR is funded by GRANTECAN and the Plan Nacional de Astronomía y Astrofísica (National Plan for Astronomy and Astrophysics, Spain).

  16. Multi Objective Optimization Using Genetic Algorithm of a Pneumatic Connector

    Science.gov (United States)

    Salaam, HA; Taha, Zahari; Ya, TMYS Tuan

    2018-03-01

    The concept of sustainability was first introduced by Dr Harlem Brutland in the 1980’s promoting the need to preserve today’s natural environment for the sake of future generations. Based on this concept, John Elkington proposed an approach to measure sustainability known as Triple Bottom Line (TBL). There are three evaluation criteria’s involved in the TBL approach; namely economics, environmental integrity and social equity. In manufacturing industry the manufacturing costs measure the economic sustainability of a company in a long term. Environmental integrity is a measure of the impact of manufacturing activities on the environment. Social equity is complicated to evaluate; but when the focus is at the production floor level, the production operator health can be considered. In this paper, the TBL approach is applied in the manufacturing of a pneumatic nipple hose. The evaluation criteria used are manufacturing costs, environmental impact, ergonomics impact and also energy used for manufacturing. This study involves multi objective optimization by using genetic algorithm of several possible alternatives for material used in the manufacturing of the pneumatic nipple.

  17. The multi-objective Spanish National Forest Inventory

    International Nuclear Information System (INIS)

    Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.

    2017-01-01

    Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  18. Constrained multi-objective optimization of storage ring lattices

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  19. The multi-objective Spanish National Forest Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.

    2017-11-01

    Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  20. Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks

    Science.gov (United States)

    Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.

    2010-12-01

    One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Pareto-Optimal Multi-objective Inversion of Geophysical Data

    Science.gov (United States)

    Schnaidt, Sebastian; Conway, Dennis; Krieger, Lars; Heinson, Graham

    2018-01-01

    In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.

  2. The multi-objective Spanish National Forest Inventory

    Directory of Open Access Journals (Sweden)

    Iciar Alberdi

    2017-10-01

    Full Text Available Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra  in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  3. Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains

    International Nuclear Information System (INIS)

    Cambero, Claudia; Sowlati, Taraneh

    2016-01-01

    Highlights: • Quantified social benefits of forest- based biomass supply chain. • Developed multi-objective optimization model. • Incorporated social benefits into multi-objective model. • Solved the model using the AUGMECON method. • Applied the model to a case study in Canada. - Abstract: Utilization of forest and wood residues to produce bioenergy and biofuels could generate additional revenue streams for forestry companies, reduce their environmental impacts and generate new development opportunities for forest-dependent communities. Further development of forest-based biorefineries entails addressing complexities and challenges related to biomass procurement, logistics, technologies, and sustainability. Numerous optimization models have been proposed for the economic and environmental design of biomass-to-bioenergy or biofuel supply chains. A few of them also maximized the job creation potential of the supply chain through the use of employment multipliers. The use of a total job creation indicator as the social optimization objective implies that all new jobs generate the same level of social benefit. In this paper, we quantify the potential social benefit of new forest-based biorefinery supply chains considering different impacts of new jobs based on their type and location. This social benefit is incorporated into a multi-objective mixed integer linear programming model that maximizes the social benefit, net present value and greenhouse gas emission saving potential of a forest-based biorefinery supply chain. The applicability of the model is illustrated through a case study in the interior region of British Columbia, Canada where different utilization paths for available forest and wood residues are investigated. The multi-objective optimization model is solved using a Pareto-generating method. The analysis of the generated set of Pareto-optimal solutions show a trade-off between the net present value of the supply chain and the other two

  4. Multi-objective unit commitment problem using Cuckoo search ...

    African Journals Online (AJOL)

    user

    Many solution strategies are available to solve the highly non-smooth problem. ... So, artificial intelligence techniques like, neural ..... For instance, let us assume that the Ton and Toff for a hypothetical thermal power ...... Energy Convers, Vol.

  5. Point efficiency of the notion in multi objective programming

    International Nuclear Information System (INIS)

    Kampempe, B.J.D.; Manya, N.L.

    2010-01-01

    The approaches to the problem of multi-objective linear programming stochastic (PLMS) which have been proposed so far in the literature are not really satisfactory (9,11), so we want, in this article, to approach the problem of PLMS using the concept of efficiency point. It is also necessary to define what is meant by efficiency point in the context of PLMS. This is precisely the purpose of this article. In fact, it seeks to provide specific definitions of effective solutions that are not only mathematically consistent, but also have significance to a decision maker faced with such a decision problem. As a result, we have to use the concept of dominance in the time of PLMS, in the context where one has ordinal preference but no utility functions. In this paper, we propose to further explore the concepts of dominance and efficiency point. Indeed, the whole point P effective solutions are usually very broad and as we shall see, it can be identical to X. Accordingly, we will try to relax the definition of dominance relation >p in order to obtain other types of dominance point less demanding and generating subsets may be more effective especially interesting for a decision maker. We shall have to distinguish two other families of dominance relations point : the dominance and dominance scenario test, and within sets of efficient solutions proposed by these last two relations, we will focus on subsets of efficient solutions called sponsored and unanimous. We will study the properties of these various relationships and the possible links between the different effective resulting sets in order to find them and to calculate them explicitly. Finally we will establish some connections between different notions of efficiency and timely concept of Pareto-efficient solution on the deterministic case (PLMD)

  6. Latest Results from the Multi-Object Keck Exoplanet Tracker

    Science.gov (United States)

    Van Eyken, Julian C.; Ge, J.; Wan, X.; Zhao, B.; Hariharan, A.; Mahadevan, S.; DeWitt, C.; Guo, P.; Cohen, R.; Fleming, S. W.; Crepp, J.; Warner, C.; Kane, S.; Leger, F.; Pan, K.

    2006-12-01

    The W. M. Keck Exoplanet Tracker is a precision Doppler radial velocity instrument based on dispersed fixed-delay interferometry (DFDI) which takes advantage of the new technique to allow multi-object RV surveying. Installed at the 2.5m Sloan telescope at Apache Point Observatory, the combination of Michelson interferometer and medium resolution spectrograph allows design for simultaneous Doppler measurements of up to 60 targets, while maintaining high instrument throughput. Using a single-object prototype of the instrument at the Kitt Peak National Observatory 2.1m telescope, we previously discovered a 0.49MJup planet, HD 102195b (ET-1), orbiting with a 4.11d period, and other interesting targets are being followed up. From recent trial observations, the Keck Exoplanet Tracker now yields 59 usable simultaneous fringing stellar spectra, of a quality sufficient to attempt to detect short period hot-Jupiter type planets. Recent engineering improvements reduced errors by a factor of 2, and typical photon limits for stellar data are now at the 30m/s level for magnitude V 10.5 (depending on spectral type and v sin i), with a best value of 6.9m/s at V=7.6. Preliminary RMS precisions from solar data (daytime sky) are around 10m/s over a few days, with some spectra reaching close to their photon limit of 6-7m/s on the short term ( 1 hour). A number of targets showing interesting RV variability are currently being followed up independently. Additional engineering work is planned which should make for further significant gains in Doppler precision. Here we present the latest results and updates from the most recent engineering and observing runs with the Keck ET.

  7. An integrated approach to engineering curricula improvement with multi-objective decision modeling and linear programming

    Science.gov (United States)

    Shea, John E.

    The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum

  8. SU-F-R-46: Predicting Distant Failure in Lung SBRT Using Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Iyengar, P; Zhang, Y; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To predict distant failure in lung stereotactic body radiation therapy (SBRT) in early stage non-small cell lung cancer (NSCLC) by using a new multi-objective radiomics model. Methods: Currently, most available radiomics models use the overall accuracy as the objective function. However, due to data imbalance, a single object may not reflect the performance of a predictive model. Therefore, we developed a multi-objective radiomics model which considers both sensitivity and specificity as the objective functions simultaneously. The new model is used to predict distant failure in lung SBRT using 52 patients treated at our institute. Quantitative imaging features of PET and CT as well as clinical parameters are utilized to build the predictive model. Image features include intensity features (9), textural features (12) and geometric features (8). Clinical parameters for each patient include demographic parameters (4), tumor characteristics (8), treatment faction schemes (4) and pretreatment medicines (6). The modelling procedure consists of two steps: extracting features from segmented tumors in PET and CT; and selecting features and training model parameters based on multi-objective. Support Vector Machine (SVM) is used as the predictive model, while a nondominated sorting-based multi-objective evolutionary computation algorithm II (NSGA-II) is used for solving the multi-objective optimization. Results: The accuracy for PET, clinical, CT, PET+clinical, PET+CT, CT+clinical, PET+CT+clinical are 71.15%, 84.62%, 84.62%, 85.54%, 82.69%, 84.62%, 86.54%, respectively. The sensitivities for the above seven combinations are 41.76%, 58.33%, 50.00%, 50.00%, 41.67%, 41.67%, 58.33%, while the specificities are 80.00%, 92.50%, 90.00%, 97.50%, 92.50%, 97.50%, 97.50%. Conclusion: A new multi-objective radiomics model for predicting distant failure in NSCLC treated with SBRT was developed. The experimental results show that the best performance can be obtained by combining

  9. Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy

    Directory of Open Access Journals (Sweden)

    Xiuli Wu

    2018-03-01

    Full Text Available Renewable energy is an alternative to non-renewable energy to reduce the carbon footprint of manufacturing systems. Finding out how to make an alternative energy-efficient scheduling solution when renewable and non-renewable energy drives production is of great importance. In this paper, a multi-objective flexible flow shop scheduling problem that considers variable processing time due to renewable energy (MFFSP-VPTRE is studied. First, the optimization model of the MFFSP-VPTRE is formulated considering the periodicity of renewable energy and the limitations of energy storage capacity. Then, a hybrid non-dominated sorting genetic algorithm with variable local search (HNSGA-II is proposed to solve the MFFSP-VPTRE. An operation and machine-based encoding method is employed. A low-carbon scheduling algorithm is presented. Besides the crossover and mutation, a variable local search is used to improve the offspring’s Pareto set. The offspring and the parents are combined and those that dominate more are selected to continue evolving. Finally, two groups of experiments are carried out. The results show that the low-carbon scheduling algorithm can effectively reduce the carbon footprint under the premise of makespan optimization and the HNSGA-II outperforms the traditional NSGA-II and can solve the MFFSP-VPTRE effectively and efficiently.

  10. Valuing hydrological alteration in Multi-Objective reservoir management

    Science.gov (United States)

    Bizzi, S.; Pianosi, F.; Soncini-Sessa, R.

    2012-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation for agricultural production, and flood risk mitigation. Advances in multi-objectives (MO) optimization techniques and ever growing computing power make it possible to design reservoir operating policies that represent Pareto-optimal tradeoffs between the multiple interests analysed. These progresses if on one hand are likely to enhance performances of commonly targeted objectives (such as hydropower production or water supply), on the other risk to strongly penalize all the interests not directly (i.e. mathematically) optimized within the MO algorithm. Alteration of hydrological regime, although is a well established cause of ecological degradation and its evaluation and rehabilitation are commonly required by recent legislation (as the Water Framework Directive in Europe), is rarely embedded as an objective in MO planning of optimal releases from reservoirs. Moreover, even when it is explicitly considered, the criteria adopted for its evaluation are doubted and not commonly trusted, undermining the possibility of real implementation of environmentally friendly policies. The main challenges in defining and assessing hydrological alterations are: how to define a reference state (referencing); how to define criteria upon which to build mathematical indicators of alteration (measuring); and finally how to aggregate the indicators in a single evaluation index that can be embedded in a MO optimization problem (valuing). This paper aims to address these issues by: i) discussing benefits and constrains of different approaches to referencing, measuring and valuing hydrological alteration; ii) testing two alternative indices of hydrological alteration in the context of MO problems, one based on the established framework of Indices of Hydrological Alteration (IHA, Richter et al., 1996), and a novel satisfying the

  11. Multi-objective and multi-criteria optimization for power generation expansion planning with CO2 mitigation in Thailand

    Directory of Open Access Journals (Sweden)

    Kamphol Promjiraprawat

    2013-06-01

    Full Text Available In power generation expansion planning, electric utilities have encountered the major challenge of environmental awareness whilst being concerned with budgetary burdens. The approach for selecting generating technologies should depend on economic and environmental constraint as well as externalities. Thus, the multi-objective optimization becomes a more attractive approach. This paper presents a hybrid framework of multi-objective optimization and multi-criteria decision making to solve power generation expansion planning problems in Thailand. In this paper, CO2 emissions and external cost are modeled as a multi-objective optimization problem. Then the analytic hierarchy process is utilized to determine thecompromised solution. For carbon capture and storage technology, CO2 emissions can be mitigated by 74.7% from the least cost plan and leads to the reduction of the external cost of around 500 billion US dollars over the planning horizon. Results indicate that the proposed approach provides optimum cost-related CO2 mitigation plan as well as external cost.

  12. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Yan, Zhequan; Wang, Man; Li, Maoqing; Dai, Yiping

    2013-01-01

    Highlights: • Multi-objective optimization of an ORC is conducted to obtain optimum performance. • NSGA-II is employed to solve this multi-objective optimization problem. • The effects of parameters on the exergy efficiency and capital cost are examined. - Abstract: Organic Rankine cycle (ORC) can effectively recover low grade waste heat due to its excellent thermodynamic performance. Based on the examinations of the effects of key thermodynamic parameters on the exergy efficiency and overall capital cost, multi-objective optimization of the ORC with R134a as working fluid is conducted to achieve the system optimization design from both thermodynamic and economic aspects using Non-dominated sorting genetic algorithm-II (NSGA-II). The exergy efficiency and overall capital cost are selected as two objective functions to maximize the exergy efficiency and minimize the overall capital cost under the given waste heat conditions. Turbine inlet pressure, turbine inlet temperature, pinch temperature difference, approach temperature difference and condenser temperature difference are selected as the decision variables owing to their significant effects on the exergy efficiency and overall capital cost. A Pareto frontier obtained shows that an increase in the exergy efficiency can increase the overall capital cost of the ORC system. The optimum design solution with their corresponding decision variables is selected from the Pareto frontier. The optimum exergy efficiency and overall capital cost are 13.98% and 129.28 × 10 4 USD, respectively, under the given waste heat conditions

  13. Multi-objective synthesis of work and heat exchange networks: Optimal balance between economic and environmental performance

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Jiménez, Laureano; Caballero, José A.

    2017-01-01

    Highlights: • New multi-objective optimization model for the simultaneous WHEN synthesis. • A multistage superstructure allows power and thermal integration of process streams. • Simultaneous minimization of environmental impacts and total annualized cost. • Alternative set of Pareto solutions is presented to support decision-makers. - Abstract: Sustainable and efficient energy use is crucial for lessening carbon dioxide emissions in industrial plants. This paper introduces a new multi-objective optimization model for the synthesis of work and heat exchange networks (WHENs), aiming to obtain the optimal balance between economic and environmental performance. The proposed multistage superstructure allows power and thermal integration of process gaseous streams, through the simultaneous minimization of total annualized cost (TAC) and environmental impacts (EI). The latter objective is determined by environmental indicators that follow the life cycle assessment (LCA) principles. The WHEN superstructure is optimized as a multi-objective mixed-integer nonlinear programming (moMINLP) model and solved with the GAMS software. Results show a decrease of ∼79% in the heat transfer area and ∼32% in the capital cost between the solutions found for single problem optimizations. These results represent a diminution of ∼23.5% in the TAC, while EI is increased in ∼99.2%. As these solutions can be impractical for economic or environmental reasons, we present a set of alternative Pareto-optimal solutions to support decision-makers towards the implementation of more environment-friendly and cost-effective WHENs.

  14. An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective Distribution Feeder Reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2009-08-15

    This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)

  15. An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Tian, Hao; Yuan, Yanbin; Huang, Yuehua; Ikram, Rana M.

    2015-01-01

    Highlights: • Multi-objective hydro-thermal-wind scheduling model (MO-HTWS) is establish. • The extra cost in MO-HTWS problem caused by wind uncertainty is considered. • An extended NSGA-III is proposed to solve MO-HTWS problem. • Constraint handling strategies are presented to modify infeasible solutions. • The feasibility and effectiveness of the proposed method is verified by example. - Abstract: Due to the characteristics of clean and renewable, wind power is significant to economic and environmental operation of electric power system so that it attracts more and more attention from researchers. This paper integrates wind power with hydrothermal scheduling to establish multi-objective economic emission hydro-thermal-wind scheduling problem (MO-HTWS) model with considering wind uncertain cost. To solve MO-HTWS problem with various complicated constraints, this paper extends NSGA-III by introducing the dominance relationship criterion based on constraint violation to select new generation. Moreover, the constraint handling strategy which repairs the infeasible solutions by modifying the decision variables in feasible zone according to the violation amount is proposed. Finally, a daily scheduling example of hydro-thermal-wind system is used to test the ability of NSGA-III for solving MO-HTWS problem. It is concluded from the superior quality and good distribution of the Pareto optimal solutions that, NSGA-III can offer an efficient alternative for optimizing MO-HTWS problem

  16. A Survey of Multi-Objective Sequential Decision-Making

    OpenAIRE

    Roijers, D.M.; Vamplew, P.; Whiteson, S.; Dazeley, R.

    2013-01-01

    Sequential decision-making problems with multiple objectives arise naturally in practice and pose unique challenges for research in decision-theoretic planning and learning, which has largely focused on single-objective settings. This article surveys algorithms designed for sequential decision-making problems with multiple objectives. Though there is a growing body of literature on this subject, little of it makes explicit under what circumstances special methods are needed to solve multi-obj...

  17. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option

    International Nuclear Information System (INIS)

    Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza

    2017-01-01

    Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.

  18. Farm Planning by Fuzzy Multi Objective Programming Model

    Directory of Open Access Journals (Sweden)

    m Raei Jadidi

    2010-05-01

    Full Text Available In current study, Fuzzy Goal Programming (FGP model by considering a set of social and economic goals, was applied to optimal land allocation in Koshksaray district, Marand city, East Azarbaijan province, Iran. Farmer goals including total cultivable area, factor of production, production levels of various crops and total expected profit were considered fuzzily in establishment of the model. The goals were considered by 16 scenarios in the form of single objective, compound and priority structures. Results showed that, cost minimization in single objective and compound scenario is the best as compared with current conditions. In priority structure, scenario 10 with priorities of profit maximization, cost minimization, satisfying of production goals considering cost minimization and production goals, and scenario 13 with priorities of profit maximization, satisfying factor of production goals, cost minimization and fulfilling production goals, had minimum Euclidean Distance and satisfied the fuzzy objectives. Moreover, dry barley, irrigated and dry wheat and irrigated barely had maximum and minimum cultivated area, respectively. According to the findings, by reallocation of resources, farmers can achieve their better goals and objectives.

  19. Multi-Objective Fuzzy Linear Programming In Agricultural Production Planning

    Directory of Open Access Journals (Sweden)

    H.M.I.U. Herath

    2015-08-01

    Full Text Available Abstract Modern agriculture is characterized by a series of conflicting optimization criteria that obstruct the decision-making process in the planning of agricultural production. Such criteria are usually net profit total cost total production etc. At the same time the decision making process in the agricultural production planning is often conducted with data that accidentally occur in nature or that are fuzzy not deterministic. Such data are the yields of various crops the prices of products and raw materials demand for the product the available quantities of production factors such as water labor etc. In this paper a fuzzy multi-criteria mathematical programming model is presented. This model is applied in a region of 10 districts in Sri Lanka where paddy is cultivated under irrigated and rain fed water in the two main seasons called Yala and Maha and the optimal production plan is achieved. This study was undertaken to find out the optimal allocation of land for paddy to get a better yield while satisfying the two conflicting objectives profit maximizing and cost minimizing subjected to the utilizing of water constraint and the demand constraint. Only the availability of land constraint is considered as a crisp in nature while objectives and other constraints are treated as fuzzy. It is observed that the MOFLP is an effective method to handle more than a single objective occurs in an uncertain vague environment.

  20. Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization

    International Nuclear Information System (INIS)

    Daróczy, László; Janiga, Gábor; Thévenin, Dominique

    2014-01-01

    A two-dimensional cross-flow tube bank heat exchanger arrangement problem with internal laminar flow is considered in this work. The objective is to optimize the arrangement of tubes and find the most favorable geometries, in order to simultaneously maximize the rate of heat exchange while obtaining a minimum pressure loss. A systematic study was performed involving a large number of simulations. The global optimization method NSGA-II was retained. A fully automatized in-house optimization environment was used to solve the problem, including mesh generation and CFD (computational fluid dynamics) simulations. The optimization was performed in parallel on a Linux cluster with a very good speed-up. The main purpose of this article is to illustrate and analyze a heat exchanger arrangement problem in its most general form and to provide a fundamental understanding of the structure of the Pareto front and optimal geometries. The considered conditions are particularly suited for low-power applications, as found in a growing number of practical systems in an effort toward increasing energy efficiency. For such a detailed analysis with more than 140 000 CFD-based evaluations, a design-of-experiment study involving a response surface would not be sufficient. Instead, all evaluations rely on a direct solution using a CFD solver. - Highlights: • Cross-flow tube bank heat exchanger arrangement problem. • A fully automatized multi-objective optimization based on genetic algorithm. • A systematic study involving a large number of CFD (computational fluid dynamics) simulations

  1. Multi-Objective Predictive Balancing Control of Battery Packs Based on Predictive Current

    Directory of Open Access Journals (Sweden)

    Wenbiao Li

    2016-04-01

    Full Text Available Various balancing topology and control methods have been proposed for the inconsistency problem of battery packs. However, these strategies only focus on a single objective, ignore the mutual interaction among various factors and are only based on the external performance of the battery pack inconsistency, such as voltage balancing and state of charge (SOC balancing. To solve these problems, multi-objective predictive balancing control (MOPBC based on predictive current is proposed in this paper, namely, in the driving process of an electric vehicle, using predictive control to predict the battery pack output current the next time. Based on this information, the impact of the battery pack temperature caused by the output current can be obtained. Then, the influence is added to the battery pack balancing control, which makes the present degradation, temperature, and SOC imbalance achieve balance automatically due to the change of the output current the next moment. According to MOPBC, the simulation model of the balancing circuit is built with four cells in Matlab/Simulink. The simulation results show that MOPBC is not only better than the other traditional balancing control strategies but also reduces the energy loss in the balancing process.

  2. Multi-objective optimization algorithms for mixed model assembly line balancing problem with parallel workstations

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-12-01

    Full Text Available This paper deals with mixed model assembly line (MMAL balancing problem of type-I. In MMALs several products are made on an assembly line while the similarity of these products is so high. As a result, it is possible to assemble several types of products simultaneously without any additional setup times. The problem has some particular features such as parallel workstations and precedence constraints in dynamic periods in which each period also effects on its next period. The research intends to reduce the number of workstations and maximize the workload smoothness between workstations. Dynamic periods are used to determine all variables in different periods to achieve efficient solutions. A non-dominated sorting genetic algorithm (NSGA-II and multi-objective particle swarm optimization (MOPSO are used to solve the problem. The proposed model is validated with GAMS software for small size problem and the performance of the foregoing algorithms is compared with each other based on some comparison metrics. The NSGA-II outperforms MOPSO with respect to some comparison metrics used in this paper, but in other metrics MOPSO is better than NSGA-II. Finally, conclusion and future research is provided.

  3. Multi-objective Analysis for a Sequencing Planning of Mixed-model Assembly Line

    Science.gov (United States)

    Shimizu, Yoshiaki; Waki, Toshiya; Yoo, Jae Kyu

    Diversified customer demands are raising importance of just-in-time and agile manufacturing much more than before. Accordingly, introduction of mixed-model assembly lines becomes popular to realize the small-lot-multi-kinds production. Since it produces various kinds on the same assembly line, a rational management is of special importance. With this point of view, this study focuses on a sequencing problem of mixed-model assembly line including a paint line as its preceding process. By taking into account the paint line together, reducing work-in-process (WIP) inventory between these heterogeneous lines becomes a major concern of the sequencing problem besides improving production efficiency. Finally, we have formulated the sequencing problem as a bi-objective optimization problem to prevent various line stoppages, and to reduce the volume of WIP inventory simultaneously. Then we have proposed a practical method for the multi-objective analysis. For this purpose, we applied the weighting method to derive the Pareto front. Actually, the resulting problem is solved by a meta-heuristic method like SA (Simulated Annealing). Through numerical experiments, we verified the validity of the proposed approach, and discussed the significance of trade-off analysis between the conflicting objectives.

  4. Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process

    Science.gov (United States)

    Widhiarso, Wahyu; Rosyidi, Cucuk Nur

    2018-02-01

    Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.

  5. A Multi-Objective Compounded Local Mobile Cloud Architecture Using Priority Queues to Process Multiple Jobs.

    Science.gov (United States)

    Wei, Xiaohui; Sun, Bingyi; Cui, Jiaxu; Xu, Gaochao

    2016-01-01

    As a result of the greatly increased use of mobile devices, the disadvantages of portable devices have gradually begun to emerge. To solve these problems, the use of mobile cloud computing assisted by cloud data centers has been proposed. However, cloud data centers are always very far from the mobile requesters. In this paper, we propose an improved multi-objective local mobile cloud model: Compounded Local Mobile Cloud Architecture with Dynamic Priority Queues (LMCpri). This new architecture could briefly store jobs that arrive simultaneously at the cloudlet in different priority positions according to the result of auction processing, and then execute partitioning tasks on capable helpers. In the Scheduling Module, NSGA-II is employed as the scheduling algorithm to shorten processing time and decrease requester cost relative to PSO and sequential scheduling. The simulation results show that the number of iteration times that is defined to 30 is the best choice of the system. In addition, comparing with LMCque, LMCpri is able to effectively accommodate a requester who would like his job to be executed in advance and shorten execution time. Finally, we make a comparing experiment between LMCpri and cloud assisting architecture, and the results reveal that LMCpri presents a better performance advantage than cloud assisting architecture.

