WorldWideScience

Sample records for solving large systems

  1. A convex optimization approach for solving large scale linear systems

    Directory of Open Access Journals (Sweden)

    Debora Cores

    2017-01-01

    Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.

  2. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    International Nuclear Information System (INIS)

    Gene Golub; Kwok Ko

    2009-01-01

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  3. Solving large scale unit dilemma in electricity system by applying commutative law

    Science.gov (United States)

    Legino, Supriadi; Arianto, Rakhmat

    2018-03-01

    The conventional system, pooling resources with large centralized power plant interconnected as a network. provides a lot of advantages compare to the isolated one include optimizing efficiency and reliability. However, such a large plant need a huge capital. In addition, more problems emerged to hinder the construction of big power plant as well as its associated transmission lines. By applying commutative law of math, ab = ba, for all a,b €-R, the problem associated with conventional system as depicted above, can be reduced. The idea of having small unit but many power plants, namely “Listrik Kerakyatan,” abbreviated as LK provides both social and environmental benefit that could be capitalized by using proper assumption. This study compares the cost and benefit of LK to those of conventional system, using simulation method to prove that LK offers alternative solution to answer many problems associated with the large system. Commutative Law of Algebra can be used as a simple mathematical model to analyze whether the LK system as an eco-friendly distributed generation can be applied to solve various problems associated with a large scale conventional system. The result of simulation shows that LK provides more value if its plants operate in less than 11 hours as peaker power plant or load follower power plant to improve load curve balance of the power system. The result of simulation indicates that the investment cost of LK plant should be optimized in order to minimize the plant investment cost. This study indicates that the benefit of economies of scale principle does not always apply to every condition, particularly if the portion of intangible cost and benefit is relatively high.

  4. More on Generalizations and Modifications of Iterative Methods for Solving Large Sparse Indefinite Linear Systems

    Directory of Open Access Journals (Sweden)

    Jen-Yuan Chen

    2014-01-01

    Full Text Available Continuing from the works of Li et al. (2014, Li (2007, and Kincaid et al. (2000, we present more generalizations and modifications of iterative methods for solving large sparse symmetric and nonsymmetric indefinite systems of linear equations. We discuss a variety of iterative methods such as GMRES, MGMRES, MINRES, LQ-MINRES, QR MINRES, MMINRES, MGRES, and others.

  5. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    Energy Technology Data Exchange (ETDEWEB)

    Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  6. Krylov subspace methods for solving large unsymmetric linear systems

    International Nuclear Information System (INIS)

    Saad, Y.

    1981-01-01

    Some algorithms based upon a projection process onto the Krylov subspace K/sub m/ = Span(r 0 , Ar 0 ,...,A/sup m/-1r 0 ) are developed, generalizing the method of conjugate gradients to unsymmetric systems. These methods are extensions of Arnoldi's algorithm for solving eigenvalue problems. The convergence is analyzed in terms of the distance of the solution to the subspace K/sub m/ and some error bounds are established showing, in particular, a similarity with the conjugate gradient method (for symmetric matrices) when the eigenvalues are real. Several numerical experiments are described and discussed

  7. Planning under uncertainty solving large-scale stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  8. A Chess-Like Game for Teaching Engineering Students to Solve Large System of Simultaneous Linear Equations

    Science.gov (United States)

    Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash

    2010-01-01

    Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!

  9. Solving Large-Scale Computational Problems Using Insights from Statistical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Selman, Bart [Cornell University

    2012-02-29

    Many challenging problems in computer science and related fields can be formulated as constraint satisfaction problems. Such problems consist of a set of discrete variables and a set of constraints between those variables, and represent a general class of so-called NP-complete problems. The goal is to find a value assignment to the variables that satisfies all constraints, generally requiring a search through and exponentially large space of variable-value assignments. Models for disordered systems, as studied in statistical physics, can provide important new insights into the nature of constraint satisfaction problems. Recently, work in this area has resulted in the discovery of a new method for solving such problems, called the survey propagation (SP) method. With SP, we can solve problems with millions of variables and constraints, an improvement of two orders of magnitude over previous methods.

  10. Krylov subspace methods for the solution of large systems of ODE's

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Bjurstrøm, Nils Henrik

    1998-01-01

    In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified.......In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified....

  11. Solving Large Clustering Problems with Meta-Heuristic Search

    DEFF Research Database (Denmark)

    Turkensteen, Marcel; Andersen, Kim Allan; Bang-Jensen, Jørgen

    In Clustering Problems, groups of similar subjects are to be retrieved from data sets. In this paper, Clustering Problems with the frequently used Minimum Sum-of-Squares Criterion are solved using meta-heuristic search. Tabu search has proved to be a successful methodology for solving optimization...... problems, but applications to large clustering problems are rare. The simulated annealing heuristic has mainly been applied to relatively small instances. In this paper, we implement tabu search and simulated annealing approaches and compare them to the commonly used k-means approach. We find that the meta-heuristic...

  12. Using the Multiplicative Schwarz Alternating Algorithm (MSAA) for Solving the Large Linear System of Equations Related to Global Gravity Field Recovery up to Degree and Order 120

    Science.gov (United States)

    Safari, A.; Sharifi, M. A.; Amjadiparvar, B.

    2010-05-01

    The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low

  13. Engineering management of large scale systems

    Science.gov (United States)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  14. Improved Monkey-King Genetic Algorithm for Solving Large Winner Determination in Combinatorial Auction

    Science.gov (United States)

    Li, Yuzhong

    Using GA solve the winner determination problem (WDP) with large bids and items, run under different distribution, because the search space is large, constraint complex and it may easy to produce infeasible solution, would affect the efficiency and quality of algorithm. This paper present improved MKGA, including three operator: preprocessing, insert bid and exchange recombination, and use Monkey-king elite preservation strategy. Experimental results show that improved MKGA is better than SGA in population size and computation. The problem that traditional branch and bound algorithm hard to solve, improved MKGA can solve and achieve better effect.

  15. Some Applications of Algebraic System Solving

    Science.gov (United States)

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  16. Using a grid platform for solving large sparse linear systems over GF(2)

    OpenAIRE

    Kleinjung , Thorsten; Nussbaum , Lucas; Thomé , Emmanuel

    2010-01-01

    International audience; In Fall 2009, the final step of the factorization of rsa768 was carried out on several clusters of the Grid'5000 platform, leading to a new record in integer factorization. This step involves solving a huge sparse linear system defined over the binary field GF(2). This article aims at describing the algorithm used, the difficulties encountered, and the methodology which led to success. In particular, we illustrate how our use of the block Wiedemann algorithm led to a m...

  17. System to solve three designs of the fuel management

    International Nuclear Information System (INIS)

    Castillo M, J. A.; Ortiz S, J. J.; Montes T, J. L.; Perusquia del C, R.; Marinez R, R.

    2015-09-01

    In this paper preliminary results are presented, obtained with the development of a computer system that resolves three stages of the nuclear fuel management, which are: the axial and radial designs of fuel, as well as the design of nuclear fuel reloads. The novelty of the system is that the solution is obtained solving the 3 mentioned stages, in coupled form. For this, heuristic techniques are used for each stage, in each one of these has a function objective that is applied to particular problems, but in all cases the obtained partial results are used as input data for the next stage. The heuristic techniques that were used to solve the coupled problem are: tabu search, neural networks and a hybrid between the scatter search and path re linking. The system applies an iterative process from the design of a fuel cell to the reload design, since are preliminary results the reload is designed using the operation strategy Haling type. In each one of the stages nuclear parameters inherent to the design are monitored. The results so far show the advantage of solving the problem in a coupled manner, even when a large amount of computer resources is used. (Author)

  18. Optimization theory for large systems

    CERN Document Server

    Lasdon, Leon S

    2002-01-01

    Important text examines most significant algorithms for optimizing large systems and clarifying relations between optimization procedures. Much data appear as charts and graphs and will be highly valuable to readers in selecting a method and estimating computer time and cost in problem-solving. Initial chapter on linear and nonlinear programming presents all necessary background for subjects covered in rest of book. Second chapter illustrates how large-scale mathematical programs arise from real-world problems. Appendixes. List of Symbols.

  19. A matrix formalism to solve interface condition equations in a reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1970-05-15

    When a nuclear reactor or a reactor lattice cell is treated by an approximate procedure to solve the neutron transport equation, as the last computational step often appears a problem of solving systems of algebraic equations stating the interface and boundary conditions for the neutron flux moments. These systems have usually the coefficient matrices of the block-bi diagonal type, containing thus a large number of zero elements. In the present report it is shown how such a system can be solved efficiently accounting for all the zero elements both in the coefficient matrix and in the free term vector. The procedure is presented here for the case of multigroup P{sub 3} calculation of neutron flux distribution in a cylindrical reactor lattice cell. Compared with the standard gaussian elimination method, this procedure is more advantageous both in respect to the number of operations needed to solve a given problem and in respect to the computer memory storage requirements. A similar formalism can also be applied for other approximate methods, for instance for multigroup diffusion treatment of a multi zone reactor. (author)

  20. A note on solving large-scale zero-one programming problems

    NARCIS (Netherlands)

    Adema, Jos J.

    1988-01-01

    A heuristic for solving large-scale zero-one programming problems is provided. The heuristic is based on the modifications made by H. Crowder et al. (1983) to the standard branch-and-bound strategy. First, the initialization is modified. The modification is only useful if the objective function

  1. Side effects of problem-solving strategies in large-scale nutrition science: towards a diversification of health.

    Science.gov (United States)

    Penders, Bart; Vos, Rein; Horstman, Klasien

    2009-11-01

    Solving complex problems in large-scale research programmes requires cooperation and division of labour. Simultaneously, large-scale problem solving also gives rise to unintended side effects. Based upon 5 years of researching two large-scale nutrigenomic research programmes, we argue that problems are fragmented in order to be solved. These sub-problems are given priority for practical reasons and in the process of solving them, various changes are introduced in each sub-problem. Combined with additional diversity as a result of interdisciplinarity, this makes reassembling the original and overall goal of the research programme less likely. In the case of nutrigenomics and health, this produces a diversification of health. As a result, the public health goal of contemporary nutrition science is not reached in the large-scale research programmes we studied. Large-scale research programmes are very successful in producing scientific publications and new knowledge; however, in reaching their political goals they often are less successful.

  2. Using Systemic Problem Solving (SPS) to Assess Student ...

    African Journals Online (AJOL)

    This paper focuses on the uses of systemic problem solving in chemistry at the tertiary level. Traditional problem solving (TPS) is a useful tool to help teachers examine recall of information, comprehension, and application. However, systemic problem solving (SPS) can challenge students and probe higher cognitive skills ...

  3. Solving linear systems in FLICA-4, thermohydraulic code for 3-D transient computations

    International Nuclear Information System (INIS)

    Allaire, G.

    1995-01-01

    FLICA-4 is a computer code, developed at the CEA (France), devoted to steady state and transient thermal-hydraulic analysis of nuclear reactor cores, for small size problems (around 100 mesh cells) as well as for large ones (more than 100000), on, either standard workstations or vector super-computers. As for time implicit codes, the largest time and memory consuming part of FLICA-4 is the routine dedicated to solve the linear system (the size of which is of the order of the number of cells). Therefore, the efficiency of the code is crucially influenced by the optimization of the algorithms used in assembling and solving linear systems: direct methods as the Gauss (or LU) decomposition for moderate size problems, iterative methods as the preconditioned conjugate gradient for large problems. 6 figs., 13 refs

  4. An implicit iterative scheme for solving large systems of linear equations

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-12-01

    An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches

  5. Decomposition and parallelization strategies for solving large-scale MDO problems

    Energy Technology Data Exchange (ETDEWEB)

    Grauer, M.; Eschenauer, H.A. [Research Center for Multidisciplinary Analyses and Applied Structural Optimization, FOMAAS, Univ. of Siegen (Germany)

    2007-07-01

    During previous years, structural optimization has been recognized as a useful tool within the discriptiones of engineering and economics. However, the optimization of large-scale systems or structures is impeded by an immense solution effort. This was the reason to start a joint research and development (R and D) project between the Institute of Mechanics and Control Engineering and the Information and Decision Sciences Institute within the Research Center for Multidisciplinary Analyses and Applied Structural Optimization (FOMAAS) on cluster computing for parallel and distributed solution of multidisciplinary optimization (MDO) problems based on the OpTiX-Workbench. Here the focus of attention will be put on coarsegrained parallelization and its implementation on clusters of workstations. A further point of emphasis was laid on the development of a parallel decomposition strategy called PARDEC, for the solution of very complex optimization problems which cannot be solved efficiently by sequential integrated optimization. The use of the OptiX-Workbench together with the FEM ground water simulation system FEFLOW is shown for a special water management problem. (orig.)

  6. Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.

    Science.gov (United States)

    Musen, M A

    1998-01-01

    When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.

  7. Confluent-Functional solving systems

    Directory of Open Access Journals (Sweden)

    V.N. Koval

    2001-08-01

    Full Text Available The paper proposes a statistical knowledge-acquision approach. The solving systems are considered, which are able to find unknown structural dependences between situational and transforming variables on the basis of statistically analyzed input information. Situational variables describe features, states and relations between environment objects. Transforming variables describe transforming influences, exerted by a goal-oriented system onto an environment. Unknown environment rules are simulated by a structural equations system, associating situational and transforming variables.

  8. Numerical solution of large sparse linear systems

    International Nuclear Information System (INIS)

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  9. The mathematical statement for the solving of the problem of N-version software system design

    Science.gov (United States)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The N-version programming, as a methodology of the fault-tolerant software systems design, allows successful solving of the mentioned tasks. The use of N-version programming approach turns out to be effective, since the system is constructed out of several parallel executed versions of some software module. Those versions are written to meet the same specification but by different programmers. The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality.

  10. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  11. Solving large scale structure in ten easy steps with COLA

    Energy Technology Data Exchange (ETDEWEB)

    Tassev, Svetlin [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Eisenstein, Daniel J., E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu, E-mail: deisenstein@cfa.harvard.edu [Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  12. Solving Large-Scale TSP Using a Fast Wedging Insertion Partitioning Approach

    Directory of Open Access Journals (Sweden)

    Zuoyong Xiang

    2015-01-01

    Full Text Available A new partitioning method, called Wedging Insertion, is proposed for solving large-scale symmetric Traveling Salesman Problem (TSP. The idea of our proposed algorithm is to cut a TSP tour into four segments by nodes’ coordinate (not by rectangle, such as Strip, FRP, and Karp. Each node is located in one of their segments, which excludes four particular nodes, and each segment does not twist with other segments. After the partitioning process, this algorithm utilizes traditional construction method, that is, the insertion method, for each segment to improve the quality of tour, and then connects the starting node and the ending node of each segment to obtain the complete tour. In order to test the performance of our proposed algorithm, we conduct the experiments on various TSPLIB instances. The experimental results show that our proposed algorithm in this paper is more efficient for solving large-scale TSPs. Specifically, our approach is able to obviously reduce the time complexity for running the algorithm; meanwhile, it will lose only about 10% of the algorithm’s performance.

  13. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    Science.gov (United States)

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  14. Clock Math — a System for Solving SLEs Exactly

    Directory of Open Access Journals (Sweden)

    Jakub Hladík

    2013-01-01

    Full Text Available In this paper, we present a GPU-accelerated hybrid system that solves ill-conditioned systems of linear equations exactly. Exactly means without rounding errors due to using integer arithmetics. First, we scale floating-point numbers up to integers, then we solve dozens of SLEs within different modular arithmetics and then we assemble sub-solutions back using the Chinese remainder theorem. This approach effectively bypasses current CPU floating-point limitations. The system is capable of solving Hilbert’s matrix without losing a single bit of precision, and with a significant speedup compared to existing CPU solvers.

  15. The semantic system is involved in mathematical problem solving.

    Science.gov (United States)

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Multicriteria vehicle routing problem solved by artificial immune system

    Directory of Open Access Journals (Sweden)

    Bogna MRÓWCZYŃSKA

    2015-09-01

    Full Text Available Vehicles route planning in large transportation companies, where drivers are workers, usually takes place on the basis of experience or intuition of the employees. Because of the cost and environmental protection, it is important to save fuel, thus planning routes in an optimal way. In this article an example of the problem is presented solving delivery vans route planning taking into account the distance and travel time within the constraints of vehicle capacities, restrictions on working time of drivers and having varying degrees of movement. An artificial immune system was used for the calculations.

  17. Galerkin projection methods for solving multiple related linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.F.; Ng, M.; Wan, W.L.

    1996-12-31

    We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.

  18. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)

    1982-06-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.

  19. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    International Nuclear Information System (INIS)

    Kashiwagi, H.

    1982-01-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)

  20. Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations

    Science.gov (United States)

    Mamat, Mustafa; Dauda, M. K.; Waziri, M. Y.; Ahmad, Fadhilah; Mohamad, Fatma Susilawati

    2016-10-01

    The Newton method has some shortcomings which includes computation of the Jacobian matrix which may be difficult or even impossible to compute and solving the Newton system in every iteration. Also, the common setback with some quasi-Newton methods is that they need to compute and store an n × n matrix at each iteration, this is computationally costly for large scale problems. To overcome such drawbacks, an improved Method for solving systems of nonlinear equations via PSB (Powell-Symmetric-Broyden) update is proposed. In the proposed method, the approximate Jacobian inverse Hk of PSB is updated and its efficiency has improved thereby require low memory storage, hence the main aim of this paper. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.

  1. Problem solving using soft systems methodology.

    Science.gov (United States)

    Land, L

    This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.

  2. A new modified conjugate gradient coefficient for solving system of linear equations

    Science.gov (United States)

    Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations

  3. Solving modified systems with multiple right-hand sides

    Energy Technology Data Exchange (ETDEWEB)

    Simoncini, V.; Gallopoulos, E. [Univ. of Patras (Greece)

    1996-12-31

    In this talk we discuss the iterative solution of large linear systems of the form (A + USV{sup H})X = B, where A is an n x n non-Hermitian matrix, USV{sup H} is a rank-r modification of A and B is of rank s with s, r {much_lt} n. We analyze several approaches that exploit the structure of the coefficient matrix so as to solve the systems more efficiently than if one were to apply a non-hermitian solver to the original systems. In the development of procedures, we take into account the presence of both the low-rank modification and the several right-hand sides. Interesting issues connected to this problem originate from the quest for techniques that accelerate the underlying iterative solvers: preconditioning (e.g. inner-outer iteration strategies), domain decomposition, and continuation methods. Experiments are provided to analyze the behavior of the methods depending on the structure of the rectangular matrices. Preconditioning strategies are explored for an efficient implementation on the transformed systems.

  4. Engineering large-scale agent-based systems with consensus

    Science.gov (United States)

    Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.

    1994-01-01

    The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.

  5. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  6. Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure

    Czech Academy of Sciences Publication Activity Database

    Fränzle, M.; Herde, C.; Teige, T.; Ratschan, Stefan; Schubert, T.

    2007-01-01

    Roč. 1, - (2007), s. 209-236 ISSN 1574-0617 Grant - others:AVACS(DE) SFB/TR 14 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval-based arithmetic constraint solving * SAT modulo theories Subject RIV: BA - General Mathematics

  7. Solving a large-scale precedence constrained scheduling problem with elastic jobs using tabu search

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Rasmussen, R.V.; Andersen, Kim Allan

    2007-01-01

    This paper presents a solution method for minimizing makespan of a practical large-scale scheduling problem with elastic jobs. The jobs are processed on three servers and restricted by precedence constraints, time windows and capacity limitations. We derive a new method for approximating the server...... exploitation of the elastic jobs and solve the problem using a tabu search procedure. Finding an initial feasible solution is in general -complete, but the tabu search procedure includes a specialized heuristic for solving this problem. The solution method has proven to be very efficient and leads...

  8. Study of solving a Toda dynamic system with loop algebra

    International Nuclear Information System (INIS)

    Zhu Qiao; Yang Zhanying; Shi Kangjie; Wen Junqing

    2006-01-01

    The authors construct a Toda system with Loop algebra, and prove that the Lax equation L=[L,M] can be solved by means of solving a regular Riemann-Hilbert problem. In our system, M in Lax pair is an antisymmetrical matrix, while L=L + + M, and L + is a quasi-upper triangular matrix of loop algebra. In order to check our result, the authors exactly solve an R-H problem under a given initial condition as an example. (authors)

  9. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  10. Combining the CORS and BiCORSTAB Iterative Methods with MLFMA and SAI Preconditioning for Solving Large Linear Systems in Electromagnetics

    NARCIS (Netherlands)

    Carpentieri, Bruno; Jing, Yan-Fei; Huang, Ting-Zhu; Pi, Wei-Chao; Sheng, Xin-Qing

    We report on experiments with a novel family of Krylov subspace methods for solving dense, complex, non-Hermitian systems of linear equations arising from the Galerkin discretization of surface integral equation models in Electromagnetics. By some experiments on realistic radar-cross-section

  11. Experimental quantum computing to solve systems of linear equations.

    Science.gov (United States)

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  12. Solving a large-scale precedence constrained scheduling problem with elastic jobs using tabu search

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Rasmussen, R.V.; Andersen, Kim Allan

    2007-01-01

    exploitation of the elastic jobs and solve the problem using a tabu search procedure. Finding an initial feasible solution is in general -complete, but the tabu search procedure includes a specialized heuristic for solving this problem. The solution method has proven to be very efficient and leads......This paper presents a solution method for minimizing makespan of a practical large-scale scheduling problem with elastic jobs. The jobs are processed on three servers and restricted by precedence constraints, time windows and capacity limitations. We derive a new method for approximating the server...... to a significant decrease in makespan compared to the strategy currently implemented....

  13. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    Science.gov (United States)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for

  14. A coordination model for ultra-large scale systems of systems

    Directory of Open Access Journals (Sweden)

    Manuela L. Bujorianu

    2013-11-01

    Full Text Available The ultra large multi-agent systems are becoming increasingly popular due to quick decay of the individual production costs and the potential of speeding up the solving of complex problems. Examples include nano-robots, or systems of nano-satellites for dangerous meteorite detection, or cultures of stem cells for organ regeneration or nerve repair. The topics associated with these systems are usually dealt within the theories of intelligent swarms or biologically inspired computation systems. Stochastic models play an important role and they are based on various formulations of the mechanical statistics. In these cases, the main assumption is that the swarm elements have a simple behaviour and that some average properties can be deduced for the entire swarm. In contrast, complex systems in areas like aeronautics are formed by elements with sophisticated behaviour, which are even autonomous. In situations like this, a new approach to swarm coordination is necessary. We present a stochastic model where the swarm elements are communicating autonomous systems, the coordination is separated from the component autonomous activity and the entire swarm can be abstracted away as a piecewise deterministic Markov process, which constitutes one of the most popular model in stochastic control. Keywords: ultra large multi-agent systems, system of systems, autonomous systems, stochastic hybrid systems.

  15. Multiparameter extrapolation and deflation methods for solving equation systems

    Directory of Open Access Journals (Sweden)

    A. J. Hughes Hallett

    1984-01-01

    Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.

  16. Discovering Steiner Triple Systems through Problem Solving

    Science.gov (United States)

    Sriraman, Bharath

    2004-01-01

    An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.

  17. The multilevel fast multipole algorithm (MLFMA) for solving large-scale computational electromagnetics problems

    CERN Document Server

    Ergul, Ozgur

    2014-01-01

    The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examplesCovers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objectsDiscusses applications including scattering from airborne targets, scattering from red

  18. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...

  19. Workflow Agents vs. Expert Systems: Problem Solving Methods in Work Systems Design

    Science.gov (United States)

    Clancey, William J.; Sierhuis, Maarten; Seah, Chin

    2009-01-01

    During the 1980s, a community of artificial intelligence researchers became interested in formalizing problem solving methods as part of an effort called "second generation expert systems" (2nd GES). How do the motivations and results of this research relate to building tools for the workplace today? We provide an historical review of how the theory of expertise has developed, a progress report on a tool for designing and implementing model-based automation (Brahms), and a concrete example how we apply 2nd GES concepts today in an agent-based system for space flight operations (OCAMS). Brahms incorporates an ontology for modeling work practices, what people are doing in the course of a day, characterized as "activities." OCAMS was developed using a simulation-to-implementation methodology, in which a prototype tool was embedded in a simulation of future work practices. OCAMS uses model-based methods to interactively plan its actions and keep track of the work to be done. The problem solving methods of practice are interactive, employing reasoning for and through action in the real world. Analogously, it is as if a medical expert system were charged not just with interpreting culture results, but actually interacting with a patient. Our perspective shifts from building a "problem solving" (expert) system to building an actor in the world. The reusable components in work system designs include entire "problem solvers" (e.g., a planning subsystem), interoperability frameworks, and workflow agents that use and revise models dynamically in a network of people and tools. Consequently, the research focus shifts so "problem solving methods" include ways of knowing that models do not fit the world, and ways of interacting with other agents and people to gain or verify information and (ultimately) adapt rules and procedures to resolve problematic situations.

  20. Application of Homotopy Analysis Method to Solve Relativistic Toda Lattice System

    International Nuclear Information System (INIS)

    Wang Qi

    2010-01-01

    In this letter, the homotopy analysis method is successfully applied to solve the Relativistic Toda lattice system. Comparisons are made between the results of the proposed method and exact solutions. Analysis results show that homotopy analysis method is a powerful and easy-to-use analytic tool to solve systems of differential-difference equations. (general)

  1. Algorithms for large scale singular value analysis of spatially variant tomography systems

    International Nuclear Information System (INIS)

    Cao-Huu, Tuan; Brownell, G.; Lachiver, G.

    1996-01-01

    The problem of determining the eigenvalues of large matrices occurs often in the design and analysis of modem tomography systems. As there is an interest in solving systems containing an ever-increasing number of variables, current research effort is being made to create more robust solvers which do not depend on some special feature of the matrix for convergence (e.g. block circulant), and to improve the speed of already known and understood solvers so that solving even larger systems in a reasonable time becomes viable. Our standard techniques for singular value analysis are based on sparse matrix factorization and are not applicable when the input matrices are large because the algorithms cause too much fill. Fill refers to the increase of non-zero elements in the LU decomposition of the original matrix A (the system matrix). So we have developed iterative solutions that are based on sparse direct methods. Data motion and preconditioning techniques are critical for performance. This conference paper describes our algorithmic approaches for large scale singular value analysis of spatially variant imaging systems, and in particular of PCR2, a cylindrical three-dimensional PET imager 2 built at the Massachusetts General Hospital (MGH) in Boston. We recommend the desirable features and challenges for the next generation of parallel machines for optimal performance of our solver

  2. Decentralized Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2013-01-01

    problem is formulated as a centralized large-scale optimization problem but is then decomposed into smaller subproblems that are solved locally by each unit connected to an aggregator. For large-scale systems the method is faster than solving the full problem and can be distributed to include an arbitrary...

  3. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    Known example problems are solved to illustrate the efficacy and ... The concept of fuzzy set and fuzzy number were first introduced by Zadeh .... (iii) Fully fuzzy linear systems can be solved by linear programming approach, Gauss elim-.

  4. Integrated fringe projection 3D scanning system for large-scale metrology based on laser tracker

    Science.gov (United States)

    Du, Hui; Chen, Xiaobo; Zhou, Dan; Guo, Gen; Xi, Juntong

    2017-10-01

    Large scale components exist widely in advance manufacturing industry,3D profilometry plays a pivotal role for the quality control. This paper proposes a flexible, robust large-scale 3D scanning system by integrating a robot with a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. And a mathematical model is established for the global data fusion. Subsequently, a flexible and robust method and mechanism is introduced for the establishment of the end coordination system. Based on this method, a virtual robot noumenon is constructed for hand-eye calibration. And then the transformation matrix between end coordination system and world coordination system is solved. Validation experiment is implemented for verifying the proposed algorithms. Firstly, hand-eye transformation matrix is solved. Then a car body rear is measured for 16 times for the global data fusion algorithm verification. And the 3D shape of the rear is reconstructed successfully.

  5. A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem.

    Science.gov (United States)

    He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi

    2015-11-01

    A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Solution methods for large systems of linear equations in BACCHUS

    International Nuclear Information System (INIS)

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  7. The integration of marketing problem-solving modes and marketing management support systems

    NARCIS (Netherlands)

    B. Wierenga (Berend); G.H. van Bruggen (Gerrit)

    1997-01-01

    textabstractFocuses on the issue of problem solving in marketing and develops a classification of marketing problem-solving modes (MPSMs). Typology of MPSMs; Relationship among MPSMs; Marketing management support systems.

  8. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefficient matrix. The symmetric coefficient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.

  9. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  10. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  11. Solving or resolving inadequate and noisy tomographic systems

    NARCIS (Netherlands)

    Nolet, G.

    1985-01-01

    Tomography in seismology often leads to underdetermined and inconsistent systems of linear equations. When solving, care must be taken to keep the propagation of data errors under control. In this paper I test the applicability of three types of damped least-squares algorithms to the kind of

  12. Chosen interval methods for solving linear interval systems with special type of matrix

    Science.gov (United States)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  13. Solving large linear systems in an implicit thermohaline ocean model

    NARCIS (Netherlands)

    de Niet, Arie Christiaan

    2007-01-01

    The climate on earth is largely determined by the global ocean circulation. Hence it is important to predict how the flow will react to perturbation by for example melting icecaps. To answer questions about the stability of the global ocean flow, a computer model has been developed that is able to

  14. Derivative free Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations

    Science.gov (United States)

    Mamat, M.; Dauda, M. K.; Mohamed, M. A. bin; Waziri, M. Y.; Mohamad, F. S.; Abdullah, H.

    2018-03-01

    Research from the work of engineers, economist, modelling, industry, computing, and scientist are mostly nonlinear equations in nature. Numerical solution to such systems is widely applied in those areas of mathematics. Over the years, there has been significant theoretical study to develop methods for solving such systems, despite these efforts, unfortunately the methods developed do have deficiency. In a contribution to solve systems of the form F(x) = 0, x ∈ Rn , a derivative free method via the classical Davidon-Fletcher-Powell (DFP) update is presented. This is achieved by simply approximating the inverse Hessian matrix with {Q}k+1-1 to θkI. The modified method satisfied the descent condition and possess local superlinear convergence properties. Interestingly, without computing any derivative, the proposed method never fail to converge throughout the numerical experiments. The output is based on number of iterations and CPU time, different initial starting points were used on a solve 40 benchmark test problems. With the aid of the squared norm merit function and derivative-free line search technique, the approach yield a method of solving symmetric systems of nonlinear equations that is capable of significantly reducing the CPU time and number of iteration, as compared to its counterparts. A comparison between the proposed method and classical DFP update were made and found that the proposed methodis the top performer and outperformed the existing method in almost all the cases. In terms of number of iterations, out of the 40 problems solved, the proposed method solved 38 successfully, (95%) while classical DFP solved 2 problems (i.e. 05%). In terms of CPU time, the proposed method solved 29 out of the 40 problems given, (i.e.72.5%) successfully whereas classical DFP solves 11 (27.5%). The method is valid in terms of derivation, reliable in terms of number of iterations and accurate in terms of CPU time. Thus, suitable and achived the objective.

  15. A new efficient analytical method for a system of vibration. Structural analysis using a new technique of partially solving method

    International Nuclear Information System (INIS)

    Gunyasu, Kenzo; Hiramoto, Tsuneyuki; Tanimoto, Mitsumori; Osano, Minetada

    2002-01-01

    We describe a new method for solving large-scale system of linear equations resulting from discretization of ordinary differential equation and partial differential equation directly. This new method effectively reduces the memory capacity requirements and computing time problems for analyses using finite difference method and finite element method. In this paper we have tried to solve one-million linear equations directly for the case that initial displacement and boundary displacement are known about the finite difference scheme of second order inhomogeneous differential equation for vibration of a 10 story structure. Excellent results were got. (author)

  16. Solving differential–algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas

    2006-01-01

    of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....

  17. A toolbox to solve coupled systems of differential and difference equations

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Schneider, Carsten; Bluemlein, Johannes; Freitas, Abilio de

    2016-01-01

    We present algorithms to solve coupled systems of linear differential equations, arising in the calculation of massive Feynman diagrams with local operator insertions at 3-loop order, which do not request special choices of bases. Here we assume that the desired solution has a power series representation and we seek for the coefficients in closed form. In particular, if the coefficients depend on a small parameter ε (the dimensional parameter), we assume that the coefficients themselves can be expanded in formal Laurent series w.r.t. ε and we try to compute the first terms in closed form. More precisely, we have a decision algorithm which solves the following problem: if the terms can be represented by an indefinite nested hypergeometric sum expression (covering as special cases the harmonic sums, cyclotomic sums, generalized harmonic sums or nested binomial sums), then we can calculate them. If the algorithm fails, we obtain a proof that the terms cannot be represented by the class of indefinite nested hypergeometric sum expressions. Internally, this problem is reduced by holonomic closure properties to solving a coupled system of linear difference equations. The underlying method in this setting relies on decoupling algorithms, difference ring algorithms and recurrence solving. We demonstrate by a concrete example how this algorithm can be applied with the new Mathematica package SolveCoupledSystem which is based on the packages Sigma, HarmonicSums and OreSys. In all applications the representation in x-space is obtained as an iterated integral representation over general alphabets, generalizing Poincare iterated integrals.

