WorldWideScience

Sample records for solving inductive reasoning

  1. Inductive reasoning.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Different strategies in solving series completion inductive reasoning problems: an fMRI and computational study.

    Science.gov (United States)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Zhong, Ning; Li, Kuncheng

    2014-08-01

    Neural correlate of human inductive reasoning process is still unclear. Number series and letter series completion are two typical inductive reasoning tasks, and with a common core component of rule induction. Previous studies have demonstrated that different strategies are adopted in number series and letter series completion tasks; even the underlying rules are identical. In the present study, we examined cortical activation as a function of two different reasoning strategies for solving series completion tasks. The retrieval strategy, used in number series completion tasks, involves direct retrieving of arithmetic knowledge to get the relations between items. The procedural strategy, used in letter series completion tasks, requires counting a certain number of times to detect the relations linking two items. The two strategies require essentially the equivalent cognitive processes, but have different working memory demands (the procedural strategy incurs greater demands). The procedural strategy produced significant greater activity in areas involved in memory retrieval (dorsolateral prefrontal cortex, DLPFC) and mental representation/maintenance (posterior parietal cortex, PPC). An ACT-R model of the tasks successfully predicted behavioral performance and BOLD responses. The present findings support a general-purpose dual-process theory of inductive reasoning regarding the cognitive architecture. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Different strategies in solving series completion inductive reasoning problems : An fMRI and computational study

    NARCIS (Netherlands)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A.; Zhong, Ning; Li, Kuncheng

    Neural correlate of human inductive reasoning process is still unclear. Number series and letter series completion are two typical inductive reasoning tasks, and with a common core component of rule induction. Previous studies have demonstrated that different strategies are adopted in number series

  4. Using a Model to Describe Students' Inductive Reasoning in Problem Solving

    Science.gov (United States)

    Canadas, Maria C.; Castro, Encarnacion; Castro, Enrique

    2009-01-01

    Introduction: We present some aspects of a wider investigation (Canadas, 2007), whose main objective is to describe and characterize inductive reasoning used by Spanish students in years 9 and 10 when they work on problems that involved linear and quadratic sequences. Method: We produced a test composed of six problems with different…

  5. Inductive Reasoning and Writing

    Science.gov (United States)

    Rooks, Clay; Boyd, Robert

    2003-01-01

    Induction, properly understood, is not merely a game, nor is it a gimmick, nor is it an artificial way of explaining an element of reasoning. Proper understanding of inductive reasoning--and the various types of reasoning that the authors term inductive--enables the student to evaluate critically other people's writing and enhances the composition…

  6. Properties of inductive reasoning.

    Science.gov (United States)

    Heit, E

    2000-12-01

    This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.

  7. Relations between Inductive Reasoning and Deductive Reasoning

    Science.gov (United States)

    Heit, Evan; Rotello, Caren M.

    2010-01-01

    One of the most important open questions in reasoning research is how inductive reasoning and deductive reasoning are related. In an effort to address this question, we applied methods and concepts from memory research. We used 2 experiments to examine the effects of logical validity and premise-conclusion similarity on evaluation of arguments.…

  8. Inductive Reasoning: A Training Approach

    Science.gov (United States)

    Klauer, Karl Josef; Phye, Gary D.

    2008-01-01

    Researchers have examined inductive reasoning to identify different cognitive processes when participants deal with inductive problems. This article presents a prescriptive theory of inductive reasoning that identifies cognitive processing using a procedural strategy for making comparisons. It is hypothesized that training in the use of the…

  9. Relations between inductive reasoning and deductive reasoning.

    Science.gov (United States)

    Heit, Evan; Rotello, Caren M

    2010-05-01

    One of the most important open questions in reasoning research is how inductive reasoning and deductive reasoning are related. In an effort to address this question, we applied methods and concepts from memory research. We used 2 experiments to examine the effects of logical validity and premise-conclusion similarity on evaluation of arguments. Experiment 1 showed 2 dissociations: For a common set of arguments, deduction judgments were more affected by validity, and induction judgments were more affected by similarity. Moreover, Experiment 2 showed that fast deduction judgments were like induction judgments-in terms of being more influenced by similarity and less influenced by validity, compared with slow deduction judgments. These novel results pose challenges for a 1-process account of reasoning and are interpreted in terms of a 2-process account of reasoning, which was implemented as a multidimensional signal detection model and applied to receiver operating characteristic data. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  10. Quantitative Reasoning in Problem Solving

    Science.gov (United States)

    Ramful, Ajay; Ho, Siew Yin

    2015-01-01

    In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.

  11. Inductive reasoning 2.0.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  12. From Inductive Reasoning to Proof

    Science.gov (United States)

    Yopp, David A.

    2009-01-01

    Mathematical proof is an expression of deductive reasoning (drawing conclusions from previous assertions). However, it is often inductive reasoning (conclusions drawn on the basis of examples) that helps learners form their deductive arguments, or proof. In addition, not all inductive arguments generate more formal arguments. This article draws a…

  13. Teaching Inductive Reasoning with Puzzles

    Science.gov (United States)

    Wanko, Jeffrey J.

    2017-01-01

    Working with language-independent logic structures can help students develop both inductive and deductive reasoning skills. The Japanese publisher Nikoli (with resources available both in print and online) produces a treasure trove of language-independent logic puzzles. The Nikoli print resources are mostly in Japanese, creating the extra…

  14. Reversible Reasoning and the Working Backwards Problem Solving Strategy

    Science.gov (United States)

    Ramful, Ajay

    2015-01-01

    Making sense of mathematical concepts and solving mathematical problems may demand different forms of reasoning. These could be either domain-based, such as algebraic, geometric or statistical reasoning, while others are more general such as inductive/deductive reasoning. This article aims at giving visibility to a particular form of reasoning…

  15. Structured Statistical Models of Inductive Reasoning

    Science.gov (United States)

    Kemp, Charles; Tenenbaum, Joshua B.

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet…

  16. A Framework of Mathematics Inductive Reasoning

    Science.gov (United States)

    Christou, Constantinos; Papageorgiou, Eleni

    2007-01-01

    Based on a synthesis of the literature in inductive reasoning, a framework for prescribing and assessing mathematics inductive reasoning of primary school students was formulated and validated. The major constructs incorporated in this framework were students' cognitive abilities of finding similarities and/or dissimilarities among attributes and…

  17. Students’ Covariational Reasoning in Solving Integrals’ Problems

    Science.gov (United States)

    Harini, N. V.; Fuad, Y.; Ekawati, R.

    2018-01-01

    Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.

  18. Teaching Inductive Reasoning in Primary Education.

    Science.gov (United States)

    de Koning, Els; Hamers, Jo H. M.; Sijtsma, Klaas; Vermeer, Adri

    2002-01-01

    Used a three-phase teaching procedure based on the development of metacognition to extend emphasis on inductive reasoning in primary education to Grades 3 and 4. Found that teachers could apply the programs as intended, but needed support to shift attention from reasoning product to reasoning process. Program learning effects indicated that better…

  19. Reasoning about modular datatypes with Mendler induction

    Directory of Open Access Journals (Sweden)

    Paolo Torrini

    2015-09-01

    Full Text Available In functional programming, datatypes a la carte provide a convenient modular representation of recursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to implement this technique in proof assistants that are based on type theory, like Coq. The reason is that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly positive. The known work-around of impredicative encodings is problematic, insofar as it impedes conventional inductive reasoning. Weak induction principles can be used instead, but they considerably complicate proofs. This paper proposes a novel and simpler technique to reason inductively about impredicative encodings, based on Mendler-style induction. This technique involves dispensing with dependent induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations. A case study on proving subject reduction for structural operational semantics illustrates that the approach enables modular proofs, and that these proofs are essentially similar to conventional ones.

  20. Inductive Reasoning About Effectful Data Types

    DEFF Research Database (Denmark)

    Filinski, Andrzej; Støvring, Kristian

    2007-01-01

    We present a pair of reasoning principles, definition and proof by rigid induction, which can be seen as proper generalizations of lazy-datatype induction to monadic effects other than partiality. We further show how these principles can be integrated into logical-relations arguments, and obtain...

  1. Modeling visual problem solving as analogical reasoning.

    Science.gov (United States)

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Graph-based inductive reasoning.

    Science.gov (United States)

    Boumans, Marcel

    2016-10-01

    This article discusses methods of inductive inferences that are methods of visualizations designed in such a way that the "eye" can be employed as a reliable tool for judgment. The term "eye" is used as a stand-in for visual cognition and perceptual processing. In this paper "meaningfulness" has a particular meaning, namely accuracy, which is closeness to truth. Accuracy consists of precision and unbiasedness. Precision is dealt with by statistical methods, but for unbiasedness one needs expert judgment. The common view at the beginning of the twentieth century was to make the most efficient use of this kind of judgment by representing the data in shapes and forms in such a way that the "eye" can function as a reliable judge to reduce bias. The need for judgment of the "eye" is even more necessary when the background conditions of the observations are heterogeneous. Statistical procedures require a certain minimal level of homogeneity, but the "eye" does not. The "eye" is an adequate tool for assessing topological similarities when, due to heterogeneity of the data, metric assessment is not possible. In fact, graphical assessments precedes measurement, or to put it more forcefully, the graphic method is a necessary prerequisite for measurement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A logic for inductive probabilistic reasoning

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2005-01-01

    Inductive probabilistic reasoning is understood as the application of inference patterns that use statistical background information to assign (subjective) probabilities to single events. The simplest such inference pattern is direct inference: from '70% of As are Bs" and "a is an A" infer...... that a is a B with probability 0.7. Direct inference is generalized by Jeffrey's rule and the principle of cross-entropy minimization. To adequately formalize inductive probabilistic reasoning is an interesting topic for artificial intelligence, as an autonomous system acting in a complex environment may have...... to base its actions on a probabilistic model of its environment, and the probabilities needed to form this model can often be obtained by combining statistical background information with particular observations made, i.e., by inductive probabilistic reasoning. In this paper a formal framework...

  4. Structured statistical models of inductive reasoning.

    Science.gov (United States)

    Kemp, Charles; Tenenbaum, Joshua B

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.

  5. Structure induction in diagnostic causal reasoning.

    Science.gov (United States)

    Meder, Björn; Mayrhofer, Ralf; Waldmann, Michael R

    2014-07-01

    Our research examines the normative and descriptive adequacy of alternative computational models of diagnostic reasoning from single effects to single causes. Many theories of diagnostic reasoning are based on the normative assumption that inferences from an effect to its cause should reflect solely the empirically observed conditional probability of cause given effect. We argue against this assumption, as it neglects alternative causal structures that may have generated the sample data. Our structure induction model of diagnostic reasoning takes into account the uncertainty regarding the underlying causal structure. A key prediction of the model is that diagnostic judgments should not only reflect the empirical probability of cause given effect but should also depend on the reasoner's beliefs about the existence and strength of the link between cause and effect. We confirmed this prediction in 2 studies and showed that our theory better accounts for human judgments than alternative theories of diagnostic reasoning. Overall, our findings support the view that in diagnostic reasoning people go "beyond the information given" and use the available data to make inferences on the (unobserved) causal rather than on the (observed) data level. (c) 2014 APA, all rights reserved.

  6. Inductive reasoning about causally transmitted properties.

    Science.gov (United States)

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B

    2008-11-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.

  7. Cognitive Trait Modelling: The Case of Inductive Reasoning Ability

    Science.gov (United States)

    Kinshuk, Taiyu Lin; McNab, Paul

    2006-01-01

    Researchers have regarded inductive reasoning as one of the seven primary mental abilities that account for human intelligent behaviours. Researchers have also shown that inductive reasoning ability is one of the best predictors for academic performance. Modelling of inductive reasoning is therefore an important issue for providing adaptivity in…

  8. Team reasoning: Solving the puzzle of coordination.

    Science.gov (United States)

    Colman, Andrew M; Gold, Natalie

    2017-11-03

    In many everyday activities, individuals have a common interest in coordinating their actions. Orthodox game theory cannot explain such intuitively obvious forms of coordination as the selection of an outcome that is best for all in a common-interest game. Theories of team reasoning provide a convincing solution by proposing that people are sometimes motivated to maximize the collective payoff of a group and that they adopt a distinctive mode of reasoning from preferences to decisions. This also offers a compelling explanation of cooperation in social dilemmas. A review of team reasoning and related theories suggests how team reasoning could be incorporated into psychological theories of group identification and social value orientation theory to provide a deeper understanding of these phenomena.

  9. A neural model of rule generation in inductive reasoning.

    Science.gov (United States)

    Rasmussen, Daniel; Eliasmith, Chris

    2011-01-01

    Inductive reasoning is a fundamental and complex aspect of human intelligence. In particular, how do subjects, given a set of particular examples, generate general descriptions of the rules governing that set? We present a biologically plausible method for accomplishing this task and implement it in a spiking neuron model. We demonstrate the success of this model by applying it to the problem domain of Raven's Progressive Matrices, a widely used tool in the field of intelligence testing. The model is able to generate the rules necessary to correctly solve Raven's items, as well as recreate many of the experimental effects observed in human subjects. Copyright © 2011 Cognitive Science Society, Inc.

  10. Examining the Relationship of Scientific Reasoning with Physics Problem Solving

    Science.gov (United States)

    Fabby, Carol; Koenig, Kathleen

    2015-01-01

    Recent research suggests students with more formal reasoning patterns are more proficient learners. However, little research has been done to establish a relationship between scientific reasoning and problem solving abilities by novices. In this exploratory study, we compared scientific reasoning abilities of students enrolled in a college level…

  11. Proof Construction: Adolescent Development from Inductive to Deductive Problem-Solving Strategies.

    Science.gov (United States)

    Foltz, Carol; And Others

    1995-01-01

    Studied 100 adolescents' approaches to problem-solving proofs and reasoning competence tasks. Found that a formal level of reasoning competence is associated with a deductive approach. Results support the notion of a cognitive development progression from an inductive approach to a deductive approach. (ETB)

  12. Differential Involvement of Left Prefrontal Cortexin Inductive and Deductive Reasoning

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J.

    2004-01-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by…

  13. Combined Approach for Solving the Electromagnetic Induction ...

    African Journals Online (AJOL)

    Nafiisah

    boundary. For example, in electromagnetic induction imaging, it is the magnetic ... Applications of electromagnetic .... The first integral is referred to as a single layer potential and is continuous across ..... Scattering Theory, 2nd ed., Springer.

  14. Inductive reasoning and the understanding of intention in schizophrenia.

    Science.gov (United States)

    Corcoran, Rhiannon

    2003-08-01

    The study explored the relationship between the understanding of intention in veiled speech acts and the ability to reason inductively. A total of 39 people with DSM-IV-defined schizophrenia with no behavioural signs and 44 healthy participants performed the Hinting Task, a measure of pragmatic language in which the speaker's intention must be inferred, and a measure of inductive reasoning (Aha! Sentences) in which the meaning of ambiguous nonsocial sentences had to be inferred. The participants also completed measures of general intellectual ability, immediate memory for narrative and social problem-solving ability. A substantial correlation was found between performance on the inductive reasoning task and the Hinting Task in the sample of people with schizophrenia. The same relationship was not seen in the normal control sample. The robust relationship between these two measures in this sample survived when the roles of immediate memory for narrative and intellectual ability were controlled for. Furthermore, the relationship was distinctly more compelling for the patients who were currently ill compared to those in remission. These data suggest that people with schizophrenia use a different strategy to infer the meaning behind pragmatic language than that used by normally functioning adults. It is suggested that a reliance on different, possibly less specialised, skills in this group to perform this simple social inference task underlies their deficient performance on this and other measures of social inference. The fact that the relationship between the tasks in patients in remission is not as robust implies that the use of specialised skills to perform social inference tasks may be compromised most significantly during acute phases.

  15. Inductive and deductive reasoning in obsessive-compulsive disorder.

    Science.gov (United States)

    Liew, Janice; Grisham, Jessica R; Hayes, Brett K

    2018-06-01

    This study examined the hypothesis that participants diagnosed with obsessive-compulsive disorder (OCD) show a selective deficit in inductive reasoning but are equivalent to controls in deductive reasoning. Twenty-five participants with OCD and 25 non-clinical controls made inductive and deductive judgments about a common set of arguments that varied in logical validity and the amount of positive evidence provided (premise sample size). A second inductive reasoning task required participants to make forced-choice decisions and rate the usefulness of diverse evidence or non-diverse evidence for evaluating arguments. No differences in deductive reasoning were found between participants diagnosed with OCD and control participants. Both groups saw that the amount of positive evidence supporting a conclusion was an important guide for evaluating inductive arguments. However, those with OCD showed less sensitivity to premise diversity in inductive reasoning than controls. The findings were similar for both emotionally neutral and OCD-relevant stimuli. The absence of a clinical control group means that it is difficult to know whether the deficit in diversity-based reasoning is specific to those with OCD. People with OCD are impaired in some forms of inductive reasoning (using diverse evidence) but not others (use of sample size). Deductive reasoning appears intact in those with OCD. Difficulties using evidence diversity when reasoning inductively may maintain OCD symptoms through reduced generalization of learned safety information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Teaching inductive reasoning in primary education

    NARCIS (Netherlands)

    de Koning, E.; Hamers, J.H.M.; Sijtsma, K.; Vermeer, A.

    2002-01-01

    Results demonstrated that the teachers were able to apply the programs as intended, although they needed support to shift their attention from the reasoning product to the reasoning process. They also experienced difficulties in implementing the role swap between the teacher and the pupils in the

  17. Inductive Reasoning about Causally Transmitted Properties

    Science.gov (United States)

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D.; Tenenbaum, Joshua B.

    2008-01-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates'…

  18. Clinical Reasoning Terms Included in Clinical Problem Solving Exercises?

    Science.gov (United States)

    Musgrove, John L; Morris, Jason; Estrada, Carlos A; Kraemer, Ryan R

    2016-05-01

    Background Published clinical problem solving exercises have emerged as a common tool to illustrate aspects of the clinical reasoning process. The specific clinical reasoning terms mentioned in such exercises is unknown. Objective We identified which clinical reasoning terms are mentioned in published clinical problem solving exercises and compared them to clinical reasoning terms given high priority by clinician educators. Methods A convenience sample of clinician educators prioritized a list of clinical reasoning terms (whether to include, weight percentage of top 20 terms). The authors then electronically searched the terms in the text of published reports of 4 internal medicine journals between January 2010 and May 2013. Results The top 5 clinical reasoning terms ranked by educators were dual-process thinking (weight percentage = 24%), problem representation (12%), illness scripts (9%), hypothesis generation (7%), and problem categorization (7%). The top clinical reasoning terms mentioned in the text of 79 published reports were context specificity (n = 20, 25%), bias (n = 13, 17%), dual-process thinking (n = 11, 14%), illness scripts (n = 11, 14%), and problem representation (n = 10, 13%). Context specificity and bias were not ranked highly by educators. Conclusions Some core concepts of modern clinical reasoning theory ranked highly by educators are mentioned explicitly in published clinical problem solving exercises. However, some highly ranked terms were not used, and some terms used were not ranked by the clinician educators. Effort to teach clinical reasoning to trainees may benefit from a common nomenclature of clinical reasoning terms.

  19. A Longitudinal Perspective on Inductive Reasoning Tasks. Illuminating the Probability of Change

    Science.gov (United States)

    Ifenthaler, Dirk; Seel, Norbert M.

    2011-01-01

    Cognitive scientists have studied internal cognitive structures, processes, and systems for decades in order to understand how they function in human learning. Nevertheless, questions concerning the diagnosis of changes in these cognitive structures while solving inductive reasoning tasks are still being scrutinized. This paper reports findings…

  20. Problem Solving Reasoning and Problem Based Instruction in Geometry Learning

    Science.gov (United States)

    Sulistyowati, F.; Budiyono, B.; Slamet, I.

    2017-09-01

    This research aims to analyze the comparison Problem Solving Reasoning (PSR) and Problem Based Instruction (PBI) on problem solving and mathematical communication abilities viewed from Self-Regulated Learning (SRL). Learning was given to grade 8th junior high school students. This research uses quasi experimental method, and then with descriptive analysis. Data were analyzed using two-ways multivariate analysis of variance (MANOVA) and one-way analysis of variance (ANOVA) with different cells. The result of data analysis were learning model gives different effect, level of SRL gives the same effect, and there is no interaction between the learning model with the SRL on the problem solving and mathematical communication abilities. The t-test statistic was used to find out more effective learning model. Based on the test, regardless of the level of SRL, PSR is more effective than PBI for problemsolving ability. The result of descriptive analysis was PSR had the advantage in creating learning that optimizing the ability of learners in reasoning to solve a mathematical problem. Consequently, the PSR is the right learning model to be applied in the classroom to improve problem solving ability of learners.

  1. The effect of creative problem solving on students’ mathematical adaptive reasoning

    Science.gov (United States)

    Muin, A.; Hanifah, S. H.; Diwidian, F.

    2018-01-01

    This research was conducted to analyse the effect of creative problem solving (CPS) learning model on the students’ mathematical adaptive reasoning. The method used in this study was a quasi-experimental with randomized post-test only control group design. Samples were taken as many as two classes by cluster random sampling technique consisting of experimental class (CPS) as many as 40 students and control class (conventional) as many as 40 students. Based on the result of hypothesis testing with the t-test at the significance level of 5%, it was obtained that significance level of 0.0000 is less than α = 0.05. This shows that the students’ mathematical adaptive reasoning skills who were taught by CPS model were higher than the students’ mathematical adaptive reasoning skills of those who were taught by conventional model. The result of this research showed that the most prominent aspect of adaptive reasoning that could be developed through a CPS was inductive intuitive. Two aspects of adaptive reasoning, which were inductive intuitive and deductive intuitive, were mostly balanced. The different between inductive intuitive and deductive intuitive aspect was not too big. CPS model can develop student mathematical adaptive reasoning skills. CPS model can facilitate development of mathematical adaptive reasoning skills thoroughly.

  2. Analyzing high school students' reasoning about electromagnetic induction

    Science.gov (United States)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-06-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students' explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.

  3. Assessing ethical problem solving by reasoning rather than decision making.

    Science.gov (United States)

    Tsai, Tsuen-Chiuan; Harasym, Peter H; Coderre, Sylvain; McLaughlin, Kevin; Donnon, Tyrone

    2009-12-01

    The assessment of ethical problem solving in medicine has been controversial and challenging. The purposes of this study were: (i) to create a new instrument to measure doctors' decisions on and reasoning approach towards resolving ethical problems; (ii) to evaluate the scores generated by the new instrument for their reliability and validity, and (iii) to compare doctors' ethical reasoning abilities between countries and among medical students, residents and experts. This study used 15 clinical vignettes and the think-aloud method to identify the processes and components involved in ethical problem solving. Subjects included volunteer ethics experts, postgraduate Year 2 residents and pre-clerkship medical students. The interview data were coded using the instruments of the decision score and Ethical Reasoning Inventory (ERI). The ERI assessed the quality of ethical reasoning for a particular case (Part I) and for an individual globally across all the vignettes (Part II). There were 17 Canadian and 32 Taiwanese subjects. Based on the Canadian standard, the decision scores between Taiwanese and Canadian subjects differed significantly, but made no discrimination among the three levels of expertise. Scores on the ERI Parts I and II, which reflect doctors' reasoning quality, differed between countries and among different levels of expertise in Taiwan, providing evidence of construct validity. In addition, experts had a greater organised knowledge structure and considered more relevant variables in the process of arriving at ethical decisions than did residents or students. The reliability of ERI scores was 0.70-0.99 on Part I and 0.75-0.80 on Part II. Expertise in solving ethical problems could not be differentiated by the decisions made, but could be differentiated according to the reasoning used to make those decisions. The difference between Taiwanese and Canadian experts suggests that cultural considerations come into play in the decisions that are made in the

  4. [Reason for dormancy of Cuscuta chinensis seed and solving method].

    Science.gov (United States)

    Wang, Xuemin; He, Jiaqing; Cai, Jing; Dong, Zhenguo

    2010-02-01

    To study the reason for the deep dormancy of the aged Cuscuta chinensis seed and find the solving method. The separated and combined treatments were applied in the orthogonal designed experiments. The aged seed had well water-absorbency; the water and ethanol extracts of the seeds showed an inhibition effect on germination capacity of the seeds. The main reason for the deep dormancy of aged C. chinensis seed is the inhibitors existed in seed. There are two methods to solve the problem. The seeds is immersed in 98% of H2SO4 for 2 min followed by 500 mg x L(-1) of GA3 treatment for 60 min, or in 100 mg x L(-1) of NaOH for 20 min followed by 500 mg x L(-1) of GA3 treatment for 120 min.

  5. Deductive and inductive reasoning in obsessive-compulsive disorder.

    Science.gov (United States)

    Pélissier, Marie-Claude; O'Connor, Kieron P

    2002-03-01

    This study tested the hypothesis that people with obsessive-compulsive disorder (OCD) show an inductive reasoning style distinct from people with generalized anxiety disorder (GAD) and from participants in a non-anxious (NA) control group. The experimental procedure consisted of administering a range of six deductive and inductive tasks and a probabilistic task in order to compare reasoning processes between groups. Recruitment was in the Montreal area within a French-speaking population. The participants were 12 people with OCD, 12 NA controls and 10 people with GAD. Participants completed a series of written and oral reasoning tasks including the Wason Selection Task, a Bayesian probability task and other inductive tasks, designed by the authors. There were no differences between groups in deductive reasoning. On an inductive "bridging task", the participants with OCD always took longer than the NA control and GAD groups to infer a link between two statements and to elaborate on this possible link. The OCD group alone showed a significant decrease in their degree of conviction about an arbitrary statement after inductively generating reasons to support this statement. Differences in probabilistic reasoning replicated those of previous authors. The results pinpoint the importance of examining inference processes in people with OCD in order to further refine the clinical applications of behavioural-cognitive therapy for this disorder.

  6. Do New Caledonian crows solve physical problems through causal reasoning?

    Science.gov (United States)

    Taylor, A.H.; Hunt, G.R.; Medina, F.S.; Gray, R.D.

    2008-01-01

    The extent to which animals other than humans can reason about physical problems is contentious. The benchmark test for this ability has been the trap-tube task. We presented New Caledonian crows with a series of two-trap versions of this problem. Three out of six crows solved the initial trap-tube. These crows continued to avoid the trap when the arbitrary features that had previously been associated with successful performances were removed. However, they did not avoid the trap when a hole and a functional trap were in the tube. In contrast to a recent primate study, the three crows then solved a causally equivalent but visually distinct problem—the trap-table task. The performance of the three crows across the four transfers made explanations based on chance, associative learning, visual and tactile generalization, and previous dispositions unlikely. Our findings suggest that New Caledonian crows can solve complex physical problems by reasoning both causally and analogically about causal relations. Causal and analogical reasoning may form the basis of the New Caledonian crow's exceptional tool skills. PMID:18796393

  7. Inductive Reasoning in Patients with Paranoid Type Schizophrenia

    OpenAIRE

    Mehmet Emrah Karadere; Yasir Safak; Halime Seyma Ozcelik; Emre Demir; Mehmet Hakan Turkcapar

    2017-01-01

    The goal of our study is to evaluate the decision making and reasoning of the paranoid type schizophrenic patients, and their confidence in reasoning and perseverance in keeping to their decisions via using Reasoning with Inductive Argument Test (RIAT). Thirty-two delusional patients and 30 healthy volunteers were included in the study. After the diagnostic interview was conducted by SCID-I to the patients who were asked to participate in the study, RIAT test was applied by the interviewe...

  8. Structuring students’ analogical reasoning in solving algebra problem

    Science.gov (United States)

    Lailiyah, S.; Nusantara, T.; Sa'dijah, C.; Irawan, E. B.; Kusaeri; Asyhar, A. H.

    2018-01-01

    The average achievement of Indonesian students’ mathematics skills according to Benchmark International Trends in Mathematics and Science Study (TIMSS) is ranked at the 38th out of 42 countries and according to the survey result in Program for International Student Assessment (PISA) is ranked at the 64th out of 65 countries. The low mathematics skill of Indonesian student has become an important reason to research more deeply about reasoning and algebra in mathematics. Analogical reasoning is a very important component in mathematics because it is the key to creativity and it can make the learning process in the classroom become effective. The major part of the analogical reasoning is about structuring including the processes of inferencing and decision-making happens. Those processes involve base domain and target domain. Methodologically, the subjects of this research were 42 students from class XII. The sources of data were derived from the results of thinks aloud, the transcribed interviews, and the videos taken while the subject working on the instruments and interviews. The collected data were analyzed using qualitative techniques. The result of this study described the structuring characteristics of students’ analogical reasoning in solving algebra problems from all the research subjects.

  9. Theory-based Bayesian models of inductive learning and reasoning.

    Science.gov (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  10. Causal knowledge and the development of inductive reasoning.

    Science.gov (United States)

    Bright, Aimée K; Feeney, Aidan

    2014-06-01

    We explored the development of sensitivity to causal relations in children's inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey→predator) or diagnostic (predator→prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children's inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. How similar are recognition memory and inductive reasoning?

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan

    2013-07-01

    Conventionally, memory and reasoning are seen as different types of cognitive activities driven by different processes. In two experiments, we challenged this view by examining the relationship between recognition memory and inductive reasoning involving multiple forms of similarity. A common study set (members of a conjunctive category) was followed by a test set containing old and new category members, as well as items that matched the study set on only one dimension. The study and test sets were presented under recognition or induction instructions. In Experiments 1 and 2, the inductive property being generalized was varied in order to direct attention to different dimensions of similarity. When there was no time pressure on decisions, patterns of positive responding were strongly affected by property type, indicating that different types of similarity were driving recognition and induction. By comparison, speeded judgments showed weaker property effects and could be explained by generalization based on overall similarity. An exemplar model, GEN-EX (GENeralization from EXamples), could account for both the induction and recognition data. These findings show that induction and recognition share core component processes, even when the tasks involve flexible forms of similarity.

  12. [Experimental analysis of some determinants of inductive reasoning].

    Science.gov (United States)

    Ono, K

    1989-02-01

    Three experiments were conducted from a behavioral perspective to investigate the determinants of inductive reasoning and to compare some methodological differences. The dependent variable used in these experiments was the threshold of confident response (TCR), which was defined as "the minimal sample size required to establish generalization from instances." Experiment 1 examined the effects of population size on inductive reasoning, and the results from 35 college students showed that the TCR varied in proportion to the logarithm of population size. In Experiment 2, 30 subjects showed distinct sensitivity to both prior probability and base-rate. The results from 70 subjects who participated in Experiment 3 showed that the TCR was affected by its consequences (risk condition), and especially, that humans were sensitive to a loss situation. These results demonstrate the sensitivity of humans to statistical variables in inductive reasoning. Furthermore, methodological comparison indicated that the experimentally observed values of TCR were close to, but not as precise as the optimal values predicted by Bayes' model. On the other hand, the subjective TCR estimated by subjects was highly discrepant from the observed TCR. These findings suggest that various aspects of inductive reasoning can be fruitfully investigated not only from subjective estimations such as probability likelihood but also from an objective behavioral perspective.

  13. The Relationship between Memory and Inductive Reasoning: Does It Develop?

    Science.gov (United States)

    Hayes, Brett K.; Fritz, Kristina; Heit, Evan

    2013-01-01

    In 2 studies, the authors examined the development of the relationship between inductive reasoning and visual recognition memory. In both studies, 5- to 6-year-old children and adults were shown instances of a basic-level category (dogs) followed by a test set containing old and new category members that varied in their similarity to study items.…

  14. Taking It to the Next Level: Students Using Inductive Reasoning

    Science.gov (United States)

    Murawska, Jaclyn M.; Zollman, Alan

    2015-01-01

    Although discussions about inductive reasoning can be traced back thousands of years (Fitelson 2011), the implementation of the Standards for Mathematical Practice (SMP) within the Common Core State Standards (CCSSI 2010) is generating renewed attention to how students learn mathematics. The third SMP, "Construct viable arguments and critique…

  15. Knowledge, expectations, and inductive reasoning within conceptual hierarchies.

    Science.gov (United States)

    Coley, John D; Hayes, Brett; Lawson, Christopher; Moloney, Michelle

    2004-01-01

    Previous research (e.g. Cognition 64 (1997) 73) suggests that the privileged level for inductive inference in a folk biological conceptual hierarchy does not correspond to the "basic" level (i.e. the level at which concepts are both informative and distinct). To further explore inductive inference within conceptual hierarchies, we examine relations between knowledge of concepts at different hierarchical levels, expectations about conceptual coherence, and inductive inference. In Experiments 1 and 2, 5- and 8-year-olds and adults listed features of living kind (Experiments 1 and 2) and artifact (Experiment 2) concepts at different hierarchical levels (e.g. plant, tree, oak, desert oak), and also rated the strength of generalizations to the same concepts. For living kinds, the level that showed a relative advantage on these two tasks differed; the greatest increase in features listed tended to occur at the life-form level (e.g. tree), whereas the greatest increase in inductive strength tended to occur at the folk-generic level (e.g. oak). Knowledge and induction also showed different developmental trajectories. For artifact concepts, the levels at which the greatest gains in knowledge and induction occurred were more varied, and corresponded more closely across tasks. In Experiment 3, adults reported beliefs about within-category similarity for concepts at different levels of animal, plant and artifact hierarchies, and rated inductive strength as before. For living kind concepts, expectations about category coherence predicted patterns of inductions; knowledge did not. For artifact concepts, both knowledge and expectations predicted patterns of induction. Results suggest that beliefs about conceptual coherence play an important role in guiding inductive inference, that this role may be largely independent of specific knowledge of concepts, and that such beliefs are especially important in reasoning about living kinds.

  16. Analyzing high school students’ reasoning about electromagnetic induction

    Directory of Open Access Journals (Sweden)

    Katarina Jelicic

    2017-02-01

    Full Text Available Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction. Students were asked to observe, describe, and explain the experiments. The analysis of students’ explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.

  17. Inductive reasoning and implicit memory: evidence from intact and impaired memory systems.

    Science.gov (United States)

    Girelli, Luisa; Semenza, Carlo; Delazer, Margarete

    2004-01-01

    In this study, we modified a classic problem solving task, number series completion, in order to explore the contribution of implicit memory to inductive reasoning. Participants were required to complete number series sharing the same underlying algorithm (e.g., +2), differing in both constituent elements (e.g., 2468 versus 57911) and correct answers (e.g., 10 versus 13). In Experiment 1, reliable priming effects emerged, whether primes and targets were separated by four or ten fillers. Experiment 2 provided direct evidence that the observed facilitation arises at central stages of problem solving, namely the identification of the algorithm and its subsequent extrapolation. The observation of analogous priming effects in a severely amnesic patient strongly supports the hypothesis that the facilitation in number series completion was largely determined by implicit memory processes. These findings demonstrate that the influence of implicit processes extends to higher level cognitive domain such as induction reasoning.

  18. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  19. Algebraic Reasoning in Solving Mathematical Problem Based on Learning Style

    Science.gov (United States)

    Indraswari, N. F.; Budayasa, I. K.; Ekawati, R.

    2018-01-01

    This study aimed to describe algebraic reasoning of secondary school’s pupils with different learning styles in solving mathematical problem. This study begins by giving the questionnaire to find out the learning styles and followed by mathematical ability test to get three subjects of 8th-grade whereas the learning styles of each pupil is visual, auditory, kinesthetic and had similar mathematical abilities. Then it continued with given algebraic problems and interviews. The data is validated using triangulation of time. The result showed that in the pattern of seeking indicator, subjects identified the things that were known and asked based on them observations. The visual and kinesthetic learners represented the known information in a chart, whereas the auditory learner in a table. In addition, they found the elements which makes the pattern and made a relationship between two quantities. In the pattern recognition indicator, they created conjectures on the relationship between two quantities and proved it. In the generalization indicator, they were determining the general rule of pattern found on each element of pattern using algebraic symbols and created a mathematical model. Visual and kinesthetic learners determined the general rule of equations which was used to solve problems using algebraic symbols, but auditory learner in a sentence.