  6. A Multi-Objective Compounded Local Mobile Cloud Architecture Using Priority Queues to Process Multiple Jobs.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wei

    Full Text Available As a result of the greatly increased use of mobile devices, the disadvantages of portable devices have gradually begun to emerge. To solve these problems, the use of mobile cloud computing assisted by cloud data centers has been proposed. However, cloud data centers are always very far from the mobile requesters. In this paper, we propose an improved multi-objective local mobile cloud model: Compounded Local Mobile Cloud Architecture with Dynamic Priority Queues (LMCpri. This new architecture could briefly store jobs that arrive simultaneously at the cloudlet in different priority positions according to the result of auction processing, and then execute partitioning tasks on capable helpers. In the Scheduling Module, NSGA-II is employed as the scheduling algorithm to shorten processing time and decrease requester cost relative to PSO and sequential scheduling. The simulation results show that the number of iteration times that is defined to 30 is the best choice of the system. In addition, comparing with LMCque, LMCpri is able to effectively accommodate a requester who would like his job to be executed in advance and shorten execution time. Finally, we make a comparing experiment between LMCpri and cloud assisting architecture, and the results reveal that LMCpri presents a better performance advantage than cloud assisting architecture.

  7. A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Zhaoyu Zhai

    2018-06-01

    Full Text Available As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS as a Multi-Agent System (MAS. Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP. In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.

  8. Reduction environmental effects of civil aircraft through multi-objective flight plan optimisation

    International Nuclear Information System (INIS)

    Lee, D S; Gonzalez, L F; Walker, R; Periaux, J; Onate, E

    2010-01-01

    With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO 2 ) and nitrogen oxides (NO x ) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO 2 ) and NO x using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NO x with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NO x with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NO x and CO 2 (minimum mission fuel weight).

  9. An interval-parameter mixed integer multi-objective programming for environment-oriented evacuation management

    Science.gov (United States)

    Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.

    2010-05-01

    Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.

  10. An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning

    Directory of Open Access Journals (Sweden)

    Nizar Hadi Abbas

    2016-07-01

    Full Text Available This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In order to evaluate the proposed algorithm in term of finding the best solution, six benchmark test functions are used to make a comparison between AMOPSO and the standard MOPSO. The results show that the AMOPSO has a better ability to get away from local optimums with a quickest convergence than the MOPSO. The simulation results using Matlab 2014a, indicate that this methodology is extremely valuable for every robot in multi-robot framework to discover its own particular proper pa‌th from the start to the destination position with minimum distance and time.

  11. A modified teaching–learning based optimization for multi-objective optimal power flow problem

    International Nuclear Information System (INIS)

    Shabanpour-Haghighi, Amin; Seifi, Ali Reza; Niknam, Taher

    2014-01-01

    Highlights: • A new modified teaching–learning based algorithm is proposed. • A self-adaptive wavelet mutation strategy is used to enhance the performance. • To avoid reaching a large repository size, a fuzzy clustering technique is used. • An efficiently smart population selection is utilized. • Simulations show the superiority of this algorithm compared with other ones. - Abstract: In this paper, a modified teaching–learning based optimization algorithm is analyzed to solve the multi-objective optimal power flow problem considering the total fuel cost and total emission of the units. The modified phase of the optimization algorithm utilizes a self-adapting wavelet mutation strategy. Moreover, a fuzzy clustering technique is proposed to avoid extremely large repository size besides a smart population selection for the next iteration. These techniques make the algorithm searching a larger space to find the optimal solutions while speed of the convergence remains good. The IEEE 30-Bus and 57-Bus systems are used to illustrate performance of the proposed algorithm and results are compared with those in literatures. It is verified that the proposed approach has better performance over other techniques

  12. Quantitative Trait Loci Mapping Problem: An Extinction-Based Multi-Objective Evolutionary Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Nicholas S. Flann

    2013-09-01

    Full Text Available The Quantitative Trait Loci (QTL mapping problem aims to identify regions in the genome that are linked to phenotypic features of the developed organism that vary in degree. It is a principle step in determining targets for further genetic analysis and is key in decoding the role of specific genes that control quantitative traits within species. Applications include identifying genetic causes of disease, optimization of cross-breeding for desired traits and understanding trait diversity in populations. In this paper a new multi-objective evolutionary algorithm (MOEA method is introduced and is shown to increase the accuracy of QTL mapping identification for both independent and epistatic loci interactions. The MOEA method optimizes over the space of possible partial least squares (PLS regression QTL models and considers the conflicting objectives of model simplicity versus model accuracy. By optimizing for minimal model complexity, MOEA has the advantage of solving the over-fitting problem of conventional PLS models. The effectiveness of the method is confirmed by comparing the new method with Bayesian Interval Mapping approaches over a series of test cases where the optimal solutions are known. This approach can be applied to many problems that arise in analysis of genomic data sets where the number of features far exceeds the number of observations and where features can be highly correlated.

  13. A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-01-01

    Full Text Available A hybrid power system uses many wind turbine generators (WTG and solar photovoltaics (PV in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE, fuel cell (FC, battery energy storage system (BESS, flywheel (FW and diesel engine generator (DEG. Furthermore, plug-in hybrid electric vehicles (EVs are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and DEG. Two PI controllers are implemented in the proposed system to control the system frequency and reduce the supply error. The epsilon multi-objective genetic algorithm ( ε -MOGA is applied to optimize the controllers’ parameters. The performance of the proposed control scheme is compared with that of recent well-established techniques, such as a PID controller tuned by the quasi-oppositional harmony search algorithm (QOHSA. The effectiveness and robustness of the hybrid power system are investigated under various operating conditions.

  14. Multi-objective optimal dispatch of distributed energy resources

    Science.gov (United States)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  15. Multi-Objective Optimization of Grillages Applying the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Darius Mačiūnas

    2012-01-01

    Full Text Available The article analyzes the optimization of grillage-type foundations seeking for the least possible reactive forces in the poles for a given number of poles and for the least possible bending moments of absolute values in the connecting beams of the grillage. Therefore, we suggest using a compromise objective function (to be minimized that consists of the maximum reactive force arising in all poles and the maximum bending moment of the absolute value in connecting beams; both components include the given weights. The variables of task design are pole positions under connecting beams. The optimization task is solved applying the algorithm containing all the initial data of the problem. Reactive forces and bending moments are calculated using an original program (finite element method is applied. This program is integrated into the optimization algorithm using the “black-box” principle. The “black-box” finite element program sends back the corresponding value of the objective function. Numerical experiments revealed the optimal quantity of points to compute bending moments. The obtained results show a certain ratio of weights in the objective function where the contribution of reactive forces and bending moments to the objective function are equivalent. This solution can serve as a pilot project for more detailed design.Article in Lithuanian

  16. Coastal aquifer management based on surrogate models and multi-objective optimization

    Science.gov (United States)

    Mantoglou, A.; Kourakos, G.

    2011-12-01

    is capable of solving complex multi-objective optimization problems effectively with significant reduction in computational time compared to previous methods (it requires only 5% of the NSGA -II algorithm time). Further, as indicated in the figure below, the Pareto solution obtained by the much faster MOSA(MNN) algorithm, is better than the solution obtained by the NSGA-II algorithm.

  17. Study on hybrid multi-objective optimization algorithm for inverse treatment planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Song Gang; Wu Yican

    2007-01-01

    Inverse treatment planning for radiation therapy is a multi-objective optimization process. The hybrid multi-objective optimization algorithm is studied by combining the simulated annealing(SA) and genetic algorithm(GA). Test functions are used to analyze the efficiency of algorithms. The hybrid multi-objective optimization SA algorithm, which displacement is based on the evolutionary strategy of GA: crossover and mutation, is implemented in inverse planning of external beam radiation therapy by using two kinds of objective functions, namely the average dose distribution based and the hybrid dose-volume constraints based objective functions. The test calculations demonstrate that excellent converge speed can be achieved. (authors)

  18. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    Science.gov (United States)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  19. Automatic Multi-Level Thresholding Segmentation Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    L. DJEROU,

    2012-01-01

    Full Text Available In this paper, we present a new multi-level image thresholding technique, called Automatic Threshold based on Multi-objective Optimization "ATMO" that combines the flexibility of multi-objective fitness functions with the power of a Binary Particle Swarm Optimization algorithm "BPSO", for searching the "optimum" number of the thresholds and simultaneously the optimal thresholds of three criteria: the between-class variances criterion, the minimum error criterion and the entropy criterion. Some examples of test images are presented to compare our segmentation method, based on the multi-objective optimization approach with Otsu’s, Kapur’s and Kittler’s methods. Our experimental results show that the thresholding method based on multi-objective optimization is more efficient than the classical Otsu’s, Kapur’s and Kittler’s methods.

  20. Fuzzy Multi Objective Linear Programming Problem with Imprecise Aspiration Level and Parameters

    Directory of Open Access Journals (Sweden)

    Zahra Shahraki

    2015-07-01

    Full Text Available This paper considers the multi-objective linear programming problems with fuzzygoal for each of the objective functions and constraints. Most existing works deal withlinear membership functions for fuzzy goals. In this paper, exponential membershipfunction is used.

  1. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  2. Adaptive multi-objective Optimization scheme for cognitive radio resource management

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2014-01-01

    configuration by exploiting optimization and machine learning techniques. In this paper, we propose an Adaptive Multi-objective Optimization Scheme (AMOS) for cognitive radio resource management to improve spectrum operation and network performance

  3. Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm

    OpenAIRE

    Sanjay Kr. Singh; D. Boolchandani; S.G. Modani; Nitish Katal

    2014-01-01

    This study focuses on multi-objective optimization of the PID controllers for optimal speed control for an isolated steam turbine. In complex operations, optimal tuning plays an imperative role in maintaining the product quality and process safety. This study focuses on the comparison of the optimal PID tuning using Multi-objective Genetic Algorithm (NSGA-II) against normal genetic algorithm and Ziegler Nichols methods for the speed control of an isolated steam turbine. Isolated steam turbine...

  4. Interactive Preference Learning of Utility Functions for Multi-Objective Optimization

    OpenAIRE

    Dewancker, Ian; McCourt, Michael; Ainsworth, Samuel

    2016-01-01

    Real-world engineering systems are typically compared and contrasted using multiple metrics. For practical machine learning systems, performance tuning is often more nuanced than minimizing a single expected loss objective, and it may be more realistically discussed as a multi-objective optimization problem. We propose a novel generative model for scalar-valued utility functions to capture human preferences in a multi-objective optimization setting. We also outline an interactive active learn...

  5. Combining simulation and multi-objective optimisation for equipment quantity optimisation in container terminals

    OpenAIRE

    Lin, Zhougeng

    2013-01-01

    This thesis proposes a combination framework to integrate simulation and multi-objective optimisation (MOO) for container terminal equipment optimisation. It addresses how the strengths of simulation and multi-objective optimisation can be integrated to find high quality solutions for multiple objectives with low computational cost. Three structures for the combination framework are proposed respectively: pre-MOO structure, integrated MOO structure and post-MOO structure. The applications of ...

  6. An experimental analysis of design choices of multi-objective ant colony optimization algorithms

    OpenAIRE

    Lopez-Ibanez, Manuel; Stutzle, Thomas

    2012-01-01

    There have been several proposals on how to apply the ant colony optimization (ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs). This paper proposes a new formulation of these multi-objective ant colony optimization (MOACO) algorithms. This formulation is based on adding specific algorithm components for tackling multiple objectives to the basic ACO metaheuristic. Examples of these components are how to represent multiple objectives using pheromone and heuris...

  7. EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.

    Science.gov (United States)

    Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos

    2015-01-01

    Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.

  8. Multi-objective possibilistic model for portfolio selection with transaction cost

    Science.gov (United States)

    Jana, P.; Roy, T. K.; Mazumder, S. K.

    2009-06-01

    In this paper, we introduce the possibilistic mean value and variance of continuous distribution, rather than probability distributions. We propose a multi-objective Portfolio based model and added another entropy objective function to generate a well diversified asset portfolio within optimal asset allocation. For quantifying any potential return and risk, portfolio liquidity is taken into account and a multi-objective non-linear programming model for portfolio rebalancing with transaction cost is proposed. The models are illustrated with numerical examples.

  9. Short-term hydro-thermal-wind complementary scheduling considering uncertainty of wind power using an enhanced multi-objective bee colony optimization algorithm

    International Nuclear Information System (INIS)

    Zhou, Jianzhong; Lu, Peng; Li, Yuanzheng; Wang, Chao; Yuan, Liu; Mo, Li

    2016-01-01

    Highlights: • HTWCS system is established while considering uncertainty of wind power. • An enhanced multi-objective bee colony optimization algorithm is proposed. • Some heuristic repairing strategies are designed to handle various constraints. • HTWCS problem with economic/environment objectives is solved by EMOBCO. - Abstract: This paper presents a short-term economic/environmental hydro-thermal-wind complementary scheduling (HTWCS) system considering uncertainty of wind power, as well as various complicated non-linear constraints. HTWCS system is formulated as a multi-objective optimization problem to optimize conflictive objectives, i.e., economic and environmental criteria. Then an enhanced multi-objective bee colony optimization algorithm (EMOBCO) is proposed to solve this problem, which adopts Elite archive set, adaptive mutation/selection mechanism and local searching strategy to improve global searching ability of standard bee colony optimization (BCO). Especially, a novel constraints-repairing strategy with compressing decision space and a violation-adjustment method are used to handle various hydraulic and electric constraints. Finally, a daily scheduling simulation case of hydro-thermal-wind system is conducted to verify feasibility and effectiveness of the proposed EMOBCO in solving HTWCS problem. The simulation results indicate that the proposed EMOBCO can provide lower economic cost and smaller pollutant emission than other method established recently while considering various complex constraints in HTWCS problem.

  10. Multi-Objective Optimization of Start-up Strategy for Pumped Storage Units

    Directory of Open Access Journals (Sweden)

    Jinjiao Hou

    2018-05-01

    Full Text Available This paper proposes a multi-objective optimization method for the start-up strategy of pumped storage units (PSU for the first time. In the multi-objective optimization method, the speed rise time and the overshoot during the process of the start-up are taken as the objectives. A precise simulation platform is built for simulating the transient process of start-up, and for calculating the objectives based on the process. The Multi-objective Particle Swarm Optimization algorithm (MOPSO is adopted to optimize the widely applied start-up strategies based on one-stage direct guide vane control (DGVC, and two-stage DGVC. Based on the Pareto Front obtained, a multi-objective decision-making method based on the relative objective proximity is used to sort the solutions in the Pareto Front. Start-up strategy optimization for a PSU of a pumped storage power station in Jiangxi Province in China is conducted in experiments. The results show that: (1 compared with the single objective optimization, the proposed multi-objective optimization of start-up strategy not only greatly shortens the speed rise time and the speed overshoot, but also makes the speed curve quickly stabilize; (2 multi-objective optimization of strategy based on two-stage DGVC achieves better solution for a quick and smooth start-up of PSU than that of the strategy based on one-stage DGVC.

  11. Multi-objective congestion management by modified augmented ε-constraint method

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2011-01-01

    Congestion management is a vital part of power system operations in recent deregulated electricity markets. However, after relieving congestion, power systems may be operated with a reduced voltage or transient stability margin because of hitting security limits or increasing the contribution of risky participants. Therefore, power system stability margins should be considered within the congestion management framework. The multi-objective congestion management provides not only more security but also more flexibility than single-objective methods. In this paper, a multi-objective congestion management framework is presented while simultaneously optimizing the competing objective functions of congestion management cost, voltage security, and dynamic security. The proposed multi-objective framework, called modified augmented ε-constraint method, is based on the augmented ε-constraint technique hybridized by the weighting method. The proposed framework generates candidate solutions for the multi-objective problem including only efficient Pareto surface enhancing the competitiveness and economic effectiveness of the power market. Besides, the relative importance of the objective functions is explicitly modeled in the proposed framework. Results of testing the proposed multi-objective congestion management method on the New-England test system are presented and compared with those of the previous single objective and multi-objective techniques in detail. These comparisons confirm the efficiency of the developed method. (author)

  12. A multi-objective multi-memetic algorithm for network-wide conflict-free 4D flight trajectories planning

    Institute of Scientific and Technical Information of China (English)

    Su YAN; Kaiquan CAI

    2017-01-01

    Under the demand of strategic air traffic flow management and the concept of trajectory based operations (TBO),the network-wide 4D flight trajectories planning (N4DFTP) problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories (4DTs) (3D position and time) for all the flights in the whole airway network.Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity,an efficient model for strategic level conflict management is developed in this paper.Specifically,a bi-objective N4DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated.In consideration of the large-scale,high-complexity,and multi-objective characteristics of the N4DFTP problem,a multi-objective multi-memetic algorithm (MOMMA) that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented.It is capable of rapidly and effectively allocating 4DTs via rerouting,target time controlling,and flight level changing.Additionally,to balance the ability of exploitation and exploration of the algorithm,a special hybridization scheme is adopted for the integration of local and global search.Empirical studies using real air traffic data in China with different network complexities show that the pro posed MOMMA is effective to solve the N4DFTP problem.The solutions achieved are competitive for elaborate decision support under a TBO environment.

  13. Optimizing the Regional Industrial Structure Based on the Environmental Carrying Capacity: An Inexact Fuzzy Multi-Objective Programming Model

    Directory of Open Access Journals (Sweden)

    Wenyi Wang

    2013-12-01

    Full Text Available An inexact fuzzy multi-objective programming model (IFMOP based on the environmental carrying capacity is provided for industrial structure optimization problems. In the IFMOP model, both fuzzy linear programming (FLP and inexact linear programming (ILP methods are introduced into a multi-objective programming framework. It allows uncertainties to be directly communicated into the problem solving processing, and it can effectively reflect the complexity and uncertainty of an industrial system without impractical simplification. The two objective functions utilized in the optimization study are the maximum total output value and population size, and the constraints include water environmental capacity, water resource supply, atmospheric environmental capacity and energy supply. The model is subsequently employed in a realistic case for industrial development in the Tongzhou district, Beijing, China. The results demonstrate that the model can help to analyze whether the environmental carrying capacity of Tongzhou can meet the needs of the social economic objectives in the new town plan in the two scenarios and can assist decision makers in generating stable and balanced industrial structure patterns with consideration of the resources, energy and environmental constraints to meet the maximum social economic efficiency.

  14. Presenting a Multi Objective Model for Supplier Selection in Order to Reduce Green House Gas Emission under Uncertion Demand

    Directory of Open Access Journals (Sweden)

    Habibollah Mohamadi

    2014-08-01

    Full Text Available Recently, much attention has been given to Stochastic demand due to uncertainty in the real -world. In the literature, decision-making models and suppliers' selection do not often consider inventory management as part of shopping problems. On the other hand, the environmental sustainability of a supply chain depends on the shopping strategy of the supply chain members. The supplier selection plays an important role in the green chain. In this paper, a multi-objective nonlinear integer programming model for selecting a set of supplier considering Stochastic demand is proposed. while the cost of purchasing include the total cost, holding and stock out costs, rejected units, units have been delivered sooner, and total green house gas emissions are minimized, while the obtained total score from the supplier assessment process is maximized. It is assumed, the purchaser provides the different products from the number predetermined supplier to a with Stochastic demand and the uniform probability distribution function. The product price depends on the order quantity for each product line is intended. Multi-objective models using known methods, such as Lp-metric has become an objective function and then uses genetic algorithms and simulated annealing meta-heuristic is solved.

  15. A two-stage approach for multi-objective decision making with applications to system reliability optimization

    International Nuclear Information System (INIS)

    Li Zhaojun; Liao Haitao; Coit, David W.

    2009-01-01

    This paper proposes a two-stage approach for solving multi-objective system reliability optimization problems. In this approach, a Pareto optimal solution set is initially identified at the first stage by applying a multiple objective evolutionary algorithm (MOEA). Quite often there are a large number of Pareto optimal solutions, and it is difficult, if not impossible, to effectively choose the representative solutions for the overall problem. To overcome this challenge, an integrated multiple objective selection optimization (MOSO) method is utilized at the second stage. Specifically, a self-organizing map (SOM), with the capability of preserving the topology of the data, is applied first to classify those Pareto optimal solutions into several clusters with similar properties. Then, within each cluster, the data envelopment analysis (DEA) is performed, by comparing the relative efficiency of those solutions, to determine the final representative solutions for the overall problem. Through this sequential solution identification and pruning process, the final recommended solutions to the multi-objective system reliability optimization problem can be easily determined in a more systematic and meaningful way.

  16. A multi-objective multi-memetic algorithm for network-wide conflict-free 4D flight trajectories planning

    Directory of Open Access Journals (Sweden)

    Su YAN

    2017-06-01

    Full Text Available Under the demand of strategic air traffic flow management and the concept of trajectory based operations (TBO, the network-wide 4D flight trajectories planning (N4DFTP problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories (4DTs (3D position and time for all the flights in the whole airway network. Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity, an efficient model for strategic-level conflict management is developed in this paper. Specifically, a bi-objective N4DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated. In consideration of the large-scale, high-complexity, and multi-objective characteristics of the N4DFTP problem, a multi-objective multi-memetic algorithm (MOMMA that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented. It is capable of rapidly and effectively allocating 4DTs via rerouting, target time controlling, and flight level changing. Additionally, to balance the ability of exploitation and exploration of the algorithm, a special hybridization scheme is adopted for the integration of local and global search. Empirical studies using real air traffic data in China with different network complexities show that the proposed MOMMA is effective to solve the N4DFTP problem. The solutions achieved are competitive for elaborate decision support under a TBO environment.

  17. A multi-objective possibilistic programming approach for locating distribution centers and allocating customers demands in supply chains

    Directory of Open Access Journals (Sweden)

    Seyed Ahmad Yazdian

    2011-01-01

    Full Text Available In this paper, we present a multi-objective possibilistic programming model to locate distribution centers (DCs and allocate customers' demands in a supply chain network design (SCND problem. The SCND problem deals with determining locations of facilities (DCs and/or plants, and also shipment quantities between each two consecutive tier of the supply chain. The primary objective of this study is to consider different risk factors which are involved in both locating DCs and shipping products as an objective function. The risk consists of various components: the risks related to each potential DC location, the risk associated with each arc connecting a plant to a DC and the risk of shipment from a DC to a customer. The proposed method of this paper considers the risk phenomenon in fuzzy forms to handle the uncertainties inherent in these factors. A possibilistic programming approach is proposed to solve the resulted multi-objective problem and a numerical example for three levels of possibility is conducted to analyze the model.

  18. A multi-objective model for locating distribution centers in a supply chain network considering risk and inventory decisions

    Directory of Open Access Journals (Sweden)

    Sara Gharegozloo Hamedani

    2013-04-01

    Full Text Available This paper presents a multi-objective location problem in a three level supply chain network under uncertain environment considering inventory decisions. The proposed model of this paper considers uncertainty for different parameters including procurement, transportation costs, supply, demand and the capacity of various facilities. The proposed model presents a robust optimization model, which specifies locations of distribution centers to be opened, inventory control parameters (r, Q, and allocation of supply chain components, concurrently. The resulted mixed-integer nonlinear programming minimizes the expected total cost of such a supply chain network comprising location, procurement, transportation, holding, ordering, and shortage costs. The model also minimizes the variability of the total cost of relief chain and minimizes the financial risk or the probability of not meeting a certain budget. We use the ε-constraint method, which is a multi-objective technique with implicit trade-off information given, to solve the problem and using a couple of numerical instances, we examine the performance of the proposed approach.

  19. Using Multi-Objective Optimization to Explore Robust Policies in the Colorado River Basin

    Science.gov (United States)

    Alexander, E.; Kasprzyk, J. R.; Zagona, E. A.; Prairie, J. R.; Jerla, C.; Butler, A.

    2017-12-01

    The long term reliability of water deliveries in the Colorado River Basin has degraded due to the imbalance of growing demand and dwindling supply. The Colorado River meanders 1,450 miles across a watershed that covers seven US states and Mexico and is an important cultural, economic, and natural resource for nearly 40 million people. Its complex operating policy is based on the "Law of the River," which has evolved since the Colorado River Compact in 1922. Recent (2007) refinements to address shortage reductions and coordinated operations of Lakes Powell and Mead were negotiated with stakeholders in which thousands of scenarios were explored to identify operating guidelines that could ultimately be agreed on. This study explores a different approach to searching for robust operating policies to inform the policy making process. The Colorado River Simulation System (CRSS), a long-term water management simulation model implemented in RiverWare, is combined with the Borg multi-objective evolutionary algorithm (MOEA) to solve an eight objective problem formulation. Basin-wide performance metrics are closely tied to system health through incorporating critical reservoir pool elevations, duration, frequency and quantity of shortage reductions in the objective set. For example, an objective to minimize the frequency that Lake Powell falls below the minimum power pool elevation of 3,490 feet for Glen Canyon Dam protects a vital economic and renewable energy source for the southwestern US. The decision variables correspond to operating tiers in Lakes Powell and Mead that drive the implementation of various shortage and release policies, thus affecting system performance. The result will be a set of non-dominated solutions that can be compared with respect to their trade-offs based on the various objectives. These could inform policy making processes by eliminating dominated solutions and revealing robust solutions that could remain hidden under conventional analysis.