  18. A toolbox to solve coupled systems of differential and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Linz Univ. (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Freitas, Abilio de [DESY Zeuthen (Germany)

    2016-01-15

    We present algorithms to solve coupled systems of linear differential equations, arising in the calculation of massive Feynman diagrams with local operator insertions at 3-loop order, which do not request special choices of bases. Here we assume that the desired solution has a power series representation and we seek for the coefficients in closed form. In particular, if the coefficients depend on a small parameter ε (the dimensional parameter), we assume that the coefficients themselves can be expanded in formal Laurent series w.r.t. ε and we try to compute the first terms in closed form. More precisely, we have a decision algorithm which solves the following problem: if the terms can be represented by an indefinite nested hypergeometric sum expression (covering as special cases the harmonic sums, cyclotomic sums, generalized harmonic sums or nested binomial sums), then we can calculate them. If the algorithm fails, we obtain a proof that the terms cannot be represented by the class of indefinite nested hypergeometric sum expressions. Internally, this problem is reduced by holonomic closure properties to solving a coupled system of linear difference equations. The underlying method in this setting relies on decoupling algorithms, difference ring algorithms and recurrence solving. We demonstrate by a concrete example how this algorithm can be applied with the new Mathematica package SolveCoupledSystem which is based on the packages Sigma, HarmonicSums and OreSys. In all applications the representation in x-space is obtained as an iterated integral representation over general alphabets, generalizing Poincare iterated integrals.

  19. Research on unit commitment with large-scale wind power connected power system

    Science.gov (United States)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  20. Solving differential-algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph

    2006-01-01

    of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....

  1. Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection

    Directory of Open Access Journals (Sweden)

    T. La-inchua

    2017-01-01

    Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.

  2. Exp-function method for solving Maccari's system

    International Nuclear Information System (INIS)

    Zhang Sheng

    2007-01-01

    In this Letter, the Exp-function method is used to seek exact solutions of Maccari's system. As a result, single and combined generalized solitonary solutions are obtained, from which some known solutions obtained by extended sine-Gordon equation method and improved hyperbolic function method are recovered as special cases. It is shown that the Exp-function method provides a very effective and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics

  3. The Daily Operational Brief: Fostering Daily Readiness, Care Coordination, and Problem-Solving Accountability in a Large Pediatric Health Care System.

    Science.gov (United States)

    Donnelly, Lane F; Basta, Kathryne C; Dykes, Anne M; Zhang, Wei; Shook, Joan E

    2018-01-01

    At a pediatric health system, the Daily Operational Brief (DOB) was updated in 2015 after three years of operation. Quality and safety metrics, the patient volume and staffing assessment, and the readiness assessment are all presented. In addition, in the problem-solving accountability system, problematic issues are categorized as Quick Hits or Complex Issues. Walk-the-Wall, a biweekly meeting attended by hospital senior administrative leadership and quality and safety leaders, is conducted to chart current progress on Complex Issues. The DOB provides a daily standardized approach to evaluate readiness to provide care to current patients and improvement in the care to be provided for future patients. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  4. On Solving the Lorenz System by Differential Transformation Method

    International Nuclear Information System (INIS)

    Al-Sawalha, M. Mossa; Noorani, M. S. M.

    2008-01-01

    The differential transformation method (DTM) is employed to solve a nonlinear differential equation, namely the Lorenz system. Numerical results are compared to those obtained by the Runge–Kutta method to illustrate the preciseness and effectiveness of the proposed method. In particular, we examine the accuracy of the (DTM) as the Lorenz system changes from a non-chaotic system to a chaotic one. It is shown that the (DTM) is robust, accurate and easy to apply

  5. Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Ouyang, Shuo; Ding, Xiaoling; Chen, Lu

    2014-01-01

    Highlights: • Optimization of large-scale hydropower system in the Yangtze River basin. • Improved decomposition–coordination and discrete differential dynamic programming. • Generating initial solution randomly to reduce generation time. • Proposing relative coefficient for more power generation. • Proposing adaptive bias corridor technology to enhance convergence speed. - Abstract: With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition–coordination and discrete differential dynamic programming (IDC–DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC–DDDP has competitive performances in not only total power generation but also convergence speed, which provides a new method to solve the OLHS problem

  6. Knowledge acquisition from natural language for expert systems based on classification problem-solving methods

    Science.gov (United States)

    Gomez, Fernando

    1989-01-01

    It is shown how certain kinds of domain independent expert systems based on classification problem-solving methods can be constructed directly from natural language descriptions by a human expert. The expert knowledge is not translated into production rules. Rather, it is mapped into conceptual structures which are integrated into long-term memory (LTM). The resulting system is one in which problem-solving, retrieval and memory organization are integrated processes. In other words, the same algorithm and knowledge representation structures are shared by these processes. As a result of this, the system can answer questions, solve problems or reorganize LTM.

  7. Multiobjective CVaR Optimization Model and Solving Method for Hydrothermal System Considering Uncertain Load Demand

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2015-01-01

    Full Text Available In order to solve the influence of load uncertainty on hydrothermal power system operation and achieve the optimal objectives of system power generation consumption, pollutant emissions, and first-stage hydropower station storage capacity, this paper introduced CVaR method and built a multiobjective optimization model and its solving method. In the optimization model, load demand’s actual values and deviation values are regarded as random variables, scheduling objective is redefined to meet confidence level requirement and system operation constraints and loss function constraints are taken into consideration. To solve the proposed model, this paper linearized nonlinear constraints, applied fuzzy satisfaction, fuzzy entropy, and weighted multiobjective function theories to build a fuzzy entropy multiobjective CVaR model. The model is a mixed integer linear programming problem. Then, six thermal power plants and three cascade hydropower stations are taken as the hydrothermal system for numerical simulation. The results verified that multiobjective CVaR method is applicable to solve hydrothermal scheduling problems. It can better reflect risk level of the scheduling result. The fuzzy entropy satisfaction degree solving algorithm can simplify solving difficulty and get the optimum operation scheduling scheme.

  8. AI tools in computer based problem solving

    Science.gov (United States)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  9. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

    KAUST Repository

    Southern, J.A.

    2009-10-01

    The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

  10. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

    KAUST Repository

    Southern, J.A.; Plank, G.; Vigmond, E.J.; Whiteley, J.P.

    2009-01-01

    The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

  11. Comments on new iterative methods for solving linear systems

    Directory of Open Access Journals (Sweden)

    Wang Ke

    2017-06-01

    Full Text Available Some new iterative methods were presented by Du, Zheng and Wang for solving linear systems in [3], where it is shown that the new methods, comparing to the classical Jacobi or Gauss-Seidel method, can be applied to more systems and have faster convergence. This note shows that their methods are suitable for more matrices than positive matrices which the authors suggested through further analysis and numerical examples.

  12. System to solve three designs of the fuel management; Sistema para resolver tres disenos de la administracion de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J. A.; Ortiz S, J. J.; Montes T, J. L.; Perusquia del C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Marinez R, R., E-mail: alejandro.castillo@inin.gob.mx [Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, 24039 San Francisco de Campeche, Campeche (Mexico)

    2015-09-15

    In this paper preliminary results are presented, obtained with the development of a computer system that resolves three stages of the nuclear fuel management, which are: the axial and radial designs of fuel, as well as the design of nuclear fuel reloads. The novelty of the system is that the solution is obtained solving the 3 mentioned stages, in coupled form. For this, heuristic techniques are used for each stage, in each one of these has a function objective that is applied to particular problems, but in all cases the obtained partial results are used as input data for the next stage. The heuristic techniques that were used to solve the coupled problem are: tabu search, neural networks and a hybrid between the scatter search and path re linking. The system applies an iterative process from the design of a fuel cell to the reload design, since are preliminary results the reload is designed using the operation strategy Haling type. In each one of the stages nuclear parameters inherent to the design are monitored. The results so far show the advantage of solving the problem in a coupled manner, even when a large amount of computer resources is used. (Author)

  13. A Decomposition-Based Pricing Method for Solving a Large-Scale MILP Model for an Integrated Fishery

    Directory of Open Access Journals (Sweden)

    M. Babul Hasan

    2007-01-01

    The IFP can be decomposed into a trawler-scheduling subproblem and a fish-processing subproblem in two different ways by relaxing different sets of constraints. We tried conventional decomposition techniques including subgradient optimization and Dantzig-Wolfe decomposition, both of which were unacceptably slow. We then developed a decomposition-based pricing method for solving the large fishery model, which gives excellent computation times. Numerical results for several planning horizon models are presented.

  14. Solution approach for a large scale personnel transport system for a large company in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Garzón-Garnica, Eduardo-Arturo; Caballero-Morales, Santiago-Omar; Martínez-Flores, José-Luis

    2017-07-01

    The present paper focuses on the modelling and solution of a large-scale personnel transportation system in Mexico where many routes and vehicles are currently used to service 525 points. The routing system proposed can be applied to many cities in the Latin-American region. Design/methodology/approach: This system was modelled as a VRP model considering the use of real-world transit times, and the fact that routes start at the farthest point from the destination center. Experiments were performed on different sized sets of service points. As the size of the instances was increased, the performance of the heuristic method was assessed in comparison with the results of an exact algorithm, the results remaining very close between both. When the size of the instance was full-scale and the exact algorithm took too much time to solve the problem, then the heuristic algorithm provided a feasible solution. Supported by the validation with smaller scale instances, where the difference between both solutions was close to a 6%, the full –scale solution obtained with the heuristic algorithm was considered to be within that same range. Findings: The proposed modelling and solving method provided a solution that would produce significant savings in the daily operation of the routes. Originality/value: The urban distribution of the cities in Latin America is unique to other regions in the world. The general layout of the large cities in this region includes a small town center, usually antique, and a somewhat disordered outer region. The lack of a vehicle-centered urban planning poses distinct challenges for vehicle routing problems in the region. The use of a heuristic VRP combined with the results of an exact VRP, allowed the obtention of an improved routing plan specific to the requirements of the region.

  15. Solution approach for a large scale personnel transport system for a large company in Latin America

    International Nuclear Information System (INIS)

    Garzón-Garnica, Eduardo-Arturo; Caballero-Morales, Santiago-Omar; Martínez-Flores, José-Luis

    2017-01-01

    The present paper focuses on the modelling and solution of a large-scale personnel transportation system in Mexico where many routes and vehicles are currently used to service 525 points. The routing system proposed can be applied to many cities in the Latin-American region. Design/methodology/approach: This system was modelled as a VRP model considering the use of real-world transit times, and the fact that routes start at the farthest point from the destination center. Experiments were performed on different sized sets of service points. As the size of the instances was increased, the performance of the heuristic method was assessed in comparison with the results of an exact algorithm, the results remaining very close between both. When the size of the instance was full-scale and the exact algorithm took too much time to solve the problem, then the heuristic algorithm provided a feasible solution. Supported by the validation with smaller scale instances, where the difference between both solutions was close to a 6%, the full –scale solution obtained with the heuristic algorithm was considered to be within that same range. Findings: The proposed modelling and solving method provided a solution that would produce significant savings in the daily operation of the routes. Originality/value: The urban distribution of the cities in Latin America is unique to other regions in the world. The general layout of the large cities in this region includes a small town center, usually antique, and a somewhat disordered outer region. The lack of a vehicle-centered urban planning poses distinct challenges for vehicle routing problems in the region. The use of a heuristic VRP combined with the results of an exact VRP, allowed the obtention of an improved routing plan specific to the requirements of the region.

  16. Solution approach for a large scale personnel transport system for a large company in Latin America

    Directory of Open Access Journals (Sweden)

    Eduardo-Arturo Garzón-Garnica

    2017-10-01

    Full Text Available Purpose: The present paper focuses on the modelling and solution of a large-scale personnel transportation system in Mexico where many routes and vehicles are currently used to service 525 points. The routing system proposed can be applied to many cities in the Latin-American region. Design/methodology/approach: This system was modelled as a VRP model considering the use of real-world transit times, and the fact that routes start at the farthest point from the destination center. Experiments were performed on different sized sets of service points. As the size of the instances was increased, the performance of the heuristic method was assessed in comparison with the results of an exact algorithm, the results remaining very close between both.  When the size of the instance was full-scale and the exact algorithm took too much time to solve the problem, then the heuristic algorithm provided a feasible solution. Supported by the validation with smaller scale instances, where the difference between both solutions was close to a 6%, the full –scale solution obtained with the heuristic algorithm was considered to be within that same range. Findings: The proposed modelling and solving method provided a solution that would produce significant savings in the daily operation of the routes. Originality/value: The urban distribution of the cities in Latin America is unique to other regions in the world. The general layout of the large cities in this region includes a small town center, usually antique, and a somewhat disordered outer region. The lack of a vehicle-centered urban planning poses distinct challenges for vehicle routing problems in the region. The use of a heuristic VRP combined with the results of an exact VRP, allowed the obtention of an improved routing plan specific to the requirements of the region.

  17. A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mountassir Hamdi Cherif

    2017-11-01

    Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

  18. Improvement in Generic Problem-Solving Abilities of Students by Use of Tutor-less Problem-Based Learning in a Large Classroom Setting

    Science.gov (United States)

    Klegeris, Andis; Bahniwal, Manpreet; Hurren, Heather

    2013-01-01

    Problem-based learning (PBL) was originally introduced in medical education programs as a form of small-group learning, but its use has now spread to large undergraduate classrooms in various other disciplines. Introduction of new teaching techniques, including PBL-based methods, needs to be justified by demonstrating the benefits of such techniques over classical teaching styles. Previously, we demonstrated that introduction of tutor-less PBL in a large third-year biochemistry undergraduate class increased student satisfaction and attendance. The current study assessed the generic problem-solving abilities of students from the same class at the beginning and end of the term, and compared student scores with similar data obtained in three classes not using PBL. Two generic problem-solving tests of equal difficulty were administered such that students took different tests at the beginning and the end of the term. Blinded marking showed a statistically significant 13% increase in the test scores of the biochemistry students exposed to PBL, while no trend toward significant change in scores was observed in any of the control groups not using PBL. Our study is among the first to demonstrate that use of tutor-less PBL in a large classroom leads to statistically significant improvement in generic problem-solving skills of students. PMID:23463230

  19. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2011-07-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  20. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2009-10-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  1. Iterative solution of large sparse systems of equations

    CERN Document Server

    Hackbusch, Wolfgang

    2016-01-01

    In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.

  2. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  3. Impact of problem-based learning in a large classroom setting: student perception and problem-solving skills.

    Science.gov (United States)

    Klegeris, Andis; Hurren, Heather

    2011-12-01

    Problem-based learning (PBL) can be described as a learning environment where the problem drives the learning. This technique usually involves learning in small groups, which are supervised by tutors. It is becoming evident that PBL in a small-group setting has a robust positive effect on student learning and skills, including better problem-solving skills and an increase in overall motivation. However, very little research has been done on the educational benefits of PBL in a large classroom setting. Here, we describe a PBL approach (using tutorless groups) that was introduced as a supplement to standard didactic lectures in University of British Columbia Okanagan undergraduate biochemistry classes consisting of 45-85 students. PBL was chosen as an effective method to assist students in learning biochemical and physiological processes. By monitoring student attendance and using informal and formal surveys, we demonstrated that PBL has a significant positive impact on student motivation to attend and participate in the course work. Student responses indicated that PBL is superior to traditional lecture format with regard to the understanding of course content and retention of information. We also demonstrated that student problem-solving skills are significantly improved, but additional controlled studies are needed to determine how much PBL exercises contribute to this improvement. These preliminary data indicated several positive outcomes of using PBL in a large classroom setting, although further studies aimed at assessing student learning are needed to further justify implementation of this technique in courses delivered to large undergraduate classes.

  4. An improved safeguards system and its application to large back-end facilities

    International Nuclear Information System (INIS)

    1978-12-01

    The paper suggests that the safeguards problems of large plants could be solved by a combination of containment and surveillance, and material accountancy. The paper places considerable importance on the installation of 'anomaly detectors' at various points. These would detect movements through the containment and unusual changes in the process itself. The importance of the quantification, the contribution of accountancy and containment and surveillance system is emphasised and a mathematical approach is outlined

  5. Solving-Problems and Hypermedia Systems

    Directory of Open Access Journals (Sweden)

    Ricardo LÓPEZ FERNÁNDEZ

    2009-06-01

    Full Text Available The solving problems like the transfer constitute two nuclei, related, essential in the cognitive investigation and in the mathematical education. No is in and of itself casual that, from the first moment, in the investigations on the application gives the computer science to the teaching the mathematics, cybernetic models were developed that simulated processes problem solving and transfer cotexts (GPS, 1969 and IDEA (Interactive Decision Envisioning Aid, Pea, BrunerCohen, Webster & Mellen, 1987. The present articulates it analyzes, that can contribute to the development in this respect the new technologies hypermedias, give applications that are good to implement processes of learning the heuristic thought and give the capacity of «transfer». From our perspective and from the experience that we have developed in this field, to carry out a function gives analysis and the theories on the problem solving, it requires that we exercise a previous of interpretation the central aspsects over the theories gives the solving problem and transfer starting from the classic theories on the prosecution of the information. In this sense, so much the theory gives the dual memory as the most recent, J. Anderson (1993 based on the mechanisms activation nodes information they allow to establish an interpretation suggester over the mental mechanism that you/they operate in the heuristic processes. On this analysis, the present articulates it develops a theoritical interpretation over the function gives the supports based on technology hypermedia advancing in the definition of a necessary theoretical body, having in it counts that on the other hand the practical experimentation is permanent concluding in the efficiency and effectiveness gives the support hypermedia like mechanism of comunication in the processes heuristic learning.

  6. Solving the stability-accuracy-diversity dilemma of recommender systems

    Science.gov (United States)

    Hou, Lei; Liu, Kecheng; Liu, Jianguo; Zhang, Runtong

    2017-02-01

    Recommender systems are of great significance in predicting the potential interesting items based on the target user's historical selections. However, the recommendation list for a specific user has been found changing vastly when the system changes, due to the unstable quantification of item similarities, which is defined as the recommendation stability problem. To improve the similarity stability and recommendation stability is crucial for the user experience enhancement and the better understanding of user interests. While the stability as well as accuracy of recommendation could be guaranteed by recommending only popular items, studies have been addressing the necessity of diversity which requires the system to recommend unpopular items. By ranking the similarities in terms of stability and considering only the most stable ones, we present a top- n-stability method based on the Heat Conduction algorithm (denoted as TNS-HC henceforth) for solving the stability-accuracy-diversity dilemma. Experiments on four benchmark data sets indicate that the TNS-HC algorithm could significantly improve the recommendation stability and accuracy simultaneously and still retain the high-diversity nature of the Heat Conduction algorithm. Furthermore, we compare the performance of the TNS-HC algorithm with a number of benchmark recommendation algorithms. The result suggests that the TNS-HC algorithm is more efficient in solving the stability-accuracy-diversity triple dilemma of recommender systems.

  7. Solving the geologic issues in nuclear waste disposal

    International Nuclear Information System (INIS)

    Towse, D.

    1979-01-01

    Technical problems with nuclear waste disposal are largely geological. If these are not solved, curtailment of nuclear power development may follow, resulting in loss of an important element in the national energy supply. Present knowledge and credible advances are capable of solving these problems provided a systems view is preserved and a national development plan is followed. This requires identification of the critical controllable elements and a systematic underground test program to prove those critical elements. Waste migration can be understood and controlled by considering the key elements in the system: the system geometry, the hydrology, and the waste-rock-water chemistry. The waste program should: (1) identify and attack the critical problems first; (2) provide tests and demonstration at real disposal sites; and (3) schedule elements with long lead-times for early start and timely completion

  8. Web-Based Problem-Solving Assignment and Grading System

    Science.gov (United States)

    Brereton, Giles; Rosenberg, Ronald

    2014-11-01

    In engineering courses with very specific learning objectives, such as fluid mechanics and thermodynamics, it is conventional to reinforce concepts and principles with problem-solving assignments and to measure success in problem solving as an indicator of student achievement. While the modern-day ease of copying and searching for online solutions can undermine the value of traditional assignments, web-based technologies also provide opportunities to generate individualized well-posed problems with an infinite number of different combinations of initial/final/boundary conditions, so that the probability of any two students being assigned identical problems in a course is vanishingly small. Such problems can be designed and programmed to be: single or multiple-step, self-grading, allow students single or multiple attempts; provide feedback when incorrect; selectable according to difficulty; incorporated within gaming packages; etc. In this talk, we discuss the use of a homework/exam generating program of this kind in a single-semester course, within a web-based client-server system that ensures secure operation.

  9. Effective methods of solving of model equations of certain class of thermal systems

    International Nuclear Information System (INIS)

    Lach, J.

    1985-01-01

    A number of topics connected with solving of model equations of certain class of thermal systems by the method of successive approximations is touched. A system of partial differential equations of the first degree, appearing most frequently in practical applications of heat and mass transfer theory is reduced to an equivalent system of Volterra integral equations of the second kind. Among a few sample applications the thermal processes appearing in the fuel channel of nuclear reactor are solved. The theoretical analysis is illustrated by the results of numerical calculations given in tables and diagrams. 111 refs., 17 figs., 16 tabs. (author)

  10. Using a Recommendation System to Support Problem Solving and Case-Based Reasoning Retrieval

    Science.gov (United States)

    Tawfik, Andrew A.; Alhoori, Hamed; Keene, Charles Wayne; Bailey, Christian; Hogan, Maureen

    2018-01-01

    In case library learning environments, learners are presented with an array of narratives that can be used to guide their problem solving. However, according to theorists, learners struggle to identify and retrieve the optimal case to solve a new problem. Given the challenges novice face during case retrieval, recommender systems can be embedded…

  11. Artificial Immune Systems as a Modern Tool for Solving Multi-Purpose Optimization Tasks in the Field of Logistics

    Directory of Open Access Journals (Sweden)

    Skitsko Volodymyr I.

    2017-03-01

    Full Text Available The article investigates various aspects of the functioning of artificial immune systems and their using to solve different tasks. The analysis of the studied literature showed that nowadays there exist combinations of artificial immune systems, in particular with genetic algorithms, the particle swarm optimization method, artificial neural networks, etc., to solve different tasks. However, the solving of economic tasks is paid little attention. The article presents the basic terminology of artificial immune systems; the steps of the clonal selection algorithm are described, as well as a brief description of the negative selection algorithm, the immune network algorithm and the dendritic algorithm is given; conceptual aspects of the use of an artificial immune system for solving multi-purpose optimization problems are formulated, and an example of solving a problem in the field of logistics is described. Artificial immune systems as a means of solving various weakly structured, multi-criteria and multi-purpose economic tasks, in particular in the sphere of logistics, are a promising tool that requires further research. Therefore, it is advisable in the future to focus on the use of various existing immune algorithms for solving various economic problems.

  12. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  13. On a new iterative method for solving linear systems and comparison results

    Science.gov (United States)

    Jing, Yan-Fei; Huang, Ting-Zhu

    2008-10-01

    In Ujevic [A new iterative method for solving linear systems, Appl. Math. Comput. 179 (2006) 725-730], the author obtained a new iterative method for solving linear systems, which can be considered as a modification of the Gauss-Seidel method. In this paper, we show that this is a special case from a point of view of projection techniques. And a different approach is established, which is both theoretically and numerically proven to be better than (at least the same as) Ujevic's. As the presented numerical examples show, in most cases, the convergence rate is more than one and a half that of Ujevic.

  14. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    Science.gov (United States)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  15. Adaptive Neural Networks Decentralized FTC Design for Nonstrict-Feedback Nonlinear Interconnected Large-Scale Systems Against Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small

  16. Solving Environmental Problems

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph

    2017-01-01

    for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...

  17. SLAP, Large Sparse Linear System Solution Package

    International Nuclear Information System (INIS)

    Greenbaum, A.

    1987-01-01

    1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration

  18. Dynamic state estimation techniques for large-scale electric power systems

    International Nuclear Information System (INIS)

    Rousseaux, P.; Pavella, M.

    1991-01-01

    This paper presents the use of dynamic type state estimators for energy management in electric power systems. Various dynamic type estimators have been developed, but have never been implemented. This is primarily because of dimensionality problems posed by the conjunction of an extended Kalman filter with a large scale power system. This paper precisely focuses on how to circumvent the high dimensionality, especially prohibitive in the filtering step, by using a decomposition-aggregation hierarchical scheme; to appropriately model the power system dynamics, the authors introduce new state variables in the prediction step and rely on a load forecasting method. The combination of these two techniques succeeds in solving the overall dynamic state estimation problem not only in a tractable and realistic way, but also in compliance with real-time computational requirements. Further improvements are also suggested, bound to the specifics of the high voltage electric transmission systems

  19. The application of an artificial immune system for solving the identification problem

    Directory of Open Access Journals (Sweden)

    Astachova Irina

    2017-01-01

    Full Text Available Ecological prognosis sets the identification task, which is to find the capacity of pollution sources based on the available experimental data. This problem is an inverse problem, for the solution of which the method of symbolic regression is considered. The distributed artificial immune system is used as an algorithm for the problem solving. The artificial immune system (AIS is a model that allows solving various problems of identification, its concept was borrowed from biology. The solution is sought using a distributed version of the artificial immune system, which is implemented through a network. This distributed network can operate in any heterogeneous environment, which is achieved through the use of cross-platform Python programming language. AIS demonstrates the ability to restore the original function in the problem of identification. The obtained solution for the test data is represented by the graph.

  20. A Proposed Method for Solving Fuzzy System of Linear Equations

    Directory of Open Access Journals (Sweden)

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  1. Comparative Study on a Solving Model and Algorithm for a Flush Air Data Sensing System

    Directory of Open Access Journals (Sweden)

    Yanbin Liu

    2014-05-01

    Full Text Available With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research.

  2. Mathematical Modelling to Solve Tasks of Profiled Cross of Robot Systems with a Wheel-Legged Propulsion

    Directory of Open Access Journals (Sweden)

    A. S. Diakov

    2014-01-01

    Full Text Available One of the main trends for development of promising military equipment is to create transport robot systems (TRS.To conduct a theoretical study of the potential properties of TRS mobility was used a software package for invariant simulation of multibody dynamics system "Euler", which allows us to solve problems regarding the "large displacements", typical for TRS.The modelling results of TRS motion dynamics when overcoming the single-stage and two stages, which are higher than the roller diameter of propeller are obtained.Analysis of modelling results of the TRS motion dynamics to overcome obstacles commensurate with its dimensions allows us to conclude that the use of wheel-legged three-roller propulsion can provide the required level of permeability and, as a result, increasing TRS mobility.

  3. Models of resource allocation optimization when solving the control problems in organizational systems

    Science.gov (United States)

    Menshikh, V.; Samorokovskiy, A.; Avsentev, O.

    2018-03-01

    The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.

  4. A finite element based substructuring procedure for design analysis of large smart structural systems

    International Nuclear Information System (INIS)

    Ashwin, U; Raja, S; Dwarakanathan, D

    2009-01-01

    A substructuring based design analysis procedure is presented for large smart structural system using the Craig–Bampton method. The smart structural system is distinctively characterized as an active substructure, modelled as a design problem, and a passive substructure, idealized as an analysis problem. Furthermore, a novel thought has been applied by introducing the electro–elastic coupling into the reduction scheme to solve the global structural control problem in a local domain. As an illustration, a smart composite box beam with surface bonded actuators/sensors is considered, and results of the local to global control analysis are presented to show the potential use of the developed procedure. The present numerical scheme is useful for optimally designing the active substructures to study their locations, coupled structure–actuator interaction and provide a solution to the global design of large smart structural systems

  5. Parallel Algorithm Solves Coupled Differential Equations

    Science.gov (United States)

    Hayashi, A.

    1987-01-01

    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  6. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    Science.gov (United States)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  7. Systematic Problem Solving in Production: The NAX Approach

    DEFF Research Database (Denmark)

    Axelsdottir, Aslaug; Nygaard, Martin; Edwards, Kasper

    2017-01-01

    This paper outlines the NAX problem solving approach developed by a group of problem solving experts at a large Danish Producer of medical equipment. The company, “Medicmeter” is one of Denmark’s leading companies when it comes to lean and it has developed a strong problem solving culture. The ma...

  8. Relationship between Systems Coaching and Problem-Solving Implementation Fidelity in a Response-to-Intervention Model

    Science.gov (United States)

    March, Amanda L.; Castillo, Jose M.; Batsche, George M.; Kincaid, Donald

    2016-01-01

    The literature on RTI has indicated that professional development and coaching are critical to facilitating problem-solving implementation with fidelity. This study examined the extent to which systems coaching related to the fidelity of problem-solving implementation in 31 schools from six districts. Schools participated in three years of a…

  9. Photolithography diagnostic expert systems: a systematic approach to problem solving in a wafer fabrication facility

    Science.gov (United States)

    Weatherwax Scott, Caroline; Tsareff, Christopher R.

    1990-06-01

    One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles

  10. Ant colony system (ACS with hybrid local search to solve vehicle routing problems

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2016-02-01

    Full Text Available This research applied an Ant Colony System algorithm with a Hybrid Local Search to solve Vehicle Routing Problems (VRP from a single depot when the customers’ requirements are known. VRP is an NP-hard optimization problem and has usually been successfully solved optimum by heuristics. A fleet of vehicles of a specific capacity are used to serve a number of customers at minimum cost, without violating the constraints of vehicle capacity. There are meta-heuristic approaches to solve these problems, such as Simulated Annealing, Genetic Algorithm, Tabu Search and the Ant Colony System algorithm. In this case a hybrid local search was used (Cross-Exchange, Or-Opt and 2-Opt algorithm with an Ant Colony System algorithm. The Experimental Design was tested on 7 various problems from the data set online in the OR-Library. There are five different problems in which customers are randomly distributed with the depot in an approximately central location. The customers were grouped into clusters. The results are evaluated in terms of optimal routes using optimal distances. The experimental results are compared with those obtained from meta-heuristics and they show that the proposed method outperforms six meta-heuristics in the literature.

  11. Medical education and cognitive continuum theory: an alternative perspective on medical problem solving and clinical reasoning.

    Science.gov (United States)

    Custers, Eugène J F M

    2013-08-01

    Recently, human reasoning, problem solving, and decision making have been viewed as products of two separate systems: "System 1," the unconscious, intuitive, or nonanalytic system, and "System 2," the conscious, analytic, or reflective system. This view has penetrated the medical education literature, yet the idea of two independent dichotomous cognitive systems is not entirely without problems.This article outlines the difficulties of this "two-system view" and presents an alternative, developed by K.R. Hammond and colleagues, called cognitive continuum theory (CCT). CCT is featured by three key assumptions. First, human reasoning, problem solving, and decision making can be arranged on a cognitive continuum, with pure intuition at one end, pure analysis at the other, and a large middle ground called "quasirationality." Second, the nature and requirements of the cognitive task, as perceived by the person performing the task, determine to a large extent whether a task will be approached more intuitively or more analytically. Third, for optimal task performance, this approach needs to match the cognitive properties and requirements of the task. Finally, the author makes a case that CCT is better able than a two-system view to describe medical problem solving and clinical reasoning and that it provides clear clues for how to organize training in clinical reasoning.

  12. Problem Solving of Low Data Throughput on Mobile Devices by Artefacts Prebuffering

    Directory of Open Access Journals (Sweden)

    Krejcar Ondrej

    2009-01-01

    Full Text Available The paper deals with a problem of low data throughput on wirelessly connected mobile devices and a possibility to solve this problem by prebuffering of selected artefacts. The basics are in determining the problem parts of a mobile device and solve the problem by a model of data prebuffering-based system enhancement for locating and tracking users inside the buildings. The framework uses a WiFi network infrastructure to allow the mobile device determine its indoor position. User location is used for data prebuffering and for pushing information from a server to PDAs. All server data are saved as artefacts with its indoor position information. Accessing prebuffered data on a mobile device can significantly improve a response time needed to view large multimedia data. The solution was tested on a facility management information system built on purpose with a testing collection of about hundred large size artefacts.

  13. Solving Fully Fuzzy Linear System of Equations in General Form

    Directory of Open Access Journals (Sweden)

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  14. Composition between mecd and runge-Kutta algorithm method for large system of second order differential equations

    International Nuclear Information System (INIS)

    Supriyono; Miyoshi, T.

    1997-01-01

    NECD Method and runge-Kutta method for large system of second order ordinary differential equations in comparing algorithm. The paper introduce a extrapolation method used for solving the large system of second order ordinary differential equation. We call this method the modified extrapolated central difference (MECD) method. for the accuracy and efficiency MECD method. we compare the method with 4-th order runge-Kutta method. The comparison results show that, this method has almost the same accuracy as the 4-th order runge-Kutta method, but the computation time is about half of runge-Kutta. The MECD was declare by the author and Tetsuhiko Miyoshi of the Dept. Applied Science Yamaguchi University Japan

  15. Development and adjustment of programs for solving systems of linear equations

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1978-03-01

    Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)

  16. Efficient Method to Approximately Solve Retrial Systems with Impatience

    Directory of Open Access Journals (Sweden)

    Jose Manuel Gimenez-Guzman

    2012-01-01

    Full Text Available We present a novel technique to solve multiserver retrial systems with impatience. Unfortunately these systems do not present an exact analytic solution, so it is mandatory to resort to approximate techniques. This novel technique does not rely on the numerical solution of the steady-state Kolmogorov equations of the Continuous Time Markov Chain as it is common for this kind of systems but it considers the system in its Markov Decision Process setting. This technique, known as value extrapolation, truncates the infinite state space using a polynomial extrapolation method to approach the states outside the truncated state space. A numerical evaluation is carried out to evaluate this technique and to compare its performance with previous techniques. The obtained results show that value extrapolation greatly outperforms the previous approaches appeared in the literature not only in terms of accuracy but also in terms of computational cost.