  20. Depressive Symptoms and Inductive Reasoning Performance: Findings from the ACTIVE Reasoning Training Intervention

    OpenAIRE

    Parisi, Jeanine M.; Franchetti, Mary Kathryn; Rebok, George W.; Spira, Adam P.; Carlson, Michelle C.; Willis, Sherry L.; Gross, Alden L.

    2014-01-01

    Within the context of the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study, we examined the longitudinal association of baseline depressive symptoms on inductive reasoning performance over a ten-year period between the reasoning training and control conditions (N = 1,375). At baseline, 322 participants (23%) reported elevated depressive symptoms, defined by a score ≥ 9 on the Center for Epidemiological Studies Depression scale (12-item). Differences in baseline dep...

  1. The interplay of deductive and inductive reasoning in psychoanalytic theorizing.

    Science.gov (United States)

    Hanly, Charles

    2014-10-01

    Deductive and inductive reasoning both played an essential part in Freud's construction of psychoanalysis. In this paper, the author explores the happy marriage of empiricism and rationalism in Freud's use of deductive reasoning in the construction of psychoanalytic theory. To do this, the author considers three major amendments Freud made to his theory: (i) infant and childhood sexuality, (ii) the structural theory, and (iii) the theory of signal anxiety. Ultimately, the author argues for, and presents Freud as a proponent of, the epistemological position that he calls critical realism. © 2014 The Psychoanalytic Quarterly, Inc.

  2. Causal knowledge and the development of inductive reasoning

    OpenAIRE

    Bright, Aimée K.; Feeney, Aidan

    2014-01-01

    We explored the development of sensitivity to causal relations in children’s inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey → predator) or diagnostic (predator → prey), and the property that participan...

  3. Common and dissociable neural correlates associated with component processes of inductive reasoning.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng

    2011-06-15

    The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Mechanisms of rule acquisition and rule following in inductive reasoning.

    Science.gov (United States)

    Crescentini, Cristiano; Seyed-Allaei, Shima; De Pisapia, Nicola; Jovicich, Jorge; Amati, Daniele; Shallice, Tim

    2011-05-25

    Despite the recent interest in the neuroanatomy of inductive reasoning processes, the regional specificity within prefrontal cortex (PFC) for the different mechanisms involved in induction tasks remains to be determined. In this study, we used fMRI to investigate the contribution of PFC regions to rule acquisition (rule search and rule discovery) and rule following. Twenty-six healthy young adult participants were presented with a series of images of cards, each consisting of a set of circles numbered in sequence with one colored blue. Participants had to predict the position of the blue circle on the next card. The rules that had to be acquired pertained to the relationship among succeeding stimuli. Responses given by subjects were categorized in a series of phases either tapping rule acquisition (responses given up to and including rule discovery) or rule following (correct responses after rule acquisition). Mid-dorsolateral PFC (mid-DLPFC) was active during rule search and remained active until successful rule acquisition. By contrast, rule following was associated with activation in temporal, motor, and medial/anterior prefrontal cortex. Moreover, frontopolar cortex (FPC) was active throughout the rule acquisition and rule following phases before a rule became familiar. We attributed activation in mid-DLPFC to hypothesis generation and in FPC to integration of multiple separate inferences. The present study provides evidence that brain activation during inductive reasoning involves a complex network of frontal processes and that different subregions respond during rule acquisition and rule following phases.

  5. Depressive symptoms and inductive reasoning performance: findings from the ACTIVE reasoning training intervention.

    Science.gov (United States)

    Parisi, Jeanine M; Franchetti, Mary Kathryn; Rebok, George W; Spira, Adam P; Carlson, Michelle C; Willis, Sherry L; Gross, Alden L

    2014-12-01

    Within the context of the Advanced Cognitive Training for Independent and Vital Elderly study (ACTIVE; Ball et al., 2002; Jobe et al., 2001; Willis et al., 2006), we examined the longitudinal association of baseline depressive symptoms on inductive reasoning performance over a 10-year period between the reasoning training and control conditions (N = 1,375). At baseline, 322 participants (23%) reported elevated depressive symptoms, defined by a score ≥9 on the 12-item version of the Center for Epidemiological Studies Depression Scale (CES-D; Mirowsky & Ross, 2003; Radloff, 1977). Differences in baseline depressive status were not associated with immediate posttraining gains or with subsequent annual change in reasoning performance, suggesting that the presence of elevated baseline depressive symptoms does not impact the ability to benefit from reasoning training. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  6. Cognitive Training for Children: Effects on Inductive Reasoning, Deductive Reasoning, and Mathematics Achievement in an Australian School Setting

    Science.gov (United States)

    Barkl, Sophie; Porter, Amy; Ginns, Paul

    2012-01-01

    Inductive reasoning is a core cognitive process of fluid intelligence, predicting a variety of educational outcomes. The Cognitive Training for Children (CTC) program is an educational intervention designed to develop children's inductive reasoning skills, with previous investigations finding substantial effects of the program on both inductive…

  7. Inductive reasoning and judgment interference: experiments on Simpson's paradox.

    Science.gov (United States)

    Fiedler, Klaus; Walther, Eva; Freytag, Peter; Nickel, Stefanie

    2003-01-01

    In a series of experiments on inductive reasoning, participants assessed the relationship between gender, success, and a covariate in a situation akin to Simpson's paradox: Although women were less successful then men according to overall statistics, they actually fared better then men at either of two universities. Understanding trivariate relationships of this kind requires cognitive routines similar to analysis of covariance. Across the first five experiments, however, participants generalized the disadvantage of women at the aggregate level to judgments referring to the different levels of the covariate, even when motivation was high and appropriate mental models were activated. The remaining three experiments demonstrated that Simpson's paradox could be mastered when the salience of the covariate was increased and when the salience of gender was decreased by the inclusion of temporal cues that disambiguate the causal status of the covariate. Copyright 2003 Society for Personality and Social Psychology, Inc.

  8. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  9. Student Analogy Reasons When Solving Area Concepts in Pyramids and Prisms

    Science.gov (United States)

    Mashuri, A.; Sudjadi, I.; Pramudya, I.; Gembong, S.

    2017-09-01

    The purpose of this study is to describe the reasoning of students’ analogies in solving the broad concept problem in pyramids and prisms. This research method using descriptive qualitative. Data collection uses analogous reasoning tests and interviews. After that tested to 32 students of Junior High School. Based on the results of the analysis can be concluded that (1) 16% of students solve the problem of source and target problem correctly. (2) 29% of students correctly solve source problems and target problems incorrectly. (3) 55% solve source problems and target problems wrong. This is because students tend to memorize formulas not using analogy reasoning to solve new problems. Finally, the students have difficulties in solving new problems, because students are not accustomed to using the experience they have gained to solve new problems.

  10. Inductive reasoning and doubt in obsessive compulsive disorder.

    Science.gov (United States)

    O'Connor, Kieron; Wilson, Samantha; Taillon, Annie; Pélissier, Marie-Claude; Audet, Jean-Sebastien

    2018-06-01

    Previous studies show that individuals with obsessive compulsive disorder (OCD) accord more importance than healthy controls (HC) to alternative conclusions, resulting in increased doubt regarding an initial conclusion. The goal of the present study was to replicate and extend this finding. Eighteen participants diagnosed with OCD and 16 HC completed the Reasoning with Inductive Arguments Task (RIAT), which operationalizes doubt as change in confidence towards a conclusion after alternative conclusions are presented. To examine conditions that facilitate doubt, the impact of alternative conclusions that both supported and contradicted the initial conclusion was compared, as well as the effect of neutral and OCD-relevant item content. Both the OCD and HC groups decreased confidence after contradicting conclusions, but only the HC group increased confidence when presented with supporting conclusions. Furthermore, decrease in confidence in the OCD group correlated with OCD symptom severity. The RIAT could be adapted to better take into account of OCD subtypes. Doubt generation may contribute to obsessional doubting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improving Students’ Scientific Reasoning and Problem-Solving Skills by The 5E Learning Model

    Directory of Open Access Journals (Sweden)

    Sri Mulyani Endang Susilowati

    2017-12-01

    Full Text Available Biology learning in MA (Madrasah Aliyah Khas Kempek was still dominated by teacher with low students’ involvement. This study would analyze the effectiveness of the 5E (Engagement, Exploration, Explanation, Elaboration, Evaluation learning model in improving scientific knowledge and problems solving. It also explained the relationship between students’ scientific reasoning with their problem-solving abilities. This was a pre-experimental research with one group pre-test post-test. Sixty students of MA Khas Kempek from XI MIA 3 and XI MIA 4 involved in this study. The learning outcome of the students was collected by the test of reasoning and problem-solving. The results showed that the rises of students’ scientific reasoning ability were 69.77% for XI MIA 3 and 66.27% for XI MIA 4, in the medium category. The problem-solving skills were 63.40% for XI MIA 3, 61.67% for XI MIA 4, and classified in the moderate category. The simple regression test found a linear correlation between students’ scientific reasoning and problem-solving ability. This study affirms that reasoning ability is needed in problem-solving. It is found that application of 5E learning model was effective to improve scientific reasoning and problem-solving ability of students.

  12. Causal Relations and Feature Similarity in Children's Inductive Reasoning

    Science.gov (United States)

    Hayes, Brett K.; Thompson, Susan P.

    2007-01-01

    Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations…

  13. Analyzing High School Students' Reasoning about Electromagnetic Induction

    Science.gov (United States)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-01-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were…

  14. An episodic specificity induction enhances means-end problem solving in young and older adults.

    Science.gov (United States)

    Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction-brief training in recollecting details of past experiences-enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem-solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem-solving task, as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the 3 tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the 3 tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem-solving performance of older adults can benefit from a specificity induction as much as that of young adults. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  15. Modeling the Effects of Argument Length and Validity on Inductive and Deductive Reasoning

    Science.gov (United States)

    Rotello, Caren M.; Heit, Evan

    2009-01-01

    In an effort to assess models of inductive reasoning and deductive reasoning, the authors, in 3 experiments, examined the effects of argument length and logical validity on evaluation of arguments. In Experiments 1a and 1b, participants were given either induction or deduction instructions for a common set of stimuli. Two distinct effects were…

  16. Playful Fostering of 6- to 8-Year-Old Students' Inductive Reasoning

    Science.gov (United States)

    Molnar, Gyongyver

    2011-01-01

    This paper focuses on a training program in inductive reasoning for first-grade students and presents the direct results as well as the longitudinal effects of the evaluation study. The training is based on Klauer's theory of inductive reasoning and on his "Cognitive training for children" concept (Klauer, 1989a). The training program consists of…

  17. Memory self-efficacy predicts responsiveness to inductive reasoning training in older adults.

    Science.gov (United States)

    Payne, Brennan R; Jackson, Joshua J; Hill, Patrick L; Gao, Xuefei; Roberts, Brent W; Stine-Morrow, Elizabeth A L

    2012-01-01

    In the current study, we assessed the relationship between memory self-efficacy at pretest and responsiveness to inductive reasoning training in a sample of older adults. Participants completed a measure of self-efficacy assessing beliefs about memory capacity. Participants were then randomly assigned to a waitlist control group or an inductive reasoning training intervention. Latent change score models were used to examine the moderators of change in inductive reasoning. Inductive reasoning showed clear improvements in the training group compared with the control. Within the training group, initial memory capacity beliefs significantly predicted change in inductive reasoning such that those with higher levels of capacity beliefs showed greater responsiveness to the intervention. Further analyses revealed that self-efficacy had effects on how trainees allocated time to the training materials over the course of the intervention. Results indicate that self-referential beliefs about cognitive potential may be an important factor contributing to plasticity in adulthood.

  18. Children's Reasoning as Collective Social Action through Problem Solving in Grade 2/3 Science Classrooms

    Science.gov (United States)

    Kim, Mijung

    2016-01-01

    Research on young children's reasoning show the complex relationships of knowledge, theories, and evidence in their decision-making and problem solving. Most of the research on children's reasoning skills has been done in individualized and formal research settings, not collective classroom environments where children often engage in learning and…

  19. The Contribution of Reasoning to the Utilization of Feedback from Software When Solving Mathematical Problems

    Science.gov (United States)

    Olsson, Jan

    2018-01-01

    This study investigates how students' reasoning contributes to their utilization of computer-generated feedback. Sixteen 16-year-old students solved a linear function task designed to present a challenge to them using dynamic software, GeoGebra, for assistance. The data were analysed with respect both to character of reasoning and to the use of…

  20. Colorful Success: Preschoolers' Use of Perceptual Color Cues to Solve a Spatial Reasoning Problem

    Science.gov (United States)

    Joh, Amy S.; Spivey, Leigh A.

    2012-01-01

    Spatial reasoning, a crucial skill for everyday actions, develops gradually during the first several years of childhood. Previous studies have shown that perceptual information and problem solving strategies are critical for successful spatial reasoning in young children. Here, we sought to link these two factors by examining children's use of…

  1. Data science in R a case studies approach to computational reasoning and problem solving

    CERN Document Server

    Nolan, Deborah

    2015-01-01

    Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and ComputationData Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts approach a problem and reason about different ways of implementing solutions. The book's collection of projects, comprehensive sample solutions, and follow-up exercises encompass practical topics pertaining to data processing, including: Non-standar

  2. Use of Statistical Heuristics in Everyday Inductive Reasoning.

    Science.gov (United States)

    Nisbett, Richard E.; And Others

    1983-01-01

    In everyday reasoning, people use statistical heuristics (judgmental tools that are rough intuitive equivalents of statistical principles). Use of statistical heuristics is more likely when (1) sampling is clear, (2) the role of chance is clear, (3) statistical reasoning is normative for the event, or (4) the subject has had training in…

  3. The Effect of Problem-Solving Video Games on the Science Reasoning Skills of College Students

    Science.gov (United States)

    Fanetti, Tina M.

    As the world continues to rapidly change, students are faced with the need to develop flexible skills, such as science reasoning that will help them thrive in the new knowledge economy. Prensky (2001), Gee (2003), and Van Eck (2007) have all suggested that the way to engage learners and teach them the necessary skills is through digital games, but empirical studies focusing on popular games are scant. One way digital games, especially video games, could potentially be useful if there were a flexible and inexpensive method a student could use at their convenience to improve selected science reasoning skills. Problem-solving video games, which require the use of reasoning and problem solving to answer a variety of cognitive challenges could be a promising method to improve selected science reasoning skills. Using think-aloud protocols and interviews, a qualitative study was carried out with a small sample of college students to examine what impact two popular video games, Professor Layton and the Curious Village and Professor Layton and the Diabolical Box, had on specific science reasoning skills. The subject classified as an expert in both gaming and reasoning tended to use more higher order thinking and reasoning skills than the novice reasoners. Based on the assessments, the science reasoning of college students did not improve during the course of game play. Similar to earlier studies, students tended to use trial and error as their primary method of solving the various puzzles in the game and additionally did not recognize when to use the appropriate reasoning skill to solve a puzzle, such as proportional reasoning.

  4. Similarity, Induction, Naming, and Categorization (SINC): Generalization or Inductive Reasoning? Reply to Heit and Hayes (2005)

    Science.gov (United States)

    Sloutsky, Vladimir M.; Fisher, Anna V.

    2006-01-01

    This article is a response to E. Heit and B. K. Hayes's comment on the target article "Induction and Categorization in Young Children: A Similarity-Based Model" (V. M. Sloutsky & A. V. Fisher, 2004a). The response discusses points of agreement and disagreement with Heit and Hayes; phenomena predicted by similarity, induction, naming, and…

  5. Inductive Reasoning in Patients with Paranoid Type Schizophrenia

    Directory of Open Access Journals (Sweden)

    Mehmet Emrah Karadere

    2017-08-01

    According to this study apart from the area of delusions, it can be say that the reasoning of the patients is normal. Our study indicates that when the delusional patients are compared to the control group in terms of jumping to conclusion and modifying their initial beliefs, they are not different when given similarly sufficient amount of data. [JCBPR 2017; 6(2.000: 67-74

  6. Exploring a Structure for Mathematics Lessons That Foster Problem Solving and Reasoning

    Science.gov (United States)

    Sullivan, Peter; Walker, Nadia; Borcek, Chris; Rennie, Mick

    2015-01-01

    While there is widespread agreement on the importance of incorporating problem solving and reasoning into mathematics classrooms, there is limited specific advice on how this can best happen. This is a report of an aspect of a project that is examining the opportunities and constraints in initiating learning by posing challenging mathematics tasks…

  7. Scientific Reasoning and Its Relationship with Problem Solving: The Case of Upper Primary Science Teachers

    Science.gov (United States)

    Alshamali, Mahmoud A.; Daher, Wajeeh M.

    2016-01-01

    This study aimed at identifying the levels of scientific reasoning of upper primary stage (grades 4-7) science teachers based on their use of a problem-solving strategy. The study sample (N = 138; 32 % male and 68 % female) was randomly selected using stratified sampling from an original population of 437 upper primary school teachers. The…

  8. How, when, and for what reasons does land use modelling contribute to societal problem solving?

    NARCIS (Netherlands)

    Sterk, B.; Ittersum, van M.K.; Leeuwis, C.

    2011-01-01

    This paper reports and reflects on the contributions of land use models to societal problem solving. Its purpose is to inform model development and application and thus to increase chances for societal benefit of the modelling work. The key question is: How, when, and for what reasons does land use

  9. Solving probability reasoning based on DNA strand displacement and probability modules.

    Science.gov (United States)

    Zhang, Qiang; Wang, Xiaobiao; Wang, Xiaojun; Zhou, Changjun

    2017-12-01

    In computation biology, DNA strand displacement technology is used to simulate the computation process and has shown strong computing ability. Most researchers use it to solve logic problems, but it is only rarely used in probabilistic reasoning. To process probabilistic reasoning, a conditional probability derivation model and total probability model based on DNA strand displacement were established in this paper. The models were assessed through the game "read your mind." It has been shown to enable the application of probabilistic reasoning in genetic diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

    Science.gov (United States)

    Hoover, Jerome D; Healy, Alice F

    2017-12-01

    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  11. Medical education and cognitive continuum theory: an alternative perspective on medical problem solving and clinical reasoning.

    Science.gov (United States)

    Custers, Eugène J F M

    2013-08-01

    Recently, human reasoning, problem solving, and decision making have been viewed as products of two separate systems: "System 1," the unconscious, intuitive, or nonanalytic system, and "System 2," the conscious, analytic, or reflective system. This view has penetrated the medical education literature, yet the idea of two independent dichotomous cognitive systems is not entirely without problems.This article outlines the difficulties of this "two-system view" and presents an alternative, developed by K.R. Hammond and colleagues, called cognitive continuum theory (CCT). CCT is featured by three key assumptions. First, human reasoning, problem solving, and decision making can be arranged on a cognitive continuum, with pure intuition at one end, pure analysis at the other, and a large middle ground called "quasirationality." Second, the nature and requirements of the cognitive task, as perceived by the person performing the task, determine to a large extent whether a task will be approached more intuitively or more analytically. Third, for optimal task performance, this approach needs to match the cognitive properties and requirements of the task. Finally, the author makes a case that CCT is better able than a two-system view to describe medical problem solving and clinical reasoning and that it provides clear clues for how to organize training in clinical reasoning.

  12. Interaction with a high-versus low-competence influence source in inductive reasoning.

    Science.gov (United States)

    Butera, Fabrizio; Caverni, Jean-Paul; Rossi, Sandrine

    2005-04-01

    Literature on inductive reasoning shows that when testing hypotheses, people are biased toward the use of confirmatory strategies (P. C. Wason, 1960). In the present article, the authors presented 2 studies showing how people use confirmation and disconfirmation strategies during actual interaction in problem solving. Study 1 showed that participants were able to learn to use disconfirmation when confronted with a low-competence, nonthreatening partner. When the partner was high in competence (thereby threatening the participant's competence), participants used confirmation, even when the partner used disconfirmation. In Study 2, the authors aimed at generalizing the aforementioned results by exploring the hypothesis that disconfirmation stems from the possibility of diverging from norms. Participants who were confronted with the violation of a conversational norm used a high proportion of disconfirmation, whatever the source of influence. When there was no violation but there was a low-competence partner, the proportion of disconfirmation was high; when there was no violation but there was a high-competence partner, the proportion of disconfirmation was low. The authors discussed the interpersonal functions of confirmation and disconfirmation.

  13. The Dimensionality of Reasoning: Inductive and Deductive Inference can be Explained by a Single Process.

    Science.gov (United States)

    Hayes, Brett K; Stephens, Rachel G; Ngo, Jeremy; Dunn, John C

    2018-02-01

    Three-experiments examined the number of qualitatively different processing dimensions needed to account for inductive and deductive reasoning. In each study, participants were presented with arguments that varied in logical validity and consistency with background knowledge (believability), and evaluated them according to deductive criteria (whether the conclusion was necessarily true given the premises) or inductive criteria (whether the conclusion was plausible given the premises). We examined factors including working memory load (Experiments 1 and 2), individual working memory capacity (Experiments 1 and 2), and decision time (Experiment 3), which according to dual-processing theories, modulate the contribution of heuristic and analytic processes to reasoning. A number of empirical dissociations were found. Argument validity affected deduction more than induction. Argument believability affected induction more than deduction. Lower working memory capacity reduced sensitivity to argument validity and increased sensitivity to argument believability, especially under induction instructions. Reduced decision time led to decreased sensitivity to argument validity. State-trace analyses of each experiment, however, found that only a single underlying dimension was required to explain patterns of inductive and deductive judgments. These results show that the dissociations, which have traditionally been seen as supporting dual-processing models of reasoning, are consistent with a single-process model that assumes a common evidentiary scale for induction and deduction. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. A Method for Solving the Voltage and Torque Equations of the Split-Phase Induction Machines

    Directory of Open Access Journals (Sweden)

    G. A. Olarinoye

    2013-06-01

    Full Text Available Single phase induction machines have been the subject of many researches in recent times. The voltage and torque equations which describe the dynamic characteristics of these machines have been quoted in many papers, including the papers that present the simulation results of these model equations. The way and manner in which these equations are solved is not common in literature. This paper presents a detailed procedure of how these equations are to be solved with respect to the splitphase induction machine which is one of the different types of the single phase induction machines available in the market. In addition, these equations have been used to simulate the start-up response of the split phase induction motor on no-load. The free acceleration characteristics of the motor voltages, currents and electromagnetic torque have been plotted and discussed. The simulation results presented include the instantaneous torque-speed characteristics of the Split phase Induction machine. A block diagram of the method for the solution of the machine equations has also been presented.

  15. Worrying about the future: An episodic specificity induction impacts problem solving, reappraisal, and well-being.

    Science.gov (United States)

    Jing, Helen G; Madore, Kevin P; Schacter, Daniel L

    2016-04-01

    Previous research has demonstrated that an episodic specificity induction--brief training in recollecting details of a recent experience--enhances performance on various subsequent tasks thought to draw upon episodic memory processes. Existing work has also shown that mental simulation can be beneficial for emotion regulation and coping with stressors. Here we focus on understanding how episodic detail can affect problem solving, reappraisal, and psychological well-being regarding worrisome future events. In Experiment 1, an episodic specificity induction significantly improved participants' performance on a subsequent means-end problem solving task (i.e., more relevant steps) and an episodic reappraisal task (i.e., more episodic details) involving personally worrisome future events compared with a control induction not focused on episodic specificity. Imagining constructive behaviors with increased episodic detail via the specificity induction was also related to significantly larger decreases in anxiety, perceived likelihood of a bad outcome, and perceived difficulty to cope with a bad outcome, as well as larger increases in perceived likelihood of a good outcome and indicated use of active coping behaviors compared with the control. In Experiment 2, we extended these findings using a more stringent control induction, and found preliminary evidence that the specificity induction was related to an increase in positive affect and decrease in negative affect compared with the control. Our findings support the idea that episodic memory processes are involved in means-end problem solving and episodic reappraisal, and that increasing the episodic specificity of imagining constructive behaviors regarding worrisome events may be related to improved psychological well-being. (c) 2016 APA, all rights reserved).

  16. Training the elderly on the ability factors of spatial orientation and inductive reasoning.

    Science.gov (United States)

    Willis, S L; Schaie, K W

    1986-09-01

    We examined the effects of cognitive training with elderly participants from the Seattle Longitudinal Study. Subjects were classified as having remained stable or having declined over the previous 14-year interval on each of two primary abilities, spatial orientation and inductive reasoning. Subjects who had declined on one of these abilities received training on that ability; subjects who had declined on both abilities or who had remained stable on both were randomly assigned to the spatial orientation or inductive reasoning training programs. Training outcomes were examined within an ability-measurement framework with empirically determined factorial structure. Significant training effects, at the level of the latent ability constructs, occurred for both spatial orientation and inductive reasoning. These effects were general, in that no significant interactions with decline status or gender were found. Thus, training interventions were effective both in remediating cognitive decline on the target abilities and in improving the performance of stable subjects.

  17. Differences in autonomic physiological responses between good and poor inductive reasoners.

    Science.gov (United States)

    Melis, C; van Boxtel, A

    2001-11-01

    We investigated individual- and task-related differences in autonomic physiological responses induced by time limited figural and verbal inductive reasoning tasks. In a group of 52 participants, the percentage of correctly responded task items was evaluated together with nine different autonomic physiological response measures and respiration rate (RR). Weighted multidimensional scaling analyses of the physiological responses revealed three underlying dimensions, primarily characterized by RR, parasympathetic, and sympathetic activity. RR and sympathetic activity appeared to be relatively more important response dimensions for poor reasoners, whereas parasympathetic responsivity was relatively more important for good reasoners. These results suggest that poor reasoners showed higher levels of cognitive processing intensity than good reasoners. Furthermore, for the good reasoners, the dimension of sympathetic activity was relatively more important during the figural than during the verbal reasoning task, which was explained in terms of hemispheric lateralization in autonomic function.

  18. What is the role of induction and deduction in reasoning and scientific inquiry?

    Science.gov (United States)

    Lawson, Anton E.

    2005-08-01

    A long-standing and continuing controversy exists regarding the role of induction and deduction in reasoning and in scientific inquiry. Given the inherent difficulty in reconstructing reasoning patterns based on personal and historical accounts, evidence about the nature of human reasoning in scientific inquiry has been sought from a controlled experiment designed to identify the role played by enumerative induction and deduction in cognition as well as from the relatively new field of neural modeling. Both experimental results and the neurological models imply that induction across a limited set of observations plays no role in task performance and in reasoning. Therefore, support has been obtained for Popper's hypothesis that enumerative induction does not exist as a psychological process. Instead, people appear to process information in terms of increasingly abstract cycles of hypothetico-deductive reasoning. Consequently, science instruction should provide students with opportunities to generate and test increasingly complex and abstract hypotheses and theories in a hypothetico-deductive manner. In this way students can be expected to become increasingly conscious of their underlying hypothetico-deductive thought processes, increasingly skilled in their application, and hence increasingly scientifically literate.

  19. A Proposal of Categorisation for Analysing Inductive Reasoning (Una Propuesta de Categorización para Analizar el Razonamiento Inductivo

    Directory of Open Access Journals (Sweden)

    Encarnación Castro

    2007-01-01

    Full Text Available We present an analysis of the inductive reasoning of twelve Spanish secondary students in a mathematical problem-solving context. Students were interviewed while they worked on two different problems. Based on Polya´s steps and Reid’s stages for a process of inductive reasoning, we propose a more precise categorization for analyzing this kind of reasoning in our particular context. In this paper we present some results of a wider investigation (Cañadas, 2002.Presentamos un análisis del razonamiento inductivo de doce estudiantes de educación secundaria en un contexto de resolución de problemas matemáticos. Los estudiantes fueron entrevistados mientras trabajaban en dos problemas diferentes. Basándonos en los pasos considerados por Pólya y Reid para un proceso de razonamiento inductivo, proponemos una categorización más precisa para analizar este tipo de razonamiento en nuestro contexto particular. En este documento presentamos algunos resultados de una investigación más amplia (Cañadas, 2002.

  20. Anticipating students' reasoning and planning prompts in structured problem-solving lessons

    Science.gov (United States)

    Vale, Colleen; Widjaja, Wanty; Doig, Brian; Groves, Susie

    2018-02-01

    Structured problem-solving lessons are used to explore mathematical concepts such as pattern and relationships in early algebra, and regularly used in Japanese Lesson Study research lessons. However, enactment of structured problem-solving lessons which involves detailed planning, anticipation of student solutions and orchestration of whole-class discussion of solutions is an ongoing challenge for many teachers. Moreover, primary teachers have limited experience in teaching early algebra or mathematical reasoning actions such as generalising. In this study, the critical factors of enacting the structured problem-solving lessons used in Japanese Lesson Study to elicit and develop primary students' capacity to generalise are explored. Teachers from three primary schools participated in two Japanese Lesson Study teams for this study. The lesson plans and video recordings of teaching and post-lesson discussion of the two research lessons along with students' responses and learning are compared to identify critical factors. The anticipation of students' reasoning together with preparation of supporting and challenging prompts was critical for scaffolding students' capacity to grasp and communicate generality.

  1. Effects of cognitive training on change in accuracy in inductive reasoning ability.

    Science.gov (United States)

    Boron, Julie Blaskewicz; Turiano, Nicholas A; Willis, Sherry L; Schaie, K Warner

    2007-05-01

    We investigated cognitive training effects on accuracy and number of items attempted in inductive reasoning performance in a sample of 335 older participants (M = 72.78 years) from the Seattle Longitudinal Study. We assessed the impact of individual characteristics, including chronic disease. The reasoning training group showed significantly greater gain in accuracy and number of attempted items than did the comparison group; gain was primarily due to enhanced accuracy. Reasoning training effects involved a complex interaction of gender, prior cognitive status, and chronic disease. Women with prior decline on reasoning but no heart disease showed the greatest accuracy increase. In addition, stable reasoning-trained women with heart disease demonstrated significant accuracy gain. Comorbidity was associated with less change in accuracy. The results support the effectiveness of cognitive training on improving the accuracy of reasoning performance.

  2. Differences in autonomic physiological responses between good and poor inductive reasoners

    NARCIS (Netherlands)

    Melis, C.J.; van Boxtel, A.

    2001-01-01

    We investigated individual- and task-related differences in autonomic physiological responses induced by time limited figural and verbal inductive reasoning tasks. In a group of 52 participants, the percentage of correctly responded task items was evaluated together with nine different autonomic

  3. Inductive reasoning in Zambia, Turkey, and the Netherlands Establishing cross-cultural equivalence

    NARCIS (Netherlands)

    van de Vijver, F.J.R.

    2002-01-01

    Tasks of inductive reasoning and its component processes were administered to 704 Zambian, 877 Turkish, and 632 Dutch pupils from the highest two grades of primary and the lowest two grades of secondary school. All items were constructed using item-generating rules. Three types of equivalence were

  4. Complexity of Geometric Inductive Reasoning Tasks: Contribution to the Understanding of Fluid Intelligence.

    Science.gov (United States)

    Primi, Ricardo

    2002-01-01

    Created two geometric inductive reasoning matrix tests by manipulating four sources of complexity orthogonally. Results for 313 undergraduates show that fluid intelligence is most strongly associated with the part of the central executive component of working memory that is related to controlled attention processing and selective encoding. (SLD)

  5. Reasoning with Inductive Argument Test: A Study of Validity and Reliability

    Directory of Open Access Journals (Sweden)

    Mehmet Emrah Karadere

    2013-12-01

    Conclusion: The preliminary data obtained from the study of reliability and validity of the scale shows that ‘Reasoning with Inductive Argument Test’ supports reliability and validity in Turkish population. [JCBPR 2013; 2(3.000: 156-161

  6. Early Maternal Employment and Children's Vocabulary and Inductive Reasoning Ability: A Dynamic Approach

    Science.gov (United States)

    Kühhirt, Michael; Klein, Markus

    2018-01-01

    This study investigates the relationship between early maternal employment history and children's vocabulary and inductive reasoning ability at age 5, drawing on longitudinal information on 2,200 children from the Growing Up in Scotland data. Prior research rarely addresses dynamics in maternal employment and the methodological ramifications of…

  7. Developmental Changes in the Consideration of Sample Diversity in Inductive Reasoning

    Science.gov (United States)

    Rhodes, Marjorie; Gelman, Susan A.; Brickman, Daniel

    2008-01-01

    Determining whether a sample provides a good basis for broader generalizations is a basic challenge of inductive reasoning. Adults apply a diversity-based strategy to this challenge, expecting diverse samples to be a better basis for generalization than homogeneous samples. For example, adults expect that a property shared by two diverse mammals…

  8. Inductive Reasoning in Zambia, Turkey, and the Netherlands Establishing Cross-Cultural Equivalence.

    Science.gov (United States)

    van de Vijver, Fons J. R.

    2002-01-01

    Administered tasks of inductive reasoning to 704 Zambian, 877 Turkish, and 632 Dutch students from the highest 2 grades of primary and the lowest 2 grades of secondary school. Results show strong evidence for structural equivalence and partial evidence for measurement unit equivalence, but did not support full score equivalence. (SLD)

  9. Problem-solving strategies in psychiatry: differences between experts and novices in diagnostic accuracy and reasoning.

    Science.gov (United States)

    Gabriel, Adel; Violato, Claudio

    2013-01-01

    The purpose of this study was to examine and compare diagnostic success and its relationship with the diagnostic reasoning process between novices and experts in psychiatry. Nine volunteers, comprising five expert psychiatrists and four clinical clerks, completed a think-aloud protocol while attempting to make a DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) diagnosis of a selected case with both Axis I and Axis III diagnoses. Expert psychiatrists made significantly more successful diagnoses for both the primary psychiatric and medical diagnoses than clinical clerks. Expert psychiatrists also gave fewer differential options. Analyzing the think-aloud protocols, expert psychiatrists were much more organized, made fewer mistakes, and utilized significantly less time to access their knowledge than clinical clerks. Both novices and experts seemed to use the hypothetic-deductive and scheme-inductive approaches to diagnosis. However, experts utilized hypothetic-deductive approaches significantly more often than novices. The hypothetic-deductive diagnostic strategy was utilized more than the scheme-inductive approach by both expert psychiatrists and clinical clerks. However, a specific relationship between diagnostic reasoning and diagnostic success could not be identified in this small pilot study. The author recommends a larger study that would include a detailed analysis of the think-aloud protocols.

  10. Reasoning with Inductive Argument Test: A Study of Validity and Reliability

    Directory of Open Access Journals (Sweden)

    Mehmet Emrah Karadere

    2013-11-01

    Full Text Available Reasoning with Inductive Argument Test:A Study of Validity and Reliability Objective: The aim of our study is to research reliability and validity and to evaluate the usability of Turkish version of Reasoning with Inductive Argument Test (RIAT in Turkish healty population. Method: 51 healty volunteers who work in Ankara Dıskapi Yildirim Beyazit Research and Training Hospital participated in this study. Reasoning with Inductive Argument Test (RIAT was translated into Turkish by three clinical good knowledge of English. Participants were given a sociodemographic data form, and RIAT were performed by clinicians. To test the reliability of the Turkish version of RIAT, Cronbach’s alpha coefficient was calculated and the halving method was used for the test. Results: The internal consistency of the Reasoning with Inductive Argument Test (RIAT items, Cronbach’s alpha internal consistency coefficient measurements of 0.73 was found to be statistically significant. Spearman-Brown coefficient that determines the reliability of the whole test r=0.74 was found. Kurtosis values of all the items was below 1.5 and the percentages in the second evaluation were mainly lower. At the same time, both change in belief between self produced RIAT options and given RIAT options (p=0.02, z=-2296 as well as changes in beliefs between related and unrelated items for Obsessive Compulsive Disorder (OCD difference (p=0.03, z=-2.199 were significant. Conclusion: The preliminary data obtained from the study of reliability and validity of the scale shows that ‘Reasoning with Inductive Argument Test’ supports reliability and validity in Turkish population.