  20. Block level energy planning for domestic lighting - a multi-objective fuzzy linear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Jana, C. [Indian Inst. of Social Welfare and Business Management, Kolkata (India); Chattopadhyay, R.N. [Indian Inst. of Technology, Kharagpur (India). Rural Development Centre

    2004-09-01

    Creating provisions for domestic lighting is important for rural development. Its significance in rural economy is unquestionable since some activities, like literacy, education and manufacture of craft items and other cottage products are largely dependent on domestic lighting facilities for their progress and prosperity. Thus, in rural energy planning, domestic lighting remains a key sector for allocation of investments. For rational allocation, decision makers need alternative strategies for identifying adequate and proper investment structure corresponding to appropriate sources and precise devices. The present study aims at designing a model of energy utilisation by developing a decision support frame for an optimised solution to the problem, taking into consideration four sources and six devices suitable for the study area, namely Narayangarh Block of Midnapore District in India. Since the data available from rural and unorganised sectors are often ill-defined and subjective in nature, many coefficients are fuzzy numbers, and hence several constraints appear to be fuzzy expressions. In this study, the energy allocation model is initiated with three separate objectives for optimisation, namely minimising the total cost, minimising the use of non-local sources of energy and maximising the overall efficiency of the system. Since each of the above objective-based solutions has relevance to the needs of the society and economy, it is necessary to build a model that makes a compromise among the three individual solutions. This multi-objective fuzzy linear programming (MOFLP) model, solved in a compromising decision support frame, seems to be a more rational alternative than single objective linear programming model in rural energy planning. (author)

  1. Multi-Objective Two-Dimensional Truss Optimization by using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Harun Alrasyid

    2011-05-01

    Full Text Available During last three decade, many mathematical programming methods have been develop for solving optimization problems. However, no single method has been found to be entirely efficient and robust for the wide range of engineering optimization problems. Most design application in civil engineering involve selecting values for a set of design variables that best describe the behavior and performance of the particular problem while satisfying the requirements and specifications imposed by codes of practice. The introduction of Genetic Algorithm (GA into the field of structural optimization has opened new avenues for research because they have been successful applied while traditional methods have failed. GAs is efficient and broadly applicable global search procedure based on stochastic approach which relies on “survival of the fittest” strategy. GAs are search algorithms that are based on the concepts of natural selection and natural genetics. On this research Multi-objective sizing and configuration optimization of the two-dimensional truss has been conducted using a genetic algorithm. Some preliminary runs of the GA were conducted to determine the best combinations of GA parameters such as population size and probability of mutation so as to get better scaling for rest of the runs. Comparing the results from sizing and sizing– configuration optimization, can obtained a significant reduction in the weight and deflection. Sizing–configuration optimization produces lighter weight and small displacement than sizing optimization. The results were obtained by using a GA with relative ease (computationally and these results are very competitive compared to those obtained from other methods of truss optimization.

  2. Multi-objective optimization design and experimental investigation of centrifugal fan performance

    Science.gov (United States)

    Zhang, Lei; Wang, Songling; Hu, Chenxing; Zhang, Qian

    2013-11-01

    Current studies of fan performance optimization mainly focus on two aspects: one is to improve the blade profile, and another is only to consider the influence of single impeller structural parameter on fan performance. However, there are few studies on the comprehensive effect of the key parameters such as blade number, exit stagger angle of blade and the impeller outlet width on the fan performance. The G4-73 backward centrifugal fan widely used in power plants is selected as the research object. Based on orthogonal design and BP neural network, a model for predicting the centrifugal fan performance parameters is established, and the maximum relative errors of the total pressure and efficiency are 0.974% and 0.333%, respectively. Multi-objective optimization of total pressure and efficiency of the fan is conducted with genetic algorithm, and the optimum combination of impeller structural parameters is proposed. The optimized parameters of blade number, exit stagger angle of blade and the impeller outlet width are seperately 14, 43.9°, and 21 cm. The experiments on centrifugal fan performance and noise are conducted before and after the installation of the new impeller. The experimental results show that with the new impeller, the total pressure of fan increases significantly in total range of the flow rate, and the fan efficiency is improved when the relative flow is above 75%, also the high efficiency area is broadened. Additionally, in 65% -100% relative flow, the fan noise is reduced. Under the design operating condition, total pressure and efficiency of the fan are improved by 6.91% and 0.5%, respectively. This research sheds light on the considering of comprehensive effect of impeller structrual parameters on fan performance, and a new impeller can be designed to satisfy the engineering demand such as energy-saving, noise reduction or solving air pressure insufficiency for power plants.

  3. Multi-object segmentation framework using deformable models for medical imaging analysis.

    Science.gov (United States)

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed

  4. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  5. Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi-GPU System

    KAUST Repository

    Charara, Ali; Ltaief, Hatem; Gratadour, Damien; Keyes, David E.; Sevin, Arnaud; Abdelfattah, Ahmad; Gendron, Eric; Morel, Carine; Vidal, Fabrice

    2014-01-01

    called MOSAIC has been proposed to perform multi-object spectroscopy using the Multi-Object Adaptive Optics (MOAO) technique. The core implementation of the simulation lies in the intensive computation of a tomographic reconstruct or (TR), which is used

  6. An improved fast and elitist multi-objective genetic algorithm-ANSGA-II for multi-objective optimization of inverse radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Cao Ruifen; Li Guoli; Song Gang; Zhao Pan; Lin Hui; Wu Aidong; Huang Chenyu; Wu Yican

    2007-01-01

    Objective: To provide a fast and effective multi-objective optimization algorithm for inverse radiotherapy treatment planning system. Methods: Non-dominated Sorting Genetic Algorithm-NSGA-II is a representative of multi-objective evolutionary optimization algorithms and excels the others. The paper produces ANSGA-II that makes use of advantage of NSGA-II, and uses adaptive crossover and mutation to improve its flexibility; according the character of inverse radiotherapy treatment planning, the paper uses the pre-known knowledge to generate individuals of every generation in the course of optimization, which enhances the convergent speed and improves efficiency. Results: The example of optimizing average dose of a sheet of CT, including PTV, OAR, NT, proves the algorithm could find satisfied solutions in several minutes. Conclusions: The algorithm could provide clinic inverse radiotherapy treatment planning system with selection of optimization algorithms. (authors)

  7. Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant

    Science.gov (United States)

    Alsova, O. K.; Artamonova, A. V.

    2018-05-01

    This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.

  8. Contribution to the evaluation and to the improvement of multi-objective optimization methods: application to the optimization of nuclear fuel reloading pattern

    International Nuclear Information System (INIS)

    Collette, Y.

    2002-01-01

    In this thesis, we study the general problem of the selection of a multi-objective optimization method, then we study the improvement so as to efficiently solve a problem. The pertinent selection of a method presume the existence of a methodology: we have built tools to perform evaluation of performances and we propose an original method dedicated to the classification of know optimization methods. Our step has been applied to the elaboration of new methods for solving a very difficult problem: the nuclear core reload pattern optimization. First, we looked for a non usual approach of performances measurement: we have 'measured' the behavior of a method. To reach this goal, we have introduced several metrics. We have proposed to evaluate the 'aesthetic' of a distribution of solutions by defining two new metrics: a 'spacing metric' and a metric that allow us to measure the size of the biggest hole in the distribution of solutions. Then, we studied the convergence of multi-objective optimization methods by using some metrics defined in scientific literature and by proposing some more metrics: the 'Pareto ratio' which computes a ratio of solution production. Lastly, we have defined new metrics intended to better apprehend the behavior of optimization methods: the 'speed metric', which allows to compute the speed profile and a 'distribution metric' which allows to compute statistical distribution of solutions along the Pareto frontier. Next, we have studied transformations of a multi-objective problem and defined news methods: the modified Tchebychev method, or the penalized weighted sum of objective functions. We have elaborated new techniques to choose the initial point. These techniques allow to produce new initial points closer and closer to the Pareto frontier and, thanks to the 'proximal optimality concept', allowing dramatic improvements in the convergence of a multi-objective optimization method. Lastly, we have defined new vectorial multi-objective optimization

  9. A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies

    International Nuclear Information System (INIS)

    Karmellos, M.; Kiprakis, A.; Mavrotas, G.

    2015-01-01

    Highlights: • We provide a model for prioritization of energy efficiency measures in buildings. • We examine the case of a new building and one under renovation. • Objective functions are total primary energy consumption and total investment cost. • We provide a software tool that solves this multi-objective optimization problem. • Primary energy consumption and investment cost are inversely proportional. - Abstract: Buildings are responsible for some 40% of the total final energy consumption in the European Union and about 40% of the world’s primary energy consumption. Hence, the reduction of primary energy consumption is important for the overall energy chain. The scope of the current work is to assess the energy efficiency measures in the residential and small commercial sector and to develop a methodology and a software tool for their optimal prioritization. The criteria used for the prioritization of energy efficiency measures in this article are the primary energy consumption and the initial investment cost. The developed methodology used is generic and could be implemented in the case of a new building or retrofitting an existing building. A multi-objective mixed-integer non-linear problem (MINLP) needs to be solved and the weighted sum method is used. Moreover, the novelty of this work is that a software tool has been developed using ‘Matlab®’ which is generic, very simple and time efficient and can be used by a Decision Maker (DM). Two case studies have been developed, one for a new building and one for retrofitting an existing one, in two cities with different climate characteristics. The building was placed in Edinburgh in the UK and Athens in Greece and the analysis showed that the primary energy consumption and the initial investment cost are inversely proportional

  10. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2016-01-01

    Highlights: • Finite time exergoeconomic multi objective optimization of a Brayton cycle. • Comparing the exergoeconomic and the ecological function optimization results. • Inserting the cost of fluid streams concept into finite-time thermodynamics. • Exergoeconomic sensitivity analysis of a regenerative Brayton cycle. • Suggesting the cycle performance curve drawing and utilization. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power maximization and then exergoeconomic optimization using finite-time thermodynamic concept and finite-size components. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is used deploying time variations. The decision variables for the optimum state (of multi objective exergoeconomic optimization) are compared to the maximum power state. One can see that the multi objective exergoeconomic optimization results in a better performance than that obtained with the maximum power state. The results demonstrate that system performance at optimum point of multi objective optimization yields 71% of the maximum power, but only with exergy destruction as 24% of the amount that is produced at the maximum power state and 67% lower total cost rate than that of the maximum power state. In order to assess the impact of the variation of the decision variables on the objective functions, sensitivity analysis is conducted. Finally, the cycle performance curve drawing according to exergoeconomic multi objective optimization results and its utilization, are suggested.

  11. Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization

    International Nuclear Information System (INIS)

    Zhang, Enze; Chen, Qingwei

    2016-01-01

    Most of the existing works addressing reliability redundancy allocation problems are based on the assumption of fixed reliabilities of components. In real-life situations, however, the reliabilities of individual components may be imprecise, most often given as intervals, under different operating or environmental conditions. This paper deals with reliability redundancy allocation problems modeled in an interval environment. An interval multi-objective optimization problem is formulated from the original crisp one, where system reliability and cost are simultaneously considered. To render the multi-objective particle swarm optimization (MOPSO) algorithm capable of dealing with interval multi-objective optimization problems, a dominance relation for interval-valued functions is defined with the help of our newly proposed order relations of interval-valued numbers. Then, the crowding distance is extended to the multi-objective interval-valued case. Finally, the effectiveness of the proposed approach has been demonstrated through two numerical examples and a case study of supervisory control and data acquisition (SCADA) system in water resource management. - Highlights: • We model the reliability redundancy allocation problem in an interval environment. • We apply the particle swarm optimization directly on the interval values. • A dominance relation for interval-valued multi-objective functions is defined. • The crowding distance metric is extended to handle imprecise objective functions.

  12. A practical multi-objective PSO algorithm for optimal operation management of distribution network with regard to fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher; Meymand, Hamed Zeinoddini; Mojarrad, Hasan Doagou [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of)

    2011-05-15

    In this paper a novel Multi-objective fuzzy self adaptive hybrid particle swarm optimization (MFSAHPSO) evolutionary algorithm to solve the Multi-objective optimal operation management (MOOM) is presented. The purposes of the MOOM problem are to decrease the total electrical energy losses, the total electrical energy cost and the total pollutant emission produced by fuel cells and substation bus. Conventional algorithms used to solve the multi-objective optimization problems convert the multiple objectives into a single objective, using a vector of the user-predefined weights. In this conversion several deficiencies can be detected. For instance, the optimal solution of the algorithms depends greatly on the values of the weights and also some of the information may be lost in the conversion process and so this strategy is not expected to provide a robust solution. This paper presents a new MFSAHPSO algorithm for the MOOM problem. The proposed algorithm maintains a finite-sized repository of non-dominated solutions which gets iteratively updated in the presence of new solutions. Since the objective functions are not the same, a fuzzy clustering technique is used to control the size of the repository, within the limits. The proposed algorithm is tested on a distribution test feeder and the results demonstrate the capabilities of the proposed approach, to generate true and well-distributed Pareto-optimal non-dominated solutions of the MOOM problem. (author)

  13. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Use of interactive data visualization in multi-objective forest planning.

    Science.gov (United States)

    Haara, Arto; Pykäläinen, Jouni; Tolvanen, Anne; Kurttila, Mikko

    2018-03-15

    Common to multi-objective forest planning situations is that they all require comparisons, searches and evaluation among decision alternatives. Through these actions, the decision maker can learn from the information presented and thus make well-justified decisions. Interactive data visualization is an evolving approach that supports learning and decision making in multidimensional decision problems and planning processes. Data visualization contributes the formation of mental image data and this process is further boosted by allowing interaction with the data. In this study, we introduce a multi-objective forest planning decision problem framework and the corresponding characteristics of data. We utilize the framework with example planning data to illustrate and evaluate the potential of 14 interactive data visualization techniques to support multi-objective forest planning decisions. Furthermore, broader utilization possibilities of these techniques to incorporate the provisioning of ecosystem services into forest management and planning are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Hamidreza; Najafi, Behzad [K. N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2010-06-15

    In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project's limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB. (orig.)

  16. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    Directory of Open Access Journals (Sweden)

    Fonseca Carlos M

    2010-10-01

    Full Text Available Abstract Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the

  17. Multi-objective design of PV-wind-diesel-hydrogen-battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L. [Department of Electrical Engineering, University of Zaragoza, Calle Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-12-15

    This paper presents, for the first time, a triple multi-objective design of isolated hybrid systems minimizing, simultaneously, the total cost throughout the useful life of the installation, pollutant emissions (CO{sub 2}) and unmet load. For this task, a multi-objective evolutionary algorithm (MOEA) and a genetic algorithm (GA) have been used in order to find the best combination of components of the hybrid system and control strategies. As an example of application, a complex PV-wind-diesel-hydrogen-battery system has been designed, obtaining a set of possible solutions (Pareto Set). The results achieved demonstrate the practical utility of the developed design method. (author)

  18. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    Science.gov (United States)

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case

  19. Fuzzy preference based interactive fuzzy physical programming and its application in multi-objective optimization

    International Nuclear Information System (INIS)

    Zhang, Xu; Huang, Hong Zhong; Yu, Lanfeng

    2006-01-01

    Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer

  20. Research on connection structure of aluminumbody bus using multi-objective topology optimization

    Science.gov (United States)

    Peng, Q.; Ni, X.; Han, F.; Rhaman, K.; Ulianov, C.; Fang, X.

    2018-01-01

    For connecting Aluminum Alloy bus body aluminum components often occur the problem of failure, a new aluminum alloy connection structure is designed based on multi-objective topology optimization method. Determining the shape of the outer contour of the connection structure with topography optimization, establishing a topology optimization model of connections based on SIMP density interpolation method, going on multi-objective topology optimization, and improving the design of the connecting piece according to the optimization results. The results show that the quality of the aluminum alloy connector after topology optimization is reduced by 18%, and the first six natural frequencies are improved and the strength performance and stiffness performance are obviously improved.

  1. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  2. Efficiency and cost optimization of a regenerative Organic Rankine Cycle power plant through the multi-objective approach

    International Nuclear Information System (INIS)

    Gimelli, A.; Luongo, A.; Muccillo, M.

    2017-01-01

    Highlights: • Multi-objective optimization method for ORC design has been addressed. • Trade-off between electric efficiency and overall heat exchangers area is evaluated. • The heat exchangers area was used as objective function to minimize the plant cost. • MDM was considered as organic working fluid for the thermodynamic cycle. • Electric efficiency: 14.1–18.9%. Overall heat exchangers area: 446–1079 m 2 . - Abstract: Multi-objective optimization could be, in the industrial sector, a fundamental strategic approach for defining the target design specifications and operating parameters of new competitive products for the market, especially in renewable energy and energy savings fields. Vector optimization mostly enabled the determination of a set of optimal solutions characterized by different costs, sizes, efficiencies and other key features. The designer can subsequently select the solution with the best compromise between the objective functions for the specific application and constraints. In this paper, a multi-objective optimization problem addressing an Organic Rankine Cycle system is solved with consideration for the electric efficiency and overall heat exchangers area as quantities that should be optimized. In fact, considering that the overall capital cost of the ORC system is dominated by the cost of the heat exchangers rather than that of the pump and turbine, this area is related to the cost of the plant and so it was used to indirectly optimize the economic system performance. For this reason, although cost data have not been used, the heat exchangers area was used as a second objective function to minimize the plant cost. Pareto optimal solutions highlighted a trade-off between the two conflicting objective functions. Octamethyltrisiloxane (MDM) was considered organic working fluid, while the following input parameters were used as decision variables: minimum and maximum pressure of the thermodynamic cycle; superheating and subcooling

  3. Ensemble-based hierarchical multi-objective production optimization of smart wells

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Van den Hof, P.M.J.; Jansen, J.D.

    2014-01-01

    In an earlier study two hierarchical multi-objective methods were suggested to include short-term targets in life-cycle production optimization. However this earlier study has two limitations: 1) the adjoint formulation is used to obtain gradient information, requiring simulator source code access

  4. A multi-objective approach to evolving platooning strategies in intelligent transportation systems

    NARCIS (Netherlands)

    Illigen, W. van; Haasdijk, E.; Kester, L.J.H.M.

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective evolutionary algorithm based on NEAT and SPEA2 that evolves highlevel

  5. Multi-objective optimization in systematic conservation planning and the representation of genetic variability among populations.

    Science.gov (United States)

    Schlottfeldt, S; Walter, M E M T; Carvalho, A C P L F; Soares, T N; Telles, M P C; Loyola, R D; Diniz-Filho, J A F

    2015-06-18

    Biodiversity crises have led scientists to develop strategies for achieving conservation goals. The underlying principle of these strategies lies in systematic conservation planning (SCP), in which there are at least 2 conflicting objectives, making it a good candidate for multi-objective optimization. Although SCP is typically applied at the species level (or hierarchically higher), it can be used at lower hierarchical levels, such as using alleles as basic units for analysis, for conservation genetics. Here, we propose a method of SCP using a multi-objective approach. We used non-dominated sorting genetic algorithm II in order to identify the smallest set of local populations of Dipteryx alata (baru) (a Brazilian Cerrado species) for conservation, representing the known genetic diversity and using allele frequency information associated with heterozygosity and Hardy-Weinberg equilibrium. We worked in 3 variations for the problem. First, we reproduced a previous experiment, but using a multi-objective approach. We found that the smallest set of populations needed to represent all alleles under study was 7, corroborating the results of the previous study, but with more distinct solutions. In the 2nd and 3rd variations, we performed simultaneous optimization of 4 and 5 objectives, respectively. We found similar but refined results for 7 populations, and a larger portfolio considering intra-specific diversity and persistence with populations ranging from 8-22. This is the first study to apply multi-objective algorithms to an SCP problem using alleles at the population level as basic units for analysis.

  6. Multi-objective optimization of riparian buffer networks; valuing present and future benefits

    Science.gov (United States)

    Multi-objective optimization has emerged as a popular approach to support water resources planning and management. This approach provides decision-makers with a suite of management options which are generated based on metrics that represent different social, economic, and environ...

  7. Analysis of Various Multi-Objective Optimization Evolutionary Algorithms for Monte Carlo Treatment Planning System

    CERN Document Server

    Tydrichova, Magdalena

    2017-01-01

    In this project, various available multi-objective optimization evolutionary algorithms were compared considering their performance and distribution of solutions. The main goal was to select the most suitable algorithms for applications in cancer hadron therapy planning. For our purposes, a complex testing and analysis software was developed. Also, many conclusions and hypothesis have been done for the further research.

  8. Aerodynamic multi-objective integrated optimization based on principal component analysis

    Directory of Open Access Journals (Sweden)

    Jiangtao HUANG

    2017-08-01

    Full Text Available Based on improved multi-objective particle swarm optimization (MOPSO algorithm with principal component analysis (PCA methodology, an efficient high-dimension multi-objective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency, the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil, and the proposed method is integrated into aircraft multi-disciplinary design (AMDEsign platform, which contains aerodynamics, stealth and structure weight analysis and optimization module. Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.

  9. Multi-Object Spectroscopy in the Next Decade: A Conference Summary

    NARCIS (Netherlands)

    Trager, S. C.; Skillen, I.; Barcells, M.

    2016-01-01

    I present a highly-biased summary of the conference "Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys, and Wide Fields," held 2-6 March 2015 in Santa Cruz de la Palma, Spain. I focus on four issues in this summary: (1) complexity in objects, physics, and instruments is

  10. Design of homo-organic acid producing strains using multi-objective optimization

    DEFF Research Database (Denmark)

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk

    2015-01-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic ...

  11. Multi-objective random search algorithm for simultaneously optimizing wind farm layout and number of turbines

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong; Xu, Chang

    2016-01-01

    A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximi...

  12. Convex Coverage Set Methods for Multi-Objective Collaborative Decision Making

    NARCIS (Netherlands)

    Roijers, D.M.; Lomuscio, A.; Scerri, P.; Bazzan, A.; Huhns, M.

    2014-01-01

    My research is aimed at finding efficient coordination methods for multi-objective collaborative multi-agent decision theoretic planning. Key to coordinating efficiently in these settings is exploiting loose couplings between agents. We proposed two algorithms for the case in which the agents need

  13. A Multi-Objective Approach to Evolving Platooning Strategies in Intelligent Transportation Systems

    NARCIS (Netherlands)

    van Willigen, W; Haasdijk, E; Kester, Leon

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective evolutionary algorithm based on NEAT and SPEA2 that evolves high-level

  14. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach

    Science.gov (United States)

    Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza

    2017-08-01

    Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.

  15. Localized probability of improvement for kriging based multi-objective optimization

    Science.gov (United States)

    Li, Yinjiang; Xiao, Song; Barba, Paolo Di; Rotaru, Mihai; Sykulski, Jan K.

    2017-12-01

    The paper introduces a new approach to kriging based multi-objective optimization by utilizing a local probability of improvement as the infill sampling criterion and the nearest neighbor check to ensure diversification and uniform distribution of Pareto fronts. The proposed method is computationally fast and linearly scalable to higher dimensions.

  16. Multi-objective mixture-based iterated density estimation evolutionary algorithms

    NARCIS (Netherlands)

    Thierens, D.; Bosman, P.A.N.

    2001-01-01

    We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability

  17. An Extensible Component-Based Multi-Objective Evolutionary Algorithm Framework

    DEFF Research Database (Denmark)

    Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2017-01-01

    The ability to easily modify the problem definition is currently missing in Multi-Objective Evolutionary Algorithms (MOEA). Existing MOEA frameworks do not support dynamic addition and extension of the problem formulation. The existing frameworks require a re-specification of the problem definition...

  18. Optimization of Combined Thermal and Electrical Behavior of Power Converters Using Multi-Objective Genetic Algorithms

    NARCIS (Netherlands)

    Malyna, D.V.; Duarte, J.L.; Hendrix, M.A.M.; Horck, van F.B.M.

    2007-01-01

    A practical example of power electronic converter synthesis is presented, where a multi-objective genetic algorithm, namely non-dominated sorting genetic algorithm (NSGA-II) is used. The optimization algorithm takes an experimentally-derived thermal model for the converter into account. Experimental

  19. A Multi-objective Optimization Application in Friction Stir Welding: Considering Thermo-mechanical Aspects

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2010-01-01

    speed and traverse welding speed have been sought in order to achieve the goals mentioned above using an evolutionary multi-objective optimization (MOO) algorithm, i.e. non-dominated sorting genetic algorithm (NSGA-II), integrated with a transient, 2-dimensional sequentially coupled thermomechanical...