  17. ENVIRONMENTAL PROBLEM SOLVING WITH GEOGRAPHIC INFORMATION SYSTEMS: 1994 AND 1999 CONFERENCE PROCEEDINGS

    Science.gov (United States)

    These two national conferences, held in Cincinnati, Ohio in 1994 and 1999, addressed the area of environmental problem solving with Geographic Information Systems. This CD-ROM is a compilation of the proceedings in PDF format. The emphasis of the conference presentations were on ...

  18. Comparing direct and iterative equation solvers in a large structural analysis software system

    Science.gov (United States)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  19. Automatic Flight Control System Design of Level Change Mode for a Large Aircraft

    Directory of Open Access Journals (Sweden)

    Huajun Gong

    2013-02-01

    Full Text Available The level change mode is an essential part of large civil aircraft automatic flight control systems. In cruise, with the decrease of the plane's weight caused by fuel consumption and the influence of bad weather, such as thunderstorms, the level change mode is required to solve this problem. This work establishes a nonlinear model of large aircraft, takes level changed from 9500m to 10100m as an example to design control laws for the level change mode in cruise. The classical engineering method is used to design longitudinal and lateral control laws synthetically. The flight qualities are considered in the design process. Simulation results indicate the control laws can meet design requirements and have a good anti-gust performance.

  20. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    Science.gov (United States)

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

  1. AZTEC: A parallel iterative package for the solving linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  2. Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations

    Directory of Open Access Journals (Sweden)

    Bahman Ghazanfari

    2013-08-01

    Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.

  3. A solution to the economic dispatch using EP based SA algorithm on large scale power system

    Energy Technology Data Exchange (ETDEWEB)

    Christober Asir Rajan, C. [Department of EEE, Pondicherry Engineering College, Pondicherry 605 014 (India)

    2010-07-15

    This paper develops a new approach for solving the Economic Load Dispatch (ELD) using an integrated algorithm based on Evolutionary Programming (EP) and Simulated Annealing (SA) on large scale power system. Classical methods employed for solving Economic Load Dispatch are calculus-based. For generator units having quadratic fuel cost functions, the classical techniques ignore or flatten out the portions of the incremental fuel cost curves and so may be have difficulties in the determination of the global optimum solution for non-differentiable fuel cost functions. To overcome these problems, the intelligent techniques, namely, Evolutionary Programming and Simulated Annealing are employed. The above said optimization techniques are capable of determining the global or near global optimum dispatch solutions. The validity and effectiveness of the proposed integrated algorithm has been tested with 66-bus Indian utility system, IEEE 5-bus, 30-bus, 118-bus system. And the test results are compared with the results obtained from other methods. Numerical results show that the proposed integrated algorithm can provide accurate solutions within reasonable time for any type of fuel cost functions. (author)

  4. An effortless hybrid method to solve economic load dispatch problem in power systems

    International Nuclear Information System (INIS)

    Pourakbari-Kasmaei, M.; Rashidi-Nejad, M.

    2011-01-01

    Highlights: → We proposed a fast method to get feasible solution and avoid futile search. → The method dramatically improves search efficiency and solution quality. → Applied to solve constrained ED problems of power systems with 6 and 15 unit. → Superiority of this method in both aspects of financial and CPU time is remarkable. - Abstract: This paper proposes a new approach and coding scheme for solving economic dispatch problems (ED) in power systems through an effortless hybrid method (EHM). This novel coding scheme can effectively prevent futile searching and also prevents obtaining infeasible solutions through the application of stochastic search methods, consequently dramatically improves search efficiency and solution quality. The dominant constraint of an economic dispatch problem is power balance. The operational constraints, such as generation limitations, ramp rate limits, prohibited operating zones (POZ), network loss are considered for practical operation. Firstly, in the EHM procedure, the output of generator is obtained with a lambda iteration method and without considering POZ and later in a genetic based algorithm this constraint is satisfied. To demonstrate its efficiency, feasibility and fastness, the EHM algorithm was applied to solve constrained ED problems of power systems with 6 and 15 units. The simulation results obtained from the EHM were compared to those achieved from previous literature in terms of solution quality and computational efficiency. Results reveal that the superiority of this method in both aspects of financial and CPU time.

  5. Monte Carlo method for solving a parabolic problem

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.

  6. Algebraic polynomial system solving and applications

    NARCIS (Netherlands)

    Bleylevens, I.W.M.

    2010-01-01

    The problem of computing the solutions of a system of multivariate polynomial equations can be approached by the Stetter-Möller matrix method which casts the problem into a large eigenvalue problem. This Stetter-Möller matrix method forms the starting point for the development of computational

  7. A Dynamic Optimization Strategy for the Operation of Large Scale Seawater Reverses Osmosis System

    Directory of Open Access Journals (Sweden)

    Aipeng Jiang

    2014-01-01

    Full Text Available In this work, an efficient strategy was proposed for efficient solution of the dynamic model of SWRO system. Since the dynamic model is formulated by a set of differential-algebraic equations, simultaneous strategies based on collocations on finite element were used to transform the DAOP into large scale nonlinear programming problem named Opt2. Then, simulation of RO process and storage tanks was carried element by element and step by step with fixed control variables. All the obtained values of these variables then were used as the initial value for the optimal solution of SWRO system. Finally, in order to accelerate the computing efficiency and at the same time to keep enough accuracy for the solution of Opt2, a simple but efficient finite element refinement rule was used to reduce the scale of Opt2. The proposed strategy was applied to a large scale SWRO system with 8 RO plants and 4 storage tanks as case study. Computing result shows that the proposed strategy is quite effective for optimal operation of the large scale SWRO system; the optimal problem can be successfully solved within decades of iterations and several minutes when load and other operating parameters fluctuate.

  8. Building problem solving environments with the arches framework

    Energy Technology Data Exchange (ETDEWEB)

    Debardeleben, Nathan [Los Alamos National Laboratory; Sass, Ron [U NORTH CAROLINA; Stanzione, Jr., Daniel [ASU; Ligon, Ill, Walter [CLEMSON UNIV

    2009-01-01

    The computational problems that scientists face are rapidly escalating in size and scope. Moreover, the computer systems used to solve these problems are becoming significantly more complex than the familiar, well-understood sequential model on their desktops. While it is possible to re-train scientists to use emerging high-performance computing (HPC) models, it is much more effective to provide them with a higher-level programming environment that has been specialized to their particular domain. By fostering interaction between HPC specialists and the domain scientists, problem-solving environments (PSEs) provide a collaborative environment. A PSE environment allows scientists to focus on expressing their computational problem while the PSE and associated tools support mapping that domain-specific problem to a high-performance computing system. This article describes Arches, an object-oriented framework for building domain-specific PSEs. The framework was designed to support a wide range of problem domains and to be extensible to support very different high-performance computing targets. To demonstrate this flexibility, two PSEs have been developed from the Arches framework to solve problem in two different domains and target very different computing platforms. The Coven PSE supports parallel applications that require large-scale parallelism found in cost-effective Beowulf clusters. In contrast, RCADE targets FPGA-based reconfigurable computing and was originally designed to aid NASA Earth scientists studying satellite instrument data.

  9. MACEDONIAN ADMINISTRATIVE JUDICIAL SYSTEM FOR SOLVING ADMINISTRATIVE DISPUTES COMPARABLE TO EUROPEAN SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sladjana Eftimova

    2015-07-01

    Full Text Available The structure of the legal system, through history until today mostly depends on law and policy which is conducted by the country. In European countries, there is position for historical and cultural conceptions for administrative judicature, differences and similarity that leave mark for solving administrative disputes. The obligation – an internal judicial reform to be established in legal system, is conducted by each of the countries after the breaking down and division of Social Federative Republic of Yugoslavia or SFRY due to following the European law for constitution of legitimacy and constitutionality of acts as well as implementing of independent administrative judicature. Analyze of the current condition regarding the independency and objectiveness of the judicature is necessary in our country and it is important to be seen how the conditions for working of the administrative judicature can be improved.

  10. EDDYMULT: a computing system for solving eddy current problems in a multi-torus system

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Ozeki, Takahisa

    1989-03-01

    A new computing system EDDYMULT based on the finite element circuit method has been developed to solve actual eddy current problems in a multi-torus system, which consists of many torus-conductors and various kinds of axisymmetric poloidal field coils. The EDDYMULT computing system can deal three-dimensionally with the modal decomposition of eddy current in a multi-torus system, the transient phenomena of eddy current distributions and the resultant magnetic field. Therefore, users can apply the computing system to the solution of the eddy current problems in a tokamak fusion device, such as the design of poloidal field coil power supplies, the mechanical stress design of the intensive electromagnetic loading on device components and the control analysis of plasma position. The present report gives a detailed description of the EDDYMULT system as an user's manual: 1) theory, 2) structure of the code system, 3) input description, 4) problem restrictions, 5) description of the subroutines, etc. (author)

  11. A nearly orthogonal 2D grid system in solving the shallow water equations in the head bay of Bengal

    International Nuclear Information System (INIS)

    Roy, G.D. . E.mail: roy_gd@hotmail.com; Hussain, Farzana . E.mail: farzana@sust.edu

    2001-11-01

    A typical nearly orthogonal grid system is considered to solve the shallow water equations along the head bay of Bengal. A pencil of straight lines at uniform angular distance through a suitable origin, O at the mean sea level (MSL), are considered as a system of grid lines. A system of concentric and uniformly distributed ellipses with center at O is considered as the other system of grid lines. In order to solve the shallow water equations numerically, a system of transformations is applied so that the grid system in the transformed domain becomes a rectangular one. Shallow water equations are solved using appropriate initial and boundary conditions to estimate the water level due to tide and surge. The typical grid system is found to be suitable in incorporating the bending of the coastline and the island boundaries accurately in the numerical scheme along the coast of Bangladesh. (author)

  12. A review on application of neural networks and fuzzy logic to solve hydrothermal scheduling problem

    International Nuclear Information System (INIS)

    Haroon, S.; Malik, T.N.; Zafar, S.

    2014-01-01

    Electrical power system is highly complicated having hydro and thermal mix with large number of machines. To reduce power production cost, hydro and thermal resources are mixed. Hydrothermal scheduling is the optimal coordination of hydro and thermal plants to meet the system load demand at minimum possible operational cost while satisfying the system constraints. Hydrothermal scheduling is dynamic, large scale, non-linear and non-convex optimization problem. The classical techniques have failed in solving such problem. Artificial Intelligence Tools based techniques are used now a day to solve this complex optimization problem because of their no requirements on the nature of the problem. The aim of this research paper is to provide a comprehensive survey of literature related to both Artificial Neural Network (ANN) and Fuzzy Logic (FL) as effective optimization algorithms for the hydrothermal scheduling problem. The outcomes along with the merits and demerits of individual techniques are also discussed. (author)

  13. Solving Differential Equations in R: Package deSolve

    Directory of Open Access Journals (Sweden)

    Karline Soetaert

    2010-02-01

    Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in

  14. Model-based verification method for solving the parameter uncertainty in the train control system

    International Nuclear Information System (INIS)

    Cheng, Ruijun; Zhou, Jin; Chen, Dewang; Song, Yongduan

    2016-01-01

    This paper presents a parameter analysis method to solve the parameter uncertainty problem for hybrid system and explore the correlation of key parameters for distributed control system. For improving the reusability of control model, the proposed approach provides the support for obtaining the constraint sets of all uncertain parameters in the abstract linear hybrid automata (LHA) model when satisfying the safety requirements of the train control system. Then, in order to solve the state space explosion problem, the online verification method is proposed to monitor the operating status of high-speed trains online because of the real-time property of the train control system. Furthermore, we construct the LHA formal models of train tracking model and movement authority (MA) generation process as cases to illustrate the effectiveness and efficiency of the proposed method. In the first case, we obtain the constraint sets of uncertain parameters to avoid collision between trains. In the second case, the correlation of position report cycle and MA generation cycle is analyzed under both the normal and the abnormal condition influenced by packet-loss factor. Finally, considering stochastic characterization of time distributions and real-time feature of moving block control system, the transient probabilities of wireless communication process are obtained by stochastic time petri nets. - Highlights: • We solve the parameters uncertainty problem by using model-based method. • We acquire the parameter constraint sets by verifying linear hybrid automata models. • Online verification algorithms are designed to monitor the high-speed trains. • We analyze the correlation of key parameters and uncritical parameters. • The transient probabilities are obtained by using reliability analysis.

  15. A Flowchart-Based Intelligent Tutoring System for Improving Problem-Solving Skills of Novice Programmers

    Science.gov (United States)

    Hooshyar, D.; Ahmad, R. B.; Yousefi, M.; Yusop, F. D.; Horng, S.-J.

    2015-01-01

    Intelligent tutoring and personalization are considered as the two most important factors in the research of learning systems and environments. An effective tool that can be used to improve problem-solving ability is an Intelligent Tutoring System which is capable of mimicking a human tutor's actions in implementing a one-to-one personalized and…

  16. Adams Predictor-Corrector Systems for Solving Fuzzy Differential Equations

    Directory of Open Access Journals (Sweden)

    Dequan Shang

    2013-01-01

    Full Text Available A predictor-corrector algorithm and an improved predictor-corrector (IPC algorithm based on Adams method are proposed to solve first-order differential equations with fuzzy initial condition. These algorithms are generated by updating the Adams predictor-corrector method and their convergence is also analyzed. Finally, the proposed methods are illustrated by solving an example.

  17. The Prehistory of Discovery: Precursors of Representational Change in Solving Gear System Problems.

    Science.gov (United States)

    Dixon, James A.; Bangert, Ashley S.

    2002-01-01

    This study investigated whether the process of representational change undergoes developmental change or different processes occupy different niches in the course of knowledge acquisition. Subjects--college, third-, and sixth-grade students--solved gear system problems over two sessions. Findings indicated that for all grades, discovery of the…

  18. Solving problems in social-ecological systems: definition, practice and barriers of transdisciplinary research.

    Science.gov (United States)

    Angelstam, Per; Andersson, Kjell; Annerstedt, Matilda; Axelsson, Robert; Elbakidze, Marine; Garrido, Pablo; Grahn, Patrik; Jönsson, K Ingemar; Pedersen, Simen; Schlyter, Peter; Skärbäck, Erik; Smith, Mike; Stjernquist, Ingrid

    2013-03-01

    Translating policies about sustainable development as a social process and sustainability outcomes into the real world of social-ecological systems involves several challenges. Hence, research policies advocate improved innovative problem-solving capacity. One approach is transdisciplinary research that integrates research disciplines, as well as researchers and practitioners. Drawing upon 14 experiences of problem-solving, we used group modeling to map perceived barriers and bridges for researchers' and practitioners' joint knowledge production and learning towards transdisciplinary research. The analysis indicated that the transdisciplinary research process is influenced by (1) the amount of traditional disciplinary formal and informal control, (2) adaptation of project applications to fill the transdisciplinary research agenda, (3) stakeholder participation, and (4) functional team building/development based on self-reflection and experienced leadership. Focusing on implementation of green infrastructure policy as a common denominator for the delivery of ecosystem services and human well-being, we discuss how to diagnose social-ecological systems, and use knowledge production and collaborative learning as treatments.

  19. Multi-objective Optimization Algorithms with the Island Metaheuristic for Effective Project Management Problem Solving

    Directory of Open Access Journals (Sweden)

    Brester Christina

    2017-12-01

    Full Text Available Background and Purpose: In every organization, project management raises many different decision-making problems, a large proportion of which can be efficiently solved using specific decision-making support systems. Yet such kinds of problems are always a challenge since there is no time-efficient or computationally efficient algorithm to solve them as a result of their complexity. In this study, we consider the problem of optimal financial investment. In our solution, we take into account the following organizational resource and project characteristics: profits, costs and risks.

  20. A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-08-01

    Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.

  1. Tensor-GMRES method for large sparse systems of nonlinear equations

    Science.gov (United States)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  2. Multiarea Transmission Cost Allocation in Large Power Systems Using the Nodal Pricing Control Approach

    Directory of Open Access Journals (Sweden)

    M. Ghayeni

    2010-12-01

    Full Text Available This paper proposes an algorithm for transmission cost allocation (TCA in a large power system based on nodal pricing approach using the multi-area scheme. The nodal pricing approach is introduced to allocate the transmission costs by the control of nodal prices in a single area network. As the number of equations is dependent on the number of buses and generators, this method will be very time consuming for large power systems. To solve this problem, the present paper proposes a new algorithm based on multi-area approach for regulating the nodal prices, so that the simulation time is greatly reduced and therefore the TCA problem with nodal pricing approach will be applicable for large power systems. In addition, in this method the transmission costs are allocated to users more equitable. Since the higher transmission costs in an area having a higher reliability are paid only by users of that area in contrast with the single area method, in which these costs are allocated to all users regardless of their locations. The proposed method is implemented on the IEEE 118 bus test system which comprises three areas. Results show that with application of multi-area approach, the simulation time is greatly reduced and the transmission costs are also allocated to users with less variation in new nodal prices with respect to the single area approach.

  3. Algorithms to solve coupled systems of differential equations in terms of power series

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Schneider, Carsten

    2016-08-01

    Using integration by parts relations, Feynman integrals can be represented in terms of coupled systems of differential equations. In the following we suppose that the unknown Feynman integrals can be given in power series representations, and that sufficiently many initial values of the integrals are given. Then there exist algorithms that decide constructively if the coefficients of their power series representations can be given within the class of nested sums over hypergeometric products. In this article we work out the calculation steps that solve this problem. First, we present a successful tactic that has been applied recently to challenging problems coming from massive 3-loop Feynman integrals. Here our main tool is to solve scalar linear recurrences within the class of nested sums over hypergeometric products. Second, we will present a new variation of this tactic which relies on more involved summation technologies but succeeds in reducing the problem to solve scalar recurrences with lower recurrence orders. The article works out the different challenges of this new tactic and demonstrates how they can be treated efficiently with our existing summation technologies.

  4. Problem Solving and the Development of Expertise in Management.

    Science.gov (United States)

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  5. Solving very large scattering problems using a parallel PWTD-enhanced surface integral equation solver

    KAUST Repository

    Liu, Yang

    2013-07-01

    The computational complexity and memory requirements of multilevel plane wave time domain (PWTD)-accelerated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(NtNs(log 2)Ns) and O(Ns 1.5); here N t and Ns denote numbers of temporal and spatial basis functions discretizing the current [Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003]. In the past, serial versions of these solvers have been successfully applied to the analysis of scattering from perfect electrically conducting as well as homogeneous penetrable targets involving up to Ns ≈ 0.5 × 106 and Nt ≈ 10 3. To solve larger problems, parallel PWTD-enhanced MOT solvers are called for. Even though a simple parallelization strategy was demonstrated in the context of electromagnetic compatibility analysis [M. Lu et al., in Proc. IEEE Int. Symp. AP-S, 4, 4212-4215, 2004], by and large, progress in this area has been slow. The lack of progress can be attributed wholesale to difficulties associated with the construction of a scalable PWTD kernel. © 2013 IEEE.

  6. The Unified Problem-Solving Method Development Language UPML

    OpenAIRE

    Fensel, Dieter; Motta, Enrico; van Harmelen, Frank; Benjamins, V. Richard; Crubezy, Monica; Decker, Stefan; Gaspari, Mauro; Groenboom, Rix; Grosso, William; Musen, Mark; Plaza, Enric; Schreiber, Guus; Studer, Rudi; Wielinga, Bob

    2003-01-01

    Problem-solving methods provide reusable architectures and components for implementing the reasoning part of knowledge-based systems. The UNIFIED PROBLEM-SOLVING METHOD DESCRIPTION LANGUAGE (UPML) has been developed to describe and implement such architectures and components to facilitate their semi-automatic reuse and adaptation. In a nutshell, UPML is a framework for developing knowledge-intensive reasoning systems based on libraries ofg eneric problem-solving components. The paper describe...

  7. Fast and accurate solution for the SCUC problem in large-scale power systems using adapted binary programming and enhanced dual neural network

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Catalão, J.P.S.

    2014-01-01

    Highlights: • A novel hybrid method based on decomposition of SCUC into QP and BP problems is proposed. • An adapted binary programming and an enhanced dual neural network model are applied. • The proposed EDNN is exactly convergent to the global optimal solution of QP. • An AC power flow procedure is developed for including contingency/security issues. • It is suited for large-scale systems, providing both accurate and fast solutions. - Abstract: This paper presents a novel hybrid method for solving the security constrained unit commitment (SCUC) problem. The proposed formulation requires much less computation time in comparison with other methods while assuring the accuracy of the results. Furthermore, the framework provided here allows including an accurate description of warmth-dependent startup costs, valve point effects, multiple fuel costs, forbidden zones of operation, and AC load flow bounds. To solve the nonconvex problem, an adapted binary programming method and enhanced dual neural network model are utilized as optimization tools, and a procedure for AC power flow modeling is developed for including contingency/security issues, as new contributions to earlier studies. Unlike classical SCUC methods, the proposed method allows to simultaneously solve the unit commitment problem and comply with the network limits. In addition to conventional test systems, a real-world large-scale power system with 493 units has been used to fully validate the effectiveness of the novel hybrid method proposed

  8. Row Reduced Echelon Form for Solving Fully Fuzzy System with Unknown Coefficients

    Directory of Open Access Journals (Sweden)

    Ghassan Malkawi

    2014-08-01

    Full Text Available This study proposes a new method for finding a feasible fuzzy solution in positive Fully Fuzzy Linear System (FFLS, where the coefficients are unknown. The fully fuzzy system is transferred to linear system in order to obtain the solution using row reduced echelon form, thereafter; the crisp solution is restricted in obtaining the positive fuzzy solution. The fuzzy solution of FFLS is included crisp intervals, to assign alternative values of unknown entries of fuzzy numbers. To illustrate the proposed method, numerical examples are solved, where the entries of coefficients are unknown in right or left hand side, to demonstrate the contributions in this study.

  9. He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind

    International Nuclear Information System (INIS)

    Biazar, J.; Ghazvini, H.

    2009-01-01

    In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.

  10. Pragmatic evaluation of the Toyota Production System (TPS analysis procedure for problem solving with entry-level nurses

    Directory of Open Access Journals (Sweden)

    Lukasz Maciej Mazur

    2008-12-01

    Full Text Available Medication errors occurring in hospitals are a growing national concern. These medication errors and their related costs (or wastes are seen as major factors leading to increased patient safety risks and increased waste in the hospital setting.  This article presents a study in which sixteen entry-level nurses utilized a Toyota Production System (TPS analysis procedure to solve medication delivery problems at one community hospital. The objective of this research was to study and evaluate the TPS analysis procedure for problem solving with entry-level nurses. Personal journals, focus group discussions, and a survey study were used to collect data about entry-level nurses’ perceptions of using the TPS problem solving approach to study medication delivery. A regression analysis was used to identify characteristics that enhance problem solving efforts. In addition, propositions for effective problem solving by entry-level nurses to aid in the reduction of medication errors in healthcare delivery settings are offered.

  11. Application of ANNs approach for solving fully fuzzy polynomials system

    Directory of Open Access Journals (Sweden)

    R. Novin

    2017-11-01

    Full Text Available In processing indecisive or unclear information, the advantages of fuzzy logic and neurocomputing disciplines should be taken into account and combined by fuzzy neural networks. The current research intends to present a fuzzy modeling method using multi-layer fuzzy neural networks for solving a fully fuzzy polynomials system. To clarify the point, it is necessary to inform that a supervised gradient descent-based learning law is employed. The feasibility of the method is examined using computer simulations on a numerical example. The experimental results obtained from the investigation of the proposed method are valid and delivers very good approximation results.

  12. The Improvement of Communication and Inference Skills in Colloid System Material by Problem Solving Learning Model

    OpenAIRE

    maisarera, yunita; diawati, chansyanah; fadiawati, noor

    2012-01-01

    The aim of this research is to describe the effectiveness of problem solving learning in improving communication and inference skills in colloid system material. Subjects in this research were students of XIIPA1 and XI IPA2 classrooms in Persada Junior High School in Bandar Lampung in academic year 2011-2012 where students of both classrooms had the same characteristics. This research used quasi experiment method and pretest-posttest control group design. Effectiveness of problem solving le...

  13. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Mohsen, E-mail: mhs.farahani@gmail.com [Sama Technical and Vocational Training College, Islamic Azad University, Karaj Branch, Karaj (Iran, Islamic Republic of); Ganjefar, Soheil [Department of Electrical Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Load frequency control of PID type is combined with a SMES. ► Damping speed of frequency and tie-line power flow deviations are considerably increased. ► Optimal parameters of PID and SMES control loop are obtained by PS optimization. -- Abstract: This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced.

  14. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Farahani, Mohsen; Ganjefar, Soheil

    2013-01-01

    Highlights: ► Load frequency control of PID type is combined with a SMES. ► Damping speed of frequency and tie-line power flow deviations are considerably increased. ► Optimal parameters of PID and SMES control loop are obtained by PS optimization. -- Abstract: This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced

  15. A parallel algorithm for solving the integral form of the discrete ordinates equations

    International Nuclear Information System (INIS)

    Zerr, R. J.; Azmy, Y. Y.

    2009-01-01

    The integral form of the discrete ordinates equations involves a system of equations that has a large, dense coefficient matrix. The serial construction methodology is presented and properties that affect the execution times to construct and solve the system are evaluated. Two approaches for massively parallel implementation of the solution algorithm are proposed and the current results of one of these are presented. The system of equations May be solved using two parallel solvers-block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-clock time for execution. The conjugate gradient solver exhibits better performance to compete with the traditional source iteration technique in terms of execution time and scalability. The parallel conjugate gradient method is synchronous, hence it does not increase the number of iterations for convergence compared to serial execution, and the efficiency of the algorithm demonstrates an apparent asymptotic decline. (authors)

  16. Optimal Design of Complex Passive-Damping Systems for Vibration Control of Large Structures: An Energy-to-Peak Approach

    Directory of Open Access Journals (Sweden)

    Francisco Palacios-Quiñonero

    2014-01-01

    Full Text Available We present a new design strategy that makes it possible to synthesize decentralized output-feedback controllers by solving two successive optimization problems with linear matrix inequality (LMI constraints. In the initial LMI optimization problem, two auxiliary elements are computed: a standard state-feedback controller, which can be taken as a reference in the performance assessment, and a matrix that facilitates a proper definition of the main LMI optimization problem. Next, by solving the second optimization problem, the output-feedback controller is obtained. The proposed strategy extends recent results in static output-feedback control and can be applied to design complex passive-damping systems for vibrational control of large structures. More precisely, by taking advantages of the existing link between fully decentralized velocity-feedback controllers and passive linear dampers, advanced active feedback control strategies can be used to design complex passive-damping systems, which combine the simplicity and robustness of passive control systems with the efficiency of active feedback control. To demonstrate the effectiveness of the proposed approach, a passive-damping system for the seismic protection of a five-story building is designed with excellent results.

  17. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

    Science.gov (United States)

    Biala, T A; Jator, S N

    2015-01-01

    In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

  18. Automating large-scale reactor systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig

  19. Reliability of large and complex systems

    CERN Document Server

    Kolowrocki, Krzysztof

    2014-01-01

    Reliability of Large and Complex Systems, previously titled Reliability of Large Systems, is an innovative guide to the current state and reliability of large and complex systems. In addition to revised and updated content on the complexity and safety of large and complex mechanisms, this new edition looks at the reliability of nanosystems, a key research topic in nanotechnology science. The author discusses the importance of safety investigation of critical infrastructures that have aged or have been exposed to varying operational conditions. This reference provides an asympt

  20. Spatial problem-solving strategies of middle school students: Wayfinding with geographic information systems

    Science.gov (United States)

    Wigglesworth, John C.

    2000-06-01

    Geographic Information Systems (GIS) is a powerful computer software package that emphasizes the use of maps and the management of spatially referenced environmental data archived in a systems data base. Professional applications of GIS have been in place since the 1980's, but only recently has GIS gained significant attention in the K--12 classroom. Students using GIS are able to manipulate and query data in order to solve all manners of spatial problems. Very few studies have examined how this technological innovation can support classroom learning. In particular, there has been little research on how experience in using the software correlates with a child's spatial cognition and his/her ability to understand spatial relationships. This study investigates the strategies used by middle school students to solve a wayfinding (route-finding) problem using the ArcView GIS software. The research design combined an individual background questionnaire, results from the Group Assessment of Logical Thinking (GALT) test, and analysis of reflective think-aloud sessions to define the characteristics of the strategies students' used to solve this particular class of spatial problem. Three uniquely different spatial problem solving strategies were identified. Visual/Concrete Wayfinders used a highly visual strategy; Logical/Abstract Wayfinders used GIS software tools to apply a more analytical and systematic approach; Transitional Wayfinders used an approach that showed evidence of one that was shifting from a visual strategy to one that was more analytical. The triangulation of data sources indicates that this progression of wayfinding strategy can be correlated both to Piagetian stages of logical thought and to experience with the use of maps. These findings suggest that GIS teachers must be aware that their students' performance will lie on a continuum that is based on cognitive development, spatial ability, and prior experience with maps. To be most effective, GIS teaching

  1. Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy.

    Science.gov (United States)

    Penas, David R; González, Patricia; Egea, Jose A; Doallo, Ramón; Banga, Julio R

    2017-01-21

    The development of large-scale kinetic models is one of the current key issues in computational systems biology and bioinformatics. Here we consider the problem of parameter estimation in nonlinear dynamic models. Global optimization methods can be used to solve this type of problems but the associated computational cost is very large. Moreover, many of these methods need the tuning of a number of adjustable search parameters, requiring a number of initial exploratory runs and therefore further increasing the computation times. Here we present a novel parallel method, self-adaptive cooperative enhanced scatter search (saCeSS), to accelerate the solution of this class of problems. The method is based on the scatter search optimization metaheuristic and incorporates several key new mechanisms: (i) asynchronous cooperation between parallel processes, (ii) coarse and fine-grained parallelism, and (iii) self-tuning strategies. The performance and robustness of saCeSS is illustrated by solving a set of challenging parameter estimation problems, including medium and large-scale kinetic models of the bacterium E. coli, bakerés yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The results consistently show that saCeSS is a robust and efficient method, allowing very significant reduction of computation times with respect to several previous state of the art methods (from days to minutes, in several cases) even when only a small number of processors is used. The new parallel cooperative method presented here allows the solution of medium and large scale parameter estimation problems in reasonable computation times and with small hardware requirements. Further, the method includes self-tuning mechanisms which facilitate its use by non-experts. We believe that this new method can play a key role in the development of large-scale and even whole-cell dynamic models.

  2. An Assessment of the Effect of Collaborative Groups on Students' Problem-Solving Strategies and Abilities

    Science.gov (United States)

    Cooper, Melanie M.; Cox, Charles T., Jr.; Nammouz, Minory; Case, Edward; Stevens, Ronald

    2008-01-01

    Improving students' problem-solving skills is a major goal for most science educators. While a large body of research on problem solving exists, assessment of meaningful problem solving is very difficult, particularly for courses with large numbers of students in which one-on-one interactions are not feasible. We have used a suite of software…

  3. Database management system for large container inspection system

    International Nuclear Information System (INIS)

    Gao Wenhuan; Li Zheng; Kang Kejun; Song Binshan; Liu Fang

    1998-01-01

    Large Container Inspection System (LCIS) based on radiation imaging technology is a powerful tool for the Customs to check the contents inside a large container without opening it. The author has discussed a database application system, as a part of Signal and Image System (SIS), for the LCIS. The basic requirements analysis was done first. Then the selections of computer hardware, operating system, and database management system were made according to the technology and market products circumstance. Based on the above considerations, a database application system with central management and distributed operation features has been implemented

  4. A Discrete-Time Recurrent Neural Network for Solving Rank-Deficient Matrix Equations With an Application to Output Regulation of Linear Systems.

    Science.gov (United States)

    Liu, Tao; Huang, Jie

    2017-04-17

    This paper presents a discrete-time recurrent neural network approach to solving systems of linear equations with two features. First, the system of linear equations may not have a unique solution. Second, the system matrix is not known precisely, but a sequence of matrices that converges to the unknown system matrix exponentially is known. The problem is motivated from solving the output regulation problem for linear systems. Thus, an application of our main result leads to an online solution to the output regulation problem for linear systems.

  5. Workflow management in large distributed systems

    International Nuclear Information System (INIS)

    Legrand, I; Newman, H; Voicu, R; Dobre, C; Grigoras, C

    2011-01-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  6. Workflow management in large distributed systems

    Science.gov (United States)

    Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.

    2011-12-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  7. A Decentralized Multivariable Robust Adaptive Voltage and Speed Regulator for Large-Scale Power Systems

    Science.gov (United States)

    Okou, Francis A.; Akhrif, Ouassima; Dessaint, Louis A.; Bouchard, Derrick

    2013-05-01

    This papter introduces a decentralized multivariable robust adaptive voltage and frequency regulator to ensure the stability of large-scale interconnnected generators. Interconnection parameters (i.e. load, line and transormer parameters) are assumed to be unknown. The proposed design approach requires the reformulation of conventiaonal power system models into a multivariable model with generator terminal voltages as state variables, and excitation and turbine valve inputs as control signals. This model, while suitable for the application of modern control methods, introduces problems with regards to current design techniques for large-scale systems. Interconnection terms, which are treated as perturbations, do not meet the common matching condition assumption. A new adaptive method for a certain class of large-scale systems is therefore introduces that does not require the matching condition. The proposed controller consists of nonlinear inputs that cancel some nonlinearities of the model. Auxiliary controls with linear and nonlinear components are used to stabilize the system. They compensate unknown parametes of the model by updating both the nonlinear component gains and excitation parameters. The adaptation algorithms involve the sigma-modification approach for auxiliary control gains, and the projection approach for excitation parameters to prevent estimation drift. The computation of the matrix-gain of the controller linear component requires the resolution of an algebraic Riccati equation and helps to solve the perturbation-mismatching problem. A realistic power system is used to assess the proposed controller performance. The results show that both stability and transient performance are considerably improved following a severe contingency.