  11. Methods for solving reasoning problems in abstract argumentation – A survey

    Science.gov (United States)

    Charwat, Günther; Dvořák, Wolfgang; Gaggl, Sarah A.; Wallner, Johannes P.; Woltran, Stefan

    2015-01-01

    Within the last decade, abstract argumentation has emerged as a central field in Artificial Intelligence. Besides providing a core formalism for many advanced argumentation systems, abstract argumentation has also served to capture several non-monotonic logics and other AI related principles. Although the idea of abstract argumentation is appealingly simple, several reasoning problems in this formalism exhibit high computational complexity. This calls for advanced techniques when it comes to implementation issues, a challenge which has been recently faced from different angles. In this survey, we give an overview on different methods for solving reasoning problems in abstract argumentation and compare their particular features. Moreover, we highlight available state-of-the-art systems for abstract argumentation, which put these methods to practice. PMID:25737590

  12. When doubting begins: exploring inductive reasoning in obsessive-compulsive disorder.

    Science.gov (United States)

    Pélissier, Marie-Claude; O'Connor, Kieron P; Dupuis, Gilles

    2009-03-01

    The objective of this study was to test the hypothesis that inductive reasoning plays a role in obsessional doubting by comparing an OCD sample with a non-OCD control group in performance of an inductive reasoning task. The 'Reasoning with Inductive Arguments Task' (RIAT) measures inductive performance using arguments drawn from both given vs. self-generated sources and containing neutral vs. OCD-related content. Both an OCD group recruited from clinical referrals and a control group recruited from the general population were compared on performance of the RIAT. People with OCD tended to doubt an initial conclusion much more than controls in the light of subsequent alternative conclusions given by the experimenter. There were no significant differences between the two groups in the self-generated condition. The OCD group doubted more regardless of whether the items were OCD-relevant or neutral. The control group also doubted the initial conclusions but not to the same extent as the OCD group in the 'given' condition and their degree of doubting did not differ between self-generated or given items. People with OCD may create doubt because they are giving too much credit to mental models given from external sources.

  13. The interaction of process and domain in prefrontal cortex during inductive reasoning.

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2015-01-01

    Inductive reasoning is an everyday process that allows us to make sense of the world by creating rules from a series of instances. Consistent with accounts of process-based fractionations of the prefrontal cortex (PFC) along the left-right axis, inductive reasoning has been reliably localized to left PFC. However, these results may be confounded by the task domain, which is typically verbal. Indeed, some studies show that right PFC activation is seen with spatial tasks. This study used fMRI to examine the effects of process and domain on the brain regions recruited during a novel pattern discovery task. Twenty healthy young adult participants were asked to discover the rule underlying the presentation of a series of letters in varied spatial locations. The rules were either verbal (pertaining to a single semantic category) or spatial (geometric figures). Bilateral ventrolateral PFC activations were seen for the spatial domain, while the verbal domain showed only left ventrolateral PFC. A conjunction analysis revealed that the two domains recruited a common region of left ventrolateral PFC. The data support a central role of left PFC in inductive reasoning. Importantly, they also suggest that both process and domain shape the localization of reasoning in the brain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Employment during pregnancy and obstetric intervention without medical reason: labor induction and cesarean delivery.

    Science.gov (United States)

    Kozhimannil, Katy Backes; Attanasio, Laura B; Johnson, Pamela Jo; Gjerdingen, Dwenda K; McGovern, Patricia M

    2014-01-01

    Rising rates of labor induction and cesarean delivery, especially when used without a medical reason, have generated concern among clinicians, women, and policymakers. Whether employment status affects pregnant women's childbirth-related care is not known. We estimated the relationship between prenatal employment and obstetric procedures, distinguishing whether women reported that the induction or cesarean was performed for medical reasons. Using data from a nationally representative sample of women who gave birth in U.S. hospitals (n = 1,573), we used propensity score matching to reduce potential bias from nonrandom selection into employment. Outcomes were cesarean delivery and labor induction, with and without a self-reported medical reason. Exposure was prenatal employment status (full-time employment, not employed). We conducted separate analyses for unmatched and matched cohorts using multivariable regression models. There were no differences in labor induction based on employment status. In unmatched analyses, employed women had higher odds of cesarean delivery overall (adjusted odds ratio [AOR], 1.45; p = .046) and cesarean delivery without medical reason (AOR, 1.94; p = .024). Adding an interaction term between employment and college education revealed no effects on cesarean delivery without medical reason. There were no differences in cesarean delivery by employment status in the propensity score-matched analysis. Full-time prenatal employment is associated with higher odds of cesarean delivery, but this association was not explained by socioeconomic status and no longer existed after accounting for sociodemographic differences by matching women employed full time with similar women not employed during pregnancy. Copyright © 2014 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  15. On the Effects of Training Inductive Reasoning: How Far Does It Transfer and How Long Do the Effects Persist?

    Science.gov (United States)

    Tomic, Welko; Klauer, Karl Josef

    1996-01-01

    Reports on two training experiments in which it was expected that training in inductive reasoning would transfer to intelligence tests measuring inductive reasoning and on mathematics performance. Shows that transfer on intelligence tests as well as on mathematics performance was linearly dependent on the amount of prior training. (DSK)

  16. Broadening the study of inductive reasoning: confirmation judgments with uncertain evidence.

    Science.gov (United States)

    Mastropasqua, Tommaso; Crupi, Vincenzo; Tentori, Katya

    2010-10-01

    Although evidence in real life is often uncertain, the psychology of inductive reasoning has, so far, been confined to certain evidence. The present study extends previous research by investigating whether people properly estimate the impact of uncertain evidence on a given hypothesis. Two experiments are reported, in which the uncertainty of evidence is explicitly (by means of numerical values) versus implicitly (by means of ambiguous pictures) manipulated. The results show that people's judgments are highly correlated with those predicted by normatively sound Bayesian measures of impact. This sensitivity to the degree of evidential uncertainty supports the centrality of inductive reasoning in cognition and opens the path to the study of this issue in more naturalistic settings.

  17. Skills-demands compatibility as a determinant of flow experience in an inductive reasoning task.

    Science.gov (United States)

    Schiefele, Ulrich; Raabe, Andreas

    2011-10-01

    The skills-demands fit hypothesis of flow theory was examined. Based on the earlier finding that high demands in a game situation do not reduce the experience of flow, a cognitive task paradigm was used. The effect of skills-demands compatibility on the experience of flow but not of other, similar psychological states (i.e., concentration, negative and positive activation) was also investigated. Participants were 89 undergraduate students who worked on a number of inductive reasoning tasks in four successive trials with or without skills-demands compatibility. The results clearly supported the skills-demands fit hypothesis; concentration and activation were affected only by the tasks' difficulty. Inductive reasoning tasks are a useful tool for the experimental analysis of flow, and skills-demands compatibility is a significant and powerful condition of flow, but not of other, similar psychological states.

  18. 14- to 16-Month-Olds Attend to Distinct Labels in an Inductive Reasoning Task

    OpenAIRE

    Switzer, Jessica L.; Graham, Susan A.

    2017-01-01

    We examined how naming objects with unique labels influenced infants’ reasoning about the non-obvious properties of novel objects. Seventy 14- to 16-month-olds participated in an imitation-based inductive inference task during which they were presented with target objects possessing a non-obvious sound property, followed by test objects that varied in shape similarity in comparison to the target. Infants were assigned to one of two groups: a No Label group in which objects were introduced wit...

  19. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning.

    Science.gov (United States)

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning.

  20. Measuring scientific reasoning through behavioral analysis in a computer-based problem solving exercise

    Science.gov (United States)

    Mead, C.; Horodyskyj, L.; Buxner, S.; Semken, S. C.; Anbar, A. D.

    2016-12-01

    Developing scientific reasoning skills is a common learning objective for general-education science courses. However, effective assessments for such skills typically involve open-ended questions or tasks, which must be hand-scored and may not be usable online. Using computer-based learning environments, reasoning can be assessed automatically by analyzing student actions within the learning environment. We describe such an assessment under development and present pilot results. In our content-neutral instrument, students solve a problem by collecting and interpreting data in a logical, systematic manner. We then infer reasoning skill automatically based on student actions. Specifically, students investigate why Earth has seasons, a scientifically simple but commonly misunderstood topic. Students are given three possible explanations and asked to select a set of locations on a world map from which to collect temperature data. They then explain how the data support or refute each explanation. The best approaches will use locations in both the Northern and Southern hemispheres to argue that the contrasting seasonality of the hemispheres supports only the correct explanation. We administered a pilot version to students at the beginning of an online, introductory science course (n = 223) as an optional extra credit exercise. We were able to categorize students' data collection decisions as more and less logically sound. Students who choose the most logical measurement locations earned higher course grades, but not significantly higher. This result is encouraging, but not definitive. In the future, we will clarify our results in two ways. First, we plan to incorporate more open-ended interactions into the assessment to improve the resolving power of this tool. Second, to avoid relying on course grades, we will independently measure reasoning skill with one of the existing hand-scored assessments (e.g., Critical Thinking Assessment Test) to cross-validate our new

  1. A conversational case-based reasoning approach to assisting experts in solving professional problems

    Directory of Open Access Journals (Sweden)

    Negar Armaghan

    2018-03-01

    Full Text Available Nowadays, organizations attempt to retrieve, collect, preserve and manage knowledge and experience of experts in order to reuse them later and to promote innovation. In this sense, Experience Management is one of the important organizational issues. This article is discussed the main ideas of a future Conversational Case-Based Reasoning (CCBR intended to assist the experts of after-sales service in a French industrial company. The aim of this research is to formalize the experience of experts in after-sales service in order to better reuse them for similar problems in future. The research opts for an action research method which consists of two main parts: description of failure and proposition of decision protocol. The data were complemented by questionnaires, documentary analysis (including technical reports and other technical documents, observation and many interviews with experts. The findings include several aspects: the formalization of Problem-solving Cards, proposing the structure of case base, as well as the framework of proposed system. These formalizations permit after-sales service experts to provide effective diagnosis and problem-solving.

  2. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2006-10-01

    Full Text Available We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS. This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  3. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Science.gov (United States)

    Vanhamäki, H.; Amm, O.; Viljanen, A.

    2006-10-01

    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  4. Do players reason by forward induction in dynamic perfect information games?

    Directory of Open Access Journals (Sweden)

    Sujata Ghosh

    2016-06-01

    Full Text Available We conducted an experiment where participants played a perfect-information game against a computer, which was programmed to deviate often from its backward induction strategy right at the beginning of the game. Participants knew that in each game, the computer was nevertheless optimizing against some belief about the participant's future strategy. It turned out that in the aggregate, participants were likely to respond in a way which is optimal with respect to their best-rationalization extensive form rationalizability conjecture - namely the conjecture that the computer is after a larger prize than the one it has foregone, even when this necessarily meant that the computer has attributed future irrationality to the participant when the computer made the first move in the game. Thus, it appeared that participants applied forward induction. However, there exist alternative explanations for the choices of most participants; for example, choices could be based on the extent of risk aversion that participants attributed to the computer in the remainder of the game, rather than to the sunk outside option that the computer has already foregone at the beginning of the game. For this reason, the results of the experiment do not yet provide conclusive evidence for Forward Induction reasoning on the part of the participants.

  5. Are there two processes in reasoning? The dimensionality of inductive and deductive inferences.

    Science.gov (United States)

    Stephens, Rachel G; Dunn, John C; Hayes, Brett K

    2018-03-01

    Single-process accounts of reasoning propose that the same cognitive mechanisms underlie inductive and deductive inferences. In contrast, dual-process accounts propose that these inferences depend upon 2 qualitatively different mechanisms. To distinguish between these accounts, we derived a set of single-process and dual-process models based on an overarching signal detection framework. We then used signed difference analysis to test each model against data from an argument evaluation task, in which induction and deduction judgments are elicited for sets of valid and invalid arguments. Three data sets were analyzed: data from Singmann and Klauer (2011), a database of argument evaluation studies, and the results of an experiment designed to test model predictions. Of the large set of testable models, we found that almost all could be rejected, including all 2-dimensional models. The only testable model able to account for all 3 data sets was a model with 1 dimension of argument strength and independent decision criteria for induction and deduction judgments. We conclude that despite the popularity of dual-process accounts, current results from the argument evaluation task are best explained by a single-process account that incorporates separate decision thresholds for inductive and deductive inferences. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Can you catch Ebola from a stork bite? Inductive reasoning influences generalization of perceived zoonosis risk.

    Directory of Open Access Journals (Sweden)

    Tyler Davis

    Full Text Available Emerging zoonoses are a prominent global health threat. Human beliefs are central to drivers of emerging zoonoses, yet little is known about how people make inferences about risk in such scenarios. We present an inductive account of zoonosis risk perception, suggesting that beliefs about the range of animals able to transmit diseases to each other influence how people generalize risks to other animals and health behaviors. Consistent with our account, in Study 1, we find that participants who endorse higher likelihoods of cross-species disease transmission have stronger intentions to report animal bites. In Study 2, using real-world descriptions of Ebola virus from the WHO and CDC, we find that communications conveying a broader range of animals as susceptible to the virus increase intentions to report animal bites and decrease perceived safety of wild game meat. These results suggest that inductive reasoning principles may be harnessed to modulate zoonosis risk perception and combat emerging infectious diseases.

  7. Can you catch Ebola from a stork bite? Inductive reasoning influences generalization of perceived zoonosis risk

    Science.gov (United States)

    Davis, Tyler

    2017-01-01

    Emerging zoonoses are a prominent global health threat. Human beliefs are central to drivers of emerging zoonoses, yet little is known about how people make inferences about risk in such scenarios. We present an inductive account of zoonosis risk perception, suggesting that beliefs about the range of animals able to transmit diseases to each other influence how people generalize risks to other animals and health behaviors. Consistent with our account, in Study 1, we find that participants who endorse higher likelihoods of cross-species disease transmission have stronger intentions to report animal bites. In Study 2, using real-world descriptions of Ebola virus from the WHO and CDC, we find that communications conveying a broader range of animals as susceptible to the virus increase intentions to report animal bites and decrease perceived safety of wild game meat. These results suggest that inductive reasoning principles may be harnessed to modulate zoonosis risk perception and combat emerging infectious diseases. PMID:29117192

  8. Inferring category characteristics from sample characteristics: inductive reasoning and social projection.

    Science.gov (United States)

    Krueger, J; Clement, R W

    1996-03-01

    Inductive reasoning involves generalization from sample observations to categories. This research examined the conditions under which generalizations go beyond the boundaries of the sampled categories. In Experiment 1, participants sampled colored chips from urns. When categorization was not salient, participants revised their estimates of the probability of a particular color even in urns they had not sampled. As categorization became more salient, generalization became limited to the sampled urn. In Experiment 2 the salience of categorization in social induction was varied. When social categorization was not salient, participants projected their own responses to test items to members of a laboratory group even when they themselves did not belong to this group. When salience increased, projection decreased among nonmembers but not among members. In Experiment 3 these results were replicated in a field setting.

  9. Can you catch Ebola from a stork bite? Inductive reasoning influences generalization of perceived zoonosis risk.

    Science.gov (United States)

    Davis, Tyler; Goldwater, Micah B; Ireland, Molly E; Gaylord, Nicholas; Van Allen, Jason

    2017-01-01

    Emerging zoonoses are a prominent global health threat. Human beliefs are central to drivers of emerging zoonoses, yet little is known about how people make inferences about risk in such scenarios. We present an inductive account of zoonosis risk perception, suggesting that beliefs about the range of animals able to transmit diseases to each other influence how people generalize risks to other animals and health behaviors. Consistent with our account, in Study 1, we find that participants who endorse higher likelihoods of cross-species disease transmission have stronger intentions to report animal bites. In Study 2, using real-world descriptions of Ebola virus from the WHO and CDC, we find that communications conveying a broader range of animals as susceptible to the virus increase intentions to report animal bites and decrease perceived safety of wild game meat. These results suggest that inductive reasoning principles may be harnessed to modulate zoonosis risk perception and combat emerging infectious diseases.

  10. Diversity effect in category-based inductive reasoning of young children: evidence from two methods.

    Science.gov (United States)

    Zhong, Luojin; Lee, Myung Sook; Huang, Yulan; Mo, Lei

    2014-02-01

    Previous studies have shown that diverse pieces of evidence, rather than similar pieces of evidence, are considered to have greater strength in adults' inductive reasoning. However, this diversity effect is inconsistently recognized by children. Three experiments using the same materials but different tasks examined whether young children consider the diversity principle in their reasoning. Although Experiment 1 applied a data selection task showed five-year-old children in both China and Korea were not sensitive to the diversity of evidence, Experiments 2 and 3 employed an identification task and demonstrated that children as young as five years were sensitive to diverse evidence. These findings indicated that young children, less than nine years of age, may have diversity effect. Methodological and cultural differences were discussed.

  11. Problem-Solving Rubrics Revisited: Attending to the Blending of Informal Conceptual and Formal Mathematical Reasoning

    Science.gov (United States)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-01-01

    Much research in engineering and physics education has focused on improving students' problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student's expertise in solving problems using these strategies. These rubrics value "communication" between the…

  12. Growing geometric reasoning in solving problems of analytical geometry through the mathematical communication problems to state Islamic university students

    Science.gov (United States)

    Mujiasih; Waluya, S. B.; Kartono; Mariani

    2018-03-01

    Skills in working on the geometry problems great needs of the competence of Geometric Reasoning. As a teacher candidate, State Islamic University (UIN) students need to have the competence of this Geometric Reasoning. When the geometric reasoning in solving of geometry problems has grown well, it is expected the students are able to write their ideas to be communicative for the reader. The ability of a student's mathematical communication is supposed to be used as a marker of the growth of their Geometric Reasoning. Thus, the search for the growth of geometric reasoning in solving of analytic geometry problems will be characterized by the growth of mathematical communication abilities whose work is complete, correct and sequential, especially in writing. Preceded with qualitative research, this article was the result of a study that explores the problem: Was the search for the growth of geometric reasoning in solving analytic geometry problems could be characterized by the growth of mathematical communication abilities? The main activities in this research were done through a series of activities: (1) Lecturer trains the students to work on analytic geometry problems that were not routine and algorithmic process but many problems that the process requires high reasoning and divergent/open ended. (2) Students were asked to do the problems independently, in detail, complete, order, and correct. (3) Student answers were then corrected each its stage. (4) Then taken 6 students as the subject of this research. (5) Research subjects were interviewed and researchers conducted triangulation. The results of this research, (1) Mathematics Education student of UIN Semarang, had adequate the mathematical communication ability, (2) the ability of this mathematical communication, could be a marker of the geometric reasoning in solving of problems, and (3) the geometric reasoning of UIN students had grown in a category that tends to be good.

  13. 14- to 16-Month-Olds Attend to Distinct Labels in an Inductive Reasoning Task.

    Science.gov (United States)

    Switzer, Jessica L; Graham, Susan A

    2017-01-01

    We examined how naming objects with unique labels influenced infants' reasoning about the non-obvious properties of novel objects. Seventy 14- to 16-month-olds participated in an imitation-based inductive inference task during which they were presented with target objects possessing a non-obvious sound property, followed by test objects that varied in shape similarity in comparison to the target. Infants were assigned to one of two groups: a No Label group in which objects were introduced with a general attentional phrase (i.e., "Look at this one") and a Distinct Label group in which target and test objects were labeled with two distinct count nouns (i.e., fep vs. wug ). Infants in the Distinct Label group performed significantly fewer target actions on the high-similarity objects than infants in the No Label group but did not differ in performance of actions on the low-similarity object. Within the Distinct Label group, performance on the inductive inference task was related to age, but not to working memory, inhibitory control, or vocabulary. Within the No Label condition, performance on the inductive inference task was related to a measure of inhibitory control. Our findings suggest that between 14- and 16-months, infants begin to use labels to carve out distinct categories, even when objects are highly perceptually similar.

  14. 14- to 16-Month-Olds Attend to Distinct Labels in an Inductive Reasoning Task

    Directory of Open Access Journals (Sweden)

    Susan A. Graham

    2017-04-01

    Full Text Available We examined how naming objects with unique labels influenced infants’ reasoning about the non-obvious properties of novel objects. Seventy 14- to 16-month-olds participated in an imitation-based inductive inference task during which they were presented with target objects possessing a non-obvious sound property, followed by test objects that varied in shape similarity in comparison to the target. Infants were assigned to one of two groups: a No Label group in which objects were introduced with a general attentional phrase (i.e., “Look at this one” and a Distinct Label group in which target and test objects were labeled with two distinct count nouns (i.e., fep vs. wug. Infants in the Distinct Label group performed significantly fewer target actions on the high-similarity objects than infants in the No Label group but did not differ in performance of actions on the low-similarity object. Within the Distinct Label group, performance on the inductive inference task was related to age, but not to working memory, inhibitory control, or vocabulary. Within the No Label condition, performance on the inductive inference task was related to a measure of inhibitory control. Our findings suggest that between 14- and 16-months, infants begin to use labels to carve out distinct categories, even when objects are highly perceptually similar.

  15. ANALYSIS OF STUDENTS’ DECISION MAKING TO SOLVE SCIENCE REASONING TEST OF TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY (TIMSS

    Directory of Open Access Journals (Sweden)

    N. Novianawati

    2015-04-01

    Full Text Available This study aims to determine students’ decision making strategy to answer TIMSS science reasoning test in cognitive reasoning domain. This research is quantitative descriptive research. The result shows that students tend to use compensatory strategy for decision making in solving multiple-choice questions and use rational category to answer essay questions. The result shows that more than half of students have been able to answer the questions TIMSS science tests correctly.

  16. The effects of students' reasoning abilities on conceptual understandings and problem-solving skills in introductory mechanics

    International Nuclear Information System (INIS)

    Ates, S; Cataloglu, E

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen/first year students' reasoning abilities, conceptual understandings and problem-solving skills in introductory mechanics. The sample consisted of 165 freshmen science education prospective teachers (female = 86, male = 79; age range 17-21) who were enrolled in an introductory physics course. Data collection was done during the fall semesters in two successive years. At the beginning of each semester, the force concept inventory (FCI) and the classroom test of scientific reasoning (CTSR) were administered to assess students' initial understanding of basic concepts in mechanics and reasoning levels. After completing the course, the FCI and the mechanics baseline test (MBT) were administered. The results indicated that there was a significant difference in problem-solving skill test mean scores, as measured by the MBT, among concrete, formal and postformal reasoners. There were no significant differences in conceptual understanding levels of pre- and post-test mean scores, as measured by FCI, among the groups. The Benferroni post hoc comparison test revealed which set of reasoning levels showed significant difference for the MBT scores. No statistical difference between formal and postformal reasoners' mean scores was observed, while the mean scores between concrete and formal reasoners and concrete and postformal reasoners were statistically significantly different

  17. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    Science.gov (United States)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  18. Much ado about aha!: Insight problem solving is strongly related to working memory capacity and reasoning ability.

    Science.gov (United States)

    Chuderski, Adam; Jastrzębski, Jan

    2018-02-01

    A battery comprising 4 fluid reasoning tests as well as 13 working memory (WM) tasks that involved storage, recall, updating, binding, and executive control, was applied to 318 adults in order to evaluate the true relationship of reasoning ability and WM capacity (WMC) to insight problem solving, measured using 40 verbal, spatial, math, matchstick, and remote associates problems (insight problems). WMC predicted 51.8% of variance in insight problem solving and virtually explained its almost isomorphic link to reasoning ability (84.6% of shared variance). The strong link between WMC and insight pertained generally to most WM tasks and insight problems, was identical for problems solved with and without reported insight, was linear throughout the ability levels, and was not mediated by age, motivation, anxiety, psychoticism, and openness to experience. In contrast to popular views on the sudden and holistic nature of insight, the solving of insight problems results primarily from typical operations carried out by the basic WM mechanisms that are responsible for the maintenance, retrieval, transformation, and control of information in the broad range of intellectual tasks (including fluid reasoning). Little above and beyond WM is unique about insight. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Using a Recommendation System to Support Problem Solving and Case-Based Reasoning Retrieval

    Science.gov (United States)

    Tawfik, Andrew A.; Alhoori, Hamed; Keene, Charles Wayne; Bailey, Christian; Hogan, Maureen

    2018-01-01

    In case library learning environments, learners are presented with an array of narratives that can be used to guide their problem solving. However, according to theorists, learners struggle to identify and retrieve the optimal case to solve a new problem. Given the challenges novice face during case retrieval, recommender systems can be embedded…

  20. Early Maternal Employment and Children's Vocabulary and Inductive Reasoning Ability: A Dynamic Approach.

    Science.gov (United States)

    Kühhirt, Michael; Klein, Markus

    2018-03-01

    This study investigates the relationship between early maternal employment history and children's vocabulary and inductive reasoning ability at age 5, drawing on longitudinal information on 2,200 children from the Growing Up in Scotland data. Prior research rarely addresses dynamics in maternal employment and the methodological ramifications of time-variant confounding. The present study proposes various measures to capture duration, timing, and stability of early maternal employment and uses inverse probability of treatment weighting to control for time-variant confounders that may partially mediate the effect of maternal employment on cognitive scores. The findings suggest only modest differences in the above ability measures between children who have been exposed to very different patterns of eary maternal employment, but with similar observed covariate history. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  1. Examination of the relationship between preservice science teachers' scientific reasoning and problem solving skills on basic mechanics

    Science.gov (United States)

    Yuksel, Ibrahim; Ates, Salih

    2018-02-01

    The purpose of this study is to determine relationship between scientific reasoning and mechanics problem solving skills of students in science education program. Scientific Reasoning Skills Test (SRST) and Basic Mechanics Knowledge Test (BMKT) were applied to 90 second, third and fourth grade students who took Scientific Reasoning Skills course at science teaching program of Gazi Faculty of Education for three successive fall semesters of 2014, 2015 and 2016 academic years. It was found a statistically significant positive (p = 0.038 <0.05) but a low correlation (r = 0.219) between SRST and BMKT. There were no significant relationship among Conservation Laws, Proportional Thinking, Combinational Thinking, Correlational Thinking, Probabilistic Thinking subskills of reasoning and BMKT. There were significant and positive correlation among Hypothetical Thinking and Identifying and Controlling Variables subskills of reasoning and BMKT. The findings of the study were compared with other studies in the field and discussed.

  2. The role of the DLPFC in inductive reasoning of MCI patients and normal agings: an fMRI study.

    Science.gov (United States)

    Yang, YanHui; Liang, PeiPeng; Lu, ShengFu; Li, KunCheng; Zhong, Ning

    2009-08-01

    Previous studies of young people have revealed that the left dorsolateral prefrontal cortex (DLPFC) plays an important role in inductive reasoning. An fMRI experiment was performed in this study to examine whether the left DLPFC was involved in inductive reasoning of MCI patients and normal aging, and whether the activation pattern of this region was different between MCI patients and normal aging. The fMRI results indicated that MCI patients had no difference from normal aging in behavior performance (reaction time and accuracy) and the activation pattern of DLPFC. However, the BOLD response of the DLPFC region for MCI patients was weaker than that for normal aging, and the functional connectivity between the bilateral DLPFC regions for MCI patients was significantly higher than for normal aging. Taken together, these results indicated that DLPFC plays an important role in inductive reasoning of aging, and the functional abnormity of DLPFC may be an earlier marker of MCI before structural alterations.

  3. The Comparison of Inductive Reasoning under Risk Conditions between Chinese and Japanese Based on Computational Models: Toward the Application to CAE for Foreign Language

    Science.gov (United States)

    Zhang, Yujie; Terai, Asuka; Nakagawa, Masanori

    2013-01-01

    Inductive reasoning under risk conditions is an important thinking process not only for sciences but also in our daily life. From this viewpoint, it is very useful for language learning to construct computational models of inductive reasoning which realize the CAE for foreign languages. This study proposes the comparison of inductive reasoning…

  4. EFFECTIVENESS OF PROBLEM BASED LEARNING AS A STRATEGY TO FOSTER PROBLEM SOLVING AND CRITICAL REASONING SKILLS AMONG MEDICAL STUDENTS.

    Science.gov (United States)

    Asad, Munazza; Iqbal, Khadija; Sabir, Mohammad

    2015-01-01

    Problem based learning (PBL) is an instructional approach that utilizes problems or cases as a context for students to acquire problem solving skills. It promotes communication skills, active learning, and critical thinking skills. It encourages peer teaching and active participation in a group. It was a cross-sectional study conducted at Al Nafees Medical College, Isra University, Islamabad, in one month duration. This study was conducted on 193 students of both 1st and 2nd year MBBS. Each PBL consists of three sessions, spaced by 2-3 days. In the first session students were provided a PBL case developed by both basic and clinical science faculty. In Session 2 (group discussion), they share, integrate their knowledge with the group and Wrap up (third session), was concluded at the end. A questionnaire based survey was conducted to find out overall effectiveness of PBL sessions. Teaching through PBLs greatly improved the problem solving and critical reasoning skills with 60% students of first year and 71% of 2nd year agreeing that the acquisition of knowledge and its application in solving multiple choice questions (MCQs) was greatly improved by these sessions. They observed that their self-directed learning, intrinsic motivation and skills to relate basic concepts with clinical reasoning which involves higher order thinking have greatly enhanced. Students found PBLs as an effective strategy to promote teamwork and critical thinking skills. PBL is an effective method to improve critical thinking and problem solving skills among medical students.

  5. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  6. On Transitions between Representations: The Role of Contextual Reasoning in Calculus Problem Solving

    Science.gov (United States)

    Zazkis, Dov

    2016-01-01

    This article argues for a shift in how researchers discuss and examine students' uses and understandings of multiple representations within a calculus context. An extension of Zazkis, Dubinsky, and Dautermann's (1996) visualization/analysis framework to include contextual reasoning is proposed. Several examples that detail transitions between…

  7. How to Reason with Economic Concepts: Cognitive Process of Japanese Undergraduate Students Solving Test Items

    Science.gov (United States)

    Asano, Tadayoshi; Yamaoka, Michio

    2015-01-01

    The authors administered a Japanese version of the Test of Understanding in College Economics, the fourth edition (TUCE-4) to assess the economic literacy of Japanese undergraduate students in 2006 and 2009. These two test results were combined to investigate students' cognitive process or reasoning with specific economic concepts and principles…

  8. How Do High School Students Solve Probability Problems? A Mixed Methods Study on Probabilistic Reasoning

    Science.gov (United States)

    Heyvaert, Mieke; Deleye, Maarten; Saenen, Lore; Van Dooren, Wim; Onghena, Patrick

    2018-01-01

    When studying a complex research phenomenon, a mixed methods design allows to answer a broader set of research questions and to tap into different aspects of this phenomenon, compared to a monomethod design. This paper reports on how a sequential equal status design (QUAN ? QUAL) was used to examine students' reasoning processes when solving…

  9. Simplifying Causal Complexity: How Interactions between Modes of Causal Induction and Information Availability Lead to Heuristic-Driven Reasoning

    Science.gov (United States)

    Grotzer, Tina A.; Tutwiler, M. Shane

    2014-01-01

    This article considers a set of well-researched default assumptions that people make in reasoning about complex causality and argues that, in part, they result from the forms of causal induction that we engage in and the type of information available in complex environments. It considers how information often falls outside our attentional frame…

  10. How do people learn from negative evidence? Non-monotonic generalizations and sampling assumptions in inductive reasoning.

    Science.gov (United States)

    Voorspoels, Wouter; Navarro, Daniel J; Perfors, Amy; Ransom, Keith; Storms, Gert

    2015-09-01

    A robust finding in category-based induction tasks is for positive observations to raise the willingness to generalize to other categories while negative observations lower the willingness to generalize. This pattern is referred to as monotonic generalization. Across three experiments we find systematic non-monotonicity effects, in which negative observations raise the willingness to generalize. Experiments 1 and 2 show that this effect emerges in hierarchically structured domains when a negative observation from a different category is added to a positive observation. They also demonstrate that this is related to a specific kind of shift in the reasoner's hypothesis space. Experiment 3 shows that the effect depends on the assumptions that the reasoner makes about how inductive arguments are constructed. Non-monotonic reasoning occurs when people believe the facts were put together by a helpful communicator, but monotonicity is restored when they believe the observations were sampled randomly from the environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Health Newscasts for Increasing Influenza Vaccination Coverage: An Inductive Reasoning Game Approach

    Science.gov (United States)

    Breban, Romulus

    2011-01-01

    Both pandemic and seasonal influenza are receiving more attention from mass media than ever before. Topics such as epidemic severity and vaccination are changing the way in which we perceive the utility of disease prevention. Voluntary influenza vaccination has been recently modeled using inductive reasoning games. It has thus been found that severe epidemics may occur because individuals do not vaccinate and, instead, attempt to benefit from the immunity of their peers. Such epidemics could be prevented by voluntary vaccination if incentives were offered. However, a key assumption has been that individuals make vaccination decisions based on whether there was an epidemic each influenza season; no other epidemiological information is available to them. In this work, we relax this assumption and investigate the consequences of making more informed vaccination decisions while no incentives are offered. We obtain three major results. First, individuals will not cooperate enough to constantly prevent influenza epidemics through voluntary vaccination no matter how much they learned about influenza epidemiology. Second, broadcasting epidemiological information richer than whether an epidemic occurred may stabilize the vaccination coverage and suppress severe influenza epidemics. Third, the stable vaccination coverage follows the trend of the perceived benefit of vaccination. However, increasing the amount of epidemiological information released to the public may either increase or decrease the perceived benefit of vaccination. We discuss three scenarios where individuals know, in addition to whether there was an epidemic, (i) the incidence, (ii) the vaccination coverage and (iii) both the incidence and the vaccination coverage, every influenza season. We show that broadcasting both the incidence and the vaccination coverage could yield either better or worse vaccination coverage than broadcasting each piece of information on its own. PMID:22205944

  12. Mean-field analysis of an inductive reasoning game: application to influenza vaccination.

    Science.gov (United States)

    Breban, Romulus; Vardavas, Raffaele; Blower, Sally

    2007-09-01

    Recently we have introduced an inductive reasoning game of voluntary yearly vaccination to establish whether or not a population of individuals acting in their own self-interest would be able to prevent influenza epidemics. Here, we analyze our model to describe the dynamics of the collective yearly vaccination uptake. We discuss the mean-field equations of our model and first order effects of fluctuations. We explain why our model predicts that severe epidemics are periodically expected even without the introduction of pandemic strains. We find that fluctuations in the collective yearly vaccination uptake induce severe epidemics with an expected periodicity that depends on the number of independent decision makers in the population. The mean-field dynamics also reveal that there are conditions for which the dynamics become robust to the fluctuations. However, the transition between fluctuation-sensitive and fluctuation-robust dynamics occurs for biologically implausible parameters. We also analyze our model when incentive-based vaccination programs are offered. When a family-based incentive is offered, the expected periodicity of severe epidemics is increased. This results from the fact that the number of independent decision makers is reduced, increasing the effect of the fluctuations. However, incentives based on the number of years of prepayment of vaccination may yield fluctuation-robust dynamics where severe epidemics are prevented. In this case, depending on prepayment, the transition between fluctuation-sensitive and fluctuation-robust dynamics may occur for biologically plausible parameters. Our analysis provides a practical method for identifying how many years of free vaccination should be provided in order to successfully ameliorate influenza epidemics.