  20. The Science Case for Multi-Object Spectroscopy on the European ELT

    NARCIS (Netherlands)

    Evans, Chris; Puech, Mathieu; Afonso, Jose; Almaini, Omar; Amram, Philippe; Aussel, Hervé; Barbuy, Beatriz; Basden, Alistair; Bastian, Nate; Battaglia, Giuseppina; Biller, Beth; Bonifacio, Piercarlo; Bouché, Nicholas; Bunker, Andy; Caffau, Elisabetta; Charlot, Stephane; Cirasuolo, Michele; Clenet, Yann; Combes, Francoise; Conselice, Chris; Contini, Thierry; Cuby, Jean-Gabriel; Dalton, Gavin; Davies, Ben; de Koter, Alex; Disseau, Karen; Dunlop, Jim; Epinat, Benoît; Fiore, Fabrizio; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fusco, Thierry; Gadotti, Dimitri; Gallazzi, Anna; Gallego, Jesus; Giallongo, Emanuele; Gonçalves, Thiago; Gratadour, Damien; Guenther, Eike; Hammer, Francois; Hill, Vanessa; Huertas-Company, Marc; Ibata, Roridgo; Kaper, Lex; Korn, Andreas; Larsen, Søren; Le Fèvre, Olivier; Lemasle, Bertrand; Maraston, Claudia; Mei, Simona; Mellier, Yannick; Morris, Simon; Östlin, Göran; Paumard, Thibaut; Pello, Roser; Pentericci, Laura; Peroux, Celine; Petitjean, Patrick; Rodrigues, Myriam; Rodríguez-Muñoz, Lucía; Rouan, Daniel; Sana, Hugues; Schaerer, Daniel; Telles, Eduardo; Trager, Scott; Tresse, Laurence; Welikala, Niraj; Zibetti, Stefano; Ziegler, Bodo

    2015-01-01

    This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from

  1. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, Ernesto; Vanzi, Leonardo; Abreu, Manuel; Atad-Ettedgui, Eli; Babusiaux, Carine; Bauer, Franz E.; Best, Philip; Bezawada, Naidu; Bryson, Ian R.; Cabral, Alexandre; Caputi, Karina; Centrone, Mauro; Chemla, Fanny; Cimatti, Andrea; Cioni, Maria-Rosa; Clementini, Gisella; Coelho, João.; Daddi, Emanuele; Dunlop, James S.; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fynbo, Johan; Garilli, Bianca; Glauser, Adrian M.; Guinouard, Isabelle; Hammer, Jean-François; Hastings, Peter R.; Hess, Hans-Joachim; Ivison, Rob J.; Jagourel, Pascal; Jarvis, Matt; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  2. A multi-objective robust optimization model for logistics planning in the earthquake response phase

    NARCIS (Netherlands)

    Najafi, M.; Eshghi, K.; Dullaert, W.E.H.

    2013-01-01

    Usually, resources are short in supply when earthquakes occur. In such emergency situations, disaster relief organizations must use these scarce resources efficiently to achieve the best possible emergency relief. This paper therefore proposes a multi-objective, multi-mode, multi-commodity, and

  3. Multi-objective decision-making framework for effective waste collection in smart cities

    CSIR Research Space (South Africa)

    Manqele, Lindelweyizizwe

    2017-10-01

    Full Text Available T-enabled objects. This implies taking into account multi-objective goals in the collection process while dealing with complexities such as data loss during IoT based data collection. Understanding current decision-making algorithms highlights the deeper insight...

  4. Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks

    NARCIS (Netherlands)

    Miandoabchi, Elnaz; Farahani, Reza Zanjirani; Dullaert, Wout; Szeto, W. Y.

    This paper addresses a bi-modal multi-objective discrete urban road network design problem with automobile and bus flow interaction. The problem considers the concurrent urban road and bus network design in which the authorities play a major role in designing bus network topology. The road network

  5. Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

    NARCIS (Netherlands)

    Balcells, Marc; Benn, Chris R.; Carter, David; Dalton, Gavin B.; Trager, Scott C.; Feltzing, Sofia; Verheijen, M.A.W.; Jarvis, Matt; Percival, Will; Abrams, Don C.; Agocs, Tibor; Brown, Anthony G. A.; Cano, Diego; Evans, Chris; Helmi, Amina; Lewis, Ian J.; McLure, Ross; Peletier, Reynier F.; Pérez-Fournon, Ismael; Sharples, Ray M.; Tosh, Ian A. J.; Trujillo, Ignacio; Walton, Nic; Westhall, Kyle B.

    Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a

  6. Improving package structure of object-oriented software using multi-objective optimization and weighted class connections

    Directory of Open Access Journals (Sweden)

    Amarjeet

    2017-07-01

    Full Text Available The software maintenance activities performed without following the original design decisions about the package structure usually deteriorate the quality of software modularization, leading to decay of the quality of the system. One of the main reasons for such structural deterioration is inappropriate grouping of source code classes in software packages. To improve such grouping/modular-structure, previous researchers formulated the software remodularization problem as an optimization problem and solved it using search-based meta-heuristic techniques. These optimization approaches aimed at improving the quality metrics values of the structure without considering the original package design decisions, often resulting into a totally new software modularization. The entirely changed software modularization becomes costly to realize as well as difficult to understand for the developers/maintainers. To alleviate this issue, we propose a multi-objective optimization approach to improve the modularization quality of an object-oriented system with minimum possible movement of classes between existing packages of original software modularization. The optimization is performed using NSGA-II, a widely-accepted multi-objective evolutionary algorithm. In order to ensure minimum modification of original package structure, a new approach of computing class relations using weighted strengths has been proposed here. The weights of relations among different classes are computed on the basis of the original package structure. A new objective function has been formulated using these weighted class relations. This objective function drives the optimization process toward better modularization quality simultaneously ensuring preservation of original structure. To evaluate the results of the proposed approach, a series of experiments are conducted over four real-worlds and two random software applications. The experimental results clearly indicate the effectiveness

  7. Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response

    International Nuclear Information System (INIS)

    Abdulaal, Ahmed; Moghaddass, Ramin; Asfour, Shihab

    2017-01-01

    Highlights: •Two-stage model links discrete-optimization to real-time system dynamics operation. •The solutions obtained are non-dominated Pareto optimal solutions. •Computationally efficient GA solver through customized chromosome coding. •Modest to considerable savings are achieved depending on the consumer’s preference. -- Abstract: In the wake of today’s highly dynamic and competitive energy markets, optimal dispatching of energy sources requires effective demand responsiveness. Suppliers have adopted a dynamic pricing strategy in efforts to control the downstream demand. This method however requires consumer awareness, flexibility, and timely responsiveness. While residential activities are more flexible and schedulable, larger commercial consumers remain an obstacle due to the impacts on industrial performance. This paper combines methods from quadratic, stochastic, and evolutionary programming with multi-objective optimization and continuous simulation, to propose a two-stage discrete-continuous multi-objective load optimization (DiCoMoLoOp) autonomous approach for industrial consumer demand response (DR). Stage 1 defines discrete-event load shifting targets. Accordingly, controllable loads are continuously optimized in stage 2 while considering the consumer’s utility. Utility functions, which measure the loads’ time value to the consumer, are derived and weights are assigned through an analytical hierarchy process (AHP). The method is demonstrated for an industrial building model using real data. The proposed method integrates with building energy management system and solves in real-time with autonomous and instantaneous load shifting in the hour-ahead energy price (HAP) market. The simulation shows the occasional existence of multiple load management options on the Pareto frontier. Finally, the computed savings, based on the simulation analysis with real consumption, climate, and price data, ranged from modest to considerable amounts

  8. A multi-objective programming model for assessment the GHG emissions in MSW management

    International Nuclear Information System (INIS)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-01-01

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH 4 generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application

  9. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    International Nuclear Information System (INIS)

    Zhou, Z; Folkert, M; Wang, J

    2016-01-01

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  10. A multi-objective programming model for assessment the GHG emissions in MSW management

    Energy Technology Data Exchange (ETDEWEB)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr [National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens, 15780 (Greece); Skoulaxinou, Sotiria [EPEM SA, 141 B Acharnon Str., Athens, 10446 (Greece); Gakis, Nikos [FACETS SA, Agiou Isidorou Str., Athens, 11471 (Greece); Katsouros, Vassilis [Athena Research and Innovation Center, Artemidos 6 and Epidavrou Str., Maroussi, 15125 (Greece); Georgopoulou, Elena [National Observatory of Athens, Thisio, Athens, 11810 (Greece)

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  11. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  12. Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    An optimization analysis of a continuous TREC (thermally regenerative electrochemical cycle) was conducted with maximum power output and exergy efficiency as the objective functions simultaneously. For comparison, the power output, exergy efficiency, and thermal efficiency under the corresponding single-objective optimization schematics were also calculated. Under different optimization methods it was observed that the power output and the thermal efficiency increase with increasing inlet temperature of the heat source, whereas the exergy efficiency increases with increasing inlet temperature, reaches a maximum value, and then decreases. Results revealed that the optimal power output under the multi-objective optimization turned out to be slightly less than that obtained under the single-objective optimization for power output. However, the exergy and thermal efficiencies were much greater. Furthermore, the thermal exergy and exergy efficiency by single-objective optimization for energy efficiency shows no dominant advantage than that obtained under multi-objective optimization, comparing with the increase amplitude of the power output. This suggests that the multi-objective optimization could coordinate well both the power output and the exergy efficiency of the TREC system, and may serve as a more promising guide for operating and designing TREC systems. - Highlights: • An optimal analysis of a continuous TREC is conducted based on multi-objective optimization. • Performance under corresponding single-objective optimizations has also been calculated and compared. • Power under multi-objective optimization is slightly less than the maximum power. • Exergy and thermal efficiencies are much larger than that under the single-objective optimization.

  13. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  14. NON-CONVENTIONAL MACHINING PROCESSES SELECTION USING MULTI-OBJECTIVE OPTIMIZATION ON THE BASIS OF RATIO ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    MILOŠ MADIĆ

    2015-11-01

    Full Text Available The role of non-conventional machining processes (NCMPs in today’s manufacturing environment has been well acknowledged. For effective utilization of the capabilities and advantages of different NCMPs, selection of the most appropriate NCMP for a given machining application requires consideration of different conflicting criteria. The right choice of the NCMP is critical to the success and competitiveness of the company. As the NCMP selection problem involves consideration of different conflicting criteria, of different relative importance, the multi-criteria decision making (MCDM methods are very useful in systematical selection of the most appropriate NCMP. This paper presents the application of a recent MCDM method, i.e., the multi-objective optimization on the basis of ratio analysis (MOORA method to solve NCMP selection which has been defined considering different performance criteria of four most widely used NCMPs. In order to determine the relative significance of considered quality criteria a pair-wise comparison matrix of the analytic hierarchy process was used. The results obtained using the MOORA method showed perfect correlation with those obtained by the technique for order preference by similarity to ideal solution (TOPSIS method which proves the applicability and potentiality of this MCDM method for solving complex NCMP selection problems.

  15. Multi-objective problem of the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints

    Science.gov (United States)

    Amallynda, I.; Santosa, B.

    2017-11-01

    This paper proposes a new generalization of the distributed parallel machine and assembly scheduling problem (DPMASP) with eligibility constraints referred to as the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints. Within this generalization, we assume that there are a set non-identical factories or production lines, each one with a set unrelated parallel machine with different speeds in processing them disposed to a single assembly machine in series. A set of different products that are manufactured through an assembly program of a set of components (jobs) according to the requested demand. Each product requires several kinds of jobs with different sizes. Beside that we also consider to the multi-objective problem (MOP) of minimizing mean flow time and the number of tardy products simultaneously. This is known to be NP-Hard problem, is important to practice, as the former criterions to reflect the customer's demand and manufacturer's perspective. This is a realistic and complex problem with wide range of possible solutions, we propose four simple heuristics and two metaheuristics to solve it. Various parameters of the proposed metaheuristic algorithms are discussed and calibrated by means of Taguchi technique. All proposed algorithms are tested by Matlab software. Our computational experiments indicate that the proposed problem and fourth proposed algorithms are able to be implemented and can be used to solve moderately-sized instances, and giving efficient solutions, which are close to optimum in most cases.

  16. A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance

    International Nuclear Information System (INIS)

    Fan, Yuling; Xia, Xiaohua

    2017-01-01

    Highlights: • A multi-objective optimization model for building envelope retrofit is presented. • Facility performance degradation and maintenance is built into the model. • A rooftop PV system is introduced to produce electricity. • Economic factors including net present value and payback period are considered. - Abstract: Retrofitting existing buildings with energy-efficient facilities is an effective method to improve their energy efficiency, especially for old buildings. A multi-objective optimization model for building envelope retrofitting is presented. Envelope components including windows, external walls and roofs are considered to be retrofitted. Installation of a rooftop solar panel system is also taken into consideration in this study. Rooftop solar panels are modeled with their degradation and a maintenance scheme is studied for sustainability of energy and its long-term effect on the retrofitting plan. The purpose is to make the best use of financial investment to maximize energy savings and economic benefits. In particular, net present value, the payback period and energy savings are taken as the main performance indicators of the retrofitting plan. The multi-objective optimization problem is formulated as a non-linear integer programming problem and solved by a weighted sum method. Results of applying the designed retrofitting plan to a 50-year-old building consisting of 66 apartments demonstrated the effectiveness of the proposed model.

  17. Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms

    International Nuclear Information System (INIS)

    Tahani, Mojtaba; Babayan, Narek; Astaraei, Fatemeh Razi; Moghadam, Ali

    2015-01-01

    Highlights: • The performance of four different Meta heuristic optimization algorithms was studied. • Power coefficient and produced torque on stationary blade were selected as objective functions. • Chord and twist distributions were selected as decision variables. • All optimization algorithms were combined with blade element momentum theory. • The best Pareto front was obtained by multi objective flower pollination algorithm for HATCTs. - Abstract: The performance of horizontal axis tidal current turbines (HATCT) strongly depends on their geometry. According to this fact, the optimum performance will be achieved by optimized geometry. In this research study, the multi objective optimization of the HATCT is carried out by using four different multi objective optimization algorithms and their performance is evaluated in combination with blade element momentum theory (BEM). The second version of non-dominated sorting genetic algorithm (NSGA-II), multi objective particle swarm optimization algorithm (MOPSO), multi objective cuckoo search algorithm (MOCS) and multi objective flower pollination algorithm (MOFPA) are the selected algorithms. The power coefficient and the produced torque on stationary blade are selected as objective functions and chord and twist distributions along the blade span are selected as decision variables. These algorithms are combined with the blade element momentum (BEM) theory for the purpose of achieving the best Pareto front. The obtained Pareto fronts are compared with each other. Different sets of experiments are carried out by considering different numbers of iterations, population size and tip speed ratios. The Pareto fronts which are achieved by MOFPA and NSGA-II have better quality in comparison to MOCS and MOPSO, but on the other hand a detail comparison between the first fronts of MOFPA and NSGA-II indicated that MOFPA algorithm can obtain the best Pareto front and can maximize the power coefficient up to 4.3% and the

  18. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    International Nuclear Information System (INIS)

    Pang, X.; Rybarcyk, L.J.

    2014-01-01

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster

  19. An Improved Multi-Objective Artificial Bee Colony Optimization Algorithm with Regulation Operators

    Directory of Open Access Journals (Sweden)

    Jiuyuan Huo

    2017-02-01

    Full Text Available To achieve effective and accurate optimization for multi-objective optimization problems, a multi-objective artificial bee colony algorithm with regulation operators (RMOABC inspired by the intelligent foraging behavior of honey bees was proposed in this paper. The proposed algorithm utilizes the Pareto dominance theory and takes advantage of adaptive grid and regulation operator mechanisms. The adaptive grid technique is used to adaptively assess the Pareto front maintained in an external archive and the regulation operator is used to balance the weights of the local search and the global search in the evolution of the algorithm. The performance of RMOABC was evaluated in comparison with other nature inspired algorithms includes NSGA-II and MOEA/D. The experiments results demonstrated that the RMOABC approach has better accuracy and minimal execution time.

  20. Sensitivity Synthesis for MIMO Systems: A Multi Objective H^2 Approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1996-01-01

    A series of multi objective QTR H-infinity designproblems are considered in this paper. The problems are formulatedas a number of coupled QTR H-infinity design problems. TheseQTR H-infinity problems can be formulated as sensitivityproblems, complementary sensitivity problems, or control...... sensitivityproblems for every output (or input) in the system. It turns out thatthese multi objective QTR H-infinity design problems, based ona number of different types of sensitivity problems, can be exactlydecoupled into k\\QTR H-infinity sensitivity problems for stablesystems, where k is the number of outputs (for...... unstable systems,independent stabilization is required). Further, it is shown how to usesimilar techniques to incorporate simultaneous specifications for differentcontrol objectives such as QTR H-infinity, etc., for the sensitivities....

  1. Grey Relational Analyses for Multi-Objective Optimization of Turning S45C Carbon Steel

    International Nuclear Information System (INIS)

    Shah, A.H.A.; Azmi, A.I.; Khalil, A.N.M.

    2016-01-01

    The optimization of performance characteristics in turning process can be achieved through selection of proper machining parameters. It is well known that many researchers have successfully reported the optimization of single performance characteristic. Nevertheless, the multi-objective optimization can be difficult and challenging to be studied due to its complexity in analysis. This is because an improvement of one performance characteristic may lead to degradation of other performance characteristic. As a result, the study of multi-objective optimization in CNC turning of S45C carbon steel has been attempted in this paper through Taguchi and Grey Relational Analysis (GRA) method. Through this methodology, the multiple performance characteristics, namely; surface roughness, material removal rate (MRR), tool wear, and power consumption; can be optimized simultaneously. It appears from the experimental results that the multiple performance characteristics in CNC turning was achieved and improved through the methodology employed. (paper)

  2. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    Science.gov (United States)

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  3. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  4. 8th International Conference on Multi-Objective and Goal Programming

    CERN Document Server

    Tamiz, Mehrdad; Ries, Jana

    2010-01-01

    This volume shows the state-of-the-art in both theoretical development and application of multiple objective and goal programming. Applications from the fields of supply chain management, financial portfolio selection, financial risk management, insurance, medical imaging, sustainability, nurse scheduling, project management, water resource management, and the interface with data envelopment analysis give a good reflection of current usage. A pleasing variety of techniques are used including models with fuzzy, group-decision, stochastic, interactive, and binary aspects. Additionally, two papers from the upcoming area of multi-objective evolutionary algorithms are included. The book is based on the papers of the 8th International Conference on Multi-Objective and Goal Programming (MOPGP08) which was held in Portsmouth, UK, in September 2008.

  5. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Pindoriya, N.M.; Singh, S.N. [Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Singh, S.K. [Indian Institute of Management Lucknow, Lucknow 226013 (India)

    2010-10-15

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  6. "Slit Mask Design for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph"

    Science.gov (United States)

    Williams, Darius; Marshall, Jennifer L.; Schmidt, Luke M.; Prochaska, Travis; DePoy, Darren L.

    2018-01-01

    The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is currently in development for the Giant Magellan Telescope (GMT). GMACS will employ slit masks with a usable diameter of approximately 0.450 m for the purpose of multi-slit spectroscopy. Of significant importance are the design constraints and parameters of the multi-object slit masks themselves as well as the means for mapping astronomical targets to physical mask locations. Analytical methods are utilized to quantify deformation effects on a potential slit mask due to thermal expansion and vignetting of target light cones. Finite element analysis (FEA) is utilized to simulate mask flexure in changing gravity vectors. The alpha version of the mask creation program for GMACS, GMACS Mask Simulator (GMS), a derivative of the OSMOS Mask Simulator (OMS), is introduced.

  7. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    Energy Technology Data Exchange (ETDEWEB)

    Pang, X., E-mail: xpang@lanl.gov; Rybarcyk, L.J.

    2014-03-21

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster.

  8. A Global Multi-Objective Optimization Tool for Design of Mechatronic Components using Generalized Differential Evolution

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Nørgård, Christian; Roemer, Daniel Beck

    2016-01-01

    This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri-objectiv......This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri...... different optimization control parameter settings and it is concluded that GDE3 is a reliable optimization tool that can assist mechatronic engineers in the design and decision making process....

  9. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    International Nuclear Information System (INIS)

    Pindoriya, N.M.; Singh, S.N.; Singh, S.K.

    2010-01-01

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  10. Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine

    International Nuclear Information System (INIS)

    Yang, Fubin; Zhang, Hongguang; Song, Songsong; Bei, Chen; Wang, Hongjin; Wang, Enhua

    2015-01-01

    In this paper, the ORC (Organic Rankine cycle) technology is adopted to recover the exhaust waste heat of diesel engine. The thermodynamic, economic and optimization models of the ORC system are established, respectively. Firstly, the effects of four key parameters, including evaporation pressure, superheat degree, condensation temperature and exhaust temperature at the outlet of the evaporator on the thermodynamic performances and economic indicators of the ORC system are investigated. Subsequently, based on the established optimization model, GA (genetic algorithm) is employed to solve the Pareto solution of the thermodynamic performances and economic indicators for maximizing net power output and minimizing total investment cost under diesel engine various operating conditions using R600, R600a, R601a, R245fa, R1234yf and R1234ze as working fluids. The most suitable working fluid used in the ORC system for diesel engine waste heat recovery is screened out, and then the corresponding optimal parameter regions are analyzed. The results show that thermodynamic performance of the ORC system is improved at the expense of economic performance. Among these working fluids, R245fa is considered as the most suitable working fluid for the ORC waste heat application of the diesel engine with comprehensive consideration of thermoeconomic performances, environmental impacts and safety levels. Under the various operating conditions of the diesel engine, the optimal evaporation pressure is in the range of 1.1 MPa–2.1 MPa. In addition, the optimal superheat degree and the exhaust temperature at the outlet of the evaporator are mainly influenced by the operating conditions of the diesel engine. The optimal condensation temperature keeps a nearly constant value of 298.15 K. - Highlights: • Thermoeconomic multi-objective optimization of an ORC (Organic Rankine cycle) system is conducted. • Sensitivity analysis of the decision variables is performed. • Genetic algorithm

  11. Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application

    Energy Technology Data Exchange (ETDEWEB)

    Salazar A, Daniel E. [Division de Computacion Evolutiva (CEANI), Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Universidad de Las Palmas de Gran Canaria. Canary Islands (Spain)]. E-mail: danielsalazaraponte@gmail.com; Rocco S, Claudio M. [Universidad Central de Venezuela, Facultad de Ingenieria, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve

    2007-06-15

    This paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue

  12. Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm

    Science.gov (United States)

    Craig, Sam; While, Lyndon; Barone, Luigi

    We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.

  13. Intersection signal control multi-objective optimization based on genetic algorithm

    OpenAIRE

    Zhanhong Zhou; Ming Cai

    2014-01-01

    A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at ...

  14. MULTI-OBJECTIVE OPTIMAL NUMBER AND LOCATION FOR STEEL OUTRIGGER-BELT TRUSS SYSTEM

    OpenAIRE

    MEHDI BABAEI

    2017-01-01

    During the past two decades, outrigger-belt truss system has been investigated and used in design of tall buildings. Most of the studies focused on the optimization of the system for minimum displacement and some of them proposed the best locations. In this study, however, multi-objective optimization of tall steel frames with belt trusses is investigated to minimize displacement and weight of the structure. For this purpose, structures with 20, 30, 40, and 50 stories are considered as ...

  15. Artificial emotion triggered stochastic behavior transitions with motivational gain effects for multi-objective robot tasks

    Science.gov (United States)

    Dağlarli, Evren; Temeltaş, Hakan

    2007-04-01

    This paper presents artificial emotional system based autonomous robot control architecture. Hidden Markov model developed as mathematical background for stochastic emotional and behavior transitions. Motivation module of architecture considered as behavioral gain effect generator for achieving multi-objective robot tasks. According to emotional and behavioral state transition probabilities, artificial emotions determine sequences of behaviors. Also motivational gain effects of proposed architecture can be observed on the executing behaviors during simulation.

  16. A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning

    Science.gov (United States)

    Basdekas, L.; Stewart, N.; Triana, E.

    2013-12-01

    Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU

  17. Computing the Pareto-Nash equilibrium set in finite multi-objective mixed-strategy games

    Directory of Open Access Journals (Sweden)

    Victoria Lozan

    2013-10-01

    Full Text Available The Pareto-Nash equilibrium set (PNES is described as intersection of graphs of efficient response mappings. The problem of PNES computing in finite multi-objective mixed-strategy games (Pareto-Nash games is considered. A method for PNES computing is studied. Mathematics Subject Classification 2010: 91A05, 91A06, 91A10, 91A43, 91A44.

  18. A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Szöllös, A.; Šístek, Jakub

    2010-01-01

    Roč. 41, 7-8 (2010), s. 1031-1057 ISSN 0965-9978 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : multi-objective optimization * micro-genetic algorithm * diversity * Pareto archive Subject RIV: BA - General Mathematics Impact factor: 1.004, year: 2010 http://www.sciencedirect.com/science/article/pii/S0965997810000451

  19. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    OpenAIRE

    M. Amiri; M. Zandieh; A. Alimi

    2012-01-01

    Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnove...

  20. Multi-Objective Sensitivity Analyses for Power Generation Mix: Malaysia Case Study

    OpenAIRE

    Siti Mariam Mohd Shokri; Nofri Yenita Dahlan; Hasmaini Mohamad

    2017-01-01

    This paper presents an optimization framework to determine long-term optimal generation mix for Malaysia Power Sector using Dynamic Programming (DP) technique. Several new candidate units with a pre-defined MW capacity were included in the model for generation expansion planning from coal, natural gas, hydro and renewable energy (RE). Four objective cases were considered, 1) economic cost, 2) environmental, 3) reliability and 4) multi-objectives that combining the three cases. Results show th...