  8. Asymptotic behavior of a diffusive scheme solving the inviscid one-dimensional pressureless gases system

    OpenAIRE

    Boudin , Laurent; Mathiaud , Julien

    2012-01-01

    In this work, we discuss some numerical properties of the viscous numerical scheme introduced in [Boudin, Mathiaud, NMPDE 2012] to solve the one-dimensional pressureless gases system, and study in particular, from a computational viewpoint, its asymptotic behavior when the viscosity parameter used in the scheme becomes smaller.

  9. Solving large test-day models by iteration on data and preconditioned conjugate gradient.

    Science.gov (United States)

    Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A

    1999-12-01

    A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.

  10. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  11. Multi objective large power system planning under sever loading condition using learning DE-APSO-PS strategy

    International Nuclear Information System (INIS)

    Mahdad, Belkacem; Srairi, K.

    2014-01-01

    Highlights: • An efficient planning strategy using DE and APSO in coordination with PS algorithm is proposed. • An interactive process is proposed to balance the exploitation and exploration capability of (DE-APSO) and PS. • Fuel cost, power loss, and voltage deviation considering loading condition are optimized. • The proposed strategy (DE-APSO-PS) is validated on three large practical test systems. - Abstract: This paper introduces an efficient planning strategy using new hybrid interactive differential evolution (DE), adaptive particle swarm optimization (APSO), and pattern search (PS) for solving the security optimal power flow (SOPF) considering multi distributed static VAR compensator (SVC). Three objective functions such as fuel cost, power loss and voltage deviation are considered and optimized considering sever loading conditions. The main idea of the proposed strategy is that variable controls are optimized based on superposition mechanism, the best solutions evaluated by DE and APSO at specified stages are communicated to PS to exploit new regions around this solution, alternatively the new solution achieved by PS is also communicated to DE and APSO, this interactive mechanism search between global and local search is to balance the exploitation and exploration capability which allows individuals from different methods to react more by learning and changing experiences. The robustness of the proposed strategy is tested and validated on large practical power system test (IEEE 118-Bus, IEEE 300-Bus, and 40 units). Comparison results with the standard global optimization methods such as DE, APSO PS and to other recent techniques showed the superiority and perspective of the proposed hybrid technique for solving practical power system problems

  12. A fast BDD algorithm for large coherent fault trees analysis

    International Nuclear Information System (INIS)

    Jung, Woo Sik; Han, Sang Hoon; Ha, Jaejoo

    2004-01-01

    Although a binary decision diagram (BDD) algorithm has been tried to solve large fault trees until quite recently, they are not efficiently solved in a short time since the size of a BDD structure exponentially increases according to the number of variables. Furthermore, the truncation of If-Then-Else (ITE) connectives by the probability or size limit and the subsuming to delete subsets could not be directly applied to the intermediate BDD structure under construction. This is the motivation for this work. This paper presents an efficient BDD algorithm for large coherent systems (coherent BDD algorithm) by which the truncation and subsuming could be performed in the progress of the construction of the BDD structure. A set of new formulae developed in this study for AND or OR operation between two ITE connectives of a coherent system makes it possible to delete subsets and truncate ITE connectives with a probability or size limit in the intermediate BDD structure under construction. By means of the truncation and subsuming in every step of the calculation, large fault trees for coherent systems (coherent fault trees) are efficiently solved in a short time using less memory. Furthermore, the coherent BDD algorithm from the aspect of the size of a BDD structure is much less sensitive to variable ordering than the conventional BDD algorithm

  13. Counterfactual Problem Solving and Situated Cognition

    Directory of Open Access Journals (Sweden)

    Glebkin V.V.,

    2017-08-01

    Full Text Available The paper describes and interprets data of a study on counterfactual problem solving in representatives of modern industrial culture. The study was inspired by similar experiments carried out by A.R. Luria during his expedition to Central Asia. The hypothesis of our study was that representatives of modern industrial culture would solve counterfactual puzzles at a slower rate and with higher numbers of mistakes than similar non-counterfactual tasks. The experiments we conducted supported this hypothesis as well as provided us with some insights as to how to further develop it. For instance, we found no significant differences in time lag in solving counterfactual and ‘realistic’ tasks between the subjects with mathematical and the ones with liberal arts education. As an interpretation of the obtained data, we suggest a two-stage model of counterfactual problem solving: on the first stage, where situated cognition dominates, the realistic situation is transferred into the system of symbols unrelated to this very situation; on the second stage, operations are carried out within the framework of this new system of symbols.

  14. Solving Differential Equations in R: Package deSolve

    Science.gov (United States)

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  15. Solving Differential Equations in R: Package deSolve

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.

    2010-01-01

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

  16. Fluid-structure interaction in non-rigid pipeline systems - large scale validation experiments

    International Nuclear Information System (INIS)

    Heinsbroek, A.G.T.J.; Kruisbrink, A.C.H.

    1993-01-01

    The fluid-structure interaction computer code FLUSTRIN, developed by DELFT HYDRAULICS, enables the user to determine dynamic fluid pressures, structural stresses and displacements in a liquid-filled pipeline system under transient conditions. As such, the code is a useful tool to process and mechanical engineers in the safe design and operation of pipeline systems in nuclear power plants. To validate FLUSTRIN, experiments have been performed in a large scale 3D test facility. The test facility consists of a flexible pipeline system which is suspended by wires, bearings and anchors. Pressure surges, which excite the system, are generated by a fast acting shut-off valve. Dynamic pressures, structural displacements and strains (in total 70 signals) have been measured under well determined initial and boundary conditions. The experiments have been simulated with FLUSTRIN, which solves the acoustic equations using the method of characteristics (fluid) and the finite element method (structure). The agreement between experiments and simulations is shown to be good: frequencies, amplitudes and wave phenomena are well predicted by the numerical simulations. It is demonstrated that an uncoupled water hammer computation would render unreliable and useless results. (author)

  17. Results of numerically solving an integral equation for a two-fermion system

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Solov'eva, T.M.

    2003-01-01

    A two-particle system is described by integral equations whose kernels are dependent on the total energy of the system. Such equations can be reduced to an eigenvalue problem featuring an eigenvalue-dependent operator. This nonlinear eigenvalue problem is solved by means of an iterative procedure developed by the present authors. The energy spectra of a two-fermion system formed by particles of identical masses are obtained for two cases, that where the total spin of the system is equal to zero and that where the total spin of the system is equal to unity. The splitting of the ground-state levels of positronium and dimuonium, the frequency of the transition from the ground state of orthopositronium to its first excited state, and the probabilities of parapositronium and paradimuonium decays are computed. The results obtained in this way are found to be in good agreement with experimental data

  18. Automatic management software for large-scale cluster system

    International Nuclear Information System (INIS)

    Weng Yunjian; Chinese Academy of Sciences, Beijing; Sun Gongxing

    2007-01-01

    At present, the large-scale cluster system faces to the difficult management. For example the manager has large work load. It needs to cost much time on the management and the maintenance of large-scale cluster system. The nodes in large-scale cluster system are very easy to be chaotic. Thousands of nodes are put in big rooms so that some managers are very easy to make the confusion with machines. How do effectively carry on accurate management under the large-scale cluster system? The article introduces ELFms in the large-scale cluster system. Furthermore, it is proposed to realize the large-scale cluster system automatic management. (authors)

  19. A semi-analytical approach for solving of nonlinear systems of functional differential equations with delay

    Science.gov (United States)

    Rebenda, Josef; Šmarda, Zdeněk

    2017-07-01

    In the paper, we propose a correct and efficient semi-analytical approach to solve initial value problem for systems of functional differential equations with delay. The idea is to combine the method of steps and differential transformation method (DTM). In the latter, formulas for proportional arguments and nonlinear terms are used. An example of using this technique for a system with constant and proportional delays is presented.

  20. Innovative problem solving by wild spotted hyenas

    Science.gov (United States)

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  1. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  2. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  3. New Ideas on the Design of the Web-Based Learning System Oriented to Problem Solving from the Perspective of Question Chain and Learning Community

    Science.gov (United States)

    Zhang, Yin; Chu, Samuel K. W.

    2016-01-01

    In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…

  4. An efficient numerical technique for solving navier-stokes equations for rotating flows

    International Nuclear Information System (INIS)

    Haroon, T.; Shah, T.M.

    2000-01-01

    This paper simulates an industrial problem by solving compressible Navier-Stokes equations. The time-consuming tri-angularization process of a large-banded matrix, performed by memory economical Frontal Technique. This scheme successfully reduces the time for I/O operations even for as large as (40, 000 x 40, 000) matrix. Previously, this industrial problem can solved by using modified Newton's method with Gaussian elimination technique for the large matrix. In the present paper, the proposed Frontal Technique is successfully used, together with Newton's method, to solve compressible Navier-Stokes equations for rotating cylinders. By using the Frontal Technique, the method gives the solution within reasonably acceptance computational time. Results are compared with the earlier works done, and found computationally very efficient. Some features of the solution are reported here for the rotating machines. (author)

  5. Curriculum providing cognitive knowledge and problem-solving skills for anesthesia systems-based practice.

    Science.gov (United States)

    Wachtel, Ruth E; Dexter, Franklin

    2010-12-01

    Residency programs accredited by the ACGME are required to teach core competencies, including systems-based practice (SBP). Projects are important for satisfying this competency, but the level of knowledge and problem-solving skills required presupposes a basic understanding of the field. The responsibilities of anesthesiologists include the coordination of patient flow in the surgical suite. Familiarity with this topic is crucial for many improvement projects. A course in operations research for surgical services was originally developed for hospital administration students. It satisfies 2 of the Institute of Medicine's core competencies for health professionals: evidence-based practice and work in interdisciplinary teams. The course lasts 3.5 days (eg, 2 weekends) and consists of 45 cognitive objectives taught using 7 published articles, 10 lectures, and 156 computer-assisted problem-solving exercises based on 17 case studies. We tested the hypothesis that the cognitive objectives of the curriculum provide the knowledge and problem-solving skills necessary to perform projects that satisfy the SBP competency. Standardized terminology was used to define each component of the SBP competency for the minimum level of knowledge needed. The 8 components of the competency were examined independently. Most cognitive objectives contributed to at least 4 of the 8 core components of the SBP competency. Each component of SBP is addressed at the minimum requirement level of exemplify by at least 6 objectives. There is at least 1 cognitive objective at the level of summarize for each SBP component. A curriculum in operating room management can provide the knowledge and problem-solving skills anesthesiologists need for participation in projects that satisfy the SBP competency.

  6. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  7. Appreciative Problem Solving

    DEFF Research Database (Denmark)

    Hansen, David

    2012-01-01

    Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...

  8. Final report LDRD project 105816 : model reduction of large dynamic systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, Richard B.; Segalman, Daniel Joseph; Hetmaniuk, Ulrich L. (University of Washington, Seattle, WA); Dohrmann, Clark R.

    2009-10-01

    Advanced computing hardware and software written to exploit massively parallel architectures greatly facilitate the computation of extremely large problems. On the other hand, these tools, though enabling higher fidelity models, have often resulted in much longer run-times and turn-around-times in providing answers to engineering problems. The impediments include smaller elements and consequently smaller time steps, much larger systems of equations to solve, and the inclusion of nonlinearities that had been ignored in days when lower fidelity models were the norm. The research effort reported focuses on the accelerating the analysis process for structural dynamics though combinations of model reduction and mitigation of some factors that lead to over-meshing.

  9. Collaborative problem solving with a total quality model.

    Science.gov (United States)

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  10. A New Method to Solve Numeric Solution of Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Min Hu

    2016-01-01

    Full Text Available It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.

  11. Review on solving the forward problem in EEG source analysis

    Directory of Open Access Journals (Sweden)

    Vergult Anneleen

    2007-11-01

    Full Text Available Abstract Background The aim of electroencephalogram (EEG source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter. In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM, the finite element method (FEM and the finite difference method (FDM. In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative

  12. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  13. Toward Solving the Problem of Problem Solving: An Analysis Framework

    Science.gov (United States)

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  14. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  15. Student Learning of Complex Earth Systems: A Model to Guide Development of Student Expertise in Problem-Solving

    Science.gov (United States)

    Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.

    2017-01-01

    Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…

  16. Static analysis of large-scale multibody system using joint coordinates and spatial algebra operator.

    Science.gov (United States)

    Omar, Mohamed A

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.

  17. A trial of patient-oriented problem-solving system for immunology teaching in China: a comparison with dialectic lectures

    OpenAIRE

    Zhang Zhiren; Liu Wei; Han Junfeng; Guo Sheng; Wu Yuzhang

    2013-01-01

    Abstract Background The most common teaching method used in China is lecturing, but recently, efforts have been widely undertaken to promote the transition from teacher-centered to student-centered education. The patient-oriented problem-solving (POPS) system is an innovative teaching-learning method that permits students to work in small groups to solve clinical problems, promotes self-learning, encourages clinical reasoning and develops long-lasting memory. To our best knowledge, however, P...

  18. Large-scale matrix-handling subroutines 'ATLAS'

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Fujita, Keiichi; Matsuura, Toshihiko; Tahara, Nobuo

    1978-03-01

    Subroutine package ''ATLAS'' has been developed for handling large-scale matrices. The package is composed of four kinds of subroutines, i.e., basic arithmetic routines, routines for solving linear simultaneous equations and for solving general eigenvalue problems and utility routines. The subroutines are useful in large scale plasma-fluid simulations. (auth.)

  19. Large Scale Visual Recommendations From Street Fashion Images

    OpenAIRE

    Jagadeesh, Vignesh; Piramuthu, Robinson; Bhardwaj, Anurag; Di, Wei; Sundaresan, Neel

    2014-01-01

    We describe a completely automated large scale visual recommendation system for fashion. Our focus is to efficiently harness the availability of large quantities of online fashion images and their rich meta-data. Specifically, we propose four data driven models in the form of Complementary Nearest Neighbor Consensus, Gaussian Mixture Models, Texture Agnostic Retrieval and Markov Chain LDA for solving this problem. We analyze relative merits and pitfalls of these algorithms through extensive e...

  20. VET workers problem-solving skills in technology-rich environments: European approach

    OpenAIRE

    Hämäläinen, Raija

    2014-01-01

    The European workplace is challenging VET adults problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults skills to date. The present study (N=50 369) focuses on gaining insight into the problem-solving skills in TREs of adults with a VET background. When examining the similarities and differences in VET adults problem-solving sk...

  1. VET workers’ problem-solving skills in technology-rich environments: European approach

    OpenAIRE

    Hämäläinen, Raija; Cincinnato, Sebastiano; Malin, Antero; De Wever, Bram

    2014-01-01

    The European workplace is challenging VET adults’ problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults’ skills to date. The present study (N=50 369) focuses on gaining insight into the problem-solving skills in TREs of adults with a VET background. When examining the similarities and differences in VET adults’ problem-solving...

  2. Problem Solving Method Based on E-Learning System for Engineering Education

    Science.gov (United States)

    Khazaal, Hasan F.

    2015-01-01

    Encouraging engineering students to handle advanced technology with multimedia, as well as motivate them to have the skills of solving the problem, are the missions of the teacher in preparing students for a modern professional career. This research proposes a scenario of problem solving in basic electrical circuits based on an e-learning system…

  3. Solving and Interpreting Large-scale Harvest Scheduling Problems by Duality and Decomposition

    OpenAIRE

    Berck, Peter; Bible, Thomas

    1982-01-01

    This paper presents a solution to the forest planning problem that takes advantage of both the duality of linear programming formulations currently being used for harvest scheduling and the characteristics of decomposition inherent in the forest land class-relationship. The subproblems of decomposition, defined as the dual, can be solved in a simple, recursive fashion. In effect, such a technique reduces the computational burden in terms of time and computer storage as compared to the traditi...

  4. Systems engineering for very large systems

    Science.gov (United States)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  5. The system of computer simulation and organizational management of large enterprises activity

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2016-01-01

    Full Text Available Study on the construction of an integrated technical support is carried out by the example of organizational information systems (or administrative and economic management activities of large organizations. As part of the management information system, comprehensive technical support related to other parts of the system, first of all, to the information database managementsystem, which covers all types of information required for planning and management, and an algorithm for processing this information. This means that not only the control system determines the required set of technical means, but it features a significant effect on the composition and organization of the management information system database. A feature of the integrated logistics is the variety of hardware functions, a large number of device types, different ways of interaction of the operator and equipment, the possibility of a different line-up and aggregation devices. The complex of technical means of information management systems have all the features of a complex system: versatility, availability feedbacks multicriteriality, hierarchical structure, the presence of allocated parts connected to each other by complex interactions, the uncertainty of the behavior of these parts, which is the result of the ultimate reliability of technical means and the influence of environmental disturbances . For this reason, the tasks associated with the creation of an integrated logistics management information system should be solved with the system approach. To maximize the efficiency of the information management system required the construction of technological complex with minimal installation and operation, which leads to the need to choose the optimal variant of technical means of the number of possible. The decision of the main objectives of integrated logistics can be reduced to the construction of the joint number of languages - character sets or alphabets describing the input

  6. Integrator Performance Analysis In Solving Stiff Differential Equation System

    International Nuclear Information System (INIS)

    B, Alhadi; Basaruddin, T.

    2001-01-01

    In this paper we discuss the four-stage index-2 singly diagonally implicit Runge-Kutta method, which is used to solve stiff ordinary differential equations (SODE). Stiff problems require a method where step size is not restricted by the method's stability. We desire SDIRK to be A-stable that has no stability restrictions when solving y'= λy with Reλ>0 and h>0, so by choosing suitable stability function we can determine appropriate constant g) to formulate SDIRK integrator to solve SODE. We select the second stage of the internal stage as embedded method to perform low order estimate for error predictor. The strategy for choosing the step size is adopted from the strategy proposed by Hall(1996:6). And the algorithm that is developed in this paper is implemented using MATLAB 5.3, which is running on Window's 95 environment. Our performance measurement's local truncation error accuracy, and efficiency were evaluated by statistical results of sum of steps, sum of calling functions, average of Newton iterations and elapsed times.As the results, our numerical experiment show that SDIRK is unconditionally stable. By using Hall's step size strategy, the method can be implemented efficiently, provided that suitable parameters are used

  7. Problem Solving of Newton's Second Law through a System of Total Mass Motion

    Science.gov (United States)

    Abdullah, Helmi

    2014-01-01

    Nowadays, many researchers discovered various effective strategies in teaching physics, from traditional to modern strategy. However, research on physics problem solving is still inadequate. Physics problem is an integral part of physics learning and requires strategy to solve it. Besides that, problem solving is the best way to convey principle,…

  8. Student’s scheme in solving mathematics problems

    Science.gov (United States)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  9. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  10. SOLVING THE HAMILTONIAN CYCLE PROBLEM USING SYMBOLIC DETERMINANTS

    OpenAIRE

    Ejov, V.; Filar, J. A.; Lucas, S. K.; Nelson, J. L.

    2006-01-01

    In this note we show how the Hamiltonian Cycle problem can be reduced to solving a system of polynomial equations related to the adjacency matrix of a graph. This system of equations can be solved using the method of Gröbner bases, but we also show how a symbolic determinant related to the adjacency matrix can be used to directly decide whether a graph has a Hamiltonian cycle.

  11. Fast Solvers for Dense Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  12. Generating and Solving Symbolic Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2014-07-01

    Full Text Available We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES and then instantiates the PBES to a parity game. We improved the translation from specification to PBES to preserve the structure of the specification in the PBES, we extended LTSmin to instantiate PBESs to symbolic parity games, and implemented the recursive parity game solving algorithm by Zielonka for symbolic parity games. We use Multi-valued Decision Diagrams (MDDs to represent sets and relations, thus enabling the tools to deal with very large systems. The transition relation is partitioned based on the structure of the specification, which allows for efficient manipulation of the MDDs. We performed two case studies on modular specifications, that demonstrate that the new method has better time and memory performance than existing PBES based tools and can be faster (but slightly less memory efficient than the symbolic model checker NuSMV.

  13. A new modification of summary-based analysis method for large software system testing

    Directory of Open Access Journals (Sweden)

    A. V. Sidorin

    2015-01-01

    Full Text Available The automated testing tools becoming a frequent practice require thorough computer-aided testing of large software systems, including system inter-component interfaces. To achieve a good coverage, one should overcome scalability problems of different methods of analysis. These problems arise from impossibility to analyze all the execution paths. The objective of this research is to build a method for inter-procedural analysis, which efficiency enables us to analyse large software systems (such as Android OS codebase as a whole for a reasonable time (no more than 4 hours. This article reviews existing methods of software analysis to detect their potential defects. It focuses on the symbolic execution method since it is widely used both in static analysis of source code and in hybrid analysis of object files and intermediate representation (concolic testing. The method of symbolic execution involves separation of a set of input data values into equivalence classes while choosing an execution path. The paper also considers advantages of this method and its shortcomings. One of the main scalability problems is related to inter-procedural analysis. Analysis time grows rapidly if an inlining method is used for inter-procedural analysis. So this work proposes a summary-based analysis method to solve scalability problems. Clang Static Analyzer, an open source static analyzer (a part of the LLVM project, has been chosen as a target system. It allows us to compare performance of inlining and summary-based inter-procedural analysis. A mathematical model for preliminary estimations is described in order to identify possible factors of performance improvement.

  14. The Association of DRD2 with Insight Problem Solving.

    Science.gov (United States)

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene ( DRD2 ) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.

  15. The Interactions between Problem Solving and Conceptual Change: System Dynamic Modelling as a Platform for Learning

    Science.gov (United States)

    Lee, Chwee Beng

    2010-01-01

    This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…

  16. Solving Large Quadratic|Assignment Problems in Parallel

    DEFF Research Database (Denmark)

    Clausen, Jens; Perregaard, Michael

    1997-01-01

    and recalculation of bounds between branchings when used in a parallel Branch-and-Bound algorithm. The algorithm has been implemented on a 16-processor MEIKO Computing Surface with Intel i860 processors. Computational results from the solution of a number of large QAPs, including the classical Nugent 20...... processors, and have hence not been ideally suited for computations essentially involving non-vectorizable computations on integers.In this paper we investigate the combination of one of the best bound functions for a Branch-and-Bound algorithm (the Gilmore-Lawler bound) and various testing, variable binding...

  17. Large-N -approximated field theory for multipartite entanglement

    Science.gov (United States)

    Facchi, P.; Florio, G.; Parisi, G.; Pascazio, S.; Scardicchio, A.

    2015-12-01

    We try to characterize the statistics of multipartite entanglement of the random states of an n -qubit system. Unable to solve the problem exactly we generalize it, replacing complex numbers with real vectors with Nc components (the original problem is recovered for Nc=2 ). Studying the leading diagrams in the large-Nc approximation, we unearth the presence of a phase transition and, in an explicit example, show that the so-called entanglement frustration disappears in the large-Nc limit.

  18. Numerical method for solving the three-dimensional time-dependent neutron diffusion equation

    International Nuclear Information System (INIS)

    Khaled, S.M.; Szatmary, Z.

    2005-01-01

    A numerical time-implicit method has been developed for solving the coupled three-dimensional time-dependent multi-group neutron diffusion and delayed neutron precursor equations. The numerical stability of the implicit computation scheme and the convergence of the iterative associated processes have been evaluated. The computational scheme requires the solution of large linear systems at each time step. For this purpose, the point over-relaxation Gauss-Seidel method was chosen. A new scheme was introduced instead of the usual source iteration scheme. (author)

  19. Solving Conic Systems via Projection and Rescaling

    OpenAIRE

    Pena, Javier; Soheili, Negar

    2015-01-01

    We propose a simple projection and rescaling algorithm to solve the feasibility problem \\[ \\text{ find } x \\in L \\cap \\Omega, \\] where $L$ and $\\Omega$ are respectively a linear subspace and the interior of a symmetric cone in a finite-dimensional vector space $V$. This projection and rescaling algorithm is inspired by previous work on rescaled versions of the perceptron algorithm and by Chubanov's projection-based method for linear feasibility problems. As in these predecessors, each main it...

  20. Strategy for solving semi-analytically three-dimensional transient flow in a coupled N-layer aquifer system

    NARCIS (Netherlands)

    Veling, E.J.M.; Maas, C.

    2008-01-01

    Efficient strategies for solving semi-analytically the transient groundwater head in a coupled N-layer aquifer system phi(i)(r, z, t), i = 1, ..., N, with radial symmetry, with full z-dependency, and partially penetrating wells are presented. Aquitards are treated as aquifers with their own

  1. Optimization of large-scale heterogeneous system-of-systems models.

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Lee, Herbert K. H. (University of California, Santa Cruz, Santa Cruz, CA); Hart, William Eugene; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Woodruff, David L. (University of California, Davis, Davis, CA)

    2012-01-01

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  2. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Asnafi, Alireza [Hydro-Aeronautical Research Center, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of); Mahzoon, Mojtaba [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of)

    2011-09-15

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  3. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    International Nuclear Information System (INIS)

    Asnafi, Alireza; Mahzoon, Mojtaba

    2011-01-01

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  4. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  5. The influence of mechatronic learning systems on creative problem solving of pupils participating in technology class A pilot study

    Directory of Open Access Journals (Sweden)

    Kai-Christian Tönnsen

    2017-12-01

    Full Text Available Without being creative and finding solutions for various problems of life mankind wouldn’t be what it is today. Problem solving always has been a key ability for development, in the past, the present and it will also be a key for the future. Creative problem solving is one of the most important ways of technical thinking and acting. Therefore, the ability of finding solutions for problems and realizing them is a primary goal for technological education, especially if it is part of a comprehensive school education. It can be assumed that the available resources affect the possibilities and the result of problem solving processes. In terms of technology classes there are numerous resources that aim for the development of pupils’ creative problem solving skills like for instance mechatronic educational environments (MEEs. Unfortunately there is currently no test instrument for rating the influence of these MEEs on the outcome in terms of creative technical problem solving processes. Therefore, we designed a trial for such purpose and tested it in a pilot study: 33 students (9th grade, average age of 15.24 years of comprehensive schools were given a problem, which had to be solved using three different MEEs. Solutions found by the students have been documented and analyzed to identify system characteristics which enhance or inhibit the creative outcome.Key words: Creative problem solving, technology education, mechatronic educational environments, Festo MecLab, Fischertechnik RoboTX, Lego Mindstorms EV3

  6. Iterative algorithms for large sparse linear systems on parallel computers

    Science.gov (United States)

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  7. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  8. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  9. Finding a Roadmap to achieve Large Neuromorphic Hardware Systems

    Directory of Open Access Journals (Sweden)

    Jennifer eHasler

    2013-09-01

    Full Text Available Neuromorphic systems are gaining increasing importance in an era where CMOS digital computing techniques are meeting hard physical limits. These silicon systems mimic extremely energy efficient neural computing structures, potentially both for solving engineering applications as well as understanding neural computation. Towards this end, the authors provide a glimpse at what the technology evolution roadmap looks like for these systems so that Neuromorphic engineers may gain the same benefit of anticipation and foresight that IC designers gained from Moore's law many years ago. Scaling of energy efficiency, performance, and size will be discussed as well as how the implementation and application space of Neuromorphic systems are expected to evolve over time.

  10. A tabu-search heuristic for solving the multi-depot vehicle scheduling problem

    Directory of Open Access Journals (Sweden)

    Gilmar D'Agostini Oliveira Casalinho

    2014-08-01

    Full Text Available Currently the logistical problems are relying quite significantly on Operational Research in order to achieve greater efficiency in their operations. Among the problems related to the vehicles scheduling in a logistics system, the Multiple Depot Vehicle Scheduling Problem (MDVSP has been addressed in several studies. The MDVSP presupposes the existence of depots that affect the planning of sequences to which travel must be performed. Often, exact methods cannot solve large instances encountered in practice and in order to take them into account, several heuristic approaches are being developed. The aim of this study was thus to solve the MDVSP using a meta-heuristic based on tabu-search method. The main motivation for this work came from the indication that only recently the use of meta-heuristics is being applied to MDVSP context (Pepin et al. 2008 and, also, the limitations listed by Rohde (2008 in his study, which used the branch-and-bound in one of the steps of the heuristic presented to solve the problem, which has increased the time resolution. The research method for solving this problem was based on adaptations of traditional techniques of Operational Research, and provided resolutions presenting very competitive results for the MDVSP such as the cost of the objective function, number of vehicles used and computational time.

  11. Modified Cuckoo Search Algorithm for Solving Nonconvex Economic Load Dispatch Problems

    Directory of Open Access Journals (Sweden)

    Thang Trung Nguyen

    2016-01-01

    Full Text Available This paper presents the application of modified cuckoo search algorithm (MCSA for solving economic load dispatch (ELD problems. The MCSA method is developed to improve the search ability and solution quality of the conventional CSA method. In the MCSA, the evaluation of eggs has divided the initial eggs into two groups, the top egg group with good quality and the abandoned group with worse quality. Moreover, the value of the updated step size in MCSA is adapted as generating a new solution for the abandoned group and the top group via the Levy flights so that a large zone is searched at the beginning and a local zone is foraged as the maximum number of iterations is nearly reached. The MCSA method has been tested on different systems with different characteristics of thermal units and constraints. The result comparison with other methods in the literature has indicated that the MCSA method can be a powerful method for solving the ELD.

  12. Cognitive Medical Multiagent Systems

    Directory of Open Access Journals (Sweden)

    Barna Iantovics

    2010-01-01

    Full Text Available The development of efficient and flexible agent-based medical diagnosis systems represents a recent research direction. Medical multiagent systems may improve the efficiency of traditionally developed medical computational systems, like the medical expert systems. In our previous researches, a novel cooperative medical diagnosis multiagent system called CMDS (Contract Net Based Medical Diagnosis System was proposed. CMDS system can solve flexibly a large variety of medical diagnosis problems. This paper analyses the increased intelligence of the CMDS system, which motivates its use for different medical problem’s solving.

  13. Parallel Optimization of Polynomials for Large-scale Problems in Stability and Control

    Science.gov (United States)

    Kamyar, Reza

    In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems --- in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) --- whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers --- machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers. We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to

  14. Wicked Problems in Large Organizations: Why Pilot Retention Continues to Challenge the Air Force

    Science.gov (United States)

    2017-05-25

    solving complex problems even more challenging.10 This idea of complexity extends to another theoretical concept , the complex adaptive system, which... concept in order to avoid the pitfalls and dangers in group problem - solving .26 His ideas to mitigate potential groupthink place responsibility... Problems in Large Organizations: Why Pilot Retention Continues to Challenge the Air Force 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  15. Solving Large Scale Crew Scheduling Problems in Practice

    NARCIS (Netherlands)

    E.J.W. Abbink (Erwin); L. Albino; T.A.B. Dollevoet (Twan); D. Huisman (Dennis); J. Roussado; R.L. Saldanha

    2010-01-01

    textabstractThis paper deals with large-scale crew scheduling problems arising at the Dutch railway operator, Netherlands Railways (NS). NS operates about 30,000 trains a week. All these trains need a driver and a certain number of guards. Some labor rules restrict the duties of a certain crew base

  16. A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

    OpenAIRE

    Ngwane, F. F.; Jator, S. N.

    2017-01-01

    In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one...

  17. Large-N limit of the two-Hermitian-matrix model by the hidden BRST method

    International Nuclear Information System (INIS)

    Alfaro, J.

    1993-01-01

    This paper discusses the large-N limit of the two-Hermitian-matrix model in zero dimensions, using the hidden Becchi-Rouet-Stora-Tyutin method. A system of integral equations previously found is solved, showing that it contained the exact solution of the model in leading order of large N

  18. Virtual microscopy system at Chinese medical university: an assisted teaching platform for promoting active learning and problem-solving skills.

    Science.gov (United States)

    Tian, Yanping; Xiao, Wengang; Li, Chengren; Liu, Yunlai; Qin, Maolin; Wu, Yi; Xiao, Lan; Li, Hongli

    2014-04-09

    Chinese medical universities typically have a high number of students, a shortage of teachers and limited equipment, and as such histology courses have been taught using traditional lecture-based formats, with textbooks and conventional microscopy. This method, however, has reduced creativity and problem-solving skills training in the curriculum. The virtual microscope (VM) system has been shown to be an effective and efficient educational strategy. The present study aims to describe a VM system for undergraduates and to evaluate the effects of promoting active learning and problem-solving skills. Two hundred and twenty-nine second-year undergraduate students in the Third Military Medical University were divided into two groups. The VM group contained 115 students and was taught using the VM system. The light microscope (LM) group consisted of 114 students and was taught using the LM system. Post-teaching performances were assessed by multiple-choice questions, short essay questions, case analysis questions and the identification of structure of tissue. Students' teaching preferences and satisfaction were assessed using questionnaires. Test scores in the VM group showed a significant improvement compared with those in the LM group (p 0.05); however, there were notable differences in the mean score rate of case analysis questions and identification of structure of tissue (p effects of the VM system in terms of additional learning resources, critical thinking, ease of communication and confidence. The VM system is an effective tool at Chinese medical university to promote undergraduates' active learning and problem-solving skills as an assisted teaching platform.