  13. Health newscasts for increasing influenza vaccination coverage: an inductive reasoning game approach.

    Science.gov (United States)

    Breban, Romulus

    2011-01-01

    Both pandemic and seasonal influenza are receiving more attention from mass media than ever before. Topics such as epidemic severity and vaccination are changing the way in which we perceive the utility of disease prevention. Voluntary influenza vaccination has been recently modeled using inductive reasoning games. It has thus been found that severe epidemics may occur because individuals do not vaccinate and, instead, attempt to benefit from the immunity of their peers. Such epidemics could be prevented by voluntary vaccination if incentives were offered. However, a key assumption has been that individuals make vaccination decisions based on whether there was an epidemic each influenza season; no other epidemiological information is available to them. In this work, we relax this assumption and investigate the consequences of making more informed vaccination decisions while no incentives are offered. We obtain three major results. First, individuals will not cooperate enough to constantly prevent influenza epidemics through voluntary vaccination no matter how much they learned about influenza epidemiology. Second, broadcasting epidemiological information richer than whether an epidemic occurred may stabilize the vaccination coverage and suppress severe influenza epidemics. Third, the stable vaccination coverage follows the trend of the perceived benefit of vaccination. However, increasing the amount of epidemiological information released to the public may either increase or decrease the perceived benefit of vaccination. We discuss three scenarios where individuals know, in addition to whether there was an epidemic, (i) the incidence, (ii) the vaccination coverage and (iii) both the incidence and the vaccination coverage, every influenza season. We show that broadcasting both the incidence and the vaccination coverage could yield either better or worse vaccination coverage than broadcasting each piece of information on its own.

  14. A Case Study of an Induction Year Teacher's Problem-Solving Using the LIBRE Model Activity

    Science.gov (United States)

    Guerra, Norma S.; Flores, Belinda Bustos; Claeys, Lorena

    2009-01-01

    Background: A federally-funded program at the University of Texas at San Antonio adopted a holistic problem solving mentoring approach for novice teachers participating in an accelerated teacher certification program. Aims/focus of discussion: To investigate a novice teacher's problem-solving activity through self-expression of challenges and…

  15. Continuity and change in the development of category-based induction: The test case of diversity-based reasoning.

    Science.gov (United States)

    Rhodes, Marjorie; Liebenson, Peter

    2015-11-01

    The present research examined the extent to which the cognitive mechanisms available to support inductive inference stay constant across development or undergo fundamental change. Four studies tested how children (ages 5-10) incorporate information about sample composition into their category-based generalizations. Children's use of sample composition varied across age and type of category. For familiar natural kinds, children ages 5-8 generalized similarly from diverse and non-diverse samples of evidence, whereas older children generalized more broadly from more diverse sets. In contrast, for novel categories, children of each age made broader generalizations from diverse than non-diverse samples. These studies provide the first clear evidence that young children are able to incorporate sample diversity into their inductive reasoning. These findings suggest developmental continuity in the cognitive mechanisms available for inductive inference, but developmental changes in the role that prior knowledge plays in shaping these processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation : An fMRI study combined with a cognitive model

    NARCIS (Netherlands)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may

  17. Impaired reasoning and problem-solving in individuals with language impairment due to aphasia or language delay

    Science.gov (United States)

    Baldo, Juliana V.; Paulraj, Selvi R.; Curran, Brian C.; Dronkers, Nina F.

    2015-01-01

    The precise nature of the relationship between language and thought is an intriguing and challenging area of inquiry for scientists across many disciplines. In the realm of neuropsychology, research has investigated the inter-dependence of language and thought by testing individuals with compromised language abilities and observing whether performance in other cognitive domains is diminished. One group of such individuals is patients with aphasia who have an impairment in speech and language arising from a brain injury, such as a stroke. Our previous research has shown that the degree of language impairment in these individuals is strongly associated with the degree of impairment on complex reasoning tasks, such as the Wisconsin Card Sorting Task (WCST) and Raven’s Matrices. In the current study, we present new data from a large group of individuals with aphasia that show a dissociation in performance between putatively non-verbal tasks on the Wechsler Adult Intelligence Scale (WAIS) that require differing degrees of reasoning (Picture Completion vs. Picture Arrangement tasks). We also present an update and replication of our previous findings with the WCST showing that individuals with the most profound core language deficits (i.e., impaired comprehension and disordered language output) are particularly impaired on problem-solving tasks. In the second part of the paper, we present findings from a neurologically intact individual known as “Chelsea” who was not exposed to language due to an unaddressed hearing loss that was present since birth. At the age of 32, she was fitted with hearing aids and exposed to spoken and signed language for the first time, but she was only able to acquire a limited language capacity. Chelsea was tested on a series of standardized neuropsychological measures, including reasoning and problem-solving tasks. She was able to perform well on a number of visuospatial tasks but was disproportionately impaired on tasks that required

  18. Emotional and cognitive stimuli differentially engage the default network during inductive reasoning.

    Science.gov (United States)

    Eldaief, Mark C; Deckersbach, Thilo; Carlson, Lindsay E; Beucke, Jan C; Dougherty, Darin D

    2012-04-01

    The brain's default network (DN) is comprised of several cortical regions demonstrating robust intrinsic connectivity at rest. The authors sought to examine the differential effects of emotional reasoning and reasoning under certainty upon the DN through the employment of an event-related fMRI design in healthy participants. Participants were presented with syllogistic arguments which were organized into a 2 × 2 factorial design in which the first factor was emotional salience and the second factor was certainty/uncertainty. We demonstrate that regions of the DN were activated both during reasoning that is emotionally salient and during reasoning which is more certain, suggesting that these processes are neurally instantiated on a network level. In addition, we present evidence that emotional reasoning preferentially activates the dorsomedial (dMPFC) subsystem of the DN, whereas reasoning in the context of certainty activates areas specific to the DN's medial temporal (MTL) subsystem. We postulate that emotional reasoning mobilizes the dMPFC subsystem of the DN because this type of reasoning relies upon the recruitment of introspective and self-relevant data such as personal bias and temperament. In contrast, activation of the MTL subsystem during certainty argues that this form of reasoning involves the recruitment of mnemonic and semantic associations to derive conclusions.

  19. Ethics Education: Using Inductive Reasoning to Develop Individual, Group, Organizational, and Global Perspectives

    Science.gov (United States)

    Taft, Susan H.; White, Judith

    2007-01-01

    Ethics education that prepares students to address ethical challenges at work is a multifaceted and long-term endeavor. In this article, the authors propose an inductive ethics pedagogy that begins the process of ethics education by grounding students in their own individual ethical principles. The approach centers on developing students' ethical…

  20. Knowledge is not enough to solve the problems – The role of diagnostic knowledge in clinical reasoning activities

    Directory of Open Access Journals (Sweden)

    Jan Kiesewetter

    2016-11-01

    Full Text Available Abstract Background Clinical reasoning is a key competence in medicine. There is a lack of knowledge, how non-experts like medical students solve clinical problems. It is known that they have difficulties applying conceptual knowledge to clinical cases, that they lack metacognitive awareness and that higher level cognitive actions correlate with diagnostic accuracy. However, the role of conceptual, strategic, conditional, and metacognitive knowledge for clinical reasoning is unknown. Methods Medical students (n = 21 were exposed to three different clinical cases and instructed to use the think-aloud method. The recorded sessions were transcribed and coded with regards to the four different categories of diagnostic knowledge (see above. The transcripts were coded using the frequencies and time-coding of the categories of knowledge. The relationship between the coded data and accuracy of diagnosis was investigated with inferential statistical methods. Results The use of metacognitive knowledge is correlated with application of conceptual, but not with conditional and strategic knowledge. Furthermore, conceptual and strategic knowledge application is associated with longer time on task. However, in contrast to cognitive action levels the use of different categories of diagnostic knowledge was not associated with better diagnostic accuracy. Conclusions The longer case work and the more intense application of conceptual knowledge in individuals with high metacognitive activity may hint towards reduced premature closure as one of the major cognitive causes of errors in medicine. Additionally, for correct case solution the cognitive actions seem to be more important than the diagnostic knowledge categories.

  1. Emotional and cognitive stimuli differentially engage the default network during inductive reasoning

    OpenAIRE

    Eldaief, Mark C.; Deckersbach, Thilo; Carlson, Lindsay E.; Beucke, Jan C.; Dougherty, Darin D.

    2011-01-01

    The brain’s default network (DN) is comprised of several cortical regions demonstrating robust intrinsic connectivity at rest. The authors sought to examine the differential effects of emotional reasoning and reasoning under certainty upon the DN through the employment of an event-related fMRI design in healthy participants. Participants were presented with syllogistic arguments which were organized into a 2 × 2 factorial design in which the first factor was emotional salience and the second ...

  2. The Analysis of Students Scientific Reasoning Ability in Solving the Modified Lawson Classroom Test of Scientific Reasoning (MLCTSR Problems by Applying the Levels of Inquiry

    Directory of Open Access Journals (Sweden)

    N. Novia

    2017-04-01

    Full Text Available This study aims to determine the students’ achievement in answering modified lawson classroom test of scientific reasoning (MLCTSR questions in overall science teaching and by every aspect of scientific reasoning abilities. There are six aspects related to the scientific reasoning abilities that were measured; they are conservatorial reasoning, proportional reasoning, controlling variables, combinatorial reasoning, probabilistic reasoning, correlational reasoning. The research is also conducted to see the development of scientific reasoning by using levels of inquiry models. The students reasoning ability was measured using the Modified Lawson Classroom Test of Scientific Reasoning (MLCTSR. MLCTSR is a test developed based on the test of scientific reasoning of Lawson’s Classroom Test of Scientific Reasoning (LCTSR in 2000 which amounted to 12 multiple-choice questions. The research method chosen in this study is descriptive quantitative research methods. The research design used is One Group Pretest-Posttest Design. The population of this study is the entire junior high students class VII the academic year 2014/2015 in one junior high school in Bandung. The samples in this study are one of class VII, which is class VII C. The sampling method used in this research is purposive sampling. The results showed that there is an increase in quantitative scientific reasoning although its value is not big.

  3. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    Science.gov (United States)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  4. The diversity effect of inductive reasoning under segment manipulation of complex cognition.

    Science.gov (United States)

    Chen, Antao; Li, Hong; Feng, Tingyong; Gao, Xuemei; Zhang, Zhongming; Li, Fuhong; Yang, Dong

    2005-12-01

    The present study proposed the idea of segment manipulation of complex cognition (SMCC), and technically made it possible the quantitative treatment and systematical manipulation on the premise diversity. The segment manipulation of complex cognition divides the previous inductive strengths judgment task into three distinct steps, attempting to particularly distinguish the psychological processes and their rules. The results in Experiment 1 showed that compared with the traditional method, the quantitative treatment and systematical manipulation of SMCC on the diversity did not change the task's nature, and remain rational and a good measurement of inductive strength judgment. The results in Experiment 2 showed that the participants' response rules in the triple-step task were expected from our proposal, and that in Step 2 the "feeling of surprise" (FOS), which seems implausible but predicted from the diversity premises, was measured, and its component might be the critical part that produced the diversity effect. The "feeling of surprise" may reflect the impact of emotion on cognition, representing a strong revision to premise probability principle of pure rational hypothesis proposed by Lo et al., and its roles in the diversity effect are worthy of further research. In this regards were discussed the mistakes that the premise probability principle makes when it takes posterity probability as prior probability.

  5. Sample diversity and premise typicality in inductive reasoning: evidence for developmental change.

    Science.gov (United States)

    Rhodes, Marjorie; Brickman, Daniel; Gelman, Susan A

    2008-08-01

    Evaluating whether a limited sample of evidence provides a good basis for induction is a critical cognitive task. We hypothesized that whereas adults evaluate the inductive strength of samples containing multiple pieces of evidence by attending to the relations among the exemplars (e.g., sample diversity), six-year-olds would attend to the degree to which each individual exemplar in a sample independently appears informative (e.g., premise typicality). To test these hypotheses, participants were asked to select between diverse and non-diverse samples to help them learn about basic-level animal categories. Across various between-subject conditions (N=133), we varied the typicality present in the diverse and non-diverse samples. We found that adults reliably selected to examine diverse over non-diverse samples, regardless of exemplar typicality, six-year-olds preferred to examine samples containing typical exemplars, regardless of sample diversity, and nine-year-olds were somewhat in the midst of this developmental transition.

  6. Interactive video tutorials for enhancing problem solving, reasoning, and meta-cognitive skills of introductory physics students

    OpenAIRE

    Singh, Chandralekha

    2016-01-01

    We discuss the development of interactive video tutorial-based problems to help introductory physics students learn effective problem solving heuristics. The video tutorials present problem solving strategies using concrete examples in an interactive environment. They force students to follow a systematic approach to problem solving and students are required to solve sub-problems (research-guided multiple choice questions) to show their level of understanding at every stage of prob lem solvin...

  7. The Effects of Computer Programming on High School Students' Reasoning Skills and Mathematical Self-Efficacy and Problem Solving

    Science.gov (United States)

    Psycharis, Sarantos; Kallia, Maria

    2017-01-01

    In this paper we investigate whether computer programming has an impact on high school student's reasoning skills, problem solving and self-efficacy in Mathematics. The quasi-experimental design was adopted to implement the study. The sample of the research comprised 66 high school students separated into two groups, the experimental and the…

  8. A taxonomy of inductive problems.

    Science.gov (United States)

    Kemp, Charles; Jern, Alan

    2014-02-01

    Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.

  9. Students' Problem Solving and Justification

    Science.gov (United States)

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  10. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng

    2015-01-01

    In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.

  12. Students' inductive reasoning skills and the relevance of prior knowledge: an exploratory study with a computer-based training course on the topic of acne vulgaris.

    Science.gov (United States)

    Horn-Ritzinger, Sabine; Bernhardt, Johannes; Horn, Michael; Smolle, Josef

    2011-04-01

    The importance of inductive instruction in medical education is increasingly growing. Little is known about the relevance of prior knowledge regarding students' inductive reasoning abilities. The purpose is to evaluate this inductive teaching method as a means of fostering higher levels of learning and to explore how individual differences in prior knowledge (high [HPK] vs. low [LPK]) contribute to students' inductive reasoning skills. Twenty-six LPK and 18 HPK students could train twice with an interactive computer-based training object to discover the underlying concept before doing the final comprehension check. Students had a median of 76.9% of correct answers in the first, 90.9% in the second training, and answered 92% of the final assessment questions correctly. More important, 86% of all students succeeded with inductive learning, among them 83% of the HPK students and 89% of the LPK students. Prior knowledge did not predict performance on overall comprehension. This inductive instructional strategy fostered students' deep approaches to learning in a time-effective way.

  13. Is Parent Disciplinary Behavior Enduring or Situational? A Multilevel Modeling Investigation of Individual and Contextual Influences on Power Assertive and Inductive Reasoning Behaviors

    Science.gov (United States)

    Critchley, Christine R.; Sanson, Ann V.

    2006-01-01

    This research examined individual difference and contextual effects on the disciplinary behavior of a representative sample of 296 parents. Both the use of power assertion and inductive reasoning were found to be higher when the child's behavior violated a moral compared to a conventional principle, and in response to deliberate versus accidental…

  14. Working memory as a moderator of training and transfer of analogical reasoning in children

    NARCIS (Netherlands)

    Stevenson, C.E.; Heiser, W.J.; Resing, W.C.M.

    Working memory is related to children's ability to solve analogies and other inductive reasoning tasks. The aim of this study was to examine whether working memory also plays a role in training and transfer effects of inductive reasoning in the context of a short training procedure within a

  15. Induction heating of thin metal plates in time-varying external magnetic field solved as nonlinear hard-coupled problem

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Kropík, P.; Ulrych, B.

    2013-01-01

    Roč. 219, č. 13 (2013), s. 7159-7169 ISSN 0096-3003 R&D Projects: GA ČR GA102/09/1305 Grant - others:GA MŠk(CZ) MEB051041 Institutional support: RVO:61388998 Keywords : induction heating * electric field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.600, year: 2013 http://www.sciencedirect.com/science/article/pii/S0096300311010824

  16. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    International Nuclear Information System (INIS)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa

    2015-01-01

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well

  17. Reasoning, Problem Solving, and Intelligence.

    Science.gov (United States)

    1980-04-01

    Williams (1972). 3. Classifications, e.g., "Which of the following words does not belong with the others? CAT, ELEPHANT, UNICORN , WOLF...CIRCLE : SHAPE), (STRONG :: POOR : RICH), (SMALL GARDEN : GROW ), (HEALTH :: SOLID : FIRM) Numbers of answer options ranged from two to four. Adult

  18. A longitudinal study of higher-order thinking skills: working memory and fluid reasoning in childhood enhance complex problem solving in adolescence

    Science.gov (United States)

    Greiff, Samuel; Wüstenberg, Sascha; Goetz, Thomas; Vainikainen, Mari-Pauliina; Hautamäki, Jarkko; Bornstein, Marc H.

    2015-01-01

    Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving skills. However, few studies have employed higher-order thinking skills such as complex problem solving (CPS) as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex). We assessed working memory (WM) and fluid reasoning (FR) at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students’ CPS performance 3 years later as a developmental outcome (N = 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male). Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that FR was a strong predictor of both CPS dimensions, whereas WM exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves FR and, to a lesser extent, WM in childhood and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence. PMID:26283992

  19. A longitudinal study of higher-order thinking skills: working memory and fluid reasoning in childhood enhance complex problem solving in adolescence.

    Science.gov (United States)

    Greiff, Samuel; Wüstenberg, Sascha; Goetz, Thomas; Vainikainen, Mari-Pauliina; Hautamäki, Jarkko; Bornstein, Marc H

    2015-01-01

    Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving skills. However, few studies have employed higher-order thinking skills such as complex problem solving (CPS) as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex). We assessed working memory (WM) and fluid reasoning (FR) at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students' CPS performance 3 years later as a developmental outcome (N = 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male). Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that FR was a strong predictor of both CPS dimensions, whereas WM exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves FR and, to a lesser extent, WM in childhood and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence.

  20. Inductive reasoning in the context of discovery: Analogy as an experimental stratagem in the history and philosophy of science.

    Science.gov (United States)

    Fisher, Amy A

    2018-06-01

    Building on Norton's "material theory of induction," this paper shows through careful historical analysis that analogy can act as a methodological principle or stratagem, providing experimentalists with a useful framework to assess data and devise novel experiments. Although this particular case study focuses on late eighteenth and early nineteenth-century experiments on the properties and composition of acids, the results of this investigation may be extended and applied to other research programs. A stage in-between what Steinle calls "exploratory experimentation" and robust theory, I argue that analogy encouraged research to substantiate why the likenesses should outweigh the differences (or vice versa) when evaluating results and designing experiments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Reasoning Ability and Academic Achievement among Secondary School Students in Trivandrum

    Science.gov (United States)

    Rani, K. V.

    2017-01-01

    Reasoning ability is the 'problem solving skills' or 'analytical ability' or 'deductive and inductive reasoning'. Academic achievement is the total score one achieved at school, college, or university from class, laboratory, library, or field work. The objectives of the study were to explore the relationship between reasoning ability and academic…

  2. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Inductive reasoning in description logics

    CSIR Research Space (South Africa)

    Halland, K

    2008-11-01

    Full Text Available . The greater density to the right of 0 indicates Discover outperforming regular Baum-Welch training. In the above, 250 models were used, each with 7 states. work will seek to produce a hybrid structure discovery algo- rithm, combining the strengths...@gmail.com, tapamoj@ukzn.ac.za Abstract The Baum-Welch algorithm for training Hidden Markov Models requires model topology and initial parameters to be specified, and iteratively improves model parameters. Some- times prior knowledge of the process being modelled...

  4. How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end.

    Science.gov (United States)

    Terribile, L C; Diniz-Filho, J A F; De Marco, P

    2010-05-01

    The use of ecological niche models (ENM) to generate potential geographic distributions of species has rapidly increased in ecology, conservation and evolutionary biology. Many methods are available and the most used are Maximum Entropy Method (MAXENT) and the Genetic Algorithm for Rule Set Production (GARP). Recent studies have shown that MAXENT perform better than GARP. Here we used the statistics methods of ROC - AUC (area under the Receiver Operating Characteristics curve) and bootstrap to evaluate the performance of GARP and MAXENT in generate potential distribution models for 39 species of New World coral snakes. We found that values of AUC for GARP ranged from 0.923 to 0.999, whereas those for MAXENT ranged from 0.877 to 0.999. On the whole, the differences in AUC were very small, but for 10 species GARP outperformed MAXENT. Means and standard deviations for 100 bootstrapped samples with sample sizes ranging from 3 to 30 species did not show any trends towards deviations from a zero difference in AUC values of GARP minus AUC values of MAXENT. Ours results suggest that further studies are still necessary to establish under which circumstances the statistical performance of the methods vary. However, it is also important to consider the possibility that this empirical inductive reasoning may fail in the end, because we almost certainly could not establish all potential scenarios generating variation in the relative performance of models.

  5. LETTERS AND COMMENTS: Comment on 'The effects of students' reasoning abilities on conceptual understanding and problem-solving skills in introductory mechanics'

    Science.gov (United States)

    Coletta, Vincent P.; Phillips, Jeffrey A.; Savinainen, Antti; Steinert, Jeffrey J.

    2008-09-01

    In a recent article, Ates and Cataloglu (2007 Eur. J. Phys. 28 1161-71), in analysing results for a course in introductory mechanics for prospective science teachers, found no statistically significant correlation between students' pre-instruction scores on the Lawson classroom test of scientific reasoning ability (CTSR) and post-instruction scores on the force concept inventory (FCI). As a possible explanation, the authors suggest that the FCI does not probe for skills required to determine reasoning abilities. Our previously published research directly contradicts the authors' finding. We summarize our research and present a likely explanation for their observation of no correlation.

  6. Heuristic Elements of Plausible Reasoning.

    Science.gov (United States)

    Dudczak, Craig A.

    At least some of the reasoning processes involved in argumentation rely on inferences which do not fit within the traditional categories of inductive or deductive reasoning. The reasoning processes involved in plausibility judgments have neither the formal certainty of deduction nor the imputed statistical probability of induction. When utilizing…

  7. Listen-Identify-Brainstorm-Reality-Test-Encourage (LIBRE) Problem-Solving Model: Addressing Special Education Teacher Attrition through a Cognitive-Behavioral Approach to Teacher Induction

    Science.gov (United States)

    Guerra, Norma S.; Hernandez, Art; Hector, Alison M.; Crosby, Shane

    2015-01-01

    Special education teacher attrition rates continue to challenge the profession. A cognitive-behavioral problem-solving approach was used to examine three alternative certification program special education teachers' professional development through a series of 41 interviews conducted over a 2-year period. Beginning when they were novice special…

  8. Building and Solving Odd-One-Out Classification Problems: A Systematic Approach

    Science.gov (United States)

    Ruiz, Philippe E.

    2011-01-01

    Classification problems ("find the odd-one-out") are frequently used as tests of inductive reasoning to evaluate human or animal intelligence. This paper introduces a systematic method for building the set of all possible classification problems, followed by a simple algorithm for solving the problems of the R-ASCM, a psychometric test derived…

  9. Speed of reasoning and its relation to reasoning ability

    NARCIS (Netherlands)

    Goldhammer, F.; Klein Entink, R.H.

    2011-01-01

    The study investigates empirical properties of reasoning speed which is conceived as the fluency of solving reasoning problems. Responses and response times in reasoning tasks are modeled jointly to clarify the covariance structure of reasoning speed and reasoning ability. To determine underlying

  10. Predicting Reasoning from Memory

    Science.gov (United States)

    Heit, Evan; Hayes, Brett K.

    2011-01-01

    In an effort to assess the relations between reasoning and memory, in 8 experiments, the authors examined how well responses on an inductive reasoning task are predicted from responses on a recognition memory task for the same picture stimuli. Across several experimental manipulations, such as varying study time, presentation frequency, and the…

  11. Model-Based Reasoning

    Science.gov (United States)

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  12. Application and Perspectives of Multiphase Induction Motors

    Directory of Open Access Journals (Sweden)

    Benas Kundrotas

    2012-04-01

    Full Text Available The article considers the areas of applying multiphase induction motors. Their advantages against three phase motors have become the main reason for employing them in multiphase drives. The paper deals with the six-phase induction motor having two similar three phase windings in the stator shifted by 30 degrees in space and three phase windings in the rotor. Differential equations for this motor are presented and transformed to dq synchronous reference frame. The transformed equations are expressed in a matrix form and solved by MATLAB software using the Dormand-Prince (ode45 method. The transient characteristics of the torque, speed and current of the six-phase induction motor are calculated and discussed.Article in Lithuanian

  13. Mathematical reasoning in Elementary School and Higher Education

    Directory of Open Access Journals (Sweden)

    Joana Mata-Pereira

    2012-12-01

    Full Text Available This paper analyzes the reasoning processes in mathematical tasks of two students in the 9th year of elementary school and two students in the second year of college. It also focuses the representation and meaningfulness, given their close relation with the mathematical reasoning. Results presented are based on two qualitative and interpretive studies which resort to several data sources. These results show that mastering of the algebraic language by the students in the 9th year is still insufficient to promptly solve the problems proposed, which does not occur with the college students though. All students use inductive initial strategies. However, one of the students in the 9th year and both college students revealed clearly their capability to reason deductively. The signification levels vary considerably, and several students have shown skills to build or mobilize relevant meanings. The model of analysis presented, articulating reasoning, representations and meaningfulness proved itself a promising tool to study the students’ reasoning processes.

  14. Cognitive Predictors of Everyday Problem Solving across the Lifespan.

    Science.gov (United States)

    Chen, Xi; Hertzog, Christopher; Park, Denise C

    2017-01-01

    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  15. Design for reasoning

    DEFF Research Database (Denmark)

    Christiansen, Ellen Tove

    2009-01-01

    The aim of this paper is to position interaction design and information architecture in relation to design of interfaces to ICT applications meant to serve the goal of supporting users’ reasoning, be it learning applications or self-service applications such as citizen self-service. Interaction...... with such applications comprises three forms of reasoning: deduction, induction and abduction. Based on the work of Gregory Bateson, it is suggested that the disciplines of interaction design and information architecture are complementary parts of information processes. To show that abduction, induction and deduction...

  16. Diagnostic reasoning strategies and diagnostic success.

    Science.gov (United States)

    Coderre, S; Mandin, H; Harasym, P H; Fick, G H

    2003-08-01

    Cognitive psychology research supports the notion that experts use mental frameworks or "schemes", both to organize knowledge in memory and to solve clinical problems. The central purpose of this study was to determine the relationship between problem-solving strategies and the likelihood of diagnostic success. Think-aloud protocols were collected to determine the diagnostic reasoning used by experts and non-experts when attempting to diagnose clinical presentations in gastroenterology. Using logistic regression analysis, the study found that there is a relationship between diagnostic reasoning strategy and the likelihood of diagnostic success. Compared to hypothetico-deductive reasoning, the odds of diagnostic success were significantly greater when subjects used the diagnostic strategies of pattern recognition and scheme-inductive reasoning. Two other factors emerged as independent determinants of diagnostic success: expertise and clinical presentation. Not surprisingly, experts outperformed novices, while the content area of the clinical cases in each of the four clinical presentations demonstrated varying degrees of difficulty and thus diagnostic success. These findings have significant implications for medical educators. It supports the introduction of "schemes" as a means of enhancing memory organization and improving diagnostic success.

  17. [Description of the mental processes occurring during clinical reasoning].

    Science.gov (United States)

    Pottier, P; Planchon, B

    2011-06-01

    Clinical reasoning is a highly complex system with multiple inter-dependent mental activities. Gaining a better understanding of those cognitive processes has two practical implications: for physicians, being able to analyse their own reasoning method may prove to be helpful in diagnostic dead end; for medical teachers, identifying problem-solving strategies used by medical students may foster an appropriate individual feed-back aiming at improving their clinical reasoning skills. On the basis of a detailed literature review, the main diagnostic strategies and their related pattern of mental processes are described and illustrated with a concrete example, going from the patient's complaint to the chosen solution. Inductive, abductive and deductive diagnostic approaches are detailed. Different strategies for collecting data (exhaustive or oriented) and for problem-building are described. The place of problem solving strategies such as pattern-recognition, scheme inductive process, using of clinical script, syndrome grouping and mental hypotheses test is considered. This work aims at breaking up mental activities in process within clinical reasoning reminding that expert reasoning is characterised by the ability to use and structure the whole of these activities in a coherent system, using combined strategies in order to guarantee a better accuracy of their diagnosis. Copyright © 2010 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  18. CONFLICTING REASONS

    OpenAIRE

    Parfit, Derek

    2016-01-01

    Sidgwick believed that, when impartial reasons conflict with self-interested reasons, there are no truths about their relative strength. There are such truths, I claim, but these truths are imprecise. Many self-interested reasons are decisively outweighed by conflicting impar-tial moral reasons. But we often have sufficient self-interested reasons to do what would make things go worse, and we sometimes have sufficient self-interested reasons to act wrongly. If we reject Act Consequentialism, ...

  19. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  20. Validity and reliability of the Inductive Reasoning Test for Children - IRTC Validade e precisão do Teste de Raciocínio Indutivo para Crianças - TRIC

    Directory of Open Access Journals (Sweden)

    Monalisa Muniz

    2012-01-01

    Full Text Available This study aimed to search for validity and reliability evidences for 'A and B Forms' of the Inductive Reasoning Test for Children - IRTC. A total of 417 students, both sexes, from 1st to 5th grade, between 6 and 11 years old participated of the study. 'A Form' was administered to 219 children and 'B Form' to 198. The investigation of the internal structure of both forms indicated that the correlations between the items may be explained by a single factor which is understood as inductive reasoning. Appropriate reliability by internal consistency was found, except for the 1st and 2nd grades, and regarding the latter, only on 'B Form'. The results also revealed the sensitivity of IRTC in showing differences in the performance of students attending early versus late grade levels. Despite the favorable data, after the reformulation of some items more research is needed, so that 'A and B Forms' are able to discriminate the performance of children in a greater number of grades.Esse estudo buscou evidências de validade e precisão para as Formas A e B do Teste de Raciocínio Indutivo para Crianças - TRIC. Participaram 417 alunos de 1ª a 5ª série, ambos os sexos e com idades entre 6 e 11 anos. A Forma A foi respondida por 219 crianças e a Forma B por 198. A investigação da estrutura interna das duas formas apontou que as correlações entre os itens podem ser explicadas por um único fator entendido como o raciocínio indutivo. As precisões por consistência interna encontradas foram adequadas, exceto para a primeira série e para a Forma B na segunda série. Os resultados também revelaram sensibilidade das formas do TRIC para diferenciar o desempenho entre as séries iniciais e finais. Apesar dos dados favoráveis, ainda são necessárias mais pesquisas para que as Formas A e B consigam discriminar o desempenho das crianças em um maior número de séries.

  1. Forward induction reasoning and correct beliefs

    NARCIS (Netherlands)

    Perea y Monsuwé, Andrés

    2017-01-01

    All equilibrium concepts implicitly make a correct beliefs assumption, stating that a player believes that his opponents are correct about his first-order beliefs. In this paper we show that in many dynamic games of interest, this correct beliefs assumption may be incompatible with a very basic form

  2. Analyzing Aptitudes for Learning: Inductive Reasoning.

    Science.gov (United States)

    Pellegrino, James W.; Glaser, Robert

    A major focus of the psychology of instruction is understanding and facilitating the changes in cognition and performance that occur as an individual moves from low to higher competence in a domain of knowledge and skill. A new program of research which examines the initial state of the learner as a component of this transition in competence is…

  3. Exploring mathematics problem-solving and proof

    CERN Document Server

    Grieser, Daniel

    2018-01-01

    Have you ever faced a mathematical problem and had no idea how to approach it? Or perhaps you had an idea but got stuck halfway through? This book guides you in developing your creativity, as it takes you on a voyage of discovery into mathematics. Readers will not only learn strategies for solving problems and logical reasoning, but they will also learn about the importance of proofs and various proof techniques. Other topics covered include recursion, mathematical induction, graphs, counting, elementary number theory, and the pigeonhole, extremal and invariance principles. Designed to help students make the transition from secondary school to university level, this book provides readers with a refreshing look at mathematics and deep insights into universal principles that are valuable far beyond the scope of this book. Aimed especially at undergraduate and secondary school students as well as teachers, this book will appeal to anyone interested in mathematics. Only basic secondary school mathematics is requi...

  4. Varieties of clinical reasoning.

    Science.gov (United States)

    Bolton, Jonathan W

    2015-06-01

    Clinical reasoning comprises a variety of different modes of inference. The modes that are practiced will be influenced by the sociological characteristics of the clinical settings and the tasks to be performed by the clinician. This article presents C.S. Peirce's typology of modes of inference: deduction, induction and abduction. It describes their differences and their roles as stages in scientific argument. The article applies the typology to reasoning in clinical settings. The article describes their differences, and their roles as stages in scientific argument. It then applies the typology to reasoning in typical clinical settings. Abduction is less commonly taught or discussed than induction and deduction. However, it is a common mode of inference in clinical settings, especially when the clinician must try to make sense of a surprising phenomenon. Whether abduction is followed up with deductive and inductive verification is strongly influenced by situational constraints and the cognitive and psychological stamina of the clinician. Recognizing the inevitability of abduction in clinical practice and its value to discovery is important to an accurate understanding of clinical reasoning. © 2015 John Wiley & Sons, Ltd.

  5. An Integrated Architecture for Engineering Problem Solving

    National Research Council Canada - National Science Library

    Pisan, Yusuf

    1998-01-01

    .... This thesis describes the Integrated Problem Solving Architecture (IPSA) that combines qualitative, quantitative and diagrammatic reasoning skills to produce annotated solutions to engineering problems...

  6. Logic, reasoning, and verbal behavior

    OpenAIRE

    Terrell, Dudley J.; Johnston, J. M.

    1989-01-01

    This paper analyzes the traditional concepts of logic and reasoning from the perspective of radical behaviorism and in the terms of Skinner's treatment of verbal behavior. The topics covered in this analysis include the proposition, premises and conclusions, logicality and rules, and deductive and inductive reasoning.

  7. Artificial intelligence: Deep neural reasoning

    Science.gov (United States)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  8. Toward a Unified Theory of Human Reasoning.

    Science.gov (United States)

    Sternberg, Robert J.

    1986-01-01

    The goal of this unified theory of human reasoning is to specify what constitutes reasoning and to characterize the psychological distinction between inductive and deductive reasoning. The theory views reasoning as the controlled and mediated application of three processes (encoding, comparison and selective combination) to inferential rules. (JAZ)

  9. Pertinent reasoning

    CSIR Research Space (South Africa)

    Britz, K

    2010-05-01

    Full Text Available In this paper the authors venture beyond one of the fundamental assumptions in the non-monotonic reasoning community, namely that non-monotonic entailment is supra-classical. They investigate reasoning which uses an infra-classical entailment...

  10. Case-based reasoning

    CERN Document Server

    Kolodner, Janet

    1993-01-01

    Case-based reasoning is one of the fastest growing areas in the field of knowledge-based systems and this book, authored by a leader in the field, is the first comprehensive text on the subject. Case-based reasoning systems are systems that store information about situations in their memory. As new problems arise, similar situations are searched out to help solve these problems. Problems are understood and inferences are made by finding the closest cases in memory, comparing and contrasting the problem with those cases, making inferences based on those comparisons, and asking questions whe

  11. Training propositional reasoning.

    Science.gov (United States)

    Klauer, K C; Meiser, T; Naumer, B

    2000-08-01

    Two experiments compared the effects of four training conditions on propositional reasoning. A syntactic training demonstrated formal derivations, in an abstract semantic training the standard truth-table definitions of logical connectives were explained, and a domain-specific semantic training provided thematic contexts for the premises of the reasoning task. In a control training, an inductive reasoning task was practised. In line with the account by mental models, both kinds of semantic training were significantly more effective than the control and the syntactic training, whereas there were no significant differences between the control and the syntactic training, nor between the two kinds of semantic training. Experiment 2 replicated this pattern of effects using a different set of syntactic and domain-specific training conditions.