  1. Rational versus Emotional Reasoning in a Realistic Multi-Objective Environment

    OpenAIRE

    Mayboudi, Seyed Mohammad Hossein

    2011-01-01

    ABSTRACT: Emotional intelligence and its associated with models have recently become one of new active studies in the field of artificial intelligence. Several works have been performed on modelling of emotional behaviours such as love, hate, happiness and sadness. This study presents a comparative evaluation of rational and emotional behaviours and the effects of emotions on the decision making process of agents in a realistic multi-objective environment. NetLogo simulation environment is u...

  2. A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Szöllös, A.; Šístek, Jakub

    2010-01-01

    Roč. 41, 7-8 (2010), s. 1031-1057 ISSN 0965-9978 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : multi-objective optimization * micro- genetic algorithm * diversity * Pareto archive Subject RIV: BA - General Mathematics Impact factor: 1.004, year: 2010 http://www.sciencedirect.com/science/article/pii/S0965997810000451

  3. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    Science.gov (United States)

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A hybrid multi-objective cultural algorithm for short-term environmental/economic hydrothermal scheduling

    International Nuclear Information System (INIS)

    Lu Youlin; Zhou Jianzhong; Qin Hui; Wang Ying; Zhang Yongchuan

    2011-01-01

    Research highlights: → Multi-objective optimization model of short-term environmental/economic hydrothermal scheduling. → A hybrid multi-objective cultural algorithm (HMOCA) is presented. → New heuristic constraint handling methods are proposed. → Better quality solutions by reducing fuel cost and emission effects simultaneously are obtained. -- Abstract: The short-term environmental/economic hydrothermal scheduling (SEEHS) with the consideration of multiple objectives is a complicated non-linear constrained optimization problem with non-smooth and non-convex characteristics. In this paper, a multi-objective optimization model of SEEHS is proposed to consider the minimal of fuel cost and emission effects synthetically, and the transmission loss, the water transport delays between connected reservoirs as well as the valve-point effects of thermal plants are taken into consideration to formulate the problem precisely. Meanwhile, a hybrid multi-objective cultural algorithm (HMOCA) is presented to deal with SEEHS problem by optimizing both two objectives simultaneously. The proposed method integrated differential evolution (DE) algorithm into the framework of cultural algorithm model to implement the evolution of population space, and two knowledge structures in belief space are redefined according to the characteristics of DE and SEEHS problem to avoid premature convergence effectively. Moreover, in order to deal with the complicated constraints effectively, new heuristic constraint handling methods without any penalty factor settings are proposed in this paper. The feasibility and effectiveness of the proposed HMOCA method are demonstrated by two case studies of a hydrothermal power system. The simulation results reveal that, compared with other methods established recently, HMOCA can get better quality solutions by reducing fuel cost and emission effects simultaneously.

  6. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  7. Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties

    International Nuclear Information System (INIS)

    Wang, Bo; Wang, Shuming; Zhou, Xianzhong; Watada, Junzo

    2016-01-01

    Recent years have witnessed the ever increasing renewable penetration in power generation systems, which entails modern unit commitment problems with modelling and computation burdens. This study aims to simulate the impacts of manifold uncertainties on system operation with emission concerns. First, probability theory and fuzzy set theory are applied to jointly represent the uncertainties such as wind generation, load fluctuation and unit outage that interleaved in unit commitment problems. Second, a Value-at-Risk-based multi-objective approach is developed as a bridge of existing stochastic and robust unit commitment optimizations, which not only captures the inherent conflict between operation cost and supply reliability, but also provides easy-to-adjust robustness against worst-case scenarios. Third, a multi-objective algorithm that integrates fuzzy simulation and particle swarm optimization is developed to achieve approximate Pareto-optimal solutions. The research effectiveness is exemplified by two case studies: The comparison between test systems with and without generation uncertainty demonstrates that this study is practicable and can suggest operational insights of generation mix systems. The sensitivity analysis on Value-at-Risk proves that our method can achieve adequate tradeoff between performance optimality and robustness, thus help system operators in making informed decisions. Finally, the model and algorithm comparisons also justify the superiority of this research. - Highlights: • Probability theory and fuzzy set theory are used to describe different uncertainties. • A Value-at-Risk-based multi-objective unit commitment model is proposed. • An improved multi-objective particle swarm optimization algorithm is developed. • The model achieves adequate trade-off between performance optimality and robustness. • The algorithm can obtain convergent and diversified Pareto fronts.

  8. Multi-objective room acoustic optimization of timber folded plate structure

    DEFF Research Database (Denmark)

    Skov, Rasmus; Parigi, Dario; Damkilde, Lars

    2017-01-01

    This paper investigates the application of multi-objective optimization in the design of timber folded plate structures in the scope of the architectural design process. Considering contrasting objectives of structural displacement, early decay time (EDT), clarity (C50) and sound strength (G......), the methodology applied in two benchmarks tests, encompasses both structural and acoustic performance when determining folding characteristics and directionality of surfaces in a timber folded plate structure....

  9. Multi-objective optimisation for spacecraft design for demise and survivability

    OpenAIRE

    Trisolini, Mirko; Colombo, Camilla; Lewis, Hugh

    2017-01-01

    The paper presents the development of a multi-objective optimisation framework to study the effects that preliminary design choices have on the demisability and the survivability of a spacecraft. Building a spacecraft such that most of it will demise during the re-entry through design-for-demise strategies may lead to design that are more vulnerable to space debris impacts, thus compromising the reliability of the mission. The two models developed to analyse the demisability and the survivabi...

  10. Feature Selection using Multi-objective Genetic Algorith m: A Hybrid Approach

    OpenAIRE

    Ahuja, Jyoti; GJUST - Guru Jambheshwar University of Sciecne and Technology; Ratnoo, Saroj Dahiya; GJUST - Guru Jambheshwar University of Sciecne and Technology

    2015-01-01

    Feature selection is an important pre-processing task for building accurate and comprehensible classification models. Several researchers have applied filter, wrapper or hybrid approaches using genetic algorithms which are good candidates for optimization problems that involve large search spaces like in the case of feature selection. Moreover, feature selection is an inherently multi-objective problem with many competing objectives involving size, predictive power and redundancy of the featu...

  11. The Science Case for Multi-Object Spectroscopy on the European ELT

    OpenAIRE

    Evans, Chris; Puech, Mathieu; Afonso, Jose; Almaini, Omar; Amram, Philippe; Aussel, Hervé; Barbuy, Beatriz; Basden, Alistair; Bastian, Nate; Battaglia, Giuseppina; Biller, Beth; Bonifacio, Piercarlo; Bouché, Nicholas; Bunker, Andy; Caffau, Elisabetta

    2015-01-01

    This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest 'first-light' structures in the partially-reionised Universe. The material presented here results from thorough di...

  12. Low emittance lattice optimization using a multi-objective evolutionary algorithm

    International Nuclear Information System (INIS)

    Gao Weiwei; Wang Lin; Li Weimin; He Duohui

    2011-01-01

    A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)

  13. A multi-objective approach for developing national energy efficiency plans

    International Nuclear Information System (INIS)

    Haydt, Gustavo; Leal, Vítor; Dias, Luís

    2014-01-01

    This paper proposes a new approach to deal with the problem of building national energy efficiency (EE) plans, considering multiple objectives instead of only energy savings. The objectives considered are minimizing the influence of energy use on climate change, minimizing the financial risk from the investment, maximizing the security of energy supply, minimizing investment costs, minimizing the impacts of building new power plants and transmission infrastructures, and maximizing the local air quality. These were identified through literature review and interaction with real decision makers. A database of measures is established, from which millions of potential EE plans can be built by combining measures and their respective degree of implementation. Finally, a hybrid multi-objective and multi-criteria decision analysis (MCDA) model is proposed to search and select the EE plans that best match the decision makers’ preferences. An illustration of the working mode and the type of results obtained from this novel hybrid model is provided through an application to Portugal. For each of five decision perspectives a wide range of potential best plans were identified. These wide ranges show the relevance of introducing multi-objective analysis in a comprehensive search space as a tool to inform decisions about national EE plans. - Highlights: • A multiple objective approach to aid the choice of national energy efficiency plans. • A hybrid multi-objective MCDA model is proposed to search among the possible plans. • The model identified relevant plans according to five different idealized DMs. • The approach is tested with Portugal

  14. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei

    2014-01-01

    Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches

  15. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    Energy Technology Data Exchange (ETDEWEB)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E. [National Research Nuclear University MEPhI, Department of Applied Mathematics, Moscow (Russian Federation)

    2016-06-08

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumor tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.

  16. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Science.gov (United States)

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  17. Selection of security system design via games of imperfect information and multi-objective genetic algorithm

    International Nuclear Information System (INIS)

    Lins, Isis Didier; Rêgo, Leandro Chaves; Moura, Márcio das Chagas

    2013-01-01

    This work analyzes the strategic interaction between a defender and an intelligent attacker by means of a game and reliability framework involving a multi-objective approach and imperfect information so as to support decision-makers in choosing efficiently designed security systems. A multi-objective genetic algorithm is used to determine the optimal security system's configurations representing the tradeoff between the probability of a successful defense and the acquisition and operational costs. Games with imperfect information are considered, in which the attacker has limited knowledge about the actual security system. The types of security alternatives are readily observable, but the number of redundancies actually implemented in each security subsystem is not known. The proposed methodology is applied to an illustrative example considering power transmission lines in the Northeast of Brazil, which are often targets for attackers who aims at selling the aluminum conductors. The empirical results show that the framework succeeds in handling this sort of strategic interaction. -- Highlights: ► Security components must have feasible costs and must be reliable. ► The optimal design of security systems considers a multi-objective approach. ► Games of imperfect information enable the choice of non-dominated configurations. ► MOGA, reliability and games support the entire defender's decision process. ► The selection of effective security systems may discourage attacker's actions

  18. Energy thermal management in commercial bread-baking using a multi-objective optimisation framework

    International Nuclear Information System (INIS)

    Khatir, Zinedine; Taherkhani, A.R.; Paton, Joe; Thompson, Harvey; Kapur, Nik; Toropov, Vassili

    2015-01-01

    In response to increasing energy costs and legislative requirements energy efficient high-speed air impingement jet baking systems are now being developed. In this paper, a multi-objective optimisation framework for oven designs is presented which uses experimentally verified heat transfer correlations and high fidelity Computational Fluid Dynamics (CFD) analyses to identify optimal combinations of design features which maximise desirable characteristics such as temperature uniformity in the oven and overall energy efficiency of baking. A surrogate-assisted multi-objective optimisation framework is proposed and used to explore a range of practical oven designs, providing information on overall temperature uniformity within the oven together with ensuing energy usage and potential savings. - Highlights: • A multi-objective optimisation framework to design commercial ovens is presented. • High fidelity CFD embeds experimentally calibrated heat transfer inputs. • The optimum oven design minimises specific energy and bake time. • The Pareto front outlining the surrogate-assisted optimisation framework is built. • Optimisation of industrial bread-baking ovens reveals an energy saving of 637.6 GWh

  19. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn

    2009-01-01

    Multi-objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the exergetic, economic and environmental aspects have been considered, simultaneously. The thermodynamic modeling has been implemented comprehensively while economic analysis conducted in accordance with the total revenue requirement (TRR) method. The results for the single objective thermoeconomic optimization have been compared with the previous studies in optimization of CGAM problem. In multi-objective optimization of the CGAM problem, the three objective functions including the exergetic efficiency, total levelized cost rate of the system product and the cost rate of environmental impact have been considered. The environmental impact objective function has been defined and expressed in cost terms. This objective has been integrated with the thermoeconomic objective to form a new unique objective function known as a thermoenvironomic objective function. The thermoenvironomic objective has been minimized while the exergetic objective has been maximized. One of the most suitable optimization techniques developed using a particular class of search algorithms known as multi-objective evolutionary algorithms (MOEAs) has been considered here. This approach which is developed based on the genetic algorithm has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of decision-making has been presented and a final optimal solution has been introduced. The sensitivity of the solutions to the interest rate and the fuel cost has been studied

  20. Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm

    International Nuclear Information System (INIS)

    Cheung, Brian C.; Carriveau, Rupp; Ting, David S.K.

    2014-01-01

    This paper presents the findings from a multi-objective genetic algorithm optimization study on the design parameters of an underwater compressed air energy storage system (UWCAES). A 4 MWh UWCAES system was numerically simulated and its energy, exergy, and exergoeconomics were analysed. Optimal system configurations were determined that maximized the UWCAES system round-trip efficiency and operating profit, and minimized the cost rate of exergy destruction and capital expenditures. The optimal solutions obtained from the multi-objective optimization model formed a Pareto-optimal front, and a single preferred solution was selected using the pseudo-weight vector multi-criteria decision making approach. A sensitivity analysis was performed on interest rates to gauge its impact on preferred system designs. Results showed similar preferred system designs for all interest rates in the studied range. The round-trip efficiency and operating profit of the preferred system designs were approximately 68.5% and $53.5/cycle, respectively. The cost rate of the system increased with interest rates. - Highlights: • UWCAES system configurations were developed using multi-objective optimization. • System was optimized for energy efficiency, exergy, and exergoeconomics • Pareto-optimal solution surfaces were developed at different interest rates. • Similar preferred system configurations were found at all interest rates studied

  1. Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Amlashi, Emad Hadaddi; Amidpour, Majid

    2009-01-01

    Thermodynamic and thermoeconomic optimization of a vertical ground source heat pump system has been studied. A model based on the energy and exergy analysis is presented here. An economic model of the system is developed according to the Total Revenue Requirement (TRR) method. The objective functions based on the thermodynamic and thermoeconomic analysis are developed. The proposed vertical ground source heat pump system including eight decision variables is considered for optimization. An artificial intelligence technique known as evolutionary algorithm (EA) has been utilized as an optimization method. This approach has been applied to minimize either the total levelized cost of the system product or the exergy destruction of the system. Three levels of optimization including thermodynamic single objective, thermoeconomic single objective and multi-objective optimizations are performed. In Multi-objective optimization, both thermodynamic and thermoeconomic objectives are considered, simultaneously. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from available optimal points on Pareto frontier is presented. The results obtained using the various optimization approaches are compared and discussed. Further, the sensitivity of optimized systems to the interest rate, to the annual number of operating hours and to the electricity cost are studied in detail.

  2. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Directory of Open Access Journals (Sweden)

    Marko Budinich

    Full Text Available Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA and multi-objective flux variability analysis (MO-FVA. Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity that take place at the ecosystem scale.

  3. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  4. A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch

    International Nuclear Information System (INIS)

    Niknam, Taher; Azizipanah-Abarghooee, Rasoul; Roosta, Alireza; Amiri, Babak

    2012-01-01

    Combined heat and power units are playing an ever increasing role in conventional power stations due to advantages such as reduced emissions and operational cost savings. This paper investigates a more practical formulation of the complex non-convex, non-smooth and non-linear multi-objective dynamic economic emission dispatch that incorporates combined heat and power units. Integrating these types of units, and their power ramp constraints, require an efficient tool to cope with the joint characteristics of power and heat. Unlike previous approaches, the spinning reserve requirements of this system are clearly formulated in the problem. In this way, a new multi-objective optimisation based on an enhanced firefly algorithm is proposed to achieve a set of non-dominated (Pareto-optimal) solutions. A new tuning parameter based on a chaotic mechanism and novel self adaptive probabilistic mutation strategies are used to improve the overall performance of the algorithm. The numerical results demonstrate how the proposed framework was applied in real time studies. -- Highlights: ► Investigate a practical formulation of the DEED (Dynamic Economic Emission Dispatch). ► Consider combined heat and power units. ► Consider power ramp constraints. ► Consider the system spinning reserve requirements. ► Present a new multi-objective optimization firefly.

  5. Multi-objective optimization of Stirling engine using Finite Physical Dimensions Thermodynamics (FPDT) method

    International Nuclear Information System (INIS)

    Li, Ruijie; Grosu, Lavinia; Queiros-Conde, Diogo

    2016-01-01

    Highlights: • A gamma Stirling engine has been optimized using FPDT method by multi-objective criteria. • Genetic algorithm and decision making methods were used to get Pareto frontier and optimum points. • It shows: total thermal conductance, hot temperature, stroke and diameter ratios can be improved. - Abstract: In this paper, a solar energy powered gamma type SE has been optimized using Finite Physical Dimensions Thermodynamics (FPDT) method by multi-objective criteria. Genetic algorithm was used to get the Pareto frontier, and optimum points were obtained using the decision making methods of LINMAP and TOPSIS. The optimization results have been compared with those obtained using the ecological method. It was shown that the multi-objective optimization in this paper has a better balance among the optimizing criteria (maximum mechanical power, maximum thermal efficiency and minimum entropy generation flow). The effects of the hot source temperature and the total thermal conductance of the engine on the Pareto frontier have been also studied. This sensibility study shows that an increase in the hot reservoir temperature can increase the output mechanical power, the thermal efficiency of the engine, but also the entropy generation rate. In addition to this, an increase of the total thermal conductance of the engine can strongly increase the output mechanical power and only slightly increase the thermal efficiency. These results allow us to improve the engine performance after some modifications as geometrical dimensions (diameter, stroke, heat exchange surface, etc.) and physical parameters (temperature, thermal conductivity).

  6. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    Science.gov (United States)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  7. Multi-objective demand side scheduling considering the operational safety of appliances

    International Nuclear Information System (INIS)

    Du, Y.F.; Jiang, L.; Li, Y.Z.; Counsell, J.; Smith, J.S.

    2016-01-01

    Highlights: • Operational safety of appliances is introduced in multi-objective scheduling. • Relationships between operational safety and other objectives are investigated. • Adopted Pareto approach is compared with Weigh and Constraint approaches. • Decision making of Pareto approach is proposed for final appliances’ scheduling. - Abstract: The safe operation of appliances is of great concern to users. The safety risk increases when the appliances are in operation during periods when users are not at home or when they are asleep. In this paper, multi-objective demand side scheduling is investigated with consideration to the appliances’ operational safety together with the electricity cost and the operational delay. The formulation of appliances’ operational safety is proposed based on users’ at-home status and awake status. Then the relationships between the operational safety and the other two objectives are investigated through the approach of finding the Pareto-optimal front. Moreover, this approach is compared with the Weigh and Constraint approaches. As the Pareto-optimal front consists of a set of optimal solutions, this paper proposes a method to make the final scheduling decision based on the relationships among the multiple objectives. Simulation results demonstrate that the operational safety is improved with the sacrifice of the electricity cost and the operational delay, and that the approach of finding the Pareto-optimal front is effective in presenting comprehensive optimal solutions of the multi-objective demand side scheduling.

  8. Optimal Waste Load Allocation Using Multi-Objective Optimization and Multi-Criteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    L. Saberi

    2016-10-01

    Full Text Available Introduction: Increasing demand for water, depletion of resources of acceptable quality, and excessive water pollution due to agricultural and industrial developments has caused intensive social and environmental problems all over the world. Given the environmental importance of rivers, complexity and extent of pollution factors and physical, chemical and biological processes in these systems, optimal waste-load allocation in river systems has been given considerable attention in the literature in the past decades. The overall objective of planning and quality management of river systems is to develop and implement a coordinated set of strategies and policies to reduce or allocate of pollution entering the rivers so that the water quality matches by proposing environmental standards with an acceptable reliability. In such matters, often there are several different decision makers with different utilities which lead to conflicts. Methods/Materials: In this research, a conflict resolution framework for optimal waste load allocation in river systems is proposed, considering the total treatment cost and the Biological Oxygen Demand (BOD violation characteristics. There are two decision-makers inclusive waste load discharges coalition and environmentalists who have conflicting objectives. This framework consists of an embedded river water quality simulator, which simulates the transport process including reaction kinetics. The trade-off curve between objectives is obtained using the Multi-objective Particle Swarm Optimization Algorithm which these objectives are minimization of the total cost of treatment and penalties that must be paid by discharges and a violation of water quality standards considering BOD parameter which is controlled by environmentalists. Thus, the basic policy of river’s water quality management is formulated in such a way that the decision-makers are ensured their benefits will be provided as far as possible. By using MOPSO

  9. Project overview of OPTIMOS-EVE: the fibre-fed multi-object spectrograph for the E-ELT

    NARCIS (Netherlands)

    Navarro, R.; Chemla, F.; Bonifacio, P.; Flores, H.; Guinouard, I.; Huet, J.-M.; Puech, M.; Royer, F.; Pragt, J.H.; Wulterkens, G.; Sawyer, E.C.; Caldwell, M.E.; Tosh, I.A.J.; Whalley, M.S.; Woodhouse, G.F.W.; Spanò, P.; Di Marcantonio, P.; Andersen, M.I.; Dalton, G.B.; Kaper, L.; Hammer, F.

    2010-01-01

    OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro Armazones (Chile). It is designed to provide a spectral resolution of

  10. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    Science.gov (United States)

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.

  11. A Study on a Multi-Objective Optimization Method Based on Neuro-Response Surface Method (NRSM

    Directory of Open Access Journals (Sweden)

    Lee Jae-Chul

    2016-01-01

    Full Text Available The geometry of systems including the marine engineering problems needs to be optimized in the initial design stage. However, the performance analysis using commercial code is generally time-consuming. To solve this problem, many engineers perform the optimization process using the response surface method (RSM to predict the system performance, but RSM presents some prediction errors for nonlinear systems. The major objective of this research is to establish an optimal design framework. The framework is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the response surface is generated using the artificial neural network (ANN which is considered as NRSM. The optimization process is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II. Through case study of a derrick structure, we have confirmed the proposed framework applicability. In the future, we will try to apply the constructed framework to multi-objective optimization problems.

  12. Improving the Penetration of Wind Power with Dynamic Thermal Rating System, Static VAR Compensator and Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jiashen Teh

    2018-04-01

    Full Text Available The integration of renewable energy sources, especially wind energy, has been on the rise throughout power systems worldwide. Due to this relatively new introduction, the integration of wind energy is often not optimized. Moreover, owing to the technical constraints and transmission congestions of the power network, most of the wind energy has to be curtailed. Due to various factors that influence the connectivity of wind energy, this paper proposes a well-organized posterior multi-objective (MO optimization algorithm for maximizing the connections of wind energy. In this regard, the dynamic thermal rating (DTR system and the static VAR compensator (SVC have been identified as effective tools for improving the loadability of the network. The propose MO algorithm in this paper aims to minimize: (1 wind energy curtailment, (2 operation cost of the network considering all investments and operations, also known as the total social cost, and (3 SVC operation cost. The proposed MO problem was solved using the non-dominated sorting genetic algorithm (NSGA II and it was tested on the modified IEEE reliability test system (IEEE-RTS. The results demonstrate the applicability of the proposed algorithm in aiding power system enhancement planning for integrating wind energy.

  13. A Multi-Objective Unit Commitment Model for Setting Carbon Tax to Reduce CO2 Emission: Thailand's Electricity Generation Case

    Directory of Open Access Journals (Sweden)

    Nuchjarin Intalar

    2015-07-01

    Full Text Available Carbon tax policy is a cost-effective instrument for emission reduction. However, setting the carbon tax is one of the challenging task for policy makers as it will lead to higher price of emission-intensive sources especially the utility price. In a large-scale power generation system, minimizing the operational cost and the environmental impact are conflicting objectives and it is difficult to find the compromise solution. This paper proposes a methodology of finding a feasible carbon tax rate on strategic level using the operational unit commitment model. We present a multi-objective mixed integer linear programming model to solve the unit commitment problem and consider the environmental impacts. The methodology of analyzing of the effect of carbon tax rates on the power generation, operating cost, and CO2 emission is also provided. The trade-off relationship between total operating cost and total CO2 emission is presented in the Pareto-optimal curve to analyze the feasible carbon tax rate that is influencing on electricity operating cost. The significant outcome of this paper is a modeling framework for the policy makers to determine the possible carbon tax that can be imposed on the electricity generation.

  14. A multi-objective location-inventory model for 3PL providers with sustainable considerations under uncertainty

    Directory of Open Access Journals (Sweden)

    R. Daghigh

    2016-09-01

    Full Text Available In recent years, logistics development is considered as an important aspect of any country’s development. Outsourcing logistics activities to third party logistics (3PL providers is a common way to achieve logistics development. On the other hand, globalization and increasing customers’ concern about the environmental impact of activities as well as the appearance of the issue of social responsibility have led companies employ sustainable supply chain management, which considers economic, environmental and social benefits, simultaneously. This paper proposes a multi-objective model to design logistics network for 3PL providers by considering sustainable objectives under uncertainty. Objective functions include minimizing the total cost, minimizing greenhouse gas emission and maximizing social responsibility subject to fair access to products, number of created job opportunities and local community development. It is worth mentioning that in the present paper the perishability of products is also considered. A numerical example is provided to solve and validate model using augmented Epsilon-Constraint method. The results show that three sustainable objectives were in conflict and as the one receives more desirable values, the others fall into more undesirable values. In addition, by increasing maximum perishable time periods and by considering lateral transshipment among facilities of a level one can improve sustainability indices of the problem, which indicates the necessity of such policy in improving network sustainability.