  19. Using Coaching to Improve the Teaching of Problem Solving to Year 8 Students in Mathematics

    Science.gov (United States)

    Kargas, Christine Anestis; Stephens, Max

    2014-01-01

    This study investigated how to improve the teaching of problem solving in a large Melbourne secondary school. Coaching was used to support and equip five teachers, some with limited experiences in teaching problem solving, with knowledge and strategies to build up students' problem solving and reasoning skills. The results showed increased…

  20. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  1. Solving discretely-constrained MPEC problems with applications in electric power markets

    International Nuclear Information System (INIS)

    Gabriel, Steven A.; Leuthold, Florian U.

    2010-01-01

    Many of the European energy markets are characterized by dominant players that own a large share of their respective countries' generation capacities. In addition to that, there is a significant lack of cross-border transmission capacity. Combining both facts justifies the assumption that these dominant players are able to influence the market outcome of an internal European energy market due to strategic behavior. In this paper, we present a mathematical formulation in order to solve a Stackelberg game for a network-constrained energy market using integer programming. The strategic player is the Stackelberg leader and the independent system operator (including the decisions of the competitive fringe firms) acts as follower. We assume that there is one strategic player which results in a mathematical program with equilibrium constraints (MPEC). This MPEC is reformulated as mixed-integer linear program (MILP) by using disjunctive constraints and linearization. The MILP formulation gives the opportunity to solve the problems reliably and paves the way to add discrete constraints to the original MPEC formulation which can be used in order to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). We report computational results for a small illustrative network as well as a stylized Western European grid with realistic data. (author)

  2. Solving discretely-constrained MPEC problems with applications in electric power markets

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Steven A. [1143 Glenn L. Martin Hall, Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742-3021 (United States); Leuthold, Florian U. [Chair of Energy Economics and Public Sector Management, Dresden University of Technology, 01069 Dresden (Germany)

    2010-01-15

    Many of the European energy markets are characterized by dominant players that own a large share of their respective countries' generation capacities. In addition to that, there is a significant lack of cross-border transmission capacity. Combining both facts justifies the assumption that these dominant players are able to influence the market outcome of an internal European energy market due to strategic behavior. In this paper, we present a mathematical formulation in order to solve a Stackelberg game for a network-constrained energy market using integer programming. The strategic player is the Stackelberg leader and the independent system operator (including the decisions of the competitive fringe firms) acts as follower. We assume that there is one strategic player which results in a mathematical program with equilibrium constraints (MPEC). This MPEC is reformulated as mixed-integer linear program (MILP) by using disjunctive constraints and linearization. The MILP formulation gives the opportunity to solve the problems reliably and paves the way to add discrete constraints to the original MPEC formulation which can be used in order to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). We report computational results for a small illustrative network as well as a stylized Western European grid with realistic data. (author)

  3. Applications of systems thinking and soft operations research in managing complexity from problem framing to problem solving

    CERN Document Server

    2016-01-01

    This book captures current trends and developments in the field of systems thinking and soft operations research which can be applied to solve today's problems of dynamic complexity and interdependency. Such ‘wicked problems’ and messes are seemingly intractable problems characterized as value-laden, ambiguous, and unstable, that resist being tamed by classical problem solving. Actions and interventions associated with this complex problem space can have highly unpredictable and unintended consequences. Examples of such complex problems include health care reform, global climate change, transnational serious and organized crime, terrorism, homeland security, human security, disaster management, and humanitarian aid. Moving towards the development of solutions to these complex problem spaces depends on the lens we use to examine them and how we frame the problem. It will be shown that systems thinking and soft operations research has had great success in contributing to the management of complexity. .

  4. Application of Decomposition Methodology to Solve Integrated Process Design and Controller Design Problems for Reactor-Separator-Recycle System

    DEFF Research Database (Denmark)

    Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan; Gani, Rafiqul

    2010-01-01

    This paper presents the integrated process design and controller design (IPDC) for a reactor-separator-recycle (RSR) system and evaluates a decomposition methodology to solve the IPDC problem. Accordingly, the IPDC problem is solved by decomposing it into four hierarchical stages: (i) pre...... the design of a RSR system involving consecutive reactions, A B -> C and shown to provide effective solutions that satisfy design, control and cost criteria. The advantage of the proposed methodology is that it is systematic, makes use of thermodynamic-process knowledge and provides valuable insights......-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection and verification. The methodology makes use of thermodynamic-process insights and the reverse design approach to arrive at the final process-controller design decisions. The developed methodology is illustrated through...

  5. Trust dynamics in a large system implementation

    DEFF Research Database (Denmark)

    Schlichter, Bjarne Rerup; Rose, Jeremy

    2013-01-01

    outcomes, but largely ignored the dynamics of trust relations. Giddens, as part of his study of modernity, theorises trust dynamics in relation to abstract social systems, though without focusing on information systems. We use Giddens’ concepts to investigate evolving trust relationships in a longitudinal......A large information systems implementation (such as Enterprise Resource Planning systems) relies on the trust of its stakeholders to succeed. Such projects impact diverse groups of stakeholders, each with their legitimate interests and expectations. Levels of stakeholder trust can be expected...... case analysis of a large Integrated Hospital System implementation for the Faroe Islands. Trust relationships suffered a serious breakdown, but the project was able to recover and meet its goals. We develop six theoretical propositions theorising the relationship between trust and project outcomes...

  6. Parallelization of elliptic solver for solving 1D Boussinesq model

    Science.gov (United States)

    Tarwidi, D.; Adytia, D.

    2018-03-01

    In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.

  7. Bonus algorithm for large scale stochastic nonlinear programming problems

    CERN Document Server

    Diwekar, Urmila

    2015-01-01

    This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...

  8. Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems

    Science.gov (United States)

    Sharov, J. V.

    2017-12-01

    Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.

  9. When problem size matters: differential effects of brain stimulation on arithmetic problem solving and neural oscillations.

    Directory of Open Access Journals (Sweden)

    Bruno Rütsche

    Full Text Available The problem size effect is a well-established finding in arithmetic problem solving and is characterized by worse performance in problems with larger compared to smaller operand size. Solving small and large arithmetic problems has also been shown to involve different cognitive processes and distinct electroencephalography (EEG oscillations over the left posterior parietal cortex (LPPC. In this study, we aimed to provide further evidence for these dissociations by using transcranial direct current stimulation (tDCS. Participants underwent anodal (30min, 1.5 mA, LPPC and sham tDCS. After the stimulation, we recorded their neural activity using EEG while the participants solved small and large arithmetic problems. We found that the tDCS effects on performance and oscillatory activity critically depended on the problem size. While anodal tDCS improved response latencies in large arithmetic problems, it decreased solution rates in small arithmetic problems. Likewise, the lower-alpha desynchronization in large problems increased, whereas the theta synchronization in small problems decreased. These findings reveal that the LPPC is differentially involved in solving small and large arithmetic problems and demonstrate that the effects of brain stimulation strikingly differ depending on the involved neuro-cognitive processes.

  10. Large data management and systematization of simulation

    International Nuclear Information System (INIS)

    Ueshima, Yutaka; Saitho, Kanji; Koga, James; Isogai, Kentaro

    2004-01-01

    In the advanced photon research large-scale simulations are powerful tools. In the numerical experiments, real-time visualization and steering system are thought as hopeful methods of data analysis. This approach is valid in the stereotype analysis at one time or short-cycle simulation. In the research for an unknown problem, it is necessary that the output data can be analyzed many times because profitable analysis is difficult at the first time. Consequently, output data should be filed to refer and analyze at any time. To support the research, we need the followed automatic functions, transporting data files from data generator to data storage, analyzing data, tracking history of data handling, and so on. The Large Data Management system will be functional Problem Solving Environment distributed system. (author)

  11. Recent symbolic summation methods to solve coupled systems of differential and difference equations

    International Nuclear Information System (INIS)

    Schneider, Carsten; Bluemlein, Johannes; Freitas, Abilio de

    2014-07-01

    We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.

  12. Recent symbolic summation methods to solve coupled systems of differential and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Freitas, Abilio de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-07-15

    We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.

  13. Lesion mapping of social problem solving.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

  14. Neural activity when people solve verbal problems with insight.

    Directory of Open Access Journals (Sweden)

    Mark Jung-Beeman

    2004-04-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  15. Large Neighborhood Search

    DEFF Research Database (Denmark)

    Pisinger, David; Røpke, Stefan

    2010-01-01

    Heuristics based on large neighborhood search have recently shown outstanding results in solving various transportation and scheduling problems. Large neighborhood search methods explore a complex neighborhood by use of heuristics. Using large neighborhoods makes it possible to find better...... candidate solutions in each iteration and hence traverse a more promising search path. Starting from the large neighborhood search method,we give an overview of very large scale neighborhood search methods and discuss recent variants and extensions like variable depth search and adaptive large neighborhood...

  16. Fast RBF OGr for solving PDEs on arbitrary surfaces

    Science.gov (United States)

    Piret, Cécile; Dunn, Jarrett

    2016-10-01

    The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) was introduced in [1] to discretize differential operators defined on arbitrary manifolds defined only by a point cloud. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent complex geometries in any spatial dimension. A large limitation of the RBF-OGr method was its large computational complexity, which greatly restricted the size of the point cloud. In this paper, we apply the RBF-Finite Difference (RBF-FD) technique to the RBF-OGr method for building sparse differentiation matrices discretizing continuous differential operators such as the Laplace-Beltrami operator. This method can be applied to solving PDEs on arbitrary surfaces embedded in ℛ3. We illustrate the accuracy of our new method by solving the heat equation on the unit sphere.

  17. Status: Large-scale subatmospheric cryogenic systems

    International Nuclear Information System (INIS)

    Peterson, T.

    1989-01-01

    In the late 1960's and early 1970's an interest in testing and operating RF cavities at 1.8K motivated the development and construction of four large (300 Watt) 1.8K refrigeration systems. in the past decade, development of successful superconducting RF cavities and interest in obtaining higher magnetic fields with the improved Niobium-Titanium superconductors has once again created interest in large-scale 1.8K refrigeration systems. The L'Air Liquide plant for Tore Supra is a recently commissioned 300 Watt 1.8K system which incorporates new technology, cold compressors, to obtain the low vapor pressure for low temperature cooling. CEBAF proposes to use cold compressors to obtain 5KW at 2.0K. Magnetic refrigerators of 10 Watt capacity or higher at 1.8K are now being developed. The state of the art of large-scale refrigeration in the range under 4K will be reviewed. 28 refs., 4 figs., 7 tabs

  18. Problem solving environment for distributed interactive applications

    NARCIS (Netherlands)

    Rycerz, K.; Bubak, M.; Sloot, P.; Getov, V.; Gorlatch, S.; Bubak, M.; Priol, T.

    2008-01-01

    Interactive Problem Solving Environments (PSEs) offer an integrated approach for constructing and running complex systems, such as distributed simulation systems. To achieve efficient execution of High Level Architecture (HLA)-based distributed interactive simulations on the Grid, we introduce a PSE

  19. A frequency-domain method for solving linear time delay systems with constant coefficients

    Science.gov (United States)

    Jin, Mengshi; Chen, Wei; Song, Hanwen; Xu, Jian

    2018-03-01

    In an active control system, time delay will occur due to processes such as signal acquisition and transmission, calculation, and actuation. Time delay systems are usually described by delay differential equations (DDEs). Since it is hard to obtain an analytical solution to a DDE, numerical solution is of necessity. This paper presents a frequency-domain method that uses a truncated transfer function to solve a class of DDEs. The theoretical transfer function is the sum of infinite items expressed in terms of poles and residues. The basic idea is to select the dominant poles and residues to truncate the transfer function, thus ensuring the validity of the solution while improving the efficiency of calculation. Meanwhile, the guideline of selecting these poles and residues is provided. Numerical simulations of both stable and unstable delayed systems are given to verify the proposed method, and the results are presented and analysed in detail.

  20. A Newton method for solving continuous multiple material minimum compliance problems

    DEFF Research Database (Denmark)

    Stolpe, M; Stegmann, Jan

    method, one or two linear saddle point systems are solved. These systems involve the Hessian of the objective function, which is both expensive to compute and completely dense. Therefore, the linear algebra is arranged such that the Hessian is not explicitly formed. The main concern is to solve...

  1. A Newton method for solving continuous multiple material minimum compliance problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stegmann, Jan

    2007-01-01

    method, one or two linear saddle point systems are solved. These systems involve the Hessian of the objective function, which is both expensive to compute and completely dense. Therefore, the linear algebra is arranged such that the Hessian is not explicitly formed. The main concern is to solve...

  2. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data

  3. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    Science.gov (United States)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  4. Solving large sets of coupled equations iteratively by vector processing on the CYBER 205 computer

    International Nuclear Information System (INIS)

    Tolsma, L.D.

    1985-01-01

    The set of coupled linear second-order differential equations which has to be solved for the quantum-mechanical description of inelastic scattering of atomic and nuclear particles can be rewritten as an equivalent set of coupled integral equations. When some type of functions is used as piecewise analytic reference solutions, the integrals that arise in this set can be evaluated analytically. The set of integral equations can be solved iteratively. For the results mentioned an inward-outward iteration scheme has been applied. A concept of vectorization of coupled-channel Fortran programs, based on this integral method, is presented for the use on the Cyber 205 computer. It turns out that, for two heavy ion nuclear scattering test cases, this vector algorithm gives an overall speed-up of about a factor of 2 to 3 compared to a highly optimized scalar algorithm for a one vector pipeline computer

  5. Temperament and problem solving in a population of adolescent guide dogs.

    Science.gov (United States)

    Bray, Emily E; Sammel, Mary D; Seyfarth, Robert M; Serpell, James A; Cheney, Dorothy L

    2017-09-01

    It is often assumed that measures of temperament within individuals are more correlated to one another than to measures of problem solving. However, the exact relationship between temperament and problem-solving tasks remains unclear because large-scale studies have typically focused on each independently. To explore this relationship, we tested 119 prospective adolescent guide dogs on a battery of 11 temperament and problem-solving tasks. We then summarized the data using both confirmatory factor analysis and exploratory principal components analysis. Results of confirmatory analysis revealed that a priori separation of tests as measuring either temperament or problem solving led to weak results, poor model fit, some construct validity, and no predictive validity. In contrast, results of exploratory analysis were best summarized by principal components that mixed temperament and problem-solving traits. These components had both construct and predictive validity (i.e., association with success in the guide dog training program). We conclude that there is complex interplay between tasks of "temperament" and "problem solving" and that the study of both together will be more informative than approaches that consider either in isolation.

  6. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    Science.gov (United States)

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  7. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.

    2014-12-01

    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  8. Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem

    International Nuclear Information System (INIS)

    Athayde Costa e Silva, Marsil de; Klein, Carlos Eduardo; Mariani, Viviana Cocco; Santos Coelho, Leandro dos

    2013-01-01

    The environmental/economic dispatch (EED) is an important daily optimization task in the operation of many power systems. It involves the simultaneous optimization of fuel cost and emission objectives which are conflicting ones. The EED problem can be formulated as a large-scale highly constrained nonlinear multiobjective optimization problem. In recent years, many metaheuristic optimization approaches have been reported in the literature to solve the multiobjective EED. In terms of metaheuristics, recently, scatter search approaches are receiving increasing attention, because of their potential to effectively explore a wide range of complex optimization problems. This paper proposes an improved scatter search (ISS) to deal with multiobjective EED problems based on concepts of Pareto dominance and crowding distance and a new scheme for the combination method. In this paper, we have considered the standard IEEE (Institute of Electrical and Electronics Engineers) 30-bus system with 6-generators and the results obtained by proposed ISS algorithm are compared with the other recently reported results in the literature. Simulation results demonstrate that the proposed ISS algorithm is a capable candidate in solving the multiobjective EED problems. - Highlights: ► Economic dispatch. ► We solve the environmental/economic economic power dispatch problem with scatter search. ► Multiobjective scatter search can effectively improve the global search ability

  9. Sufficient Descent Conjugate Gradient Methods for Solving Convex Constrained Nonlinear Monotone Equations

    Directory of Open Access Journals (Sweden)

    San-Yang Liu

    2014-01-01

    Full Text Available Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be applied to solve large-scale nonsmooth equations.

  10. Scalable Newton-Krylov solver for very large power flow problems

    NARCIS (Netherlands)

    Idema, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2010-01-01

    The power flow problem is generally solved by the Newton-Raphson method with a sparse direct solver for the linear system of equations in each iteration. While this works fine for small power flow problems, we will show that for very large problems the direct solver is very slow and we present

  11. An Application of Computer Vision Systems to Solve the Problem of Unmanned Aerial Vehicle Control

    Directory of Open Access Journals (Sweden)

    Aksenov Alexey Y.

    2014-09-01

    Full Text Available The paper considers an approach for application of computer vision systems to solve the problem of unmanned aerial vehicle control. The processing of images obtained through onboard camera is required for absolute positioning of aerial platform (automatic landing and take-off, hovering etc. used image processing on-board camera. The proposed method combines the advantages of existing systems and gives the ability to perform hovering over a given point, the exact take-off and landing. The limitations of implemented methods are determined and the algorithm is proposed to combine them in order to improve the efficiency.

  12. Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method

    Directory of Open Access Journals (Sweden)

    Uswah Qasim

    2016-03-01

    Full Text Available A homotopy method is presented for the construction of frozen Jacobian iterative methods. The frozen Jacobian iterative methods are attractive because the inversion of the Jacobian is performed in terms of LUfactorization only once, for a single instance of the iterative method. We embedded parameters in the iterative methods with the help of the homotopy method: the values of the parameters are determined in such a way that a better convergence rate is achieved. The proposed homotopy technique is general and has the ability to construct different families of iterative methods, for solving weakly nonlinear systems of equations. Further iterative methods are also proposed for solving general systems of nonlinear equations.

  13. Solving delay differential equations in S-ADAPT by method of steps.

    Science.gov (United States)

    Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech

    2013-09-01

    S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.

  14. A synergetic combination of small and large neighborhood schemes in developing an effective procedure for solving the job shop scheduling problem.

    Science.gov (United States)

    Amirghasemi, Mehrdad; Zamani, Reza

    2014-01-01

    This paper presents an effective procedure for solving the job shop problem. Synergistically combining small and large neighborhood schemes, the procedure consists of four components, namely (i) a construction method for generating semi-active schedules by a forward-backward mechanism, (ii) a local search for manipulating a small neighborhood structure guided by a tabu list, (iii) a feedback-based mechanism for perturbing the solutions generated, and (iv) a very large-neighborhood local search guided by a forward-backward shifting bottleneck method. The combination of shifting bottleneck mechanism and tabu list is used as a means of the manipulation of neighborhood structures, and the perturbation mechanism employed diversifies the search. A feedback mechanism, called repeat-check, detects consequent repeats and ignites a perturbation when the total number of consecutive repeats for two identical makespan values reaches a given threshold. The results of extensive computational experiments on the benchmark instances indicate that the combination of these four components is synergetic, in the sense that they collectively make the procedure fast and robust.

  15. Secure Group Communications for Large Dynamic Multicast Group

    Institute of Scientific and Technical Information of China (English)

    Liu Jing; Zhou Mingtian

    2003-01-01

    As the major problem in multicast security, the group key management has been the focus of research But few results are satisfactory. In this paper, the problems of group key management and access control for large dynamic multicast group have been researched and a solution based on SubGroup Secure Controllers (SGSCs) is presented, which solves many problems in IOLUS system and WGL scheme.

  16. Assessing the Internal Dynamics of Mathematical Problem Solving in Small Groups.

    Science.gov (United States)

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The purpose of this exploratory study was to examine the problem-solving behaviors and perceptions of (n=27) seventh-grade students as they worked on solving a mathematical problem within a small-group setting. An assessment system was developed that allowed for this analysis. To assess problem-solving behaviors within a small group a Group…

  17. Theory and algorithms for solving large-scale numerical problems. Application to the management of electricity production

    International Nuclear Information System (INIS)

    Chiche, A.

    2012-01-01

    This manuscript deals with large-scale optimization problems, and more specifically with solving the electricity unit commitment problem arising at EDF. First, we focused on the augmented Lagrangian algorithm. The behavior of that algorithm on an infeasible convex quadratic optimization problem is analyzed. It is shown that the algorithm finds a point that satisfies the shifted constraints with the smallest possible shift in the sense of the Euclidean norm and that it minimizes the objective on the corresponding shifted constrained set. The convergence to such a point is realized at a global linear rate, which depends explicitly on the augmentation parameter. This suggests us a rule for determining the augmentation parameter to control the speed of convergence of the shifted constraint norm to zero. This rule has the advantage of generating bounded augmentation parameters even when the problem is infeasible. As a by-product, the algorithm computes the smallest translation in the Euclidean norm that makes the constraints feasible. Furthermore, this work provides solution methods for stochastic optimization industrial problems decomposed on a scenario tree, based on the progressive hedging algorithm introduced by [Rockafellar et Wets, 1991]. We also focus on the convergence of that algorithm. On the one hand, we offer a counter-example showing that the algorithm could diverge if its augmentation parameter is iteratively updated. On the other hand, we show how to recover the multipliers associated with the non-dualized constraints defined on the scenario tree from those associated with the corresponding constraints of the scenario subproblems. Their convergence is also analyzed for convex problems. The practical interest of theses solutions techniques is corroborated by numerical experiments performed on the electric production management problem. We apply the progressive hedging algorithm to a realistic industrial problem. More precisely, we solve the French medium

  18. Social Problem Solving and Depressive Symptoms Over Time: A Randomized Clinical Trial of Cognitive Behavioral Analysis System of Psychotherapy, Brief Supportive Psychotherapy, and Pharmacotherapy

    Science.gov (United States)

    Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.

    2011-01-01

    Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885

  19. Data acquisition system issues for large experiments

    International Nuclear Information System (INIS)

    Siskind, E.J.

    2007-01-01

    This talk consists of personal observations on two classes of data acquisition ('DAQ') systems for Silicon trackers in large experiments with which the author has been concerned over the last three or more years. The first half is a classic 'lessons learned' recital based on experience with the high-level debug and configuration of the DAQ system for the GLAST LAT detector. The second half is concerned with a discussion of the promises and pitfalls of using modern (and future) generations of 'system-on-a-chip' ('SOC') or 'platform' field-programmable gate arrays ('FPGAs') in future large DAQ systems. The DAQ system pipeline for the 864k channels of Si tracker in the GLAST LAT consists of five tiers of hardware buffers which ultimately feed into the main memory of the (two-active-node) level-3 trigger processor farm. The data formats and buffer volumes of these tiers are briefly described, as well as the flow control employed between successive tiers. Lessons learned regarding data formats, buffer volumes, and flow control/data discard policy are discussed. The continued development of platform FPGAs containing large amounts of configurable logic fabric, embedded PowerPC hard processor cores, digital signal processing components, large volumes of on-chip buffer memory, and multi-gigabit serial I/O capability permits DAQ system designers to vastly increase the amount of data preprocessing that can be performed in parallel within the DAQ pipeline for detector systems in large experiments. The capabilities of some currently available FPGA families are reviewed, along with the prospects for next-generation families of announced, but not yet available, platform FPGAs. Some experience with an actual implementation is presented, and reconciliation between advertised and achievable specifications is attempted. The prospects for applying these components to space-borne Si tracker detectors are briefly discussed

  20. FEMSYN - a code system to solve multigroup diffusion theory equations using a variety of solution techniques. Part 4 : SYNTHD - The synthesis module

    International Nuclear Information System (INIS)

    Jagannathan, V.

    1985-01-01

    For solving the multigroup diffusion theory equations in 3-D problems in which the material properties are uniform in large segments of axial direction, the synthesis method is known to give fairly accurate results, at very low computational cost. In the code system FEMSYN, the single channel continuous flux synthesis option has been incorporated. One can generate the radial trail functions by either finite difference method (FDM) or finite element method (FEM). The axial mixing functions can also be found by either FDM or FEM. Use of FEM for both radial and axial directions is found to reduce the calculation time considerably. One can determine eigenvalue, 3-D flux and power distributions with FEMSYN. In this report, a detailed discription of the synthesis module SYNTHD is given. (author)

  1. Insightful problem solving in an Asian elephant.

    Directory of Open Access Journals (Sweden)

    Preston Foerder

    Full Text Available The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  2. Insightful problem solving in an Asian elephant.

    Science.gov (United States)

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  3. Can renewables etc. solve the greenhouse problem? The negative case

    International Nuclear Information System (INIS)

    Trainer, Ted

    2010-01-01

    Virtually all current discussion of climate change and energy problems proceeds on the assumption that technical solutions are possible within basically affluent-consumer societies. There is however a substantial case that this assumption is mistaken. This case derives from a consideration of the scale of the tasks and of the limits of non-carbon energy sources, focusing especially on the need for redundant capacity in winter. The first line of argument is to do with the extremely high capital cost of the supply system that would be required, and the second is to do with the problems set by the intermittency of renewable sources. It is concluded that the general climate change and energy problem cannot be solved without large scale reductions in rates of economic production and consumption, and therefore without transition to fundamentally different social structures and systems.

  4. GPU acceleration of preconditioned solvers for ill-conditioned linear systems

    NARCIS (Netherlands)

    Gupta, R.

    2015-01-01

    In this work we study the implementations of deflation and preconditioning techniques for solving ill-conditioned linear systems using iterative methods. Solving such systems can be a time-consuming process because of the jumps in the coefficients due to large difference in material properties. We

  5. Economic viability of large-scale fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helsley, Charles E., E-mail: cehelsley@fusionpowercorporation.com; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system

  6. Economic viability of large-scale fusion systems

    International Nuclear Information System (INIS)

    Helsley, Charles E.; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system economically

  7. The Effect of Student Collaboration in Solving Physics Problems Using an Online Interactive Response System

    OpenAIRE

    Balta, Nuri; Awedh, Mohammad Hamza

    2016-01-01

    Advanced technology helps educational institutes to improve student learning performance and outcomes. In this study, our aim is to measure and assess student engagement and collaborative learning in engineering classes when using online technology in solving physics problems. The interactive response system used in this study is a collaborative learning tool that allows teachers to monitor their students’ response and progress in real time. Our results indicated that students have highly pos...

  8. On the Evaluation of Computational Results Obtained from Solving System of linear Equations With matlab The Dual affine Scalling interior Point

    International Nuclear Information System (INIS)

    Murfi, Hendri; Basaruddin, T.

    2001-01-01

    The interior point method for linear programming has gained extraordinary interest as an alternative to simplex method since Karmarkar presented a polynomial-time algorithm for linear programming based on interior point method. In implementation of the algorithm of this method, there are two important things that have impact heavily to performance of the algorithm; they are data structure and used method to solve linear equation system in the algorithm. This paper describes about solving linear equation system in variants of the algorithm called dual-affine scaling algorithm. Next, we evaluate experimentally results of some used methods, either direct method or iterative method. The experimental evaluation used Matlab

  9. An optimal beam alignment method for large-scale distributed space surveillance radar system

    Science.gov (United States)

    Huang, Jian; Wang, Dongya; Xia, Shuangzhi

    2018-06-01

    Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.

  10. Modeling and simulation of large HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H.; Sood, V.K.

    1993-01-01

    This paper addresses the complexity and the amount of work in preparing simulation data and in implementing various converter control schemes and the excessive simulation time involved in modelling and simulation of large HVDC systems. The Power Electronic Circuit Analysis program (PECAN) is used to address these problems and a large HVDC system with two dc links is simulated using PECAN. A benchmark HVDC system is studied to compare the simulation results with those from other packages. The simulation time and results are provided in the paper.

  11. Application of PSO for solving problems of pattern recognition

    Directory of Open Access Journals (Sweden)

    S. N. Chukanov

    2016-01-01

    Full Text Available The problem of estimating the norm of the distance between the two closed smooth curves for pattern recognition is considered. Diffeomorphic transformation curves based on the model of large deformation with the transformation of the starting points of domain in required is formed on the basis of which depends on time-dependent vector field of velocity is considered. The action of the translation, rotation and scaling closed curve, the invariants of the action of these groups are considered. The position of curves is normalized by centering, bringing the principal axes of the image to the axes of the coordinate system and bringing the area of a closed curve corresponding to one. For estimating of the norm of the distance between two closed curves is formed the functional corresponding normalized distance between the two curves, and the equation of evolution diffeomorphic transformations. The equation of evolution allows to move objects along trajectories which correspond to diffeomorphic transformations. The diffeomorphisms do not change the topology along the geodesic trajectories. The problem of inexact comparing the minimized functional contains a term that estimates the exactness of shooting points in the required positions. In the equation of evolution is introduced the variance of conversion error. An algorithm for solving the equation of diffeomorphic transformation is proposed, built on the basis of PSO, which can significantly reduce the number of computing operations, compared with gradient methods for solving. The developed algorithms can be used in bioinformatics and biometrics systems, classification of images and objects, machine vision systems, neuroimaging, for pattern recognition and object tracking systems. Algorithm for estimating the norm of distance between the closed curves by diffeomorphic transformation can spread to spatial objects (curves, surfaces, manifolds.

  12. Human-Assisted Machine Information Exploitation: a crowdsourced investigation of information-based problem solving

    Science.gov (United States)

    Kase, Sue E.; Vanni, Michelle; Caylor, Justine; Hoye, Jeff

    2017-05-01

    The Human-Assisted Machine Information Exploitation (HAMIE) investigation utilizes large-scale online data collection for developing models of information-based problem solving (IBPS) behavior in a simulated time-critical operational environment. These types of environments are characteristic of intelligence workflow processes conducted during human-geo-political unrest situations when the ability to make the best decision at the right time ensures strategic overmatch. The project takes a systems approach to Human Information Interaction (HII) by harnessing the expertise of crowds to model the interaction of the information consumer and the information required to solve a problem at different levels of system restrictiveness and decisional guidance. The design variables derived from Decision Support Systems (DSS) research represent the experimental conditions in this online single-player against-the-clock game where the player, acting in the role of an intelligence analyst, is tasked with a Commander's Critical Information Requirement (CCIR) in an information overload scenario. The player performs a sequence of three information processing tasks (annotation, relation identification, and link diagram formation) with the assistance of `HAMIE the robot' who offers varying levels of information understanding dependent on question complexity. We provide preliminary results from a pilot study conducted with Amazon Mechanical Turk (AMT) participants on the Volunteer Science scientific research platform.

  13. A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves

    Science.gov (United States)

    Favrie, N.; Gavrilyuk, S.

    2017-07-01

    A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.

  14. Solving the equality generalized traveling salesman problem using the Lin–Kernighan–Helsgaun Algorithm

    DEFF Research Database (Denmark)

    Helsgaun, Keld

    2015-01-01

    instances in a well-known library of benchmark instances, GTSPLIB, could be solved to optimality in a reasonable time. In addition, it was possible to solve a series of new very-large-scale instances with up to 17,180 clusters and 85,900 vertices. Optima for these instances are not known...... be downloaded in source code....

  15. Problem solving and inference mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, K; Nakajima, R; Yonezawa, A; Goto, S; Aoyama, A

    1982-01-01

    The heart of the fifth generation computer will be powerful mechanisms for problem solving and inference. A deduction-oriented language is to be designed, which will form the core of the whole computing system. The language is based on predicate logic with the extended features of structuring facilities, meta structures and relational data base interfaces. Parallel computation mechanisms and specialized hardware architectures are being investigated to make possible efficient realization of the language features. The project includes research into an intelligent programming system, a knowledge representation language and system, and a meta inference system to be built on the core. 30 references.

  16. Solving Graph Laplacian Systems Through Recursive Bisections and Two-Grid Preconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, Colin [Cornell Univ., Ithaca, NY (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-18

    We present a parallelizable direct method for computing the solution to graph Laplacian-based linear systems derived from graphs that can be hierarchically bipartitioned with small edge cuts. For a graph of size n with constant-size edge cuts, our method decomposes a graph Laplacian in time O(n log n), and then uses that decomposition to perform a linear solve in time O(n log n). We then use the developed technique to design a preconditioner for graph Laplacians that do not have this property. Finally, we augment this preconditioner with a two-grid method that accounts for much of the preconditioner's weaknesses. We present an analysis of this method, as well as a general theorem for the condition number of a general class of two-grid support graph-based preconditioners. Numerical experiments illustrate the performance of the studied methods.

  17. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  18. Integral transform method for solving time fractional systems and fractional heat equation

    Directory of Open Access Journals (Sweden)

    Arman Aghili

    2014-01-01

    Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.

  19. Estimating the state of large spatio-temporally chaotic systems

    International Nuclear Information System (INIS)

    Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.J.; Corazza, M.; Kalnay, E.; Patil, D.J.; Yorke, J.A.

    2004-01-01

    We consider the estimation of the state of a large spatio-temporally chaotic system from noisy observations and knowledge of a system model. Standard state estimation techniques using the Kalman filter approach are not computationally feasible for systems with very many effective degrees of freedom. We present and test a new technique (called a Local Ensemble Kalman Filter), generally applicable to large spatio-temporally chaotic systems for which correlations between system variables evaluated at different points become small at large separation between the points

  20. The Role of the Goal in Solving Hard Computational Problems: Do People Really Optimize?

    Science.gov (United States)

    Carruthers, Sarah; Stege, Ulrike; Masson, Michael E. J.