  12. Labor Induction

    Science.gov (United States)

    f AQ FREQUENTLY ASKED QUESTIONS FAQ154 LABOR, DELIVERY, AND POSTPARTUM CARE Labor Induction • What is labor induction? • Why is labor induced? • What is the Bishop score? • What is “ripening ...

  13. Cognitive Success: Instrumental Justifications of Normative Systems of Reasoning

    Directory of Open Access Journals (Sweden)

    Gerhard eSchurz

    2014-07-01

    Full Text Available In the first part of the paper (sec. 1-4, I argue that Elqayam and Evan's (2011 distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological versus teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based versus a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5-7, I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general versus locally adaptive accounts of rationality. I argue that these are two independent distinctions should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve a dual account of rationality.

  14. Cognitive success: instrumental justifications of normative systems of reasoning

    Science.gov (United States)

    Schurz, Gerhard

    2014-01-01

    In the first part of the paper (sec. 1–4), I argue that Elqayam and Evan's (2011) distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological vs. teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based vs. a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5–7), I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general vs. locally adaptive accounts of rationality. I argue that these are two independent distinctions that should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological) rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve within a dual account of rationality. PMID:25071624

  15. Cognitive success: instrumental justifications of normative systems of reasoning.

    Science.gov (United States)

    Schurz, Gerhard

    2014-01-01

    In the first part of the paper (sec. 1-4), I argue that Elqayam and Evan's (2011) distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological vs. teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based vs. a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5-7), I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general vs. locally adaptive accounts of rationality. I argue that these are two independent distinctions that should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological) rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve within a dual account of rationality.

  16. Covariation of learning and "reasoning" abilities in mice: evolutionary conservation of the operations of intelligence.

    Science.gov (United States)

    Wass, Christopher; Denman-Brice, Alexander; Rios, Chris; Light, Kenneth R; Kolata, Stefan; Smith, Andrew M; Matzel, Louis D

    2012-04-01

    Contemporary descriptions of human intelligence hold that this trait influences a broad range of cognitive abilities, including learning, attention, and reasoning. Like humans, individual genetically heterogeneous mice express a "general" cognitive trait that influences performance across a diverse array of learning and attentional tasks, and it has been suggested that this trait is qualitatively and structurally analogous to general intelligence in humans. However, the hallmark of human intelligence is the ability to use various forms of "reasoning" to support solutions to novel problems. Here, we find that genetically heterogeneous mice are capable of solving problems that are nominally indicative of inductive and deductive forms of reasoning, and that individuals' capacity for reasoning covaries with more general learning abilities. Mice were characterized for their general learning ability as determined by their aggregate performance (derived from principal component analysis) across a battery of five diverse learning tasks. These animals were then assessed on prototypic tests indicative of deductive reasoning (inferring the meaning of a novel item by exclusion, i.e., "fast mapping") and inductive reasoning (execution of an efficient search strategy in a binary decision tree). The animals exhibited systematic abilities on each of these nominal reasoning tasks that were predicted by their aggregate performance on the battery of learning tasks. These results suggest that the coregulation of reasoning and general learning performance in genetically heterogeneous mice form a core cognitive trait that is analogous to human intelligence. (c) 2012 APA, all rights reserved.

  17. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  18. Two kinds of reasoning.

    Science.gov (United States)

    Rips, L J

    2001-03-01

    According to one view of reasoning, people can evaluate arguments in at least two qualitatively different ways: in terms of their deductive correctness and in terms of their inductive strength. According to a second view, assessments of both correctness and strength are a function of an argument's position on a single psychological continuum (e.g., subjective conditional probability). A deductively correct argument is one with the maximum value on this continuum; a strong argument is one with a high value. The present experiment tested these theories by asking participants to evaluate the same set of arguments for correctness and strength. The results produced an interaction between type of argument and instructions: In some conditions, participants judged one argument deductively correct more often than a second, but judged the second argument inductively strong more often than the first. This finding supports the view that people have distinct ways to evaluate arguments.

  19. Young doctors' problem solving strategies on call may be improved.

    Science.gov (United States)

    Michelsen, Jens; Malchow-Møller, Axel; Charles, Peder; Eika, Berit

    2013-03-01

    The first year following graduation from medical school is challenging as learning from books changes to workplace-based learning. Analysis and reflection on experience may ease this transition. We used Significant Event Analysis (SEA) as a tool to explore what pre-registration house officers (PRHOs) consider successful and problematic events, and to identify what problem-solving strategies they employ. A senior house officer systematically led the PRHO through the SEA of one successful and one problematic event following a night call. The PRHO wrote answers to questions about diagnosis, what happened, how he or she contributed and what knowledge-gaining activities the PRHO would prioritise before the next call. By using an inductive, thematic data analysis, we identified five problem-solving strategies: non-analytical reasoning, analytical reasoning, communication with patients, communication with colleagues and professional behaviour. On average, 1.5 strategies were used in the successful events and 1.2 strategies in the problematic events. Most PRHOs were unable to suggest activities other than reading textbooks. SEA was valuable for the identification of PRHOs' problem-solving strategies in a natural setting. PRHOs should be assisted in increasing their repertoire of strategies, and they should also be helped to "learn to learn" as they were largely unable to point to new learning strategies. not relevant. not relevant.

  20. Proportional reasoning

    DEFF Research Database (Denmark)

    Dole, Shelley; Hilton, Annette; Hilton, Geoff

    2015-01-01

    Proportional reasoning is widely acknowledged as a key to success in school mathematics, yet students’ continual difficulties with proportion-related tasks are well documented. This paper draws on a large research study that aimed to support 4th to 9th grade teachers to design and implement tasks...

  1. Verbal Reasoning

    Science.gov (United States)

    1992-08-31

    Psicologia , 4(3), 183-198. 94 Guyote, M.J. and Sternberg, R.J. (1981). A transitive-chain theory of syllogistic reasoning. Cognitive Psychology, 13(4), 461...personal connections. Journal of Social Psychology, 20, 39-59. Newell, A. (1990). Unified Theories of Cognition. Cambridge, Massachusetts: Harvard

  2. Diagrammatic Reasoning

    DEFF Research Database (Denmark)

    Tylén, Kristian; Fusaroli, Riccardo; Stege Bjørndahl, Johanne

    2015-01-01

    of representational artifacts for purposes of thinking and communicating is discussed in relation to C.S. Peirce’s notion of diagrammatical reasoning. We propose to extend Peirce’s original ideas and sketch a conceptual framework that delineates different kinds of diagram manipulation: Sometimes diagrams...

  3. Case-based reasoning a concise introduction

    CERN Document Server

    López, Beatriz

    2013-01-01

    Case-based reasoning is a methodology with a long tradition in artificial intelligence that brings together reasoning and machine learning techniques to solve problems based on past experiences or cases. Given a problem to be solved, reasoning involves the use of methods to retrieve similar past cases in order to reuse their solution for the problem at hand. Once the problem has been solved, learning methods can be applied to improve the knowledge based on past experiences. In spite of being a broad methodology applied in industry and services, case-based reasoning has often been forgotten in

  4. Reasoning about Codata

    Science.gov (United States)

    Hinze, Ralf

    Programmers happily use induction to prove properties of recursive programs. To show properties of corecursive programs they employ coinduction, but perhaps less enthusiastically. Coinduction is often considered a rather low-level proof method, in particular, as it departs quite radically from equational reasoning. Corecursive programs are conveniently defined using recursion equations. Suitably restricted, these equations possess unique solutions. Uniqueness gives rise to a simple and attractive proof technique, which essentially brings equational reasoning to the coworld. We illustrate the approach using two major examples: streams and infinite binary trees. Both coinductive types exhibit a rich structure: they are applicative functors or idioms, and they can be seen as memo-tables or tabulations. We show that definitions and calculations benefit immensely from this additional structure.

  5. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    Science.gov (United States)

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  6. Meta-Reasoning: Monitoring and Control of Thinking and Reasoning.

    Science.gov (United States)

    Ackerman, Rakefet; Thompson, Valerie A

    2017-08-01

    Meta-Reasoning refers to the processes that monitor the progress of our reasoning and problem-solving activities and regulate the time and effort devoted to them. Monitoring processes are usually experienced as feelings of certainty or uncertainty about how well a process has, or will, unfold. These feelings are based on heuristic cues, which are not necessarily reliable. Nevertheless, we rely on these feelings of (un)certainty to regulate our mental effort. Most metacognitive research has focused on memorization and knowledge retrieval, with little attention paid to more complex processes, such as reasoning and problem solving. In that context, we recently developed a Meta-Reasoning framework, used here to review existing findings, consider their consequences, and frame questions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Teacher induction

    NARCIS (Netherlands)

    Beijaard, D.; Buitink, J.; Kessels, C.; Peterson, P.; Baker, E.; McGraw, B.

    2010-01-01

    Teacher induction programs are intended to support the professional development of beginning teachers and thereby contribute to the reduction of teacher attrition during the early teaching years. Teacher induction programs are often based upon a deficit model with a focus on the better organization

  8. Case-Based FCTF Reasoning System

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-10-01

    Full Text Available Case-based reasoning uses old information to infer the answer of new problems. In case-based reasoning, a reasoner firstly records the previous cases, then searches the previous case list that is similar to the current one and uses that to solve the new case. Case-based reasoning means adapting old solving solutions to new situations. This paper proposes a reasoning system based on the case-based reasoning method. To begin, we show the theoretical structure and algorithm of from coarse to fine (FCTF reasoning system, and then demonstrate that it is possible to successfully learn and reason new information. Finally, we use our system to predict practical weather conditions based on previous ones and experiments show that the prediction accuracy increases with further learning of the FCTF reasoning system.

  9. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  10. Heuristic reasoning

    CERN Document Server

    2015-01-01

    How can we advance knowledge? Which methods do we need in order to make new discoveries? How can we rationally evaluate, reconstruct and offer discoveries as a means of improving the ‘method’ of discovery itself? And how can we use findings about scientific discovery to boost funding policies, thus fostering a deeper impact of scientific discovery itself? The respective chapters in this book provide readers with answers to these questions. They focus on a set of issues that are essential to the development of types of reasoning for advancing knowledge, such as models for both revolutionary findings and paradigm shifts; ways of rationally addressing scientific disagreement, e.g. when a revolutionary discovery sparks considerable disagreement inside the scientific community; frameworks for both discovery and inference methods; and heuristics for economics and the social sciences.

  11. Expert Causal Reasoning and Explanation.

    Science.gov (United States)

    Kuipers, Benjamin

    The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…

  12. Practicing induction:

    DEFF Research Database (Denmark)

    Sprogøe, Jonas; Rohde, Nicolas

    2009-01-01

    We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning.......We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning....

  13. Identifying Kinds of Reasoning in Collective Argumentation

    Science.gov (United States)

    Conner, AnnaMarie; Singletary, Laura M.; Smith, Ryan C.; Wagner, Patty Anne; Francisco, Richard T.

    2014-01-01

    We combine Peirce's rule, case, and result with Toulmin's data, claim, and warrant to differentiate between deductive, inductive, abductive, and analogical reasoning within collective argumentation. In this theoretical article, we illustrate these kinds of reasoning in episodes of collective argumentation using examples from one…

  14. A dynamic model of reasoning and memory.

    Science.gov (United States)

    Hawkins, Guy E; Hayes, Brett K; Heit, Evan

    2016-02-01

    Previous models of category-based induction have neglected how the process of induction unfolds over time. We conceive of induction as a dynamic process and provide the first fine-grained examination of the distribution of response times observed in inductive reasoning. We used these data to develop and empirically test the first major quantitative modeling scheme that simultaneously accounts for inductive decisions and their time course. The model assumes that knowledge of similarity relations among novel test probes and items stored in memory drive an accumulation-to-bound sequential sampling process: Test probes with high similarity to studied exemplars are more likely to trigger a generalization response, and more rapidly, than items with low exemplar similarity. We contrast data and model predictions for inductive decisions with a recognition memory task using a common stimulus set. Hierarchical Bayesian analyses across 2 experiments demonstrated that inductive reasoning and recognition memory primarily differ in the threshold to trigger a decision: Observers required less evidence to make a property generalization judgment (induction) than an identity statement about a previously studied item (recognition). Experiment 1 and a condition emphasizing decision speed in Experiment 2 also found evidence that inductive decisions use lower quality similarity-based information than recognition. The findings suggest that induction might represent a less cautious form of recognition. We conclude that sequential sampling models grounded in exemplar-based similarity, combined with hierarchical Bayesian analysis, provide a more fine-grained and informative analysis of the processes involved in inductive reasoning than is possible solely through examination of choice data. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  15. Mathematical mechanic using physical reasoning to solve problems

    CERN Document Server

    Levi, Mark

    2009-01-01

    Everybody knows that mathematics is indispensable to physics--imagine where we'd be today if Einstein and Newton didn't have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist. Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can

  16. Didactical Handling of Students' Reasoning Processes in Problem Solving Situations

    Science.gov (United States)

    Brousseau, Guy; Gibel, Patrick

    2005-01-01

    In this paper, we analyze an investigative situation proposed to a class of 5th graders in a primary school. The situation is based on the following task: In a sale with group rates on a sliding scale, the students must find the lowest possible purchase price for a given number of tickets. A study of students' arguments made it possible to…

  17. Back of the Envelope Reasoning for Robust Quantitative Problem Solving

    Science.gov (United States)

    2007-12-31

    limited numeric vocabulary, for example, the Pirahã tribe in Amazonia [Gordon, 2004] and Munduruku [Pica et al., 2004], an Amazonian language... investigation of category structure: 1. Level of categorization: Rosch [1978] identifies three levels of categorization: subordinate, basic-level...Using Common Sense Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks. AI Magazine . Lenhart K. Schubert and Matthew Tong

  18. Induction practice -

    DEFF Research Database (Denmark)

    Rohde, Nicolas; Sprogøe, Jonas

    2007-01-01

    that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and the organization, what we call agenerative dance, ignites both kinds of learning. We focus on and describe the interplay , ignites both kinds...

  19. The Pursuit of Understanding in Clinical Reasoning.

    Science.gov (United States)

    Feltovich, Paul J.; Patel, Vimla L.

    Trends in emphases in the study of clinical reasoning are examined, with attention to three major branches of research: problem-solving, knowledge engineering, and propositional analysis. There has been a general progression from a focus on the generic form of clinical reasoning to an emphasis on medical content that supports the reasoning…

  20. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...... presents a combined numerical and experimental method for determination of appropriate/optimiged coil geometry and position in induction brazing tube-to-plate joints of different ratios between tube and plate thickness and different combinations of the materials stainless steel, brass and copper....... The method has proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel. A new design of an adjustable flux concentrator for induction heating tube-to-plate joints is proposed and tested on a variety...

  1. Induction generator models in dynamic simulation tools

    DEFF Research Database (Denmark)

    Knudsen, Hans; Akhmatov, Vladislav

    1999-01-01

    For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...

  2. Inductive logic on conceptual spaces

    NARCIS (Netherlands)

    Sznajder, Marta

    2017-01-01

    This thesis investigates the question of how conceptual frameworks influence inductive reasoning. A conceptual framework is a collection of concepts used for a particular purpose; we can think of it as a semantic environment in which observations, or evidence, are recorded, and beliefs are formed

  3. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana

    2012-01-01

    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  4. The Unified Problem-Solving Method Development Language UPML

    OpenAIRE

    Fensel, Dieter; Motta, Enrico; van Harmelen, Frank; Benjamins, V. Richard; Crubezy, Monica; Decker, Stefan; Gaspari, Mauro; Groenboom, Rix; Grosso, William; Musen, Mark; Plaza, Enric; Schreiber, Guus; Studer, Rudi; Wielinga, Bob

    2003-01-01

    Problem-solving methods provide reusable architectures and components for implementing the reasoning part of knowledge-based systems. The UNIFIED PROBLEM-SOLVING METHOD DESCRIPTION LANGUAGE (UPML) has been developed to describe and implement such architectures and components to facilitate their semi-automatic reuse and adaptation. In a nutshell, UPML is a framework for developing knowledge-intensive reasoning systems based on libraries ofg eneric problem-solving components. The paper describe...

  5. Logic, probability, and human reasoning.

    Science.gov (United States)

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Priming analogical reasoning with false memories.

    Science.gov (United States)

    Howe, Mark L; Garner, Sarah R; Threadgold, Emma; Ball, Linden J

    2015-08-01

    Like true memories, false memories are capable of priming answers to insight-based problems. Recent research has attempted to extend this paradigm to more advanced problem-solving tasks, including those involving verbal analogical reasoning. However, these experiments are constrained inasmuch as problem solutions could be generated via spreading activation mechanisms (much like false memories themselves) rather than using complex reasoning processes. In three experiments we examined false memory priming of complex analogical reasoning tasks in the absence of simple semantic associations. In Experiment 1, we demonstrated the robustness of false memory priming in analogical reasoning when backward associative strength among the problem terms was eliminated. In Experiments 2a and 2b, we extended these findings by demonstrating priming on newly created homonym analogies that can only be solved by inhibiting semantic associations within the analogy. Overall, the findings of the present experiments provide evidence that the efficacy of false memory priming extends to complex analogical reasoning problems.

  7. Defeasibility in Legal Reasoning

    OpenAIRE

    SARTOR, Giovanni

    2009-01-01

    I shall first introduce the idea of reasoning, and of defeasible reasoning in particular. I shall then argue that cognitive agents need to engage in defeasible reasoning for coping with a complex and changing environment. Consequently, defeasibility is needed in practical reasoning, and in particular in legal reasoning

  8. Recruiting Unmotivated Smokers into a Smoking Induction Trial

    Science.gov (United States)

    Harris, Kari Jo; Bradley-Ewing, Andrea; Goggin, Kathy; Richter, Kimber P.; Patten, Christi; Williams, Karen; Lee, Hyoung S.; Staggs, Vincent S.; Catley, Delwyn

    2016-01-01

    Little is known about effective methods to recruit unmotivated smokers into cessation induction trials, the reasons unmotivated smokers agree to participate, and the impact of those reasons on study outcomes. A mixed-method approach was used to examine recruitment data from a randomized controlled cessation induction trial that enrolled 255 adult…

  9. Causal reasoning with mental models

    Science.gov (United States)

    Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398

  10. Causal reasoning with mental models.

    Science.gov (United States)

    Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  11. Causal reasoning with mental models

    Directory of Open Access Journals (Sweden)

    Sangeet eKhemlani

    2014-10-01

    Full Text Available This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  12. Pisa Question and Reasoning Skill

    Directory of Open Access Journals (Sweden)

    Ersoy Esen

    2017-01-01

    Full Text Available The objective of the study is to determine the level of the reasoning skills of the secondary school students. This research has been conducted during the academic year of 2015-2016 with the participation of 51 students in total, from a province in the Black Sea region of Turkey by using random sampling method. Case study method has been used in this study, since it explains an existing situation. In this study, content analysis from the qualitative research methods was carried out. In order to ensure the validity of the scope, agreement percentage formula was used and expert opinions were sought.The problem named Holiday from the Chapter 1 of the normal units in Problem Solving Questions from PISA (Program for International Student Assessments [35] are used as the data collection tool for the study. The problem named Holiday consists of two questions. Applied problems were evaluated according to the mathematical reasoning stages of TIMSS (2003. The findings suggest that the students use proportional reasoning while solving the problems and use the geometric shapes to facilitate the solution of the problem. When they come across problems related to each other, it is observed that they create connections between the problems based on the results of the previous problem. In conclusion, the students perform crosscheck to ensure that their solutions to the problems are accurate.

  13. Analogical reasoning in schizophrenic delusions.

    Science.gov (United States)

    Simpson, Jane; Done, D John

    2004-09-01

    Reasoning ability has often been argued to be impaired in people with schizophrenic delusions, although evidence for this is far from convincing. This experiment examined the analogical reasoning abilities of several groups of patients, including non-deluded and deluded schizophrenics, to test the hypothesis that performance by the deluded schizophrenic group would be impaired. Eleven deluded schizophrenics, 10 depressed subjects, seven non-deluded schizophrenics and 16 matched non-psychiatric controls, who were matched on a number of key variables, were asked to solve an analogical reasoning task. Performance by the deluded schizophrenic group was certainly impaired when compared with the depressed and non-psychiatric control groups though less convincingly so when compared with the non-deluded schizophrenic group. The impairment shown by the deluded schizophrenic group seemed to occur at the initial stage of the reasoning task. The particular type of impairment shown by the deluded subjects was assessed in relation to other cognitive problems already researched and the implications of these problems on reasoning tasks and theories of delusions was discussed.

  14. Supporting Organizational Problem Solving with a Workstation.

    Science.gov (United States)

    1982-07-01

    G. [., and Sussman, G. J. AMORD: Explicit Control or Reasoning. In Proceedings of the Symposium on Artificial Intellignece and Programming Languagues...0505 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS 545...extending ideas from the field of Artificial Intelligence (A), we describ office work as a problem solving activity. A knowledge embedding language called

  15. Modeling and analysis with induction generators

    CERN Document Server

    Simões, M Godoy

    2014-01-01

    ForewordPrefaceAcknowledgmentsAuthorsPrinciples of Alternative Sources of Energy and Electric GenerationScope of This ChapterLegal DefinitionsPrinciples of Electrical ConversionBasic Definitions of Electrical PowerCharacteristics of Primary SourcesCharacteristics of Remote Industrial, Commercial, and Residential Sites and Rural EnergySelection of the Electric GeneratorInterfacing Primary Source, Generator, and LoadExample of a Simple Integrated Generating and Energy-Storing SystemSolved ProblemsSuggested ProblemsReferencesSteady-State Model of Induction GeneratorsScope of This ChapterInterconnection and Disconnection of the Electric Distribution NetworkRobustness of Induction GeneratorsClassical Steady-State Representation of the Asynchronous MachineGenerated PowerInduced TorqueRepresentation of Induction Generator LossesMeasurement of Induction Generator ParametersBlocked Rotor Test (s = 1)No-Load Test (s = 0)Features of Induction Machines Working as Generators Interconnected to the Distribution NetworkHigh-...

  16. Assessment of Abductive Reasoning in Strategy

    DEFF Research Database (Denmark)

    Guenther, Agnes; Garbuio, Massimo; Eisenbart, Boris

    Strategic tools and frameworks mostly analyse past developments to predict future potentials and rely primarily on deductive/inductive logics. While these logics help decision-makers, they limit the pool of strategic options; resulting strategies often lack novelty. Building on the idea that ‘good......’ and ‘bad’ strategies can be differentiated and that out-of-the-boxthinking creates novel strategies, we analyse differences in strategies’ underlying logics. We develop and test a coding scheme to assess reasoning, in particular abductive reasoning. Furthermore, we introduce the notion of observation set...... and show how analogies, anomalies and paradoxes prompt abductive reasoning and create strategic options....

  17. Gestalt Reasoning with Conjunctions and Disjunctions.

    Science.gov (United States)

    Dumitru, Magda L; Joergensen, Gitte H

    2016-01-01

    Reasoning, solving mathematical equations, or planning written and spoken sentences all must factor in stimuli perceptual properties. Indeed, thinking processes are inspired by and subsequently fitted to concrete objects and situations. It is therefore reasonable to expect that the mental representations evoked when people solve these seemingly abstract tasks should interact with the properties of the manipulated stimuli. Here, we investigated the mental representations evoked by conjunction and disjunction expressions in language-picture matching tasks. We hypothesised that, if these representations have been derived using key Gestalt principles, reasoners should use perceptual compatibility to gauge the goodness of fit between conjunction/disjunction descriptions (e.g., the purple and/ or the green) and corresponding binary visual displays. Indeed, the results of three experimental studies demonstrate that reasoners associate conjunction descriptions with perceptually-dependent stimuli and disjunction descriptions with perceptually-independent stimuli, where visual dependency status follows the key Gestalt principles of common fate, proximity, and similarity.

  18. Inductive acquisition of expert knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Muggleton, S.H.

    1986-01-01

    Expert systems divide neatly into two categories: those in which (1) the expert decisions result in changes to some external environment (control systems), and (2) the expert decisions merely seek to describe the environment (classification systems). Both the explanation of computer-based reasoning and the bottleneck (Feigenbaum, 1979) of knowledge acquisition are major issues in expert-systems research. The author contributed to these areas of research in two ways: 1. He implemented an expert-system shell, the Mugol environment, which facilitates knowledge acquisition by inductive inference and provides automatic explanation of run-time reasoning on demand. RuleMaster, a commercial version of this environment, was used to advantage industrially in the construction and testing of two large classification systems. 2. He investigated a new techniques called 'sequence induction' that can be used in construction of control systems. Sequence induction is based on theoretical work in grammatical learning. He improved existing grammatical learning algorithms as well as suggesting and theoretically characterizing new ones. These algorithms were successfully applied to acquisition of knowledge for a diverse set of control systems, including inductive construction of robot plans and chess end-gam strategies.

  19. Inductive Reasoning and (one of) the Foundations of Machine Learning

    OpenAIRE

    Balduzzi, David

    2015-01-01

    The failure of Good Old Fashioned AI in the 70s forced researchers in artificial intelligence to invent new ways of modeling intelligence and learning based on probability and optimization -- rather than logic and axioms. In this talk, I give an overview of the key ideas involved.

  20. Inductive, Analogical, and Communicative Generalization

    Directory of Open Access Journals (Sweden)

    Adri Smaling

    2003-03-01

    Full Text Available Three forms of inductive generalization - statistical generalization, variation-based generalization and theory-carried generalization - are insufficient concerning case-to-case generalization, which is a form of analogical generalization. The quality of case-to-case generalization needs to be reinforced by setting up explicit analogical argumentation. To evaluate analogical argumentation six criteria are discussed. Good analogical reasoning is an indispensable support to forms of communicative generalization - receptive and responsive (participative generalization — as well as exemplary generalization.

  1. Stimulating Mathematical Reasoning with Simple Open-Ended Tasks

    Science.gov (United States)

    West, John

    2018-01-01

    The importance of mathematical reasoning is unquestioned and providing opportunities for students to become involved in mathematical reasoning is paramount. The open-ended tasks presented incorporate mathematical content explored through the contexts of problem solving and reasoning. This article presents a number of simple tasks that may be…

  2. Stereotypical Reasoning: Logical Properties

    OpenAIRE

    Lehmann, Daniel

    2002-01-01

    Stereotypical reasoning assumes that the situation at hand is one of a kind and that it enjoys the properties generally associated with that kind of situation. It is one of the most basic forms of nonmonotonic reasoning. A formal model for stereotypical reasoning is proposed and the logical properties of this form of reasoning are studied. Stereotypical reasoning is shown to be cumulative under weak assumptions.

  3. A concept analysis of abductive reasoning.

    Science.gov (United States)

    Mirza, Noeman A; Akhtar-Danesh, Noori; Noesgaard, Charlotte; Martin, Lynn; Staples, Eric

    2014-09-01

    To describe an analysis of the concept of abductive reasoning. In the discipline of nursing, abductive reasoning has received only philosophical attention and remains a vague concept. In addition to deductive and inductive reasoning, abductive reasoning is not recognized even in prominent nursing knowledge development literature. Therefore, what abductive reasoning is and how it can inform nursing practice and education was explored. Concept analysis. Combinations of specific keywords were searched in Web of Science, CINAHL, PsychINFO, PubMed, Medline and EMBASE. The analysis was conducted in June 2012 and only literature before this period was included. No time limits were set. Rodger's evolutionary method for conducting concept analysis was used. Twelve records were included in the analysis. The most common surrogate term was retroduction, whereas related terms included intuition and pattern and similarity recognition. Antecedents consisted of a complex, puzzling situation and a clinician with creativity, experience and knowledge. Consequences included the formation of broad hypotheses that enhance understanding of care situations. Overall, abductive reasoning was described as the process of hypothesis or theory generation and evaluation. It was also viewed as inference to the best explanation. As a new approach, abductive reasoning could enhance reasoning abilities of novice clinicians. It can not only incorporate various ways of knowing but also its holistic approach to learning appears to be promising in problem-based learning. As nursing literature on abductive reasoning is predominantly philosophical, practical consequences of abductive reasoning warrant further research. © 2014 John Wiley & Sons Ltd.

  4. Teaching Creative Problem Solving.

    Science.gov (United States)

    Christensen, Kip W.; Martin, Loren

    1992-01-01

    Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)

  5. The effect of question format and task difficulty on reasoning strategies and diagnostic performance in Internal Medicine residents.

    Science.gov (United States)

    Heemskerk, Laura; Norman, Geoff; Chou, Sophia; Mintz, Marcy; Mandin, Henry; McLaughlin, Kevin

    2008-11-01

    Previous studies have suggested an association between reasoning strategies and diagnostic success, but the influence on this relationship of variables such as question format and task difficulty, has not been studied. Our objective was to study the association between question format, task difficulty, reasoning strategies and diagnostic success. Study participants were 13 Internal Medicine residents at the University of Calgary. Each was given eight problem-solving questions in four clinical presentations and were randomized to groups that differed only in the question format, such that a question presented as short answer (SA) to the first group was presented as extended matching (EM) to the second group. There were equal numbers of SA/EM questions and straightforward/difficult tasks. Participants performed think-aloud during diagnostic reasoning. Data were analyzed using multiple logistic regression. Question format was associated with reasoning strategies; hypothetico-deductive reasoning being used more frequently on EM questions and scheme-inductive reasoning on SA questions. For SA question, non-analytic reasoning alone was used more frequently to answer straightforward cases than difficult cases, whereas for EM questions no such association was observed. EM format and straightforward task increased the odds of diagnostic success, whereas hypothetico-deductive reasoning was associated with reduced odds of success. Question format and task difficulty both influence diagnostic reasoning strategies and studies that examine the effect of reasoning strategies on diagnostic success should control for these effects. Further studies are needed to investigate the effect of reasoning strategies on performance of different groups of learners.

  6. Operating of Small Wind Power Plants with Induction Generators

    OpenAIRE

    Jakub Nevrala; Stanislav Misak

    2008-01-01

    This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generator...

  7. Reasoning in people with obsessive-compulsive disorder.

    Science.gov (United States)

    Simpson, Jane; Cove, Jennifer; Fineberg, Naomi; Msetfi, Rachel M; J Ball, Linden

    2007-11-01

    The aim of this study was to investigate the inductive and deductive reasoning abilities of people with obsessive-compulsive disorder (OCD). Following previous research, it was predicted that people with OCD would show different abilities on inductive reasoning tasks but similar abilities to controls on deductive reasoning tasks. A two-group comparison was used with both groups matched on a range of demographic variables. Where appropriate, unmatched variables were entered into the analyses as covariates. Twenty-three people with OCD and 25 control participants were assessed on two tasks: an inductive reasoning task (the 20-questions task) and a deductive reasoning task (a syllogistic reasoning task with a content-neutral and content-emotional manipulation). While no group differences emerged on several of the parameters of the inductive reasoning task, the OCD group did differ on one, and arguably the most important, parameter by asking fewer correct direct-hypothesis questions. The syllogistic reasoning task results were analysed using both correct response and conclusion acceptance data. While no main effects of group were evident, significant interactions indicated important differences in the way the OCD group reasoned with content neutral and emotional syllogisms. It was argued that the OCD group's patterns of response on both tasks were characterized by the need for more information, states of uncertainty, and doubt and postponement of a final decision.

  8. Emergent Leadership in Children's Cooperative Problem Solving Groups

    Science.gov (United States)

    Sun, Jingjng; Anderson, Richard C.; Perry, Michelle; Lin, Tzu-Jung

    2017-01-01

    Social skills involved in leadership were examined in a problem-solving activity in which 252 Chinese 5th-graders worked in small groups on a spatial-reasoning puzzle. Results showed that students who engaged in peer-managed small-group discussions of stories prior to problem solving produced significantly better solutions and initiated…

  9. Glogs as Non-Routine Problem Solving Tools in Mathematics

    Science.gov (United States)

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  10. High School Students' Use of Meiosis When Solving Genetics Problems.

    Science.gov (United States)

    Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy

    2001-01-01

    Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…

  11. Extricating Justification Scheme Theory in Middle School Mathematical Problem Solving

    Science.gov (United States)

    Matteson, Shirley; Capraro, Mary Margaret; Capraro, Robert M.; Lincoln, Yvonna S.

    2012-01-01

    Twenty middle grades students were interviewed to gain insights into their reasoning about problem-solving strategies using a Problem Solving Justification Scheme as our theoretical lens and the basis for our analysis. The scheme was modified from the work of Harel and Sowder (1998) making it more broadly applicable and accounting for research…

  12. Is Word-Problem Solving a Form of Text Comprehension?

    Science.gov (United States)

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study's hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of…

  13. BACKWARD INDUCTION: MERITS AND FLAWS

    Directory of Open Access Journals (Sweden)

    Kamiński Marek M.

    2017-06-01

    Full Text Available Backward induction (BI was one of the earliest methods developed for solving finite sequential games with perfect information. It proved to be especially useful in the context of Tom Schelling’s ideas of credible versus incredible threats. BI can be also extended to solve complex games that include an infinite number of actions or an infinite number of periods. However, some more complex empirical or experimental predictions remain dramatically at odds with theoretical predictions obtained by BI. The primary example of such a troublesome game is Centipede. The problems appear in other long games with sufficiently complex structure. BI also shares the problems of subgame perfect equilibrium and fails to eliminate certain unreasonable Nash equilibria.

  14. Development of Students’ Informal Reasoning across School Level

    Directory of Open Access Journals (Sweden)

    Ari Widodo

    2017-08-01

    Full Text Available Informal reasoning is the basic reasoning frequently used by most people to solve complex daily life problems. Unlike scientific reasoning, informal reasoning includes cognitive and affective processes that the types of reasoning can be intuitive, emotive and rational. This cross sectional study describes the development of students’ informal reasoning at elementary school, junior high school, and senior high school. Moreover, the study also identifies differences between boys and girls reasoning. Participants are 20 elementary school students, 30 junior high school students, and 30 high school students who attend schools managed by the same foundation. Data were collected using five items test on issues found in everyday life. Students’ responses were grouped into intuitive, emotive, or rational reasoning. The results suggest that students’ informal reasoning tend to develop parallel to the school grade. Related to gender, the study finds that girls tend to use rational reasoning while boys tend to use intuitive reasoning.

  15. Teaching for Ethical Reasoning

    Science.gov (United States)

    Sternberg, Robert J.

    2012-01-01

    This article argues for the importance of teaching for ethical reasoning. Much of our teaching is in vain if it is not applied to life in an ethical manner. The article reviews lapses in ethical reasoning and the great costs they have had for society. It proposes that ethical reasoning can be taught across the curriculum. It presents an eight-step…

  16. How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving

    OpenAIRE

    Balasubrahmanya Hegde; B. N. Meera

    2012-01-01

    A perceived difficulty is associated with physics problem solving from a learner’s viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students’ thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student interviews. Design of appropriate scaffoldings serves as pointers to the identification of student problem solving difficulties. An analysis of the results ...

  17. How Do They Solve It? An Insight into the Learner's Approach to the Mechanism of Physics Problem Solving

    Science.gov (United States)

    Hegde, Balasubrahmanya; Meera, B. N.

    2012-01-01

    A perceived difficulty is associated with physics problem solving from a learner's viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students' thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student…

  18. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  19. Solving Environmental Problems

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph

    2017-01-01

    for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...

  20. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  1. Reasoning and autobiographical memory for personality.

    Science.gov (United States)

    Fumero, Ascensión; Santamaría, Carlos; Johnson-Laird, P N

    2010-01-01

    Certain problems are ambiguous and allow deductive or inductive conclusions, for example, If you follow this diet then you lose weight. Ann did not lose weight. Why not? Conscientious individuals who are less open to experience should focus on possibilities consistent with the premises, and make a deduction: Ann did not follow this diet. But, those who are open to experience and not conscientious should go beyond these possibilities, and make an induction, for example, Ann gave up exercising. In an experiment, a group who recalled autobiographical episodes in which they were conscientious and not open to experience made more deductions than a group who recalled episodes in which they had the opposite characteristics. A control group made about equal proportions of deductions and inductions. These results were predicted by the theory that reasoners envisage possibilities, and can focus on those possibilities consistent with the premises or on possibilities outside the premises.

  2. Brain Imaging, Forward Inference, and Theories of Reasoning

    Science.gov (United States)

    Heit, Evan

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  3. Brain imaging, forward inference, and theories of reasoning.

    Science.gov (United States)

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  4. Using qualitative problem-solving strategies to highlight the role of conceptual knowledge in solving problems

    Science.gov (United States)

    Leonard, William J.; Dufresne, Robert J.; Mestre, Jose P.

    1996-12-01

    We report on the use of qualitative problem-solving strategies in teaching an introductory, calculus-based physics course as a means of highlighting the role played by conceptual knowledge in solving problems. We found that presenting strategies during lectures and in homework solutions provides an excellent opportunity to model for students the type of concept-based, qualitative reasoning that is valued in our profession, and that student-generated strategies serve a diagnostic function by providing instructors with insights on students' conceptual understanding and reasoning. Finally, we found strategies to be effective pedagogical tools for helping students both to identify principles that could be applied to solve specific problems, as well as to recall the major principles covered in the course months after it was over.

  5. Introspection in Problem Solving

    Science.gov (United States)

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  6. Problem Solving in Practice

    Science.gov (United States)

    Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia

    2017-01-01

    Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…

  7. Solving Linear Differential Equations

    NARCIS (Netherlands)

    Nguyen, K.A.; Put, M. van der

    2010-01-01

    The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend

  8. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  9. Electric Current Solves Mazes

    Science.gov (United States)

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  10. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  11. On Solving Linear Recurrences

    Science.gov (United States)

    Dobbs, David E.

    2013-01-01

    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  12. A Philosophical Treatise of Universal Induction

    Directory of Open Access Journals (Sweden)

    Samuel Rathmanner

    2011-06-01

    Full Text Available Understanding inductive reasoning is a problem that has engaged mankind for thousands of years. This problem is relevant to a wide range of fields and is integral to the philosophy of science. It has been tackled by many great minds ranging from philosophers to scientists to mathematicians, and more recently computer scientists. In this article we argue the case for Solomonoff Induction, a formal inductive framework which combines algorithmic information theory with the Bayesian framework. Although it achieves excellent theoretical results and is based on solid philosophical foundations, the requisite technical knowledge necessary for understanding this framework has caused it to remain largely unknown and unappreciated in the wider scientific community. The main contribution of this article is to convey Solomonoff induction and its related concepts in a generally accessible form with the aim of bridging this current technical gap. In the process we examine the major historical contributions that have led to the formulation of Solomonoff Induction as well as criticisms of Solomonoff and induction in general. In particular we examine how Solomonoff induction addresses many issues that have plagued other inductive systems, such as the black ravens paradox and the confirmation problem, and compare this approach with other recent approaches.

  13. Toward Solving the Problem of Problem Solving: An Analysis Framework

    Science.gov (United States)

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  14. Learning and case-based reasoning for faults diagnosis-aiding in nuclear power plants

    International Nuclear Information System (INIS)

    Nicolini, C.

    1998-01-01

    The aim of this thesis is the design of a faults diagnosis-aiding system in a nuclear facility of the Cea. Actually the existing system allows the optimization of the production processes in regular operating conditions. Meanwhile during accidental events, the alarms, managed by threshold, are bringing no relevant information. To increase the reliability and the safety, the human operator needs a faults diagnosis-aiding system. The developed system, SECAPI, combines problem solving techniques and automatic learning techniques, that allow the diagnosis and the the simulation of various faults happening on nuclear facilities. Its reasoning principle uses case-based and rules-based techniques. SECAPI owns a learning module which reads out knowledge connected with faults. It can then simulate various faults, using the inductive logical computing. SECAPI has been applied on a radioactive tritium treatment operating channel, at the Cea with good results. (A.L.B.)

  15. Public Reason Renaturalized

    DEFF Research Database (Denmark)

    Tønder, Lars

    2014-01-01

    . The article develops this argument via a sensorial orientation to politics that not only re-frames existing critiques of neo-Kantianism but also includes an alternative, renaturalized conception of public reason, one that allows us to overcome the disconnect between the account we give of reason and the way......This article takes up recent discussions of nature and the sensorium in order to rethink public reason in deeply divided societies. The aim is not to reject the role of reason-giving but rather to infuse it with new meaning, bringing the reasonable back to its sensorially inflected circumstances...... it is mobilized in a world of deep pluralism. The article concludes with a discussion of how a renaturalized conception of public reason might change the positioning of contemporary democratic theory vis-a-vis the struggle for empowerment and pluralization in an age of neo-liberalism and state-surveillance....

  16. Learning clinical reasoning.

    Science.gov (United States)

    Pinnock, Ralph; Welch, Paul

    2014-04-01

    Errors in clinical reasoning continue to account for significant morbidity and mortality, despite evidence-based guidelines and improved technology. Experts in clinical reasoning often use unconscious cognitive processes that they are not aware of unless they explain how they are thinking. Understanding the intuitive and analytical thinking processes provides a guide for instruction. How knowledge is stored is critical to expertise in clinical reasoning. Curricula should be designed so that trainees store knowledge in a way that is clinically relevant. Competence in clinical reasoning is acquired by supervised practice with effective feedback. Clinicians must recognise the common errors in clinical reasoning and how to avoid them. Trainees can learn clinical reasoning effectively in everyday practice if teachers provide guidance on the cognitive processes involved in making diagnostic decisions. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  17. A Longitudinal Study of the Effects of Undergraduate Training on Reasoning.

    Science.gov (United States)

    Lehman, Darrin R.; Nisbett, Richard E.

    1990-01-01

    Effects of undergraduate training on inductive reasoning and logic were examined. Social science training produced significant effects on statistical and methodological reasoning. Natural science and humanities training produced significant effects on conditional logic reasoning. Results indicate that reasoning is taught and generalizable. (BC)

  18. Effects of Inquiry-Based Agriscience Instruction on Student Scientific Reasoning

    Science.gov (United States)

    Thoron, Andrew C.; Myers, Brian E.

    2012-01-01

    The purpose of this study was to determine the effect of inquiry-based agriscience instruction on student scientific reasoning. Scientific reasoning is defined as the use of the scientific method, inductive, and deductive reasoning to develop and test hypothesis. Developing scientific reasoning skills can provide learners with a connection to the…

  19. Metacognition and reasoning

    Science.gov (United States)

    Fletcher, Logan; Carruthers, Peter

    2012-01-01

    This article considers the cognitive architecture of human meta-reasoning: that is, metacognition concerning one's own reasoning and decision-making. The view we defend is that meta-reasoning is a cobbled-together skill comprising diverse self-management strategies acquired through individual and cultural learning. These approximate the monitoring-and-control functions of a postulated adaptive system for metacognition by recruiting mechanisms that were designed for quite other purposes. PMID:22492753

  20. Semantics-based plausible reasoning to extend the knowledge coverage of medical knowledge bases for improved clinical decision support.

    Science.gov (United States)

    Mohammadhassanzadeh, Hossein; Van Woensel, William; Abidi, Samina Raza; Abidi, Syed Sibte Raza

    2017-01-01

    Capturing complete medical knowledge is challenging-often due to incomplete patient Electronic Health Records (EHR), but also because of valuable, tacit medical knowledge hidden away in physicians' experiences. To extend the coverage of incomplete medical knowledge-based systems beyond their deductive closure, and thus enhance their decision-support capabilities, we argue that innovative, multi-strategy reasoning approaches should be applied. In particular, plausible reasoning mechanisms apply patterns from human thought processes, such as generalization, similarity and interpolation, based on attributional, hierarchical, and relational knowledge. Plausible reasoning mechanisms include inductive reasoning , which generalizes the commonalities among the data to induce new rules, and analogical reasoning , which is guided by data similarities to infer new facts. By further leveraging rich, biomedical Semantic Web ontologies to represent medical knowledge, both known and tentative, we increase the accuracy and expressivity of plausible reasoning, and cope with issues such as data heterogeneity, inconsistency and interoperability. In this paper, we present a Semantic Web-based, multi-strategy reasoning approach, which integrates deductive and plausible reasoning and exploits Semantic Web technology to solve complex clinical decision support queries. We evaluated our system using a real-world medical dataset of patients with hepatitis, from which we randomly removed different percentages of data (5%, 10%, 15%, and 20%) to reflect scenarios with increasing amounts of incomplete medical knowledge. To increase the reliability of the results, we generated 5 independent datasets for each percentage of missing values, which resulted in 20 experimental datasets (in addition to the original dataset). The results show that plausibly inferred knowledge extends the coverage of the knowledge base by, on average, 2%, 7%, 12%, and 16% for datasets with, respectively, 5%, 10%, 15

  1. Inductive Monitoring System (IMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal...

  2. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  3. Creativity and problem Solving

    Directory of Open Access Journals (Sweden)

    René Victor Valqui Vidal

    2004-12-01

    Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.

  4. Intuition, Reason, and Metacognition

    Science.gov (United States)

    Thompson, Valerie A.; Prowse Turner, Jamie A.; Pennycook, Gordon

    2011-01-01

    Dual Process Theories (DPT) of reasoning posit that judgments are mediated by both fast, automatic processes and more deliberate, analytic ones. A critical, but unanswered question concerns the issue of monitoring and control: When do reasoners rely on the first, intuitive output and when do they engage more effortful thinking? We hypothesised…

  5. Reasoning about emotional agents

    OpenAIRE

    Meyer, J.-J.

    2004-01-01

    In this paper we discuss the role of emotions in artificial agent design, and the use of logic in reasoning about the emotional or affective states an agent can reside in. We do so by extending the KARO framework for reasoning about rational agents appropriately. In particular we formalize in this framework how emotions are related to the action monitoring capabilities of an agent.

  6. Clinical reasoning: concept analysis.

    Science.gov (United States)

    Simmons, Barbara

    2010-05-01

    This paper is a report of a concept analysis of clinical reasoning in nursing. Clinical reasoning is an ambiguous term that is often used synonymously with decision-making and clinical judgment. Clinical reasoning has not been clearly defined in the literature. Healthcare settings are increasingly filled with uncertainty, risk and complexity due to increased patient acuity, multiple comorbidities, and enhanced use of technology, all of which require clinical reasoning. Data sources. Literature for this concept analysis was retrieved from several databases, including CINAHL, PubMed, PsycINFO, ERIC and OvidMEDLINE, for the years 1980 to 2008. Rodgers's evolutionary method of concept analysis was used because of its applicability to concepts that are still evolving. Multiple terms have been used synonymously to describe the thinking skills that nurses use. Research in the past 20 years has elucidated differences among these terms and identified the cognitive processes that precede judgment and decision-making. Our concept analysis defines one of these terms, 'clinical reasoning,' as a complex process that uses cognition, metacognition, and discipline-specific knowledge to gather and analyse patient information, evaluate its significance, and weigh alternative actions. This concept analysis provides a middle-range descriptive theory of clinical reasoning in nursing that helps clarify meaning and gives direction for future research. Appropriate instruments to operationalize the concept need to be developed. Research is needed to identify additional variables that have an impact on clinical reasoning and what are the consequences of clinical reasoning in specific situations.

  7. Specification of Nonmonotonic Reasoning.

    NARCIS (Netherlands)

    Engelfriet, J.; Treur, J.

    2000-01-01

    Two levels of description of nonmonotonic reasoning are distinguished. For these levels semantical formalizations are given. The first Level is defined semantically by the notion of belief state frame, the second Level by the notion of reasoning frame. We introduce two specification languages to

  8. Specification of Nonmonotonic Reasoning

    NARCIS (Netherlands)

    Engelfriet, J.; Treur, J.

    1996-01-01

    Two levels of description of nonmonotonic reasoning are distinguished. For these levels semantical formalizations are given. The first level is defined semantically by the notion of belief state frame, the second level by the notion of reasoning frame. We introduce two specification languages to

  9. Measuring Relational Reasoning

    Science.gov (United States)

    Alexander, Patricia A.; Dumas, Denis; Grossnickle, Emily M.; List, Alexandra; Firetto, Carla M.

    2016-01-01

    Relational reasoning is the foundational cognitive ability to discern meaningful patterns within an informational stream, but its reliable and valid measurement remains problematic. In this investigation, the measurement of relational reasoning unfolded in three stages. Stage 1 entailed the establishment of a research-based conceptualization of…

  10. A reasonable Semantic Web

    NARCIS (Netherlands)

    Hitzler, Pascal; Van Harmelen, Frank

    2010-01-01

    The realization of Semantic Web reasoning is central to substantiating the Semantic Web vision. However, current mainstream research on this topic faces serious challenges, which forces us to question established lines of research and to rethink the underlying approaches. We argue that reasoning for

  11. Reasoning about emotional agents

    NARCIS (Netherlands)

    Meyer, J.-J.

    In this paper we discuss the role of emotions in artificial agent design, and the use of logic in reasoning about the emotional or affective states an agent can reside in. We do so by extending the KARO framework for reasoning about rational agents appropriately. In particular we formalize in

  12. Computational approaches to analogical reasoning current trends

    CERN Document Server

    Richard, Gilles

    2014-01-01

    Analogical reasoning is known as a powerful mode for drawing plausible conclusions and solving problems. It has been the topic of a huge number of works by philosophers, anthropologists, linguists, psychologists, and computer scientists. As such, it has been early studied in artificial intelligence, with a particular renewal of interest in the last decade. The present volume provides a structured view of current research trends on computational approaches to analogical reasoning. It starts with an overview of the field, with an extensive bibliography. The 14 collected contributions cover a large scope of issues. First, the use of analogical proportions and analogies is explained and discussed in various natural language processing problems, as well as in automated deduction. Then, different formal frameworks for handling analogies are presented, dealing with case-based reasoning, heuristic-driven theory projection, commonsense reasoning about incomplete rule bases, logical proportions induced by similarity an...

  13. How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving

    Directory of Open Access Journals (Sweden)

    Balasubrahmanya Hegde

    2012-03-01

    Full Text Available A perceived difficulty is associated with physics problem solving from a learner’s viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students’ thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student interviews. Design of appropriate scaffoldings serves as pointers to the identification of student problem solving difficulties. An analysis of the results suggests the necessity of identification of the skill sets required for developing better problem solving abilities.

  14. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  15. Themes and Interplay of Beliefs in Mathematical Reasoning

    Science.gov (United States)

    Sumpter, Lovisa

    2013-01-01

    Upper secondary students' task solving reasoning was analysed with a focus on arguments for strategy choices and conclusions. Passages in their arguments for reasoning that indicated the students' beliefs were identified and, by using a thematic analysis, categorized. The results stress three themes of beliefs used as arguments for…

  16. Undergraduate Students' Quantitative Reasoning in Economic Contexts

    Science.gov (United States)

    Mkhatshwa, Thembinkosi Peter; Doerr, Helen M.

    2018-01-01

    Contributing to a growing body of research on undergraduate students' quantitative reasoning, the study reported in this article used task-based interviews to investigate business calculus students' quantitative reasoning when solving two optimization tasks situated in the context of revenue and profit maximization. Analysis of verbal responses…

  17. Mathematical Reasoning Requirements in Swedish National Physics Tests

    Science.gov (United States)

    Johansson, Helena

    2016-01-01

    This paper focuses on one aspect of mathematical competence, namely mathematical reasoning, and how this competency influences students' knowing of physics. This influence was studied by analysing the mathematical reasoning requirements upper secondary students meet when solving tasks in national physics tests. National tests are constructed to…

  18. Addressing Students' Difficulties with Faraday's Law: A Guided Problem Solving Approach

    Science.gov (United States)

    Zuza, Kristina; Almudí, José-Manuel; Leniz, Ane; Guisasola, Jenaro

    2014-01-01

    In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article…

  19. Relations as transformations: implications for analogical reasoning.

    Science.gov (United States)

    Leech, Robert; Mareschal, Denis; Cooper, Richard P

    2007-07-01

    We present two experiments assessing whether the size of a transformation instantiating a relation between two states of the world (e.g., shrinks) is a performance factor affecting analogical reasoning. The first experiment finds evidence of transformation size as a significant factor in adolescent analogical problem solving while the second experiment finds a similar effect on adult analogical reasoning using a markedly different analogical completion paradigm. The results are interpreted as providing evidence for the more general framework that cognitive representations of relations are best understood as mental transformations.

  20. Using Analogy to Solve a Three-Step Physics Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2010-10-01

    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two-step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  1. Crows spontaneously exhibit analogical reasoning.

    Science.gov (United States)

    Smirnova, Anna; Zorina, Zoya; Obozova, Tanya; Wasserman, Edward

    2015-01-19

    Analogical reasoning is vital to advanced cognition and behavioral adaptation. Many theorists deem analogical thinking to be uniquely human and to be foundational to categorization, creative problem solving, and scientific discovery. Comparative psychologists have long been interested in the species generality of analogical reasoning, but they initially found it difficult to obtain empirical support for such thinking in nonhuman animals (for pioneering efforts, see [2, 3]). Researchers have since mustered considerable evidence and argument that relational matching-to-sample (RMTS) effectively captures the essence of analogy, in which the relevant logical arguments are presented visually. In RMTS, choice of test pair BB would be correct if the sample pair were AA, whereas choice of test pair EF would be correct if the sample pair were CD. Critically, no items in the correct test pair physically match items in the sample pair, thus demanding that only relational sameness or differentness is available to support accurate choice responding. Initial evidence suggested that only humans and apes can successfully learn RMTS with pairs of sample and test items; however, monkeys have subsequently done so. Here, we report that crows too exhibit relational matching behavior. Even more importantly, crows spontaneously display relational responding without ever having been trained on RMTS; they had only been trained on identity matching-to-sample (IMTS). Such robust and uninstructed relational matching behavior represents the most convincing evidence yet of analogical reasoning in a nonprimate species, as apes alone have spontaneously exhibited RMTS behavior after only IMTS training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Appreciative Problem Solving

    DEFF Research Database (Denmark)

    Hansen, David

    2012-01-01

    Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...

  3. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2006-01-01

    as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  4. Planning and Problem Solving

    Science.gov (United States)

    1982-10-01

    Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and Problem ’Solving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R

  5. The Process of Clinical Reasoning among Medical Students

    Directory of Open Access Journals (Sweden)

    Djon Machado Lopes

    Full Text Available ABSTRACT Introduction: Research in the field of medical reasoning has shed light on the reasoning process used by medical students. The strategies in this process are related to the analytical [hypothetical-deductive (HD] and nonanalytic [scheme-inductive (SI] systems, and pattern recognition (PR]. Objective: To explore the clinical reasoning process of students from the fifth year of medical school at the end of the clinical cycle of medical internship, and to identify the strategies used in preparing diagnostic hypotheses, knowledge organization and content. Method: Qualitative research conducted in 2014 at a Brazilian public university with medical interns. Following Stamm's method, a case in internal medicine (IM was built based on the theory of prototypes (Group 1 = 47 interns, in which the interns listed, according to their own perceptions, the signs, symptoms, syndromes, and diseases typical of internal medicine. This case was used for evaluating the clinical reasoning process of Group 2 (30 students = simple random sample obtained with the "think aloud" process. The verbalizations were transcribed and evaluated by Bardin's thematic analysis. The content analysis were approved by two experts at the beginning and at the end of the analysis process. Results: The interns developed 164 primary and secondary hypotheses when solving the case. The SI strategy prevailed with 48.8%, followed by PR (35.4%, HD (12.2%, and mixed (1.8 % each: SI + HD and HD + PR. The students built 146 distinct semantic axes, resulting in an average of 4.8/ participant. During the analysis, 438 interpretation processes were executed (average of 14.6/participant, and 124 combination processes (average of 4.1/participant. Conclusions: The nonanalytic strategies prevailed with the PR being the most used in the development of primary hypotheses (46.8% and the SI in secondary hypotheses (93%. The interns showed a strong semantic network and did three and a half times more

  6. Solving Differential Equations in R: Package deSolve

    Science.gov (United States)

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  7. Solving Differential Equations in R: Package deSolve

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.

    2010-01-01

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

  8. Teaching clinical reasoning to medical students.

    Science.gov (United States)

    Gay, Simon; Bartlett, Maggie; McKinley, Robert

    2013-10-01

    Keele Medical School's new curriculum includes a 5-week course to extend medical students' consultation skills beyond those historically required for competent inductive diagnosis. Clinical reasoning is a core skill for the practice of medicine, and is known to have implications for patient safety, yet historically it has not been explicitly taught. Rather, it has been assumed that these skills will be learned by accumulating a body of knowledge and by observing expert clinicians. This course aims to assist students to develop their own clinical reasoning skills and promote their greater understanding of, and potential to benefit from, the clinical reasoning skills of others. The course takes place in the fourth or penultimate year, and is integrated with students' clinical placements, giving them opportunities to practise and quickly embed their learning. This course emphasises that clinical reasoning extends beyond initial diagnosis into all other aspects of clinical practice, particularly clinical management. It offers students a variety of challenging and interesting opportunities to engage with clinical reasoning across a wide range of clinical practice. It addresses bias through metacognition and increased self-awareness, considers some of the complexities of prescribing and non-pharmacological interventions, and promotes pragmatic evidence-based practice, information management within the consultation and the maximising of patient adherence. This article describes clinical reasoning-based classroom and community teaching. Early evaluation suggests that students value the course and benefit from it. © 2013 John Wiley & Sons Ltd.

  9. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  10. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  11. Using Coaching to Improve the Teaching of Problem Solving to Year 8 Students in Mathematics

    Science.gov (United States)

    Kargas, Christine Anestis; Stephens, Max

    2014-01-01

    This study investigated how to improve the teaching of problem solving in a large Melbourne secondary school. Coaching was used to support and equip five teachers, some with limited experiences in teaching problem solving, with knowledge and strategies to build up students' problem solving and reasoning skills. The results showed increased…

  12. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    Science.gov (United States)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  13. Registered nurses' clinical reasoning skills and reasoning process: A think-aloud study.

    Science.gov (United States)

    Lee, JuHee; Lee, Young Joo; Bae, JuYeon; Seo, Minjeong

    2016-11-01

    As complex chronic diseases are increasing, nurses' prompt and accurate clinical reasoning skills are essential. However, little is known about the reasoning skills of registered nurses. This study aimed to determine how registered nurses use their clinical reasoning skills and to identify how the reasoning process proceeds in the complex clinical situation of hospital setting. A qualitative exploratory design was used with a think-aloud method. A total of 13 registered nurses (mean years of experience=11.4) participated in the study, solving an ill-structured clinical problem based on complex chronic patients cases in a hospital setting. Data were analyzed using deductive content analysis. Findings showed that the registered nurses used a variety of clinical reasoning skills. The most commonly used skill was 'checking accuracy and reliability.' The reasoning process of registered nurses covered assessment, analysis, diagnosis, planning/implementation, and evaluation phase. It is critical that registered nurses apply appropriate clinical reasoning skills in complex clinical practice. The main focus of registered nurses' reasoning in this study was assessing a patient's health problem, and their reasoning process was cyclic, rather than linear. There is a need for educational strategy development to enhance registered nurses' competency in determining appropriate interventions in a timely and accurate fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  15. Solved problems in electrochemistry

    International Nuclear Information System (INIS)

    Piron, D.L.

    2004-01-01

    This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems

  16. Science Teachers' Analogical Reasoning

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  17. Calvin on Human Reason

    Directory of Open Access Journals (Sweden)

    Nicolaas Vorster

    2014-10-01

    Full Text Available In his recent book The Unintended Reformation, Brad Gregory makes the statement that the Reformation replaced the teleological social ethics of Roman Catholicism based on virtue with formal social ethics based on rules and enforced by magistrates, because they regarded human reason as too depraved to acquire virtue. The result, according to Gregory, is that the relation between internalised values and rules were undermined. This article asks whether this accusation is true with regard to Calvin. The first section discusses the intellectual environment of Calvin’s day – something that inevitably influenced his theory on reason, whilst the second part analyses Calvin’s view on the created nature of reason. The third section investigates Calvin’s view on the effects of sin on reason; and the fourth section discusses Calvin’s perspective on the relation between grace and reason. The article concludes that Gregory’s accusation against the Reformation is not applicable to Calvin. Gregory fails to take into account Calvin’s modified position that the imago Dei was not totally destroyed by sin as well as his teaching on common grace that maintains that even non-believers are able to acquire virtue through the common grace of God.

  18. Comprehension and computation in Bayesian problem solving

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson

    2015-07-01

    Full Text Available Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian reasoning relative to normalized formats (e.g. probabilities, percentages, both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on transparent Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e. transparent problem structures at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct versus incorrect reasoners depart, and how individual difference might influence this time point.

  19. Reasons Internalism and the function of normative reasons

    OpenAIRE

    Sinclair, Neil

    2017-01-01

    What is the connection between reasons and motives? According to Reasons Internalism there is a non-trivial conceptual connection between normative reasons and the possibility of rationally accessing relevant motivation. Reasons Internalism is attractive insofar as it captures the thought that reasons are for reasoning with and repulsive insofar as it fails to generate sufficient critical distance between reasons and motives. Rather than directly adjudicate this dispute, I extract from it two...

  20. Feature-Based versus Category-Based Induction with Uncertain Categories

    Science.gov (United States)

    Griffiths, Oren; Hayes, Brett K.; Newell, Ben R.

    2012-01-01

    Previous research has suggested that when feature inferences have to be made about an instance whose category membership is uncertain, feature-based inductive reasoning is used to the exclusion of category-based induction. These results contrast with the observation that people can and do use category-based induction when category membership is…

  1. Causal reasoning in physics

    CERN Document Server

    Frisch, Mathias

    2014-01-01

    Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly through a detailed examination of actual examples of causal notions in physics, including causal principles invoked in linear response theory and in representations of radiation phenomena. Offering a new perspective on the nature of scientific theories and causal reasoning, this book will be of interest to professional philosophers, graduate students, and anyone interested in the role of causal thinking in science.

  2. Diversity-based reasoning in children.

    Science.gov (United States)

    Heit, E; Hahn, U

    2001-12-01

    One of the hallmarks of inductive reasoning by adults is the diversity effect, namely that people draw stronger inferences from a diverse set of evidence than from a more homogenous set of evidence. However, past developmental work has not found consistent diversity effects with children age 9 and younger. We report robust sensitivity to diversity in children as young as 5, using everyday stimuli such as pictures of objects with people. Experiment 1 showed the basic diversity effect in 5- to 9-year-olds. Experiment 2 showed that, like adults, children restrict their use of diversity information when making inferences about remote categories. Experiment 3 used other stimulus sets to overcome an alternate explanation in terms of sample size rather than diversity effects. Finally, Experiment 4 showed that children more readily draw on diversity when reasoning about objects and their relations with people than when reasoning about objects' internal, hidden properties, thus partially explaining the negative findings of previous work. Relations to cross-cultural work and models of induction are discussed. Copyright 2001 Academic Press.

  3. Probability, Problem Solving, and "The Price is Right."

    Science.gov (United States)

    Wood, Eric

    1992-01-01

    This article discusses the analysis of a decision-making process faced by contestants on the television game show "The Price is Right". The included analyses of the original and related problems concern pattern searching, inductive reasoning, quadratic functions, and graphing. Computer simulation programs in BASIC and tables of…

  4. How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end Quantos estudos ainda serão necessários para avaliar modelos de distribuição geográfica baseados em modelagem do nicho? Um pensamento indutivo pode estar fadado ao fracasso

    Directory of Open Access Journals (Sweden)

    LC Terribile

    2010-05-01

    Full Text Available The use of ecological niche models (ENM to generate potential geographic distributions of species has rapidly increased in ecology, conservation and evolutionary biology. Many methods are available and the most used are Maximum Entropy Method (MAXENT and the Genetic Algorithm for Rule Set Production (GARP. Recent studies have shown that MAXENT perform better than GARP. Here we used the statistics methods of ROC - AUC (area under the Receiver Operating Characteristics curve and bootstrap to evaluate the performance of GARP and MAXENT in generate potential distribution models for 39 species of New World coral snakes. We found that values of AUC for GARP ranged from 0.923 to 0.999, whereas those for MAXENT ranged from 0.877 to 0.999. On the whole, the differences in AUC were very small, but for 10 species GARP outperformed MAXENT. Means and standard deviations for 100 bootstrapped samples with sample sizes ranging from 3 to 30 species did not show any trends towards deviations from a zero difference in AUC values of GARP minus AUC values of MAXENT. Ours results suggest that further studies are still necessary to establish under which circumstances the statistical performance of the methods vary. However, it is also important to consider the possibility that this empirical inductive reasoning may fail in the end, because we almost certainly could not establish all potential scenarios generating variation in the relative performance of models.A utilização de modelos de nicho ecológico (ENM para gerar distribuições geográficas potenciais de espécies tem aumentado rapidamente nas áreas de ecologia, biologia da conservação e biologia evolutiva. O Método de Máxima Entropia (MAXENT e o Algoritmo Genético para Produção de Conjunto de Regras (GARP estão entre os métodos mais utilizados, e estudos recentes têm atribuído ao MAXENT um melhor desempenho no processo de modelagem com relação ao GARP. Neste trabalho, foram utilizados os m

  5. The reason project

    International Nuclear Information System (INIS)

    Atwood, W.; Blankenbecler, R.; Kunz, P.F.; Mours, B.; Weir, A.; Word, G.

    1990-01-01

    Reason is a software package to allow one to do physics analysis with the look and feel of the Apple Macintosh. It was implemented on a NeXT computer which does not yet support the standard HEP packages for graphics and histogramming. This paper will review our experiences and the program

  6. Reason destroys itself

    CERN Multimedia

    Penrose, Roger

    2008-01-01

    "Do we know for certain that 2 lus 2 equals 4? Of course we don't. Maybe every time everybody in the whole world has ever done that calculation and reasoned it through, they've made a mistake." (1 page0

  7. Reasoning=working Memoryattention

    Science.gov (United States)

    Buehner, M.; Krumm, S.; Pick, M.

    2005-01-01

    The purpose of this study was to clarify the relationship between attention, components of working memory, and reasoning. Therefore, twenty working memory tests, two attention tests, and nine intelligence subtests were administered to 135 students. Using structural equation modeling, we were able to replicate a functional model of working memory…

  8. Reasoning about the past

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1998-01-01

    In this extended abstract, we briefly recall the abstract (categorical) notion of bisimulation from open morphisms, as introduced by Joyal, Nielsen and Winskel. The approach is applicable across a wide range of models of computation, and any such bisimulation comes automatically with characterist...... of reasoning about the past....

  9. Diagnostic reasoning in action

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1993-01-01

    of system failures; and in medicine, diagnosis is the basis for any patient treatment. The paper presents a discussion of the basic nature of causal reasoning as applied for diagnosis and the mental strategies applied when diagnosis is viewed as an integrated part of ''natural decision making...

  10. Reason and Less

    Directory of Open Access Journals (Sweden)

    Vinod eGoel

    2014-08-01

    Full Text Available We consider ourselves to be rational beings. We feel that our choices, decisions, and actions are selected from a flexible array of possibilities, based upon reasons. When we vote for a political candidate, it is because they share our views on certain critical issues. When we hire an individual for a job, it is be-cause they are the best qualified. However, if this is true, why does an analysis of the direction of shift in the timbre of the voice of political candidates during an exchange or debate, predict the winner of American presidential elections? Why is it that while only 3% of the American population consists of white men over 6'4 tall, 30% of the CEOs of Fortune 500 companies are white men over 6'4 tall? These are examples of instinctual biases affecting or modulating rational thought processes. I argue that existing theories of reasoning cannot substantively accommodate these ubiquitous, real-world phe-nomena. Failure to recognize and incorporate these types of phenomena into the study of human reasoning results in a distorted understanding of rationality. The goal of the article is to draw attention to these types of phenomena and propose an adulterated rationality account of reasoning to explain them.

  11. One reason, several logics

    Directory of Open Access Journals (Sweden)

    Evandro Agazzi

    2011-06-01

    Full Text Available Humans have used arguments for defending or refuting statements long before the creation of logic as a specialized discipline. This can be interpreted as the fact that an intuitive notion of "logical consequence" or a psychic disposition to articulate reasoning according to this pattern is present in common sense, and logic simply aims at describing and codifying the features of this spontaneous capacity of human reason. It is well known, however, that several arguments easily accepted by common sense are actually "logical fallacies", and this indicates that logic is not just a descriptive, but also a prescriptive or normative enterprise, in which the notion of logical consequence is defined in a precise way and then certain rules are established in order to maintain the discourse in keeping with this notion. Yet in the justification of the correctness and adequacy of these rules commonsense reasoning must necessarily be used, and in such a way its foundational role is recognized. Moreover, it remains also true that several branches and forms of logic have been elaborated precisely in order to reflect the structural features of correct argument used in different fields of human reasoning and yet insufficiently mirrored by the most familiar logical formalisms.

  12. Reasoning with Causal Cycles

    Science.gov (United States)

    Rehder, Bob

    2017-01-01

    This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…

  13. Observing Reasonable Consumers.

    Science.gov (United States)

    Silber, Norman I.

    1991-01-01

    Although courts and legislators usually set legal standards that correspond to empirical knowledge of human behavior, recent developments in behavioral psychology have led courts to appreciate the limits and errors in consumer decision making. "Reasonable consumer" standards that are congruent with cognitive reality should be developed.…

  14. Reason and less.

    Science.gov (United States)

    Goel, Vinod

    2014-01-01

    We consider ourselves to be rational beings. We feel that our choices, decisions, and actions are selected from a flexible array of possibilities, based upon reasons. When we vote for a political candidate, it is because they share our views on certain critical issues. When we hire an individual for a job, it is because they are the best qualified. However, if this is true, why does an analysis of the direction of shift in the timbre of the voice of political candidates during an exchange or debate, predict the winner of American presidential elections? Why is it that while only 3% of the American population consists of white men over 6'4″ tall, 30% of the CEOs of Fortune 500 companies are white men over 6'4″ tall? These are examples of "instinctual biases" affecting or modulating rational thought processes. I argue that existing theories of reasoning cannot substantively accommodate these ubiquitous, real-world phenomena. Failure to recognize and incorporate these types of phenomena into the study of human reasoning results in a distorted understanding of rationality. The goal of this article is to draw attention to these types of phenomena and propose an "adulterated rationality" account of reasoning as a first step in trying to explain them.

  15. Urofollitropin and ovulation induction

    NARCIS (Netherlands)

    van Wely, Madelon; Yding Andersen, Claus; Bayram, Neriman; van der Veen, Fulco

    2005-01-01

    Anovulation is a common cause of female infertility. Treatment for women with anovulation is aimed at induction of ovulation. Ovulation induction with follicle-stimulating hormone (FSH) is indicated in women with WHO type II anovulation in whom treatment with clomifene citrate (clomifene) has

  16. Learning trajectories in analogical reasoning : exploring individual differences in children’s strategy paths

    NARCIS (Netherlands)

    Pronk, Christine Maria Elizabeth

    2014-01-01

    Inductive reasoning and more specifically, analogical reasoning, is a basic process involved in a wide range of higher cognitive processes. Therefore, this type of reasoning is often regarded as representing a core component of intelligence. The first few years of primary school represent a

  17. Cosmology solved? Maybe

    International Nuclear Information System (INIS)

    Turner, Michael S.

    1999-01-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!

  18. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  19. Half Bridge Inductive Heater

    Directory of Open Access Journals (Sweden)

    Zoltán GERMÁN-SALLÓ

    2015-12-01

    Full Text Available Induction heating performs contactless, efficient and fast heating of conductive materials, therefore became one of the preferred heating procedure in industrial, domestic and medical applications. During induction heating the high-frequency alternating currents that heat the material are induced by means of electromagnetic induction. The material to be heated is placed inside the time-varying magnetic field generated by applying a highfrequency alternating current to an induction coil. The alternating electromagnetic field induces eddy currents in the workpiece, resulting resistive losses, which then heat the material. This paper describes the design of a power electronic converter circuit for induction heating equipment and presents the obtained results. The realized circuit is a low power half bridge resonant inverter which uses power MOS transistors and adequate driver circuits.