  15. Multi-Objective Emergency Material Vehicle Dispatching and Routing under Dynamic Constraints in an Earthquake Disaster Environment

    Directory of Open Access Journals (Sweden)

    Jincheng Jiang

    2017-05-01

    Full Text Available Emergency material vehicle dispatching and routing (EMVDR is an important task in emergency relief after large-scale earthquake disasters. However, EMVDR is subject to dynamic disaster environment, with uncertainty surrounding elements such as the transportation network and relief materials. Accurate and dynamic emergency material dispatching and routing is difficult. This paper proposes an effective and efficient multi-objective multi-dynamic-constraint emergency material vehicle dispatching and routing model. Considering travel time, road capacity, and material supply and demand, the proposed EMVDR model is to deliver emergency materials from multiple emergency material depositories to multiple disaster points while satisfying the objectives of maximizing transport efficiency and minimizing the difference of material urgency degrees among multiple disaster points at any one time. Furthermore, a continuous-time dynamic network flow method is developed to solve this complicated model. The collected data from Ludian earthquake were used to conduct our experiments in the post-quake and the results demonstrate that: (1 the EMVDR model adapts to the dynamic disaster environment very well; (2 considering the difference of material urgency degree, the material loss ratio is −10.7%, but the variance of urgency degree decreases from 2.39 to 0.37; (3 the EMVDR model shows good performance in time and space, which allows for decisions to be made nearly in real time. This paper can provide spatial decision-making support for emergency material relief in large-scale earthquake disasters.

  16. Allocation and sequencing in 1-out-of-N heterogeneous cold-standby systems: Multi-objective harmony search with dynamic parameters tuning

    International Nuclear Information System (INIS)

    Valaei, M.R.; Behnamian, J.

    2017-01-01

    A redundancy allocation is a famous problem in reliability sciences. A lot of researcher investigated about this problem, but a few of them focus on heterogeneous 1-out-of-N: G cold-standby redundancy in each subsystem. This paper considers a redundancy allocation problem (RAP) and standby element sequencing problem (SESP) for 1-out-of-N: G heterogeneous cold-standby system, simultaneously. Moreover, here, maximizing reliability of cold-standby allocation and minimizing cost of buying and time-independent elements are considered as two conflict objectives. This problem is NP-Hard and consequently, devizing a metaheuristic to solve this problem, especially for large-sized instances, is highly desirable. In this paper, we propose a multi-objective harmony search. Based on Taguchi experimental design, we, also, present a new parameters tuning method to improve the proposed algorithm. - Graphical abstract: Example of solution encoding. - Highlights: • This paper considers a redundancy allocation and standby element sequencing problem. • To solve this problem, a multi-objective harmony search algorithm is proposed. • Dynamic parameters tuning method is applied to improved the algorithm. • With this method, sensitivity of the algorithm to initial parameters is reduced.

  17. Comparative study on credibility measures of type-2 and type-1 fuzzy variables and their application to a multi-objective profit transportation problem via goal programming

    Directory of Open Access Journals (Sweden)

    Dipak Kumar Jana

    2017-06-01

    Full Text Available In real world applications supply, demand and transportation costs per unit of the quantities in multi-objective transportation problems may be hardly specified accurately because of the changing economic and environmental conditions. It is also significant that the time required for transportation should be minimized. In this paper, we have presented three reduction methods for a type-2 triangular fuzzy variable (T2TrFV by adopting the critical value (CV. Three generalized expected values (optimistic, CV and pessimistic are derived for T2TrFVs with some special cases. Then a multi-objective profit transportation problem (MOPTP with fixed charge (FC cost has been formulated and solved in type-2 fuzzy environment. Unit transportation costs, FC, selling prices, unit transport times, loading and unloading times, total supply capacities and demands are all considered as triangular Type-2 fuzzy numbers. The MOPTP has been converted into a single objective by using the goal programming technique and the weighted sum method. The deterministic model is then solved using the Generalized Reduced Gradient method Lingo 14.0. Numerical experiments with some sensitivity analysis are illustrated the application and effectiveness of the proposed approaches.

  18. Universal approximators for multi-objective direct policy search in water reservoir management problems: a comparative analysis

    Science.gov (United States)

    Giuliani, Matteo; Mason, Emanuele; Castelletti, Andrea; Pianosi, Francesca

    2014-05-01

    The optimal operation of water resources systems is a wide and challenging problem due to non-linearities in the model and the objectives, high dimensional state-control space, and strong uncertainties in the hydroclimatic regimes. The application of classical optimization techniques (e.g., SDP, Q-learning, gradient descent-based algorithms) is strongly limited by the dimensionality of the system and by the presence of multiple, conflicting objectives. This study presents a novel approach which combines Direct Policy Search (DPS) and Multi-Objective Evolutionary Algorithms (MOEAs) to solve high-dimensional state and control space problems involving multiple objectives. DPS, also known as parameterization-simulation-optimization in the water resources literature, is a simulation-based approach where the reservoir operating policy is first parameterized within a given family of functions and, then, the parameters optimized with respect to the objectives of the management problem. The selection of a suitable class of functions to which the operating policy belong to is a key step, as it might restrict the search for the optimal policy to a subspace of the decision space that does not include the optimal solution. In the water reservoir literature, a number of classes have been proposed. However, many of these rules are based largely on empirical or experimental successes and they were designed mostly via simulation and for single-purpose reservoirs. In a multi-objective context similar rules can not easily inferred from the experience and the use of universal function approximators is generally preferred. In this work, we comparatively analyze two among the most common universal approximators: artificial neural networks (ANN) and radial basis functions (RBF) under different problem settings to estimate their scalability and flexibility in dealing with more and more complex problems. The multi-purpose HoaBinh water reservoir in Vietnam, accounting for hydropower

  19. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  20. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems.

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    Full Text Available Bi-objective Traveling Salesman Problem (bTSP is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM. PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs.

  1. A multi-objective approach to improve SWAT model calibration in alpine catchments

    Science.gov (United States)

    Tuo, Ye; Marcolini, Giorgia; Disse, Markus; Chiogna, Gabriele

    2018-04-01

    Multi-objective hydrological model calibration can represent a valuable solution to reduce model equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely applied to investigate water quality and water management issues in alpine catchments. However, the model calibration is generally based on discharge records only, and most of the previous studies have defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow observations to validate model results or have taken into account the possible variability of snow parameters for different subbasins. This work presents and compares three possible calibration approaches. The first two procedures are single-objective calibration procedures, for which all parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II differ from each other by the assumption used to define snow parameters: The first approach assigned a unique set of snow parameters to the entire basin, whereas the second approach assigned different subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective calibration, in which we considered snow water equivalent (SWE) information at two different spatial scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these approaches in the Upper Adige river basin where a dense network of snow depth measurement stations is available. Only the set of parameters obtained with this multi-objective procedure provided an acceptable prediction of both river discharge and SWE. These findings offer the large community of SWAT users a strategy to improve SWAT modeling in alpine catchments.

  2. Multi-objective optimization of coal-fired power plants using differential evolution

    International Nuclear Information System (INIS)

    Wang, Ligang; Yang, Yongping; Dong, Changqing; Morosuk, Tatiana; Tsatsaronis, George

    2014-01-01

    Highlights: • Multi-objective optimization of large-scale coal-fired power plants using differential evolution. • A newly-proposed algorithm for searching the fronts of decision space in a single run. • A reduction of cost of electricity by 2–4% with an optimal efficiency increase up to 2% points. • The uncertainty comes mainly from temperature- and reheat-related cost factors of steam generator. • An exergoeconomic analysis and comparison between optimal designs and one real industrial design. - Abstract: The design trade-offs between thermodynamics and economics for thermal systems can be studied with the aid of multi-objective optimization techniques. The investment costs usually increase with increasing thermodynamic performance of a system. In this paper, an enhanced differential evolution with diversity-preserving and density-adjusting mechanisms, and a newly-proposed algorithm for searching the decision space frontier in a single run were used, to conduct the multi-objective optimization of large-scale, supercritical coal-fired plants. The uncertainties associated with cost functions were discussed by analyzing the sensitivity of the decision space frontier to some significant parameters involved in cost functions. Comparisons made with the aid of an exergoeconomic analysis between the cost minimum designs and a real industrial design demonstrated how the plant improvement was achieved. It is concluded that the cost of electricity could be reduced by a 2–4%, whereas the efficiency could be increased by up to two percentage points. The largest uncertainty is introduced by the temperature-related and reheat-related cost coefficients of the steam generator. More reliable data on the price prediction of future advanced materials should be used to obtain more accurate fronts of the objective space

  3. A sustainable manufacturing system design: A fuzzy multi-objective optimization model.

    Science.gov (United States)

    Nujoom, Reda; Mohammed, Ahmed; Wang, Qian

    2017-08-10

    In the past decade, there has been a growing concern about the environmental protection in public society as governments almost all over the world have initiated certain rules and regulations to promote energy saving and minimize the production of carbon dioxide (CO 2 ) emissions in many manufacturing industries. The development of sustainable manufacturing systems is considered as one of the effective solutions to minimize the environmental impact. Lean approach is also considered as a proper method for achieving sustainability as it can reduce manufacturing wastes and increase the system efficiency and productivity. However, the lean approach does not include environmental waste of such as energy consumption and CO 2 emissions when designing a lean manufacturing system. This paper addresses these issues by evaluating a sustainable manufacturing system design considering a measurement of energy consumption and CO 2 emissions using different sources of energy (oil as direct energy source to generate thermal energy and oil or solar as indirect energy source to generate electricity). To this aim, a multi-objective mathematical model is developed incorporating the economic and ecological constraints aimed for minimization of the total cost, energy consumption, and CO 2 emissions for a manufacturing system design. For the real world scenario, the uncertainty in a number of input parameters was handled through the development of a fuzzy multi-objective model. The study also addresses decision-making in the number of machines, the number of air-conditioning units, and the number of bulbs involved in each process of a manufacturing system in conjunction with a quantity of material flow for processed products. A real case study was used for examining the validation and applicability of the developed sustainable manufacturing system model using the fuzzy multi-objective approach.

  4. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    International Nuclear Information System (INIS)

    Bellary, Sayed Ahmed Imran; Samad, Abdus; Husain, Afzal

    2014-01-01

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  5. Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles

    International Nuclear Information System (INIS)

    Xu, Liangfei; Mueller, Clemens David; Li, Jianqiu; Ouyang, Minggao; Hu, Zunyan

    2015-01-01

    Highlights: • A non-linear model regarding fuel economy and system durability of FCEV. • A two-step algorithm for a quasi-optimal solution to a multi-objective problem. • Optimal parameters for DP algorithm considering accuracy and calculating time. • Influences of FC power and battery capacity on system performance. - Abstract: A typical topology of a proton electrolyte membrane (PEM) fuel cell electric vehicle contains at least two power sources, a fuel cell system (FCS) and a lithium battery package. The FCS provides stationary power, and the battery delivers dynamic power. In this paper, we report on the multi-objective optimization problem of powertrain parameters for a pre-defined driving cycle regarding fuel economy and system durability. We introduce the dynamic model for the FCEV. We take into consideration equations not only for fuel economy but also for system durability. In addition, we define a multi-objective optimization problem, and find a quasi-optimal solution using a two-loop framework. In the inside loop, for each group of powertrain parameters, a global optimal energy management strategy based on dynamic programming (DP) is exploited. We optimize coefficients for the DP algorithm to reduce calculating time as well as to maintain accuracy. For the outside loop, we compare the results of all the groups with each other, and choose the Pareto optimal solution based on a compromise of fuel economy and system durability. Simulation results show that for a “China city bus typical cycle,” a battery capacity of 150 Ah and an FCS maximal net output power of 40 kW are optimal for the fuel economy and system durability of a fuel cell city bus.

  6. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    Energy Technology Data Exchange (ETDEWEB)

    Bellary, Sayed Ahmed Imran; Samad, Abdus [Indian Institute of Technology Madras, Chennai (India); Husain, Afzal [Sultan Qaboos University, Al-Khoudh (Oman)

    2014-12-15

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  7. Multi-objective Optimization of Process Parameters in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    The objective of this paper is to investigate optimum process parameters in Friction Stir Welding (FSW) to minimize residual stresses in the work piece and maximize production efficiency meanwhile satisfying process specific constraints as well. More specifically, the choices of tool rotational...... speed and traverse welding speed have been sought in order to achieve the goals mentioned above using an evolutionary multi-objective optimization (MOO) algorithm, i.e. non-dominated sorting genetic algorithm (NSGA-II), integrated with a transient, 2- dimensional sequentially coupled thermo...

  8. Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints

    Directory of Open Access Journals (Sweden)

    Massimiliano Kaucic

    2015-09-01

    Full Text Available In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis.

  9. Multi-objective PSO based optimal placement of solar power DG in radial distribution system

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar

    2017-06-01

    Full Text Available Ever increasing trend of electricity demand, fossil fuel depletion and environmental issues request the integration of renewable energy into the distribution system. The optimal planning of renewable distributed generation (DG is much essential for ensuring maximum benefits. Hence, this paper proposes the optimal placement of probabilistic based solar power DG into the distribution system. The two objective functions such as power loss reduction and voltage stability index improvement are optimized. The power balance and voltage limits are kept as constraints of the problem. The non-sorting pare to-front based multi-objective particle swarm optimization (MOPSO technique is proposed on standard IEEE 33 radial distribution test system.

  10. Application of Bayesian Decision Theory Based on Prior Information in the Multi-Objective Optimization Problem

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2010-12-01

    Full Text Available General multi-objective optimization methods are hard to obtain prior information, how to utilize prior information has been a challenge. This paper analyzes the characteristics of Bayesian decision-making based on maximum entropy principle and prior information, especially in case that how to effectively improve decision-making reliability in deficiency of reference samples. The paper exhibits effectiveness of the proposed method using the real application of multi-frequency offset estimation in distributed multiple-input multiple-output system. The simulation results demonstrate Bayesian decision-making based on prior information has better global searching capability when sampling data is deficient.

  11. A multi-objective set covering problem: A case study of warehouse allocation in truck industry

    Directory of Open Access Journals (Sweden)

    Atefeh Malekinezhad

    2011-01-01

    Full Text Available Designing distribution centers is normally formulated in a form of set covering where is primary objective is to minimize the number of connected facilities. However, there are other issues affecting our decision on selecting suitable distribution centers such as weather conditions, temperature, infrastructure facilities, etc. In this paper, we propose a multi-objective set covering techniques where different objectives are considered in an integrated model. The proposed model of this paper is implemented for a real-world case study of truck-industry and the results are analyzed.

  12. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...

  13. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    Science.gov (United States)

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.

  14. Geometrical exploration of a flux-optimised sodium receiver through multi-objective optimisation

    Science.gov (United States)

    Asselineau, Charles-Alexis; Corsi, Clothilde; Coventry, Joe; Pye, John

    2017-06-01

    A stochastic multi-objective optimisation method is used to determine receiver geometries with maximum second law efficiency, minimal average temperature and minimal surface area. The method is able to identify a set of Pareto optimal candidates that show advantageous geometrical features, mainly in being able to maximise the intercepted flux within the geometrical boundaries set. Receivers with first law thermal efficiencies ranging from 87% to 91% are also evaluated using the second law of thermodynamics and found to have similar efficiencies of over 60%, highlighting the influence that the geometry can play in the maximisation of the work output of receivers by influencing the distribution of the flux from the concentrator.

  15. Enhancing State-of-the-art Multi-objective Optimization Algorithms by Applying Domain Specific Operators

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    optimization problems where the environment does not change dynamically. For that reason, the requirement for convergence in static optimization problems is not as timecritical as for dynamic optimization problems. Most MOEAs use generic variables and operators that scale to static multi-objective optimization...... problem. The domain specific operators only encode existing knowledge about the environment. A comprehensive comparative study is provided to evaluate the results of applying the CONTROLEUM-GA compared to NSGAII, e-NSGAII and e- MOEA. Experimental results demonstrate clear improvements in convergence time...

  16. Robust multi-objective calibration strategies – possibilities for improving flood forecasting

    Directory of Open Access Journals (Sweden)

    G. H. Schmitz

    2012-10-01

    Full Text Available Process-oriented rainfall-runoff models are designed to approximate the complex hydrologic processes within a specific catchment and in particular to simulate the discharge at the catchment outlet. Most of these models exhibit a high degree of complexity and require the determination of various parameters by calibration. Recently, automatic calibration methods became popular in order to identify parameter vectors with high corresponding model performance. The model performance is often assessed by a purpose-oriented objective function. Practical experience suggests that in many situations one single objective function cannot adequately describe the model's ability to represent any aspect of the catchment's behaviour. This is regardless of whether the objective is aggregated of several criteria that measure different (possibly opposite aspects of the system behaviour. One strategy to circumvent this problem is to define multiple objective functions and to apply a multi-objective optimisation algorithm to identify the set of Pareto optimal or non-dominated solutions. Nonetheless, there is a major disadvantage of automatic calibration procedures that understand the problem of model calibration just as the solution of an optimisation problem: due to the complex-shaped response surface, the estimated solution of the optimisation problem can result in different near-optimum parameter vectors that can lead to a very different performance on the validation data. Bárdossy and Singh (2008 studied this problem for single-objective calibration problems using the example of hydrological models and proposed a geometrical sampling approach called Robust Parameter Estimation (ROPE. This approach applies the concept of data depth in order to overcome the shortcomings of automatic calibration procedures and find a set of robust parameter vectors. Recent studies confirmed the effectivity of this method. However, all ROPE approaches published so far just identify

  17. Extraction of design rules from multi-objective design exploration (MODE) using rough set theory

    International Nuclear Information System (INIS)

    Obayashi, Shigeru

    2011-01-01

    Multi-objective design exploration (MODE) and its application for design rule extraction are presented. MODE reveals the structure of design space from the trade-off information. The self-organizing map (SOM) is incorporated into MODE as a visual data-mining tool for design space. SOM divides the design space into clusters with specific design features. The sufficient conditions for belonging to a cluster of interest are extracted using rough set theory. The resulting MODE was applied to the multidisciplinary wing design problem, which revealed a cluster of good designs, and we extracted the design rules of such designs successfully.

  18. All-hexahedral meshing and remeshing for multi-object manufacturing applications

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Fernandes, J.L.M.; Martins, P.A.F.

    2013-01-01

    new developments related to the construction of adaptive core meshes and processing of multi-objects that are typical of manufacturing applications.Along with the aforementioned improvements there are other developments that will also be presented due to their effectiveness in increasing.......The presentation is enriched with examples taken from pure geometry and metal forming applications, and a resistance projection welding industrial test case consisting of four different objects is included to show the capabilities of selective remeshing of objects while maintaining contact conditions and local...

  19. Availability allocation to repairable systems with genetic algorithms: a multi-objective formulation

    International Nuclear Information System (INIS)

    Elegbede, Charles; Adjallah, Kondo

    2003-01-01

    This paper describes a methodology based on genetic algorithms (GA) and experiments plan to optimize the availability and the cost of reparable parallel-series systems. It is a NP-hard problem of multi-objective combinatorial optimization, modeled with continuous and discrete variables. By using the weighting technique, the problem is transformed into a single-objective optimization problem whose constraints are then relaxed by the exterior penalty technique. We then propose a search of solution through GA, whose parameters are adjusted using experiments plan technique. A numerical example is used to assess the method

  20. Multi-objective Design Optimization of a Parallel Schönflies-motion Robot

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Hjørnet, Preben

    2016-01-01

    . The dynamic performance is concerned mainly the capability of force transmission in the parallel kinematic chain, for which transmission indices are defined. The Pareto-front is obtained to investigate the influence of the design variables to the robot performance. Dynamic characteristics for three Pareto......This paper introduces a parallel Schoenflies-motion robot with rectangular workspace, which is suitable for pick-and-place operations. A multi-objective optimization problem is formulated to optimize the robot's geometric parameters with consideration of kinematic and dynamic performances...

  1. Evolution strategies and multi-objective optimization of permanent magnet motor

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh; Santos, Ilmar

    2012-01-01

    When designing a permanent magnet motor, several geometry and material parameters are to be defined. This is not an easy task, as material properties and magnetic fields are highly non-linear and the design of a motor is therefore often an iterative process. From an engineering point of view, we...... of evolution strategies, ES to effectively design and optimize parameters of permanent magnet motors. Single as well as multi-objective optimization procedures are carried out. A modified way of creating the strategy parameters for the ES algorithm is also proposed and has together with the standard ES...

  2. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    Science.gov (United States)

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi-objective

  3. A Multi-Objective Demand Side Management Considering ENS Cost in Smart Grids

    DEFF Research Database (Denmark)

    Yousefi Khanghah, Babak; Ghassemzadeh, Saeid; Hosseini, Seyed Hossein

    2017-01-01

    In this paper a new method is presented to achieve economic exploitation and proper usage of network capacity by exerting controlling actions over flexible loads and energy storage (ES) equipment. Multi-objective planning for demand response programs (DRP) and battery management policies is carried...... out by considering energy not supplied (ENS). In order to achieve an optimal scheduling, charge/discharge control for batteries, demand response programs and dispatch of controllable distributed generations (DGs) are also considered. Then, the balanced cost and benefits of participants are evaluated...

  4. An Efficient Multi-objective Approach for Designing of Communication Interfaces in Smart Grids

    DEFF Research Database (Denmark)

    Ghasemkhani, Amir; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2016-01-01

    The next generation of power systems require to use smart grid technologies due to their unique features like high speed, reliable and secure data communications to monitor, control and protect system effectively. Hence, one of the main requirements of achieving a smart grid is optimal designing...... of telecommunication systems. In this study, a novel dynamic Multi-Objective Shortest Path (MOSP) algorithm is presented to design a spanning graph of a communication infrastructure using high speed Optimal Power Ground Wire (OPGW) cables and Phasor Measurement Units (PMUs). Applicability of the proposed model...

  5. Integrated production planning and control: A multi-objective optimization model

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2013-09-01

    Full Text Available Purpose: Production planning and control has crucial impact on the production and business activities of enterprise. Enterprise Resource Planning (ERP is the most popular resources planning and management system, however there are some shortcomings and deficiencies in the production planning and control because its core component is still the Material Requirements Planning (MRP. For the defects of ERP system, many local improvement and optimization schemes have been proposed, and improve the feasibility and practicality of the plan in some extent, but study considering the whole planning system optimization in the multiple performance management objectives and achieving better application performance is less. The purpose of this paper is to propose a multi-objective production planning optimization model Based on the point of view of the integration of production planning and control, in order to achieve optimization and control of enterprise manufacturing management. Design/methodology/approach: On the analysis of ERP planning system’s defects and disadvantages, and related research and literature, a multi-objective production planning optimization model is proposed, in addition to net demand and capacity, multiple performance management objectives, such as on-time delivery, production balance, inventory, overtime production, are considered incorporating into the examination scope of the model, so that the manufacturing process could be management and controlled Optimally between multiple objectives. The validity and practicability of the model will be verified by the instance in the last part of the paper. Findings: The main finding is that production planning management of manufacturing enterprise considers not only the capacity and materials, but also a variety of performance management objectives in the production process, and building a multi-objective optimization model can effectively optimize the management and control of enterprise

  6. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    Science.gov (United States)

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  7. Parametric analysis of energy quality management for district in China using multi-objective optimization approach

    International Nuclear Information System (INIS)

    Lu, Hai; Yu, Zitao; Alanne, Kari; Xu, Xu; Fan, Liwu; Yu, Han; Zhang, Liang; Martinac, Ivo

    2014-01-01

    Highlights: • A time-effective multi-objective design optimization scheme is proposed. • The scheme aims at exploring suitable 3E energy system for the specific case. • A realistic case located in China is used for the analysis. • Parametric study is investigated to test the effects of different parameters. - Abstract: Due to the increasing energy demands and global warming, energy quality management (EQM) for districts has been getting importance over the last few decades. The evaluation of the optimum energy systems for specific districts is an essential part of EQM. This paper presents a deep analysis of the optimum energy systems for a district sited in China. A multi-objective optimization approach based on Genetic Algorithm (GA) is proposed for the analysis. The optimization process aims to search for the suitable 3E (minimum economic cost and environmental burden as well as maximum efficiency) energy systems. Here, life cycle CO 2 equivalent (LCCO 2 ), life cycle cost (LCC) and exergy efficiency (EE) are set as optimization objectives. Then, the optimum energy systems for the Chinese case are presented. The final work is to investigate the effects of different energy parameters. The results show the optimum energy systems might vary significantly depending on some parameters

  8. Energy quality management for building clusters and districts (BCDs) through multi-objective optimization

    International Nuclear Information System (INIS)

    Lu, Hai; Alanne, Kari; Martinac, Ivo

    2014-01-01

    Highlights: • Energy quality management is applied from individual building to district. • A novel time-effective multi-objective design optimization scheme is proposed. • The scheme searches for exergy efficient and environmental solution for districts. • System reliability is considered and addressed in this paper. - Abstract: Renewable energy systems entail a significant potential to meet the energy requirements of building clusters and districts (BCDs) provided that local energy sources are exploited efficiently. Besides improving the energy efficiency by reducing energy consumption and improving the match between energy supply and demand, energy quality issues have become a key topic of interest. Energy quality management is a technique that aims at optimally utilizing the exergy content of various renewable energy sources. In addition to minimizing life-cycle CO 2 emissions related to exergy losses of an energy system, issues such as system reliability should be addressed. The present work contributes to the research by proposing a novel multi-objective design optimization scheme that minimizes the global warming potential during the life-cycle and maximizes the exergy performance, while the maximum allowable level of the loss of power supply probability (LPSP) is predefined by the user as a constraint. The optimization makes use of Genetic Algorithm (GA). Finally, a case study is presented, where the above methodology has been applied to an office BCD located in Norway. The proposed optimization scheme is proven to be efficient in finding the optimal design and can be easily enlarged to encompass more relevant objective functions

  9. Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization

    International Nuclear Information System (INIS)

    Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen

    2014-01-01

    A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)

  10. Stability of multi-objective bi-level linear programming problems under fuzziness

    Directory of Open Access Journals (Sweden)

    Abo-Sinna Mahmoud A.