    2018-01-01

    The role that the mental, or internal, representation plays when people are solving hard computational problems has largely been overlooked to date, despite the reality that this internal representation drives problem solving. In this work we investigate how performance on versions of two hard computational problems differs based on what internal…

  1. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads

    Directory of Open Access Journals (Sweden)

    Hao-Ting Lin

    2017-06-01

    Full Text Available This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  2. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads.

    Science.gov (United States)

    Lin, Hao-Ting

    2017-06-04

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  3. Geoinformation web-system for processing and visualization of large archives of geo-referenced data

    Science.gov (United States)

    Gordov, E. P.; Okladnikov, I. G.; Titov, A. G.; Shulgina, T. M.

    2010-12-01

    Developed working model of information-computational system aimed at scientific research in area of climate change is presented. The system will allow processing and analysis of large archives of geophysical data obtained both from observations and modeling. Accumulated experience of developing information-computational web-systems providing computational processing and visualization of large archives of geo-referenced data was used during the implementation (Gordov et al, 2007; Okladnikov et al, 2008; Titov et al, 2009). Functional capabilities of the system comprise a set of procedures for mathematical and statistical analysis, processing and visualization of data. At present five archives of data are available for processing: 1st and 2nd editions of NCEP/NCAR Reanalysis, ECMWF ERA-40 Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, and NOAA-CIRES XX Century Global Reanalysis Version I. To provide data processing functionality a computational modular kernel and class library providing data access for computational modules were developed. Currently a set of computational modules for climate change indices approved by WMO is available. Also a special module providing visualization of results and writing to Encapsulated Postscript, GeoTIFF and ESRI shape files was developed. As a technological basis for representation of cartographical information in Internet the GeoServer software conforming to OpenGIS standards is used. Integration of GIS-functionality with web-portal software to provide a basis for web-portal’s development as a part of geoinformation web-system is performed. Such geoinformation web-system is a next step in development of applied information-telecommunication systems offering to specialists from various scientific fields unique opportunities of performing reliable analysis of heterogeneous geophysical data using approved computational algorithms. It will allow a wide range of researchers to work with geophysical data without specific programming

  4. Teaching science problem solving: an overview of experimental work

    NARCIS (Netherlands)

    Taconis, R.; Ferguson-Hessler, M.G.M.; Broekkamp, H.

    2001-01-01

    The traditional approach to teaching science problem solving is having the students work individually on a large number of problems. This approach has long been overtaken by research suggesting and testing other methods, which are expected to be more effective. To get an overview of the

  5. Advanced manipulator system for large hot cells

    International Nuclear Information System (INIS)

    Vertut, J.; Moreau, C.; Brossard, J.P.

    1981-01-01

    Large hot cells can be approached as extrapolated from smaller ones as wide, higher or longer in size with the same concept of using mechanical master slave manipulators and high density windows. This concept leads to a large number of working places and corresponding equipments, with a number of penetrations through the biological protection. When the large cell does not need a permanent operation of number of work places, as in particular to serve PIE machines and maintain the facility, use of servo manipulators with a large supporting unit and extensive use of television appears optimal. The advance on MA 23 and supports will be described including the extra facilities related to manipulators introduction and maintenance. The possibility to combine a powered manipulator and MA 23 (single or pair) on the same boom crane system will be described. An advance control system to bring the minimal dead time to control support movement, associated to the master slave arm operation is under development. The general television system includes over view cameras, associated with the limited number of windows, and manipulators camera. A special new system will be described which brings an automatic control of manipulator cameras and saves operator load and dead time. Full scale tests with MA 23 and support will be discussed. (author)

  6. Needs, opportunities, and options for large scale systems research

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  7. Problem-Solving Phase Transitions During Team Collaboration.

    Science.gov (United States)

    Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M

    2018-01-01

    Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.

  8. Soft Systems Methodology and Problem Framing: Development of an Environmental Problem Solving Model Respecting a New Emergent Reflexive Paradigm.

    Science.gov (United States)

    Gauthier, Benoit; And Others

    1997-01-01

    Identifies the more representative problem-solving models in environmental education. Suggests the addition of a strategy for defining a problem situation using Soft Systems Methodology to environmental education activities explicitly designed for the development of critical thinking. Contains 45 references. (JRH)

  9. Elementary Teachers' Perspectives of Mathematics Problem Solving Strategies

    Science.gov (United States)

    Bruun, Faye

    2013-01-01

    Participants in this study were asked to report what strategies were most often used in their attempts to foster their students' problem solving abilities. Participants included 70 second through fifth-grade elementary teachers from 42 schools in a large state of the south central region in the U.S. Data analyses of the interviews revealed that…

  10. Stopping test of iterative methods for solving PDE

    International Nuclear Information System (INIS)

    Wang Bangrong

    1991-01-01

    In order to assure the accuracy of the numerical solution of the iterative method for solving PDE (partial differential equation), the stopping test is very important. If the coefficient matrix of the system of linear algebraic equations is strictly diagonal dominant or irreducible weakly diagonal dominant, the stopping test formulas of the iterative method for solving PDE is proposed. Several numerical examples are given to illustrate the applications of the stopping test formulas

  11. Using of P2P Networks for Acceleration of RTE Tasks Solving

    Directory of Open Access Journals (Sweden)

    Adrian Iftene

    2008-07-01

    Full Text Available In the last years the computational Grids have become an important research area in large-scale scientific and engineering research. Our approach is based on Peer-to-peer (P2P networks, which are recognized as one of most used architectures in order to achieve scalability in key components of Grid systems. The main scope in using of a computational Grid was to improve the computational speed of systems that solve complex problems from Natural Language processing field. We will see how can be implemented a computational Grid using the P2P model, and how can be used SMB protocol for file transfer. After that we will see how we can use this computational Grid, in order to improve the computational speed of a system used in RTE competition [1], a new complex challenge from Natural Language processing field.

  12. Decentralized diagnostics based on a distributed micro-genetic algorithm for transducer networks monitoring large experimental systems.

    Science.gov (United States)

    Arpaia, P; Cimmino, P; Girone, M; La Commara, G; Maisto, D; Manna, C; Pezzetti, M

    2014-09-01

    Evolutionary approach to centralized multiple-faults diagnostics is extended to distributed transducer networks monitoring large experimental systems. Given a set of anomalies detected by the transducers, each instance of the multiple-fault problem is formulated as several parallel communicating sub-tasks running on different transducers, and thus solved one-by-one on spatially separated parallel processes. A micro-genetic algorithm merges evaluation time efficiency, arising from a small-size population distributed on parallel-synchronized processors, with the effectiveness of centralized evolutionary techniques due to optimal mix of exploitation and exploration. In this way, holistic view and effectiveness advantages of evolutionary global diagnostics are combined with reliability and efficiency benefits of distributed parallel architectures. The proposed approach was validated both (i) by simulation at CERN, on a case study of a cold box for enhancing the cryogeny diagnostics of the Large Hadron Collider, and (ii) by experiments, under the framework of the industrial research project MONDIEVOB (Building Remote Monitoring and Evolutionary Diagnostics), co-funded by EU and the company Del Bo srl, Napoli, Italy.

  13. Large-scale Intelligent Transporation Systems simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  14. Siemens: Smart Technologies for Large Control Systems

    CERN Multimedia

    CERN. Geneva; BAKANY, Elisabeth

    2015-01-01

    The CERN Large Hadron Collider (LHC) is known to be one of the most complex scientific machines ever built by mankind. Its correct functioning relies on the integration of a multitude of interdependent industrial control systems, which provide different and essential services to run and protect the accelerators and experiments. These systems have to deal with several millions of data points (e.g. sensors, actuators, configuration parameters, etc…) which need to be acquired, processed, archived and analysed. Since more than 20 years, CERN and Siemens have developed a strong collaboration to deal with the challenges for these large systems. The presentation will cover the current work on the SCADA (Supervisory Control and Data Acquisition) systems and Data Analytics Frameworks.

  15. New method for solving multidimensional scattering problem

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1991-01-01

    A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed

  16. A Novel Approach for Solving Semidefinite Programs

    Directory of Open Access Journals (Sweden)

    Hong-Wei Jiao

    2014-01-01

    Full Text Available A novel linearizing alternating direction augmented Lagrangian approach is proposed for effectively solving semidefinite programs (SDP. For every iteration, by fixing the other variables, the proposed approach alternatively optimizes the dual variables and the dual slack variables; then the primal variables, that is, Lagrange multipliers, are updated. In addition, the proposed approach renews all the variables in closed forms without solving any system of linear equations. Global convergence of the proposed approach is proved under mild conditions, and two numerical problems are given to demonstrate the effectiveness of the presented approach.

  17. The role of problem solving method on the improvement of mathematical learning

    Directory of Open Access Journals (Sweden)

    Saeed Mokhtari-Hassanabad

    2012-10-01

    Full Text Available In history of education, problem solving is one of the important educational goals and teachers or parents have intended that their students have capacity of problem solving. In present research, it is tried that study the problem solving method for mathematical learning. This research is implemented via quasi-experimental method on 49 boy students at high school. The results of Leven test and T-test indicated that problem solving method has more effective on the improvement of mathematical learning than traditional instruction method. Therefore it seems that teachers of mathematics must apply the problem solving method in educational systems till students became self-efficiency in mathematical problem solving.

  18. Improving insight and non-insight problem solving with brief interventions.

    Science.gov (United States)

    Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma

    2013-02-01

    Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.

  19. Integrating Study Skills and Problem Solving into Remedial Mathematics

    Science.gov (United States)

    Cornick, Jonathan; Guy, G. Michael; Beckford, Ian

    2015-01-01

    Students at a large urban community college enrolled in seven classes of an experimental remedial algebra programme, which integrated study skills instruction and collaborative problem solving. A control group of seven classes was taught in a traditional lecture format without study skills instruction. Student performance in the course was…

  20. Large deviations for noninteracting infinite-particle systems

    International Nuclear Information System (INIS)

    Donsker, M.D.; Varadhan, S.R.S.

    1987-01-01

    A large deviation property is established for noninteracting infinite particle systems. Previous large deviation results obtained by the authors involved a single I-function because the cases treated always involved a unique invariant measure for the process. In the context of this paper there is an infinite family of invariant measures and a corresponding infinite family of I-functions governing the large deviations

  1. Entry control system for large populations

    International Nuclear Information System (INIS)

    Merillat, P.D.

    1982-01-01

    An Entry Control System has been developed which is appropriate for use at an installation with a large population requiring access over a large area. This is accomplished by centralizing the data base management and enrollment functions and decentralizing the guard-assisted, positive personnel identification and access functions. Current information pertaining to all enrollees is maintained through user-friendly enrollment stations. These stations may be used to enroll individuals, alter their area access authorizations, change expiration dates, and other similar functions. An audit trail of data base alterations is provided to the System Manager. Decentrailized systems exist at each area to which access is controlled. The central system provides these systems with the necessary entry control information to allow them to operate microprocessor-driven entry control devices. The system is comprised of commercially available entry control components and is structured such that it will be able to incorporate improved devices as technology porogresses. Currently, access is granted to individuals who possess a valid credential, have current access authorization, can supply a memorized personal identification number, and whose physical hand dimensions match their profile obtained during enrollment. The entry control devices report misuses as security violations to a Guard Alarm Display and Assessment System

  2. The weight and angle of depression detection and control system of a large portal crane

    Science.gov (United States)

    Shi, Lian-Wen; Xie, Hongxia; Wang, Meijing; Guan, Yankui; Leng, Gengxin

    2008-12-01

    In order to prevent overturning accidents, the lifted weight and the angle of depression should be detected when a large portal crane is working in a shipyard. However, the locations of the weight sensor and the angle of depression detection part are far away from the central control room. The long signal transmitting distance is so long that it results in a lot of interferences, even the breaking down of the system. In order to solve the above mentioned problems, a high precision analog signal amplifier and a voltage / current (V / I) transforming circuit is set at the place of the sensor to detect the weight. After the sensor signals have been amplified, they will be transformed into 4 to 20 mA current signals for transmission. Thus the interferences in the long transmitting process can be overcome. A WXJ-3 potentiometer is applied to detect the angle of depression. This device has the advantages of a high accuracy of repeated positions, a good stability and a strong anti-fatigue property. After processed by the current-strengthened circuit, the transmitted signals representing voltage value can have the characteristics of transmitting currents because of the large current value. Then the anti-jamming capability is stronger. Send the weight and the angle of depression detection signals to A/D converter, then the signals turn into digital representation and are sent to the control system composed of a PLC. The PLC calculates the current rated lifting weight depending on the different angles of depression, and when the weight is greater than the rated one, the PLC sends control signals to stop the lifting; hence the crane can only put down the weights. So the safety of the large portal crane is effectively guaranteed. At present ,the system has been applied to the 70-ton large portal cranes of the Tianjin Xingang Shipyard with a safe operation of 10 years.

  3. Normal scheme for solving the transport equation independently of spatial discretization

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    1993-01-01

    To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)

  4. An integrated information management system based DSS for problem solving and decision making in open & distance learning institutions of India

    Directory of Open Access Journals (Sweden)

    Pankaj Khanna

    2014-04-01

    Full Text Available An integrated information system based DSS is developed for Open and Distance Learning (ODL institutions in India. The system has been web structured with the most suitable newly developed modules. A DSS model has been developed for solving semi-structured and unstructured problems including decision making with regard to various programmes and activities operating in the ODLIs. The DSS model designed for problem solving is generally based on quantitative formulas, whereas for problems involving imprecision and uncertainty, a fuzzy theory based DSS is employed. The computer operated system thus developed would help the ODLI management to quickly identify programmes and activities that require immediate attention. It shall also provide guidance for obtaining the most appropriate managerial decisions without any loss of time. As a result, the various subsystems operating in the ODLI are able to administer its activities more efficiently and effectively to enhance the overall performance of the concerned ODL institution to a new level.

  5. [Dual process in large number estimation under uncertainty].

    Science.gov (United States)

    Matsumuro, Miki; Miwa, Kazuhisa; Terai, Hitoshi; Yamada, Kento

    2016-08-01

    According to dual process theory, there are two systems in the mind: an intuitive and automatic System 1 and a logical and effortful System 2. While many previous studies about number estimation have focused on simple heuristics and automatic processes, the deliberative System 2 process has not been sufficiently studied. This study focused on the System 2 process for large number estimation. First, we described an estimation process based on participants’ verbal reports. The task, corresponding to the problem-solving process, consisted of creating subgoals, retrieving values, and applying operations. Second, we investigated the influence of such deliberative process by System 2 on intuitive estimation by System 1, using anchoring effects. The results of the experiment showed that the System 2 process could mitigate anchoring effects.

  6. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations

    Science.gov (United States)

    Antoine, Xavier; Duboscq, Romain

    2015-08-01

    GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.

  7. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong

    2013-01-01

    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  8. High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems

    Science.gov (United States)

    Chin, Siu A.

    2015-03-01

    In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.

  9. [Large vessels vasculopathy in systemic sclerosis].

    Science.gov (United States)

    Tejera Segura, Beatriz; Ferraz-Amaro, Iván

    2015-12-07

    Vasculopathy in systemic sclerosis is a severe, in many cases irreversible, manifestation that can lead to amputation. While the classical clinical manifestations of the disease have to do with the involvement of microcirculation, proximal vessels of upper and lower limbs can also be affected. This involvement of large vessels may be related to systemic sclerosis, vasculitis or atherosclerotic, and the differential diagnosis is not easy. To conduct a proper and early diagnosis, it is essential to start prompt appropriate treatment. In this review, we examine the involvement of large vessels in scleroderma, an understudied manifestation with important prognostic and therapeutic implications. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  10. REQUIREMENTS FOR SYSTEMS DEVELOPMENT LIFE CYCLE MODELS FOR LARGE-SCALE DEFENSE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan DEMIR

    2015-10-01

    Full Text Available TLarge-scale defense system projects are strategic for maintaining and increasing the national defense capability. Therefore, governments spend billions of dollars in the acquisition and development of large-scale defense systems. The scale of defense systems is always increasing and the costs to build them are skyrocketing. Today, defense systems are software intensive and they are either a system of systems or a part of it. Historically, the project performances observed in the development of these systems have been signifi cantly poor when compared to other types of projects. It is obvious that the currently used systems development life cycle models are insuffi cient to address today’s challenges of building these systems. Using a systems development life cycle model that is specifi cally designed for largescale defense system developments and is effective in dealing with today’s and near-future challenges will help to improve project performances. The fi rst step in the development a large-scale defense systems development life cycle model is the identifi cation of requirements for such a model. This paper contributes to the body of literature in the fi eld by providing a set of requirements for system development life cycle models for large-scale defense systems. Furthermore, a research agenda is proposed.

  11. Diomres (k,m): An efficient method based on Krylov subspaces to solve big, dispersed, unsymmetrical linear systems

    Energy Technology Data Exchange (ETDEWEB)

    de la Torre Vega, E. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Cesar Suarez Arriaga, M. [Universidad Michoacana SNH, Michoacan (Mexico)

    1995-03-01

    In geothermal simulation processes, MULKOM uses Integrated Finite Differences to solve the corresponding partial differential equations. This method requires to resolve efficiently big linear dispersed systems of non-symmetrical nature on each temporal iteration. The order of the system is usually greater than one thousand its solution could represent around 80% of CPU total calculation time. If the elapsed time solving this class of linear systems is reduced, the duration of numerical simulation decreases notably. When the matrix is big (N{ge}500) and with holes, it is inefficient to handle all the system`s elements, because it is perfectly figured out by its elements distinct of zero, quantity greatly minor than N{sup 2}. In this area, iteration methods introduce advantages with respect to gaussian elimination methods, because these last replenish matrices not having any special distribution of their non-zero elements and because they do not make use of the available solution estimations. The iterating methods of the Conjugated Gradient family, based on the subspaces of Krylov, possess the advantage of improving the convergence speed by means of preconditioning techniques. The creation of DIOMRES(k,m) method guarantees the continuous descent of the residual norm, without incurring in division by zero. This technique converges at most in N iterations if the system`s matrix is symmetrical, it does not employ too much memory to converge and updates immediately the approximation by using incomplete orthogonalization and adequate restarting. A preconditioned version of DIOMRES was applied to problems related to unsymmetrical systems with 1000 unknowns and less than five terms per equation. We found that this technique could reduce notably the time needful to find the solution without requiring memory increment. The coupling of this method to geothermal versions of MULKOM is in process.

  12. SPECIFIC REGULATIONS REGARDING THE SOLVING OF LABOR DISPUTES IN ROMANIAN LEGAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Onica -Chipea Lavinia

    2012-01-01

    Full Text Available The paper aims to briefly review specific provisions of labor legislation for the solving of labor disputes. Those rules are found in matters of discrimination in the payment settlements, the public sector staff as well as some personnel status or disciplinary (work stops at Status of Teachers and established a derogationfrom the common law (Labor Code Law nr.62/2011 of Social Dialogue in resolving individual labor conflicts(former conflicts of rights. The role and importance of these regulations is that they give the parties the employment relationship, particularly employees, way, way more for rights enshrined in law. Appeals, complaints or expressions of individual grievances be settled outside the judicial system organ (the courts,authorizing officers, judicial administrative organs, which aim at restoring order violated.

  13. Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach

    CERN Document Server

    Haddad, Wassim M

    2011-01-01

    Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami

  14. Solving block linear systems with low-rank off-diagonal blocks is easily parallelizable

    Energy Technology Data Exchange (ETDEWEB)

    Menkov, V. [Indiana Univ., Bloomington, IN (United States)

    1996-12-31

    An easily and efficiently parallelizable direct method is given for solving a block linear system Bx = y, where B = D + Q is the sum of a non-singular block diagonal matrix D and a matrix Q with low-rank blocks. This implicitly defines a new preconditioning method with an operation count close to the cost of calculating a matrix-vector product Qw for some w, plus at most twice the cost of calculating Qw for some w. When implemented on a parallel machine the processor utilization can be as good as that of those operations. Order estimates are given for the general case, and an implementation is compared to block SSOR preconditioning.

  15. Solving Man-Induced Large-Scale Conservation Problems: The Spanish Imperial Eagle and Power Lines

    Science.gov (United States)

    López-López, Pascual; Ferrer, Miguel; Madero, Agustín; Casado, Eva; McGrady, Michael

    2011-01-01

    Background Man-induced mortality of birds caused by electrocution with poorly-designed pylons and power lines has been reported to be an important mortality factor that could become a major cause of population decline of one of the world rarest raptors, the Spanish imperial eagle (Aquila adalberti). Consequently it has resulted in an increasing awareness of this problem amongst land managers and the public at large, as well as increased research into the distribution of electrocution events and likely mitigation measures. Methodology/Principal Findings We provide information of how mitigation measures implemented on a regional level under the conservation program of the Spanish imperial eagle have resulted in a positive shift of demographic trends in Spain. A 35 years temporal data set (1974–2009) on mortality of Spanish imperial eagle was recorded, including population censuses, and data on electrocution and non-electrocution of birds. Additional information was obtained from 32 radio-tracked young eagles and specific field surveys. Data were divided into two periods, before and after the approval of a regional regulation of power line design in 1990 which established mandatory rules aimed at minimizing or eliminating the negative impacts of power lines facilities on avian populations. Our results show how population size and the average annual percentage of population change have increased between the two periods, whereas the number of electrocuted birds has been reduced in spite of the continuous growing of the wiring network. Conclusions Our results demonstrate that solving bird electrocution is an affordable problem if political interest is shown and financial investment is made. The combination of an adequate spatial planning with a sustainable development of human infrastructures will contribute positively to the conservation of the Spanish imperial eagle and may underpin population growth and range expansion, with positive side effects on other endangered

  16. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  17. Solving Disparities Through Payment And Delivery System Reform: A Program To Achieve Health Equity.

    Science.gov (United States)

    DeMeester, Rachel H; Xu, Lucy J; Nocon, Robert S; Cook, Scott C; Ducas, Andrea M; Chin, Marshall H

    2017-06-01

    Payment systems generally do not directly encourage or support the reduction of health disparities. In 2013 the Finding Answers: Solving Disparities through Payment and Delivery System Reform program of the Robert Wood Johnson Foundation sought to understand how alternative payment models might intentionally incorporate a disparities-reduction component to promote health equity. A qualitative analysis of forty proposals to the program revealed that applicants generally did not link payment reform tightly to disparities reduction. Most proposed general pay-for-performance, global payment, or shared savings plans, combined with multicomponent system interventions. None of the applicants proposed making any financial payments contingent on having successfully reduced disparities. Most applicants did not address how they would optimize providers' intrinsic and extrinsic motivation to reduce disparities. A better understanding of how payment and care delivery models might be designed and implemented to reduce health disparities is essential. Project HOPE—The People-to-People Health Foundation, Inc.

  18. Distributed Model Predictive Control over Multiple Groups of Vehicles in Highway Intelligent Space for Large Scale System

    Directory of Open Access Journals (Sweden)

    Tang Xiaofeng

    2014-01-01

    Full Text Available The paper presents the three time warning distances for solving the large scale system of multiple groups of vehicles safety driving characteristics towards highway tunnel environment based on distributed model prediction control approach. Generally speaking, the system includes two parts. First, multiple vehicles are divided into multiple groups. Meanwhile, the distributed model predictive control approach is proposed to calculate the information framework of each group. Each group of optimization performance considers the local optimization and the neighboring subgroup of optimization characteristics, which could ensure the global optimization performance. Second, the three time warning distances are studied based on the basic principles used for highway intelligent space (HIS and the information framework concept is proposed according to the multiple groups of vehicles. The math model is built to avoid the chain avoidance of vehicles. The results demonstrate that the proposed highway intelligent space method could effectively ensure driving safety of multiple groups of vehicles under the environment of fog, rain, or snow.

  19. Development of a large-scale general purpose two-phase flow analysis code

    International Nuclear Information System (INIS)

    Terasaka, Haruo; Shimizu, Sensuke

    2001-01-01

    A general purpose three-dimensional two-phase flow analysis code has been developed for solving large-scale problems in industrial fields. The code uses a two-fluid model to describe the conservation equations for two-phase flow in order to be applicable to various phenomena. Complicated geometrical conditions are modeled by FAVOR method in structured grid systems, and the discretization equations are solved by a modified SIMPLEST scheme. To reduce computing time a matrix solver for the pressure correction equation is parallelized with OpenMP. Results of numerical examples show that the accurate solutions can be obtained efficiently and stably. (author)

  20. Tools for the automation of large control systems

    CERN Document Server

    Gaspar, Clara

    2005-01-01

    The new LHC experiments at CERN will have very large numbers of channels to operate. In order to be able to configure and monitor such large systems, a high degree of parallelism is necessary. The control system is built as a hierarchy of sub-systems distributed over several computers. A toolkit – SMI++, combining two approaches: finite state machines and rule-based programming, allows for the description of the various sub-systems as decentralized deciding entities, reacting in real-time to changes in the system, thus providing for the automation of standard procedures and the for the automatic recovery from error conditions in a hierarchical fashion. In this paper we will describe the principles and features of SMI++ as well as its integration with an industrial SCADA tool for use by the LHC experiments and we will try to show that such tools, can provide a very convenient mechanism for the automation of large scale, high complexity, applications.

  1. Solving the Liner Shipping Fleet Repositioning Problem with Cargo Flows

    DEFF Research Database (Denmark)

    Tierney, Kevin; Askelsdottir, Björg; Jensen, Rune Møller

    2015-01-01

    We solve a central problem in the liner shipping industry called the liner shipping fleet repositioning problem (LSFRP). The LSFRP poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between routes in a liner shipping network. Liner carriers wish...

  2. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  3. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  4. Design techniques for large scale linear measurement systems

    International Nuclear Information System (INIS)

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  5. Boundary driven Kawasaki process with long-range interaction: dynamical large deviations and steady states

    International Nuclear Information System (INIS)

    Mourragui, Mustapha; Orlandi, Enza

    2013-01-01

    A particle system with a single locally-conserved field (density) in a bounded interval with different densities maintained at the two endpoints of the interval is under study here. The particles interact in the bulk through a long-range potential parametrized by β⩾0 and evolve according to an exclusion rule. It is shown that the empirical particle density under the diffusive scaling solves a quasilinear integro-differential evolution equation with Dirichlet boundary conditions. The associated dynamical large deviation principle is proved. Furthermore, when β is small enough, it is also demonstrated that the empirical particle density obeys a law of large numbers with respect to the stationary measures (hydrostatic). The macroscopic particle density solves a non-local, stationary, transport equation. (paper)

  6. Stability of large scale interconnected dynamical systems

    International Nuclear Information System (INIS)

    Akpan, E.P.

    1993-07-01

    Large scale systems modelled by a system of ordinary differential equations are considered and necessary and sufficient conditions are obtained for the uniform asymptotic connective stability of the systems using the method of cone-valued Lyapunov functions. It is shown that this model significantly improves the existing models. (author). 9 refs

  7. ON THE WAYS OF AUTOMATED PROCESSING OF SPATIAL GEOMETRY OF THE SYSTEM “GATE-CASTING” FOR SOLVING OF THE CLASSIFICATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2007-01-01

    Full Text Available The system parameterization of castings, allowing to formalize spatial geometry of casting, is offered. The algorithm of taxonomy, which can be used for solving of problems of castings classification in the systems of computeraided design of foundry technologies, is described. The method is approved on castings of type ''cover”.

  8. Solving Vertex Cover Problem Using DNA Tile Assembly Model

    Directory of Open Access Journals (Sweden)

    Zhihua Chen

    2013-01-01

    Full Text Available DNA tile assembly models are a class of mathematically distributed and parallel biocomputing models in DNA tiles. In previous works, tile assembly models have been proved be Turing-universal; that is, the system can do what Turing machine can do. In this paper, we use tile systems to solve computational hard problem. Mathematically, we construct three tile subsystems, which can be combined together to solve vertex cover problem. As a result, each of the proposed tile subsystems consists of Θ(1 types of tiles, and the assembly process is executed in a parallel way (like DNA’s biological function in cells; thus the systems can generate the solution of the problem in linear time with respect to the size of the graph.

  9. Studying the effects of operators' problem solving behaviour when using a diagnostic expert system developed for the nuclear industry

    International Nuclear Information System (INIS)

    Holmstroem, C.B.O.; Volden, F.S.; Endestad, T.

    1992-01-01

    This paper describes an experiment with the purpose to also illustrate and discuss some of the methodological problems when empirically studying problem solving. The experiment which was the second in a series, conducted at the OECD Halden Reactor Project, aimed to assess the effect on nuclear power plant operators diagnostic behaviour when using a rule-based diagnostic expert system. The rule-based expert system used in the experiment is called DISKET (Diagnosis System Using Knowledge Engineering Technique) and was originally developed by the Japan Atomic Energy Research Institute (JAERI). The experiment was performed in the Halden man-machine laboratory using a full scope pressurized water reactor simulator. Existing data collection methods and experimental design principles includes possibilities but also limitations. This is discussed and experiences are presented. Operator performance in terms of quality of diagnosis is improved by the use of DISKET. The use of the DISKET system also influences operators problem solving behaviour. The main difference between the two experimental conditions can be characterized as while the DISKET users during the diagnosis process are following a strategy which is direct and narrowed, the non-DISKET users are using a much broader and less focused search when trying to diagnose a disturbance. (author)

  10. Using Computer Symbolic Algebra to Solve Differential Equations.

    Science.gov (United States)

    Mathews, John H.

    1989-01-01

    This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)

  11. Analysis of the Efficacy of an Intervention to Improve Parent-Adolescent Problem Solving.

    Science.gov (United States)

    Semeniuk, Yulia Yuriyivna; Brown, Roger L; Riesch, Susan K

    2016-07-01

    We conducted a two-group longitudinal partially nested randomized controlled trial to examine whether young adolescent youth-parent dyads participating in Mission Possible: Parents and Kids Who Listen, in contrast to a comparison group, would demonstrate improved problem-solving skill. The intervention is based on the Circumplex Model and Social Problem-Solving Theory. The Circumplex Model posits that families who are balanced, that is characterized by high cohesion and flexibility and open communication, function best. Social Problem-Solving Theory informs the process and skills of problem solving. The Conditional Latent Growth Modeling analysis revealed no statistically significant differences in problem solving among the final sample of 127 dyads in the intervention and comparison groups. Analyses of effect sizes indicated large magnitude group effects for selected scales for youth and dyads portraying a potential for efficacy and identifying for whom the intervention may be efficacious if study limitations and lessons learned were addressed. © The Author(s) 2016.

  12. Gauging the gaps in student problem-solving skills: assessment of individual and group use of problem-solving strategies using online discussions.

    Science.gov (United States)

    Anderson, William L; Mitchell, Steven M; Osgood, Marcy P

    2008-01-01

    For the past 3 yr, faculty at the University of New Mexico, Department of Biochemistry and Molecular Biology have been using interactive online Problem-Based Learning (PBL) case discussions in our large-enrollment classes. We have developed an illustrative tracking method to monitor student use of problem-solving strategies to provide targeted help to groups and to individual students. This method of assessing performance has a high interrater reliability, and senior students, with training, can serve as reliable graders. We have been able to measure improvements in many students' problem-solving strategies, but, not unexpectedly, there is a population of students who consistently apply the same failing strategy when there is no faculty intervention. This new methodology provides an effective tool to direct faculty to constructively intercede in this area of student development.

  13. Efficient methods for solving discrete topology design problems in the PLATO-N project

    DEFF Research Database (Denmark)

    Canh, Nam Nguyen; Stolpe, Mathias

    This paper considers the general multiple load structural topology design problems in the framework of the PLATO-N project. The problems involve a large number of discrete design variables and were modeled as a non-convex mixed 0–1 program. For the class of problems considered, a global...... optimization method based on the branch-and-cut concept was developed and implemented. In the method a large number of continuous relaxations were solved. We also present an algorithm for generating cuts to strengthen the quality of the relaxations. Several heuristics were also investigated to obtain efficient...... algorithms. The branch and cut method is used to solve benchmark examples which can be used to validate other methods and heuristics....

  14. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1992-01-01

    A new method is developed for solving the multidimensional Schroedinger equation without the variable separation. To solve the Schroedinger equation in a multidimensional coordinate space X, a difference grid Ω i (i=1,2,...,N) for some of variables, Ω, from X={R,Ω} is introduced and the initial partial-differential equation is reduced to a system of N differential-difference equations in terms of one of the variables R. The arising multi-channel scattering (or eigenvalue) problem is solved by the algorithm based on a continuous analog of the Newton method. The approach has been successfully tested for several two-dimensional problems (scattering on a nonspherical potential well and 'dipole' scatterer, a hydrogen atom in a homogenous magnetic field) and for a three-dimensional problem of the helium-atom bound states. (author)

  15. Developing a Creativity and Problem Solving Course in Support of the Information Systems Curriculum

    Science.gov (United States)

    Martz, Ben; Hughes, Jim; Braun, Frank

    2016-01-01

    This paper looks at and assesses the development and implementation of a problem solving and creativity class for the purpose of providing a basis for a Business Informatics curriculum. The development was fueled by the desire to create a broad based class that 1. Familiarized students to the underlying concepts of problem solving; 2. Introduced…

  16. Solving the Vlasov equation in two spatial dimensions with the Schrödinger method

    Science.gov (United States)

    Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos

    2017-12-01

    We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.