  20. Analysis of students’ mathematical reasoning

    Science.gov (United States)

    Sukirwan; Darhim; Herman, T.

    2018-01-01

    The reasoning is one of the mathematical abilities that have very complex implications. This complexity causes reasoning including abilities that are not easily attainable by students. Similarly, studies dealing with reason are quite diverse, primarily concerned with the quality of mathematical reasoning. The objective of this study was to determine the quality of mathematical reasoning based perspective Lithner. Lithner looked at how the environment affects the mathematical reasoning. In this regard, Lithner made two perspectives, namely imitative reasoning and creative reasoning. Imitative reasoning can be memorized and algorithmic reasoning. The Result study shows that although the students generally still have problems in reasoning. Students tend to be on imitative reasoning which means that students tend to use a routine procedure when dealing with reasoning. It is also shown that the traditional approach still dominates on the situation of students’ daily learning.

  1. A high-current racetrack induction accelerator

    International Nuclear Information System (INIS)

    Mondelli, A.; Roberson, C.W.

    1983-01-01

    In this paper, the energy and system scaling laws of the Racetrack Induction Accelerator are determined and its operating principles are discussed. This device is a cyclic accelerator that is capable of multi-kiloamp operation. Long pulse induction linac technology is used to obtain short acceleration times. The accelerator consists of a long-pulse linear induction module and a racetrack beam transport system. For detailed studies of the particle dynamics in a racetrack, a numerical model is required to integrate the fully-relativistic single-particle equations of motion in an externally applied magnetic field. The numerical model is a compromise between the need for a large rotational transform and the need for a reasonable volume within the separatrix

  2. Case-based Reasoning in Conflict Negotiation in Concurrent Engineering

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Case-based reasoning (CBR) is a kind of analogous reasoning that is widely used in artificial intelligence. Conflicts are pervasive in Concurrent Engineering design environment. Conflict negotiation is necessary when conflicts occur. It is difficult to resolve conflicts due to several reasons. An approach to resolving conflicts by case-based reasoning is proposed in this paper. The knowledge representation of conflict negotiation cases, the judgment of case similarity, the retrieval model of cases, the management of case bases, and the process of case-based conflict negotiation are studied. The implementation structure of the Case-based Conflict Solving System (CCSS) is also given.

  3. An Heuristic Framework for Non-Conscious Reasoning

    Directory of Open Access Journals (Sweden)

    Felipe Lara-Rosano

    2017-11-01

    Full Text Available Human non-conscious reasoning is one of the most successful procedures evolved for the purposes of solving everyday problems in an efficient way. This is why the field of artificial intelligence should analyze, formalize and emulate the multiple ways of non-conscious reasoning with the purpose of applying them in human problem solving tasks, like medical diagnostics and treatments, educational diagnostics and intervention, organizational and political decision making, artificial intelligence knowledge based systems and neurocomputers, automatic control systems and similar devices for aiding people in the problem-solving process. In this paper, a heuristic framework for those non-conscious ways of reasoning is presented based on neurocognitive representations, heuristics, and fuzzy sets.

  4. Seeing the conflict: an attentional account of reasoning errors.

    Science.gov (United States)

    Mata, André; Ferreira, Mário B; Voss, Andreas; Kollei, Tanja

    2017-12-01

    In judgment and reasoning, intuition and deliberation can agree on the same responses, or they can be in conflict and suggest different responses. Incorrect responses to conflict problems have traditionally been interpreted as a sign of faulty problem-solving-an inability to solve the conflict. However, such errors might emerge earlier, from insufficient attention to the conflict. To test this attentional hypothesis, we manipulated the conflict in reasoning problems and used eye-tracking to measure attention. Across several measures, correct responders paid more attention than incorrect responders to conflict problems, and they discriminated between conflict and no-conflict problems better than incorrect responders. These results are consistent with a two-stage account of reasoning, whereby sound problem solving in the second stage can only lead to accurate responses when sufficient attention is paid in the first stage.

  5. How reasonable is ALARA?

    International Nuclear Information System (INIS)

    Kiefer, H.

    1991-01-01

    The linear extrapolation of the established dose-effect relation at higher doses was accepted as a simple working hypothesis to determine dose limits for professional radiation personnel. It has been misused, however, for calculations of population risks in the very low dose region. This lead to an overestimation of radiation hazards by the public, followed by an overregulation of radiation protection. The ALARA recommendations of ICRP - justification of radiation application, optimisation of protection, and protection of the individual, - was aimed at counterpoising this trend and elucidate the aims of radiation protection. But even the ALARA principle will only be successful if it is applied with reason. The lend more weight to reason in radiation protection, an award for FS members is proposed, as well as an anti-award for the most nonsensical action in radiation protection. (orig.) [de

  6. Children's and adults' judgments of the certainty of deductive inferences, inductive inferences, and guesses.

    Science.gov (United States)

    Pillow, Bradford H; Pearson, Raeanne M; Hecht, Mary; Bremer, Amanda

    2010-01-01

    Children and adults rated their own certainty following inductive inferences, deductive inferences, and guesses. Beginning in kindergarten, participants rated deductions as more certain than weak inductions or guesses. Deductions were rated as more certain than strong inductions beginning in Grade 3, and fourth-grade children and adults differentiated strong inductions, weak inductions, and informed guesses from pure guesses. By Grade 3, participants also gave different types of explanations for their deductions and inductions. These results are discussed in relation to children's concepts of cognitive processes, logical reasoning, and epistemological development.

  7. Developing geometrical reasoning

    OpenAIRE

    Brown, Margaret; Jones, Keith; Taylor, Ron; Hirst, Ann

    2004-01-01

    This paper summarises a report (Brown, Jones & Taylor, 2003) to the UK Qualifications and Curriculum Authority of the work of one geometry group. The group was charged with developing and reporting on teaching ideas that focus on the development of geometrical reasoning at the secondary school level. The group was encouraged to explore what is possible both within and beyond the current requirements of the UK National Curriculum and the Key Stage 3 strategy, and to consider the whole atta...

  8. Tactical Diagrammatic Reasoning

    Directory of Open Access Journals (Sweden)

    Sven Linker

    2017-01-01

    Full Text Available Although automated reasoning with diagrams has been possible for some years, tools for diagrammatic reasoning are generally much less sophisticated than their sentential cousins. The tasks of exploring levels of automation and abstraction in the construction of proofs and of providing explanations of solutions expressed in the proofs remain to be addressed. In this paper we take an interactive proof assistant for Euler diagrams, Speedith, and add tactics to its reasoning engine, providing a level of automation in the construction of proofs. By adding tactics to Speedith's repertoire of inferences, we ease the interaction between the user and the system and capture a higher level explanation of the essence of the proof. We analysed the design options for tactics by using metrics which relate to human readability, such as the number of inferences and the amount of clutter present in diagrams. Thus, in contrast to the normal case with sentential tactics, our tactics are designed to not only prove the theorem, but also to support explanation.

  9. REASON for Europa

    Science.gov (United States)

    Moussessian, A.; Blankenship, D. D.; Plaut, J. J.; Patterson, G. W.; Gim, Y.; Schroeder, D. M.; Soderlund, K. M.; Grima, C.; Young, D. A.; Chapin, E.

    2015-12-01

    The science goal of the Europa multiple flyby mission is to "explore Europa to investigate its habitability". One of the primary instruments selected for the scientific payload is a multi-frequency, multi-channel ice penetrating radar system. This "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" would revolutionize our understanding of Europa's ice shell by providing the first direct measurements of its surface character and subsurface structure. REASON addresses key questions regarding Europa's habitability, including the existence of any liquid water, through the innovative use of radar sounding, altimetry, reflectometry, and plasma/particles analyses. These investigations require a dual-frequency radar (HF and VHF frequencies) instrument with concurrent shallow and deep sounding that is designed for performance robustness in the challenging environment of Europa. The flyby-centric mission configuration is an opportunity to collect and transmit minimally processed data back to Earth and exploit advanced processing approaches developed for terrestrial airborne data sets. The observation and characterization of subsurface features beneath Europa's chaotic surface require discriminating abundant surface clutter from a relatively weak subsurface signal. Finally, the mission plan also includes using REASON as a nadir altimeter capable of measuring tides to test ice shell and ocean hypotheses as well as characterizing roughness across the surface statistically to identify potential follow-on landing sites. We will present a variety of measurement concepts for addressing these challenges.

  10. Cosmology solved? Maybe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Michael S

    1999-03-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology{exclamation_point}.

  11. Deductive way of reasoning about the internet AS level topology

    International Nuclear Information System (INIS)

    Szabó, Dávid; Kőrösi, Attila; Bíró, József; Gulyás, András

    2015-01-01

    Our current understanding about the AS level topology of the Internet is based on measurements and inductive-type models which set up rules describing the behavior (node and edge dynamics) of the individual ASes and generalize the consequences of these individual actions for the complete AS ecosystem using induction. In this paper we suggest a third, deductive approach in which we have premises for the whole AS system and the consequences of these premises are determined through deductive reasoning. We show that such a deductive approach can give complementary insights into the topological properties of the AS graph. While inductive models can mostly reflect high level statistics (e.g., degree distribution, clustering, diameter), deductive reasoning can identify omnipresent subgraphs and peering likelihood. We also propose a model, called YEAS, incorporating our deductive analytical findings that produces topologies contain both traditional and novel metrics for the AS level Internet. (paper)

  12. Calvin on Human Reason

    Directory of Open Access Journals (Sweden)

    Nicolaas Vorster

    2014-10-01

    Full Text Available In his recent book The Unintended Reformation, Brad Gregory makes the statement that the Reformation replaced the teleological social ethics of Roman Catholicism based on virtue with formal social ethics based on rules and enforced by magistrates, because they regarded human reason as too depraved to acquire virtue. The result, according to Gregory, is that the relation between internalised values and rules were undermined. This article asks whether this accusation is true with regard to Calvin. The first section discusses the intellectual environment of Calvin’s day – something that inevitably influenced his theory on reason, whilst the second part analyses Calvin’s view on the created nature of reason. The third section investigates Calvin’s view on the effects of sin on reason; and the fourth section discusses Calvin’s perspective on the relation between grace and reason. The article concludes that Gregory’s accusation against the Reformation is not applicable to Calvin. Gregory fails to take into account Calvin’s modified position that the imago Dei was not totally destroyed by sin as well as his teaching on common grace that maintains that even non-believers are able to acquire virtue through the common grace of God. Calvyn oor Menslike Rede. In sy onlangse boek, The Unintended Reformation, maak Brad Gregory die stelling dat die Reformasie die substantiewe teleologiese deugde-etiek van die Rooms-Katolisisme vervang het met ‘n formele etiek gebaseer op reëls wat deur magistrate afgedwing moet word. Die Reformasie was, volgens Gregory, van mening dat die menslike rede sodanig deur sonde geskend is dat die mens nie langer deugde kan beoefen nie. Dit het tot ‘n skadelike skeiding tussen waardes en reëls gelei. Hierdie artikel ondersoek die vraag of Gregory se stelling op Calvyn van toepassing is. Die eerste afdeling bespreek die intellektuele omgewing waarin Calvyn gewerk het. Tweedens word Gregory se siening van die geskape

  13. Uncertain relational reasoning in the parietal cortex.

    Science.gov (United States)

    Ragni, Marco; Franzmeier, Imke; Maier, Simon; Knauff, Markus

    2016-04-01

    The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  15. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  16. University mathematics teachers' views on the required reasoning in calculus exams

    OpenAIRE

    Bergqvist, Ewa

    2012-01-01

    Students often use imitative reasoning, i.e. copy algorithms or recall facts, when solving mathematical tasks. Research show that this type of imitative reasoning might weaken the students' understanding of the underlying mathematical concepts. In a previous study, the author classified tasks from 16 final exams from introductory calculus courses at Swedish universities. The results showed that it was possible to pass 15 of the exams, and solve most of the tasks, using imitative reasoning. Th...

  17. Reasonable Accommodation Information Tracking System

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reasonable Accommodation Information Tracking System (RAITS) is a case management system that allows the National Reasonable Accommodation Coordinator (NRAC) and...

  18. MANAGEMENT OF A GUILLAIN BARRE SYNDROME PATIENT THROUGH THREE TRACK REASONING: A CASE STUDY

    OpenAIRE

    Shamima Islam Nipa; Mohammad Mustafa Kamal Rahat Khan; Mohammad Sohrab Hossain; Mohammad Habibur Rahman; Md. Shofiqul Islam

    2015-01-01

    Background: Clinical reasoning is a thinking and decision making process which occur in clinical practice. It helps the health care providers to solve the clinical problem by using their reasoning process in an effective and efficient manner. Three track reasoning in one of the clinical reasoning process which includes the procedural, interactive and conditional reasoning to diagnose as well as ensure proper rehabilitation service according to patient and patient’s family members’ needs. M...

  19. Induction melter apparatus

    Science.gov (United States)

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  20. Reasoning by analogy as an aid to heuristic theorem proving.

    Science.gov (United States)

    Kling, R. E.

    1972-01-01

    When heuristic problem-solving programs are faced with large data bases that contain numbers of facts far in excess of those needed to solve any particular problem, their performance rapidly deteriorates. In this paper, the correspondence between a new unsolved problem and a previously solved analogous problem is computed and invoked to tailor large data bases to manageable sizes. This paper outlines the design of an algorithm for generating and exploiting analogies between theorems posed to a resolution-logic system. These algorithms are believed to be the first computationally feasible development of reasoning by analogy to be applied to heuristic theorem proving.

  1. Model Based Temporal Reasoning

    Science.gov (United States)

    Rabin, Marla J.; Spinrad, Paul R.; Fall, Thomas C.

    1988-03-01

    Systems that assess the real world must cope with evidence that is uncertain, ambiguous, and spread over time. Typically, the most important function of an assessment system is to identify when activities are occurring that are unusual or unanticipated. Model based temporal reasoning addresses both of these requirements. The differences among temporal reasoning schemes lies in the methods used to avoid computational intractability. If we had n pieces of data and we wanted to examine how they were related, the worst case would be where we had to examine every subset of these points to see if that subset satisfied the relations. This would be 2n, which is intractable. Models compress this; if several data points are all compatible with a model, then that model represents all those data points. Data points are then considered related if they lie within the same model or if they lie in models that are related. Models thus address the intractability problem. They also address the problem of determining unusual activities if the data do not agree with models that are indicated by earlier data then something out of the norm is taking place. The models can summarize what we know up to that time, so when they are not predicting correctly, either something unusual is happening or we need to revise our models. The model based reasoner developed at Advanced Decision Systems is thus both intuitive and powerful. It is currently being used on one operational system and several prototype systems. It has enough power to be used in domains spanning the spectrum from manufacturing engineering and project management to low-intensity conflict and strategic assessment.

  2. Two-Phase Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Gholam Reza Arab Markadeh

    2010-10-01

    Full Text Available The lack of variable-speed drives for two (single induction motor is a reality. This article attempts mainly to investigate the reasons for this lack of variable – speed drives. This paper deals with literature survey of various existing converter topologies, which have been proposed for adjustable speed single phase induction motor drives. Various converter topologies have been compared in this paper. Among these converter topologies, the adjustable frequency PWM inverter is the best choice for single-phase induction motor drives. However, adjustable-frequency drives have not been widely used with single-phase Induction motors. The open-loop constant V/F control law cannot be used with the single-phase induction motor drives as it is used with three phase motors. The variation of the operating frequency at lower speed range with constant load torque causes variation in motor's slip. A constant V/F control is suitable only over the upper speed range.

  3. Reasoning about geography.

    Science.gov (United States)

    Friedman, A; Brown, N R

    2000-06-01

    To understand the nature and etiology of biases in geographical judgments, the authors asked people to estimate latitudes (Experiments 1 and 2) and longitudes (Experiments 3 and 4) of cities throughout the Old and New Worlds. They also examined how people's biased geographical judgments change after they receive accurate information ("seeds") about actual locations. Location profiles constructed from the pre- and postseeding location estimates conveyed detailed information about the representations underlying geography knowledge, including the subjective positioning and subregionalization of regions within continents; differential seeding effects revealed between-region dependencies. The findings implicate an important role for conceptual knowledge and plausible-reasoning processes in tasks that use subjective geographical information.

  4. Reasoning about plans

    CERN Document Server

    Allen, James; Pelavin, Richard; Tenenberg, Josh

    1991-01-01

    This book presents four contributions to planning research within an integrated framework. James Allen offers a survey of his research in the field of temporal reasoning, and then describes a planning system formalized and implemented directly as an inference process in the temporal logic. Starting from the same logic, Henry Kautz develops the first formal specification of the plan recognition process and develops a powerful family of algorithms for plan recognition in complex situations. Richard Pelavin then extends the temporal logic with model operators that allow the representation to

  5. Quantitative Algebraic Reasoning

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon

    2016-01-01

    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  6. "Critique of intuitive reason"

    Directory of Open Access Journals (Sweden)

    Dobrijević Aleksandar

    2005-01-01

    Full Text Available The author displays and reexamines Hare’s "two-level theory" of normative moral thinking ("intuitive" level and "critical" level, including goals that are intended by its establishing. Given Hare’s holism, the met ethical level, considered as fundamental or the "third" level, has notable effect on process of normative reasoning, especially if it is taken as one of the determinant of the critical moral thin king. Central part of the analysis is examination of utilitarian character of the theory.

  7. Charisma and Moral Reasoning

    Directory of Open Access Journals (Sweden)

    Jessica Flanigan

    2013-04-01

    Full Text Available Charisma is morally problematic insofar as it replaces followers’ capacity to engage in genuine moral reasoning. When followers defer to charismatic leaders and act in ways that are morally wrong they are not only blameworthy for wrongdoing but for failing in their deliberative obligations. Even when followers defer to charismatic leaders and do the right thing, their action is less praiseworthy to the extent that it was the result of charisma rather than moral deliberation. Therefore, effective charismatic leadership reliably undermines the praiseworthiness and amplifies the blameworthiness of follower’s actions.

  8. Linear induction accelerator

    Science.gov (United States)

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  9. Difficulties in Genetics Problem Solving.

    Science.gov (United States)

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  10. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  11. Problem Solving on a Monorail.

    Science.gov (United States)

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  12. Solving complex fisheries management problems

    DEFF Research Database (Denmark)

    Petter Johnsen, Jahn; Eliasen, Søren Qvist

    2011-01-01

    A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related...

  13. Comparison of neural networks for solving the travelling salesman problem

    NARCIS (Netherlands)

    Maire, La B.F.J.; Mladenov, V.M.

    2012-01-01

    The TSP deals with finding a shortest path through a number of cities. This seemingly simple problem is hard to solve because of the amount of possible solutions. Which is why methods that give a good suboptimal solution in a reasonable time are generally used. In this paper three methods were

  14. Cultivating Peace through Design Thinking: Problem Solving with PAST Foundation

    Science.gov (United States)

    Deaner, Kat; McCreery-Kellert, Heather

    2018-01-01

    Design thinking is a methodology that emphasizes reasoning and decision-making as part of the problem-solving process. It is a structured framework for identifying challenges, gathering information, generating potential solutions, refining ideas, and testing solutions. Design thinking offers valuable skills that will serve students well as they…

  15. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  16. . MODERN EDUCATION: FROM RATIONALITY TO REASONABLENESS

    Directory of Open Access Journals (Sweden)

    O. S. Anisimov

    2014-01-01

    Full Text Available The paper deals with the problem of modern education development and criticizes a pragmatic attitude to education. Based on the retrospective historical analysis, the author maintains that educational systems are generally focused on fostering the pragmatic intellect rather than reasoning, which leads to a superficial world perception, and undermines personal analytical potential and capability of strategic problem solving. Concentration on rationality is unlikely to provide a way out of the world crisis. In the author’s view, education demands both the deep and solid comprehension of existential concepts and the reference to the “absolute spirit” of Confucius, Plato, Kant and Hegel. The research is aimed at justifying the civilizational paradigm of education on the basis of Hegelian fundamental ideas of intellectual perception with the emphasis on reasonability instead of rationality. As the most adequate implementation instrument, the author suggests a game simulating technique that combines the benefits of philosophical, scientific and methodological thinking.

  17. Conditions for the Validity of Faraday's Law of Induction and Their Experimental Confirmation

    Science.gov (United States)

    Lopez-Ramos, A.; Menendez, J. R.; Pique, C.

    2008-01-01

    This paper, as its main didactic objective, shows the conditions needed for the validity of Faraday's law of induction. Inadequate comprehension of these conditions has given rise to several paradoxes about the issue; some are analysed and solved in this paper in the light of the theoretical deduction of the induction law. Furthermore, an…

  18. Analogical Reasoning in the Engineering Design Process and Technology Education Applications

    Science.gov (United States)

    Daugherty, Jenny; Mentzer, Nathan

    2008-01-01

    This synthesis paper discusses the research exploring analogical reasoning, the role of analogies in the engineering design process, and educational applications for analogical reasoning. Researchers have discovered that analogical reasoning is often a fundamental cognitive tool in design problem solving. Regarding the possible role of analogical…

  19. Mapping Variation in Children's Mathematical Reasoning: The Case of "What Else Belongs?"

    Science.gov (United States)

    Vale, Colleen; Widjaja, Wanty; Herbert, Sandra; Bragg, Leicha A.; Loong, Esther Yoon-Kin

    2017-01-01

    Explaining appears to dominate primary teachers' understanding of mathematical reasoning when it is not confused with problem solving. Drawing on previous literature of mathematical reasoning, we generate a view of the critical aspects of reasoning that may assist primary teachers when designing and enacting tasks to elicit and develop…

  20. The Effectiveness of Case-Based Reasoning: An Application in Sales Promotions

    NARCIS (Netherlands)

    N.A.P. Althuizen (Niek); B. Wierenga (Berend)

    2003-01-01

    textabstractThis paper deals with Case-based Reasoning (CBR) as a support technology for sales promotion (SP) decisions. CBR-systems try to mimic analogical reasoning, a form of human reasoning that is likely to occur in weakly-structured problem solving, such as the design of sales promotions. In

  1. The Enhancement of Mathematical Reasoning Ability of Junior High School Students by Applying Mind Mapping Strategy

    Science.gov (United States)

    Ayal, Carolina S.; Kusuma, Yaya S.; Sabandar, Jozua; Dahlan, Jarnawi Afgan

    2016-01-01

    Mathematical reasoning ability, are component that must be governable by the student. Mathematical reasoning plays an important role, both in solving problems and in conveying ideas when learning mathematics. In fact there ability are not still developed well, even in middle school. The importance of mathematical reasoning ability (KPM are…

  2. Spatial Reasoning: Improvement of Imagery and Abilities in Sophomore Organic Chemistry. Perspective to Enhance Student Learning

    Science.gov (United States)

    Hornbuckle, Susan F.; Gobin, Latanya; Thurman, Stephanie N.

    2014-01-01

    Spatial reasoning has become a demanded skill for students pursuing a science emphasis to compete with the dynamic growth of our professional society. The ability to reason spatially includes explorations in memory recollection and problem solving capabilities as well as critical thinking and reasoning skills. With these advancements, educational…

  3. INDUCTION HEATING IN HISTORY AND DEVELOPMENT. APPLICATION IN MODERN TRANSPORT REPAIRING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yu. Batyhin

    2017-06-01

    Full Text Available The technologies used in repair of vehicles were analyzed in the given paper. The shortcomings of the mechanical repair methods in question can be solved by using induction heating. Analysis of the stages of development and implementation of induction heating in industries showed effective performance of this technology and its opportunities for further improvement. An alternative repair technique, which consists in using induction heating, was proposed.

  4. Heuristic reasoning and relative incompleteness

    OpenAIRE

    Treur, J.

    1993-01-01

    In this paper an approach is presented in which heuristic reasoning is interpreted as strategic reasoning. This type of reasoning enables one to derive which hypothesis to investigate, and which observable information to acquire next (to be able to verify the chosen hypothesis). A compositional architecture for reasoning systems that perform such heuristic reasoning is introduced, called SIX (for Strategic Interactive eXpert systems). This compositional architecture enables user interaction a...

  5. The Christological Ontology of Reason

    DEFF Research Database (Denmark)

    Nissen, Ulrik Becker

    2006-01-01

    Taking the startingpoint in an assertion of an ambiguity in the Lutheran tradition’s assessment of reason, the essay argues that the Kantian unreserved confidence in reason is criticised in Bonhoeffer. Based upon a Christological understanding of reason, Bonhoeffer endorses a view of reason which...... is treated in the essay. Here it is argued that Bonhoeffer may be appropriated in attempting to outline a Christological ontology of reason holding essential implications for the sources and conditions of public discourse....

  6. Is Word-Problem Solving a Form of Text Comprehension?

    Science.gov (United States)

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study’s hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of the 2nd grade, children (n = 206; on average, 7 years, 6 months) were assessed on general language comprehension, working memory, nonlinguistic reasoning, processing speed (a control variable), and foundational skill (arithmetic for WPs; word reading for text comprehension). In spring, they were assessed on WP-specific language comprehension, WPs, and text comprehension. Path analytic mediation analysis indicated that effects of general language comprehension on text comprehension were entirely direct, whereas effects of general language comprehension on WPs were partially mediated by WP-specific language. By contrast, effects of working memory and reasoning operated in parallel ways for both outcomes. PMID:25866461

  7. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  8. Using Relational Reasoning Strategies to Help Improve Clinical Reasoning Practice.

    Science.gov (United States)

    Dumas, Denis; Torre, Dario M; Durning, Steven J

    2018-05-01

    Clinical reasoning-the steps up to and including establishing a diagnosis and/or therapy-is a fundamentally important mental process for physicians. Unfortunately, mounting evidence suggests that errors in clinical reasoning lead to substantial problems for medical professionals and patients alike, including suboptimal care, malpractice claims, and rising health care costs. For this reason, cognitive strategies by which clinical reasoning may be improved-and that many expert clinicians are already using-are highly relevant for all medical professionals, educators, and learners.In this Perspective, the authors introduce one group of cognitive strategies-termed relational reasoning strategies-that have been empirically shown, through limited educational and psychological research, to improve the accuracy of learners' reasoning both within and outside of the medical disciplines. The authors contend that relational reasoning strategies may help clinicians to be metacognitive about their own clinical reasoning; such strategies may also be particularly well suited for explicitly organizing clinical reasoning instruction for learners. Because the particular curricular efforts that may improve the relational reasoning of medical students are not known at this point, the authors describe the nature of previous research on relational reasoning strategies to encourage the future design, implementation, and evaluation of instructional interventions for relational reasoning within the medical education literature. The authors also call for continued research on using relational reasoning strategies and their role in clinical practice and medical education, with the long-term goal of improving diagnostic accuracy.

  9. Gender Differences in Solving Mathematics Problems among Two-Year College Students in a Developmental Algebra Class and Related Factors.

    Science.gov (United States)

    Schonberger, Ann K.

    A study was conducted at the University of Maine at Orono (UMO) to examine gender differences with respect to mathematical problem-solving ability, visual spatial ability, abstract reasoning ability, field independence/dependence, independent learning style, and developmental problem-solving ability (i.e., formal reasoning ability). Subjects…

  10. Problem Solving with General Semantics.

    Science.gov (United States)

    Hewson, David

    1996-01-01

    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  11. How to solve mathematical problems

    CERN Document Server

    Wickelgren, Wayne A

    1995-01-01

    Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.

  12. Interactive Problem-Solving Interventions

    African Journals Online (AJOL)

    Frew Demeke Alemu

    concerted efforts of unofficial actors to establish unofficial communication ... Frew Demeke Alemu (LLB, LLM in International Human Rights Law from Lund ..... 24 Tamra Pearson d'Estrée (2009), “Problem-Solving Approaches”, (in The SAGE ...

  13. Eye Movements Reveal Optimal Strategies for Analogical Reasoning.

    Science.gov (United States)

    Vendetti, Michael S; Starr, Ariel; Johnson, Elizabeth L; Modavi, Kiana; Bunge, Silvia A

    2017-01-01

    Analogical reasoning refers to the process of drawing inferences on the basis of the relational similarity between two domains. Although this complex cognitive ability has been the focus of inquiry for many years, most models rely on measures that cannot capture individuals' thought processes moment by moment. In the present study, we used participants' eye movements to investigate reasoning strategies in real time while solving visual propositional analogy problems (A:B::C:D). We included both a semantic and a perceptual lure on every trial to determine how these types of distracting information influence reasoning strategies. Participants spent more time fixating the analogy terms and the target relative to the other response choices, and made more saccades between the A and B items than between any other items. Participants' eyes were initially drawn to perceptual lures when looking at response choices, but they nonetheless performed the task accurately. We used participants' gaze sequences to classify each trial as representing one of three classic analogy problem solving strategies and related strategy usage to analogical reasoning performance. A project-first strategy, in which participants first extrapolate the relation between the AB pair and then generalize that relation for the C item, was both the most commonly used strategy as well as the optimal strategy for solving visual analogy problems. These findings provide new insight into the role of strategic processing in analogical problem solving.

  14. Eye Movements Reveal Optimal Strategies for Analogical Reasoning

    Directory of Open Access Journals (Sweden)

    Michael S. Vendetti

    2017-06-01

    Full Text Available Analogical reasoning refers to the process of drawing inferences on the basis of the relational similarity between two domains. Although this complex cognitive ability has been the focus of inquiry for many years, most models rely on measures that cannot capture individuals' thought processes moment by moment. In the present study, we used participants' eye movements to investigate reasoning strategies in real time while solving visual propositional analogy problems (A:B::C:D. We included both a semantic and a perceptual lure on every trial to determine how these types of distracting information influence reasoning strategies. Participants spent more time fixating the analogy terms and the target relative to the other response choices, and made more saccades between the A and B items than between any other items. Participants' eyes were initially drawn to perceptual lures when looking at response choices, but they nonetheless performed the task accurately. We used participants' gaze sequences to classify each trial as representing one of three classic analogy problem solving strategies and related strategy usage to analogical reasoning performance. A project-first strategy, in which participants first extrapolate the relation between the AB pair and then generalize that relation for the C item, was both the most commonly used strategy as well as the optimal strategy for solving visual analogy problems. These findings provide new insight into the role of strategic processing in analogical problem solving.

  15. Proportional Reasoning: An Essential Component of Scientific Understanding

    Science.gov (United States)

    Hilton, Annette; Hilton, Geoff

    2016-01-01

    In many scientific contexts, students need to be able to use mathematical knowledge in order to engage in scientific reasoning and problem-solving, and their understanding of scientific concepts relies heavily on their ability to understand and use mathematics in often new or unfamiliar contexts. Not only do science students need high levels of…

  16. The Role of Reasoning in the Australian Curriculum: Mathematics

    Science.gov (United States)

    McCluskey, Catherine; Mulligan, Joanne; Mitchelmore, Mike

    2016-01-01

    The mathematical proficiencies in the "Australian Curriculum: Mathematics" of understanding, problem solving, reasoning, and fluency are intended to be entwined actions that work together to build generalised understandings of mathematical concepts. A content analysis identifying the incidence of key proficiency terms (KPTs) embedded in…

  17. Reason with me : 'Confabulation' and interpersonal moral reasoning

    NARCIS (Netherlands)

    Nyholm, S.R.

    2015-01-01

    According to Haidt’s ‘social intuitionist model’, empirical moral psychology supports the following conclusion: intuition comes first, strategic reasoning second. Critics have responded by arguing that intuitions can depend on non-conscious reasons, that not being able to articulate one’s reasons

  18. Argumentation in Legal Reasoning

    Science.gov (United States)

    Bench-Capon, Trevor; Prakken, Henry; Sartor, Giovanni

    A popular view of what Artificial Intelligence can do for lawyers is that it can do no more than deduce the consequences from a precisely stated set of facts and legal rules. This immediately makes many lawyers sceptical about the usefulness of such systems: this mechanical approach seems to leave out most of what is important in legal reasoning. A case does not appear as a set of facts, but rather as a story told by a client. For example, a man may come to his lawyer saying that he had developed an innovative product while working for Company A. Now Company B has made him an offer of a job, to develop a similar product for them. Can he do this? The lawyer firstly must interpret this story, in the context, so that it can be made to fit the framework of applicable law. Several interpretations may be possible. In our example it could be seen as being governed by his contract of employment, or as an issue in Trade Secrets law.

  19. Motivated reasoning during recruitment.

    Science.gov (United States)

    Kappes, Heather Barry; Balcetis, Emily; De Cremer, David

    2018-03-01

    This research shows how job postings can lead job candidates to see themselves as particularly deserving of hiring and high salary. We propose that these entitlement beliefs entail both personal motivations to see oneself as deserving and the ability to justify those motivated judgments. Accordingly, we predict that people feel more deserving when qualifications for a job are vague and thus amenable to motivated reasoning, whereby people use information selectively to reach a desired conclusion. We tested this hypothesis with a 2-phase experiment (N = 892) using materials drawn from real online job postings. In the first phase of the experiment, participants believed themselves to be more deserving of hiring and deserving of higher pay after reading postings composed of vaguer types of qualifications. In the second phase, yoked observers believed that participants were less entitled overall, but did not selectively discount endorsement of vaguer qualifications, suggesting they were unaware of this effect. A follow-up preregistered experiment (N = 905) using postings with mixed qualification types replicated the effect of including more vague qualifications on participants' entitlement beliefs. Entitlement beliefs are widely seen as problematic for recruitment and retention, and these results suggest that reducing the inclusion of vague qualifications in job postings would dampen the emergence of these beliefs in applicants, albeit at the cost of decreasing application rates and lowering applicants' confidence. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  1. Enhancing the Connection between Conceptual Reasoning and Quantitative Skills

    Science.gov (United States)

    Ash, Linda R.; Luettmer-Strathmann, Jutta

    2004-10-01

    Introductory physics students often solve physics problems by equation hunting or pattern matching. These techniques can leave students ill-prepared to work on problems that require a careful analysis of the situation and logical reasoning using fundamental physical concepts. We have designed worksheets for challenging problems that guide the students through the conceptual part of the problem using expert problem solving techniques, namely, draw sketches, collect the available information, determine the question, identify applicable physical principles, and find relationships that can lead to a solution. The worksheets only help the student plan how to reach a solution; the actual execution of the planned solution is left to the student. Student feedback on the worksheets has been positive and suggests that they are helpful in enhancing the connection between conceptual reasoning and quantitative skills in problem solving. We are currently evaluating quizzes, exams, and homework to further investigate the effectiveness of the approach.

  2. Memory, reasoning, and categorization: parallels and common mechanisms.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan; Rotello, Caren M

    2014-01-01

    Traditionally, memory, reasoning, and categorization have been treated as separate components of human cognition. We challenge this distinction, arguing that there is broad scope for crossover between the methods and theories developed for each task. The links between memory and reasoning are illustrated in a review of two lines of research. The first takes theoretical ideas (two-process accounts) and methodological tools (signal detection analysis, receiver operating characteristic curves) from memory research and applies them to important issues in reasoning research: relations between induction and deduction, and the belief bias effect. The second line of research introduces a task in which subjects make either memory or reasoning judgments for the same set of stimuli. Other than broader generalization for reasoning than memory, the results were similar for the two tasks, across a variety of experimental stimuli and manipulations. It was possible to simultaneously explain performance on both tasks within a single cognitive architecture, based on exemplar-based comparisons of similarity. The final sections explore evidence for empirical and processing links between inductive reasoning and categorization and between categorization and recognition. An important implication is that progress in all three of these fields will be expedited by further investigation of the many commonalities between these tasks.

  3. Memory, reasoning and categorization: Parallels and common mechanisms

    Directory of Open Access Journals (Sweden)

    BRETT eHAYES

    2014-06-01

    Full Text Available Traditionally, memory, reasoning and categorization have been treated as separate components of human cognition. We challenge this distinction, arguing that there is broad scope for crossover between the methods and theories developed for each task. The links between memory and reasoning are illustrated in a review of two lines of research. The first takes theoretical ideas (two-process accounts and methodological tools (signal detection analysis, receiver operating characteristic curves from memory research and applies them to important issues in reasoning research: relations between induction and deduction, and the belief bias effect. The second line of research introduces a task in which subjects make either memory or reasoning judgments for the same set of stimuli. Other than broader generalization for reasoning than memory, the results were similar for the two tasks, across a variety of experimental stimuli and manipulations. It was possible to simultaneously explain performance on both tasks within a single cognitive architecture, based on exemplar-based comparisons of similarity. The final sections explore evidence for empirical and processing links between inductive reasoning and categorization and between categorization and recognition. An important implication is that progress in all three of these fields will be expedited by further investigation of the many commonalities between these tasks.

  4. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  5. Component Processes in Analogical Reasoning

    Science.gov (United States)

    Sternberg, Robert J.

    1977-01-01

    Describes alternative theoretical positions regarding (a) the component information processes used in analogical reasoning and (b) strategies for combining these processes. Also presents results from three experiments on analogical reasoning. (Author/RK)

  6. Preferential reasoning for modal logics

    CSIR Research Space (South Africa)

    Britz, K

    2011-11-01

    Full Text Available Modal logic is the foundation for a versatile and well-established class of knowledge representation formalisms in artificial intelligence. Enriching modal logics with non-monotonic reasoning capabilities such as preferential reasoning as developed...

  7. Numerical simulation of the induction heating of hybrid semi-finished materials into the semi-solid state

    Science.gov (United States)

    Seyboldt, Christoph; Liewald, Mathias

    2017-10-01

    Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.

  8. Development of abstract mathematical reasoning: the case of algebra.

    Science.gov (United States)

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.

  9. Modeling Induction Motor Imbalances

    DEFF Research Database (Denmark)

    Armah, Kabenla; Jouffroy, Jerome; Duggen, Lars

    2016-01-01

    This paper gives a study into the development of a generalized model for a three-phase induction motor that offers flexibility of simulating balanced and unbalanced parameter scenarios. By analyzing the interaction of forces within the motor, we achieve our main objective of deriving the system d...

  10. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  11. Heuristic reasoning and relative incompleteness

    NARCIS (Netherlands)

    Treur, J.

    1993-01-01

    In this paper an approach is presented in which heuristic reasoning is interpreted as strategic reasoning. This type of reasoning enables one to derive which hypothesis to investigate, and which observable information to acquire next (to be able to verify the chosen hypothesis). A compositional

  12. Analogical Reasoning and Computer Programming.

    Science.gov (United States)

    Clement, Catherine A.; And Others

    1986-01-01

    A study of correlations between analogical reasoning and Logo programming mastery among female high school students related the results of pretests of analogical reasoning to posttests of programming mastery. A significant correlation was found between analogical reasoning and the ability to write subprocedures for use in several different…

  13. An Analysis of Students Error in Solving PISA 2012 and Its Scaffolding

    OpenAIRE

    Sari, Yurizka Melia; Valentino, Erik

    2016-01-01

    Based on PISA survey in 2012, Indonesia was only placed on 64 out of 65 participating countries. The survey suggest that the students’ ability of reasoning, spatial orientation, and problem solving are lower compare with other participants countries, especially in Shouth East Asia. Nevertheless, the result of PISA does not elicit clearly on the students’ inability in solving PISA problem such as the location and the types of student’s errors. Therefore, analyzing students’ error in solving PI...

  14. Solving the equality generalized traveling salesman problem using the Lin–Kernighan–Helsgaun Algorithm

    DEFF Research Database (Denmark)

    Helsgaun, Keld

    2015-01-01

    instances in a well-known library of benchmark instances, GTSPLIB, could be solved to optimality in a reasonable time. In addition, it was possible to solve a series of new very-large-scale instances with up to 17,180 clusters and 85,900 vertices. Optima for these instances are not known...... be downloaded in source code....

  15. Analogical Reasoning in the Engineering Design Process and Technology Education Applications

    OpenAIRE

    2008-01-01

    This synthesis paper discusses the research exploring analogical reasoning, the role of analogies in the engineering design process, and educational applications for analogical reasoning. Researchers have discovered that analogical reasoning is often a fundamental cognitive tool in design problem solving. Regarding the possible role of analogical reasoning in the context of technology education; analogies may be a useful tool to develop student’s design skills, teach abstract or complex conce...

  16. Enhancing memory and imagination improves problem solving among individuals with depression.

    Science.gov (United States)

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  17. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  18. Prospective Teachers Proportional Reasoning and Presumption of Student Work

    Directory of Open Access Journals (Sweden)

    Mujiyem Sapti

    2015-08-01

    Full Text Available This study aimed to describe the proportional reasoning of prospective teachers and their predictions about students' answers. Subjects were 4 prospective teacher  7th semester Department of Mathematics Education, Muhammadiyah University of Purworejo. Proportional reasoning task used to obtain research data. Subjects were asked to explain their reasoning and write predictions of student completion. Data was taken on October 15th, 2014. Interviews were conducted after the subjects completed the task and recorded with audio media. The research data were subject written work and interview transcripts. Data were analyzed using qualitative analysis techniques. In solving the proportional reasoning task, subjects using the cross product. However, they understand the meaning of the cross product. Subject also could predict students' reasoning on the matter.

  19. The manual of strategic economic decision making using Bayesian belief networks to solve complex problems

    CERN Document Server

    Grover, Jeff

    2016-01-01

    This book is an extension of the author’s first book and serves as a guide and manual on how to specify and compute 2-, 3-, & 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for naïve learners and professionals, with a proof-based academic rigor. The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes’ theory and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem - as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes. It highlights the utility of an algorithm that served as ...

  20. The Christological Ontology of Reason

    DEFF Research Database (Denmark)

    Nissen, Ulrik Becker

    2006-01-01

    Taking the startingpoint in an assertion of an ambiguity in the Lutheran tradition’s assessment of reason, the essay argues that the Kantian unreserved confidence in reason is criticised in Bonhoeffer. Based upon a Christological understanding of reason, Bonhoeffer endorses a view of reason which...... is specifically Christian and yet maintains a universality. With a focus on Bonhoeffer’s »Ethik« as the hermeneutical key to his theology, Bonhoeffer’s notion is also discussed in the light of contemporary Christian ethics. In this part it is particularly the role of reason within a public dis-course which...

  1. Working Memory and Dynamic Measures of Analogical Reasoning as Predictors of Children's Math and Reading Achievement

    NARCIS (Netherlands)

    Stevenson, C.E.; Bergwerff, C.E.; Heiser, W.J.; Resing, W.C.M.

    Working memory and inductive reasoning ability each appear related to children's achievement in math and reading. Dynamic measures of reasoning, based on an assessment procedure including feedback, may provide additional predictive value. The aim of this study was to investigate whether working

  2. Working Memory and Dynamic Measures of Analogical Reasoning as Predictors of Children's Math and Reading Achievement

    NARCIS (Netherlands)

    Stevenson, C.; Bergwerff, C.E.; Heiser, W.J.; Resing, W. C. M.

    2014-01-01

    Working memory and inductive reasoning ability each appear related to children's achievement in math and reading. Dynamic measures of reasoning, based on an assessment procedure including feedback, may provide additional predictive value. The aim of this study was to investigate whether working

  3. Interpreting clinical trial results by deductive reasoning: In search of improved trial design.

    Science.gov (United States)

    Kurbel, Sven; Mihaljević, Slobodan

    2017-10-01

    Clinical trial results are often interpreted by inductive reasoning, in a trial design-limited manner, directed toward modifications of the current clinical practice. Deductive reasoning is an alternative in which results of relevant trials are combined in indisputable premises that lead to a conclusion easily testable in future trials. © 2017 WILEY Periodicals, Inc.

  4. Evaluating moral reasoning in nursing education.

    Science.gov (United States)

    McLeod-Sordjan, Renee

    2014-06-01

    Evidence-based practice suggests the best approach to improving professionalism in practice is ethics curricula. However, recent research has demonstrated that millennium graduates do not advocate for patients or assert themselves during moral conflicts. The aim of this article is the exploration of evaluation techniques to evaluate one measurable outcome of ethics curricula: moral reasoning. A review of literature, published between 1995 and 2013, demonstrated that the moral orientations of care and justice as conceptualized by Gilligan and Kohlberg are utilized by nursing students to solve ethical dilemmas. Data obtained by means of reflective journaling, Ethics of Care Interview (ECI) and Defining Issues Test (DIT), would objectively measure the interrelated pathways of care-based and justice-based moral reasoning. In conclusion, educators have an ethical responsibility to foster students' ability to exercise sound clinical judgment, and support their professional development. It is recommended that educators design authentic assessments to demonstrate student's improvement of moral reasoning. © The Author(s) 2013.

  5. Critique of historical reason

    Directory of Open Access Journals (Sweden)

    David B. Richardson

    2009-03-01

    Full Text Available El enfoque aquí desarrollado presupone una nueva visión del mundo civilizado (Weltanschauungen. La idea del historiador de los hechos históricos presupone una visión global del mundo, a excepción de las sociedades que carecen de un lenguaje escrito. Por eso, la razón histórica discutida aquí se limita al tipo de historia que trata de civilizaciones más elevadas. El análisis de visiones del mundo aquí utilizado presupone que los símbolos son muy importantes y que pierden su poder simbólico si se cristalizan en un único sentido. Como en la teoría de Jung, un símbolo tiene la capacidad de estar activo en la mente como un transformador de la conciencia, libre de asociarse con nuevas experiencias y pensamientos. Esta teoría presta especial atención al problema de Dilthey: es decir, el problema de la calidad racional de los hechos históricos. Las visiones del mundo, que dan un significado profundo a muchos hechos históricos, se componen de símbolos y metáforas, incluyendo ideas, imágenes, valores y emociones. Estos tipos de visiones son casi todos instintivos. Es cierto que los historiadores pueden haber formulado, consciente definiciones de estos tipos de visiones del mundo así como ocurrió por las civilizaciones griega y china. Dado que la actual Weltbilt es mucho más compleja e inconsciente, se necesita algo más que una definición lógica para entenderla. Este artículo indica la forma en que puede ser alcanzada una comprensión racional de estas visiones del mundo._____________ABSTRACT:The approach here entertained presupposes a fresh theory of world pictures (Weltanschauungen of higher civilizations. For the historian's idea of historical facts presupposes a world picture, except for societies which lack a written language. That is why the historical reason discussed here is limited to the kind of history which deals with higher civilizations. The analysis of world pictures used here itself presupposes that symbols are

  6. Information processing systems, reasoning modules, and reasoning system design methods

    Science.gov (United States)

    Hohimer, Ryan E; Greitzer, Frank L; Hampton, Shawn D

    2014-03-04

    Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

  7. Information processing systems, reasoning modules, and reasoning system design methods

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, Ryan E.; Greitzer, Frank L.; Hampton, Shawn D.

    2016-08-23

    Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

  8. Information processing systems, reasoning modules, and reasoning system design methods

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, Ryan E.; Greitzer, Frank L.; Hampton, Shawn D.

    2015-08-18

    Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

  9. Customer-centered problem solving.

    Science.gov (United States)

    Samelson, Q B

    1999-11-01

    If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.

  10. Simon on Problem-Solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    as a general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...... Simon, problem-solving, new organizational forms. JEL Code: D23, D83......Two of Herbert Simon's best-known papers are "The Architecture of Complexity" and "The Structure of Ill-Structured Problems." We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  11. Interactive problem solving using LOGO

    CERN Document Server

    Boecker, Heinz-Dieter; Fischer, Gerhard

    2014-01-01

    This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more

  12. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S

    1982-04-01

    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  13. Inductive Communication System Design Summary

    Science.gov (United States)

    1978-09-01

    The report documents the experience obtained during the design and development of the Inductive Communications System used in the Morgantown People Mover. The Inductive Communications System is used to provide wayside-to-vehicle and vehicle-to-waysid...

  14. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  15. Emotional reasoning and parent-based reasoning in normal children.

    OpenAIRE

    Morren, M.; Muris, P.; Kindt, M.

    2004-01-01

    A previous study by Muris, Merckelbach, and Van Spauwen demonstrated that children display emotional reasoning irrepective of their anxiety levels. That is when estimating whether a situation is dangerous, childen not only rely on objective danger information but also on their own anciety-response. The present study further examined emotional reasoning in childeren aged 7-13 years (N=508). In addition, it was investigated whether children also show parent-based reasoning, which can be defined...

  16. An Algorithm for Induction Motor Stator Flux Estimation

    Directory of Open Access Journals (Sweden)

    STOJIC, D. M.

    2012-08-01

    Full Text Available A new method for the induction motor stator flux estimation used in the sensorless IM drive applications is presented in this paper. Proposed algorithm advantageously solves problems associated with the pure integration, commonly used for the stator flux estimation. An observer-based structure is proposed based on the stator flux vector stationary state, in order to eliminate the undesired DC offset component present in the integrator based stator flux estimates. By using a set of simulation runs it is shown that the proposed algorithm enables the DC-offset free stator flux estimated for both low and high stator frequency induction motor operation.

  17. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  18. Glass manufacturing through induction

    International Nuclear Information System (INIS)

    Boen, R.; Paya, B.; Roscini, M.; Fautrelle, Y.; Tuaz, F.; Delage, D.

    1991-01-01

    Oxides and glasses are electrical and thermal insulators, but show the characteristic of being weakly conductors of electricity when they are melt. It is then possible to heat them through HF induction. This interesting property allows the development of a melting process in cold crucible induction furnace. The process is being studied and developed by a consortium made up of CFEI, CEA Marcoule, ELECTRICITE DE FRANCE and MADYLAM laboratory. The studies include 2 parts: a) One experimental part to develop the technology and research for satisfying configurations, through a small size platform (10 to 30 kg/h). The long run continuous pouring melting tests made on different kinds of glass allow to go-on with industrial range units. b) One theoretical part to understand the magneto-thermo-hydraulic phenomenon hardly in relation with the heavy dependence of the physical characteristics (electrical and heat conductivities, viscosity) according to temperature. 6 refs., 4 figs [fr

  19. Inductive energy storage commutator

    International Nuclear Information System (INIS)

    Gavrilov, I.M.

    1987-01-01

    An inductive energy storage commutator is described. The value of commutated current is up to 800 A, the voltage amplitude in the load is up to 50 kV, the working frequency is equal to 1-50 Hz, the commutated power is up to 40 MW. The commutating device comprises of the first stage commutator having two in-series connected modules of the BTSV - 800/235 high-voltage thyristor unit, the second stage commutator containing three GMI-43A parallel connected powerful pulsed triodes, a commutating capacitor, an induction coil, two supplementary high-voltage thyristor keys (20 in-series connected thyristors T2-300 (13 class)), load, control pulse shapers, thyristor keys, power supply

  20. Pulse induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, A S; Kachanov, B Y; Kogan, B V

    1993-12-31

    Induction heating and three types of pulse processes were studied. It was found that in pulse processes the frequency and pulse duration of heat treatments do not remain constant. High frequency pulse heat treatments can be used on sprayed coatings; such treatments will result in stronger surfaces with no cracks. For induction hardening, the rate of specific power was 1 to 1.5 kW/sq.cm, for forging it was 0.2 to 0.3 kW/sq.cm and for melting it was 0.05 to 0.1 kW/sq.cm. The application of pulse heating will result in higher rates of specific power.

  1. A bilateral frontoparietal network underlies visuospatial analogical reasoning.

    Science.gov (United States)

    Watson, Christine E; Chatterjee, Anjan

    2012-02-01

    Our ability to reason by analogy facilitates problem solving and allows us to communicate ideas efficiently. In this study, we examined the neural correlates of analogical reasoning and, more specifically, the contribution of rostrolateral prefrontal cortex (RLPFC) to reasoning. This area of the brain has been hypothesized to integrate relational information, as in analogy, or the outcomes of subgoals, as in multi-tasking and complex problem solving. Using fMRI, we compared visuospatial analogical reasoning to a control task that was as complex and difficult as the analogies and required the coordination of subgoals but not the integration of relations. We found that analogical reasoning more strongly activated bilateral RLPFC, suggesting that anterior prefrontal cortex is preferentially recruited by the integration of relational knowledge. Consistent with the need for inhibition during analogy, bilateral, and particularly right, inferior frontal gyri were also more active during analogy. Finally, greater activity in bilateral inferior parietal cortex during the analogy task is consistent with recent evidence for the neural basis of spatial relation knowledge. Together, these findings indicate that a network of frontoparietal areas underlies analogical reasoning; we also suggest that hemispheric differences may emerge depending on the visuospatial or verbal/semantic nature of the analogies. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Lexicographic Path Induction

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2009-01-01

    Programming languages theory is full of problems that reduce to proving the consistency of a logic, such as the normalization of typed lambda-calculi, the decidability of equality in type theory, equivalence testing of traces in security, etc. Although the principle of transfinite induction......, and weak normalization for Gödel’s T follows indirectly; both have been formalized in a prototypical extension of Twelf....

  3. Oxygen supplementation before induction of general anaesthesia in horses

    NARCIS (Netherlands)

    van Oostrom, H|info:eu-repo/dai/nl/340414634; Schaap, M W H|info:eu-repo/dai/nl/314411488; van Loon, J P A M|info:eu-repo/dai/nl/304834610

    REASONS FOR PERFORMING STUDY: Hypoventilation or apnoea, caused by the induction of general anaesthesia, may cause hypoxaemia. Pre-oxygenation may lengthen the period before this happens. No scientific studies are published on pre-oxygenation in equine anaesthesia. OBJECTIVES: To determine whether

  4. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  5. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  6. Human Problem Solving in 2012

    Science.gov (United States)

    Funke, Joachim

    2013-01-01

    This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…

  7. Solved problems in classical electromagnetism

    CERN Document Server

    Franklin, Jerrold

    2018-01-01

    This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.

  8. Error Patterns in Problem Solving.

    Science.gov (United States)

    Babbitt, Beatrice C.

    Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…

  9. Effect of Strategy Teaching for the Solution of Ratio Problems on Students' Proportional Reasoning Skills

    Science.gov (United States)

    Sen, Ceylan; Güler, Gürsel

    2017-01-01

    The study was conducted to reveal the effects of the instruction of different problem-solving strategies on the proportional reasoning skills of students in solving proportional problems in the 6th grade math's class. Quasi-experimental research model with pretest-posttest control group was employed in the study. For eight class hours, the…

  10. Non-inductively driven currents in JET

    International Nuclear Information System (INIS)

    Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.

    1989-01-01

    Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs

  11. Solving Differential Equations in R: Package deSolve

    Directory of Open Access Journals (Sweden)

    Karline Soetaert

    2010-02-01

    Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in

  12. Problem solving skills for schizophrenia.

    Science.gov (United States)

    Xia, J; Li, Chunbo

    2007-04-18

    The severe and long-lasting symptoms of schizophrenia are often the cause of severe disability. Environmental stress such as life events and the practical problems people face in their daily can worsen the symptoms of schizophrenia. Deficits in problem solving skills in people with schizophrenia affect their independent and interpersonal functioning and impair their quality of life. As a result, therapies such as problem solving therapy have been developed to improve problem solving skills for people with schizophrenia. To review the effectiveness of problem solving therapy compared with other comparable therapies or routine care for those with schizophrenia. We searched the Cochrane Schizophrenia Group's Register (September 2006), which is based on regular searches of BIOSIS, CENTRAL, CINAHL, EMBASE, MEDLINE and PsycINFO. We inspected references of all identified studies for further trials. We included all clinical randomised trials comparing problem solving therapy with other comparable therapies or routine care. We extracted data independently. For homogenous dichotomous data we calculated random effects, relative risk (RR), 95% confidence intervals (CI) and, where appropriate, numbers needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated weighted mean differences (WMD) using a random effects statistical model. We included only three small trials (n=52) that evaluated problem solving versus routine care, coping skills training or non-specific interaction. Inadequate reporting of data rendered many outcomes unusable. We were unable to undertake meta-analysis. Overall results were limited and inconclusive with no significant differences between treatment groups for hospital admission, mental state, behaviour, social skills or leaving the study early. No data were presented for global state, quality of life or satisfaction. We found insufficient evidence to confirm or refute the benefits of problem solving therapy as an additional

  13. Tracing Young Children's Scientific Reasoning

    Science.gov (United States)

    Tytler, Russell; Peterson, Suzanne

    2003-08-01

    This paper explores the scientific reasoning of 14 children across their first two years of primary school. Children's view of experimentation, their approach to exploration, and their negotiation of competing knowledge claims, are interpreted in terms of categories of epistemological reasoning. Children's epistemological reasoning is distinguished from their ability to control variables. While individual children differ substantially, they show a relatively steady growth in their reasoning, with some contextual variation. A number of these children are reasoning at a level well in advance of curriculum expectations, and it is argued that current recommended practice in primary science needs to be rethought. The data is used to explore the relationship between reasoning and knowledge, and to argue that the generation and exploration of ideas must be the key driver of scientific activity in the primary school.

  14. Genetics problem solving and worldview

    Science.gov (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  15. Learning in Order to Reason

    OpenAIRE

    Roth, Dan

    1995-01-01

    Any theory aimed at understanding commonsense reasoning, the process that humans use to cope with the mundane but complex aspects of the world in evaluating everyday situations, should account for its flexibility, its adaptability, and the speed with which it is performed. In this thesis we analyze current theories of reasoning and argue that they do not satisfy those requirements. We then proceed to develop a new framework for the study of reasoning, in which a learning component has a princ...

  16. Logical Reasoning and Decision Making

    OpenAIRE

    Ong, D; Khaddaj, Souheil; Bashroush, Rabih

    2011-01-01

    Most intelligent systems have some form of \\ud decision making mechanisms built into their \\ud organisations. These normally include a logical \\ud reasoning element into their design. This paper reviews \\ud and compares the different logical reasoning strategies, \\ud and tries to address the accuracy and precision of \\ud decision making by formulating a tolerance to \\ud imprecision view which can be used in conjunction with \\ud the various reasoning strategies.

  17. Clinical reasoning and critical thinking.

    Science.gov (United States)

    da Silva Bastos Cerullo, Josinete Aparecida; de Almeida Lopes Monteiro da Cruz, Diná

    2010-01-01

    This study identifies and analyzes nursing literature on clinical reasoning and critical thinking. A bibliographical search was performed in LILACS, SCIELO, PUBMED and CINAHL databases, followed by selection of abstracts and the reading of full texts. Through the review we verified that clinical reasoning develops from scientific and professional knowledge, is permeated by ethical decisions and nurses values and also that there are different personal and institutional strategies that might improve the critical thinking and clinical reasoning of nurses. Further research and evaluation of educational programs on clinical reasoning that integrate psychosocial responses to physiological responses of people cared by nurses is needed.

  18. Public policy, rationality and reason

    Directory of Open Access Journals (Sweden)

    Rodolfo Canto Sáenz

    2015-07-01

    Full Text Available This work suggests the incorporation of practical reason in the design, implementation and evaluation of public policies, alongside instrumental rationality. It takes two proposals that today point in this direction: Rawls distinction between reasonable (practical reason and rational (instrumental reason and what this author calls the CI Procedure (categorical imperative procedure and Habermas model of deliberative democracy. The main conclusion is that the analysis of public policies can not be limited to rather narrow limits of science, but requires the contribution of political and moral philosophy.

  19. Solving a Class of Spatial Reasoning Problems: Minimal-Cost Path Planning in the Cartesian Plane.

    Science.gov (United States)

    1987-06-01

    as in Figure 72. By the Theorem of Pythagoras : Z1 <a z 2 < C Yl(bl+b 2)uI, the cost of going along (a,b,c) is greater that the...preceding lemmas to an indefinite number of boundary-crossing episodes is accomplished by the following theorems . Theorem 1 extends the result of Lemma 1... Theorem 1: Any two Snell’s-law paths within a K-explored wedge defined by Snell’s-law paths RL and R. do not intersect within the K-explored portion of

  20. 10 Reasons Why Corporate Language Policies Can Create More Problems Than They Solve

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum

    One of the challenges multinational corporations (MNCs) are faced with, is the question of how to communicate through the language barriers presented by linguistic diversity. An increasing number of companies choose to address these issues through corporate language policies, for example...... to collaboration and group dynamics, communicative problems, language policies which leads to reallocation of power, divergence between de facto vs. de jure language policies, language policies which are not aligned with the overall business plan of the company, language management tools which are implemented...... by adopting a common corporate language. Language policies are often seen as a cheap and easy solution to overcome communicative problems, but previous research has demonstrated that there might be several potentially negative consequences associated with them. The purpose of this paper is to shed some light...

  1. Increasing Explanatory Behaviour, Problem-Solving, and Reasoning within Classes Using Cooperative Group Work

    Science.gov (United States)

    Gillies, Robyn M.; Haynes, Michele

    2011-01-01

    The present study builds on research that indicates that teachers play a key role in promoting those interactional behaviours that challenge children's thinking and scaffold their learning. It does this by seeking to determine whether teachers who implement cooperative learning and receive training in explicit strategic questioning strategies…

  2. Combinatorial reasoning an introduction to the art of counting

    CERN Document Server

    DeTemple, Duane

    2014-01-01

    Written by well-known scholars in the field, this book introduces combinatorics alongside modern techniques, showcases the interdisciplinary aspects of the topic, and illustrates how to problem solve with a multitude of exercises throughout. The authors' approach is very reader-friendly and avoids the ""scholarly tone"" found in many books on this topic. Combinatorial Reasoning: An Introduction to the Art of Counting: Focuses on enumeration and combinatorial thinking as a way to develop a variety of effective approaches to solving counting problemsIncludes brief summaries of basic concepts f

  3. Reasonable fermionic quantum information theories require relativity

    International Nuclear Information System (INIS)

    Friis, Nicolai

    2016-01-01

    We show that any quantum information theory based on anticommuting operators must be supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of entanglement. While quantum information may be encoded in the fermionic Fock space, the unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving that it is removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of quantum information and the causal structure of relativistic field theory. (paper)

  4. Gender differences in algebraic thinking ability to solve mathematics problems

    Science.gov (United States)

    Kusumaningsih, W.; Darhim; Herman, T.; Turmudi

    2018-05-01

    This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.

  5. Melting of glass by direct induction heating in ceramic container

    International Nuclear Information System (INIS)

    Ooka, Kazuo; Oguino, Naohiko; Kawanishi, Nobuo

    1981-01-01

    The direct induction melting, a process of glass melting by high frequency induction heating, was found to be the effective way of glass melting, especially desirable for the vitrification of High Level Radioactive Liquid Wastes, HLLW. A test instrument in the cold level was equipped with a high frequency oscillator of 65 kW anode output. The direct induction melting was successfully performed with two frequencies of 400 kHz and 3 MHz, and the operation conditions were determined in the five cases of ceramic pot inner diameters of 170, 200, 230, 280 and 325 mm. The start-up of the direct induction melting was carried out by induction heating using a silicon carbide rod which was inserted in raw material powders in the ceramic pot. After the raw material powders partly melted down and the direct induction in the melt began, the start-up rod was removed out of the melt. At this stage, the direct induction melting was successively performed by adjusting the output power of the oscillator and by supplying the raw materials. It was also found that the capacity of this type of melting was reasonably large and the operation could be remotely controlled. Both applied frequencies of 400 kHz and 3 MHz was found to be successful with this melting system, especially in the case of lower frequency which proved more preferable for the in-cell work. (author)

  6. Induction concurrent chemoradiation therapy for invading apical non-small cell lung cancer

    International Nuclear Information System (INIS)

    Miyoshi, Shinichiro; Nakamura, Kenji

    2004-01-01

    Although non-small cell lung cancer (NSCLC) involving the superior sulcus has been generally treated with radiation therapy (RT) followed by surgery, local recurrence is still a big problem to be solved. We investigated a role of induction therapy, especially induction concurrent chemoradiation therapy (CRT), on the surgical results of this type of NSCLC. We retrospectively reviewed 30 patients with NSCLC invading the apex of the chest wall who underwent surgery from 1987 to 1996. Ten patients (57±8 years) received surgery alone, 9 (55±13 years) received RT (42±7 Gy) followed by surgery and 11 (51±9 years) received cisplatin based chemotherapy and RT (47±5 Gy) as an induction therapy. Two and 4-year survival rates were 30% and 20% in patients with surgery alone, 22% and 11% in patients with induction RT, and 73% and 53% in patients with induction CRT, respectively. The survival was significantly better in patients with induction CRT than those with induction RT or surgery alone. Univariate analysis demonstrated that curability (yes versus no: p=0.027) and induction therapy (surgery alone and RT versus CRT: p=0.0173) were significant prognostic factors. Multivariate analysis revealed that only induction therapy (p=0.0238) was a significant prognostic factor. Induction CRT seems to improve the survival in patients with NSCLC invading the apex of the chest wall compared with induction RT or surgery alone. (author)

  7. Reasoning and dyslexia: is visual memory a compensatory resource?

    Science.gov (United States)

    Bacon, Alison M; Handley, Simon J

    2014-11-01

    Effective reasoning is fundamental to problem solving and achievement in education and employment. Protocol studies have previously suggested that people with dyslexia use reasoning strategies based on visual mental representations, whereas non-dyslexics use abstract verbal strategies. This research presents converging evidence from experimental and individual differences perspectives. In Experiment 1, dyslexic and non-dyslexic participants were similarly accurate on reasoning problems, but scores on a measure of visual memory ability only predicted reasoning accuracy for dyslexics. In Experiment 2, a secondary task loaded visual memory resources during concurrent reasoning. Dyslexics were significantly less accurate when reasoning under conditions of high memory load and showed reduced ability to subsequently recall the visual stimuli, suggesting that the memory and reasoning tasks were competing for the same visual cognitive resource. The results are consistent with an explanation based on limitations in the verbal and executive components of working memory in dyslexia and the use of compensatory visual strategies for reasoning. There are implications for cognitive activities that do not readily support visual thinking, whether in education, employment or less formal everyday settings. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Quantitative Reasoning Learning Progressions for Environmental Science: Developing a Framework

    Directory of Open Access Journals (Sweden)

    Robert L. Mayes

    2013-01-01

    Full Text Available Quantitative reasoning is a complex concept with many definitions and a diverse account in the literature. The purpose of this article is to establish a working definition of quantitative reasoning within the context of science, construct a quantitative reasoning framework, and summarize research on key components in that framework. Context underlies all quantitative reasoning; for this review, environmental science serves as the context.In the framework, we identify four components of quantitative reasoning: the quantification act, quantitative literacy, quantitative interpretation of a model, and quantitative modeling. Within each of these components, the framework provides elements that comprise the four components. The quantification act includes the elements of variable identification, communication, context, and variation. Quantitative literacy includes the elements of numeracy, measurement, proportional reasoning, and basic probability/statistics. Quantitative interpretation includes the elements of representations, science diagrams, statistics and probability, and logarithmic scales. Quantitative modeling includes the elements of logic, problem solving, modeling, and inference. A brief comparison of the quantitative reasoning framework with the AAC&U Quantitative Literacy VALUE rubric is presented, demonstrating a mapping of the components and illustrating differences in structure. The framework serves as a precursor for a quantitative reasoning learning progression which is currently under development.

  9. SHA-1, SAT-solving, and CNF

    CSIR Research Space (South Africa)

    Motara, YM

    2017-09-01

    Full Text Available the intersection between the SHA-1 preimage problem, the encoding of that problem for SAT-solving, and SAT-solving. The results demonstrate that SAT-solving is not yet a viable approach to take to solve the preimage problem, and also indicate that some...

  10. Assessing Algebraic Solving Ability: A Theoretical Framework

    Science.gov (United States)

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  11. Heuristics Reasoning in Diagnostic Judgment.

    Science.gov (United States)

    O'Neill, Eileen S.

    1995-01-01

    Describes three heuristics--short-cut mental strategies that streamline information--relevant to diagnostic reasoning: accessibility, similarity, and anchoring and adjustment. Analyzes factors thought to influence heuristic reasoning and presents interventions to be tested for nursing practice and education. (JOW)

  12. Hurrah for the Reasonable Woman.

    Science.gov (United States)

    Leland, Dorothy

    1994-01-01

    Recent court cases on sexual harassment, and the outcomes, were reviewed in terms of how the court viewed a "reasonable" woman. Rulings in such cases can vary because of different interpretations of the "reasonable" concept. Also discusses how recent rulings will affect sexual harassment policymakers in the workplace and educational institutions.…

  13. Competent Reasoning with Rational Numbers.

    Science.gov (United States)

    Smith, John P. III

    1995-01-01

    Analyzed students' reasoning with fractions. Found that skilled students applied strategies specifically tailored to restricted classes of fractions and produced reliable solutions with a minimum of computation effort. Results suggest that competent reasoning depends on a knowledge base that includes numerically specific and invented strategies,…

  14. Moral Reasoning in Genetics Education

    Science.gov (United States)

    van der Zande, Paul; Brekelmans, Mieke; Vermunt, Jan D.; Waarlo, Arend Jan

    2009-01-01

    Recent neuropsychological research suggests that intuition and emotion play a role in our reasoning when we are confronted with moral dilemmas. Incorporating intuition and emotion into moral reflection is a rather new idea in the educational world, where rational reasoning is preferred. To develop a teaching and learning strategy to address this…

  15. Cultural Differences in Justificatory Reasoning

    Science.gov (United States)

    Soong, Hannah; Lee, Richard; John, George

    2012-01-01

    Justificatory reasoning, the ability to justify one's beliefs and actions, is an important goal of education. We develop a scale to measure the three forms of justificatory reasoning--absolutism, relativism, and evaluativism--before validating the scale across two cultures and domains. The results show that the scale possessed validity and…

  16. Human reasoning and cognitive science

    NARCIS (Netherlands)

    Stenning, K.; van Lambalgen, M.

    2008-01-01

    In Human Reasoning and Cognitive Science, Keith Stenning and Michiel van Lambalgen—a cognitive scientist and a logician—argue for the indispensability of modern mathematical logic to the study of human reasoning. Logic and cognition were once closely connected, they write, but were "divorced" in the

  17. Archivists Killed for Political Reasons

    NARCIS (Netherlands)

    de Baets, Antoon

    2015-01-01

    This essay, Archivists Killed for Political Reasons, offers an overview of archivists who were killed for political reasons through the ages. After determining the criteria for inclusion, sixteen such political murders of archivists are briefly discussed. These cases were distributed over six

  18. Learning to reason from samples

    NARCIS (Netherlands)

    Ben-Zvi, Dani; Bakker, Arthur; Makar, Katie

    2015-01-01

    The goal of this article is to introduce the topic of learning to reason from samples, which is the focus of this special issue of Educational Studies in Mathematics on statistical reasoning. Samples are data sets, taken from some wider universe (e.g., a population or a process) using a particular

  19. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  20. Adversarial reasoning: challenges and approaches

    Science.gov (United States)

    Kott, Alexander; Ownby, Michael

    2005-05-01

    This paper defines adversarial reasoning as computational approaches to inferring and anticipating an enemy's perceptions, intents and actions. It argues that adversarial reasoning transcends the boundaries of game theory and must also leverage such disciplines as cognitive modeling, control theory, AI planning and others. To illustrate the challenges of applying adversarial reasoning to real-world problems, the paper explores the lessons learned in the CADET -- a battle planning system that focuses on brigade-level ground operations and involves adversarial reasoning. From this example of current capabilities, the paper proceeds to describe RAID -- a DARPA program that aims to build capabilities in adversarial reasoning, and how such capabilities would address practical requirements in Defense and other application areas.