    2013-01-01

    Full Text Available This paper deals with multi-objective bi-level linear programming problems under fuzzy environment. In the proposed method, tentative solutions are obtained and evaluated by using the partial information on preference of the decision-makers at each level. The existing results concerning the qualitative analysis of some basic notions in parametric linear programming problems are reformulated to study the stability of multi-objective bi-level linear programming problems. An algorithm for obtaining any subset of the parametric space, which has the same corresponding Pareto optimal solution, is presented. Also, this paper established the model for the supply-demand interaction in the age of electronic commerce (EC. First of all, the study uses the individual objectives of both parties as the foundation of the supply-demand interaction. Subsequently, it divides the interaction, in the age of electronic commerce, into the following two classifications: (i Market transactions, with the primary focus on the supply demand relationship in the marketplace; and (ii Information service, with the primary focus on the provider and the user of information service. By applying the bi-level programming technique of interaction process, the study will develop an analytical process to explain how supply-demand interaction achieves a compromise or why the process fails. Finally, a numerical example of information service is provided for the sake of illustration.

  11. Loading pattern optimization by multi-objective simulated annealing with screening technique

    International Nuclear Information System (INIS)

    Tong, K. P.; Hyun, C. L.; Hyung, K. J.; Chang, H. K.

    2006-01-01

    This paper presents a new multi-objective function which is made up of the main objective term as well as penalty terms related to the constraints. All the terms are represented in the same functional form and the coefficient of each term is normalized so that each term has equal weighting in the subsequent simulated annealing optimization calculations. The screening technique introduced in the previous work is also adopted in order to save computer time in 3-D neutronics evaluation of trial loading patterns. For numerical test of the new multi-objective function in the loading pattern optimization, the optimum loading patterns for the initial and the cycle 7 reload PWR core of Yonggwang Unit 4 are calculated by the simulated annealing algorithm with screening technique. A total of 10 optimum loading patterns are obtained for the initial core through 10 independent simulated annealing optimization runs. For the cycle 7 reload core one optimum loading pattern has been obtained from a single simulated annealing optimization run. More SA optimization runs will be conducted to optimum loading patterns for the cycle 7 reload core and results will be presented in the further work. (authors)

  12. Polar vessel hullform design based on the multi-objective optimization NSGA II

    Directory of Open Access Journals (Sweden)

    DUAN Fei

    2017-12-01

    Full Text Available [Objectives] With the increasing exploitation of the Arctic abundant oil and gas resources, a large number of ships which meet the polar navigational requirements are needed.[Methods] In this paper, the fast elitist Non-Dominated Sorting Genetic Algorithm (NSGA Ⅱ is applied to the hull optimization, and the multi-objective optimization method of polar vessel design is proposed. With the optimization goal of resistance and icebreaking resistance, filtering hull forms through the standard of polar vessel displacement and EEDI, fast ship hull optimization that satisfy the ice-ship dead weight and EEDI requirements has been achieved. Taking a 65 000 t shuttle tanker as an example, full parametric modeling method is adopted, the hull optimization of three different bow forms is conducted through the polar vessel multi-objective optimization method.[Results] The ship hull after optimization can satisfy the IA class navigation require, where the resistance in calm water decreases up to 12.94%, and the minimum propulsion power in ice field has a 27.36% reduction.[Conclusions] The feasibility and validity of the NSGA Ⅱ applying in polar vessel design is verified.

  13. Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm

    International Nuclear Information System (INIS)

    Bahadormanesh, Nikrouz; Rahat, Shayan; Yarali, Milad

    2017-01-01

    Highlights: • A multi-objective optimization for radial expander in Organic Rankine Cycles is implemented. • By using firefly algorithm, Pareto front based on the size of turbine and thermal efficiency is produced. • Tension and vibration constrains have a significant effect on optimum design points. - Abstract: Organic Rankine Cycles are viable energy conversion systems in sustainable energy systems due to their compatibility with low-temperature heat sources. In the present study, one dimensional model of radial expanders in conjunction with a thermodynamic model of organic Rankine cycles is prepared. After verification, by defining thermal efficiency of the cycle and size parameter of a radial turbine as the objective functions, a multi-objective optimization was conducted regarding tension and vibration constraints for 4 different organic working fluids (R22, R245fa, R236fa and N-Pentane). In addition to mass flow rate, evaporator temperature, maximum pressure of cycle and turbo-machinery design parameters are selected as the decision variables. Regarding Pareto fronts, by a little increase in size of radial expanders, it is feasible to reach high efficiency. Moreover, by assessing the distribution of decision variables, the variables that play a major role in trending between the objective functions are found. Effects of mechanical and vibration constrains on optimum decision variables are investigated. The results of optimization can be considered as an initial values for design of radial turbines for Organic Rankine Cycles.

  14. Pareto Optimal Solutions for Network Defense Strategy Selection Simulator in Multi-Objective Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.

  15. An effective docking strategy for virtual screening based on multi-objective optimization algorithm

    Directory of Open Access Journals (Sweden)

    Kang Ling

    2009-02-01

    Full Text Available Abstract Background Development of a fast and accurate scoring function in virtual screening remains a hot issue in current computer-aided drug research. Different scoring functions focus on diverse aspects of ligand binding, and no single scoring can satisfy the peculiarities of each target system. Therefore, the idea of a consensus score strategy was put forward. Integrating several scoring functions, consensus score re-assesses the docked conformations using a primary scoring function. However, it is not really robust and efficient from the perspective of optimization. Furthermore, to date, the majority of available methods are still based on single objective optimization design. Results In this paper, two multi-objective optimization methods, called MOSFOM, were developed for virtual screening, which simultaneously consider both the energy score and the contact score. Results suggest that MOSFOM can effectively enhance enrichment and performance compared with a single score. For three different kinds of binding sites, MOSFOM displays an excellent ability to differentiate active compounds through energy and shape complementarity. EFMOGA performed particularly well in the top 2% of database for all three cases, whereas MOEA_Nrg and MOEA_Cnt performed better than the corresponding individual scoring functions if the appropriate type of binding site was selected. Conclusion The multi-objective optimization method was successfully applied in virtual screening with two different scoring functions that can yield reasonable binding poses and can furthermore, be ranked with the potentially compromised conformations of each compound, abandoning those conformations that can not satisfy overall objective functions.

  16. Flexible Multi-Objective Transmission Expansion Planning with Adjustable Risk Aversion

    Directory of Open Access Journals (Sweden)

    Jing Qiu

    2017-07-01

    Full Text Available This paper presents a multi-objective transmission expansion planning (TEP framework. Rather than using the conventional deterministic reliability criterion, a risk component based on the probabilistic reliability criterion is incorporated into the TEP objectives. This risk component can capture the stochastic nature of power systems, such as load and wind power output variations, component availability, and incentive-based demand response (IBDR costs. Specifically, the formulation of risk value after risk aversion is explicitly given, and it aims to provide network planners with the flexibility to conduct risk analysis. Thus, a final expansion plan can be selected according to individual risk preferences. Moreover, the economic value of IBDR is modeled and integrated into the cost objective. In addition, a relatively new multi-objective evolutionary algorithm called the MOEA/D is introduced and employed to find Pareto optimal solutions, and tradeoffs between overall cost and risk are provided. The proposed approach is numerically verified on the Garver’s six-bus, IEEE 24-bus RTS and Polish 2383-bus systems. Case study results demonstrate that the proposed approach can effectively reduce cost and hedge risk in relation to increasing wind power integration.

  17. Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2017-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine (HAWT blades. In order to minimize the cost of energy (COE and improve the overall performance of the blades, materials of carbon fiber reinforced plastic (CFRP combined with glass fiber reinforced plastic (GFRP are applied. The maximum annual energy production (AEP, the minimum blade mass and the minimum blade cost are taken as three objectives. Main aerodynamic and structural characteristics of the blades are employed as design variables. Various design requirements including strain, deflection, vibration and buckling limits are taken into account as constraints. To evaluate the aerodynamic performances and the structural behaviors, the blade element momentum (BEM theory and the finite element method (FEM are applied in the procedure. Moreover, the non-dominated sorting genetic algorithm (NSGA II, which constitutes the core of the procedure, is adapted for the multi-objective optimization of the blades. To prove the efficiency and reliability of the procedure, a commercial 1.5 MW HAWT blade is used as a case study, and a set of trade-off solutions is obtained. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  18. Multi-Objective Dynamic Economic Dispatch of Microgrid Systems Including Vehicle-to-Grid

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2015-05-01

    Full Text Available Based on the characteristics of electric vehicles (EVs, this paper establishes the load models of EVs under the autonomous charging mode and the coordinated charging and discharging mode. Integrating the EVs into a microgrid system which includes wind turbines (WTs, photovoltaic arrays (PVs, diesel engines (DEs, fuel cells (FCs and a storage battery (BS, this paper establishes multi-objective economic dispatch models of a microgrid, including the lowest operating cost, the least carbon dioxide emissions, and the lowest pollutant treatment cost. After converting the multi-objective functions to a single objective function by using the judgment matrix method, we analyze the dynamic economic dispatch of the microgrid system including vehicle-to-grid (V2G with an improved particle swarm optimization algorithm under different operation control strategies. With the example system, the proposed models and strategies are verified and analyzed. Simulation results show that the microgrid system with EVs under the coordinated charging and discharging mode has better operation economics than the autonomous charging mode. Meanwhile, the greater the load fluctuation is, the higher the operating cost of the microgrid system is.

  19. An inexact multi-objective programming approach for strategic environmental assessment on regional development plan

    Institute of Scientific and Technical Information of China (English)

    WANG Jihua; GUO Huaicheng; LIU Lei; HAO Mingjia; ZHANG Ming; LU Xiaojian; XING Kexia

    2004-01-01

    This paper presents the development of an inexact multi-objective programming (IMOP) model and its application to the strategic environmental assessment (SEA) for the regional development plan for the Hunnan New Zone (HNZ) in Shenyang City, China. Inexact programming and multi-objective programming methods are employed to effectively account for extensive uncertainties in the study system and to reflect various interests from different stakeholders, respectively. In the case study, balancing-economy-and-environment scenario and focusing-industry-development scenario are analyzed by the interactive solution process for addressing the preferences from local authorities and compromises among different objectives. Through interpreting the model solutions under both scenarios, analysis of industrial structure, waste water treatment plant(WWTP) expansion, water consumption and pollution generation and treatment are undertaken for providing a solid base to justify and evaluate the HNZ regional development plan. The study results show that the developed IMOP-SEA framework is feasible and applicable in carrying comprehensive environmental impact assessments for development plan in a more effective and efficient manner.

  20. A Cognitive Skill Classification Based on Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2013-09-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective XE "multi objective"  target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments employ 33 respondent players demonstrates that 61% of players have high trial and error, 21% have high carefully, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. 

  1. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  2. A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

    Science.gov (United States)

    Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin

    2015-06-01

    The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.

  3. Multi-objective optimisation in carbon monoxide gas management at TRONOX KXN Sands

    Directory of Open Access Journals (Sweden)

    Stadler, Johan

    2014-08-01

    Full Text Available Carbon monoxide (CO is a by-product of the ilmenite smelting process from which titania slag and pig iron are produced. Prior to this project, the CO at Tronox KZN Sands in South Africa was burnt to get rid of it, producing carbon dioxide (CO2. At this plant, unprocessed materials are pre-heated using methane gas from an external supplier. The price of methane gas has increased significantly; and so this research considers the possibility of recycling CO gas and using it as an energy source to reduce methane gas demand. It is not possible to eliminate the methane gas consumption completely due to the energy demand fluctuation, and sub-plants have been assigned either CO gas or methane gas over time. Switching the gas supply between CO and methane gas involves production downtime to purge supply lines. Minimising the loss of production time while maximising the use of CO arose as a multi-objective optimisation problem (MOP with seven decision variables, and computer simulation was used to evaluate scenarios. We applied computer simulation and the multi-objective optimisation cross-entropy method (MOO CEM to find good solutions while evaluating the minimum number of scenarios. The proposals in this paper, which are in the process of being implemented, could save the company operational expenditure while reducing the carbon footprint of the smelter.

  4. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    Science.gov (United States)

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  5. Multi-objective Extremum Seeking Control for Enhancement of Wind Turbine Power Capture with Load Reduction

    Science.gov (United States)

    Xiao, Yan; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.

  6. A Hybrid Metaheuristic for Multi-Objective Scientific Workflow Scheduling in a Cloud Environment

    Directory of Open Access Journals (Sweden)

    Nazia Anwar

    2018-03-01

    Full Text Available Cloud computing has emerged as a high-performance computing environment with a large pool of abstracted, virtualized, flexible, and on-demand resources and services. Scheduling of scientific workflows in a distributed environment is a well-known NP-complete problem and therefore intractable with exact solutions. It becomes even more challenging in the cloud computing platform due to its dynamic and heterogeneous nature. The aim of this study is to optimize multi-objective scheduling of scientific workflows in a cloud computing environment based on the proposed metaheuristic-based algorithm, Hybrid Bio-inspired Metaheuristic for Multi-objective Optimization (HBMMO. The strong global exploration ability of the nature-inspired metaheuristic Symbiotic Organisms Search (SOS is enhanced by involving an efficient list-scheduling heuristic, Predict Earliest Finish Time (PEFT, in the proposed algorithm to obtain better convergence and diversity of the approximate Pareto front in terms of reduced makespan, minimized cost, and efficient load balance of the Virtual Machines (VMs. The experiments using different scientific workflow applications highlight the effectiveness, practicality, and better performance of the proposed algorithm.

  7. Searching for the Pareto frontier in multi-objective protein design.

    Science.gov (United States)

    Nanda, Vikas; Belure, Sandeep V; Shir, Ofer M

    2017-08-01

    The goal of protein engineering and design is to identify sequences that adopt three-dimensional structures of desired function. Often, this is treated as a single-objective optimization problem, identifying the sequence-structure solution with the lowest computed free energy of folding. However, many design problems are multi-state, multi-specificity, or otherwise require concurrent optimization of multiple objectives. There may be tradeoffs among objectives, where improving one feature requires compromising another. The challenge lies in determining solutions that are part of the Pareto optimal set-designs where no further improvement can be achieved in any of the objectives without degrading one of the others. Pareto optimality problems are found in all areas of study, from economics to engineering to biology, and computational methods have been developed specifically to identify the Pareto frontier. We review progress in multi-objective protein design, the development of Pareto optimization methods, and present a specific case study using multi-objective optimization methods to model the tradeoff between three parameters, stability, specificity, and complexity, of a set of interacting synthetic collagen peptides.

  8. Multi-objective optimization and simulation model for the design of distributed energy systems

    International Nuclear Information System (INIS)

    Falke, Tobias; Krengel, Stefan; Meinerzhagen, Ann-Kathrin; Schnettler, Armin

    2016-01-01

    Highlights: • Development of a model for the optimal design of district energy systems. • Multi-objective approach: integrated economic and ecological optimization. • Consideration of conventional conversion technologies, RES and district heating. • Decomposition of optimization problem to reduce computation complexity. • Approach enables the investigation of districts with more than 150 buildings. - Abstract: In this paper, a multi-objective optimization model for the investment planning and operation management of distributed heat and electricity supply systems is presented. Different energy efficiency measures and supply options are taken into account, including various distributed heat and power generation units, storage systems and energy-saving renovation measures. Furthermore, district heating networks are considered as an alternative to conventional, individual heat supply for each building. The optimization problem is decomposed into three subproblems to reduce the computational complexity. This enables a high level of detail in the optimization and simultaneously the comprehensive investigation of districts with more than 100 buildings. These capabilities distinguish the model from previous approaches in this field of research. The developed model is applied to a district in a medium-sized town in Germany in order to analyze the effects of different efficiency measures regarding total costs and emissions of CO 2 equivalents. Based on the Pareto efficient solutions, technologies and efficiency measures that can contribute most efficiently to reduce greenhouse gas emissions are identified.

  9. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Multi-objective optimization of GPU3 Stirling engine using third order analysis

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Hashemabadi, Seyyed Hasan; Salimi, Morteza

    2014-01-01

    Highlights: • A third-order analysis is carried out for optimization of Stirling engine. • The triple-optimization is done on a GPU3 Stirling engine. • A multi-objective optimization is carried out for a Stirling engine. • The results are compared with an experimental previous work for checking the model improvement. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. - Abstract: Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power which operates at closed cycles. These engines are good choices for using in power generation systems; because these engines present a reasonable theoretical efficiency which can be closer to the Carnot efficiency, comparing with other reciprocating thermal engines. Hence, many studies have been conducted on Stirling engines and the third order thermodynamic analysis is one of them. In this study, multi-objective optimization with four decision variables including the temperature of heat source, stroke, mean effective pressure, and the engine frequency were applied in order to increase the efficiency and output power and reduce the pressure drop. Three decision-making procedures were applied to optimize the answers from the results. At last, the applied methods were compared with the results obtained of one experimental work and a good agreement was observed

  11. Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm

    Science.gov (United States)

    Annavarapu, Chandra Sekhara Rao; Dara, Suresh; Banka, Haider

    2016-01-01

    Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microarray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its high dimensionality, a fast heuristic based pre-processing technique is employed to reduce some of the crude domain features from the initial feature set. Since these pre-processed and reduced features are still high dimensional, the proposed MOBPSO algorithm is used for finding further feature subsets. The objective functions are suitably modeled by optimizing two conflicting objectives i.e., cardinality of feature subsets and distinctive capability of those selected subsets. As these two objective functions are conflicting in nature, they are more suitable for multi-objective modeling. The experiments are carried out on benchmark gene expression datasets, i.e., Colon, Lymphoma and Leukaemia available in literature. The performance of the selected feature subsets with their classification accuracy and validated using 10 fold cross validation techniques. A detailed comparative study is also made to show the betterment or competitiveness of the proposed algorithm. PMID:27822174

  12. A framework for multi-object tracking over distributed wireless camera networks

    Science.gov (United States)

    Gau, Victor; Hwang, Jenq-Neng

    2010-07-01

    In this paper, we propose a unified framework targeting at two important issues in a distributed wireless camera network, i.e., object tracking and network communication, to achieve reliable multi-object tracking over distributed wireless camera networks. In the object tracking part, we propose a fully automated approach for tracking of multiple objects across multiple cameras with overlapping and non-overlapping field of views without initial training. To effectively exchange the tracking information among the distributed cameras, we proposed an idle probability based broadcasting method, iPro, which adaptively adjusts the broadcast probability to improve the broadcast effectiveness in a dense saturated camera network. Experimental results for the multi-object tracking demonstrate the promising performance of our approach on real video sequences for cameras with overlapping and non-overlapping views. The modeling and ns-2 simulation results show that iPro almost approaches the theoretical performance upper bound if cameras are within each other's transmission range. In more general scenarios, e.g., in case of hidden node problems, the simulation results show that iPro significantly outperforms standard IEEE 802.11, especially when the number of competing nodes increases.

  13. Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim

    2012-01-01

    A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.

  14. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    Science.gov (United States)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  15. A Multi-Objective Learning to re-Rank Approach to Optimize Online Marketplaces for Multiple Stakeholders

    OpenAIRE

    Nguyen, Phong; Dines, John; Krasnodebski, Jan

    2017-01-01

    Multi-objective recommender systems address the difficult task of recommending items that are relevant to multiple, possibly conflicting, criteria. However these systems are most often designed to address the objective of one single stakeholder, typically, in online commerce, the consumers whose input and purchasing decisions ultimately determine the success of the recommendation systems. In this work, we address the multi-objective, multi-stakeholder, recommendation problem involving one or ...

  16. Reserch on Urban Spatial Expansion Model Based on Multi-Object Gray Decision-Making and Ca: a Case Study of Pidu District, Chengdu City

    Science.gov (United States)

    Liu, Z.; Li, Y.

    2018-04-01

    This paper from the perspective of the Neighbor cellular space, Proposed a new urban space expansion model based on a new multi-objective gray decision and CA. The model solved the traditional cellular automata conversion rules is difficult to meet the needs of the inner space-time analysis of urban changes and to overcome the problem of uncertainty in the combination of urban drivers and urban cellular automata. At the same time, the study takes Pidu District as a research area and carries out urban spatial simulation prediction and analysis, and draws the following conclusions: (1) The design idea of the urban spatial expansion model proposed in this paper is that the urban driving factor and the neighborhood function are tightly coupled by the multi-objective grey decision method based on geographical conditions. The simulation results show that the simulation error of urban spatial expansion is less than 5.27 %. The Kappa coefficient is 0.84. It shows that the model can better capture the inner transformation mechanism of the city. (2) We made a simulation prediction for Pidu District of Chengdu by discussing Pidu District of Chengdu as a system instance.In this way, we analyzed the urban growth tendency of this area.presenting a contiguous increasing mode, which is called "urban intensive development". This expansion mode accorded with sustainable development theory and the ecological urbanization design theory.

  17. Improvement of Frequency Fluctuations in Microgrids Using an Optimized Fuzzy P-PID Controller by Modified Multi Objective Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    H. Shayeghi

    2016-12-01

    Full Text Available Microgrids is an new opportunity to reduce the total costs of power generation and supply the energy demands through small-scale power plants such as wind sources, photo voltaic panels, battery banks, fuel cells, etc. Like any power system in micro grid (MG, an unexpected faults or load shifting leads to frequency oscillations. Hence, this paper employs an adaptive fuzzy P-PID controller for frequency control of microgrid and a modified multi objective Chaotic Gravitational Search Algorithm (CGSA in order to find out the optimal setting parameters of the proposed controller. To provide a robust controller design, two non-commensurable objective functions are formulated based on eigenvalues-domain and time-domain and multi objective CGSA algorithm is used to solve them. Moreover, a fuzzy decision method is applied to extract the best and optimal Pareto fronts. The proposed controller is carried out on a MG system under different loading conditions with wind turbine generators, photovoltaic system, flywheel energy, battery storages, diesel generator and electrolyzer. The simulation results revealed that the proposed controller is more stable in comparison with the classical and other types of fuzzy controller.

  18. Fast and fuzzy multi-objective radiotherapy treatment plan generation for head and neck cancer patients with the lexicographic reference point method (LRPM)

    Science.gov (United States)

    van Haveren, Rens; Ogryczak, Włodzimierz; Verduijn, Gerda M.; Keijzer, Marleen; Heijmen, Ben J. M.; Breedveld, Sebastiaan

    2017-06-01

    Previously, we have proposed Erasmus-iCycle, an algorithm for fully automated IMRT plan generation based on prioritised (lexicographic) multi-objective optimisation with the 2-phase ɛ-constraint (2pɛc) method. For each patient, the output of Erasmus-iCycle is a clinically favourable, Pareto optimal plan. The 2pɛc method uses a list of objective functions that are consecutively optimised, following a strict, user-defined prioritisation. The novel lexicographic reference point method (LRPM) is capable of solving multi-objective problems in a single optimisation, using a fuzzy prioritisation of the objectives. Trade-offs are made globally, aiming for large favourable gains for lower prioritised objectives at the cost of only slight degradations for higher prioritised objectives, or vice versa. In this study, the LRPM is validated for 15 head and neck cancer patients receiving bilateral neck irradiation. The generated plans using the LRPM are compared with the plans resulting from the 2pɛc method. Both methods were capable of automatically generating clinically relevant treatment plans for all patients. For some patients, the LRPM allowed large favourable gains in some treatment plan objectives at the cost of only small degradations for the others. Moreover, because of the applied single optimisation instead of multiple optimisations, the LRPM reduced the average computation time from 209.2 to 9.5 min, a speed-up factor of 22 relative to the 2pɛc method.

  19. SU-E-T-628: A Cloud Computing Based Multi-Objective Optimization Method for Inverse Treatment Planning.

    Science.gov (United States)

    Na, Y; Suh, T; Xing, L

    2012-06-01

    Multi-objective (MO) plan optimization entails generation of an enormous number of IMRT or VMAT plans constituting the Pareto surface, which presents a computationally challenging task. The purpose of this work is to overcome the hurdle by developing an efficient MO method using emerging cloud computing platform. As a backbone of cloud computing for optimizing inverse treatment planning, Amazon Elastic Compute Cloud with a master node (17.1 GB memory, 2 virtual cores, 420 GB instance storage, 64-bit platform) is used. The master node is able to scale seamlessly a number of working group instances, called workers, based on the user-defined setting account for MO functions in clinical setting. Each worker solved the objective function with an efficient sparse decomposition method. The workers are automatically terminated if there are finished tasks. The optimized plans are archived to the master node to generate the Pareto solution set. Three clinical cases have been planned using the developed MO IMRT and VMAT planning tools to demonstrate the advantages of the proposed method. The target dose coverage and critical structure sparing of plans are comparable obtained using the cloud computing platform are identical to that obtained using desktop PC (Intel Xeon® CPU 2.33GHz, 8GB memory). It is found that the MO planning speeds up the processing of obtaining the Pareto set substantially for both types of plans. The speedup scales approximately linearly with the number of nodes used for computing. With the use of N nodes, the computational time is reduced by the fitting model, 0.2+2.3/N, with r̂2>0.99, on average of the cases making real-time MO planning possible. A cloud computing infrastructure is developed for MO optimization. The algorithm substantially improves the speed of inverse plan optimization. The platform is valuable for both MO planning and future off- or on-line adaptive re-planning. © 2012 American Association of Physicists in Medicine.