  17. Solving PDEs in Python the FEniCS tutorial I

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

  18. Hierarchical optimal control of large-scale nonlinear chemical processes.

    Science.gov (United States)

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  19. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  20. ANISN-L, a CDC-7600 code which solves the one-dimensional, multigroup, time dependent transport equation by the method of discrete ordinates

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, T. P.

    1973-09-20

    The code ANISN-L solves the one-dimensional, multigroup, time-independent Boltzmann transport equation by the method of discrete ordinates. In problems involving a fissionable system, it can calculate the system multiplication or alpha. In such cases, it is also capable of determining isotopic concentrations, radii, zone widths, or buckling in order to achieve a given multiplication or alpha. The code may also calculate fluxes caused by a specified fixed source. Neutron, gamma, and coupled neutron--gamma problems may be solved in either the forward or adjoint (backward) modes. Cross sections describing upscatter, as well as the usual downscatter, may be employed. This report describes the use of ANISN-L; this is a revised version of ANISN which handles both large and small problems efficiently on CDC-7600 computers. (RWR)

  1. Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem

    Science.gov (United States)

    Iswari, T.; Asih, A. M. S.

    2018-04-01

    In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.

  2. Large area high-speed metrology SPM system

    International Nuclear Information System (INIS)

    Klapetek, P; Valtr, M; Martinek, J; Picco, L; Payton, O D; Miles, M; Yacoot, A

    2015-01-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm 2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope. (paper)

  3. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  4. Development of GPU Based Parallel Computing Module for Solving Pressure Equation in the CUPID Component Thermo-Fluid Analysis Code

    International Nuclear Information System (INIS)

    Lee, Jin Pyo; Joo, Han Gyu

    2010-01-01

    In the thermo-fluid analysis code named CUPID, the linear system of pressure equations must be solved in each iteration step. The time for repeatedly solving the linear system can be quite significant because large sparse matrices of Rank more than 50,000 are involved and the diagonal dominance of the system is hardly hold. Therefore parallelization of the linear system solver is essential to reduce the computing time. Meanwhile, Graphics Processing Units (GPU) have been developed as highly parallel, multi-core processors for the global demand of high quality 3D graphics. If a suitable interface is provided, parallelization using GPU can be available to engineering computing. NVIDIA provides a Software Development Kit(SDK) named CUDA(Compute Unified Device Architecture) to code developers so that they can manage GPUs for parallelization using the C language. In this research, we implement parallel routines for the linear system solver using CUDA, and examine the performance of the parallelization. In the next section, we will describe the method of CUDA parallelization for the CUPID code, and then the performance of the CUDA parallelization will be discussed

  5. Enhancing the Effectiveness of Problem-Solving Processes through Employee Motivation and Involvement

    Directory of Open Access Journals (Sweden)

    Andrea Chlpeková

    2014-12-01

    indicators into the motivation system. The question to be answered is how to effectively use the intellectual capital of problem-solving teams and increase employees’ satisfaction in the broader context of the improvement of the effectiveness of problem-solving methodology.

  6. DIFFUSION - WRS system module number 7539 for solving a set of multigroup diffusion equations in one dimension

    International Nuclear Information System (INIS)

    Grimstone, M.J.

    1978-06-01

    The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to solve a set of multigroup diffusion equations for a system represented in one-dimensional plane, cylindrical or spherical geometry. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)

  7. Exact results in the large system size limit for the dynamics of the chemical master equation, a one dimensional chain of equations.

    Science.gov (United States)

    Martirosyan, A; Saakian, David B

    2011-08-01

    We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.

  8. Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems

    International Nuclear Information System (INIS)

    Luo, Yugong; Zhu, Tao; Wan, Shuang; Zhang, Shuwei; Li, Keqiang

    2016-01-01

    The widespread use of electric vehicles (EVs) is becoming an imminent trend. Research has been done on the scheduling of EVs from the perspective of the charging characteristic, improvement in the safety and economy of the power grid, or the traffic jams in the transport system caused by a large number of EVs driven to charging stations. There is a lack of systematic studies considering EVs, the power grid, and the transport system all together. In this paper, a novel optimal charging scheduling strategy for different types of EVs is proposed based on not only transport system information, such as road length, vehicle velocity and waiting time, but also grid system information, such as load deviation and node voltage. In addition, a charging scheduling simulation platform suitable for large-scale EV deployment is developed based on actual charging scenarios. The simulation results show that the improvements in both the transport system efficiency and the grid system operation can be obtained by using the optimal strategy, such as the node voltage drop is decreased, the power loss is reduced, and the load curve is optimized. - Highlights: • A novel optimal charging scheduling strategy is proposed for different electric vehicles (EVs). • A simulation platform suitable for large-scale EV deployment is established. • The traffic congestion near the charging and battery-switch stations is relieved. • The safety and economy problems of the distribution network are solved. • The peak-to-valley load of the distribution system is reduced.

  9. Working memory components as predictors of children's mathematical word problem solving.

    Science.gov (United States)

    Zheng, Xinhua; Swanson, H Lee; Marcoulides, George A

    2011-12-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N=310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM, reading, and math calculation. Structural equation modeling analyses indicated that (a) all three WM components significantly predicted problem-solving accuracy, (b) reading skills and calculation proficiency mediated the predictive effects of the central executive system and the phonological loop on solution accuracy, and (c) academic mediators failed to moderate the relationship between the visual-spatial sketchpad and solution accuracy. The results support the notion that all components of WM play a major role in predicting problem-solving accuracy, but basic skills acquired in specific academic domains (reading and math) can compensate for some of the influence of WM on children's mathematical word problem solving. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. A heuristic for solving the redundancy allocation problem for multi-state series-parallel systems

    International Nuclear Information System (INIS)

    Ramirez-Marquez, Jose E.; Coit, David W.

    2004-01-01

    The redundancy allocation problem is formulated with the objective of minimizing design cost, when the system exhibits a multi-state reliability behavior, given system-level performance constraints. When the multi-state nature of the system is considered, traditional solution methodologies are no longer valid. This study considers a multi-state series-parallel system (MSPS) with capacitated binary components that can provide different multi-state system performance levels. The different demand levels, which must be supplied during the system-operating period, result in the multi-state nature of the system. The new solution methodology offers several distinct benefits compared to traditional formulations of the MSPS redundancy allocation problem. For some systems, recognizing that different component versions yield different system performance is critical so that the overall system reliability estimation and associated design models the true system reliability behavior more realistically. The MSPS design problem, solved in this study, has been previously analyzed using genetic algorithms (GAs) and the universal generating function. The specific problem being addressed is one where there are multiple component choices, but once a component selection is made, only the same component type can be used to provide redundancy. This is the first time that the MSPS design problem has been addressed without using GAs. The heuristic offers more efficient and straightforward analyses. Solutions to three different problem types are obtained illustrating the simplicity and ease of application of the heuristic without compromising the intended optimization needs

  11. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana

    2012-01-01

    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  12. Cognitive Medical Multiagent Systems

    OpenAIRE

    Barna Iantovics

    2010-01-01

    The development of efficient and flexible agent-based medical diagnosis systems represents a recent research direction. Medical multiagent systems may improve the efficiency of traditionally developed medical computational systems, like the medical expert systems. In our previous researches, a novel cooperative medical diagnosis multiagent system called CMDS (Contract Net Based Medical Diagnosis System) was proposed. CMDS system can solve flexibly a large variety of medical diagnosis problems...

  13. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    Science.gov (United States)

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  14. Restricted dynamic programming: a flexible framework for solving realistic VRPs

    NARCIS (Netherlands)

    Gromicho, J.; van Hoorn, J.J.; Kok, A.L.; Schutten, Johannes M.J.

    2009-01-01

    Most solution methods for solving large vehicle routing and schedu- ling problems are based on local search. A drawback of these ap- proaches is that they are designed and optimized for specific types of vehicle routing problems (VRPs). As a consequence, it is hard to adapt these solution methods to

  15. An exact method for solving logical loops in reliability analysis

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2009-01-01

    This paper presents an exact method for solving logical loops in reliability analysis. The systems that include logical loops are usually described by simultaneous Boolean equations. First, present a basic rule of solving simultaneous Boolean equations. Next, show the analysis procedures for three-component system with external supports. Third, more detailed discussions are given for the establishment of logical loop relation. Finally, take up two typical structures which include more than one logical loop. Their analysis results and corresponding GO-FLOW charts are given. The proposed analytical method is applicable to loop structures that can be described by simultaneous Boolean equations, and it is very useful in evaluating the reliability of complex engineering systems.

  16. Domain decomposition methods for solving an image problem

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  17. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    Science.gov (United States)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  18. The potential for expert system support in solving the pressurized water reactor fuel shuffling problem

    International Nuclear Information System (INIS)

    Rothleder, B.M.; Poetschat, G.R.; Faught, W.S.; Eich, V.J.

    1988-01-01

    The fuel shuffling problem is posed by the need to reposition partially burned assemblies to achieve minimum X-Y pin power peaks reload cycles of pressurized water reactors. This problem is a classic artificial intelligence (AI) problem and is highly suitable for AI expert system solution assistance, in contrast to the conventional solution, which ultimately depends solely on trial and error. Such a fuel shuffling assistant would significantly reduce engineering and computer execution time for conventional loading patterns and, much more importantly, even more significantly for low-leakage loading patterns. A successful hardware/software demonstrator has been introduced, paving the way for development of a broadly expert system program. Such a program, upon incorporating the recently developed technique perverse depletion, would provide a directed path for solving the low-leakage problem

  19. Sequential decoders for large MIMO systems

    KAUST Repository

    Ali, Konpal S.; Abediseid, Walid; Alouini, Mohamed-Slim

    2014-01-01

    the Sequential Decoder using the Fano Algorithm for large MIMO systems. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity

  20. EP BASED PSO METHOD FOR SOLVING PROFIT BASED MULTI AREA UNIT COMMITMENT PROBLEM

    Directory of Open Access Journals (Sweden)

    K. VENKATESAN

    2015-04-01

    Full Text Available This paper presents a new approach to solve the profit based multi area unit commitment problem (PBMAUCP using an evolutionary programming based particle swarm optimization (EPPSO method. The objective of this paper is to maximize the profit of generation companies (GENCOs with considering system social benefit. The proposed method helps GENCOs to make a decision, how much power and reserve should be sold in markets, and how to schedule generators in order to receive the maximum profit. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. The tie line transfer limits were considered as a set of constraints during optimization process to ensure the system security and reliability. The overall algorithm can be implemented on an IBM PC, which can process a fairly large system in a reasonable period of time. Case study of four areas with different load pattern each containing 7 units (NTPS and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the profit of evolutionary programming-based particle swarm optimization method (EPPSO with conventional dynamic programming (DP, evolutionary programming (EP, and particle swarm optimization (PSO method. Experimental results shows that the application of this evolutionary programming based particle swarm optimization method have the potential to solve profit based multi area unit commitment problem with lesser computation time.

  1. Solving nonlinear evolution equation system using two different methods

    Science.gov (United States)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  2. Using Problem-solving Therapy to Improve Problem-solving Orientation, Problem-solving Skills and Quality of Life in Older Hemodialysis Patients.

    Science.gov (United States)

    Erdley-Kass, Shiloh D; Kass, Darrin S; Gellis, Zvi D; Bogner, Hillary A; Berger, Andrea; Perkins, Robert M

    2017-08-24

    To determine the effectiveness of Problem-Solving Therapy (PST) in older hemodialysis (HD) patients by assessing changes in health-related quality of life and problem-solving skills. 33 HD patients in an outpatient hemodialysis center without active medical and psychiatric illness were enrolled. The intervention group (n = 15) received PST from a licensed social worker for 6 weeks, whereas the control group (n = 18) received usual care treatment. In comparison to the control group, patients receiving PST intervention reported improved perceptions of mental health, were more likely to view their problems with a positive orientation and were more likely to use functional problem-solving methods. Furthermore, this group was also more likely to view their overall health, activity limits, social activities and ability to accomplish desired tasks with a more positive mindset. The results demonstrate that PST may positively impact mental health components of quality of life and problem-solving coping among older HD patients. PST is an effective, efficient, and easy to implement intervention that can benefit problem-solving abilities and mental health-related quality of life in older HD patients. In turn, this will help patients manage their daily living activities related to their medical condition and reduce daily stressors.

  3. Models for large superconducting toroidal magnet systems

    International Nuclear Information System (INIS)

    Arendt, F.; Brechna, H.; Erb, J.; Komarek, P.; Krauth, H.; Maurer, W.

    1976-01-01

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  4. Large-scale hydropower system optimization using dynamic programming and object-oriented programming: the case of the Northeast China Power Grid.

    Science.gov (United States)

    Li, Ji-Qing; Zhang, Yu-Shan; Ji, Chang-Ming; Wang, Ai-Jing; Lund, Jay R

    2013-01-01

    This paper examines long-term optimal operation using dynamic programming for a large hydropower system of 10 reservoirs in Northeast China. Besides considering flow and hydraulic head, the optimization explicitly includes time-varying electricity market prices to maximize benefit. Two techniques are used to reduce the 'curse of dimensionality' of dynamic programming with many reservoirs. Discrete differential dynamic programming (DDDP) reduces the search space and computer memory needed. Object-oriented programming (OOP) and the ability to dynamically allocate and release memory with the C++ language greatly reduces the cumulative effect of computer memory for solving multi-dimensional dynamic programming models. The case study shows that the model can reduce the 'curse of dimensionality' and achieve satisfactory results.

  5. Volume reduction system by soil classifying. Soil-washing system and problems to be solved

    International Nuclear Information System (INIS)

    Oshino, Yoshio

    2016-01-01

    Radioactive contamination of ground surfaces, buildings and forests in a broad area was caused by the accident at the Fukushima Daiichi Nuclear Power Plant in Japan. The national government and municipalities have still been carrying out the decontamination works for livelihood areas after five years from the accident. The government estimated that the amounts of soils and wastes removed by the decontamination works would be about 28,000,000 cubic meters maximum including 20,000,000 cubic meters maximum of soils. The removed soils will be stored in “Interim Storage Facility” then will be finally disposed outside of Fukushima prefecture within 30 years. On the other hand, shortage of the soils as materials needed for the revitalization in Fukushima prefecture is expected. Technical Advisory Council on Remediation and Waste Management, which consists of about 90 companies, started a working group to investigate solutions to these problems. The working group focused on the investigation of the possibility to recycle the soils by washing and classification to use them as the materials for civil engineering works, and to reduce the volume of the interim storage. In the first part of this report, we have evaluated the applicability of various technologies for purification and volume reduction of the removed soils, and have researched usages, required quantities and specifications of the recycled soils. In the second part, we have made trial calculations of the volume reduction effects and costs using the washing and classification system. The calculated results showed the possibilities of reducing the storage capacity of the interim storage facility, as well as the construction and the operation costs by recycling the removed soils with the washing and classification system inside the interim storage facility. At the end of this report, we proposed problems to be solved in order to adopt the washing and classification system. (author)

  6. Program system RALLY - for probabilistic safety analysis of large technical systems

    International Nuclear Information System (INIS)

    Gueldner, W.; Polke, H.; Spindler, H.; Zipf, G.

    1982-03-01

    This report describes the program system RALLY to compute the reliability of large and intermeshed technical systems. In addition to a short explanation of the different programs, the possible applications of the program system RALLY are demonstrated. Finally, the most important studies carried out so far on RALLY are discussed. (orig.) [de

  7. The Convergence of High Performance Computing and Large Scale Data Analytics

    Science.gov (United States)

    Duffy, D.; Bowen, M. K.; Thompson, J. H.; Yang, C. P.; Hu, F.; Wills, B.

    2015-12-01

    As the combinations of remote sensing observations and model outputs have grown, scientists are increasingly burdened with both the necessity and complexity of large-scale data analysis. Scientists are increasingly applying traditional high performance computing (HPC) solutions to solve their "Big Data" problems. While this approach has the benefit of limiting data movement, the HPC system is not optimized to run analytics, which can create problems that permeate throughout the HPC environment. To solve these issues and to alleviate some of the strain on the HPC environment, the NASA Center for Climate Simulation (NCCS) has created the Advanced Data Analytics Platform (ADAPT), which combines both HPC and cloud technologies to create an agile system designed for analytics. Large, commonly used data sets are stored in this system in a write once/read many file system, such as Landsat, MODIS, MERRA, and NGA. High performance virtual machines are deployed and scaled according to the individual scientist's requirements specifically for data analysis. On the software side, the NCCS and GMU are working with emerging commercial technologies and applying them to structured, binary scientific data in order to expose the data in new ways. Native NetCDF data is being stored within a Hadoop Distributed File System (HDFS) enabling storage-proximal processing through MapReduce while continuing to provide accessibility of the data to traditional applications. Once the data is stored within HDFS, an additional indexing scheme is built on top of the data and placed into a relational database. This spatiotemporal index enables extremely fast mappings of queries to data locations to dramatically speed up analytics. These are some of the first steps toward a single unified platform that optimizes for both HPC and large-scale data analysis, and this presentation will elucidate the resulting and necessary exascale architectures required for future systems.

  8. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    Science.gov (United States)

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  9. Large Scale GW Calculations on the Cori System

    Science.gov (United States)

    Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven

    The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.

  10. Problem solving in nuclear engineering using supercomputers

    International Nuclear Information System (INIS)

    Schmidt, F.; Scheuermann, W.; Schatz, A.

    1987-01-01

    The availability of supercomputers enables the engineer to formulate new strategies for problem solving. One such strategy is the Integrated Planning and Simulation System (IPSS). With the integrated systems, simulation models with greater consistency and good agreement with actual plant data can be effectively realized. In the present work some of the basic ideas of IPSS are described as well as some of the conditions necessary to build such systems. Hardware and software characteristics as realized are outlined. (orig.) [de

  11. Interacting star clusters in the Large Magellanic Cloud. Overmerging problem solved by cluster group formation

    Science.gov (United States)

    Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella

    1999-04-01

    We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}

  12. Optimization of MIMO Systems Capacity Using Large Random Matrix Methods

    Directory of Open Access Journals (Sweden)

    Philippe Loubaton

    2012-11-01

    Full Text Available This paper provides a comprehensive introduction of large random matrix methods for input covariance matrix optimization of mutual information of MIMO systems. It is first recalled informally how large system approximations of mutual information can be derived. Then, the optimization of the approximations is discussed, and important methodological points that are not necessarily covered by the existing literature are addressed, including the strict concavity of the approximation, the structure of the argument of its maximum, the accuracy of the large system approach with regard to the number of antennas, or the justification of iterative water-filling optimization algorithms. While the existing papers have developed methods adapted to a specific model, this contribution tries to provide a unified view of the large system approximation approach.

  13. A Photon Free Method to Solve Radiation Transport Equations

    International Nuclear Information System (INIS)

    Chang, B

    2006-01-01

    The multi-group discrete-ordinate equations of radiation transfer is solved for the first time by Newton's method. It is a photon free method because the photon variables are eliminated from the radiation equations to yield a N group XN direction smaller but equivalent system of equations. The smaller set of equations can be solved more efficiently than the original set of equations. Newton's method is more stable than the Semi-implicit Linear method currently used by conventional radiation codes

  14. Large-Scale Studies on the Transferability of General Problem-Solving Skills and the Pedagogic Potential of Physics

    Science.gov (United States)

    Mashood, K. K.; Singh, Vijay A.

    2013-01-01

    Research suggests that problem-solving skills are transferable across domains. This claim, however, needs further empirical substantiation. We suggest correlation studies as a methodology for making preliminary inferences about transfer. The correlation of the physics performance of students with their performance in chemistry and mathematics in…

  15. Students’ difficulties in probabilistic problem-solving

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  16. FEMSYN - a code system to solve multigroup diffusion theory equations using a variety of solution techniques. Part 1 : Description of code system - input and sample problems

    International Nuclear Information System (INIS)

    Jagannathan, V.

    1985-01-01

    A modular computer code system called FEMSYN has been developed to solve the multigroup diffusion theory equations. The various methods that are incorporated in FEMSYN are (i) finite difference method (FDM) (ii) finite element method (FEM) and (iii) single channel flux synthesis method (SCFS). These methods are described in detail in parts II, III and IV of the present report. In this report, a comparison of the accuracy and the speed of different methods of solution for some benchmark problems are reported. The input preparation and listing of sample input and output are included in the Appendices. The code FEMSYN has been used to solve a wide variety of reactor core problems. It can be used for both LWR and PHWR applications. (author)

  17. New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology

    International Nuclear Information System (INIS)

    Khader, M. M.; Kumar, Sunil; Abbasbandy, S.

    2013-01-01

    We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential—difference equations. The proposed method is based on the Laplace transform with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained

  18. Development and validation of a physics problem-solving assessment rubric

    Science.gov (United States)

    Docktor, Jennifer Lynn

    Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.

  19. SHA-1, SAT-solving, and CNF

    CSIR Research Space (South Africa)

    Motara, YM

    2017-09-01

    Full Text Available the intersection between the SHA-1 preimage problem, the encoding of that problem for SAT-solving, and SAT-solving. The results demonstrate that SAT-solving is not yet a viable approach to take to solve the preimage problem, and also indicate that some...

  20. Solving lot-sizing problem with quantity discount and transportation cost

    Science.gov (United States)

    Lee, Amy H. I.; Kang, He-Yau; Lai, Chun-Mei

    2013-04-01

    Owing to today's increasingly competitive market and ever-changing manufacturing environment, the inventory problem is becoming more complicated to solve. The incorporation of heuristics methods has become a new trend to tackle the complex problem in the past decade. This article considers a lot-sizing problem, and the objective is to minimise total costs, where the costs include ordering, holding, purchase and transportation costs, under the requirement that no inventory shortage is allowed in the system. We first formulate the lot-sizing problem as a mixed integer programming (MIP) model. Next, an efficient genetic algorithm (GA) model is constructed for solving large-scale lot-sizing problems. An illustrative example with two cases in a touch panel manufacturer is used to illustrate the practicality of these models, and a sensitivity analysis is applied to understand the impact of the changes in parameters to the outcomes. The results demonstrate that both the MIP model and the GA model are effective and relatively accurate tools for determining the replenishment for touch panel manufacturing for multi-periods with quantity discount and batch transportation. The contributions of this article are to construct an MIP model to obtain an optimal solution when the problem is not too complicated itself and to present a GA model to find a near-optimal solution efficiently when the problem is complicated.

  1. A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry

    Science.gov (United States)

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.

    2017-01-01

    In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…

  2. Detector correction in large container inspection systems

    CERN Document Server

    Kang Ke Jun; Chen Zhi Qiang

    2002-01-01

    In large container inspection systems, the image is constructed by parallel scanning with a one-dimensional detector array with a linac used as the X-ray source. The linear nonuniformity and nonlinearity of multiple detectors and the nonuniform intensity distribution of the X-ray sector beam result in horizontal striations in the scan image. This greatly impairs the image quality, so the image needs to be corrected. The correction parameters are determined experimentally by scaling the detector responses at multiple points with logarithm interpolation of the results. The horizontal striations are eliminated by modifying the original image data with the correction parameters. This method has proven to be effective and applicable in large container inspection systems

  3. Identifying barriers to recovery from work related upper extremity disorders: use of a collaborative problem solving technique.

    Science.gov (United States)

    Shaw, William S; Feuerstein, Michael; Miller, Virginia I; Wood, Patricia M

    2003-08-01

    Improving health and work outcomes for individuals with work related upper extremity disorders (WRUEDs) may require a broad assessment of potential return to work barriers by engaging workers in collaborative problem solving. In this study, half of all nurse case managers from a large workers' compensation system were randomly selected and invited to participate in a randomized, controlled trial of an integrated case management (ICM) approach for WRUEDs. The focus of ICM was problem solving skills training and workplace accommodation. Volunteer nurses attended a 2 day ICM training workshop including instruction in a 6 step process to engage clients in problem solving to overcome barriers to recovery. A chart review of WRUED case management reports (n = 70) during the following 2 years was conducted to extract case managers' reports of barriers to recovery and return to work. Case managers documented from 0 to 21 barriers per case (M = 6.24, SD = 4.02) within 5 domains: signs and symptoms (36%), work environment (27%), medical care (13%), functional limitations (12%), and coping (12%). Compared with case managers who did not receive the training (n = 67), workshop participants identified more barriers related to signs and symptoms, work environment, functional limitations, and coping (p Problem solving skills training may help focus case management services on the most salient recovery factors affecting return to work.

  4. Solving Eigenvalue response matrix equations with Jacobian-Free Newton-Krylov methods

    International Nuclear Information System (INIS)

    Roberts, Jeremy A.; Forget, Benoit

    2011-01-01

    The response matrix method for reactor eigenvalue problems is motivated as a technique for solving coarse mesh transport equations, and the classical approach of power iteration (PI) for solution is described. The method is then reformulated as a nonlinear system of equations, and the associated Jacobian is derived. A Jacobian-Free Newton-Krylov (JFNK) method is employed to solve the system, using an approximate Jacobian coupled with incomplete factorization as a preconditioner. The unpreconditioned JFNK slightly outperforms PI, and preconditioned JFNK outperforms both PI and Steffensen-accelerated PI significantly. (author)

  5. Assertiveness and problem solving in midwives.

    Science.gov (United States)

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  6. Tools for the Automation of Large Distributed Control Systems

    CERN Document Server

    Gaspar, Clara

    2005-01-01

    The new LHC experiments at CERN will have very large numbers of channels to operate. In order to be able to configure and monitor such large systems, a high degree of parallelism is necessary. The control system is built as a hierarchy of sub-systems distributed over several computers. A toolkit - SMI++, combining two approaches: finite state machines and rule-based programming, allows for the description of the various sub-systems as decentralized deciding entities, reacting is real-time to changes in the system, thus providing for the automation of standard procedures and for the automatic recovery from error conditions in a hierarchical fashion. In this paper we will describe the principles and features of SMI++ as well as its integration with an industrial SCADA tool for use by the LHC experiments and we will try to show that such tools, can provide a very convenient mechanism for the automation of large scale, high complexity, applications.

  7. LDRD final report : robust analysis of large-scale combinatorial applications.

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Robert D.; Morrison, Todd (University of Colorado, Denver, CO); Hart, William Eugene; Benavides, Nicolas L. (Santa Clara University, Santa Clara, CA); Greenberg, Harvey J. (University of Colorado, Denver, CO); Watson, Jean-Paul; Phillips, Cynthia Ann

    2007-09-01

    Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

  8. A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems

    Science.gov (United States)

    Chan, Tony; Szeto, Tedd

    1994-03-01

    We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.

  9. ITMETH, Iterative Routines for Linear System

    International Nuclear Information System (INIS)

    Greenbaum, A.

    1989-01-01

    1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method

  10. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    Science.gov (United States)

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  11. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    Science.gov (United States)

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  12. Quality Function Deployment for Large Systems

    Science.gov (United States)

    Dean, Edwin B.

    1992-01-01

    Quality Function Deployment (QFD) is typically applied to small subsystems. This paper describes efforts to extend QFD to large scale systems. It links QFD to the system engineering process, the concurrent engineering process, the robust design process, and the costing process. The effect is to generate a tightly linked project management process of high dimensionality which flushes out issues early to provide a high quality, low cost, and, hence, competitive product. A pre-QFD matrix linking customers to customer desires is described.

  13. Research on a Unique Instructional Framework for Elevating Students’ Quantitative Problem Solving Abilities

    Science.gov (United States)

    Prather, Edward E.; Wallace, Colin Scott

    2018-06-01

    We present an instructional framework that allowed a first time physics instructor to improve students quantitative problem solving abilities by more than a letter grade over what was achieved by students in an experienced instructor’s course. This instructional framework uses a Think-Pair-Share approach to foster collaborative quantitative problem solving during the lecture portion of a large enrollment introductory calculus-based mechanics course. Through the development of carefully crafted and sequenced TPS questions, we engage students in rich discussions on key problem solving issues that we typically only hear about when a student comes for help during office hours. Current work in the sophomore E&M course illustrates that this framework is generalizable to classes beyond the introductory level and for topics beyond mechanics.

  14. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  15. Deterministic Local Sensitivity Analysis of Augmented Systems - I: Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan G.; Ionescu-Bujor, Mihaela

    2005-01-01

    This work provides the theoretical foundation for the modular implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for large-scale simulation systems. The implementation of the ASAP commences with a selected code module and then proceeds by augmenting the size of the adjoint sensitivity system, module by module, until the entire system is completed. Notably, the adjoint sensitivity system for the augmented system can often be solved by using the same numerical methods used for solving the original, nonaugmented adjoint system, particularly when the matrix representation of the adjoint operator for the augmented system can be inverted by partitioning

  16. Challenges in parameter identification of large structural dynamic systems

    International Nuclear Information System (INIS)

    Koh, C.G.

    2001-01-01

    In theory, it is possible to determine the parameters of a structural or mechanical system by subjecting it to some dynamic excitation and measuring the response. Considerable research has been carried out in this subject area known as the system identification over the past two decades. Nevertheless, the challenges associated with numerical convergence are still formidable when the system is large in terms of the number of degrees of freedom and number of unknowns. While many methods work for small systems, the convergence becomes difficult, if not impossible, for large systems. In this keynote lecture, both classical and non-classical system identification methods for dynamic testing and vibration-based inspection are discussed. For classical methods, the extended Kalman filter (EKF) approach is used. On this basis, a substructural identification method has been developed as a strategy to deal with large structural systems. This is achieved by reducing the problem size, thereby significantly improving the numerical convergence and efficiency. Two versions of this method are presented each with its own merits. A numerical example of frame structure with 20 unknown parameters is illustrated. For non-classical methods, the Genetic Algorithm (GA) is shown to be applicable with relative ease due to its 'forward analysis' nature. The computational time is, however, still enormous for large structural systems due to the combinatorial explosion problem. A model GA method has been developed to address this problem and tested with considerable success on a relatively large system of 50 degrees of freedom, accounting for input and output noise effects. An advantages of this GA-based identification method is that the objective function can be defined in response measured. Numerical studies show that the method is relatively robust, as it does in response measured. Numerical studies show that the method is relatively robust, as it dos not require good initial guess and the

  17. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    Science.gov (United States)

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  18. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem.

    Science.gov (United States)

    Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  19. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  20. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  1. Recovering from trust breakdowns in large system implementations

    DEFF Research Database (Denmark)

    Rerup Schlichter, Bjarne Rerup; Andersen, Povl Erik Rostgård

    2011-01-01

    On the basis of experiences from the Faroese large-scale implementation of integrated healthcare information systems and insights into dynamic aspects of trust, we offer the following lessons learned for the successful management and recovery of trust (breakdowns) in large system implementations......: restore relations by turning towards face-to-face events and procedures, assure a well-functioning and available support organization, demonstrate trust in actors to enhance their own self-confidence and celebrate successes, even the smallest or ones injected by yourself. The propositions are based on a 6...

  2. 3D large-scale calculations using the method of characteristics

    International Nuclear Information System (INIS)

    Dahmani, M.; Roy, R.; Koclas, J.

    2004-01-01

    An overview of the computational requirements and the numerical developments made in order to be able to solve 3D large-scale problems using the characteristics method will be presented. To accelerate the MCI solver, efficient acceleration techniques were implemented and parallelization was performed. However, for the very large problems, the size of the tracking file used to store the tracks can still become prohibitive and exceed the capacity of the machine. The new 3D characteristics solver MCG will now be introduced. This methodology is dedicated to solve very large 3D problems (a part or a whole core) without spatial homogenization. In order to eliminate the input/output problems occurring when solving these large problems, we define a new computing scheme that requires more CPU resources than the usual one, based on sweeps over large tracking files. The huge capacity of storage needed in some problems and the related I/O queries needed by the characteristics solver are replaced by on-the-fly recalculation of tracks at each iteration step. Using this technique, large 3D problems are no longer I/O-bound, and distributed CPU resources can be efficiently used. (author)

  3. On problems to be solved for utilizing shock isolation systems to NPP

    International Nuclear Information System (INIS)

    Shibata, H.; Shigeta, T.; Komine, H.

    1989-01-01

    This paper discusses the development of difficulties with light water fast breeder reactors (LFBR). The authors focus their discussion on thin wall reactor vessels, thin wall sodium loops, and large sodium pools with free surfaces. Conclusions considered are to lower the center of gravity and the use of shock isolation system. Since the success of Super-phenix, the interest to develop a large fast reactor, so called LFBR, has become more realistic one in Japan. However, the anti-earthquake design of a pool-type large fast reactor is more difficult than that of light water reactors for high seismicity areas like Japan. The reason of difficulties come from the difference of the structural requirement for LFBR. Three major points are as follows: thin wall reactor vessel, thin wall sodium loops, large sodium pool with free surface

  4. StarDB: a large-scale DBMS for strings

    KAUST Repository

    Sahli, Majed

    2015-08-01

    Strings and applications using them are proliferating in science and business. Currently, strings are stored in file systems and processed using ad-hoc procedural code. Existing techniques are not flexible and cannot efficiently handle complex queries or large datasets. In this paper, we demonstrate StarDB, a distributed database system for analytics on strings. StarDB hides data and system complexities and allows users to focus on analytics. It uses a comprehensive set of parallel string operations and provides a declarative query language to solve complex queries. StarDB automatically tunes itself and runs with over 90% efficiency on supercomputers, public clouds, clusters, and workstations. We test StarDB using real datasets that are 2 orders of magnitude larger than the datasets reported by previous works.

  5. Robust Sex Differences in Jigsaw Puzzle Solving-Are Boys Really Better in Most Visuospatial Tasks?

    Science.gov (United States)

    Kocijan, Vid; Horvat, Marina; Majdic, Gregor

    2017-01-01

    Sex differences are consistently reported in different visuospatial tasks with men usually performing better in mental rotation tests while women are better on tests for memory of object locations. In the present study, we investigated sex differences in solving jigsaw puzzles in children. In total 22 boys and 24 girls were tested using custom build tablet application representing a jigsaw puzzle consisting of 25 pieces and featuring three different pictures. Girls outperformed boys in solving jigsaw puzzles regardless of the picture. Girls were faster than boys in solving the puzzle, made less incorrect moves with the pieces of the puzzle, and spent less time moving the pieces around the tablet. It appears that the strategy of solving the jigsaw puzzle was the main factor affecting differences in success, as girls tend to solve the puzzle more systematically while boys performed more trial and error attempts, thus having more incorrect moves with the puzzle pieces. Results of this study suggest a very robust sex difference in solving the jigsaw puzzle with girls outperforming boys by a large margin.

  6. Position measurement of the direct drive motor of Large Aperture Telescope

    Science.gov (United States)

    Li, Ying; Wang, Daxing

    2010-07-01

    Along with the development of space and astronomy science, production of large aperture telescope and super large aperture telescope will definitely become the trend. It's one of methods to solve precise drive of large aperture telescope using direct drive technology unified designed of electricity and magnetism structure. A direct drive precise rotary table with diameter of 2.5 meters researched and produced by us is a typical mechanical & electrical integration design. This paper mainly introduces position measurement control system of direct drive motor. In design of this motor, position measurement control system requires having high resolution, and precisely aligning the position of rotor shaft and making measurement, meanwhile transferring position information to position reversing information corresponding to needed motor pole number. This system has chosen high precision metal band coder and absolute type coder, processing information of coders, and has sent 32-bit RISC CPU making software processing, and gained high resolution composite coder. The paper gives relevant laboratory test results at the end, indicating the position measurement can apply to large aperture telescope control system. This project is subsidized by Chinese National Natural Science Funds (10833004).

  7. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components

    Science.gov (United States)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.

    2009-10-01

    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  8. TENSOLVE: A software package for solving systems of nonlinear equations and nonlinear least squares problems using tensor methods

    Energy Technology Data Exchange (ETDEWEB)

    Bouaricha, A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Schnabel, R.B. [Colorado Univ., Boulder, CO (United States). Dept. of Computer Science

    1996-12-31

    This paper describes a modular software package for solving systems of nonlinear equations and nonlinear least squares problems, using a new class of methods called tensor methods. It is intended for small to medium-sized problems, say with up to 100 equations and unknowns, in cases where it is reasonable to calculate the Jacobian matrix or approximate it by finite differences at each iteration. The software allows the user to select between a tensor method and a standard method based upon a linear model. The tensor method models F({ital x}) by a quadratic model, where the second-order term is chosen so that the model is hardly more expensive to form, store, or solve than the standard linear model. Moreover, the software provides two different global strategies, a line search and a two- dimensional trust region approach. Test results indicate that, in general, tensor methods are significantly more efficient and robust than standard methods on small and medium-sized problems in iterations and function evaluations.

  9. VET workers’ problem-solving skills in technology-rich environments: European approach

    Directory of Open Access Journals (Sweden)

    Raija Hämäläinen

    2014-08-01

    Full Text Available The European workplace is challenging VET adults’ problem-solving skills in technology-rich environments (TREs. So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults’ skills to date. The present study (N=50 369 focuses on gaining insight into the problem-solving skills in TREs of adults with a VET background. When examining the similarities and differences in VET adults’ problem-solving skills in TREs across 11 European countries, two main trends can be observed. First, our results show that only a minority of VET adults perform at a high level. Second, there seems to be substantial variation between countries with respect to the proportion of VET adults that can be identified as “at-risk” or “weak” performers. For the future, our findings indicate the variations that can be used as a starting point to identify beneficial VET approaches.

  10. On Lattice Sequential Decoding for Large MIMO Systems

    KAUST Repository

    Ali, Konpal S.

    2014-04-01

    Due to their ability to provide high data rates, Multiple-Input Multiple-Output (MIMO) wireless communication systems have become increasingly popular. Decoding of these systems with acceptable error performance is computationally very demanding. In the case of large overdetermined MIMO systems, we employ the Sequential Decoder using the Fano Algorithm. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity and vice versa for higher bias values. We attempt to bound the error by bounding the bias, using the minimum distance of a lattice. Also, a particular trend is observed with increasing SNR: a region of low complexity and high error, followed by a region of high complexity and error falling, and finally a region of low complexity and low error. For lower bias values, the stages of the trend are incurred at lower SNR than for higher bias values. This has the important implication that a low enough bias value, at low to moderate SNR, can result in low error and low complexity even for large MIMO systems. Our work is compared against Lattice Reduction (LR) aided Linear Decoders (LDs). Another impressive observation for low bias values that satisfy the error bound is that the Sequential Decoder\\'s error is seen to fall with increasing system size, while it grows for the LR-aided LDs. For the case of large underdetermined MIMO systems, Sequential Decoding with two preprocessing schemes is proposed – 1) Minimum Mean Square Error Generalized Decision Feedback Equalization (MMSE-GDFE) preprocessing 2) MMSE-GDFE preprocessing, followed by Lattice Reduction and Greedy Ordering. Our work is compared against previous work which employs Sphere Decoding preprocessed using MMSE-GDFE, Lattice Reduction and Greedy Ordering. For the case of large systems, this results in high complexity and difficulty in choosing the sphere radius. Our schemes

  11. Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems

    Science.gov (United States)

    Razzak, M. A.; Alam, M. Z.; Sharif, M. N.

    2018-03-01

    In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.

  12. A Problem Solving Intervention for hospice caregivers: a pilot study.

    Science.gov (United States)

    Demiris, George; Oliver, Debra Parker; Washington, Karla; Fruehling, Lynne Thomas; Haggarty-Robbins, Donna; Doorenbos, Ardith; Wechkin, Hope; Berry, Donna

    2010-08-01

    The Problem Solving Intervention (PSI) is a structured, cognitive-behavioral intervention that provides people with problem-solving coping skills to help them face major negative life events and daily challenges. PSI has been applied to numerous settings but remains largely unexplored in the hospice setting. The aim of this pilot study was to demonstrate the feasibility of PSI targeting informal caregivers of hospice patients. We enrolled hospice caregivers who were receiving outpatient services from two hospice agencies. The intervention included three visits by a research team member. The agenda for each visit was informed by the problem-solving theoretical framework and was customized based on the most pressing problems identified by the caregivers. We enrolled 29 caregivers. Patient's pain was the most frequently identified problem. On average, caregivers reported a higher quality of life and lower level of anxiety postintervention than at baseline. An examination of the caregiver reaction assessment showed an increase of positive esteem average and a decrease of the average value of lack of family support, impact on finances, impact on schedules, and on health. After completing the intervention, caregivers reported lower levels of anxiety, improved problem solving skills, and a reduced negative impact of caregiving. Furthermore, caregivers reported high levels of satisfaction with the intervention, perceiving it as a platform to articulate their challenges and develop a plan to address them. Findings demonstrate the value of problem solving as a psycho-educational intervention in the hospice setting and call for further research in this area.

  13. Large-Scale Systems Control Design via LMI Optimization

    Czech Academy of Sciences Publication Activity Database

    Rehák, Branislav

    2015-01-01

    Roč. 44, č. 3 (2015), s. 247-253 ISSN 1392-124X Institutional support: RVO:67985556 Keywords : Combinatorial linear matrix inequalities * large-scale system * decentralized control Subject RIV: BC - Control Systems Theory Impact factor: 0.633, year: 2015

  14. The Role of Problem Solving in Construction Management Practices

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken

    2012-01-01

    industry. An Industrial PhD carried out at a large Danish contractor examined how failures and defects are produced and handled in the social practices of construction projects. The study addresses quality issues related to project management and examines the role of problem solving practices......Quality issues are a topic of continuous interest in the Danish construction industry. Not only can failures and defects be vital to the success of the single project but also the annual profits of the whole company can be put at risk. Moreover quality issues jeopardize the reputation of the entire......-dispositions regarding quality issues in the decision making and redressing of defects and failures in the processes. The role of problem solving and trouble-shooting is analysed through the well-organized processes of erecting the precast concrete structure and the chaotic processes of constructing the penthouse storey...

  15. Engineering Antifragile Systems: A Change In Design Philosophy

    Science.gov (United States)

    Jones, Kennie H.

    2014-01-01

    While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.

  16. Self-* and Adaptive Mechanisms for Large Scale Distributed Systems

    Science.gov (United States)

    Fragopoulou, P.; Mastroianni, C.; Montero, R.; Andrjezak, A.; Kondo, D.

    Large-scale distributed computing systems and infrastructure, such as Grids, P2P systems and desktop Grid platforms, are decentralized, pervasive, and composed of a large number of autonomous entities. The complexity of these systems is such that human administration is nearly impossible and centralized or hierarchical control is highly inefficient. These systems need to run on highly dynamic environments, where content, network topologies and workloads are continuously changing. Moreover, they are characterized by the high degree of volatility of their components and the need to provide efficient service management and to handle efficiently large amounts of data. This paper describes some of the areas for which adaptation emerges as a key feature, namely, the management of computational Grids, the self-management of desktop Grid platforms and the monitoring and healing of complex applications. It also elaborates on the use of bio-inspired algorithms to achieve self-management. Related future trends and challenges are described.

  17. A Chain Perspective on Large-scale Number Systems

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    2012-01-01

    As large-scale number systems gain significance in social and economic life (electronic communication, remote electronic authentication), the correct functioning and the integrity of public number systems take on crucial importance. They are needed to uniquely indicate people, objects or phenomena

  18. Optimal bidding strategies for competitive generators and large consumers

    International Nuclear Information System (INIS)

    Fushuan Wen; David, A.K.

    2001-01-01

    There exists the potential for gaming such as strategic bidding by participants (power suppliers and large consumers) in a deregulated power market, which is more an oligopoly than a laissez-faire market. Each participant can increase his or her own profit through strategic bidding but this has a negative effect on maximising social welfare. A method to build bidding strategies for both power suppliers and large consumers in a poolco-type electricity market is presented in this paper. It is assumed that each supplier/large consumer bids a linear supply/demand function, and the system is dispatched to maximise social welfare. Each supplier/large consumer chooses the coefficients in the linear supply/demand function to maximise benefits, subject to expectations about how rival participants will bid. The problem is formulated as a stochastic optimisation problem, and solved by a Monte Carlo approach. A numerical example with six suppliers and two large consumers serves to illustrate the essential features of the method. (author)

  19. A modular approach to large-scale design optimization of aerospace systems

    Science.gov (United States)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft

  20. Construction of a large laser fusion system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1977-01-01

    Construction of a large laser fusion machine is nearing completion at the Lawrence Livermore Laboratory (LLL). Shiva, a 20-terawatt neodymium doped glass system, will be complete in early 1978. This system will have the high power needed to demonstrate significant thermonuclear burn. Shiva will irradiate a microscopic D-T pellet with 20 separate laser beams arriving simultaneously at the target. This requires precise alignment, and stability to maintain alignment. Hardware for the 20 laser chains is composed of 140 amplifiers, 100 spatial filters, 80 isolation stages, 40 large turning mirrors, and a front-end splitter system of over 100 parts. These are mounted on a high stability, three dimensional spaceframe which serves as an optical bench. The mechanical design effort, spanning approximately 3 years, followed a classic engineering evolution. The conceptual design phase led directly to system optimization through cost and technical tradeoffs. Additional manpower was then required for detailed design and specification of hardware and fabrication. Design of long-lead items was started early in order to initiate fabrication and assembly while the rest of the design was completed. All components were ready for assembly and construction as fiscal priorities and schedules permitted

  1. VET Workers' Problem-Solving Skills in Technology-Rich Environments: European Approach

    Science.gov (United States)

    Hämäläinen, Raija; Cincinnato, Sebastiano; Malin, Antero; De Wever, Bram

    2014-01-01

    The European workplace is challenging VET adults' problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults' skills to date. The present study (N = 50 369) focuses on gaining insight…

  2. Large-scale modelling of neuronal systems

    International Nuclear Information System (INIS)

    Castellani, G.; Verondini, E.; Giampieri, E.; Bersani, F.; Remondini, D.; Milanesi, L.; Zironi, I.

    2009-01-01

    The brain is, without any doubt, the most, complex system of the human body. Its complexity is also due to the extremely high number of neurons, as well as the huge number of synapses connecting them. Each neuron is capable to perform complex tasks, like learning and memorizing a large class of patterns. The simulation of large neuronal systems is challenging for both technological and computational reasons, and can open new perspectives for the comprehension of brain functioning. A well-known and widely accepted model of bidirectional synaptic plasticity, the BCM model, is stated by a differential equation approach based on bistability and selectivity properties. We have modified the BCM model extending it from a single-neuron to a whole-network model. This new model is capable to generate interesting network topologies starting from a small number of local parameters, describing the interaction between incoming and outgoing links from each neuron. We have characterized this model in terms of complex network theory, showing how this, learning rule can be a support For network generation.

  3. Dynamics of Large Systems of Nonlinearly Evolving Units

    Science.gov (United States)

    Lu, Zhixin

    The dynamics of large systems of many nonlinearly evolving units is a general research area that has great importance for many areas in science and technology, including biology, computation by artificial neural networks, statistical mechanics, flocking in animal groups, the dynamics of coupled neurons in the brain, and many others. While universal principles and techniques are largely lacking in this broad area of research, there is still one particular phenomenon that seems to be broadly applicable. In particular, this is the idea of emergence, by which is meant macroscopic behaviors that "emerge" from a large system of many "smaller or simpler entities such that...large entities" [i.e., macroscopic behaviors] arise which "exhibit properties the smaller/simpler entities do not exhibit." In this thesis we investigate mechanisms and manifestations of emergence in four dynamical systems consisting many nonlinearly evolving units. These four systems are as follows. (a) We first study the motion of a large ensemble of many noninteracting particles in a slowly changing Hamiltonian system that undergoes a separatrix crossing. In such systems, we find that separatrix-crossing induces a counterintuitive effect. Specifically, numerical simulation of two sets of densely sprinkled initial conditions on two energy curves appears to suggest that the two energy curves, one originally enclosing the other, seemingly interchange their positions. This, however, is topologically forbidden. We resolve this paradox by introducing a numerical simulation method we call "robust" and study its consequences. (b) We next study the collective dynamics of oscillatory pacemaker neurons in Suprachiasmatic Nucleus (SCN), which, through synchrony, govern the circadian rhythm of mammals. We start from a high-dimensional description of the many coupled oscillatory neuronal units within the SCN. This description is based on a forced Kuramoto model. We then reduce the system dimensionality by using

  4. Non-Interior Continuation Method for Solving the Monotone Semidefinite Complementarity Problem

    International Nuclear Information System (INIS)

    Huang, Z.H.; Han, J.

    2003-01-01

    Recently, Chen and Tseng extended non-interior continuation smoothing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer-Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Frechet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms

  5. Large autonomous spacecraft electrical power system (LASEPS)

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  6. Racing Sampling Based Microimmune Optimization Approach Solving Constrained Expected Value Programming

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2016-01-01

    Full Text Available This work investigates a bioinspired microimmune optimization algorithm to solve a general kind of single-objective nonlinear constrained expected value programming without any prior distribution. In the study of algorithm, two lower bound sample estimates of random variables are theoretically developed to estimate the empirical values of individuals. Two adaptive racing sampling schemes are designed to identify those competitive individuals in a given population, by which high-quality individuals can obtain large sampling size. An immune evolutionary mechanism, along with a local search approach, is constructed to evolve the current population. The comparative experiments have showed that the proposed algorithm can effectively solve higher-dimensional benchmark problems and is of potential for further applications.

  7. BRAIN Journal - Cognitive Medical Multiagent Systems

    OpenAIRE

    Barna Iantovics

    2017-01-01

    Abstract The development of efficient and flexible agent-based medical diagnosis systems represents a recent research direction. Medical multiagent systems may improve the efficiency of traditionally developed medical computational systems, like the medical expert systems. In our previous researches, a novel cooperative medical diagnosis multiagent system called CMDS (Contract Net Based Medical Diagnosis System) was proposed. CMDS system can solve flexibly a large variety of medical diagn...

  8. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  9. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  10. FKPP fronts in cellular flows: the large-P\\'eclet regime

    OpenAIRE

    Tzella, Alexandra; Vanneste, Jacques

    2015-01-01

    We investigate the propagation of chemical fronts arising in Fisher--Kolmogorov--Petrovskii--Piskunov (FKPP) type models in the presence of a steady cellular flow. In the long-time limit, a steadily propagating pulsating front is established. Its speed, on which we focus, can be obtained by solving an eigenvalue problem closely related to large-deviation theory. We employ asymptotic methods to solve this eigenvalue problem in the limit of small molecular diffusivity (large P\\'eclet number, $\\...

  11. An enhanced artificial bee colony algorithm (EABC for solving dispatching of hydro-thermal system (DHTS problem.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  12. Diagrams benefit symbolic problem-solving.

    Science.gov (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  13. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  14. Solving rational expectations models using Excel

    DEFF Research Database (Denmark)

    Strulik, Holger

    2004-01-01

    Problems of discrete time optimal control can be solved using backward iteration and Microsoft Excel. The author explains the method in general and shows how the basic models of neoclassical growth and real business cycles are solved......Problems of discrete time optimal control can be solved using backward iteration and Microsoft Excel. The author explains the method in general and shows how the basic models of neoclassical growth and real business cycles are solved...

  15. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  16. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  17. Solving Dynamic Battlespace Movement Problems Using Dynamic Distributed Computer Networks

    National Research Council Canada - National Science Library

    Bradford, Robert

    2000-01-01

    .... The thesis designs a system using this architecture that invokes operations research network optimization algorithms to solve problems involving movement of people and equipment over dynamic road networks...

  18. Using interactive problem-solving techniques to enhance control systems education for non English-speakers

    Science.gov (United States)

    Lamont, L. A.; Chaar, L.; Toms, C.

    2010-03-01

    Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.

  19. New computational methodology for large 3D neutron transport problems

    International Nuclear Information System (INIS)

    Dahmani, M.; Roy, R.; Koclas, J.

    2004-01-01

    We present a new computational methodology, based on 3D characteristics method, dedicated to solve very large 3D problems without spatial homogenization. In order to eliminate the input/output problems occurring when solving these large problems, we set up a new computing scheme that requires more CPU resources than the usual one, based on sweeps over large tracking files. The huge capacity of storage needed in some problems and the related I/O queries needed by the characteristics solver are replaced by on-the-fly recalculation of tracks at each iteration step. Using this technique, large 3D problems are no longer I/O-bound, and distributed CPU resources can be efficiently used. (authors)

  20. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    Science.gov (United States)

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  1. Low Complexity Precoder and Receiver Design for Massive MIMO Systems: A Large System Analysis using Random Matrix Theory

    KAUST Repository

    Sifaou, Houssem

    2016-05-01

    Massive MIMO systems are shown to be a promising technology for next generations of wireless communication networks. The realization of the attractive merits promised by massive MIMO systems requires advanced linear precoding and receiving techniques in order to mitigate the interference in downlink and uplink transmissions. This work considers the precoder and receiver design in massive MIMO systems. We first consider the design of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio (SINR) subject to a given power constraint. The analysis is carried out under the asymptotic regime in which the number of the BS antennas and that of the users grow large with a bounded ratio. This allows us to leverage tools from random matrix theory in order to approximate the parameters of the optimal linear precoder and receiver by their deterministic approximations. Such a result is of valuable practical interest, as it provides a handier way to implement the optimal precoder and receiver. To reduce further the complexity, we propose to apply the truncated polynomial expansion (TPE) concept on a per-user basis to approximate the inverse of large matrices that appear on the expressions of the optimal linear transceivers. Using tools from random matrix theory, we determine deterministic approximations of the SINR and the transmit power in the asymptotic regime. Then, the optimal per-user weight coe cients that solve the max-min SINR problem are derived. The simulation results show that the proposed precoder and receiver provide very close to optimal performance while reducing signi cantly the computational complexity. As a second part of this work, the TPE technique in a per-user basis is applied to the optimal linear precoding that minimizes the transmit power while satisfying a set of target SINR constraints. Due to the emerging research eld of green cellular networks, such a problem is receiving increasing interest nowadays. Closed

  2. Distributed Graphs for Solving Co-modal Transport Problems

    OpenAIRE

    Karama , Jeribi; Hinda , Mejri; Hayfa , Zgaya; Slim , Hammadi

    2011-01-01

    International audience; The paper presents a new approach based on a special distributed graphs in order to solve co-modal transport problems. The co-modal transport system consists on combining different transport modes effectively in terms of economic, environmental, service and financial efficiency, etc. However, the problem is that these systems must deal with different distributed information sources stored in different locations and provided by different public and private companies. In...

  3. An Axiomatic Analysis Approach for Large-Scale Disaster-Tolerant Systems Modeling

    Directory of Open Access Journals (Sweden)

    Theodore W. Manikas

    2011-02-01

    Full Text Available Disaster tolerance in computing and communications systems refers to the ability to maintain a degree of functionality throughout the occurrence of a disaster. We accomplish the incorporation of disaster tolerance within a system by simulating various threats to the system operation and identifying areas for system redesign. Unfortunately, extremely large systems are not amenable to comprehensive simulation studies due to the large computational complexity requirements. To address this limitation, an axiomatic approach that decomposes a large-scale system into smaller subsystems is developed that allows the subsystems to be independently modeled. This approach is implemented using a data communications network system example. The results indicate that the decomposition approach produces simulation responses that are similar to the full system approach, but with greatly reduced simulation time.

  4. Large graph visualization of millions of connections in the CERN control system network traffic: analysis and design of routing and firewall rules with a new approach

    CERN Document Server

    Gallerani, Luigi

    2015-01-01

    Abstract The CERN Technical Network (TN) TN was intended to be a network for accelerator and infrastructure operations. However, today, more than 60 million IP packets are routed every hour between the General Purpose Network (GPN) and the TN, involving more than 6000 different hosts. In order to improve the security of the accelerator control system, it is fundamental to understand the network traffic between the two networks and to define new appropriate routing and firewall rules without impacting operations. The complexity and huge size of the infrastructure and the number of protocols and services involved, have discouraged for years any attempt to understand and control the network traffic between the GPN and the TN. In this paper, we show a new way to solve the problem graphically. Combining the network traffic analysis with the use of large graph visualization algorithms we produced usable 2D large color topology maps of the network identifying the inter-relations of the control system machines and s...

  5. Market penetration of large wind/diesel systems

    International Nuclear Information System (INIS)

    Kronborg, T.

    1992-01-01

    Burmeister ampersand Wain is developing a large size wind/diesel package in collaboration with Micon, the Danish wind turbine manufacturer, and the Danish utility NESA. The package comprises an initial calculation of the technical feasibility and the economic viability of an actual project, installing the optimum number of large wind turbines, and service, operation, and maintenance as needed. The concept should be seen as an addition to existing diesel-based power stations. Wind turbines are especially advantageous in smaller diesel-based electrical systems in the 1-20 MW range because such systems can have high fuel costs and expensive maintenance. Analysis of the market for the wind/diesel concept indicates islands and remote areas with limited population are likely candidates for implementation of wind/diesel systems. An example of an economic analysis of a wind/diesel application on an isolated island is presented, showing the cost savings possible. To obtain practical experience and to demonstrate the wind/diesel concept, a MW-size demonstration plant is being constructed in Denmark

  6. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    Science.gov (United States)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  7. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  8. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  9. A DSS based on GIS and Tabu search for solving the CVRP: The Tunisian case

    Directory of Open Access Journals (Sweden)

    Sami Faiz

    2014-06-01

    Full Text Available The Capacitated Vehicle Routing Problem (CVRP is a well known optimization problem applied in numerous applications. It consists of delivering items to some geographically dispersed customers using a set of vehicles operating from a single depot. As the CVRP is known to be NP-hard, approximate methods perform well when generating promising sub-optimal solutions in a reasonable computation time. In this paper, we develop a Decision Support System (DSS for solving the CVRP that integrates a Geographical Information System (GIS enriched by a Tabu search (TS module. In order to demonstrate the performance of the proposed DSS in terms of CPU runtime and minimized traveled distance, we apply it on a large-sized real case. The results are then highlighted in a cartographic format using Google Maps.

  10. Predicting the bounds of large chaotic systems using low-dimensional manifolds.

    Directory of Open Access Journals (Sweden)

    Asger M Haugaard

    Full Text Available Predicting extrema of chaotic systems in high-dimensional phase space remains a challenge. Methods, which give extrema that are valid in the long term, have thus far been restricted to models of only a few variables. Here, a method is presented which treats extrema of chaotic systems as belonging to discretised manifolds of low dimension (low-D embedded in high-dimensional (high-D phase space. As a central feature, the method exploits that strange attractor dimension is generally much smaller than parent system phase space dimension. This is important, since the computational cost associated with discretised manifolds depends exponentially on their dimension. Thus, systems that would otherwise be associated with tremendous computational challenges, can be tackled on a laptop. As a test, bounding manifolds are calculated for high-D modifications of the canonical Duffing system. Parameters can be set such that the bounding manifold displays harmonic behaviour even if the underlying system is chaotic. Thus, solving for one post-transient forcing cycle of the bounding manifold predicts the extrema of the underlying chaotic problem indefinitely.

  11. A New Plant Intelligent Behaviour Optimisation Algorithm for Solving Vehicle Routing Problem

    OpenAIRE

    Chagwiza, Godfrey

    2018-01-01

    A new plant intelligent behaviour optimisation algorithm is developed. The algorithm is motivated by intelligent behaviour of plants and is implemented to solve benchmark vehicle routing problems of all sizes, and results were compared to those in literature. The results show that the new algorithm outperforms most of algorithms it was compared to for very large and large vehicle routing problem instances. This is attributed to the ability of the plant to use previously stored memory to respo...

  12. Geothermal ORC Systems Using Large Screw Expanders

    OpenAIRE

    Biederman, Tim R.; Brasz, Joost J.

    2014-01-01

    Geothermal ORC Systems using Large Screw Expanders Tim Biederman Cyrq Energy Abstract This paper describes a low-temperature Organic Rankine Cycle Power Recovery system with a screw expander a derivative of developed of Kaishan's line of screw compressors, as its power unit. The screw expander design is a modified version of its existing refrigeration compressor used on water-cooled chillers. Starting the ORC development program with existing refrigeration screw compre...

  13. Collaboration and Virtualization in Large Information Systems Projects

    Directory of Open Access Journals (Sweden)

    Stefan Ioan NITCHI

    2009-01-01

    Full Text Available A project is evolving through different phases from idea and conception until the experiments, implementation and maintenance. The globalization, the Internet, the Web and the mobile computing changed many human activities, and in this respect, the realization of the Information System (IS projects. The projects are growing, the teams are geographically distributed, and the users are heterogeneous. In this respect, the realization of the large Information Technology (IT projects needs to use collaborative technologies. The distribution of the team, the users' heterogeneity and the project complexity determines the virtualization. This paper is an overview of these aspects for large IT projects. It shortly present a general framework developed by the authors for collaborative systems in general and adapted to collaborative project management. The general considerations are illustrated on the case of a large IT project in which the authors were involved.

  14. Budget management in the system of solving ecological contradictions of development of the national economy: territorial approach

    Directory of Open Access Journals (Sweden)

    Petrushenko Mykola M.

    2013-03-01

    Full Text Available The article analyses organisational and economic factors and forms a theoretical and methodical approach to budget management in the system of solving ecological contradictions of development of territorial systems of the national economy. The article justifies improvement of processes of managing budgets, directed at overcoming ecological contradictions, on the basis of conceptual provisions of the budgeting oriented at the result. It develops a scheme-model of the organisational and structural solution of ecological contradictions, with reinforcement of the integration role of the budgeting method, in the system of managing an administrative and territorial unit using example of the Sumy oblast. The offered theoretical and methodical approach to improvement of the budget management in the territorial and economic system allows development of principles of the on trust management in the field of ecological and economic relations and also activation of practical introduction of managerial instruments of consensual solution of ecologically caused conflict situations with application of specialised management-consulting activity.

  15. A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree

    Science.gov (United States)

    de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel

    2017-01-01

    Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…

  16. Large-N behaviour of string solutions in the Heisenberg model

    CERN Document Server

    Fujita, T; Takahashi, H

    2003-01-01

    We investigate the large-N behaviour of the complex solutions for the two-magnon system in the S = 1/2 Heisenberg XXZ model. The Bethe ansatz equations are numerically solved for the string solutions with a new iteration method. Clear evidence of the violation of the string configurations is found at N = 22, 62, 121, 200, 299, 417, but the broken states are still Bethe states. The number of Bethe states is consistent with the exact diagonalization, except for one singular state.

  17. Systems of Inhomogeneous Linear Equations

    Science.gov (United States)

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  18. An inherently parallel method for solving discretized diffusion equations

    International Nuclear Information System (INIS)

    Eccleston, B.R.; Palmer, T.S.

    1999-01-01

    A Monte Carlo approach to solving linear systems of equations is being investigated in the context of the solution of discretized diffusion equations. While the technique was originally devised decades ago, changes in computer architectures (namely, massively parallel machines) have driven the authors to revisit this technique. There are a number of potential advantages to this approach: (1) Analog Monte Carlo techniques are inherently parallel; this is not necessarily true to today's more advanced linear equation solvers (multigrid, conjugate gradient, etc.); (2) Some forms of this technique are adaptive in that they allow the user to specify locations in the problem where resolution is of particular importance and to concentrate the work at those locations; and (3) These techniques permit the solution of very large systems of equations in that matrix elements need not be stored. The user could trade calculational speed for storage if elements of the matrix are calculated on the fly. The goal of this study is to compare the parallel performance of Monte Carlo linear solvers to that of a more traditional parallelized linear solver. The authors observe the linear speedup that they expect from the Monte Carlo algorithm, given that there is no domain decomposition to cause significant communication overhead. Overall, PETSc outperforms the Monte Carlo solver for the test problem. The PETSc parallel performance improves with larger numbers of unknowns for a given number of processors. Parallel performance of the Monte Carlo technique is independent of the size of the matrix and the number of processes. They are investigating modifications to the scheme to accommodate matrix problems with positive off-diagonal elements. They are also currently coding an on-the-fly version of the algorithm to investigate the solution of very large linear systems

  19. Social problem solving among depressed adolescents is enhanced by structured psychotherapies

    Science.gov (United States)

    Dietz, Laura J.; Marshal, Michael P.; Burton, Chad M.; Bridge, Jeffrey A.; Birmaher, Boris; Kolko, David; Duffy, Jamira N.; Brent, David A.

    2014-01-01

    Objective Changes in adolescent interpersonal behavior before and after an acute course of psychotherapy were investigated as outcomes and mediators of remission status in a previously described treatment study of depressed adolescents. Maternal depressive symptoms were examined as moderators of the association between psychotherapy condition and changes in adolescents’ interpersonal behavior. Method Adolescents (n = 63, mean age = 15.6 years, 77.8% female, 84.1% Caucasian) engaged in videotaped interactions with their mothers before randomization to cognitive behavior therapy (CBT), systemic behavior family therapy (SBFT), or nondirective supportive therapy (NST), and after 12–16 weeks of treatment. Adolescent involvement, problem solving and dyadic conflict were examined. Results Improvements in adolescent problem solving were significantly associated with CBT and SBFT. Maternal depressive symptoms moderated the effect of CBT, but not SBFT, on adolescents’ problem solving; adolescents experienced increases in problem solving only when their mothers had low or moderate levels of depressive symptoms. Improvements in adolescents’ problem solving were associated with higher rates of remission across treatment conditions, but there were no significant indirect effects of SBFT on remission status through problem solving. Exploratory analyses revealed a significant indirect effect of CBT on remission status through changes in adolescent problem solving, but only when maternal depressive symptoms at study entry were low. Conclusions Findings provide preliminary support for problem solving as an active treatment component of structured psychotherapies for depressed adolescents and suggest one Pathway by which maternal depression may disrupt treatment efficacy for depressed adolescents treated with CBT. PMID:24491077

  20. The Roles of Sparse Direct Methods in Large-scale Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoye S.; Gao, Weiguo; Husbands, Parry J.R.; Yang, Chao; Ng, Esmond G.

    2005-06-27

    Sparse systems of linear equations and eigen-equations arise at the heart of many large-scale, vital simulations in DOE. Examples include the Accelerator Science and Technology SciDAC (Omega3P code, electromagnetic problem), the Center for Extended Magnetohydrodynamic Modeling SciDAC(NIMROD and M3D-C1 codes, fusion plasma simulation). The Terascale Optimal PDE Simulations (TOPS)is providing high-performance sparse direct solvers, which have had significant impacts on these applications. Over the past several years, we have been working closely with the other SciDAC teams to solve their large, sparse matrix problems arising from discretization of the partial differential equations. Most of these systems are very ill-conditioned, resulting in extremely poor convergence deployed our direct methods techniques in these applications, which achieved significant scientific results as well as performance gains. These successes were made possible through the SciDAC model of computer scientists and application scientists working together to take full advantage of terascale computing systems and new algorithms research.