  20. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty.

    Science.gov (United States)

    Zhang, Huifeng; Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications.

  1. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  2. Thermal design and technical economical and environmental analyses of a hydrogen fired multi-objective cogeneration system

    International Nuclear Information System (INIS)

    Durmaz, A; Yilmazoglu, M. Z.; Pasoglu, A.

    2007-01-01

    Approximately 85% of rapidly increasing world energy demand is supplied by fossil fuels. Extreme usage of fossil fuels causes serious global warming and environmental problems in form of air, soil and water pollutions. The period, in which fossil fuel reserves are decreasing, energy costs are increasing rapidly and new energy sources and technologies do not exist on the horizon, can be called as the expensive and critical energy period. Hydrogen becomes a matter of primary importance as a candidate energy source and carrier in the critical energy period and beyond to solve the energy and environmental problems radically. In this respect, the main obstacle for the use of hydrogen is the high cost of hydrogen production, which is expected to be decreased in the feature. The aim of this study is to examine how hydrogen energy will be able to be integrated with the existing energy substructure with technical and economical dimensions. In this sense, a multi objective hydrogen fired gas turbine cogeneration system is designed and optimized. Technical and economical analyses depending on the load conditions and different hydrogen production cost are carried out. It is possible that the co-generated heat is to be marketed for residence and industrial plants in the surrounding at or under market prices. The produced electricity however can only be sold to the public grid at a high unit support price which is only obtainable in case of the development of new energy technologies. This price should however be kept within the nowadays supportable energy price range. The main mechanism to be used during the design stage of the system to achieve this goal is to decrease the amortization and operational costs which lead to decrease investment and fuel costs and to increase the system load factor and co-generated heat revenues

  3. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    Science.gov (United States)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  4. a Multi Objective Model for Optimization of a Green Supply Chain Network

    Science.gov (United States)

    Paksoy, Turan; Özceylan, Eren; Weber, Gerhard-Wilhelm

    2010-06-01

    This study develops a model of a closed-loop supply chain (CLSC) network which starts with the suppliers and recycles with the decomposition centers. As a traditional network design, we consider minimizing the all transportation costs and the raw material purchasing costs. To pay attention for the green impacts, different transportation choices are presented between echelons according to their CO2 emissions. The plants can purchase different raw materials in respect of their recyclable ratios. The focuses of this paper are conducting the minimizing total CO2 emissions. Also we try to encourage the customers to use recyclable materials as an environmental performance viewpoint besides minimizing total costs. A multi objective linear programming model is developed via presenting a numerical example. We close the paper with recommendations for future researches.

  5. A multi-objective approach to the assignment of stock keeping units to unidirectional picking lines

    Directory of Open Access Journals (Sweden)

    Le Roux, G. J.

    2017-05-01

    Full Text Available An order picking system in a distribution centre consisting of parallel unidirectional picking lines is considered. The objectives are to minimise the walking distance of the pickers, the largest volume of stock on a picking line over all picking lines, the number of small packages, and the total penalty incurred for late distributions. The problem is formulated as a multi-objective multiple knapsack problem that is not solvable in a realistic time. Population-based algorithms, including the artificial bee colony algorithm and the genetic algorithm, are also implemented. The results obtained from all algorithms indicate a substantial improvement on all objectives relative to historical assignments. The genetic algorithm delivers the best performance.

  6. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    Science.gov (United States)

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Shape optimization of high power centrifugal compressor using multi-objective optimal method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea [School of Mechanical Engineering, Sungkyunkwan University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

  8. Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier

    Directory of Open Access Journals (Sweden)

    Yuan Ni

    2015-07-01

    Full Text Available The optimizing design for enhancement of the micro performance of manipulator based on analytical models is investigated in this paper. By utilizing the established uncanonical linear homogeneous equations, the quasi-static analytical model of the micro-manipulator is built, and the theoretical calculation results are tested by FEA simulations. To provide a theoretical basis for a micro-manipulator being used in high-precision engineering applications, this paper investigates the modal property based on the analytical model. Based on the finite element method, with multipoint constraint equations, the model is built and the results have a good match with the simulation. The following parametric influences studied show that the influences of other objectives on one objective are complicated.  Consequently, the multi-objective optimization by the derived analytical models is carried out to find out the optimal solutions of the manipulator. Besides the inner relationships among these design objectives during the optimization process are discussed.

  9. Intersection signal control multi-objective optimization based on genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhanhong Zhou

    2014-04-01

    Full Text Available A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at an intersection. The optimization method combined the Paramics microscopic traffic simulation software, Comprehensive Modal Emissions Model (CMEM, and genetic algorithm. An intersection in Haizhu District, Guangzhou, was taken for a case study. The result of the case study shows the optimal timing scheme obtained from this method is better than the Webster timing scheme.

  10. A Constrained Multi-Objective Learning Algorithm for Feed-Forward Neural Network Classifiers

    Directory of Open Access Journals (Sweden)

    M. Njah

    2017-06-01

    Full Text Available This paper proposes a new approach to address the optimal design of a Feed-forward Neural Network (FNN based classifier. The originality of the proposed methodology, called CMOA, lie in the use of a new constraint handling technique based on a self-adaptive penalty procedure in order to direct the entire search effort towards finding only Pareto optimal solutions that are acceptable. Neurons and connections of the FNN Classifier are dynamically built during the learning process. The approach includes differential evolution to create new individuals and then keeps only the non-dominated ones as the basis for the next generation. The designed FNN Classifier is applied to six binary classification benchmark problems, obtained from the UCI repository, and results indicated the advantages of the proposed approach over other existing multi-objective evolutionary neural networks classifiers reported recently in the literature.

  11. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    Science.gov (United States)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  12. The Combined Multi-objective Optimization Design for a Light Guide Rod

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Fung, Rong-Fong; Shih, Chun-Yao; Chien, Hong-Yao

    2013-01-01

    The light guide rod (LGR) has been popularly used for the vehicles, and the automobile lamp industries need mass production to match this trend. This paper aims to develop a systemic way to find the best parameters' combination for the LGR, and the parameters are usually restricted to some levels and random values. In this paper, the LGR example with two optical performances of illuminance flux and uniformity is to be optimized by use of the real-coded genetic algorithm (RGA) and grey relational analysis (GRA). The illuminance flux and uniformity of the best parameters' combination are obtained and compared with the initial set. Comparisons with Taguchi-Grey can improve 5% of gain and comparisons with Pareto genetic algorithm (PaGA) can improve 1.7% of gain. The combined multi-objective optimization can saving 7% time and it is found that the new proposed method has positive gains in performances.

  13. Comprehensive benefit analysis of regional water resources based on multi-objective evaluation

    Science.gov (United States)

    Chi, Yixia; Xue, Lianqing; Zhang, Hui

    2018-01-01

    The purpose of the water resources comprehensive benefits analysis is to maximize the comprehensive benefits on the aspects of social, economic and ecological environment. Aiming at the defects of the traditional analytic hierarchy process in the evaluation of water resources, it proposed a comprehensive benefit evaluation of social, economic and environmental benefits index from the perspective of water resources comprehensive benefit in the social system, economic system and environmental system; determined the index weight by the improved fuzzy analytic hierarchy process (AHP), calculated the relative index of water resources comprehensive benefit and analyzed the comprehensive benefit of water resources in Xiangshui County by the multi-objective evaluation model. Based on the water resources data in Xiangshui County, 20 main comprehensive benefit assessment factors of 5 districts belonged to Xiangshui County were evaluated. The results showed that the comprehensive benefit of Xiangshui County was 0.7317, meanwhile the social economy has a further development space in the current situation of water resources.

  14. Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-04-01

    Full Text Available To secure a stable energy supply and bring renewable energy to buildings within a reasonable cost range, a hybrid energy system (HES that integrates both fossil fuel energy systems (FFESs and new and renewable energy systems (NRESs needs to be designed and applied. This paper presents a methodology to optimize a HES consisting of three types of NRESs and six types of FFESs while simultaneously minimizing life cycle cost (LCC, maximizing penetration of renewable energy and minimizing annual greenhouse gas (GHG emissions. An elitist non-dominated sorting genetic algorithm is utilized for multi-objective optimization. As an example, we have designed the optimal configuration and sizing for a HES in an elementary school. The evolution of Pareto-optimal solutions according to the variation in the economic, technical and environmental objective functions through generations is discussed. The pair wise trade-offs among the three objectives are also examined.

  15. A mask quality control tool for the OSIRIS multi-object spectrograph

    Science.gov (United States)

    López-Ruiz, J. C.; Vaz Cedillo, Jacinto Javier; Ederoclite, Alessandro; Bongiovanni, Ángel; González Escalera, Víctor

    2012-09-01

    OSIRIS multi object spectrograph uses a set of user-customised-masks, which are manufactured on-demand. The manufacturing process consists of drilling the specified slits on the mask with the required accuracy. Ensuring that slits are on the right place when observing is of vital importance. We present a tool for checking the quality of the process of manufacturing the masks which is based on analyzing the instrument images obtained with the manufactured masks on place. The tool extracts the slit information from these images, relates specifications with the extracted slit information, and finally communicates to the operator if the manufactured mask fulfills the expectations of the mask designer. The proposed tool has been built using scripting languages and using standard libraries such as opencv, pyraf and scipy. The software architecture, advantages and limits of this tool in the lifecycle of a multiobject acquisition are presented.

  16. Energy resource allocation using multi-objective goal programming: the case of Lebanon

    International Nuclear Information System (INIS)

    Mezher, T.; Chedid, R.; Zahabi, W.

    1998-01-01

    The traditional energy-resources allocation problem is concerned with the allocation of limited resources among the end-uses such that the overall return is maximized. In the past, several techniques have been used to deal with such a problem. In this paper, the energy allocation process is looked at from two points of view: economy and environment. The economic objectives include costs, efficiency, energy conservation, and employment generation. The environmental objectives consider environmental friendliness factors. The objective functions are first quantified and then transformed into mathematical language to obtain a multi-objective allocation model based upon pre-emptive goal programming techniques. The proposed method allows decision-makers to encourage or discourage specific energy resources for the various household end-uses. The case of Lebanon is examined to illustrate the usefulness of the proposed technique. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design

    International Nuclear Information System (INIS)

    Toffolo, A.; Lazzaretto, A.

    2002-01-01

    Thermoeconomic analyses in thermal system design are always focused on the economic objective. However, knowledge of only the economic minimum may not be sufficient in the decision making process, since solutions with a higher thermodynamic efficiency, in spite of small increases in total costs, may result in much more interesting designs due to changes in energy market prices or in energy policies. This paper suggests how to perform a multi-objective optimization in order to find solutions that simultaneously satisfy exergetic and economic objectives. This corresponds to a search for the set of Pareto optimal solutions with respect to the two competing objectives. The optimization process is carried out by an evolutionary algorithm, that features a new diversity preserving mechanism using as a test case the well-known CGAM problem. (author)

  18. Robust Multi-Objective PQ Scheduling for Electric Vehicles in Flexible Unbalanced Distribution Grids

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Soroudi, Alireza; Marinelli, Mattia

    2017-01-01

    With increased penetration of distributed energy resources and electric vehicles (EVs), different EV management strategies can be used for mitigating adverse effects and supporting the distribution grid. This paper proposes a robust multi-objective methodology for determining the optimal day...... demand response programs. The method is tested on a real Danish unbalanced distribution grid with 35% EV penetration to demonstrate the effectiveness of the proposed approach. It is shown that the proposed formulation guarantees an optimal EV cost as long as the price uncertainties are lower than....... The robust formulation effectively considers the errors in the electricity price forecast and its influence on the EV schedule. Moreover, the impact of EV reactive power support on objective values and technical parameters is analysed both when EVs are the only flexible resources and when linked with other...

  19. Multi-objective decision-making under uncertainty: Fuzzy logic methods

    Science.gov (United States)

    Hardy, Terry L.

    1995-01-01

    Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.

  20. Multi-objective thermodynamic optimization of combined Brayton and inverse Brayton cycles using genetic algorithms

    International Nuclear Information System (INIS)

    Besarati, S.M.; Atashkari, K.; Jamali, A.; Hajiloo, A.; Nariman-zadeh, N.

    2010-01-01

    This paper presents a simultaneous optimization study of two outputs performance of a previously proposed combined Brayton and inverse Brayton cycles. It has been carried out by varying the upper cycle pressure ratio, the expansion pressure of the bottom cycle and using variable, above atmospheric, bottom cycle inlet pressure. Multi-objective genetic algorithms are used for Pareto approach optimization of the cycle outputs. The two important conflicting thermodynamic objectives that have been considered in this work are net specific work (w s ) and thermal efficiency (η th ). It is shown that some interesting features among optimal objective functions and decision variables involved in the Baryton and inverse Brayton cycles can be discovered consequently.

  1. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    Science.gov (United States)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  2. NSGA-II algorithm for multi-objective generation expansion planning problem

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, P.; Kannan, S. [Electronics and Communication Engineering Department, Arulmigu Kalasalingam College of Engineering, Krishnankoil 626190, Tamilnadu (India); Baskar, S. [Electrical Engineering Department, Thiagarajar College of Engineering, Madurai 625015, Tamilnadu (India)

    2009-04-15

    This paper presents an application of Elitist Non-dominated Sorting Genetic Algorithm version II (NSGA-II), to multi-objective generation expansion planning (GEP) problem. The GEP problem is considered as a two-objective problem. The first objective is the minimization of investment cost and the second objective is the minimization of outage cost (or maximization of reliability). To improve the performance of NSGA-II, two modifications are proposed. One modification is incorporation of Virtual Mapping Procedure (VMP), and the other is introduction of controlled elitism in NSGA-II. A synthetic test system having 5 types of candidate units is considered here for GEP for a 6-year planning horizon. The effectiveness of the proposed modifications is illustrated in detail. (author)

  3. Multi-objective optimization of a series–parallel system using GPSIA

    International Nuclear Information System (INIS)

    Okafor, Ekene Gabriel; Sun Youchao

    2012-01-01

    The optimal solution of a multi-objective optimization problem (MOP) corresponds to a Pareto set that is characterized by a tradeoff between objectives. Genetic Pareto Set Identification Algorithm (GPSIA) proposed for reliability-redundant MOPs is a hybrid technique which combines genetic and heuristic principles to generate non-dominated solutions. Series–parallel system with active redundancy is studied in this paper. Reliability and cost were the research objective functions subject to cost and weight constraints. The results reveal an evenly distributed non-dominated front. The distances between successive Pareto points were used to evaluate the general performance of the method. Plots were also used to show the computational results for the type of system studied and the robustness of the technique is discussed in comparison with NSGA-II and SPEA-2.

  4. Economic planning for electric energy systems: a multi objective linearized approach for solution

    International Nuclear Information System (INIS)

    Mata Medeiros Branco, T. da.

    1986-01-01

    The economic planning problem associated to the expansion and operation of electrical power systems is considered in this study, represented for a vectorial objective function in which the minimization of resources involved and maximization of attended demand constitute goals to be satisfied. Supposing all the variables involved with linear characteristic and considering the conflict existing among the objectives to be achieved, in order to find a solution, a multi objective linearized approach is proposed. This approximation utilizes the compromise programming technique and linear programming methods. Generation and transmission are simultaneously considered into the optimization process in which associated losses and the capacity of each line are included. Illustrated examples are also presented with results discussed. (author)

  5. Multi-Objective Optimization for Smart House Applied Real Time Pricing Systems

    Directory of Open Access Journals (Sweden)

    Yasuaki Miyazato

    2016-12-01

    Full Text Available A smart house generally has a Photovoltaic panel (PV, a Heat Pump (HP, a Solar Collector (SC and a fixed battery. Since the fixed battery can buy and store inexpensive electricity during the night, the electricity bill can be reduced. However, a large capacity fixed battery is very expensive. Therefore, there is a need to determine the economic capacity of fixed battery. Furthermore, surplus electric power can be sold using a buyback program. By this program, PV can be effectively utilized and contribute to the reduction of the electricity bill. With this in mind, this research proposes a multi-objective optimization, the purpose of which is electric demand control and reduction of the electricity bill in the smart house. In this optimal problem, the Pareto optimal solutions are searched depending on the fixed battery capacity. Additionally, it is shown that consumers can choose what suits them by comparing the Pareto optimal solutions.

  6. Multi-Objective Optimization for Equipment Capacity in Off-Grid Smart House

    Directory of Open Access Journals (Sweden)

    Yasuaki Miyazato

    2017-01-01

    Full Text Available Recently, the off-grid smart house has been attracting attention in Japan for considering global warming. Moreover, the selling price of surplus power from the renewable energy system by Feed-In Tariff (FIT has declined. Therefore, this paper proposes an off-grid smart house with the introduced Photovoltaic (PV system, Solar Collector (SC system, Hot Water Heat Pump (HWHP, fixed battery and Electric Vehicle (EV. In this research, a multi-objective optimization problem is considered to minimize the introduced capacity and shortage of the power supply in the smart house. It can perform the electric power procurement from the EV charging station for the compensation of a shortage of power supply. From the simulation results, it is shown that the shortage of the power supply can be reduced by the compensation of the EV power. Furthermore, considering the uncertainty for PV output power, reliable simulation results can be obtained.

  7. A fuzzy multi-objective optimization model for sustainable reverse logistics network design

    DEFF Research Database (Denmark)

    Govindan, Kannan; Paam, Parichehr; Abtahi, Amir Reza

    2016-01-01

    Decreasing the environmental impact, increasing the degree of social responsibility, and considering the economic motivations of organizations are three significant features in designing a reverse logistics network under sustainability respects. Developing a model, which can simultaneously consider...... a multi-echelon multi-period multi-objective model for a sustainable reverse logistics network. To reflect all aspects of sustainability, we try to minimize the present value of costs, as well as environmental impacts, and optimize the social responsibility as objective functions of the model. In order...... these environmental, social, and economic aspects and their indicators, is an important problem for both researchers and practitioners. In this paper, we try to address this comprehensive approach by using indicators for measurement of aforementioned aspects and by applying fuzzy mathematical programming to design...

  8. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition

    Directory of Open Access Journals (Sweden)

    Vito Janko

    2017-12-01

    Full Text Available The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  9. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition.

    Science.gov (United States)

    Janko, Vito; Luštrek, Mitja

    2017-12-29

    The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  10. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition †

    Science.gov (United States)

    Janko, Vito

    2017-01-01

    The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy. PMID:29286301

  11. OPTIMASI POLA TANAM PADA LAHAN KERING DI KOTA PEKANBARU DENGAN MENGGUNAKAN METODA MULTI OBJECTIVE (GOAL PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Vera Devani

    2012-12-01

    Full Text Available Salah satu alternatif pilihan yang diharapkan dapat meningkatkan potensi produksi tanaman dalam rangka memenuhi kebutuhan pangan adalah pendayagunaan lahan kering. Pada model Linear Programming kendala-kendala fungsional menjadi pembatas bagi usaha memaksimumkan atau meminimumkan fungsi tujuan, maka pada Multi Objective Goal Programming kendala-kendala itu merupakan sarana untuk mewujudkan sasaran yang hendak dicapai. Penelitian ini bertujuan untuk menentukan pola tanam sayur-sayuran, menentukan kendala sasaran yang dapat dicapai, dan mengetahui sensitivitas terhadap solusi optimum yang telah dicapai. Dari penelitian diperoleh bahwa dengan luas lahan 504 Ha, jumlah tenaga kerja 300 orang, kebutuhan pupuk kandang sebanyak 15.000 kg/Ha, dan kebutuhan pupuk urea sebanyak 350 kg/Ha dapat mengoptimasi pola tanam dengan menanam jenis komoditas sayuran berupa ketimun dan sawi.

  12. Carbon stock projection in North Sumatera using multi objective land allocation approach

    Science.gov (United States)

    Ichwani, S. N.; Wulandari, R.; Ramachandra, A.

    2018-05-01

    Nowadays, GHG emission is a critical issue for environmental management due to the large scale of land cover change, especially forest cover. This study provides a protection development strategy for North Sumatera as one way to manage the area. By using Multi Objective Land Allocation (MOLA), we evaluated two GHG emission scenarios, including a Business As Usual (BAU) scenario and Protection scenario. The result shows that the province will lose the carbon stock up to 24 million tons in the year of 2035 by using a BAU scenario. On the other hand, by implementing the Protection scenario, total carbon stock that is lost in the same period is about 5 millions tons solely. It proves that protection scenario is a good scenario and effective to reduce the carbon loss. Furthermore, this scenario can be an alternative for North Sumatera spatial plan.

  13. Multi-objective optimization of circular magnetic abrasive polishing of SUS304 and Cu materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, NhatTan; Yin, ShaoHui; Chen, FengJun; Yin, HanFeng [Hunan University, Changsha (China); Pham, VanThoan [Hanoi University, Hanoi (Viet Nam); Tran, TrongNhan [Industrial University of Ho Chi Minh City, HCM City (Viet Nam)

    2016-06-15

    In this paper, a Multi-objective particle swarm optimization algorithm (MOPSOA) is applied to optimize surface roughness of workpiece after circular magnetic abrasive polishing. The most important parameters of polishing model, namely current, gap between pole and workpiece, spindle speed and polishing time, were considered in this approach. The objective functions of the MOPSOA depend on the quality of surface roughness of polishing materials with both simultaneous surfaces (Ra1, Ra2), which are determined by means of experimental approach with the aid of circular magnetic field. Finally, the effectiveness of the approach is compared between the optimal results with the experimental data. The results show that the new proposed polishing optimization method is more feasible.

  14. The Formation of Optimal Portfolio of Mutual Shares Funds using Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yandra Arkeman

    2013-09-01

    Full Text Available Investments in financial assets have become a trend in the globalization era, especially the investment in mutual fund shares. Investors who want to invest in stock mutual funds can set up an investment portfolio in order to generate a minimal risk and maximum return. In this study the authors used the Multi-Objective Genetic Algorithm Non-dominated Sorting II (MOGA NSGA-II technique with the Markowitz portfolio principle to find the best portfolio from several mutual funds. The data used are 10 company stock mutual funds with a period of 12 months, 24 months and 36 months. The genetic algorithm parameters used are crossover probability of 0.65, mutation probability of 0.05, Generation 400 and a population numbering 20 individuals. The study produced a combination of the best portfolios for the period of 24 months with a computing time of 63,289 seconds.

  15. Swarm intelligence for multi-objective optimization of synthesis gas production

    Science.gov (United States)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  16. Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.

    Science.gov (United States)

    Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon

    2017-01-01

    In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.

  17. Prioritization of buffer areas with multi objective analysis: application in the Basin Creek St. Helena

    International Nuclear Information System (INIS)

    Zuluaga, Julian; Carvajal, Luis Fernando

    2006-01-01

    This paper shows a Multi objective Analysis (AMO-ELECTRE 111) with Geographical Information System (GIS) to establish priorities of buffer zones on the drainage network of the Santa Elena Creek, Medellin middle-east zone. 38 alternatives (small catchment) are evaluated with seven criteria, from field work, and maps. The criteria are: susceptibility to mass sliding, surface and lineal erosion, conflict by land use, and state of the waterways network in respect to hydrology, geology and human impact. The ELECTERE III method allows establishing priorities of buffer zones for each catchment; the indifference, acceptance, veto, and credibility threshold values, as well as those for criteria weighting factors are very important. The results show that the north zone of the catchment, commune 8, in particular La Castro creek, is most affected. The sensibility analysis shows that the obtained solution is robust, and that the anthropic and geologic criteria are paramount

  18. Developing a Novel Multi-objective Programming Model for Personnel Assignment Problem

    Directory of Open Access Journals (Sweden)

    Mehdi Seifbarghy

    2014-05-01

    Full Text Available The assignment of personnel to the right positions in order to increase organization's performance is one of the most crucial tasks in human resource management. In this paper, personnel assignment problem is formulated as a multi-objective binary integer programming model in which skills, level of satisfaction and training cost of personnel are considered simultaneously in productive company. The purpose of this model is to obtain the best matching between candidates and positions. In this model, a set of methods such as a group analytic hierarchy process (GAHP, Shannon entropy, coefficient of variation (CV and fuzzy logic are used to calculate the weights of evaluation criteria, weights of position and coefficient of objective functions. This proposed model can rationalize the subjective judgments of decision makers with mathematic models.

  19. Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps

    International Nuclear Information System (INIS)

    Molyneaux, A.; Leyland, G.; Favrat, D.

    2010-01-01

    Concern for the environment has been steadily growing in recent years, and it is becoming more common to include environmental impact and pollution costs in the design problem along with construction, investment and operating costs. To economically respond to the global environmental problems ahead, progress must be made both on more sustainable technologies and on the design methodology, which needs to adopt a more holistic approach. Heat pumps and, in particular systems integrating heat pumps and cogeneration units, offer a significant potential for greenhouse gas reduction. This paper illustrates the application of a multi-objective and multi-modal evolutionary algorithm to facilitate the design and planning of a district heating network based on a combination of centralized and decentralized heat pumps combined with on-site cogeneration. Comparisons are made with an earlier study based on a single objective environomic optimisation of the same overall model.

  20. Shape optimization of high power centrifugal compressor using multi-objective optimal method

    International Nuclear Information System (INIS)

    Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea

    2015-01-01

    In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively