Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2014-01-01
Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.
Biala, T A; Jator, S N
2015-01-01
In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.
Hyperbolic partial differential equations
Witten, Matthew
1986-01-01
Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M
Solving hyperbolic heat conduction using electrical simulation
International Nuclear Information System (INIS)
Gheitaghy, A. M.; Talaee, M. R.
2013-01-01
In the present study, the electrical network simulation method is proposed to solve the hyperbolic and parabolic heat conduction problem considering Cattaneo-Vernoute (C.V) constitutive relation. Using this new proposed numerical model and the electrical circuit simulation program HSPICE, transient temperature and heat flux profiles at slab can be obtained easily and quickly. To verify the proposed method, the obtained numerical results for cases of one dimensional two-layer slab under periodic boundary temperature with perfect and imperfect thermal contact are compared with the published results. Comparisons show the proposed technique might be considered as a useful tool in the analysis of parabolic and hyperbolic thermal problems.
A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...
Atomic disintegrations for partially hyperbolic diffeomorphisms
Homburg, Ale Jan
2017-01-01
Shub and Wilkinson and Ruelle and Wilkinson studied a class of volume preserving diffeomorphisms on the three dimensional torus that are stably ergodic. The diffeomorphisms are partially hyperbolic and admit an invariant central foliation of circles. The foliation is not absolutely continuous; in
Clawpack: Building an open source ecosystem for solving hyperbolic PDEs
Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.
2016-01-01
Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.
Clawpack: building an open source ecosystem for solving hyperbolic PDEs
Mandli, Kyle T.
2016-08-08
Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model.
Clawpack: building an open source ecosystem for solving hyperbolic PDEs
Mandli, Kyle T.; Ahmadia, Aron J.; Berger, Marsha; Calhoun, Donna; George, David L.; Hadjimichael, Yiannis; Ketcheson, David I.; Lemoine, Grady I.; LeVeque, Randall J.
2016-01-01
Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model.
Dey, C.; Dey, S. K.
1983-01-01
An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.
Minimality of invariant laminations for partially hyperbolic attractors
International Nuclear Information System (INIS)
Nobili, Felipe
2015-01-01
Let f : M → M be a C 1 -diffeomorphism over a compact boundaryless Riemannian manifold M, and Λ a compact f-invariant subset of M admitting a partially hyperbolic spliting T f Λ = E s ⊕ E c ⊕ E u over the tangent bundle T f Λ. It's known from the Hirsch–Pugh–Shub theory that Λ admits two invariant laminations associated to the extremal bundles E s and E u . These laminations are families of dynamically defined immersed submanifolds of the M tangent, respectively, to the bundles E s and E u at every point in Λ. In this work, we prove that at least one of the invariant laminations of a transitive partially hyperbolic attractor with a one-dimensional center bundle is minimal: the orbit of every leaf intersects Λ densely. This result extends those in Bonatti et al (2002 J. Inst. Math. Jussieu 1 513–41) and Hertz et al (2007 Fields Institute Communications vol 51 (Providence, RI: American Mathematical Society) pp 103–9) about minimal foliations for robustly transitive diffeomorphisms. (paper)
Witten, Matthew
1983-01-01
Hyperbolic Partial Differential Equations, Volume 1: Population, Reactors, Tides and Waves: Theory and Applications covers three general areas of hyperbolic partial differential equation applications. These areas include problems related to the McKendrick/Von Foerster population equations, other hyperbolic form equations, and the numerical solution.This text is composed of 15 chapters and begins with surveys of age specific population interactions, populations models of diffusion, nonlinear age dependent population growth with harvesting, local and global stability for the nonlinear renewal eq
Optimized difference schemes for multidimensional hyperbolic partial differential equations
Directory of Open Access Journals (Sweden)
Adrian Sescu
2009-04-01
Full Text Available In numerical solutions to hyperbolic partial differential equations in multidimensions, in addition to dispersion and dissipation errors, there is a grid-related error (referred to as isotropy error or numerical anisotropy that affects the directional dependence of the wave propagation. Difference schemes are mostly analyzed and optimized in one dimension, wherein the anisotropy correction may not be effective enough. In this work, optimized multidimensional difference schemes with arbitrary order of accuracy are designed to have improved isotropy compared to conventional schemes. The derivation is performed based on Taylor series expansion and Fourier analysis. The schemes are restricted to equally-spaced Cartesian grids, so the generalized curvilinear transformation method and Cartesian grid methods are good candidates.
Directory of Open Access Journals (Sweden)
Yusuf Pandir
2013-01-01
Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.
OSCILLATION OF IMPULSIVE HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION WITH DELAY
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, oscillation properties of the solutions of impulsive hyperbolic equation with delay are investigated via the method of differential inequalities. Sufficient conditions for oscillations of the solutions are established.
Analytic Solutions and Resonant Solutions of Hyperbolic Partial Differential Equations
Wagenmaker, Timothy Roger
This dissertation contains two main subject areas. The first deals with solutions to the wave equation Du/Dt + a Du/Dx = 0, where D/Dt and D/Dx represent partial derivatives and a(t,x) is real valued. The question I studied, which arises in control theory, is whether solutions which are real analytic with respect to the time variable are dense in the space of all solutions. If a is real analytic in t and x, the Cauchy-Kovalevsky Theorem implies that the solutions real analytic in t and x are dense, since it suffices to approximate the initial data by polynomials. The same positive result is valid when a is continuously differentiable and independent of t. This is proved by regularization in time. The hypothesis that a is independent of t cannot be replaced by the weaker assumption that a is real analytic in t, even when it is infinitely smooth. I construct a(t,x) for which the solutions which are analytic in time are automatically periodic in time. In particular these solutions are not dense in the space of all solutions. The second area concerns the resonant interaction of oscillatory waves propagating in a compressible inviscid fluid. An asymptotic description given by Andrew Majda, Rodolfo Rosales, and Maria Schonbek (MRS) involves the genuinely nonlinear quasilinear hyperbolic system Du/Dt + D(uu/2)/Dt + v = 0, Dv/Dt - D(vv/2)/Dt - u = 0. They performed many numerical simulations which indicated that small amplitude solutions of this system tend to evade shock formation, and conjectured that "smooth initial data with a sufficiently small amplitude never develop shocks throughout a long time interval of integration.". I proved that for smooth periodic U(x), V(x) and initial data u(0,x) = epsilonU(x), v(0,x) = epsilonV(x), the solution is smooth for time at least constant times | ln epsilon| /epsilon. This is longer than the lifetime order 1/ epsilon of the solution to the decoupled Burgers equations. The decoupled equation describes nonresonant interaction of
On the Smooth Dependence of SRB Measures for Partially Hyperbolic Systems
Zhang, Zhiyuan
2018-02-01
In this paper, we study the differentiability of SRB measures for partially hyperbolic systems. We show that for any {s ≥ 1}, for any integer {ℓ ≥ 2}, any sufficiently large r, any φ \\in Cr(T, R)} such that the map {f : T^2 \\to T^2, f(x,y) = (ℓ x, y + φ(x))} is {C^r}-stably ergodic, there exists an open neighbourhood of f in {C^r(T^2,T^2)} such that any map in this neighbourhood has a unique SRB measure with {C^{s-1}} density, which depends on the dynamics in a {C^s} fashion. We also construct a C^{∞} mostly contracting partially hyperbolic diffeomorphism {f: T^3 \\to T^3} such that all f' in a C 2 open neighbourhood of f possess a unique SRB measure {μ_{f'}} and the map {f' \\mapsto μ_{f'}} is strictly Hölder at f, in particular, non-differentiable. This gives a partial answer to Dolgopyat's Question 13.3 in Dolgopyat (Commun Math Phys 213:181-201, 2000).
Global Classical Solutions for Partially Dissipative Hyperbolic System of Balance Laws
Xu, Jiang; Kawashima, Shuichi
2014-02-01
The basic existence theory of Kato and Majda enables us to obtain local-in-time classical solutions to generally quasilinear hyperbolic systems in the framework of Sobolev spaces (in x) with higher regularity. However, it remains a challenging open problem whether classical solutions still preserve well-posedness in the case of critical regularity. This paper is concerned with partially dissipative hyperbolic system of balance laws. Under the entropy dissipative assumption, we establish the local well-posedness and blow-up criterion of classical solutions in the framework of Besov spaces with critical regularity with the aid of the standard iteration argument and Friedrichs' regularization method. Then we explore the theory of function spaces and develop an elementary fact that indicates the relation between homogeneous and inhomogeneous Chemin-Lerner spaces (mixed space-time Besov spaces). This fact allows us to capture the dissipation rates generated from the partial dissipative source term and further obtain the global well-posedness and stability by assuming at all times the Shizuta-Kawashima algebraic condition. As a direct application, the corresponding well-posedness and stability of classical solutions to the compressible Euler equations with damping are also obtained.
Otway, Thomas H
2015-01-01
This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example: • The heating of fusion plasmas by electromagnetic waves • The behaviour of light near a caustic • Extremal surfaces in the space of special relativity • The formation of rapids; transonic and multiphase fluid flow • The dynamics of certain models for elastic structures • The shape of industrial surfaces such as windshields and airfoils • Pathologies of traffic flow • Harmonic fields in extended projective space They also arise in models for the early universe, for cosmic acceleration, and for possible violation of causality in the interiors of certain compact stars. Within the past 25 years, they have become central to the isometric embedding of Riemannian manifolds and the prescription of Gauss curvatur...
Bilyeu, David
This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For
Pettersson, Mass Per; Nordström, Jan
2015-01-01
This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The approach described in the text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dime...
Convergence of hybrid methods for solving non-linear partial ...
African Journals Online (AJOL)
This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...
2012-09-03
27] introduced a new smoothness indicator, which removed the slight post- shock oscillations and improved the convergence . A Newton- iteration method... Gauss - Seidel algorithm for steady Euler equation on unstructured grids, Numer. Math. Theor. Meth. Appl., Vol. 1, pp. 92–112, (2008). [14] G.-S. Jiang...was adopted to solve the steady two dimensional Euler equations [10, 11, 13]. The matrix-free Squared Preconditioning is applied to a Newton iteration
Solving Partial Differential Equations Using a New Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Natee Panagant
2014-01-01
Full Text Available This paper proposes an alternative meshless approach to solve partial differential equations (PDEs. With a global approximate function being defined, a partial differential equation problem is converted into an optimisation problem with equality constraints from PDE boundary conditions. An evolutionary algorithm (EA is employed to search for the optimum solution. For this approach, the most difficult task is the low convergence rate of EA which consequently results in poor PDE solution approximation. However, its attractiveness remains due to the nature of a soft computing technique in EA. The algorithm can be used to tackle almost any kind of optimisation problem with simple evolutionary operation, which means it is mathematically simpler to use. A new efficient differential evolution (DE is presented and used to solve a number of the partial differential equations. The results obtained are illustrated and compared with exact solutions. It is shown that the proposed method has a potential to be a future meshless tool provided that the search performance of EA is greatly enhanced.
Use of fast Fourier transforms for solving partial differential equations in physics
Le Bail, R C
1972-01-01
The use of fast Fourier techniques for the direct solution of an important class of elliptic, parabolic, and hyperbolic partial differential equations in two dimensions is described. Extensions to higher-order and higher-dimension equations as well as to integrodifferential equations are presented, and several numerical examples with their resulting precision and timing are reported. (12 refs).
Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.
We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the formulation is that if the system of nonconservative partial
Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.
2008-01-01
We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the weak formulation is that if the system of nonconservative partial
International Nuclear Information System (INIS)
Rhebergen, S.; Bokhove, O.; Vegt, J.J.W. van der
2008-01-01
We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the weak formulation is that if the system of nonconservative partial differential equations can be transformed into conservative form, then the formulation must reduce to that for conservative systems. Standard DGFEM formulations cannot be applied to nonconservative systems of partial differential equations. We therefore introduce the theory of weak solutions for nonconservative products into the DGFEM formulation leading to the new question how to define the path connecting left and right states across a discontinuity. The effect of different paths on the numerical solution is investigated and found to be small. We also introduce a new numerical flux that is able to deal with nonconservative products. Our scheme is applied to two different systems of partial differential equations. First, we consider the shallow water equations, where topography leads to nonconservative products, in which the known, possibly discontinuous, topography is formally taken as an unknown in the system. Second, we consider a simplification of a depth-averaged two-phase flow model which contains more intrinsic nonconservative products
International Nuclear Information System (INIS)
Dong Shihai; Gonzalez-Cisneros, A.
2008-01-01
A new exact quantization rule simplifies the calculation of the energy levels for the exactly solvable quantum system. In this work we calculate the energy levels of the Schroedinger equation with the hyperbolic potential by this quantization rule. The corresponding eigenfunction is also derived for completeness. The second Poeschl-Teller like potential case is also carried out
Lafitte, Pauline; Melis, Ward; Samaey, Giovanni
2017-07-01
We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.
Iversen, Birger
1992-01-01
Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics
Auxiliary equation method for solving nonlinear partial differential equations
International Nuclear Information System (INIS)
Sirendaoreji,; Jiong, Sun
2003-01-01
By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation
Exp-function method for solving fractional partial differential equations.
Zheng, Bin
2013-01-01
We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.
Solving Nonlinear Partial Differential Equations with Maple and Mathematica
Shingareva, Inna K
2011-01-01
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple an
International Nuclear Information System (INIS)
Popov, A.D.
1991-01-01
We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)
Directory of Open Access Journals (Sweden)
Veyis Turut
2013-01-01
Full Text Available Two tecHniques were implemented, the Adomian decomposition method (ADM and multivariate Padé approximation (MPA, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo sense. First, the fractional differential equation has been solved and converted to power series by Adomian decomposition method (ADM, then power series solution of fractional differential equation was put into multivariate Padé series. Finally, numerical results were compared and presented in tables and figures.
A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations
Directory of Open Access Journals (Sweden)
Mountassir Hamdi Cherif
2017-11-01
Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.
Hyperbolicity in median graphs
Indian Academy of Sciences (India)
mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-01-01
Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.
International Nuclear Information System (INIS)
Wang Qi; Chen Yong
2007-01-01
With the aid of symbolic computation, some algorithms are presented for the rational expansion methods, which lead to closed-form solutions of nonlinear partial differential equations (PDEs). The new algorithms are given to find exact rational formal polynomial solutions of PDEs in terms of Jacobi elliptic functions, solutions of the Riccati equation and solutions of the generalized Riccati equation. They can be implemented in symbolic computation system Maple. As applications of the methods, we choose some nonlinear PDEs to illustrate the methods. As a result, we not only can successfully obtain the solutions found by most existing Jacobi elliptic function methods and Tanh-methods, but also find other new and more general solutions at the same time
Yu, Jie; Liu, Yikan; Yamamoto, Masahiro
2018-04-01
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.
Role reversal and problem solving in international negotiations: the Partial Nuclear Test Ban case
International Nuclear Information System (INIS)
King, T.D.
1978-01-01
To facilitate finding bargaining space and to reinforce cooperative potential, a number of analysts have promoted the use of role reversal and problem solving. Role reversal involves restating the positions of one's adversary to demonstrate understanding and to develop empathy, while problem solving involves searching for alternatives that promote joint interests. The case of the negotiations in the Eighteen Nation Disarmament Conference from 1962--1963 leading to the Partial Nuclear Test Ban Treaty provided the context for examining bargaining relationships involving role reversal and problem solving. Interactions among the United States, the United Kingdom, and the Soviet Union, as recorded in transcripts of 112 sessions, were coded using Bargaining Process Analysis II, a content analysis instrument used to classify negotiation behaviors. Role reversal was measured by the frequency of paraphrases of the adversary's positions. Problem solving was measured by the frequency of themes promoting the exploration of alternatives and the search for mutually beneficial outcomes. The findings on the use of paraphrasing suggest that it can be used to restrict exploration as well as to promote it. The exploratory focus of problem solving was somewhat limited by its use in association with demands, suggesting that problem solving was interpreted as a sign of weakness
Energy Technology Data Exchange (ETDEWEB)
El-Sayed, A.M.A. [Faculty of Science University of Alexandria (Egypt)]. E-mail: amasyed@hotmail.com; Gaber, M. [Faculty of Education Al-Arish, Suez Canal University (Egypt)]. E-mail: mghf408@hotmail.com
2006-11-20
The Adomian decomposition method has been successively used to find the explicit and numerical solutions of the time fractional partial differential equations. A different examples of special interest with fractional time and space derivatives of order {alpha}, 0<{alpha}=<1 are considered and solved by means of Adomian decomposition method. The behaviour of Adomian solutions and the effects of different values of {alpha} are shown graphically for some examples.
The arbitrary l continuum states of the hyperbolic molecular potential
Energy Technology Data Exchange (ETDEWEB)
Wei, Gao-Feng, E-mail: fgwei_2000@163.com [School of Physics and Mechatronics Engineering, Xi' an University of Arts and Science, Xi' an 710065 (China); Chen, Wen-Li, E-mail: physwlchen@163.com [Department of Basic Science, Xi' an Peihua University, Xi' an 710065 (China); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2014-06-27
Within the framework of partial-wave method, we study in this Letter the arbitrary l continuum states of the Schrödinger equation with the hyperbolic molecular potential in terms of an improved approximation to the centrifugal term. We present the normalized radial wave functions and obtain analytical formula of phase shifts. In addition, the corresponding bound states are also discussed by studying the analytical properties of the scattering amplitude. We calculate the energy spectra and scattering phase shifts by the improved, previous approximations and the accurate methods, respectively and find that the improved approximation is better than the previous one since the present results are in better agreement with the accurate ones. - Highlights: • The hyperbolic potential with arbitrary l state is solved. • Improved approximation to centrifugal term is used. • Phase shift formula is derived analytically. • Accurate results are compared with the present results.
Directory of Open Access Journals (Sweden)
M. Bishehniasar
2017-01-01
Full Text Available The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs. The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE. Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD method and standard finite difference (SFD technique, which are popular in the literature for solving engineering problems.
International Nuclear Information System (INIS)
Feng Qing-Hua
2014-01-01
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained. (general)
Stability problems for linear hyperbolic systems
International Nuclear Information System (INIS)
Eckhoff, K.S.
1975-05-01
The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)
King, Nathan D.; Ruuth, Steven J.
2017-05-01
Maps from a source manifold M to a target manifold N appear in liquid crystals, color image enhancement, texture mapping, brain mapping, and many other areas. A numerical framework to solve variational problems and partial differential equations (PDEs) that map between manifolds is introduced within this paper. Our approach, the closest point method for manifold mapping, reduces the problem of solving a constrained PDE between manifolds M and N to the simpler problems of solving a PDE on M and projecting to the closest points on N. In our approach, an embedding PDE is formulated in the embedding space using closest point representations of M and N. This enables the use of standard Cartesian numerics for general manifolds that are open or closed, with or without orientation, and of any codimension. An algorithm is presented for the important example of harmonic maps and generalized to a broader class of PDEs, which includes p-harmonic maps. Improved efficiency and robustness are observed in convergence studies relative to the level set embedding methods. Harmonic and p-harmonic maps are computed for a variety of numerical examples. In these examples, we denoise texture maps, diffuse random maps between general manifolds, and enhance color images.
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Geometry of hyperbolic monopoles
International Nuclear Information System (INIS)
Nash, C.
1986-01-01
The hyperbolic monopoles of Atiyah [M. F. Atiyah, Commun. Math. Phys. 93, 471 (1984); ''Magnetic monopoles in hyperbolic space,'' in Proceedings of the International Colloquium on Vector Bundles (Tata Institute, Bombay, 1984)] and Chakrabarti [A. Chakrabarti, J. Math. Phys. 27, 340 (1986)] are introduced and their geometric properties and relations to instantons and ordinary monopoles clarified. A key tool is the use of the ball model of hyperbolic space to construct and examine solutions
International Nuclear Information System (INIS)
Kowalewski, A.
1982-11-01
In this paper an optimal control problem with non-differentiable cost function for distributed parameter system is solved. As an example an optimal control problem for system described by a linear partial differential of hyperbolic type with the Neuman's boundary condition is considered. By use of the Milutin-Dubovicki method, necessary and sufficient conditions of optimality with non-differentiable performance functional and constrained control are derived for Neuman's problem. (author)
Piret, Cé cile
2012-01-01
Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper
DEFF Research Database (Denmark)
Risager, Morten S.; Södergren, Carl Anders
2017-01-01
It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...
Admissibility and hyperbolicity
Barreira, Luís; Valls, Claudia
2018-01-01
This book gives a comprehensive overview of the relationship between admissibility and hyperbolicity. Essential theories and selected developments are discussed with highlights to applications. The dedicated readership includes researchers and graduate students specializing in differential equations and dynamical systems (with emphasis on hyperbolicity) who wish to have a broad view of the topic and working knowledge of its techniques. The book may also be used as a basis for appropriate graduate courses on hyperbolicity; the pointers and references given to further research will be particularly useful. The material is divided into three parts: the core of the theory, recent developments, and applications. The first part pragmatically covers the relation between admissibility and hyperbolicity, starting with the simpler case of exponential contractions. It also considers exponential dichotomies, both for discrete and continuous time, and establishes corresponding results building on the arguments for exponent...
Vortices on hyperbolic surfaces
International Nuclear Information System (INIS)
Manton, Nicholas S; Rink, Norman A
2010-01-01
It is shown that Abelian Higgs vortices on a hyperbolic surface M can be constructed geometrically from holomorphic maps f: M → N, where N is also a hyperbolic surface. The fields depend on f and on the metrics of M and N. The vortex centres are the ramification points, where the derivative of f vanishes. The magnitude of the Higgs field measures the extent to which f is locally an isometry. Witten's construction of vortices on the hyperbolic plane is rederived, and new examples of vortices on compact surfaces and on hyperbolic surfaces of revolution are obtained. The interpretation of these solutions as SO(3)-invariant, self-dual SU(2) Yang-Mills fields on R 4 is also given.
Blasjo, Viktor|info:eu-repo/dai/nl/338038108
2013-01-01
We discuss how a creature accustomed to Euclidean space would fare in a world of hyperbolic or spherical geometry, and conversely. Various optical illusions and counterintuitive experiences arise, which can be explicated mathematically using plane models of these geometries.
Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki
2016-01-01
In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.
Energy Technology Data Exchange (ETDEWEB)
Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)
2016-02-15
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.
Hyperbolic conservation laws in continuum physics
Dafermos, Constantine M
2016-01-01
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...
International Nuclear Information System (INIS)
Gunyasu, Kenzo; Hiramoto, Tsuneyuki; Tanimoto, Mitsumori; Osano, Minetada
2002-01-01
We describe a new method for solving large-scale system of linear equations resulting from discretization of ordinary differential equation and partial differential equation directly. This new method effectively reduces the memory capacity requirements and computing time problems for analyses using finite difference method and finite element method. In this paper we have tried to solve one-million linear equations directly for the case that initial displacement and boundary displacement are known about the finite difference scheme of second order inhomogeneous differential equation for vibration of a 10 story structure. Excellent results were got. (author)
Solving of some Problems with On-Line Mode Measurement of Partial Discharges
Directory of Open Access Journals (Sweden)
Karel Zalis
2004-01-01
Full Text Available This paper deals with the problems discussing the transition from off-line diagnostic methods to on-line ones. Based on the experience with commercial partial discharge measuring equipment a new digital system for the evaluation of partial discharge measurement including software and hardware facilities has been developed at the Czech Technical University in Prague. Two expert systems work in this complex evaluating system: a rule-based expert system performing an amplitude analysis of partial discharge impulses for determining the damage of the insulation system, and a neural network which is used for a phase analysis of partial discharge impulses to determine the kind of partial discharge activity. Problem of the elimination of disturbances is also discussed.
Solutions of hyperbolic equations with the CIP-BS method
International Nuclear Information System (INIS)
Utsumi, Takayuki; Koga, James; Yamagiwa, Mitsuru; Yabe, Takashi; Aoki, Takayuki
2004-01-01
In this paper, we show that a new numerical method, the Constrained Interpolation Profile - Basis Set (CIP-BS) method, can solve general hyperbolic equations efficiently. This method uses a simple polynomial basis set that is easily extendable to any desired higher-order accuracy. The interpolating profile is chosen so that the subgrid scale solution approaches the local real solution owing to the constraints from the spatial derivatives of the master equations. Then, introducing scalar products, the linear and nonlinear partial differential equations are uniquely reduced to the ordinary differential equations for values and spatial derivatives at the grid points. The method gives stable, less diffusive, and accurate results. It is successfully applied to the continuity equation, the Burgers equation, the Korteweg-de Vries equation, and one-dimensional shock tube problems. (author)
Optimal control for parabolic-hyperbolic system with time delay
International Nuclear Information System (INIS)
Kowalewski, A.
1985-07-01
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)
Solving hyperbolic equations with finite volume methods
Vázquez-Cendón, M Elena
2015-01-01
Finite volume methods are used in numerous applications and by a broad multidisciplinary scientific community. The book communicates this important tool to students, researchers in training and academics involved in the training of students in different science and technology fields. The selection of content is based on the author’s experience giving PhD and master courses in different universities. In the book the introduction of new concepts and numerical methods go together with simple exercises, examples and applications that contribute to reinforce them. In addition, some of them involve the execution of MATLAB codes. The author promotes an understanding of common terminology with a balance between mathematical rigor and physical intuition that characterizes the origin of the methods. This book aims to be a first contact with finite volume methods. Once readers have studied it, they will be able to follow more specific bibliographical references and use commercial programs or open source software withi...
Computing the Gromov hyperbolicity constant of a discrete metric space
Ismail, Anas
2012-07-01
Although it was invented by Mikhail Gromov, in 1987, to describe some family of groups[1], the notion of Gromov hyperbolicity has many applications and interpretations in different fields. It has applications in Biology, Networking, Graph Theory, and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric space is the brute force algorithm with running time O (n4) using the four-point condition. In this thesis, we first introduce an approximation algorithm which calculates a O (log n)-approximation of the hyperbolicity constant δ, based on a layering approach, in time O(n2), where n is the number of points in the metric space. We also calculate the fixed base point hyperbolicity constant δr for a fixed point r using a (max, min)−matrix multiplication algorithm by Duan in time O(n2.688)[2]. We use this result to present a 2-approximation algorithm for calculating the hyper-bolicity constant in time O(n2.688). We also provide an exact algorithm to compute the hyperbolicity constant δ in time O(n3.688) for a discrete metric space. We then present some partial results we obtained for designing some approximation algorithms to compute the hyperbolicity constant δ.
Hyperbolic Metamaterials with Complex Geometry
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei
2016-01-01
We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...
Sources of hyperbolic geometry
Stillwell, John
1996-01-01
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...
Hyperbolicity and constrained evolution in linearized gravity
International Nuclear Information System (INIS)
Matzner, Richard A.
2005-01-01
Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations
Cortes, Adriano Mauricio; Vignal, Philippe; Sarmiento, Adel; Garcí a, Daniel O.; Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.
2014-01-01
In this paper we present PetIGA, a high-performance implementation of Isogeometric Analysis built on top of PETSc. We show its use in solving nonlinear and time-dependent problems, such as phase-field models, by taking advantage of the high-continuity of the basis functions granted by the isogeometric framework. In this work, we focus on the Cahn-Hilliard equation and the phase-field crystal equation.
Piret, Cécile
2012-05-01
Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in . R3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time. © 2012 Elsevier Inc.
ICM: an Integrated Compartment Method for numerically solving partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.
1981-05-01
An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.
Hyperbolicity of projective hypersurfaces
Diverio, Simone
2016-01-01
This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta, among others, resulted in precise conjectures regarding the interplay of these research fields (e.g. existence of Zariski dense entire curves should correspond to the (potential) density of rational points). Perhaps one of the conjectures which generated most activity in Kobayashi hyperbolicity theory is the one formed by Kobayashi himself in 1970 which predicts that a very general projective hypersurface of degree large enough does not contain any (non-constant) entire curves. Since the seminal work of Green and Griffiths in 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, it became clear that a possible general strategy to attack this problem was to look at particular algebr...
Pilyugin, Sergei Yu
2017-01-01
Focusing on the theory of shadowing of approximate trajectories (pseudotrajectories) of dynamical systems, this book surveys recent progress in establishing relations between shadowing and such basic notions from the classical theory of structural stability as hyperbolicity and transversality. Special attention is given to the study of "quantitative" shadowing properties, such as Lipschitz shadowing (it is shown that this property is equivalent to structural stability both for diffeomorphisms and smooth flows), and to the passage to robust shadowing (which is also equivalent to structural stability in the case of diffeomorphisms, while the situation becomes more complicated in the case of flows). Relations between the shadowing property of diffeomorphisms on their chain transitive sets and the hyperbolicity of such sets are also described. The book will allow young researchers in the field of dynamical systems to gain a better understanding of new ideas in the global qualitative theory. It will also be of int...
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
From Anosov dynamics to hyperbolic attractors
Indian Academy of Sciences (India)
the dynamics on the attractive sets of the self-oscillatory systems and for the original Anosov geodesic flow. The hyperbolic nature ... Hyperbolic theory is a branch of the theory of dynami- ..... Figure 5. Verification of the hyperbolicity criterion for.
International Nuclear Information System (INIS)
Alvi, Kashif
2002-01-01
First-order hyperbolic systems are promising as a basis for numerical integration of Einstein's equations. In previous work, the lapse and shift have typically not been considered part of the hyperbolic system and have been prescribed independently. This can be expensive computationally, especially if the prescription involves solving elliptic equations. Therefore, including the lapse and shift in the hyperbolic system could be advantageous for numerical work. In this paper, two first-order symmetrizable hyperbolic systems are presented that include the lapse and shift as dynamical fields and have only physical characteristic speeds
Casimir effect in hyperbolic polygons
International Nuclear Information System (INIS)
Ahmedov, H
2007-01-01
Using the point splitting regularization method and the trace formula for the spectra of quantum-mechanical systems in hyperbolic polygons which are the fundamental domains of discrete isometry groups acting in the two-dimensional hyperboloid we calculate the Casimir energy for massless scalar fields in hyperbolic polygons. The dependence of the vacuum energy on the number of vertices is established
RDTM solution of Caputo time fractional-order hyperbolic telegraph equation
Directory of Open Access Journals (Sweden)
Vineet K. Srivastava
2013-03-01
Full Text Available In this study, a mathematical model has been developed for the second order hyperbolic one-dimensional time fractional Telegraph equation (TFTE. The fractional derivative has been described in the Caputo sense. The governing equations have been solved by a recent reliable semi-analytic method known as the reduced differential transformation method (RDTM. The method is a powerful mathematical technique for solving wide range of problems. Using RDTM method, it is possible to find exact solution as well as closed approximate solution of any ordinary or partial differential equation. Three numerical examples of TFTE have been provided in order to check the effectiveness, accuracy and convergence of the method. The computed results are also depicted graphically.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Discontinuous Galerkin Method for Hyperbolic Conservation Laws
Mousikou, Ioanna
2016-11-11
Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.
Discontinuous Galerkin Method for Hyperbolic Conservation Laws
Mousikou, Ioanna
2016-01-01
Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.
Quasilinear Hyperbolic Systems, Compressible Flows, and Waves
Sharma, Vishnu D
2010-01-01
Filled with practical examples, this book presents a self-contained discussion of quasilinear hyperbolic equations and systems with applications. It emphasizes nonlinear theory and introduces some of the most active research in the field. The author elucidates all necessary mathematical concepts in the first three chapters, including an introduction to general wave propagation problems. He highlights the application of various approaches, such as singular surface theory, asymptotic methods, and self-similarity, to solve practical physical problems from areas, including gasdynamics, radiation g
A simple finite element method for linear hyperbolic problems
International Nuclear Information System (INIS)
Mu, Lin; Ye, Xiu
2017-01-01
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Discontinuous Galerkin finite element methods for hyperbolic differential equations
van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.
2002-01-01
In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas
Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays
Directory of Open Access Journals (Sweden)
Jichen Yang
2013-01-01
Full Text Available In this article, we study oscillatory properties of solutions to neutral nonlinear impulsive hyperbolic partial differential equations with several delays. We establish sufficient conditions for oscillation of all solutions.
Hyperbolic isometries of systolic complexes
DEFF Research Database (Denmark)
Prytula, Tomasz Pawel
The main topics of this thesis are the geometric features of systolic complexesarising from the actions of hyperbolic isometries. The thesis consists ofan introduction followed by two articles.Given a hyperbolic isometry h of a systolic complex X, our central theme isto study the minimal displace......The main topics of this thesis are the geometric features of systolic complexesarising from the actions of hyperbolic isometries. The thesis consists ofan introduction followed by two articles.Given a hyperbolic isometry h of a systolic complex X, our central theme isto study the minimal...... algebraic-topological features of systolic groups. In addition, we provide newexamples of systolic groups.In the first article we show that the minimal displacement set of a hyperbolicisometry of a systolic complex is quasi-isometric to the product of a tree andthe real line. We use this theorem...
Critical opalescence in hyperbolic metamaterials
International Nuclear Information System (INIS)
Smolyaninov, Igor I
2011-01-01
Hyperbolic metamaterials in which the dielectric component exhibits critical opalescence have been considered. It appears that fluctuations of the effective refractive index in these materials are strongly enhanced and so 'virtual electromagnetic black holes' may appear as a result of these fluctuations. Therefore, the behaviour of 'optical space' inside hyperbolic metamaterials looks somewhat similar to the behaviour of real physical space-time on the Planck scale
Critical opalescence in hyperbolic metamaterials
Smolyaninov, Igor I.
2011-12-01
Hyperbolic metamaterials in which the dielectric component exhibits critical opalescence have been considered. It appears that fluctuations of the effective refractive index in these materials are strongly enhanced and so 'virtual electromagnetic black holes' may appear as a result of these fluctuations. Therefore, the behaviour of 'optical space' inside hyperbolic metamaterials looks somewhat similar to the behaviour of real physical space-time on the Planck scale.
Path integration on hyperbolic spaces
Energy Technology Data Exchange (ETDEWEB)
Grosche, C [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
1991-11-01
Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S{sub 1} {approx equal} SO (n,1)/SO(n) and S{sub 2} {approx equal} SU(n,1)/S(U(1) x U(n)) in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E{sub O} = h{sup 2} /8m(m{sub {alpha}} +2m{sub 2} {alpha}){sup 2} (m {alpha} and m{sub 2}{alpha} denote the dimension of the root subspace corresponding to the roots {alpha} and 2{alpha}, respectively). I also discuss the case, where a constant magnetic field on H{sup n} is incorporated. (orig.).
Path integration on hyperbolic spaces
International Nuclear Information System (INIS)
Grosche, C.
1991-11-01
Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S 1 ≅ SO (n,1)/SO(n) and S 2 ≅ SU(n,1)/S[U(1) x U(n)] in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E O = h 2 /8m(m α +2m 2 α) 2 (m α and m 2 α denote the dimension of the root subspace corresponding to the roots α and 2α, respectively). I also discuss the case, where a constant magnetic field on H n is incorporated. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ditsche, Christoph; Hoferichter, Martin; Kubis, Bastian [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn (Germany); Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, Ulf G. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn (Germany); Institut fuer Kernphysik (Theorie), Institute for Advanced Simulations, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Bethe Center for Theoretical Physics, Bonn (Germany)
2011-07-01
Starting from (subtracted) hyperbolic dispersion relations for {pi}N scattering, which are based on the general principles of Lorentz invariance, unitarity, crossing and analyticity as well as isospin symmetry, we propose a closed system of (subtracted) hyperbolic partial wave dispersion relations for the partial waves f{sup I}{sub l{+-}}({radical}(s)) of the s-channel reaction {pi}N{yields}{pi}N and the partial waves f{sup J}{sub {+-}}(t) of the t-channel reaction {pi}{pi}{yields} anti NN in the spirit of Roy and Steiner. A key step to the ultimate goal of solving this Roy-Steiner system is to first solve the corresponding (subtracted) Muskhelishvili-Omnes problem with inelasticities and a finite matching point for the lowest t-channel partial waves f{sup 0}{sub +}(t), f{sup 1}{sub {+-}}(t). The recent status of this ongoing effort is presented.
International Nuclear Information System (INIS)
LaChapelle, J.
2004-01-01
A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette
The spectrum of hyperbolic surfaces
Bergeron, Nicolas
2016-01-01
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay...
Gualdesi, Lavinio
2017-04-01
Mooring lines in the Ocean might be seen as a pretty simple seamanlike activity. Connecting valuable scientific instrumentation to it transforms this simple activity into a sophisticated engineering support which needs to be accurately designed, developed, deployed, monitored and hopefully recovered with its precious load of scientific data. This work is an historical travel along the efforts carried out by scientists all over the world to successfully predict mooring line behaviour through both mathematical simulation and experimental verifications. It is at first glance unexpected how many factors one must observe to get closer and closer to a real ocean situation. Most models have dual applications for mooring lines and towed bodies lines equations. Numerous references are provided starting from the oldest one due to Isaac Newton. In his "Philosophiae Naturalis Principia Matematica" (1687) the English scientist, while discussing about the law of motion for bodies in resistant medium, is envisaging a hyperbolic fitting to the phenomenon including asymptotic behaviour in non-resistant media. A non-exhaustive set of mathematical simulations of the mooring lines trajectory prediction is listed hereunder to document how the subject has been under scientific focus over almost a century. Pode (1951) Prior personal computers diffusion a tabular form of calculus of cable geometry was used by generations of engineers keeping in mind the following limitations and approximations: tangential drag coefficients were assumed to be negligible. A steady current flow was assumed as in the towed configuration. Cchabra (1982) Finite Element Method that assumes an arbitrary deflection angle for the top first section and calculates equilibrium equations down to the sea floor iterating up to a compliant solution. Gualdesi (1987) ANAMOOR. A Fortran Program based on iterative methods above including experimental data from intensive mooring campaign. Database of experimental drag
Reversed phase propagation for hyperbolic surface waves
DEFF Research Database (Denmark)
Repän, Taavi; Novitsky, Andrey; Willatzen, Morten
2018-01-01
Magnetic properties can be used to control phase propagation in hyperbolic metamaterials. However, in the visible spectrum magnetic properties are difficult to obtain. We discuss hyperbolic surface waves allowing for a similar control over phase, achieved without magnetic properties....
Universal asymptotics in hyperbolicity breakdown
International Nuclear Information System (INIS)
Bjerklöv, Kristian; Saprykina, Maria
2008-01-01
We study a scenario for the disappearance of hyperbolicity of invariant tori in a class of quasi-periodic systems. In this scenario, the system loses hyperbolicity because two invariant directions come close to each other, losing their regularity. In a recent paper, based on numerical results, Haro and de la Llave (2006 Chaos 16 013120) discovered a quantitative universality in this scenario, namely, that the minimal angle between the two invariant directions has a power law dependence on the parameters and the exponents of the power law are universal. We present an analytic proof of this result
Front tracking for hyperbolic conservation laws
Holden, Helge
2015-01-01
This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions, and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts ...
Solving nonlinear evolution equation system using two different methods
Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.
2015-12-01
This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.
Exact Solutions for Einstein's Hyperbolic Geometric Flow
International Nuclear Information System (INIS)
He Chunlei
2008-01-01
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow
Cognitive Procedures and Hyperbolic Discounting
Nir, A.
2004-01-01
"Hyperbolic discount functions are characterized by a relatively high discount rate over short horizons and a relatively low discount rate over long horizons" (Laibson 1997).We suggest two cognitive procedures where individuals perceive future utility as decreasing at a decreasing rate as a function
Modeling and analysis of linear hyperbolic systems of balance laws
Bartecki, Krzysztof
2016-01-01
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...
International Nuclear Information System (INIS)
Rajagopalan, S.; Jethra, A.; Khare, A.N.; Ghodgaonkar, M.D.; Srivenkateshan, R.; Menon, S.V.G.
1990-01-01
Issues relating to implementing iterative procedures, for numerical solution of elliptic partial differential equations, on a distributed parallel computing system are discussed. Preliminary investigations show that a speed-up of about 3.85 is achievable on a four transputer pipeline network. (author). 2 figs., 3 a ppendixes., 7 refs
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Approximate Treatment of the Dirac Equation with Hyperbolic Potential Function
Durmus, Aysen
2018-03-01
The time independent Dirac equation is solved analytically for equal scalar and vector hyperbolic potential function in the presence of Greene and Aldrich approximation scheme. The bound state energy equation and spinor wave functions expressed by the hypergeometric function have been obtained in detail with asymptotic iteration approach. In order to indicate the accuracy of this different approach proposed to solve second order linear differential equations, we present that in the non-relativistic limit, analytical solutions of the Dirac equation converge to those of the Schrödinger one. We introduce numerical results of the theoretical analysis for hyperbolic potential function. Bound states corresponding to arbitrary values of n and l are reported for potential parameters covering a wide range of interaction. Also, we investigate relativistic vibrational energy spectra of alkali metal diatomic molecules in the different electronic states. It is observed that theoretical vibrational energy values are consistent with experimental Rydberg-Klein-Rees (RKR) results and vibrational energies of NaK, K_2 and KRb diatomic molecules interacting with hyperbolic potential smoothly converge to the experimental dissociation limit D_e=2508cm^{-1}, 254cm^{-1} and 4221cm^{-1}, respectively.
Analytical solution of Mori's equation with secant hyperbolic memory
International Nuclear Information System (INIS)
Tankeshwar, K.; Pathak, K.N.
1993-07-01
The equation of motion of the auto-correlation function has been solved analytically using a secant-hyperbolic form of the memory function. The analytical results obtained for the long time expansion together with the short time expansion provide a good description over the whole time domain as judged by their comparison with the numerical solution of Mori's equation of motion. We also find that the time evolution of the auto-correlation function is determined by a single parameter τ which is related to the frequency sum rules up to the fourth order. The auto-correlation function has been found to show simple decaying or oscillatory behaviour depending on whether the parameter τ is greater than or less than some critical values. Similarities as well as differences in time evolution of the auto-correlation have been discussed for exponential, secant-hyperbolic and Gaussian approaches of the memory function. (author). 16 refs, 5 figs
Computation of Hyperbolic Structures in Knot Theory
Weeks, Jeffrey R.
2003-01-01
This chapter from the upcoming Handbook of Knot Theory (eds. Menasco and Thistlethwaite) shows how to construct hyperbolic structures on link complements and perform hyperbolic Dehn filling. Along with a new elementary exposition of the standard ideas from Thurston's work, the article includes never-before-published explanations of SnapPea's algorithms for triangulating a link complement efficiently and for converging quickly to the hyperbolic structure while avoiding singularities in the par...
Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.
2017-07-01
In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.
Bhrawy, A. H.; Zaky, M. A.
2015-01-01
In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.
International Nuclear Information System (INIS)
Khalili-Damghani, Kaveh; Amiri, Maghsoud
2012-01-01
In this paper, a procedure based on efficient epsilon-constraint method and data envelopment analysis (DEA) is proposed for solving binary-state multi-objective reliability redundancy allocation series-parallel problem (MORAP). In first module, a set of qualified non-dominated solutions on Pareto front of binary-state MORAP is generated using an efficient epsilon-constraint method. In order to test the quality of generated non-dominated solutions in this module, a multi-start partial bound enumeration algorithm is also proposed for MORAP. The performance of both procedures is compared using different metrics on well-known benchmark instance. The statistical analysis represents that not only the proposed efficient epsilon-constraint method outperform the multi-start partial bound enumeration algorithm but also it improves the founded upper bound of benchmark instance. Then, in second module, a DEA model is supplied to prune the generated non-dominated solutions of efficient epsilon-constraint method. This helps reduction of non-dominated solutions in a systematic manner and eases the decision making process for practical implementations. - Highlights: ► A procedure based on efficient epsilon-constraint method and DEA was proposed for solving MORAP. ► The performance of proposed procedure was compared with a multi-start PBEA. ► Methods were statistically compared using multi-objective metrics.
8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications
Warnecke, Gerald
2001-01-01
The Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computat...
Stability and boundary stabilization of 1-D hyperbolic systems
Bastin, Georges
2016-01-01
This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary...
Operator-Based Preconditioning of Stiff Hyperbolic Systems
International Nuclear Information System (INIS)
Reynolds, Daniel R.; Samtaney, Ravi; Woodward, Carol S.
2009-01-01
We introduce an operator-based scheme for preconditioning stiff components encountered in implicit methods for hyperbolic systems of partial differential equations posed on regular grids. The method is based on a directional splitting of the implicit operator, followed by a characteristic decomposition of the resulting directional parts. This approach allows for solution to any number of characteristic components, from the entire system to only the fastest, stiffness-inducing waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro- dynamics and gas dynamics. We then present numerical results showing that this preconditioning scheme works well on problems where the underlying stiffness results from the interaction of fast transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of processors, and allows for additional customization based on the specific problems under study
Front tracking for hyperbolic conservation laws
Holden, Helge
2002-01-01
Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.
Advanced fabrication of hyperbolic metamaterials
DEFF Research Database (Denmark)
Shkondin, Evgeniy; Sukham, Johneph; Panah, Mohammad Esmail Aryaee
2017-01-01
Hyperbolic metamaterials can provide unprecedented properties in accommodation of high-k (high wave vector) waves and enhancement of the optical density of states. To reach such performance the metamaterials have to be fabricated with as small imperfections as possible. Here we report on our...... advances in two approaches in fabrication of optical metamaterials. We deposit ultrathin ultrasmooth gold layers with the assistance of organic material (APTMS) adhesion layer. The technology supports the stacking of such layers in a multiperiod construction with alumina spacers between gold films, which...
The homogeneous geometries of real hyperbolic space
DEFF Research Database (Denmark)
Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis
We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....
On a new class of hyperbolic functions
International Nuclear Information System (INIS)
Stakhov, Alexey; Rozin, Boris
2005-01-01
This article presents the results of some new research on a new class of hyperbolic functions that unite the characteristics of the classical hyperbolic functions and the recurring Fibonacci and Lucas series. The hyperbolic Fibonacci and Lucas functions, which are the being extension of Binet's formulas for the Fibonacci and Lucas numbers in continuous domain, transform the Fibonacci numbers theory into 'continuous' theory because every identity for the hyperbolic Fibonacci and Lucas functions has its discrete analogy in the framework of the Fibonacci and Lucas numbers. Taking into consideration a great role played by the hyperbolic functions in geometry and physics, ('Lobatchevski's hyperbolic geometry', 'Four-dimensional Minkowski's world', etc.), it is possible to expect that the new theory of the hyperbolic functions will bring to new results and interpretations on mathematics, biology, physics, and cosmology. In particular, the result is vital for understanding the relation between transfinitness i.e. fractal geometry and the hyperbolic symmetrical character of the disintegration of the neural vacuum, as pointed out by El Naschie [Chaos Solitons and Fractals 17 (2003) 631
Hyperbolic Chaos A Physicist’s View
Kuznetsov, Sergey P
2012-01-01
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.
The art and science of hyperbolic tessellations.
Van Dusen, B; Taylor, R P
2013-04-01
The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.
Optic axis-driven new horizons for hyperbolic metamaterials
Directory of Open Access Journals (Sweden)
Boardman Allan D.
2015-01-01
Full Text Available The broad assertion here is that the current hyperbolic metamaterial world is only partially served by investigations that incorporate only some limited version of anisotropy. Even modest deviations of the optic axis from the main propagation axis lead to new phase shifts, which not only compete with those created by absorption but end up dominating them. Some progress has been attempted in the literature by introducing the terms “asymmetric hyperbolic media”, but it appears that this kind of asymmetry only involves an optic axis at an angle to the interface of a uniaxial crystal. From a device point of view, many new prospects should appear and the outcomes of the investigations presented here yield a new general theory. It is emphasised that the orientation of the optic axis is a significant determinant in the resulting optical properties. Whereas for conventional anisotropic waveguides homogeneous propagating waves occur over a limited range of angular dispositions of the optic axis it is shown that for a hyperbolic guide a critical angular setting exists, above which the guided waves are always homogeneous. This has significant implications for metawaveguide designs. The resulting structures are more tolerant to optic axis misalignment.
CIP - a new numerical solver for general nonlinear hyperbolic equations in multi-dimension
International Nuclear Information System (INIS)
Yabe, Takashi; Takewaki, Hideaki.
1986-12-01
A new method CIP (Cubic-Interpolated Pseudo-particle) to solve hyperbolic equations is proposed. The method gives a stable and less diffusive result for square wave propagation compared with FCT (Flux-Corrected Transport) and a better result for propagation of a sine wave with a discontinuity. The scheme is extended to nonlinear and multi-dimensional problems. (orig.) [de
A Gyrovector Space Approach to Hyperbolic Geometry
Ungar, Abraham
2009-01-01
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. T
An inspection to the hyperbolic heat conduction problem in processed meat
Directory of Open Access Journals (Sweden)
Liu Kuo-Chi
2017-01-01
Full Text Available This paper analyzes a hyperbolic heat conduction problem in processed meat with the non-homogenous initial temperature. This problem is related to an experimental study for the exploration of thermal wave behavior in biological tissue. Because the fundamental solution of the hyperbolic heat conduction model is difficult to be obtained, a modified numerical scheme is extended to solve the problem. The present results deviate from that in the literature and depict that the reliability of the experimentally measured properties presented in the literature is doubtful.
Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem
2016-01-01
In this paper, boundary adaptive estimation of solar radiation in a solar collector plant is investigated. The solar collector is described by a 1D first-order hyperbolic partial differential equation where the solar radiation models the source term
Conformal hyperbolicity of Lorentzian warped products
International Nuclear Information System (INIS)
Markowitz, M.J.
1982-01-01
A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model. (author)
Conformal hyperbolicity of Lorentzian warped products
Energy Technology Data Exchange (ETDEWEB)
Markowitz, M.J. (Chicago Univ., IL (USA). Dept. of Mathematics)
1982-12-01
A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model.
Electromagnetic ``black holes'' in hyperbolic metamaterials
Smolyaninov, Igor
2013-03-01
We demonstrate that spatial variations of the dielectric tensor components in a hyperbolic metamaterial may lead to formation of electromagnetic ``black holes'' inside this metamaterial. Similar to real black holes, horizon area of the electromagnetic ``black holes'' is quantized in units of the effective ``Planck scale'' squared. Potential experimental realizations of such electromagnetic ``black holes'' will be considered. For example, this situation may be realized in a hyperbolic metamaterial in which the dielectric component exhibits critical opalescence.
Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity
International Nuclear Information System (INIS)
Leiler, Gregor; Rezzolla, Luciano
2006-01-01
The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion
Partial Differential Equations in General Relativity
International Nuclear Information System (INIS)
Choquet-Bruhat, Yvonne
2008-01-01
General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)
Partial Differential Equations in General Relativity
Energy Technology Data Exchange (ETDEWEB)
Choquet-Bruhat, Yvonne
2008-09-07
General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)
Chosen interval methods for solving linear interval systems with special type of matrix
Szyszka, Barbara
2013-10-01
The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.
Layered van der Waals crystals with hyperbolic light dispersion
DEFF Research Database (Denmark)
Gjerding, Morten Niklas; Petersen, R.; Pedersen, T.G.
2017-01-01
Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first......-principles calculations, we extend the number of known naturally hyperbolic materials to the broad class of layered transition metal dichalcogenides (TMDs). The diverse electronic properties of the transition metal dichalcogenides result in a large variation of the hyperbolic frequency regimes ranging from the near...... materials with hyperbolic dispersion among the family of layered transition metal dichalcogenides....
Tangent-Impulse Interception for a Hyperbolic Target
Directory of Open Access Journals (Sweden)
Dongzhe Wang
2014-01-01
Full Text Available The two-body interception problem with an upper-bounded tangent impulse for the interceptor on an elliptic parking orbit to collide with a nonmaneuvering target on a hyperbolic orbit is studied. Firstly, four special initial true anomalies whose velocity vectors are parallel to either of the lines of asymptotes for the target hyperbolic orbit are obtained by using Newton-Raphson method. For different impulse points, the solution-existence ranges of the target true anomaly for any conic transfer are discussed in detail. Then, the time-of-flight equation is solved by the secant method for a single-variable piecewise function about the target true anomaly. Considering the sphere of influence of the Earth and the upper bound on the fuel, all feasible solutions are obtained for different impulse points. Finally, a numerical example is provided to apply the proposed technique for all feasible solutions and the global minimum-time solution with initial coasting time.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Causality and hyperbolicity of Lovelock theories
International Nuclear Information System (INIS)
Reall, Harvey S; Tanahashi, Norihiro; Way, Benson
2014-01-01
In Lovelock theories, gravity can travel faster or slower than light. The causal structure is determined by the characteristic hypersurfaces. We generalize a recent result of Izumi to prove that any Killing horizon is a characteristic hypersurface for all gravitational degrees of freedom of a Lovelock theory. Hence gravitational signals cannot escape from the region inside such a horizon. We investigate the hyperbolicity of Lovelock theories by determining the characteristic hypersurfaces for various backgrounds. First we consider Ricci flat type N spacetimes. We show that characteristic hypersurfaces are generically all non-null and that Lovelock theories are hyperbolic in any such spacetime. Next we consider static, maximally symmetric black hole solutions of Lovelock theories. Again, characteristic surfaces are generically non-null. For some small black holes, hyperbolicity is violated near the horizon. This implies that the stability of such black holes is not a well-posed problem. (paper)
Computing the Gromov hyperbolicity constant of a discrete metric space
Ismail, Anas
2012-01-01
, and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric
Multilayer cladding with hyperbolic dispersion for plasmonic waveguides
DEFF Research Database (Denmark)
Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi
2015-01-01
We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....
Homoclinic Ω-explosion and domains of hyperbolicity
International Nuclear Information System (INIS)
Sten'kin, O V; Shil'nikov, L P
1998-01-01
The existence of domains of hyperbolicity is proved for general one-parameter families of multidimensional systems that undergo a homoclinic Ω-explosion and the structure of the hyperbolic sets is studied for such families
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
Advanced Research Workshop on Nonlinear Hyperbolic Problems
Serre, Denis; Raviart, Pierre-Arnaud
1987-01-01
The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
Cuspidal discrete series for projective hyperbolic spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens
2013-01-01
Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...
Congruence Approximations for Entrophy Endowed Hyperbolic Systems
Barth, Timothy J.; Saini, Subhash (Technical Monitor)
1998-01-01
Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity
DEFF Research Database (Denmark)
Yan, Wei; Wubs, Martijn; Mortensen, N. Asger
2012-01-01
We study metamaterials known as hyperbolic media that in the usual local-response approximation exhibit hyperbolic dispersion and an associated broadband singularity in the density of states. Instead, from the more microscopic hydrodynamic Drude theory we derive qualitatively different optical...... properties of these metamaterials, due to the free-electron nonlocal optical response of their metal constituents. We demonstrate that nonlocal response gives rise to a large-wavevector cutoff in the dispersion that is inversely proportional to the Fermi velocity of the electron gas, but also for small...
Hyperbolic manifolds as vacuum solutions in Kaluza-Klein theories
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Volovich, I.V.
1985-08-01
The relevance of compact hyperbolic manifolds in the context of Kaluza-Klein theories is discussed. Examples of spontaneous compactification on hyperbolic manifolds including d dimensional (d>=8) Einstein-Yang-Mills gravity and 11-dimensional supergravity are considered. Some mathematical facts about hyperbolic manifolds essential for the physical content of the theory are briefly summarized. Non-linear σ-models based on hyperbolic manifolds are discussed. (author)
International Nuclear Information System (INIS)
Winicour, Jeffrey
2017-01-01
An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed. (note)
High-Order Wave Propagation Algorithms for Hyperbolic Systems
Ketcheson, David I.
2013-01-22
We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space and strong stability preserving Runge--Kutta integration in time. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples, including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium solutions of balance laws.
On the hyperbolicity condition in linear elasticity
Directory of Open Access Journals (Sweden)
Remigio Russo
1991-05-01
Full Text Available This talk, which is mainly expository and based on [2-5], discusses the hyperbolicity conditions in linear elastodynamics. Particular emphasis is devoted to the key role it plays in the uniqueness questions associated with the mixed boundary-initial value problem in unbounded domains.
Analytic vortex solutions on compact hyperbolic surfaces
International Nuclear Information System (INIS)
Maldonado, Rafael; Manton, Nicholas S
2015-01-01
We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. (paper)
The Hyperbolic Sine Cardinal and the Catenary
Sanchez-Reyes, Javier
2012-01-01
The hyperbolic function sinh(x)/x receives scant attention in the literature. We show that it admits a clear geometric interpretation as the ratio between length and chord of a symmetric catenary segment. The inverse, together with the use of dimensionless parameters, furnishes a compact, explicit construction of a general catenary segment of…
Studies in the Hyperbolic Circle Problem
DEFF Research Database (Denmark)
Cherubini, Giacomo
In this thesis we study the remainder term e(s) in the hyperbolic lattice point counting problem. Our main approach to this problem is that of the spectral theory of automorphic forms. We show that the function e(s) exhibits properties similar to those of almost periodic functions, and we study d...
Nishitani, Tatsuo
2017-01-01
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for diﬀerential operators with non-eﬀectively hyperbolic double characteristics. Previously scattered over numerous diﬀerent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem. A doubly characteristic point of a diﬀerential operator P of order m (i.e. one where Pm = dPm = 0) is eﬀectively hyperbolic if the Hamilton map FPm has real non-zero eigenvalues. When the characteristics are at most double and every double characteristic is eﬀectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms. If there is a non-eﬀectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between − Pµj and P µj , where iµj are the positive imaginary eigenvalues of FPm ....
Optimal boundary control and boundary stabilization of hyperbolic systems
Gugat, Martin
2015-01-01
This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary. The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization. Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples. To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled. Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.
Ray equations of a weak shock in a hyperbolic system of ...
Indian Academy of Sciences (India)
differential form of this system of conservation laws is a hyperbolic system of partial differential equations. A(u)ut + B(α)(u)uxα = 0,. (1.3) where. A(u) = 〈∇u,H〉 and B(α)(u) = 〈∇u, F(α)〉,. (1.4) and we use the summation convention that a repeated symbol in subscripts and super- scripts in a term will mean summation over the ...
On the non-hyperbolicity of a class of exponential polynomials
Directory of Open Access Journals (Sweden)
Gaspar Mora
2017-10-01
Full Text Available In this paper we have constructed a class of non-hyperbolic exponential polynomials that contains all the partial sums of the Riemann zeta function. An exponential polynomial been also defined to illustrate the complexity of the structure of the set defined by the closure of the real projections of its zeros. The sensitivity of this set, when the vector of delays is perturbed, has been analysed. These results have immediate implications in the theory of the neutral differential equations.
Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-02-01
Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
RG cascades in hyperbolic quiver gauge theories
International Nuclear Information System (INIS)
Ahl Laamara, R.; Ait Ben Haddou, M.; Belhaj, A.; Drissi, L.B.; Saidi, E.H.
2004-01-01
In this paper, we provide a general classification of supersymmatric QFT4s into three basic sets: ordinary, affine and indefinite classes. The last class, which has not been enough explored in literature, is shown to share most of properties of ordinary and affine super-QFT4s. This includes, amongst others, its embedding in type II string on local Calabi-Yau threefolds. We give realizations of these supersymmetric QFT4s as D-brane world volume gauge theories. A special interest is devoted to hyperbolic subset for its peculiar features and for the role it plays in type IIB background with non-zero axion. We also study RG flows and duality cascades in case of hyperbolic quiver theories. Comments regarding the full indefinite sector are made
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...
Hyperbolic spaces are of strictly negative type
DEFF Research Database (Denmark)
Hjorth, Poul G.; Kokkendorff, Simon L.; Markvorsen, Steen
2002-01-01
We study finite metric spaces with elements picked from, and distances consistent with, ambient Riemannian manifolds. The concepts of negative type and strictly negative type are reviewed, and the conjecture that hyperbolic spaces are of strictly negative type is settled, in the affirmative....... The technique of the proof is subsequently applied to show that every compact manifold of negative type must have trivial fundamental group, and to obtain a necessary criterion for product manifolds to be of negative type....
A strictly hyperbolic equilibrium phase transition model
International Nuclear Information System (INIS)
Allaire, G; Faccanoni, G; Kokh, S.
2007-01-01
This Note is concerned with the strict hyperbolicity of the compressible Euler equations equipped with an equation of state that describes the thermodynamical equilibrium between the liquid phase and the vapor phase of a fluid. The proof is valid for a very wide class of fluids. The argument only relies on smoothness assumptions and on the classical thermodynamical stability assumptions, that requires a definite negative Hessian matrix for each phase entropy as a function of the specific volume and internal energy. (authors)
Uncertainty quantification for hyperbolic and kinetic equations
Pareschi, Lorenzo
2017-01-01
This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion cu...
Gromov hyperbolicity in lexicographic product graphs
Indian Academy of Sciences (India)
41
on the group [17]. The concept of hyperbolicity appears also in discrete mathematics, algorithms and networking. For .... graph (of a presentation with solvable word problem) there is an algorithm which allows to decide if it is ...... of Theorem 3.14, i.e., dG1◦{w}(Vp, [π(x)π(z)] ∪ [π(z)π(y)]) = δ(G1) with π the canonical projection.
Cohen, Timothy; Giudice, Gian F.; Mccullough, Matthew
2018-05-15
We introduce the Hyperbolic Higgs, a novel solution to the little hierarchy problem that features Standard Model neutral scalar top partners. At one-loop order, the protection from ultraviolet sensitivity is due to an accidental non-compact symmetry of the Higgs potential that emerges in the infrared. Once the general features of the effective description are detailed, a completion that relies on a five dimensional supersymmetric framework is provided. Novel phenomenology is compared and contrasted with the Twin Higgs scenario.
On problems with displacement in boundary conditions for hyperbolic equation
Directory of Open Access Journals (Sweden)
Elena A. Utkina
2016-03-01
Full Text Available We consider three problems for hyperbolic equation on a plane in the characteristic domain. In these problems at least one of the conditions of the Goursat problem is replaced by nonlocal condition on the relevant characteristic. Non-local conditions are the linear combinations of the normal derivatives at points on opposite characteristics. In case of replacement of one condition we solve the problem by reduction to the Goursat problem for which it exists and is unique. To find the unknown Goursat condition author receives the integral equation, rewrite it in operational form and finds its unique solvability cases. To prove the unique solvability of the equation, the author shows the continuous linear operator and the fact, that some degree of the resulting operator is a contraction mapping. It is known that in this case the required Goursat condition can be written as Neumann series. We considered in detail only one of the tasks, but for both the unique solvability theorems are formulated. If the two conditions are changed, the uniqueness of the solution on the assumption that it exists, is proved by the method of a priori estimates. For this purpose, the inner product and the norm in $L_2$ are used. As a result, the conditions were obtained for the coefficients of a hyperbolic equation that ensure the uniqueness of the solution. An example is given, confirming that these conditions are essential. Namely, constructed an equation whose coefficients do not satisfy the conditions of the last theorem, given the conditions on the characteristics and nontrivial solution is built.
Representation of the contextual statistical model by hyperbolic amplitudes
International Nuclear Information System (INIS)
Khrennikov, Andrei
2005-01-01
We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. We also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy
Hyperbolic Rendezvous at Mars: Risk Assessments and Mitigation Strategies
Jedrey, Ricky; Landau, Damon; Whitley, Ryan
2015-01-01
Given the current interest in the use of flyby trajectories for human Mars exploration, a key requirement is the capability to execute hyperbolic rendezvous. Hyperbolic rendezvous is used to transport crew from a Mars centered orbit, to a transiting Earth bound habitat that does a flyby. Representative cases are taken from future potential missions of this type, and a thorough sensitivity analysis of the hyperbolic rendezvous phase is performed. This includes early engine cutoff, missed burn times, and burn misalignment. A finite burn engine model is applied that assumes the hyperbolic rendezvous phase is done with at least two burns.
Considerations on the hyperbolic complex Klein-Gordon equation
International Nuclear Information System (INIS)
Ulrych, S.
2010-01-01
This article summarizes and consolidates investigations on hyperbolic complex numbers with respect to the Klein-Gordon equation for fermions and bosons. The hyperbolic complex numbers are applied in the sense that complex extensions of groups and algebras are performed not with the complex unit, but with the product of complex and hyperbolic unit. The modified complexification is the key ingredient for the theory. The Klein-Gordon equation is represented in this framework in the form of the first invariant of the Poincare group, the mass operator, in order to emphasize its geometric origin. The possibility of new interactions arising from hyperbolic complex gauge transformations is discussed.
Hyperbolic functions with configuration theorems and equivalent and equidecomposable figures
Shervatov, V G; Skornyakov, L A; Boltyanskii, V G
2007-01-01
This single-volume compilation of three books centers on Hyperbolic Functions, an introduction to the relationship between the hyperbolic sine, cosine, and tangent, and the geometric properties of the hyperbola. The development of the hyperbolic functions, in addition to those of the trigonometric (circular) functions, appears in parallel columns for comparison. A concluding chapter introduces natural logarithms and presents analytic expressions for the hyperbolic functions.The second book, Configuration Theorems, requires only the most elementary background in plane and solid geometry. It dis
DEFF Research Database (Denmark)
Ishii, Satoshi; Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.
2016-01-01
Hyperbolic metamaterials possess unique optical properties owing to their hyperbolic dispersion. As hyperbolic metamaterials can be constructed just from periodic multilayers of metals and dielectrics, they have attracted considerable attention in the nanophotonics community. Here, we review some...
Design of a hyperbolic microwave metallic lens
International Nuclear Information System (INIS)
Uckan, T.
1979-12-01
Due to problems caused by multiple reflections in the cavity walls of the EBT fusion research device, the use of a horn becomes important for the directivity of waves in the millimetric range. An ordinary dielectric lens cannot be used because of plasma-wall interactions. Microwave metallic lenses, designed to focus the energy into a plane wave, can improve the directivity considerably. By implementing a 70-GHz standard-gain horn with a delay-type hyperbolic lens, which consists of a solid metallic disk with a number of equal size small holes has indicated a gain of 15 dB over the no lens case
Hyperbolic statics in space-time
Pavlov, Dmitry; Kokarev, Sergey
2014-01-01
Based on the concept of material event as an elementary material source that is concentrated on metric sphere of zero radius --- light-cone of Minkowski space-time, we deduce the analog of Coulomb's law for hyperbolic space-time field universally acting between the events of space-time. Collective field that enables interaction of world lines of a pair of particles at rest contains a standard 3-dimensional Coulomb's part and logarithmic addendum. We've found that the Coulomb's part depends on...
Geometry in the large and hyperbolic chaos
Energy Technology Data Exchange (ETDEWEB)
Hasslacher, B.; Mainieri, R.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors calculated observables in strongly chaotic systems. This is difficult to do because of a lack of a workable orbit classification for such systems. This is due to global geometrical information from the original dynamical system being entangled in an unknown way throughout the orbit sequence. They used geometrical methods from modern mathematics and recent connections between global geometry and modern quantum field theory to study the natural geometrical objects belonging to hard chaos-hyperbolic manifolds.
Holographic complexity of cold hyperbolic black holes
International Nuclear Information System (INIS)
Barbón, José L.F.; Martín-García, Javier
2015-01-01
AdS black holes with hyperbolic horizons provide strong-coupling descriptions of thermal CFT states on hyperboloids. The low-temperature limit of these systems is peculiar. In this note we show that, in addition to a large ground state degeneracy, these states also have an anomalously large holographic complexity, scaling logarithmically with the temperature. We speculate on whether this fact generalizes to other systems whose extreme infrared regime is formally controlled by Conformal Quantum Mechanics, such as various instances of near-extremal charged black holes.
Photon gas with hyperbolic dispersion relations
International Nuclear Information System (INIS)
Mohseni, Morteza
2013-01-01
We investigate the density of states for a photon gas confined in a nonmagnetic metamaterial medium in which some components of the permittivity tensor are negative. We study the effect of the resulting hyperbolic dispersion relations on the black body spectral density. We show that for both of the possible wavevector space topologies, the spectral density vanishes at a certain frequency. We obtain the partition function and derive some thermodynamical quantities of the system. To leading order, the results resemble those of a one- or two-dimensional photon gas with an enhanced density of states. (paper)
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Solving Differential Equations in R: Package deSolve
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...
Solving Differential Equations in R: Package deSolve
Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.
2010-01-01
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The
Computing the Gromov hyperbolicity of a discrete metric space
Fournier, Hervé
2015-01-01
We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using
p-Capacity and p-Hyperbolicity of Submanifolds
DEFF Research Database (Denmark)
Holopainen, Ilkka; Markvorsen, Steen; Palmer, Vicente
2009-01-01
We use explicit solutions to a drifted Laplace equation in warped product model spaces as comparison constructions to show p-hyperbolicity of a large class of submanifolds for p >= 2. The condition for p-hyperbolicity is expressed in terms of upper support functions for the radial sectional curva...
Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides
Babicheva, Viktoriia E.
2017-12-01
We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.
Piecewise linear regression splines with hyperbolic covariates
International Nuclear Information System (INIS)
Cologne, John B.; Sposto, Richard
1992-09-01
Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)
Contact Geometry of Hyperbolic Equations of Generic Type
Directory of Open Access Journals (Sweden)
Dennis The
2008-08-01
Full Text Available We study the contact geometry of scalar second order hyperbolic equations in the plane of generic type. Following a derivation of parametrized contact-invariants to distinguish Monge-Ampère (class 6-6, Goursat (class 6-7 and generic (class 7-7 hyperbolic equations, we use Cartan's equivalence method to study the generic case. An intriguing feature of this class of equations is that every generic hyperbolic equation admits at most a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal forms for the contact-equivalence classes of these maximally symmetric generic hyperbolic equations are derived and explicit symmetry algebras are presented. Moreover, these maximally symmetric equations are Darboux integrable. An enumeration of several submaximally symmetric (eight and seven-dimensional generic hyperbolic structures is also given.
Layered van der Waals crystals with hyperbolic light dispersion
DEFF Research Database (Denmark)
Gjerding, Morten Niklas; Petersen, R.; Pedersen, T.G.
2017-01-01
candidates for Purcell factor control of emission from diamond nitrogen-vacancy centers.Natural hyperbolic materials retain the peculiar optical properties of traditional metamaterials whilst not requiring artificial structuring. Here, the authors perform a theoretical screening of a large class of natural......Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first......-infrared to the ultraviolet. Combined with the emerging field of van der Waals heterostructuring, we demonstrate how the hyperbolic properties can be further controlled by stacking different two-dimensional crystals opening new perspectives for atomic-scale design of photonic metamaterials. As an application, we identify...
Hyperbolic prisms and foams in Hele-Shaw cells
Energy Technology Data Exchange (ETDEWEB)
Tufaile, A., E-mail: tufaile@usp.br [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil); Tufaile, A.P.B. [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil)
2011-10-03
The propagation of light in foams creates patterns which are generated due to the reflection and refraction of light. One of these patterns is observed by the formation of multiple mirror images inside liquid bridges in a layer of bubbles in a Hele-Shaw cell. We are presenting the existence of these patterns in foams and their relation with hyperbolic geometry and Sierpinski gaskets using the Poincare disk model. The images obtained from the experiment in foams are compared to the case of hyperbolic optical elements. -- Highlights: → The chaotic scattering of light in foams generating deltoid patterns is based on hyperbolic geometry. → The deltoid patterns are obtained through the Plateau borders in a Hele-Shaw cell. → The Plateau borders act like hyperbolic prism. → Some effects of the refraction and reflection of the light rays were studied using a hyperbolic prism.
Directory of Open Access Journals (Sweden)
F. F. Ngwane
2015-01-01
Full Text Available We propose a block hybrid trigonometrically fitted (BHT method, whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs, including systems arising from the semidiscretization of hyperbolic Partial Differential Equations (PDEs, such as the Telegraph equation. The BHT is formulated from eight discrete hybrid formulas which are provided by a continuous two-step hybrid trigonometrically fitted method with two off-grid points. The BHT is implemented in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHT is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.
The Split Coefficient Matrix method for hyperbolic systems of gasdynamic equations
Chakravarthy, S. R.; Anderson, D. A.; Salas, M. D.
1980-01-01
The Split Coefficient Matrix (SCM) finite difference method for solving hyperbolic systems of equations is presented. This new method is based on the mathematical theory of characteristics. The development of the method from characteristic theory is presented. Boundary point calculation procedures consistent with the SCM method used at interior points are explained. The split coefficient matrices that define the method for steady supersonic and unsteady inviscid flows are given for several examples. The SCM method is used to compute several flow fields to demonstrate its accuracy and versatility. The similarities and differences between the SCM method and the lambda-scheme are discussed.
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
Computational partial differential equations using Matlab
Li, Jichun
2008-01-01
Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE
Landau levels on the hyperbolic plane
International Nuclear Information System (INIS)
Fakhri, H; Shariati, M
2004-01-01
The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength. (letter to the editor)
Landau levels on the hyperbolic plane
Energy Technology Data Exchange (ETDEWEB)
Fakhri, H [Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran 19395-5531 (Iran, Islamic Republic of); Shariati, M [Department of Physics, Khajeh Nassir-Al-Deen Toosi University of Technology, Tehran 15418 (Iran, Islamic Republic of)
2004-11-05
The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength. (letter to the editor)
Tangent hyperbolic circular frequency diverse array radars
Directory of Open Access Journals (Sweden)
Sarah Saeed
2016-03-01
Full Text Available Frequency diverse array (FDA with uniform frequency offset (UFO has been in spot light of research for past few years. Not much attention has been devoted to non-UFOs in FDA. This study investigates tangent hyperbolic (TH function for frequency offset selection scheme in circular FDAs (CFDAs. Investigation reveals a three-dimensional single-maximum beampattern, which promises to enhance system detection capability and signal-to-interference plus noise ratio. Furthermore, by utilising the versatility of TH function, a highly configurable type array system is achieved, where beampatterns of three different configurations of FDA can be generated, just by adjusting a single function parameter. This study further examines the utility of the proposed TH-CFDA in some practical radar scenarios.
Resonances for Obstacles in Hyperbolic Space
Hintz, Peter; Zworski, Maciej
2017-12-01
We consider scattering by star-shaped obstacles in hyperbolic space and show that resonances satisfy a universal bound { Im λ ≤ - 1/2 } , which is optimal in dimension 2. In odd dimensions we also show that { Im λ ≤ - μ/ρ } for a universal constant {μ} , where { ρ } is the radius of a ball containing the obstacle; this gives an improvement for small obstacles. In dimensions 3 and higher the proofs follow the classical vector field approach of Morawetz, while in dimension 2 we obtain our bound by working with spaces coming from general relativity. We also show that in odd dimensions resonances of small obstacles are close, in a suitable sense, to Euclidean resonances.
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Differentiable dynamical systems an introduction to structural stability and hyperbolicity
Wen, Lan
2016-01-01
This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the \\Omega-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to textbooks@ams.org for more informatio...
Qualitative behavior of global solutions to inhomogeneous quasilinear hyperbolic systems
International Nuclear Information System (INIS)
Hsiao, L.
1994-01-01
The emphasis is the influence to the qualitative behavior of solutions caused by the lower order term, which is certain dissipation, in quasilinear hyperbolic systems. Both classical solutions and discontinuous weak solutions are discussed. (author). 12 refs
Infrared hyperbolic metasurface based on nanostructured van der Waals materials
Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer
2018-02-01
Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.
Forced oscillation of hyperbolic equations with mixed nonlinearities
Directory of Open Access Journals (Sweden)
Yutaka Shoukaku
2012-04-01
Full Text Available In this paper, we consider the mixed nonlinear hyperbolic equations with forcing term via Riccati inequality. Some sufficient conditions for the oscillation are derived by using Young inequality and integral averaging method.
Hyperbolic Plykin attractor can exist in neuron models
DEFF Research Database (Denmark)
Belykh, V.; Belykh, I.; Mosekilde, Erik
2005-01-01
Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study...... of the neuron model, we derive a flow-defined Poincare map giving ail accurate account of the system's dynamics. In a parameter region where the neuron system undergoes bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map becomes a map of a disk with several periodic...... holes. A particular case is the map of a disk with three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the present paper) and arises as a result of a two-loop (secondary...
Hyperbolicity measures democracy in real-world networks
Borassi, Michele; Chessa, Alessandro; Caldarelli, Guido
2015-09-01
In this work, we analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. We provide two improvements in our understanding of this quantity: first of all, in our interpretation, a hyperbolic network is "aristocratic", since few elements "connect" the system, while a non-hyperbolic network has a more "democratic" structure with a larger number of crucial elements. The second contribution is the introduction of the average hyperbolicity of the neighbors of a given node. Through this definition, we outline an "influence area" for the vertices in the graph. We show that in real networks the influence area of the highest degree vertex is small in what we define "local" networks (i.e., social or peer-to-peer networks), and large in "global" networks (i.e., power grid, metabolic networks, or autonomous system networks).
Existence for a class of discrete hyperbolic problems
Directory of Open Access Journals (Sweden)
Luca Rodica
2006-01-01
Full Text Available We investigate the existence and uniqueness of solutions to a class of discrete hyperbolic systems with some nonlinear extreme conditions and initial data, in a real Hilbert space.
Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models
Giona, M.; Brasiello, A.; Crescitelli, S.
2015-11-01
One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed.
Hyperbolic Discounting of the Far-Distant Future
Anchugina, Nina; Ryan, Matthew; Slinko, Arkadii
2017-01-01
We prove an analogue of Weitzman's (1998) famous result that an exponential discounter who is uncertain of the appropriate exponential discount rate should discount the far-distant future using the lowest (i.e., most patient) of the possible discount rates. Our analogous result applies to a hyperbolic discounter who is uncertain about the appropriate hyperbolic discount rate. In this case, the far-distant future should be discounted using the probability-weighted harmonic mean of the possible...
A note on sigular limits to hyperbolic systems
Bianchini, Stefano
2000-01-01
In this note we consider two different singular limits to hyperbolic system of conservation laws, namely the standard backward schemes for non linear semigroups and the semidiscrete scheme. Under the assumption that the rarefaction curve of the corresponding hyperbolic system are straight lines, we prove the stability of the solution and the convergence to the perturbed system to the unique solution of the limit system for initial data with small total variation.
The Kerr geometry, complex world lines and hyperbolic strings
International Nuclear Information System (INIS)
Burinskii, A.Ya.
1994-01-01
In the Lind-Newman representation the Kerr geometry is created by a source moving along an analytical complex world line. An equivalence of the complex world line and complex (hyperbolic) string is considered. Therefore the hyperbolic string may play the role of the complex source of the Kerr geometry. The Kerr solution with the complex string source acquires Regge behavior of the angular momentum. (orig.)
Finite-width plasmonic waveguides with hyperbolic multilayer cladding
DEFF Research Database (Denmark)
Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi
2015-01-01
Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...
Euler and Navier-Stokes equations on the hyperbolic plane.
Khesin, Boris; Misiolek, Gerard
2012-11-06
We show that nonuniqueness of the Leray-Hopf solutions of the Navier-Stokes equation on the hyperbolic plane (2) observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on (n) whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting.
Euler and Navier–Stokes equations on the hyperbolic plane
Khesin, Boris; Misiołek, Gerard
2012-01-01
We show that nonuniqueness of the Leray–Hopf solutions of the Navier–Stokes equation on the hyperbolic plane ℍ2 observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on ℍn whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting. PMID:23091015
Novel Hyperbolic Homoclinic Solutions of the Helmholtz-Duffing Oscillators
Directory of Open Access Journals (Sweden)
Yang-Yang Chen
2016-01-01
Full Text Available The exact and explicit homoclinic solution of the undamped Helmholtz-Duffing oscillator is derived by a presented hyperbolic function balance procedure. The homoclinic solution of the self-excited Helmholtz-Duffing oscillator can also be obtained by an extended hyperbolic perturbation method. The application of the present homoclinic solutions to the chaos prediction of the nonautonomous Helmholtz-Duffing oscillator is performed. Effectiveness and advantage of the present solutions are shown by comparisons.
Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)
Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.
2016-09-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).
Hyperbole, abstract motion and spatial knowledge: sequential versus simultaneous scanning.
Catricalà, Maria; Guidi, Annarita
2012-08-01
Hyperbole is an interesting trope in the perspective of Space Grammar, since it is related to the displacing of a limit (Lausberg in Elemente der literarischen Rhetorik. M.H. Verlag, Munchen 1967; see the Ancient Greek meaning 'to throw over' > 'exaggerate'). Hyperbole semantic mechanisms are related to virtual scanning (Holmqvist and Płuciennik in Imagery in language. Peter Lang, Frankfurt am Main, pp 777-785, 2004). Basic concepts of SIZE and QUANTITY, related image-schemas (IS) and conceptual metaphors (UP IS MORE; IMPORTANT IS BIG: Lakoff 1987, Johnson 1987) are implied in hyperbole processing. The virtual scanning is the simulation of a perceptual domain (here, the vertically oriented space). The virtual limit is defined by expected values on the relevant scale. Since hyperbole is a form of intensification, its linguistic interest lies in cases involving the extremes of a scale, for which a limit can be determined (Schemann 1994). In this experimental study, we analyze the concept of 'limit' in terms of 'abstract motion' and 'oriented space' domains (Langacker 1990) with respect to hyperboles expressed by Italian Verbs of movement. The IS considered are PATH and SOURCE-PATH-GOAL. The latter corresponds to a virtual scale whose limit is arrived at, or overcome, in hyperboles.
Hyperbolic theory of relativistic conformal dissipative fluids
Lehner, Luis; Reula, Oscar A.; Rubio, Marcelo E.
2018-01-01
We develop a complete description of the class of conformal relativistic dissipative fluids of divergence form, following the formalism described in [R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990), 10.1103/PhysRevD.41.1855, S. Pennisi, Some considerations on a non linear approach to extended thermodynamics and in Proceedings of Symposium of Kinetic Theory and Extended Thermodynamics, Bologna, 1987.]. This type of theory is fully described in terms of evolution variables whose dynamics are governed by total divergence-type conservation laws. Specifically, we give a characterization of the whole family of conformal fluids in terms of a single master scalar function defined up to second-order corrections in dissipative effects, which we explicitly find in general form. This allows us to identify the equilibrium states of the theory and derive constitutive relations and a Fourier-like law for the corresponding first-order theory heat flux. Finally, we show that among this class of theories—and near equilibrium configurations—there exist symmetric hyperbolic ones, implying that for them one can define well-posed initial value problems.
International Nuclear Information System (INIS)
Akram, Safia; Nadeem, S.
2014-01-01
In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters. - Highlights: • The main motivation of this work is that we want to see the behavior of nanofluids in peristaltic flows. • In literature few articles are available on this, but no article is available in asymmetric channel on the new fluid model hyperbolic tangent fluid. • So we want to fill the gap in literature studying this
Energy Technology Data Exchange (ETDEWEB)
Akram, Safia, E-mail: safia_akram@yahoo.com [Department of Basic Sciences, MCS, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan)
2014-05-01
In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters. - Highlights: • The main motivation of this work is that we want to see the behavior of nanofluids in peristaltic flows. • In literature few articles are available on this, but no article is available in asymmetric channel on the new fluid model hyperbolic tangent fluid. • So we want to fill the gap in literature studying this.
International Nuclear Information System (INIS)
Villalba, Victor M.; Gonzalez-Diaz, Luis A.
2009-01-01
We show that the energy spectrum of the one-dimensional Dirac equation, in the presence of an attractive vectorial delta potential, exhibits a resonant behavior when one includes an asymptotically spatially vanishing weak electric field associated with a hyperbolic tangent potential. We solve the Dirac equation in terms of Gauss hyper-geometric functions and show explicitly how the resonant behavior depends on the strength of the electric field evaluated at the support of the point interaction. We derive an approximate expression for the value of the resonances and compare the results calculated for the hyperbolic potential with those obtained for a linear perturbative potential. Finally, we characterize the resonances with the help of the phase shift and the Wigner delay time. (orig.)
Directory of Open Access Journals (Sweden)
Ji Juan-Juan
2017-01-01
Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.
A second-order iterative implicit-explicit hybrid scheme for hyperbolic systems of conservation laws
International Nuclear Information System (INIS)
Dai, Wenlong; Woodward, P.R.
1996-01-01
An iterative implicit-explicit hybrid scheme is proposed for hyperbolic systems of conservation laws. Each wave in a system may be implicitly, or explicitly, or partially implicitly and partially explicitly treated depending on its associated Courant number in each numerical cell, and the scheme is able to smoothly switch between implicit and explicit calculations. The scheme is of Godunov-type in both explicit and implicit regimes, is in a strict conservation form, and is accurate to second-order in both space and time for all Courant numbers. The computer code for the scheme is easy to vectorize. Multicolors proposed in this paper may reduce the number of iterations required to reach a converged solution by several orders for a large time step. The feature of the scheme is shown through numerical examples. 38 refs., 12 figs
Computing the Gromov hyperbolicity of a discrete metric space
Fournier, Hervé
2015-02-12
We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using the (max,min) matrix product algorithm by Duan and Pettie, the fixed base-point hyperbolicity can be determined in O(n2.69) time. It follows that the Gromov hyperbolicity can be computed in O(n3.69) time, and a 2-approximation can be found in O(n2.69) time. We also give a (2log2n)-approximation algorithm that runs in O(n2) time, based on a tree-metric embedding by Gromov. We also show that hyperbolicity at a fixed base-point cannot be computed in O(n2.05) time, unless there exists a faster algorithm for (max,min) matrix multiplication than currently known.
Hyperbolic mapping of complex networks based on community information
Wang, Zuxi; Li, Qingguang; Jin, Fengdong; Xiong, Wei; Wu, Yao
2016-08-01
To improve the hyperbolic mapping methods both in terms of accuracy and running time, a novel mapping method called Community and Hyperbolic Mapping (CHM) is proposed based on community information in this paper. Firstly, an index called Community Intimacy (CI) is presented to measure the adjacency relationship between the communities, based on which a community ordering algorithm is introduced. According to the proposed Community-Sector hypothesis, which supposes that most nodes of one community gather in a same sector in hyperbolic space, CHM maps the ordered communities into hyperbolic space, and then the angular coordinates of nodes are randomly initialized within the sector that they belong to. Therefore, all the network nodes are so far mapped to hyperbolic space, and then the initialized angular coordinates can be optimized by employing the information of all nodes, which can greatly improve the algorithm precision. By applying the proposed dual-layer angle sampling method in the optimization procedure, CHM reduces the time complexity to O(n2) . The experiments show that our algorithm outperforms the state-of-the-art methods.
Super-Coulombic atom-atom interactions in hyperbolic media
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.
Parallel hyperbolic PDE simulation on clusters: Cell versus GPU
Rostrup, Scott; De Sterck, Hans
2010-12-01
Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational performance. Two technologies that have received significant attention are IBM's Cell Processor and NVIDIA's CUDA programming model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code performance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32 Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications. Program summaryProgram title: SWsolver Catalogue identifier: AEGY_v1_0 Program summary URL
Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials
Directory of Open Access Journals (Sweden)
Hao Shen
2015-05-01
Full Text Available In contrast to strong plasmonic scattering from metal particles or structures in metal films, we show that patterns of arbitrary shape fabricated out of multilayer hyperbolic metamaterials become invisible within a chosen band of optical frequencies. This is due to anomalously weak scattering when the in-plane permittivity of the multilayer hyperbolic metamaterials is tuned to match with the surrounding medium. This new phenomenon is described theoretically and demonstrated experimentally by optical characterization of various patterns in Au-Si multilayer hyperbolic metamaterials. This anomalously weak scattering is insensitive to pattern sizes, shapes, and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes, and optoelectric devices.
Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics
Energy Technology Data Exchange (ETDEWEB)
Kuznetsov, Sergei P [Saratov Branch, Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov (Russian Federation)
2011-02-28
Research is reviewed on the identification and construction of physical systems with chaotic dynamics due to uniformly hyperbolic attractors (such as the Plykin attraction or the Smale-Williams solenoid). Basic concepts of the mathematics involved and approaches proposed in the literature for constructing systems with hyperbolic attractors are discussed. Topics covered include periodic pulse-driven models; dynamics models consisting of periodically repeated stages, each described by its own differential equations; the construction of systems of alternately excited coupled oscillators; the use of parametrically excited oscillations; and the introduction of delayed feedback. Some maps, differential equations, and simple mechanical and electronic systems exhibiting chaotic dynamics due to the presence of uniformly hyperbolic attractors are presented as examples. (reviews of topical problems)
Hawking into Unruh mapping for embeddings of hyperbolic type
International Nuclear Information System (INIS)
Paston, S A
2015-01-01
We study the conditions of the existence of Hawking into Unruh mapping for hyperbolic (Fronsdal-type) metric embeddings into the Minkowski space, for which timelines are hyperbolas. Many examples are known for global embeddings into the Minkowskian spacetime (GEMS), with such mapping for physically interesting metrics with some symmetry. However, examples of embeddings, both smooth and hyperbolic, for which there is no mapping, were also given. In the present work we prove that Hawking into Unruh mapping takes place for a hyperbolic embedding of an arbitrary metric with a time-like Killing vector and a Killing horizon if the embedding of such type exists and smoothly covers the horizon. At the same time, we do not assume any symmetry (spherical, for example), except the time translational invariance, which corresponds to the existence of a time-like Killing vector. We show that the known examples of the absence of mapping do not satisfy the formulated conditions of its existence. (paper)
Origin of hyperbolicity in brain-to-brain coordination networks
Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan
2018-02-01
Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.
Dynamics beyond uniform hyperbolicity a global geometric and probabilistic perspective
Bonatti, Christian; Viana, Marcelo
2005-01-01
The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unified important developments and led to a remarkably successful theory for a large class of systems: uniformly hyperbolic systems often exhibit complicated evolution which, nevertheless, is now rather well understood, both geometrically and statistically.Another revolution has been taking place in the last couple of decades, as one tries to build a global theory for "most" dynamical systems, recovering as much as possible of the conclusions of the uniformly hyperbolic case, in great generality. This book aims to put such recent developments in a unified perspective, and to point out open problems and likely directions for further progress. It is aimed at researchers, both young and senior, willing to get a quick, yet broad, view of this part of dynamics. Main ideas, methods, and results are discussed, at variable degrees of depth, with references to the original works for details and complementary information.
Diffusive instabilities in hyperbolic reaction-diffusion equations
Zemskov, Evgeny P.; Horsthemke, Werner
2016-03-01
We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.
Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
Directory of Open Access Journals (Sweden)
Golovaty Yuriy
2017-04-01
Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.
Right-angled polyhedra and hyperbolic 3-manifolds
Vesnin, A. Yu.
2017-04-01
Hyperbolic 3-manifolds whose fundamental groups are subgroups of finite index in right-angled Coxeter groups are under consideration. The construction of such manifolds is associated with regular colourings of the faces of polyhedra and, in particular, with 4-colourings. The following questions are discussed: the structure of the set of right-angled polytopes in Lobachevskii space; examples of orientable and non-orientable manifolds, including the classical Löbell manifold constructed in 1931; connections between the Hamiltonian property of a polyhedron and the existence of hyperelliptic involutions of manifolds; the volumes and complexity of manifolds; isometry between hyperbolic manifolds constructed from 4-colourings. Bibliography: 89 titles.
Perturbed Strong Stability Preserving Time-Stepping Methods For Hyperbolic PDEs
Hadjimichael, Yiannis
2017-09-30
A plethora of physical phenomena are modelled by hyperbolic partial differential equations, for which the exact solution is usually not known. Numerical methods are employed to approximate the solution to hyperbolic problems; however, in many cases it is difficult to satisfy certain physical properties while maintaining high order of accuracy. In this thesis, we develop high-order time-stepping methods that are capable of maintaining stability constraints of the solution, when coupled with suitable spatial discretizations. Such methods are called strong stability preserving (SSP) time integrators, and we mainly focus on perturbed methods that use both upwind- and downwind-biased spatial discretizations. Firstly, we introduce a new family of third-order implicit Runge–Kuttas methods with arbitrarily large SSP coefficient. We investigate the stability and accuracy of these methods and we show that they perform well on hyperbolic problems with large CFL numbers. Moreover, we extend the analysis of SSP linear multistep methods to semi-discretized problems for which different terms on the right-hand side of the initial value problem satisfy different forward Euler (or circle) conditions. Optimal perturbed and additive monotonicity-preserving linear multistep methods are studied in the context of such problems. Optimal perturbed methods attain augmented monotonicity-preserving step sizes when the different forward Euler conditions are taken into account. On the other hand, we show that optimal SSP additive methods achieve a monotonicity-preserving step-size restriction no better than that of the corresponding non-additive SSP linear multistep methods. Furthermore, we develop the first SSP linear multistep methods of order two and three with variable step size, and study their optimality. We describe an optimal step-size strategy and demonstrate the effectiveness of these methods on various one- and multi-dimensional problems. Finally, we establish necessary conditions
Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators
Energy Technology Data Exchange (ETDEWEB)
Semenova, N.; Anishchenko, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)
2016-06-08
In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.
Numerical methods for hyperbolic differential functional problems
Directory of Open Access Journals (Sweden)
Roman Ciarski
2008-01-01
Full Text Available The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.
Hyperbolic white noise functional solutions of Wick-type stochastic compound KdV-Burgers equations
International Nuclear Information System (INIS)
Han Xiu; Xie Yingchao
2009-01-01
Variable coefficient and Wick-type stochastic compound KdV-Burgers equations are investigated. By using white noise analysis, Hermite transform and the hyperbolic function method, we obtain a number of Wick versions of hyperbolic white noise functional solutions and hyperbolic function solutions for Wick-type stochastic and variable coefficient compound KdV-Burgers equations, respectively.
Chaotic Dynamics in Smart Grid and Suppression Scheme via Generalized Fuzzy Hyperbolic Model
Directory of Open Access Journals (Sweden)
Qiuye Sun
2014-01-01
Full Text Available This paper presents a method to control chaotic behavior of a typical Smart Grid based on generalized fuzzy hyperbolic model (GFHM. As more and more distributed generations (DG are incorporated into the Smart Grid, the chaotic behavior occurs increasingly. To verify the behavior, a dynamic model which describes a power system with DG is presented firstly. Then, the simulation result shows that the power system can lead to chaos under certain initial conditions. Based on the universal approximation of GFHM, we confirm that the chaotic behavior could be suppressed by a new controller, which is designed by means of solving a linear matrix inequality (LMI. This approach could make a good application to suppress the chaos in Smart Grid. Finally, a numerical example is given to demonstrate the effectiveness of the proposed chaotic suppression strategy.
Advanced Semi-Implicit Method (ASIM) for hyperbolic two-fluid model
International Nuclear Information System (INIS)
Lee, Sung Jae; Chung, Moon Sun
2003-01-01
Introducing the interfacial pressure jump terms based on the surface tension into the momentum equations of two-phase two-fluid model, the system of governing equations is turned mathematically into the hyperbolic system. The eigenvalues of the equation system become always real representing the void wave and the pressure wave propagation speeds as shown in the previous manuscript. To solve the interfacial pressure jump terms with void fraction gradients implicitly, the conventional semi-implicit method should be modified as an intermediate iteration method for void fraction at fractional time step. This Advanced Semi-Implicit Method (ASIM) then becomes stable without conventional additive terms. As a consequence, including the interfacial pressure jump terms with the advanced semi-implicit method, the numerical solutions of typical two-phase problems can be more stable and sound than those calculated exclusively by using any other terms like virtual mass, or artificial viscosity
International Nuclear Information System (INIS)
Huang, C.-H.; Wu, H.-H.
2006-01-01
In the present study an inverse hyperbolic heat conduction problem is solved by the conjugate gradient method (CGM) in estimating the unknown boundary heat flux based on the boundary temperature measurements. Results obtained in this inverse problem will be justified based on the numerical experiments where three different heat flux distributions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the boundary heat flux. Moreover, the drawbacks of the previous study for this similar inverse problem, such as (1) the inverse solution has phase error and (2) the inverse solution is sensitive to measurement error, can be avoided in the present algorithm. Finally, it is concluded that accurate boundary heat flux can be estimated in this study
New Exact Solutions for New Model Nonlinear Partial Differential Equation
Maher, A.; El-Hawary, H. M.; Al-Amry, M. S.
2013-01-01
In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.
Hybrid plasmonic/semiconductor nanoparticle monolayer assemblies as hyperbolic metamaterials
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Ozel, Tuncay; Mutlugun, Evren
2014-01-01
effective permittivity tensor of the structure. This results in increased photonic density of states and strong enhancement of quantum dot luminescence, in line with recent experimental results. Our findings demonstrate that hyperbolic metamaterials can increase the radiative decay rate of emission centers...
A parabolic-hyperbolic system modelling a moving cell
Directory of Open Access Journals (Sweden)
Fabiana Cardetti
2009-08-01
Full Text Available In this article, we study the existence and uniqueness of local solutions for a moving boundary problem governed by a coupled parabolic-hyperbolic system. The results can be applied to cell movement, extending a result obtained by Choi, Groulx, and Lui in 2005.
Semilinear hyperbolic systems and equations with singular initial data
International Nuclear Information System (INIS)
Gramchev, T.
1991-07-01
We study the weak limits of solutions u ε (t, ·) for ε→0 to semilinear strictly hyperbolic systems and wave equations with initial data u ε (0, ·) approximating a distribution κ, 0 ε (t, ·) for ε→0 exists. 13 refs
Outcrossings of safe regions by generalized hyperbolic processes
DEFF Research Database (Denmark)
Klüppelberg, Claudia; Rasmussen, Morten Grud
2013-01-01
We present a simple Gaussian mixture model in space and time with generalized hyperbolic marginals. Starting with Rice’s celebrated formula for level upcrossings and outcrossings of safe regions we investigate the consequences of the mean-variance mixture model on such quantities. We obtain...
Classical Liouville action on the sphere with three hyperbolic singularities
Energy Technology Data Exchange (ETDEWEB)
Hadasz, Leszek E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew E-mail: jask@ift.uniwroc.pl
2004-08-30
The classical solution to the Liouville equation in the case of three hyperbolic singularities of its energy-momentum tensor is derived and analyzed. The recently proposed classical Liouville action is explicitly calculated in this case. The result agrees with the classical limit of the three-point function in the DOZZ solution of the quantum Liouville theory.
Classical Liouville action on the sphere with three hyperbolic singularities
Hadasz, Leszek; Jaskólski, Zbigniew
2004-08-01
The classical solution to the Liouville equation in the case of three hyperbolic singularities of its energy-momentum tensor is derived and analyzed. The recently proposed classical Liouville action is explicitly calculated in this case. The result agrees with the classical limit of the three-point function in the DOZZ solution of the quantum Liouville theory.
Classical Liouville action on the sphere with three hyperbolic singularities
International Nuclear Information System (INIS)
Hadasz, Leszek; Jaskolski, Zbigniew
2004-01-01
The classical solution to the Liouville equation in the case of three hyperbolic singularities of its energy-momentum tensor is derived and analyzed. The recently proposed classical Liouville action is explicitly calculated in this case. The result agrees with the classical limit of the three-point function in the DOZZ solution of the quantum Liouville theory
Figurative framing: Shaping public discourse through metaphor, hyperbole and irony
Burgers, C.F.; Konijn, E.A.; Steen, G.J.
2016-01-01
Framing is an important concept in communication, yet many framing studies set out to develop frames relevant to only one issue. We expand framing theory by introducing figurative framing. We posit that figurative language types like metaphor, hyperbole and irony are important in shaping public
Hyperboles not turning to metaphors : How to explain audience cooperativeness?
van den Hoven, P.J.
2016-01-01
We observe that an audience attempts to interpret the relation between a source domain and a target domain as a hyperbole before interpreting it as a metaphor. It could also first try a metaphorical reading or attempt several possible readings and successively select the relevant outcome. But it
Figurative framing : Shaping public discourse through metaphor, hyperbole and irony
Burgers, C.; Konijn, E.A.; Steen, G.J.
2016-01-01
Framing is an important concept in communication, yet many framing studies set out to develop frames relevant to only one issue. We expand framing theory by introducing figurative framing. We posit that figurative language types like metaphor, hyperbole and irony are important in shaping public
Exp-function method for solving Maccari's system
International Nuclear Information System (INIS)
Zhang Sheng
2007-01-01
In this Letter, the Exp-function method is used to seek exact solutions of Maccari's system. As a result, single and combined generalized solitonary solutions are obtained, from which some known solutions obtained by extended sine-Gordon equation method and improved hyperbolic function method are recovered as special cases. It is shown that the Exp-function method provides a very effective and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics
Control of the hyperbolic dispersion of dielectrics by an ultrashort laser pulse
Zhang, Xiaoqin; Wang, Feng; Zhang, Fengshou; Yao, Yugui
2018-01-01
An idea of controlling hyperbolic dispersion of dielectric materials by an ultrashort laser pulse is proposed. Taking the diamond as a concrete example and using time-dependent density functional theory calculations, we show that the permittivity tensor of the material can be effectively tuned by an ultrashort laser pulse, serving as a transient hyperbolic medium with wide working frequency window. With easily tunable laser parameters, the material can even be switched by reversal of both elliptic and hyperbolic for a particular light frequency. Our result points out a route toward transient hyperbolic materials, and it offers methods to achieve tunable hyperbolic dispersion with great potential for ultrafast device applications.
Observer-Based Bilinear Control of First-Order Hyperbolic PDEs: Application to the Solar Collector
Mechhoud, Sarra
2015-12-18
In this paper, we investigate the problem of bilinear control of a solar collector plant using the available boundary and solar irradiance measurements. The solar collector is described by a first-order 1D hyperbolic partial differential equation where the pump volumetric flow rate acts as the plant control input. By combining a boundary state observer and an internal energy-based control law, a nonlinear observer based feedback controller is proposed. With a feed-forward control term, the effect of the solar radiation is cancelled. Using the Lyapunov approach we prove that the proposed control guarantees the global exponential stability of both the plant and the tracking error. Simulation results are provided to illustrate the performance of the proposed method.
Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim
2017-06-01
We study the transition from coherence (complete synchronization) to incoherence (spatio-temporal chaos) in ensembles of nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic attractors. As basic models of a partial element we use the Henon map and the Lozi map. We show that the transition to incoherence in a ring of coupled Henon maps occurs through the appearance of phase and amplitude chimera states. An ensemble of coupled Lozi maps demonstrates the coherence-incoherence transition via solitary states and no chimera states are observed in this case.
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
Travelling Waves in Hyperbolic Chemotaxis Equations
Xue, Chuan; Hwang, Hyung Ju; Painter, Kevin J.; Erban, Radek
2010-01-01
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.
Travelling Waves in Hyperbolic Chemotaxis Equations
Xue, Chuan
2010-10-16
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.
Exact moduli space metrics for hyperbolic vortex polygons
International Nuclear Information System (INIS)
Krusch, S.; Speight, J. M.
2010-01-01
Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as Σ n,m , are spaces of C n -invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of Σ n,m are investigated, and it is found that Σ n,n-1 is isometric to the hyperbolic plane of curvature -(3πn) -1 . The geodesic flow on Σ n,m and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys. Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.
Generalized heat-transport equations: parabolic and hyperbolic models
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
Low-dimensional geometry from euclidean surfaces to hyperbolic knots
Bonahon, Francis
2009-01-01
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory o...
7th International Conference on Hyperbolic Problems Theory, Numerics, Applications
Jeltsch, Rolf
1999-01-01
These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phe...
Hyperbolic Conservation Laws and Related Analysis with Applications
Holden, Helge; Karlsen, Kenneth
2014-01-01
This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation. Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model. The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students inter...
Visualising very large phylogenetic trees in three dimensional hyperbolic space
Directory of Open Access Journals (Sweden)
Liberles David A
2004-04-01
Full Text Available Abstract Background Common existing phylogenetic tree visualisation tools are not able to display readable trees with more than a few thousand nodes. These existing methodologies are based in two dimensional space. Results We introduce the idea of visualising phylogenetic trees in three dimensional hyperbolic space with the Walrus graph visualisation tool and have developed a conversion tool that enables the conversion of standard phylogenetic tree formats to Walrus' format. With Walrus, it becomes possible to visualise and navigate phylogenetic trees with more than 100,000 nodes. Conclusion Walrus enables desktop visualisation of very large phylogenetic trees in 3 dimensional hyperbolic space. This application is potentially useful for visualisation of the tree of life and for functional genomics derivatives, like The Adaptive Evolution Database (TAED.
Spectral theory of infinite-area hyperbolic surfaces
Borthwick, David
2016-01-01
This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constan...
On the hyperbolicity of Einstein's and other gauge field equations
International Nuclear Information System (INIS)
Friedrich, H.
1985-01-01
It is shown that Einstein's vacuum field equations (respectively the conformal vacuum field equations) in a frame formalism imply a symmetric hyperbolic system of ''reduce'' propagation equations for any choice of coordinate system and frame field (and conformal factor). Certain freely specifiable ''gauge source'' functions occurring in the reduced equations reflect the choice of gauge. Together with the initial data they determine the gauge uniquely. Their choice does not affect the isometry class (conformal class) of a solution of an initial value problem. By the same method symmetric hyperbolic propagation equations are obtained from other gauge field equations, irrespective of the gauge. Using the concept of source functions one finds that Einstein's field equation, considered as second order equations for the metric coefficients, are of wave equation type in any coordinate system. (orig.)
Detecting topology in a nearly flat hyperbolic universe
Weeks, Jeffrey R.
2002-01-01
Cosmic microwave background data shows the observable universe to be nearly flat, but leaves open the question of whether it is simply or multiply connected. Several authors have investigated whether the topology of a multiply connect hyperbolic universe would be detectable when 0.9 < Omega < 1. However, the possibility of detecting a given topology varies depending on the location of the observer within the space. Recent studies have assumed the observer sits at a favorable location. The pre...
On Hubbard-Stratonovich transformations over hyperbolic domains
International Nuclear Information System (INIS)
Fyodorov, Yan V
2005-01-01
We discuss and prove the validity of the Hubbard-Stratonovich (HS) identities over hyperbolic domains which are used frequently in studies on disordered systems and random matrices. We also introduce a counterpart of the HS identity arising in disordered systems with 'chiral' symmetry. Apart from this we outline a way of deriving the nonlinear σ-model from the gauge-invariant Wegner k-orbital model avoiding the use of the HS transformations
Some problems on nonlinear hyperbolic equations and applications
Peng, YueJun
2010-01-01
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.
Testable Implications of Quasi-Hyperbolic and Exponential Time Discounting
Echenique, Federico; Imai, Taisuke; Saito, Kota
2014-01-01
We present the first revealed-preference characterizations of the models of exponential time discounting, quasi-hyperbolic time discounting, and other time-separable models of consumers’ intertemporal decisions. The characterizations provide non-parametric revealed-preference tests, which we take to data using the results of a recent experiment conducted by Andreoni and Sprenger (2012). For such data, we find that less than half the subjects are consistent with exponential discounting, and on...
Hyperbolic and semi-parametric models in finance
Bingham, N. H.; Kiesel, Rüdiger
2001-02-01
The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.
Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series
Zhang, Zhihua
2014-01-01
Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842
Relatively hyperbolic extensions of groups and Cannon–Thurston ...
Indian Academy of Sciences (India)
In [6], the existence of a Cannon–Thurston map for the embedding i: K → G was proved, where K and G are respectively the Cayley graphs of K and G. In this paper, we will generalize these results to the case where the kernel is strongly hyperbolic relative to a cusp subgroup. One of our main theorems states: Theorem 2.10 ...
Inextendibilty of the Maximal Global Hyperbolic Development in Electrogowdy spacetimes
Directory of Open Access Journals (Sweden)
Nungesser Ernesto
2013-09-01
Full Text Available The problem of determinism in General Relativity appears even if one assumes that the spacetime is globally hyperbolic, i.e. that it contains a hypersurface that is intersected by any causal curve exactly once. The strong cosmic censorship hypothesis is essentially the hypothesis that General Relativity is a predictable theory and thus a crucial issue in Classical General Relativity. We sketch here the proof for the case of Electrogowdy spacetimes.
Symmetric positive differential equations and first order hyperbolic systems
International Nuclear Information System (INIS)
Tangmanee, S.
1981-12-01
We prove that under some conditions the first order hyperbolic system and its associated mixed initial boundary conditions considered, for example, in Kreiss (Math. Comp. 22, 703-704 (1968)) and Kreiss and Gustafsson (Math. Comp. 26, 649-686 (1972)), can be transformed into a symmetric positive system of P.D.E.'s with admissible boundary conditions of Friedrich's type (Comm. Pure Appl. Math 11, 333-418 (1958)). (author)
One-loop effective potential on hyperbolic manifolds
International Nuclear Information System (INIS)
Cognola, G.; Kirsten, K.; Zerbini, S.
1993-01-01
The one-loop effective potential for a scalar field defined on an ultrastatic space-time whose spatial part is a compact hyperbolic manifold is studied using ζ-function regularization for the one-loop effective action. Other possible regularizations are discussed in detail. The renormalization group equations are derived, and their connection with the conformal anomaly is pointed out. The symmetry breaking and the topological mass generation are also discussed
Thermodynamics and stability of hyperbolic charged black holes
International Nuclear Information System (INIS)
Cai Ronggen; Wang Anzhong
2004-01-01
In AdS space the black hole horizon can be a hypersurface with a positive, zero, or negative constant curvature, resulting in different horizon topology. Thermodynamics and stability of black holes in AdS spaces are quite different for different horizon curvatures. In this paper we study thermodynamics and stability of hyperbolic charged black holes with negative constant curvature horizon in the grand canonical ensemble and canonical ensemble, respectively. They include hyperbolic Reissner-Nordstroem black holes in arbitrary dimensions and hyperbolic black holes in the D=5,4,7 gauged supergravities. It is found that associated Gibbs free energies are always negative, which implies that these black hole solutions are globally stable and the black hole phase is dominant in the grand canonical ensemble, but there is a region in the phase space where the black hole is not locally thermodynamically stable with a negative heat capacity for a given gauge potential. In the canonical ensemble, the Helmholtz free energies are not always negative and heat capacities with fixed electric charge are not always positive, which indicates that the Hawking-Page phase transition may happen and black holes are not always locally thermodynamically stable
International Nuclear Information System (INIS)
Cari, C; Suparmi, A; Yunianto, M; Pratiwi, B N
2016-01-01
The Dirac equation of q-deformed hyperbolic Manning Rosen potential in D dimension was solved by using Supersymmetric Quantum Mechanics (SUSY QM). The D dimensional relativistic energy spectra were obtained by using SUSY QM and shape invariant properties and D dimensional wave functions of q-deformed hyperbolic Manning Rosen potential were obtained by using the SUSY raising and lowering operators. In the nonrelativistic limit, the relativistic energy spectra for exact spin symmetry case reduced into nonrelativistic energy spectra and so for the wave functions. In the classical regime, the partition function, the vibrational specific heat, and the vibrational mean energy of some diatomic molecules were calculated from the non-relativistic energy spectra with the help of error function and imaginary error function. (paper)
International Nuclear Information System (INIS)
Boutin, B.
2009-11-01
This thesis concerns the mathematical and numerical study of nonlinear hyperbolic partial differential equations. A first part deals with an emergent problematic: the coupling of hyperbolic equations. The pursued applications are linked with the mathematical coupling of computing platforms, dedicated to an adaptative simulation of multi-scale phenomena. We propose and analyze a new coupling formalism based on extended PDE systems avoiding the geometric treatment of the interfaces. In addition, it allows to formulate the problem in a multidimensional setting, with possible covering of the coupled models. This formalism allows in particular to equip the coupling procedure with viscous regularization mechanisms, useful in the selection of natural discontinuous solutions. We analyze existence and uniqueness in the framework of a parabolic regularization a la Dafermos. Existence of a solution holds true under very general conditions but failure of uniqueness may naturally arise as soon as resonance occurs at the interfaces. Next, we highlight that our extended PDE framework gives rise to another regularization strategy based on thick interfaces. In this setting, we prove existence and uniqueness of the solutions of the Cauchy problem for initial data in L ∞ . The main tool consists in the derivation of a flexible and robust finite volume method for general triangulation which is analyzed in the setting of entropy measure-valued solutions by DiPerna. The second part is devoted to the definition of a finite volume scheme for the computing of nonclassical solutions of a scalar conservation law based on a kinetic relation. This scheme offers the feature to be stricto sensu conservative, in opposition to a Glimm approach that is only statistically conservative. The validity of our approach is illustrated through numerical examples. (author)
Hyperbolic systems with analytic coefficients well-posedness of the Cauchy problem
Nishitani, Tatsuo
2014-01-01
This monograph focuses on the well-posedness of the Cauchy problem for linear hyperbolic systems with matrix coefficients. Mainly two questions are discussed: (A) Under which conditions on lower order terms is the Cauchy problem well posed? (B) When is the Cauchy problem well posed for any lower order term? For first order two by two systems with two independent variables with real analytic coefficients, we present complete answers for both (A) and (B). For first order systems with real analytic coefficients we prove general necessary conditions for question (B) in terms of minors of the principal symbols. With regard to sufficient conditions for (B), we introduce hyperbolic systems with nondegenerate characteristics, which contains strictly hyperbolic systems, and prove that the Cauchy problem for hyperbolic systems with nondegenerate characteristics is well posed for any lower order term. We also prove that any hyperbolic system which is close to a hyperbolic system with a nondegenerate characteristic of mu...
Directory of Open Access Journals (Sweden)
Ilija Jegdic
2015-09-01
Full Text Available We consider a two-dimensional Riemann problem for the unsteady transonic small disturbance equation resulting in diverging rarefaction waves. We write the problem in self-similar coordinates and we obtain a mixed type (hyperbolic-elliptic system. Resolving the one-dimensional discontinuities in the far field, where the system is hyperbolic, and using characteristics, we formulate the problem in a semi-hyperbolic patch that is between the hyperbolic and the elliptic regions. A semi-hyperbolic patch is known as a region where one family out of two nonlinear families of characteristics starts on a sonic curve and ends on a transonic shock. We obtain existence of a smooth local solution in this semi-hyperbolic patch and we prove various properties of global smooth solutions based on a characteristic decomposition using directional derivatives.
PARALLEL SOLUTION METHODS OF PARTIAL DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
Korhan KARABULUT
1998-03-01
Full Text Available Partial differential equations arise in almost all fields of science and engineering. Computer time spent in solving partial differential equations is much more than that of in any other problem class. For this reason, partial differential equations are suitable to be solved on parallel computers that offer great computation power. In this study, parallel solution to partial differential equations with Jacobi, Gauss-Siedel, SOR (Succesive OverRelaxation and SSOR (Symmetric SOR algorithms is studied.
International Nuclear Information System (INIS)
Liu Qing; Wang Zihua
2010-01-01
According to two dependent rational solutions to a generalized Riccati equation together with the equation itself, a rational-exponent solution to a nonlinear partial differential equation can be constructed. By selecting different parameter values in the rational-exponent solution, many families of combinatorial solutions combined with a rational function such as hyperbolic functions or trigonometric functions, are rapidly derived. This method is applied to the Whitham-Broer-Kaup equation and a series of combinatorial solutions are obtained, showing that this method is a more concise and efficient approach and can uniformly construct many types of combined solutions to nonlinear partial differential equations.
A Combination Theorem for Convex Hyperbolic Manifolds, with Applications to Surfaces in 3-Manifolds
Baker, Mark; Cooper, Daryl
2005-01-01
We prove the convex combination theorem for hyperbolic n-manifolds. Applications are given both in high dimensions and in 3 dimensions. One consequence is that given two geometrically finite subgroups of a discrete group of isometries of hyperbolic n-space, satisfying a natural condition on their parabolic subgroups, there are finite index subgroups which generate a subgroup that is an amalgamated free product. Constructions of infinite volume hyperbolic n-manifolds are described by gluing lo...
Random walks on the braid group B3 and magnetic translations in hyperbolic geometry
International Nuclear Information System (INIS)
Voituriez, Raphaeel
2002-01-01
We study random walks on the three-strand braid group B 3 , and in particular compute the drift, or average topological complexity of a random braid, as well as the probability of trivial entanglement. These results involve the study of magnetic random walks on hyperbolic graphs (hyperbolic Harper-Hofstadter problem), what enables to build a faithful representation of B 3 as generalized magnetic translation operators for the problem of a quantum particle on the hyperbolic plane
Christoforou, Cleopatra
2017-12-10
We extend the relative entropy identity to the class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable. The resulting identity is useful to provide measure valued weak versus strong uniqueness theorems for the hyperbolic problem. Also, it yields a convergence result in the zero-viscosity limit to smooth solutions in an Lp framework. The relative entropy identity is also developed for the system of gas dynamics for viscous and heat conducting gases, and for the system of thermoviscoelasticity with viscosity and heat-conduction. Existing differences between the example and the general hyperbolic theory are underlined.
Christoforou, Cleopatra; Tzavaras, Athanasios
2017-01-01
We extend the relative entropy identity to the class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable. The resulting identity is useful to provide measure valued weak versus strong uniqueness theorems for the hyperbolic problem. Also, it yields a convergence result in the zero-viscosity limit to smooth solutions in an Lp framework. The relative entropy identity is also developed for the system of gas dynamics for viscous and heat conducting gases, and for the system of thermoviscoelasticity with viscosity and heat-conduction. Existing differences between the example and the general hyperbolic theory are underlined.
A discussion of hyperbolicity in CATHENA 4. Virtual mass and phase-to-interface pressure differences
International Nuclear Information System (INIS)
Aydemir, Nusret U.
2012-01-01
It is well known that the one-dimensional equations of motion for two-phase flow are non-hyperbolic. Non-hyperbolicity can lead to numerical instabilities, destroying the solution. However, researchers in the last few decades were able to show that inclusion of virtual mass and/or phase-to-interface pressure differences in the momentum equations successfully render the equations of motion hyperbolic. In the present paper, the effect of including virtual mass and phase-to-interface pressure terms in the momentum equations on the hyperbolicity of the two-phase model in the CATHENA 4 code is discussed. The study is motivated by the fact that the inclusion of either model has been shown in the open literature to lead to a hyperbolic system separately. However, no known study exists that examine hyperbolicity in the presence of both these terms in the momentum equations. In this work, both terms are considered in the model equations simultaneously and their implications on the hyperbolicity of the two-phase model are discussed. Specifically, it is shown that in the case of mixed flow, there is a distinct region of non-hyperbolicity that developers need to be aware of when their equations include both the virtual mass and the phase-to-interface terms. Selecting the coefficients of phase-to-interface pressure difference terms properly ensures that the equations are hyperbolic for a wide range of conditions. (orig.)
International Nuclear Information System (INIS)
Leaf, G.K.; Minkoff, M.
1982-01-01
1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code
Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo
2018-04-01
We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.
Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
Handbook of Nonlinear Partial Differential Equations
Polyanin, Andrei D
2011-01-01
New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with Maple(t), Mathematica(R), and MATLAB(R) Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They
International Nuclear Information System (INIS)
Kupka, F.
1997-11-01
This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)
Nonlinear sigma models with compact hyperbolic target spaces
International Nuclear Information System (INIS)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James
2016-01-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Nonlinear sigma models with compact hyperbolic target spaces
Energy Technology Data Exchange (ETDEWEB)
Gubser, Steven [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Saleem, Zain H. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); National Center for Physics, Quaid-e-Azam University Campus,Islamabad 4400 (Pakistan); Schoenholz, Samuel S. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Stokes, James [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States)
2016-06-23
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Computing with high-resolution upwind schemes for hyperbolic equations
International Nuclear Information System (INIS)
Chakravarthy, S.R.; Osher, S.; California Univ., Los Angeles)
1985-01-01
Computational aspects of modern high-resolution upwind finite-difference schemes for hyperbolic systems of conservation laws are examined. An operational unification is demonstrated for constructing a wide class of flux-difference-split and flux-split schemes based on the design principles underlying total variation diminishing (TVD) schemes. Consideration is also given to TVD scheme design by preprocessing, the extension of preprocessing and postprocessing approaches to general control volumes, the removal of expansion shocks and glitches, relaxation methods for implicit TVD schemes, and a new family of high-accuracy TVD schemes. 21 references
Plasma diagnostics by Abel inversion in hyperbolic geometry
International Nuclear Information System (INIS)
Alhasi, A.S.; Elliott, J.A.
1992-01-01
Plasma confined in the UMIST linear quadrupole adopts a configuration with approximately hyperbolic symmetry. The normal diagnostic is a Langmuir probe, but we have developed an alternative method using optical emission tomography based upon an analytic Abel inversion. Plasma radiance is obtained as a function of a parameter identifying magnetic flux surfaces. The inversion algorithm has been tested using artificial data. Experimentally, the results show that ionizing collisions cause the confined plasma distribution to broaden as the plasma travels through the confining field. This is shown to be a consequence of the approximate incompressibility of the E x B flow. (author)
On the landau levels on the hyperbolic plane
International Nuclear Information System (INIS)
Comtet, A.
1986-04-01
The classical and quantum mechanics of a charged particle moving on the hyperbolic plane in a constant magnetic field is discussed. The underlying SL(2,R) symmetry leads to a general description of various possible trajectories. In contrast with the flat case, it is shown that closed orbits only arise for sufficiently strong fields. At the quantum level a group theoretical approach including both bound and continuum states is presented. It is shown that the semiclassical approximation leads to the exact bound state spectrum. The resolvent and its flat space limit are constructed in closed form
Light propagation in a magneto-optical hyperbolic biaxial crystal
Kuznetsov, Evgeniy V.; Merzlikin, Alexander M.
2017-12-01
The light propagation through a magneto-optical hyperbolic biaxial crystal is investigated. Magnetization of the structure results in splitting and reconnection of an isofrequency near the self-intersection point and thus it leads to the disappearance of conical refraction in a crystal. In its turn the isofrequency splitting leads to band gap opening and makes it possible to steer the beam. These effects allow to control the light propagation by means of an external magnetostatic field. The Poynting's vector distribution in the crystal is calculated by means of a Fourier transform in order to demonstrate the aforementioned effects.
Life Insurance and Annuity Demand under Hyperbolic Discounting
Directory of Open Access Journals (Sweden)
Siqi Tang
2018-04-01
Full Text Available In this paper, we analyse and construct a lifetime utility maximisation model with hyperbolic discounting. Within the model, a number of assumptions are made: complete markets, actuarially fair life insurance/annuity is available, and investors have time-dependent preferences. Time dependent preferences are in contrast to the usual case of constant preferences (exponential discounting. We find: (1 investors (realistically demand more life insurance after retirement (in contrast to the standard model, which showed strong demand for life annuities, and annuities are rarely purchased; (2 optimal consumption paths exhibit a humped shape (which is usually only found in incomplete markets under the assumptions of the standard model.
Parallel Algorithm Solves Coupled Differential Equations
Hayashi, A.
1987-01-01
Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.
The Arabic Hyperbolic Pattern "Fa??al" in Two Recent Translations of the Qur'an
El-Zawawy, Amr M.
2014-01-01
The present study addresses the problem of rendering the ?? ?? 'fa??al' hyperbolic pattern into English in two recent translations of the Qur'an. Due to the variety of Qur'an translations and the large amount of hyperbolic forms of Arabic verbs recorded in the Qur'an, only two translations of the Qur'an are consulted and analyzed: these two…
On the Growth of the Number of Hyperbolic Gravitational Instantons with respect to Volume
Ratcliffe, John G.; Tschantz, Steven T.
2000-01-01
In this paper, we show that the number of hyperbolic gravitational instantons grows superexponentially with respect to volume. As an application, we show that the Hartle-Hawking wave function for the universe is infinitely peaked at a certain closed hyperbolic 3-manifold.
Numerical Methods for Partial Differential Equations
Guo, Ben-yu
1987-01-01
These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.
Exact boundary controllability of nodal profile for quasilinear hyperbolic systems
Li, Tatsien; Gu, Qilong
2016-01-01
This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...
On hyperbolic-dissipative systems of composite type
Tan, Zhong; Wang, Yanjin
2016-01-01
The Shizuta-Kawashima condition plays the fundamental role in guaranteeing global stability for systems of hyperbolic-parabolic/hyperbolic with relaxation. However, there are many important physical systems not satisfying this coupling condition, which are of composite type with regard to dissipation. The compressible Navier-Stokes equations with zero heat conductivity and Euler equations of adiabatic flow through porous media are two typical examples. In this paper, we construct the global unique solution near constant equilibria to these two systems in three dimensions for the small Hℓ (ℓ > 3) initial data. Our proof is based on a reformation of the systems in terms of the pressure, velocity and entropy, a scaled energy estimates with minimal fractional derivative counts in conjunction with the linear L2-L2 decay estimates to extract a fast enough decay of velocity gradient, which is used to close the energy estimates for the non-dissipative entropy. We also include an application to certain two-phase models.
Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations
Müller, Ingo
2008-12-01
Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.
Mixed hyperbolic-second-order-parabolic formulations of general relativity
International Nuclear Information System (INIS)
Paschalidis, Vasileios
2008-01-01
Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.
Demonstrator of atmospheric reentry system with hyperbolic velocity—DASH
Morita, Yasuhiro; Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Abe, Takashi
2003-01-01
Among a wide variety of challenging projects planned for the coming decade is the MUSES-C mission designed by the ISAS of Japan. Despite huge amount of data collected by the previous interplanetary spacecraft and probes, the origin and evolution of the solar system still remains unveiled due to their limited information. Thus, our concern has been directed toward a sample return to carry sample from an asteroid back to the earth, which will contribute to better understanding of the system. One of the keys to success is considered the reentry technology with hyperbolic velocity, which has not been demonstrated yet. With this as background, the demonstrator of atmospheric reentry system with hyperbolic velocity, DASH, has been given a commitment to demonstrate the high-speed reentry technology, which will be launched in summer of next year by Japan's H-IIA rocket in a piggyback configuration. The spaceship, composed of a reentry capsule and its carrier, will be injected into a geostationary transfer orbit (GTO) and after several revolutions it will deorbit by burn of a solid propellant deorbit motor. The capsule, identical to that of the sample return mission, can experience the targeted level of thermal environment even from the GTO by tracing a specially designed reentry trajectory.
Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles
Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei
2017-02-01
Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.
Tuning subwavelength-structured focus in the hyperbolic metamaterials
Pan, Rong; Tang, Zhixiang; Pan, Jin; Peng, Runwu
2016-10-01
In this paper, we have systematically investigated light propagating in the hyperbolic metamaterials (HMMs) covered by a subwavelength grating. Based on the equal-frequency contour analyses, light in the HMM is predicted to propagate along a defined direction because of its hyperbolic dispersion, which is similar to the self-collimating effects in photonic crystals. By using the finite-difference time-domain, numerical simulations demonstrate a subwavelength bright spot at the intersection of the adjacent directional beams. Different from the images in homogeneous media, the magnetic fields and electric fields at the spot are layered, especially for the electric fields Ez that is polarized to the propagating direction, i.e., the layer normal direction. Moreover, the Ez is hollow in the layer plane and is stronger than the other electric field component Ex. Therefore, the whole electric field is structured and its pattern can be tuned by the HMM's effective anisotropic electromagnetic parameters. Our results may be useful for generating subwavelength structured light.
Spectral methods for time dependent partial differential equations
Gottlieb, D.; Turkel, E.
1983-01-01
The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.
Energy Technology Data Exchange (ETDEWEB)
Khmelnytskaya, Kira V., E-mail: khmel@uaq.edu.mx [Faculty of Engineering, Autonomous University of Queretaro, Cerro de las Campanas s/n, col. Las Campanas Querétaro, Qro. CP 76010 (Mexico); Kravchenko, Vladislav V., E-mail: vkravchenko@math.cinvestav.edu.mx; Torba, Sergii M., E-mail: storba@math.cinvestav.edu.mx [Department of Mathematics, CINVESTAV del IPN, Unidad Querétaro, Libramiento Norponiente # 2000 Fracc. Real de Juriquilla Querétaro, Qro., CP 76230 (Mexico)
2016-05-15
The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547–559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V. V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1–26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.
A comparison of hyperbolic solvers for ideal and real gas flows
Directory of Open Access Journals (Sweden)
R. M. L. Coelho
2006-09-01
Full Text Available Classical and recent numerical schemes for solving hyperbolic conservation laws were analyzed for computational efficiency and application to nonideal gas flows. The Roe-Pike approximate Riemann solver with entropy correction, the Harten second-order scheme and the extension of the Roe-Pike method to second-order by the MUSCL strategy were compared for one-dimensional flows of an ideal gas. These methods require the so-called Roe's average state, which is frequently difficult and sometimes impossible to obtain. Other methods that do not require the average state are best suited for complex equations of state. Of these, the VFRoe, AUSM+ and Hybrid Lax-Friedrich-Lax-Wendroff methods were compared for one-dimensional compressible flows of a Van der Waals gas. All methods were evaluated regarding their accuracy for given mesh sizes and their computational cost for a given solution accuracy. It was shown that, even though they require more floating points and indirect addressing operations per time step, for a given time interval for integration the second-order methods are less-time consuming than the first-order methods for a required accuracy. It was also shown that AUSM+ and VFRoe are the most accurate methods and that AUSM+ is much faster than the others, and is thus recommended for nonideal one-phase gas flows.
User's manual for the HYPGEN hyperbolic grid generator and the HGUI graphical user interface
Chan, William M.; Chiu, Ing-Tsau; Buning, Pieter G.
1993-01-01
The HYPGEN program is used to generate a 3-D volume grid over a user-supplied single-block surface grid. This is accomplished by solving the 3-D hyperbolic grid generation equations consisting of two orthogonality relations and one cell volume constraint. In this user manual, the required input files and parameters and output files are described. Guidelines on how to select the input parameters are given. Illustrated examples are provided showing a variety of topologies and geometries that can be treated. HYPGEN can be used in stand-alone mode as a batch program or it can be called from within a graphical user interface HGUI that runs on Silicon Graphics workstations. This user manual provides a description of the menus, buttons, sliders, and typein fields in HGUI for users to enter the parameters needed to run HYPGEN. Instructions are given on how to configure the interface to allow HYPGEN to run either locally or on a faster remote machine through the use of shell scripts on UNIX operating systems. The volume grid generated is copied back to the local machine for visualization using a built-in hook to PLOT3D.
Directory of Open Access Journals (Sweden)
M. Ali Abbas
2016-03-01
Full Text Available In this present analysis, three dimensional peristaltic flow of hyperbolic tangent fluid in a non-uniform channel has been investigated. We have considered that the pressure is uniform over the whole cross section and the interial effects have been neglected. For this purpose we consider laminar flow under the assumptions of long wavelength (λ→∞ and creeping flow (Re→0 approximations. The attained highly nonlinear equations are solved with the help of Homotopy perturbation method. The influence of various physical parameters of interest is demonstrated graphically for wall tension, mass characterization, damping nature of the wall, wall rigidity, wall elastance, aspect ratio and the Weissenberg number. In this present investigation we found that the magnitude of the velocity is maximum in the center of the channel whereas it is minimum near the walls. Stream lines are also drawn to discuss the trapping mechanism for all the physical parameters. Comparison has also been presented between Newtonian and non-Newtonian fluid.
Directory of Open Access Journals (Sweden)
R.K. Mohanty
2014-01-01
Full Text Available In this paper, we report new three level implicit super stable methods of order two in time and four in space for the solution of hyperbolic damped wave equations in one, two and three space dimensions subject to given appropriate initial and Dirichlet boundary conditions. We use uniform grid points both in time and space directions. Our methods behave like fourth order accurate, when grid size in time-direction is directly proportional to the square of grid size in space-direction. The proposed methods are super stable. The resulting system of algebraic equations is solved by the Gauss elimination method. We discuss new alternating direction implicit (ADI methods for two and three dimensional problems. Numerical results and the graphical representation of numerical solution are presented to illustrate the accuracy of the proposed methods.
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results
Canadell, Marta; Haro, Àlex
2017-12-01
The development of efficient methods for detecting quasiperiodic oscillations and computing the corresponding invariant tori is a subject of great importance in dynamical systems and their applications in science and engineering. In this paper, we prove the convergence of a new Newton-like method for computing quasiperiodic normally hyperbolic invariant tori carrying quasiperiodic motion in smooth families of real-analytic dynamical systems. The main result is stated as an a posteriori KAM-like theorem that allows controlling the inner dynamics on the torus with appropriate detuning parameters, in order to obtain a prescribed quasiperiodic motion. The Newton-like method leads to several fast and efficient computational algorithms, which are discussed and tested in a companion paper (Canadell and Haro in J Nonlinear Sci, 2017. doi: 10.1007/s00332-017-9388-z), in which new mechanisms of breakdown are presented.
Dynamics in stationary, non-globally hyperbolic spacetimes
Energy Technology Data Exchange (ETDEWEB)
Seggev, Itai [Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States)
2004-06-07
Classically, the dynamics of a scalar field in a non-globally hyperbolic spacetime is ill-posed. Previously, a prescription was given for defining dynamics in static spacetimes in terms of a second-order operator acting on a Hilbert space defined on static slices. The present work extends this result by giving a similar prescription for defining dynamics in stationary spacetimes obeying certain mild assumptions. The prescription is defined in terms of a first-order operator acting on a different Hilbert space from that used in the static prescription. It preserves the important properties of the earlier prescription: the formal solution agrees with the Cauchy evolution within the domain of dependence, and smooth data of compact support always give rise to smooth solutions. In the static case, the first-order formalism agrees with the second-order formalism (using specifically the Friedrichs extension). Applications to field quantization are also discussed.
Optical absorption of hyperbolic metamaterial with stochastic surfaces
DEFF Research Database (Denmark)
Liu, Jingjing; Naik, Gururaj V.; Ishii, Satoshi
2014-01-01
We investigate the absorption properties of planar hyperbolic metamaterials (HMMs) consisting of metal-dielectric multilayers, which support propagating plane waves with anomalously large wavevectors and high photonic-density-of-states over a broad bandwidth. An interface formed by depositing...... indium-tin-oxide nanoparticles on an HMM surface scatters light into the high-k propagating modes of the metamaterial and reduces reflection. We compare the reflection and absorption from an HMM with the nanoparticle cover layer versus those of a metal film with the same thickness also covered...... with the nanoparticles. It is predicted that the super absorption properties of HMM show up when exceedingly large amounts of high-k modes are excited by strong plasmonic resonances. In the case that the coupling interface is formed by non-resonance scatterers, there is almost the same enhancement in the absorption...
Carleman estimates and applications to inverse problems for hyperbolic systems
Bellassoued, Mourad
2017-01-01
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of wh...
Spectral approach to homogenization of hyperbolic equations with periodic coefficients
Dorodnyi, M. A.; Suslina, T. A.
2018-06-01
In L2 (Rd ;Cn), we consider selfadjoint strongly elliptic second order differential operators Aε with periodic coefficients depending on x / ε, ε > 0. We study the behavior of the operators cos (Aε1/2 τ) and Aε-1/2 sin (Aε1/2 τ), τ ∈ R, for small ε. Approximations for these operators in the (Hs →L2)-operator norm with a suitable s are obtained. The results are used to study the behavior of the solution vε of the Cauchy problem for the hyperbolic equation ∂τ2 vε = -Aεvε + F. General results are applied to the acoustics equation and the system of elasticity theory.
Topological vertex, string amplitudes and spectral functions of hyperbolic geometry
Energy Technology Data Exchange (ETDEWEB)
Guimaraes, M.E.X.; Rosa, T.O. [Universidade Federal Fluminense, Instituto de Fisica, Av. Gal. Milton Tavares de Souza, s/n, CEP 24210-346, Niteroi, RJ (Brazil); Luna, R.M. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil)
2014-05-15
We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of a hyperbolic three-geometry associated with q-series in the computation of the string amplitudes. (orig.)
Inozemtsev's hyperbolic spin model and its related spin chain
International Nuclear Information System (INIS)
Barba, J.C.; Finkel, F.; Gonzalez-Lopez, A.; Rodriguez, M.A.
2010-01-01
In this paper we study Inozemtsev's su(m) quantum spin model with hyperbolic interactions and the associated spin chain of Haldane-Shastry type introduced by Frahm and Inozemtsev. We compute the spectrum of Inozemtsev's model, and use this result and the freezing trick to derive a simple analytic expression for the partition function of the Frahm-Inozemtsev chain. We show that the energy levels of the latter chain can be written in terms of the usual motifs for the Haldane-Shastry chain, although with a different dispersion relation. The formula for the partition function is used to analyze the behavior of the level density and the distribution of spacings between consecutive unfolded levels. We discuss the relevance of our results in connection with two well-known conjectures in quantum chaos.
Geometry through history Euclidean, hyperbolic, and projective geometries
Dillon, Meighan I
2018-01-01
Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...
Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.
1978-01-01
Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.
Adaptive aberration correction using a triode hyperbolic electron mirror
International Nuclear Information System (INIS)
Fitzgerald, J.P.S.; Word, R.C.; Koenenkamp, R.
2011-01-01
A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z 0 , and the coefficients of spherical and chromatic aberration, C s and C c , of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties. -- Highlights: → Electrostatic aberration correction for chromatic and spherical aberration in electron optics. → Simultaneous correction of spherical and chromatic aberrations over a wide, adjustable range. → Analytic and quantitative description of correction parameters.
Hyperbolic planforms in relation to visual edges and textures perception.
Directory of Open Access Journals (Sweden)
Pascal Chossat
2009-12-01
Full Text Available We propose to use bifurcation theory and pattern formation as theoretical probes for various hypotheses about the neural organization of the brain. This allows us to make predictions about the kinds of patterns that should be observed in the activity of real brains through, e.g., optical imaging, and opens the door to the design of experiments to test these hypotheses. We study the specific problem of visual edges and textures perception and suggest that these features may be represented at the population level in the visual cortex as a specific second-order tensor, the structure tensor, perhaps within a hypercolumn. We then extend the classical ring model to this case and show that its natural framework is the non-Euclidean hyperbolic geometry. This brings in the beautiful structure of its group of isometries and certain of its subgroups which have a direct interpretation in terms of the organization of the neural populations that are assumed to encode the structure tensor. By studying the bifurcations of the solutions of the structure tensor equations, the analog of the classical Wilson and Cowan equations, under the assumption of invariance with respect to the action of these subgroups, we predict the appearance of characteristic patterns. These patterns can be described by what we call hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of the planforms that were used in previous work to account for some visual hallucinations. If these patterns could be observed through brain imaging techniques they would reveal the built-in or acquired invariance of the neural organization to the action of the corresponding subgroups.
Decay Rates of Interactive Hyperbolic-Parabolic PDE Models with Thermal Effects on the Interface
International Nuclear Information System (INIS)
Lasiecka, I.; Lebiedzik, C.
2000-01-01
We consider coupled PDE systems comprising of a hyperbolic and a parabolic-like equation with an interface on a portion of the boundary. These models are motivated by structural acoustic problems. A specific prototype consists of a wave equation defined on a three-dimensional bounded domain Ω coupled with a thermoelastic plate equation defined on Γ 0 -a flat surface of the boundary Ω. Thus, the coupling between the wave and the plate takes place on the interface Γ 0 . The main issue studied here is that of uniform stability of the overall interactive model. Since the original (uncontrolled) model is only strongly stable, but not uniformly stable, the question becomes: what is the 'minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary nonlinear dissipation placed only on a suitable portion of the part of the boundary which is complementary to Γ 0 , suffices for the stabilization of the entire structure. This result is new with respect to the literature on several accounts: (i) thermoelasticity is accounted for in the plate model; (ii) the plate model does not account for any type of mechanical damping, including the structural damping most often considered in the literature; (iii) there is no mechanical damping placed on the interface Γ 0 ; (iv) the boundary damping is nonlinear without a prescribed growth rate at the origin; (v) the undamped portions of the boundary partial Ω are subject to Neumann (rather than Dirichlet) boundary conditions, which is a recognized difficulty in the context of stabilization of wave equations, due to the fact that the strong Lopatinski condition does not hold. The main mathematical challenge is to show how the thermal energy is propagated onto the hyperbolic component of the structure. This is achieved by using a recently developed sharp theory of boundary traces corresponding to wave and plate equations, along with the analytic
Sweilam, N. H.; Abou Hasan, M. M.
2017-05-01
In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.
Mechhoud, Sarra
2016-08-04
In this paper, boundary adaptive estimation of solar radiation in a solar collector plant is investigated. The solar collector is described by a 1D first-order hyperbolic partial differential equation where the solar radiation models the source term and only boundary measurements are available. Using boundary injection, the estimator is developed in the Lyapunov approach and consists of a combination of a state observer and a parameter adaptation law which guarantee the asymptotic convergence of the state and parameter estimation errors. Simulation results are provided to illustrate the performance of the proposed identifier.
Introduction to partial differential equations
Greenspan, Donald
2000-01-01
Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.
On the limits of the effective description of hyperbolic materials in the presence of surface waves
International Nuclear Information System (INIS)
Tschikin, Maria; Biehs, Svend-Age; Messina, Riccardo; Ben-Abdallah, Philippe
2013-01-01
Here, we address the question of the validity of an effective description for hyperbolic metamaterials in the near-field region. We show that the presence of localized modes such as surface waves drastically limits the validity of the effective description, and requires revisiting the concept of homogenization in the near-field. We demonstrate, from exact scattering matrix calculations for multilayer hyperbolic structures, that one can find surface modes in spectral regions where the effective approach predicts hyperbolic modes only. Hence, the presence of surface modes which are not accounted for in the effective description can lead to physical misinterpretations in the description of hyperbolic materials and their related properties. In particular, we discuss in detail how the choice of the topmost layer affects the validity of the effective medium approach for calculating the local density of states and the super-Planckian thermal radiation. (paper)
The Full—Discrete Mixed Finite Element Methods for Nonlinear Hyperbolic Equations
Institute of Scientific and Technical Information of China (English)
YanpingCHEN; YunqingHUANG
1998-01-01
This article treats mixed finite element methods for second order nonlinear hyperbolic equations.A fully discrete scheme is presented and improved L2-error estimates are established.The convergence of both the function value andthe flux is demonstrated.
Correlation functions of σ fields with values in a hyperbolic space
International Nuclear Information System (INIS)
Haba, Z.
1989-01-01
It is shown that the functional integral for a σ field with values in the Poincare upper half-plane (and some other hyperbolic spaces) can be performed explicitly resulting in a conformal invariant noncanonical field theory in two dimensions
Correlation Functions of σ Fields with Values in a Hyperbolic Space
Haba, Z.
It is shown that the functional integral for a σ field with values in the Poincare upper half-plane (and some other hyperbolic spaces) can be performed explicitly resulting in a conformal invariant noncanonical field theory in two dimensions.
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
2014-03-01
accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re
Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.
2014-01-01
We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers......, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic...
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...
Plasmonic Lithography Utilizing Epsilon Near Zero Hyperbolic Metamaterial.
Chen, Xi; Zhang, Cheng; Yang, Fan; Liang, Gaofeng; Li, Qiaochu; Guo, L Jay
2017-10-24
In this work, a special hyperbolic metamaterial (HMM) metamaterial is investigated for plasmonic lithography of period reduction patterns. It is a type II HMM (ϵ ∥ 0) whose tangential component of the permittivity ϵ ∥ is close to zero. Due to the high anisotropy of the type II epsilon-near-zero (ENZ) HMM, only one plasmonic mode can propagate horizontally with low loss in a waveguide system with ENZ HMM as its core. This work takes the advantage of a type II ENZ HMM composed of aluminum/aluminum oxide films and the associated unusual mode to expose a photoresist layer in a specially designed lithography system. Periodic patterns with a half pitch of 58.3 nm were achieved due to the interference of third-order diffracted light of the grating. The lines were 1/6 of the mask with a period of 700 nm and ∼1/7 of the wavelength of the incident light. Moreover, the theoretical analyses performed are widely applicable to structures made of different materials such as silver as well as systems working at deep ultraviolet wavelengths including 193, 248, and 365 nm.
Gravitational wave bursts from Primordial Black Hole hyperbolic encounters
Garcia-Bellido, Juan
2017-01-01
We propose that Gravitational Wave (GW) bursts with millisecond durations can be explained by the GW emission from the hyperbolic encounters of Primordial Black Holes in dense clusters. These bursts are single events, with the bulk of the released energy happening during the closest approach, and emitted in frequencies within the AdvLIGO sensitivity range. We provide expressions for the shape of the GW emission in terms of the peak frequency and amplitude, and estimate the rates of these events for a variety of mass and velocity configurations. We study the regions of parameter space that will allow detection by both AdvLIGO and, in the future, LISA. We find for realistic configurations, with total mass M∼60 M⊙, relative velocities v∼0.01c, and impact parameters b∼10−3 AU, for AdvLIGO an expected event rate is O(10) events/yr/Gpc^3 with millisecond durations. For LISA, the typical duration is in the range of minutes to hours and the event-rate is O(10^3) events/yr/Gpc^3 for both 10^3 M⊙ IMBH and 1...
One-way spatial integration of hyperbolic equations
Towne, Aaron; Colonius, Tim
2015-11-01
In this paper, we develop and demonstrate a method for constructing well-posed one-way approximations of linear hyperbolic systems. We use a semi-discrete approach that allows the method to be applied to a wider class of problems than existing methods based on analytical factorization of idealized dispersion relations. After establishing the existence of an exact one-way equation for systems whose coefficients do not vary along the axis of integration, efficient approximations of the one-way operator are constructed by generalizing techniques previously used to create nonreflecting boundary conditions. When physically justified, the method can be applied to systems with slowly varying coefficients in the direction of integration. To demonstrate the accuracy and computational efficiency of the approach, the method is applied to model problems in acoustics and fluid dynamics via the linearized Euler equations; in particular we consider the scattering of sound waves from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. The latter problem shows the potential of the method to offer a systematic, convergent alternative to ad hoc regularizations such as the parabolized stability equations.
Orienteering in Knowledge Spaces: The Hyperbolic Geometry of Wikipedia Mathematics
Leibon, Gregory; Rockmore, Daniel N.
2013-01-01
In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or “The MathWiki.” The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of “knowledge space” in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store. PMID:23844017
Orienteering in knowledge spaces: the hyperbolic geometry of Wikipedia Mathematics.
Directory of Open Access Journals (Sweden)
Gregory Leibon
Full Text Available In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or "The MathWiki." The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of "knowledge space" in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store.
Analysis of magnetic electron lens with secant hyperbolic field distribution
International Nuclear Information System (INIS)
Pany, S.S.; Ahmed, Z.; Dubey, B.P.
2014-01-01
Electron-optical imaging instruments like Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) use specially designed solenoid electromagnets for focusing of the electron beam. Indicators of imaging performance of these instruments, like spatial resolution, have a strong correlation with the focal characteristics of the magnetic lenses, which in turn have been shown to be sensitive to the details of the spatial distribution of the axial magnetic field. Owing to the complexity of designing practical lenses, empirical mathematical expressions are important to obtain the desired focal properties. Thus the degree of accuracy of such models in representing the actual field distribution determines accuracy of the calculations and ultimately the performance of the lens. Historically, the mathematical models proposed by Glaser [1] and Ramberg [2] have been extensively used. In this paper the authors discuss another model with a secant-hyperbolic type magnetic field distribution function, and present a comparison between models, utilizing results from finite element-based field simulations as the reference for evaluating performance
Solving Differential Equations in R: Package deSolve
Directory of Open Access Journals (Sweden)
Karline Soetaert
2010-02-01
Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in
A high-order finite-volume method for hyperbolic conservation laws on locally-refined grids
Energy Technology Data Exchange (ETDEWEB)
McCorquodale, Peter; Colella, Phillip
2011-01-28
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on Cartesian grids with multiple levels of refinement. The underlying method is a generalization of that in [5] to nonlinear systems, and is based on using fourth-order accurate quadratures for computing fluxes on faces, combined with fourth-order accurate Runge?Kutta discretization in time. To interpolate boundary conditions at refinement boundaries, we interpolate in time in a manner consistent with the individual stages of the Runge-Kutta method, and interpolate in space by solving a least-squares problem over a neighborhood of each target cell for the coefficients of a cubic polynomial. The method also uses a variation on the extremum-preserving limiter in [8], as well as slope flattening and a fourth-order accurate artificial viscosity for strong shocks. We show that the resulting method is fourth-order accurate for smooth solutions, and is robust in the presence of complex combinations of shocks and smooth flows.
International Nuclear Information System (INIS)
1978-11-01
This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing
Directory of Open Access Journals (Sweden)
М.М. Karimova
2017-05-01
Full Text Available A girl with partial gigantism (the increased I and II fingers of the left foot is being examined. This condition is a rare and unresolved problem, as the definite reason of its development is not determined. Wait-and-see strategy is recommended, as well as correcting operations after closing of growth zones, and forming of data pool for generalization and development of schemes of drug and radial therapeutic methods.
Bove, Antonio; Murthy, MK Venkatesha
2009-01-01
This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. The key topics include operators as "sums of squares" of real and complex vector fields, nonlinear evolution equations, local solvability, and hyperbolic questions.
Energy Technology Data Exchange (ETDEWEB)
Catoni, F.; Cannata, R.; Nichelatti, E.; Zampetti, P. [ENEA, Divisione Sistemi Energetici per la Mobilita' e l' Habitat, Centro Ricerche Casaccia, S. Maria di Galeria, Rome (Italy)
2001-07-01
Gauss showed the link between the definite quadratic differential forms and the complex functions. Beltrami, following Gauss' idea, linked the complex functions to elliptic partial differential equations. In this report it was shown how the use of hyperbolic numbers and hyperbolic functions allows to extend the same results to non definite quadratic differential forms. Using this kind of approach, one can tackle the hyperbolic partial differential equations by a different point of view. [Italian] In un famoso lavoro per la rappresentazione conforme di due superfici, Gauss scompose le forme differenziali quadratiche in due fattori complessi coniugati. In questo modo ridusse la soluzione del problema a quella di una forma differnziale lineare. Beltrami, partendo dalla stessa decomposizione, collego' le f.d.q. alle equazioni differenziali a derivate parziali di tipo ellittico aprendo cosi' nuove strade per la loro soluzione. Dalla relativita' ristretta hanno pero' assunto importanza fisica anche le forme differenziali quadratiche non definite. Viene qui mostrato come con i numeri ipercomplessi iperbolici si possono seguire i procedimenti di Gauss e Beltrami e collegare queste forme alle equazioni differenziali a derivate parziali di tipo iperbolico. Questo pero' permettere di vedere sotto nuovi aspetti questo tipo di equazioni.
Favrie, N.; Gavrilyuk, S.
2017-07-01
A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
Boundary causality versus hyperbolicity for spherical black holes in Gauss–Bonnet gravity
International Nuclear Information System (INIS)
Andrade, Tomás; Cáceres, Elena; Keeler, Cynthia
2017-01-01
We explore the constraints boundary causality places on the allowable Gauss–Bonnet gravitational couplings in asymptotically AdS spaces, specifically considering spherical black hole solutions. We additionally consider the hyperbolicity properties of these solutions, positing that hyperbolicity-violating solutions are sick solutions whose causality properties provide no information about the theory they reside in. For both signs of the Gauss–Bonnet coupling, spherical black holes violate boundary causality at smaller absolute values of the coupling than planar black holes do. For negative coupling, as we tune the Gauss–Bonnet coupling away from zero, both spherical and planar black holes violate hyperbolicity before they violate boundary causality. For positive coupling, the only hyperbolicity-respecting spherical black holes which violate boundary causality do not do so appreciably far from the planar bound. Consequently, eliminating hyperbolicity-violating solutions means the bound on Gauss–Bonnet couplings from the boundary causality of spherical black holes is no tighter than that from planar black holes. (paper)
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering
Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.
2017-11-01
We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.
Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.
Gustman, Alan L; Steinmeier, Thomas L
2012-06-01
This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.
Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows
Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.
2017-11-01
In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
Numerical Analysis of Partial Differential Equations
Lui, S H
2011-01-01
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis
Proof of Concept: Model Based Bionic Muscle with Hyperbolic Force-Velocity Relation
Directory of Open Access Journals (Sweden)
D. F. B. Haeufle
2012-01-01
Full Text Available Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE, a parallel damper element (PDE, and a serial element (SE exhibits operating points with hyperbolic force-velocity dependency. In this paper, a technical proof of this concept was presented. AE and PDE were implemented as electric motors, SE as a mechanical spring. The force-velocity relation of this artificial CE was determined in quick release experiments. The CE exhibited hyperbolic force-velocity dependency. This proof of concept can be seen as a well-founded starting point for the development of Hill-type artificial muscles.
García-Bellido, Juan
2018-01-01
We describe in detail gravitational wave bursts from Primordial Black Hole (PBH) hyperbolic encounters. The bursts are one-time events, with the bulk of the released energy happening during the closest approach, which can be emitted in frequencies that could be within the range of both LIGO (10-1000Hz) and LISA ($10^{-6}-1$ Hz). Furthermore, we correct the results for the power spectrum of hyperbolic encounters found in the literature and present new exact and approximate expressions for the peak frequency of the emission. Note that these GW bursts from hyperbolic encounters between PBH are complementary to the GW emission from the bounded orbits of BHB mergers detected by LIGO, and help breaking degeneracies in the determination of the PBH mass, spin and spatial distributions.
Higher order Godunov methods for general systems of hyperbolic conservation laws
International Nuclear Information System (INIS)
Bell, J.B.; Colella, P.; Trangenstein, J.A.
1989-01-01
We describe an extension of higher order Godunov methods to general systems of hyperbolic conservation laws. This extension allow the method to be applied to problems that are not strictly hyperbolic and exhibit local linear degeneracies in the wave fields. The method constructs an approximation of the Riemann problem from local wave information. A generalization of the Engquist--Osher flux for systems is then used to compute a numerical flux based on this approximation. This numerical flux replaces the Godunov numerical flux in the algorithm, thereby eliminating the need for a global Riemann problem solution. The additional modifications to the Godunov methodology that are needed to treat loss of strict hyperbolicity are described in detail. The method is applied to some simple model problems for which the glocal analytic structure is known. The method is also applied to the black-oil model for multiphase flow in petroleum reservoirs. copyright 1989 Academic Press, Inc
Some remarks on the topology of hyperbolic actions of Rn on n-manifolds
Bouloc, Damien
2017-11-01
This paper contains some results on the topology of a nondegenerate action of Rn on a compact connected n-manifold M when the action is totally hyperbolic (i.e. its toric degree is zero). We study the R-action generated by a fixed vector of Rn, that provides some results on the number of hyperbolic domains and the number of fixed points of the action. We study with more details the case of the 2-sphere, in particular we investigate some combinatorial properties of the associated 4-valent graph embedded in S2. We also construct hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3.
Canadell, Marta; Haro, Àlex
2017-12-01
We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.
Modified hyperbolic sine model for titanium dioxide-based memristive thin films
Abu Bakar, Raudah; Syahirah Kamarozaman, Nur; Fazlida Hanim Abdullah, Wan; Herman, Sukreen Hana
2018-03-01
Since the emergence of memristor as the newest fundamental circuit elements, studies on memristor modeling have been evolved. To date, the developed models were based on the linear model, linear ionic drift model using different window functions, tunnelling barrier model and hyperbolic-sine function based model. Although using hyperbolic-sine function model could predict the memristor electrical properties, the model was not well fitted to the experimental data. In order to improve the performance of the hyperbolic-sine function model, the state variable equation was modified. On the one hand, the addition of window function cannot provide an improved fitting. By multiplying the Yakopcic’s state variable model to Chang’s model on the other hand resulted in the closer agreement with the TiO2 thin film experimental data. The percentage error was approximately 2.15%.
Partial differential equations mathematical techniques for engineers
Epstein, Marcelo
2017-01-01
This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate s...
Hyperbolic projections of siemens 3d-mlc leaf paths
International Nuclear Information System (INIS)
Menzies, N.
2004-01-01
Full text: The Siemens Primus linear accelerator has the option of being fitted with a multi-leaf collimator (3D-MLC) that is marketed as having 'double focus', to achieve a constant dose penumbra for all leaf settings. This is achieved by moving the leaves through arcs (similar to some conventional collimator jaws), as well as shaping the leaf side-faces as divergent planes from the x-ray source. One consequence of the mechanical design of the 3D-MLC is that as individual leaves are moved, their projections from the light / x-ray source to the treatment plane follow paths that are hyperbolic, as shown in the figure below. (The eccentricity of the hyperbola is a function of leaf number / distance from centre.) The trajectories of the MLC leaves were modelled (in a spreadsheet) using geometrical projections of the MLC leaves to the treatment plane, with construction details provided in Siemens documentation. The results were checked against the image of the leaf in the linac light field. This problem belongs to the class of conic sections in mathematics, where the intersection of a plane with both nappes of a double right circular cone results in a hyperbola. The good agreement between the model and the light field image provided confirmation of the MLC construction details. AS/NZS 4434.1:1996 (reproduced from IEC 976:1989) provides specifications for maximum deviation from orthogonality of adjacent edges, which can be interpreted for MLC collimators to parallelism of the direction of leaf travel and the adjacent collimator edge (e.g. Elekta ATS). However for the Siemens 'double focused' MLC, it is demonstrated that the geometrical construction of the MLC militates against the leaf image being used for this kind of test. It is also demonstrated that at last one commercial treatment planning system models the Siemens leaf trajectories linearly. The clinical significance of the error in this model is shown to be negligible. Copyright (2004) Australasian College of
Theory, Characterization and Applications of Infrared Hyperbolic Metamaterials
Fullager, Daniel B.
Hyperbolic Metamaterials (HMMs) are engineered structures capable of supporting lightmatter interactions that are not normally observed in naturally occuring material systems. These unusual responses are enabled by an enhancement of the photonic density of states (PDOS) in the material. The PDOS enhancement is a result of deliberately introduced anisotropy via a permittivity sign-change in HMM structures which increases the number and frequency spread of possible wave vectors that propagate in the material. Subwavelength structural features allow effective medium theories to be invoked to construct the k-space isofrequency quadratic curves that, for HMMs, result in the k-space isofrequency contour transitioning from being a bounded surface to an unbounded one. Since the PDOS is the integral of the differential volume between k-space contours, unbounded manifolds lead to the implication of an infinite or otherwise drastically enhanced PDOS. Since stored heat can be thought of as a set of non-radiative electromagnetic modes, in this dissertation we demonstrate that HMMs provide an ideal platform to attempt to modify the thermal/IR emissivity of a material. We also show that HMMs provide a platform for broadband plasmonic sensing. The advent of commercial two photon polymerization tools has enabled the rapid production of nano- and microstructures which can be used as scaffolds for directive infrared scatterers. We describe how such directive components can be used to address thermal management needs in vacuum environments in order to maximize radiative thermal transfer. In this context, the fundamental limitations of enhanced spon- taneous emission due to conjugate impedance matched scatterers are also explored. The HMM/conjugate scatterer system's performance is strongly correlated with the dielectric function of the negative permittivity component of the HMM. In order to fully understand the significance of these engineered materials, we examine in detail the
Branch and bound algorithms to solve semiring constraint satisfaction problems
CSIR Research Space (South Africa)
Leenen, L
2008-12-01
Full Text Available The Semiring Constraint Satisfaction Problem (SCSP) framework is a popular approach for the representation of partial constraint satisfaction problems. Considerable research has been done in solving SCSPs, but limited work has been done in building...
Solving Variable Coefficient Fourth-Order Parabolic Equation by ...
African Journals Online (AJOL)
Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.
Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2013-11-18
The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10 nm gap.
Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate
Sabari, S.; Murali, R.
2018-05-01
We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.
Semi-local inversion of the geodesic ray transform in the hyperbolic plane
International Nuclear Information System (INIS)
Courdurier, Matias; Saez, Mariel
2013-01-01
The inversion of the ray transform on the hyperbolic plane has applications in geophysical exploration and in medical imaging techniques (such as electrical impedance tomography). The geodesic ray transform has been studied in more general geometries and including attenuation, but all of the available inversion formulas require knowledge of the ray transform for all the geodesics. In this paper we present a different inversion formula for the ray transform on the hyperbolic plane, which has the advantage of only requiring knowledge of the ray transform in a reduced family of geodesics. The required family of geodesics is directly related to the set where the original function is to be recovered. (paper)
The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations
International Nuclear Information System (INIS)
Liu Chunping; Liu Xiaoping
2004-01-01
First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Orlov, Alexey A.; Babicheva, Viktoriia E.
2014-01-01
) on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic-band-gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop......, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wave-vector bulk plasmonic waves, whether they are considered for use as a kind...
International Nuclear Information System (INIS)
Stanco, L.; Vaccaro, V.G.; Funk, U.; Krueger, U.; Mika, K.; Wuestefeld, G.
1982-03-01
In the first part of this report a physical model is presented, which describes the deforming of a bunch in a storage ring influenced only by its own space charge field. A system of two differential equations for the density and the momentum of the particles is set up, which is independent of any special machine parameter. Due to the sign of the inductance of the chamber walls and the sign of the dispersion of the revolution frequency, we distinguish between a de-bunching and a self-bunching situation. The de-bunching corresponds to a nonlinear hyperbolic propagation problem well-known in gas dynamics, and the self-bunching to a nonlinear elliptic initial value problem. The second part deals with a mathematical and numerical treatment of an approximate equation for the hyperbolic case. For this nonlinear second order partial differential equation we first present three particular integrals: the solution by separating the variables, the similarity solution, and the solution for a parabolic initial distribution of the density. For a more realistic initial condition, we must resort to other methods: Results are obtained in three different ways, first from a highly accurate Taylor series expansion, second from a common finite difference method, and thirdly from the numerical method of characteristics. The appearance of a shock discontinuity is furthermore established in each of these cases. (orig.)
Plane waves and spherical means applied to partial differential equations
John, Fritz
2004-01-01
Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con
Controllability of partial differential equations governed by multiplicative controls
Khapalov, Alexander Y
2010-01-01
The goal of this monograph is to address the issue of the global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. The mathematical models we examine include the linear and nonlinear parabolic and hyperbolic PDE's, the Schrödinger equation, and coupled hybrid nonlinear distributed parameter systems modeling the swimming phenomenon. The book offers a new, high-quality and intrinsically nonlinear methodology to approach the aforementioned highly nonlinear controllability problems.
Applied partial differential equations
Logan, J David
2004-01-01
This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...
Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions
J.L. López; N.M. Temme (Nico)
1998-01-01
textabstractBernoulli and Euler polynomials are considered for large values of the order. Convergent expansions are obtained for $B_n(nz+1/2)$ and $E_n(nz+1/2)$ in powers of $n^{-1$, with coefficients being rational functions of $z$ and hyperbolic functions of argument $1/2z$. These expansions are
Estimates of the Hyperbolic Radius Gradient and Schwarz–Pick Inequalities for the Eccentric Annulus
Directory of Open Access Journals (Sweden)
D.Kh. Giniyatova
2016-06-01
Full Text Available Let Ω and Π be hyperbolic domains in the complex plane C. By A(Ω, Π we shall designate the class of functions f which are holomorphic or meromorphic in Ω and such that f(Ω ϲ Π. Estimates of the higher derivatives |f(n(z| of the analytic functions from the class A(Ω, Π with the punishing factor Cn(Ω, Π is one of the main problems of geometric theory of functions. These estimates are commonly referred to as Schwarz–Pick inequalities. Many results concerning this problem have been obtained for simply connected domains. Therefore, the research interest in such problems for finitely connected domains is natural. As known, the constant C2(Ω, Π for any pairs of hyperbolic domains depends only on the hyperbolic radius gradient of the corresponding domains. The main result of this paper is estimates of the hyperbolic radius gradient and the punishing factor in the Schwarz–Pick inequality for the eccentric annulus. We also consider the extreme case – the randomly punctured circle.
DEFF Research Database (Denmark)
Kjærgaard, Mikkel Baun; Munk, Carsten Valdemar
2008-01-01
records fingerprints as signal-strength ratios between pairs of base stations instead of absolute signal-strength values. The proposed solution has been evaluated by extending two well-known location fingerprinting techniques to hyperbolic location fingerprinting. The extended techniques have been tested...
Small universal cellular automata in hyperbolic spaces a collection of jewels
Margenstern, Maurice
2013-01-01
Hyperbolic geometry is an essential part of theoretical astrophysics and cosmology. Besides specialists of these domains, many specialists of new domains start to show a growing interest both to hyperbolic geometry and to cellular automata. This is especially the case in biology and computer science. This book gives the reader a deep and efficient introduction to an algorithmic approach to hyperbolic geometry. It focuses the attention on the possibilities to obtain in this frame the power of computing everything a computer can compute, that is to say: universality. The minimal ways to get universality are invistigated in a large family of tilings of the hyperbolic plane. In several cases the best results are obtained.In all cases, the results are close to the theoretical best values. This gives rise to fantastic illustrations: the results are jewels in all meanings of the word. ------------------------ Maurice MARGENSTERN is professor emeritus at the University of Lorraine, he is a member of LI...
Analytic smoothing effect for the cubic hyperbolic Schrodinger equation in two space dimensions
Directory of Open Access Journals (Sweden)
Gaku Hoshino
2016-01-01
Full Text Available We study the Cauchy problem for the cubic hyperbolic Schrodinger equation in two space dimensions. We prove existence of analytic global solutions for sufficiently small and exponential decaying data. The method of proof depends on the generalized Leibniz rule for the generator of pseudo-conformal transform acting on pseudo-conformally invariant nonlinearity.
The Arabic Hyperbolic Pattern 'Fa??al' in Two Recent Translations of the Qur'an
Directory of Open Access Journals (Sweden)
Amr M. El-Zawawy
2014-06-01
Full Text Available The present study addresses the problem of rendering the فعال'fa??al' hyperbolic pattern into English in two recent translations of the Qur'an. Due to the variety of Qur'an translations and the large amount of hyperbolic forms of Arabic verbs recorded in the Qur'an, only two translations of the Qur'an are consulted and analyzed: these two translations, namely Saheeh International Translation (1997 and Prof. Abdel-Haleem's (2004, are distinguished by the fact that they are recent and well-received. Moreover, the investigation of hyperbolic forms is confined to the Arabic formفعال 'fa??al'. The study reveals that the Saheeh translator has applied morphological shifting in many examples while Abdel-Haleem's translation exhibits a considerable amount of syntactic transposition, coupled with paraphrasing. The test of accuracy as administered here is to give a clear picture of the need to pay particular attention to hyperboles of the form examined and other ones not analyzed here for limitations of space.
Chaotic Dynamics in Smart Grid and Suppression Scheme via Generalized Fuzzy Hyperbolic Model
Sun, Q.; Wang, Y.; Yang, J.; Qiu, Y.; Zhang, H.
2014-01-01
This paper presents a method to control chaotic behavior of a typical Smart Grid based on generalized fuzzy hyperbolic model (GFHM). As more and more distributed generations (DG) are incorporated into the Smart Grid, the chaotic behavior occurs increasingly. To verify the behavior, a dynamic model
International Nuclear Information System (INIS)
Li Tatsien
1994-01-01
By means of the concept of the weak linear degeneracy, one gets the global existence and the sharp estimate of the lifespan of C 1 solutions to the Cauchy problem for general first order quasilinear hyperbolic systems with small initial data with compact support. (author). 23 refs, 1 fig
Infinite periodic minimal surfaces and their crystallography in the hyperbolic plane
International Nuclear Information System (INIS)
Sadoc, J.F.; Charvolin, J.
1989-01-01
Infinite periodic minimal surfaces are now being introduced to describe some complex structures with large cells, formed by inorganic and organic materials, which can be considered as crystals of surfaces or films. Among them are the spectacular cubic crystalline structures built by amphiphilic molecules in the presence of water. The crystallographic properties of these surfaces are studied from an intrinsic point of view, using operations of groups of symmetry defined by displacements on their surface. This approach takes advantage of the relation existing between these groups and those characterizing the tilings of the hyperbolic plane. First, the general bases of the particular crystallography of the hyperbolic plane are presented. Then the translation subgroups of the hyperbolic plane are determined in one particular case, that of the tiling involved in the problem of cubic structures of liquid crystals. Finally, it is shown that the infinite periodic minimal surfaces used to describe these structures can be obtained from the hyperbolic plane when some translations are forced to identity. This is indeed formally analogous to the simple process of transformation of a Euclidean plane into a cylinder, when a translation of the plane is forced to identity by rolling the plane onto itself. Thus, this approach transforms the 3D problem of infinite periodic minimal surfaces into a 2D problem and, although the latter is to be treated in a non-Euclidean space, provides a relatively simple formalism for the investigation of infinite periodic surfaces in general and the study of the geometrical transformations relating them. (orig.)
Exponential spreading and singular behavior of quantum dynamics near hyperbolic points.
Iomin, A
2013-05-01
Quantum dynamics of a particle in the vicinity of a hyperbolic point is considered. Expectation values of dynamical variables are calculated, and the singular behavior is analyzed. Exponentially fast extension of quantum dynamics is obtained, and conditions for this realization are analyzed.
Blow-up Mechanism of Classical Solutions to Quasilinear Hyperbolic Systems in the Critical Case
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper deals with the blow-up phenomenon, particularly, the geometric blow-up mechanism, of classical solutions to the Cauchy problem for quasilinear hyperbolic systems in the critical case. We prove that it is still the envelope of the same family of characteristics which yields the blowup of classical solutions to the Cauchy problem in the critical case.
An Interactive Analysis of Hyperboles in a British TV Series: Implications For EFL Classes
Sert, Olcay
2008-01-01
This paper, part of an ongoing study on the analysis of hyperboles in a British TV series, reports findings drawing upon a 90,000 word corpus. The findings are compared to the ones from CANCODE (McCarthy and Carter 2004), a five-million word corpus of spontaneous speech, in order to identify similarities between the two. The analysis showed that…
The Superconvergence of Mixed Finite Element Methods for Nonlinear Hyperbolic Equations
Institute of Scientific and Technical Information of China (English)
YanpingCHEN; YunqingHUANG
1998-01-01
Imprioved L2-error estimates are computed for mixed finte element methods for second order nonlinear hyperbolic equations.Superconvergence results,L∞ in time and discrete L2 in space,are derived for both the solution and gradients on the rectangular domain.Results are given for the continuous-time case.
Linear hyperbolic functional-differential equations with essentially bounded right-hand side
Czech Academy of Sciences Publication Activity Database
Domoshnitsky, A.; Lomtatidze, Alexander; Maghakyan, A.; Šremr, Jiří
2011-01-01
Roč. 2011, - (2011), s. 242965 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear functional-differential equation of hyperbolic type * Darboux problem * unique solvability Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/242965/
BOUNDARY VALUE PROBLEM FOR A LOADED EQUATION ELLIPTIC-HYPERBOLIC TYPE IN A DOUBLY CONNECTED DOMAIN
Directory of Open Access Journals (Sweden)
O.Kh. Abdullaev
2014-06-01
Full Text Available We study the existence and uniqueness of the solution of one boundary value problem for the loaded elliptic-hyperbolic equation of the second order with two lines of change of type in double-connected domain. Similar results have been received by D.M.Kuryhazov, when investigated domain is one-connected.
On a class of singular hyperbolic equation with a weighted integral condition
Directory of Open Access Journals (Sweden)
Said Mesloub
1999-01-01
for a class of second order singular hyperbolic equations. We prove the existence and uniqueness of a strong solution. The proof is based on a priori estimate and on the density of the range of the operator generated by the studied problem.
The Role of the Element Rhodium in the Hyperbolic Law of the Periodic Table of Elements
Directory of Open Access Journals (Sweden)
Albert Khazan
2008-07-01
Full Text Available The role of the element rhodium as an independent affirmation of calculations by the Hyperbolic Law and validity of all its relations is shown herein. The deviation in calculation by this method of the atomic mass of heaviest element is 0.0024%, and its coefficient of scaling 0.001-0.005%.
Metric Characterizations of Superreflexivity in Terms of Word Hyperbolic Groups and Finite Graphs
Directory of Open Access Journals (Sweden)
Ostrovskii Mikhail
2014-01-01
Full Text Available We show that superreflexivity can be characterized in terms of bilipschitz embeddability of word hyperbolic groups.We compare characterizations of superrefiexivity in terms of diamond graphs and binary trees.We show that there exist sequences of series-parallel graphs of increasing topological complexitywhich admit uniformly bilipschitz embeddings into a Hilbert space, and thus do not characterize superrefiexivity.
Construction of harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces
International Nuclear Information System (INIS)
Konderak, J.
1988-09-01
Defined here is an orthogonal multiplication for vector spaces with indefinite nondegenerate scalar product. This is then used, via the Hopf construction, to obtain harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces. Examples of harmonic maps are constructed using Clifford algebras. (author). 6 refs
Metaphor, hyperbole, and irony: Uses in isolation and in combination in written discourse
Burgers, Christian; Renardel de Lavalette, Kiki Y.; Steen, Gerard J.
2018-01-01
While classical theories on rhetoric cluster figurative devices like metaphor, hyperbole, and irony under the encompassing category of tropes, current theories and research typically focus on one of the tropes in isolation. To determine how these different tropes are used in combinations, we
Singh, Chandralekha
2009-07-01
One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.
Teaching Creative Problem Solving.
Christensen, Kip W.; Martin, Loren
1992-01-01
Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)
A combined Preisach–Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D
Energy Technology Data Exchange (ETDEWEB)
Talebian, Soheil [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hojjat, Yousef, E-mail: yhojjat@modares.ac.ir [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghodsi, Mojtaba [Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat (Oman); Karafi, Mohammad Reza [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mirzamohammadi, Shahed [Department of Mechanical Engineering, Shahid Rajaee University, Tehran (Iran, Islamic Republic of)
2015-12-15
This study presents a new model using the combination of Preisach and Hyperbolic Tangent models, to predict the magnetic hysteresis of Terfenol-D at different frequencies. Initially, a proper experimental setup was fabricated and used to obtain different magnetic hysteresis curves of Terfenol-D; such as major, minor and reversal loops. Then, it was shown that the Hyperbolic Tangent model is precisely capable of modeling the magnetic hysteresis of the Terfenol-D for both rate-independent and rate-dependent cases. Empirical equations were proposed with respect to magnetic field frequency which can calculate the non-dimensional coefficients needed by the model. These empirical equations were validated at new frequencies of 100 Hz and 300 Hz. Finally, the new model was developed through the combination of Preisach and Hyperbolic Tangent models. In the combined model, analytical relations of the Hyperbolic Tangent model for the first order reversal loops determined the weighting function of the Preisach model. This model reduces the required experiments and errors due to numerical differentiations generally needed for characterization of the Preisach function. In addition, it can predict the rate-dependent hysteresis as well as rate-independent hysteresis. - Highlights: • Different hysteresis curves of Terfenol-D are experimentally obtained at 0–200 Hz. • A new model is presented using combination of Preisach and Hyperbolic Tangent models. • The model predicts both rate-independent and rate-dependent hystereses of Terfenol-D. • The analytical model reduces the numerical errors and number of required experiments.
Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem
2017-01-01
In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.
Mechhoud, Sarra
2017-12-14
In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.
Markov, A V; Korotaev, A V
2008-01-01
Among diverse models that are used to describe and interpret the changes in global biodiversity through the Phanerozoic, the exponential and logistic models (traditionally used in population biology) are the most popular. As we have recently demonstrated (Markov, Korotayev, 2007), the growth of the Phanerozoic marine biodiversity at genus level correlates better with the hyperbolic model (widely used in demography and macrosociology). Here we show that the hyperbolic model is also applicable to the Phanerozoic continental biota at genus and family levels, and to the marine biota at species, genus, and family levels. There are many common features in the evolutionary dynamics of the marine and continental biotas that imply similarity and common nature of the factors and mechanisms underlying the hyperbolic growth. Both marine and continental biotas are characterized by continuous growth of the mean longevity of taxa, by decreasing extinction and origination rates, by similar pattern of replacement of dominant groups, by stepwise accumulation of evolutionary stable, adaptable and "physiologically buffered" taxa with effective mechanisms of parental care, protection of early developmental stages, etc. At the beginning of the development of continental biota, the observed taxonomic diversity was substantially lower than that predicted by the hyperbolic model. We suggest that this is due, firstly, to the fact that, during the earliest stages of the continental biota evolution, the groups that are not preserved in the fossil record (such as soil bacteria, unicellular algae, lichens, etc.) played a fundamental role, and secondly, to the fact that the continental biota initially formed as a marginal portion of the marine biota, rather than a separate system. The hyperbolic dynamics is most prominent when both marine and continental biotas are considered together. This fact can be interpreted as a proof of the integrated nature of the biosphere. In the macrosociological
DEFF Research Database (Denmark)
Chemi, Tatiana
2016-01-01
This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...
Solving Environmental Problems
DEFF Research Database (Denmark)
Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph
2017-01-01
for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...
International Nuclear Information System (INIS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-01-01
Stokes–Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER–WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier–Stokes equations. Numerical convergence results are also provided. To show the universality of the HPR model, the paper is rounded-off with an application to wave propagation in elastic solids, for which one only needs to switch off the strain relaxation source term in the governing PDE system. We provide various examples showing that for the purpose of flow visualization, the distortion tensor A seems to be particularly useful.
Energy Technology Data Exchange (ETDEWEB)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)
2016-06-01
Stokes–Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER–WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier–Stokes equations. Numerical convergence results are also provided. To show the universality of the HPR model, the paper is rounded-off with an application to wave propagation in elastic solids, for which one only needs to switch off the strain relaxation source term in the governing PDE system. We provide various examples showing that for the purpose of flow visualization, the distortion tensor A seems to be particularly useful.
Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2017-10-01
This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.
Introspection in Problem Solving
Jäkel, Frank; Schreiber, Cornell
2013-01-01
Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…
Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia
2017-01-01
Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…
Solving Linear Differential Equations
Nguyen, K.A.; Put, M. van der
2010-01-01
The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend
Utomo, P.H.; Makarim, R.H.
2017-01-01
A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each
Ayrinhac, Simon
2014-01-01
We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…
Transport equation solving methods
International Nuclear Information System (INIS)
Granjean, P.M.
1984-06-01
This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
Toward Solving the Problem of Problem Solving: An Analysis Framework
Roesler, Rebecca A.
2016-01-01
Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…
Dynamical zeta functions and dynamical determinants for hyperbolic maps a functional approach
Baladi, Viviane
2018-01-01
The spectra of transfer operators associated to dynamical systems, when acting on suitable Banach spaces, contain key information about the ergodic properties of the systems. Focusing on expanding and hyperbolic maps, this book gives a self-contained account on the relation between zeroes of dynamical determinants, poles of dynamical zeta functions, and the discrete spectra of the transfer operators. In the hyperbolic case, the first key step consists in constructing a suitable Banach space of anisotropic distributions. The first part of the book is devoted to the easier case of expanding endomorphisms, showing how the (isotropic) function spaces relevant there can be studied via Paley–Littlewood decompositions, and allowing easier access to the construction of the anisotropic spaces which is performed in the second part. This is the first book describing the use of anisotropic spaces in dynamics. Aimed at researchers and graduate students, it presents results and techniques developed since the beginning of...
Rarefaction and shock waves for multi-dimensional hyperbolic conservation laws
International Nuclear Information System (INIS)
Dening, Li
1991-01-01
In this paper, the author wants to show the local existence of a solution of combination of shock and rarefaction waves for the multi-dimensional hyperbolic system of conservation laws. The typical example he has in mind is the Euler equations for compressible fluid. More generally, he studies the hyperbolic system of conservation laws ∂ t F 0 (u) + Σ j=1 n ∂ x j F j (u)=0 where u=(u 1 ....,u m ) and F j (u), j=0,...,n are m-dimensional vector-valued functions. He'll impose some conditions in the following on the systems (1.2). All these conditions are satisfied by the Euler equations
Matrix elements of a hyperbolic vector operator under SO(2,1)
International Nuclear Information System (INIS)
Zettili, N.; Boukahil, A.
2003-01-01
We deal here with the use of Wigner–Eckart type arguments to calculate the matrix elements of a hyperbolic vector operator V-vector by expressing them in terms of reduced matrix elements. In particular, we focus on calculating the matrix elements of this vector operator within the basis of the hyperbolic angular momentum T-vector whose components T-vector 1 , T-vector 2 , T-vector 3 satisfy an SO(2,1) Lie algebra. We show that the commutation rules between the components of V-vector and T-vector can be inferred from the algebra of ordinary angular momentum. We then show that, by analogy to the Wigner–Eckart theorem, we can calculate the matrix elements of V-vector within a representation where T-vector 2 and T-vector 3 are jointly diagonal. (author)
Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder
Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T.
2018-06-01
An investigation is exhibited to analyze the presence of heat source and sink in doubly stratified MHD incompressible tangent hyperbolic fluid due to stretching of cylinder embedded in porous space under nanoparticles. To develop the mathematical model of tangent hyperbolic nanofluid, movement of Brownian and thermophoretic are accounted. The established equations of continuity, momentum, thermal and solutal boundary layers are reassembled into sets of non-linear expressions. These assembled expressions are executed with the help of Runge-Kutta scheme with MATLAB. The impacts of sundry parameters are illustrated graphically and the engineering interest physical quantities like skin friction, Nusselt and Sherwood number are examined by computing numerical values. It is clear that the power-law index parameter and curvature parameter shows favorable effect on momentum boundary layer thickness whereas Weissennberg number reveals inimical influence.
Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout
Sahoo, Sarmila
2016-08-01
Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.
The limit space of a Cauchy sequence of globally hyperbolic spacetimes
Energy Technology Data Exchange (ETDEWEB)
Noldus, Johan [Universiteit Gent, Vakgroep Wiskundige analyse, Galglaan 2, 9000 Gent (Belgium)
2004-02-21
In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one.
Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials
Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua
2018-04-01
We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.
Global embedding of the Kerr black hole event horizon into hyperbolic 3-space
International Nuclear Information System (INIS)
Gibbons, G. W.; Herdeiro, C. A. R.; Rebelo, C.
2009-01-01
An explicit global and unique isometric embedding into hyperbolic 3-space, H 3 , of an axi-symmetric 2-surface with Gaussian curvature bounded below is given. In particular, this allows the embedding into H 3 of surfaces of revolution having negative, but finite, Gaussian curvature at smooth fixed points of the U(1) isometry. As an example, we exhibit the global embedding of the Kerr-Newman event horizon into H 3 , for arbitrary values of the angular momentum. For this example, considering a quotient of H 3 by the Picard group, we show that the hyperbolic embedding fits in a fundamental domain of the group up to a slightly larger value of the angular momentum than the limit for which a global embedding into Euclidean 3-space is possible. An embedding of the double-Kerr event horizon is also presented, as an example of an embedding that cannot be made global.
A graphene Zener-Klein transistor cooled by a hyperbolic substrate
Yang, Wei; Berthou, Simon; Lu, Xiaobo; Wilmart, Quentin; Denis, Anne; Rosticher, Michael; Taniguchi, Takashi; Watanabe, Kenji; Fève, Gwendal; Berroir, Jean-Marc; Zhang, Guangyu; Voisin, Christophe; Baudin, Emmanuel; Plaçais, Bernard
2018-01-01
The engineering of cooling mechanisms is a bottleneck in nanoelectronics. Thermal exchanges in diffusive graphene are mostly driven by defect-assisted acoustic phonon scattering, but the case of high-mobility graphene on hexagonal boron nitride (hBN) is radically different, with a prominent contribution of remote phonons from the substrate. Bilayer graphene on a hBN transistor with a local gate is driven in a regime where almost perfect current saturation is achieved by compensation of the decrease in the carrier density and Zener-Klein tunnelling (ZKT) at high bias. Using noise thermometry, we show that the ZKT triggers a new cooling pathway due to the emission of hyperbolic phonon polaritons in hBN by out-of-equilibrium electron-hole pairs beyond the super-Planckian regime. The combination of ZKT transport and hyperbolic phonon polariton cooling renders graphene on BN transistors a valuable nanotechnology for power devices and RF electronics.
Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels
International Nuclear Information System (INIS)
Chhaiba, Hassan; Demni, Nizar; Mouayn, Zouhair
2016-01-01
To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering the total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.
The limit space of a Cauchy sequence of globally hyperbolic spacetimes
International Nuclear Information System (INIS)
Noldus, Johan
2004-01-01
In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one
Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout
International Nuclear Information System (INIS)
Sahoo, Sarmila
2016-01-01
Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances. (paper)
Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels
Energy Technology Data Exchange (ETDEWEB)
Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com [Department of Mathematics, Faculty of Sciences, Ibn Tofail University, P.O. Box 133, Kénitra (Morocco); Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr [IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma [Department of Mathematics, Faculty of Sciences and Technics (M’Ghila), Sultan Moulay Slimane, P.O. Box 523, Béni Mellal (Morocco)
2016-07-15
To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering the total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.
Strong coupling of collection of emitters on hyperbolic meta-material
Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.
2018-04-01
Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.
Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Wang, Yu; Inampudi, Sandeep; Capretti, Antonio [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Sugimoto, Hiroshi [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Fujii, Minoru [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Dal Negro, Luca, E-mail: dalnegro@bu.edu [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Division of Materials Science and Engineering, Boston University, 15 Saint Mary' s Street, Brookline, Massachusetts 02446 (United States)
2015-06-15
Light emitting silicon quantum dots by colloidal synthesis were uniformly spin-coated into a 20 nm-thick film and deposited atop a hyperbolic metamaterial of alternating TiN and SiO{sub 2} sub-wavelength layers. Using steady-state and time-resolved photoluminescence spectroscopy as a function of the emission wavelength in partnership with rigorous electromagnetic modeling of dipolar emission, we demonstrate enhanced Local Density of States and coupling to high-k modes in a broad spectral range. These findings provide an alternative approach for the engineering of novel Si-compatible broadband sources that leverage the control of radiative transitions in hyperbolic metamaterials and the flexibility of the widespread Si platform.
A relationship between scalar Green functions on hyperbolic and Euclidean Rindler spaces
International Nuclear Information System (INIS)
Haba, Z
2007-01-01
We derive a formula connecting in any dimension the Green function on the (D + 1)-dimensional Euclidean Rindler space and the one for a minimally coupled scalar field with a mass m in the D-dimensional hyperbolic space. The relation takes a simple form in the momentum space where the Green functions are equal at the momenta (p 0 , p) for Rindler and (m,p-hat) for hyperbolic space with a simple additive relation between the squares of the mass and the momenta. The formula has applications to finite temperature Green functions, Green functions on the cone and on the (compactified) Milne spacetime. Analytic continuations and interacting quantum fields are briefly discussed
Weak asymptotic solution for a non-strictly hyperbolic system of conservation laws-II
Directory of Open Access Journals (Sweden)
Manas Ranjan Sahoo
2016-04-01
Full Text Available In this article we introduce a concept of entropy weak asymptotic solution for a system of conservation laws and construct the same for a prolonged system of conservation laws which is highly non-strictly hyperbolic. This is first done for Riemann type initial data by introducing $\\delta,\\delta',\\delta''$ waves along a discontinuity curve and then for general initial data by piecing together the Riemann solutions.
Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.
Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui
2016-03-16
A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum and classical properties of some billiards on the hyperbolic plane
International Nuclear Information System (INIS)
Schmit, C.
1991-01-01
Some 'experimental' results are given on the quantal spectrum of some billiards on two-dimensional manifolds of constant negative curvature. It is shown that the use of the Selberg trace formula may bring some interesting new results on the properties of the classical motion. Some new (and quite unexpected) results are presented about the quantal spectrum of the octagon on the hyperbolic plane. (K.A.) 8 refs.; 17 figs.; 2 tabs
Wiegert, P. A.
2011-01-01
Interstellar meteoroids, solid particles arriving from outside our Solar System, are not easily distinguished from local meteoroids. A velocity above the escape velocity of the Sun is often used as an indicator of a possible interstellar origin. We demonstrate that the gravitational slingshot effect, resulting from the passage of local meteoroid near a planet, can produce hyperbolic meteoroids at the Earth s orbit with excess velocities comparable to those expected of interstellar meteoroids.
Mixed problems for linear symmetric hyperbolic systems with characteristic boundary conditions
International Nuclear Information System (INIS)
Secchi, P.
1994-01-01
We consider the initial-boundary value problem for symmetric hyperbolic systems with characteristic boundary of constant multiplicity. In the linear case we give some results about the existence of regular solutions in suitable functions spaces which take in account the loss of regularity in the normal direction to the characteristic boundary. We also consider the equations of ideal magneto-hydrodynamics under perfectly conducting wall boundary conditions and give some results about the solvability of such mixed problem. (author). 16 refs
Simultaneous exact controllability for Maxwell equations and for a second-order hyperbolic system
Directory of Open Access Journals (Sweden)
Boris V. Kapitonov
2010-02-01
Full Text Available We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modified multipliers in order to generate a necessary observability estimate which allow us to use the Hilbert Uniqueness Method (HUM introduced by Lions.
Coexistence of critical orbit types in sub-hyperbolic polynomial maps
Poirier, Alfredo
1994-01-01
We establish necessary and sufficient conditions for the realization of mapping schemata as post-critically finite polynomials, or more generally, as post-critically finite polynomial maps from a finite union of copies of the complex numbers {\\bf C} to itself which have degree two or more in each copy. As a consequence of these results we prove a transitivity relation between hyperbolic components in parameter space which was conjectured by Milnor.
Method of construction of the Riemann function for a second-order hyperbolic equation
Aksenov, A. V.
2017-12-01
A linear hyperbolic equation of the second order in two independent variables is considered. The Riemann function of the adjoint equation is shown to be invariant with respect to the fundamental solutions transformation group. Symmetries and symmetries of fundamental solutions of the Euler-Poisson-Darboux equation are found. The Riemann function is constructed with the aid of fundamental solutions symmetries. Examples of the application of the algorithm for constructing Riemann function are given.
The structure of spectral problems and geometry: hyperbolic surfaces in E sup 3
Cieslinski, J L
2003-01-01
Working in the framework of Sym's soliton surfaces approach we point out that some simple assumptions about the structure of linear (spectral) problems of the theory of solitons lead uniquely to the geometry of some special immersions. In this paper we consider general su(2) spectral problems. Under some very weak assumptions they turn out to be associated with hyperbolic surfaces (surfaces of negative Gaussian curvature) immersed in three-dimensional Euclidean space, and especially with the so-called Bianchi surfaces.
DEFF Research Database (Denmark)
Ni, X.; Naik, G. V.; Kildishev, A. V.
2011-01-01
Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data....
Integral geometry and inverse problems for hyperbolic equations
Romanov, V G
1974-01-01
There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solutio...
Directory of Open Access Journals (Sweden)
Wubshet Ibrahim
Full Text Available This article presents the effect of thermal radiation on magnetohydrodynamic flow of tangent hyperbolic fluid with nanoparticle past an enlarging sheet with second order slip and convective boundary condition. Condition of zero normal flux of nanoparticles at the wall is used for the concentration boundary condition, which is the current topic that have yet to be studied extensively. The solution for the velocity, temperature and nanoparticle concentration is governed by parameters viz. power-law index (n, Weissenberg number We, Biot number Bi, Prandtl number Pr, velocity slip parameters δ and γ, Lewis number Le, Brownian motion parameter Nb and the thermophoresis parameter Nt. Similarity transformation is used to metamorphosed the governing non-linear boundary-value problem into coupled higher order non-linear ordinary differential equation. The succeeding equations were numerically solved using the function bvp4c from the matlab for different values of emerging parameters. Numerical results are deliberated through graphs and tables for velocity, temperature, concentration, the skin friction coefficient and local Nusselt number. The results designate that the skin friction coefficient Cf deplete as the values of Weissenberg number We, slip parameters γ and δ upturn and it rises as the values of power-law index n increase. The local Nusselt number -θ′(0 decreases as slip parameters γ and δ, radiation parameter Nr, Weissenberg number We, thermophoresis parameter Nt and power-law index n increase. However, the local Nusselt number increases as the Biot number Bi increase. Keywords: Tangent hyperbolic fluid, Second order slip flow, MHD, Convective boundary condition, Radiation effect, Passive control of nanoparticles
Geometry in a dynamical system without space: Hyperbolic Geometry in Kuramoto Oscillator Systems
Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato
Kuramoto oscillator networks have the special property that their time evolution is constrained to lie on 3D orbits of the Möbius group acting on the N-fold torus TN which explains the N - 3 constants of motion discovered by Watanabe and Strogatz. The dynamics for phase models can be further reduced to 2D invariant sets in T N - 1 which have a natural geometry equivalent to the unit disk Δ with hyperbolic metric. We show that the classic Kuramoto model with order parameter Z1 (the first moment of the oscillator configuration) is a gradient flow in this metric with a unique fixed point on each generic 2D invariant set, corresponding to the hyperbolic barycenter of an oscillator configuration. This gradient property makes the dynamics especially easy to analyze. We exhibit several new families of Kuramoto oscillator models which reduce to gradient flows in this metric; some of these have a richer fixed point structure including non-hyperbolic fixed points associated with fixed point bifurcations. Work Supported by NSF DMS 1413020.
High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids
Mazaheri, Alireza; Nishikawa, Hiroaki
2015-01-01
In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.
Dynamic hyperbolic geometry: building intuition and understanding mediated by a Euclidean model
Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén
2018-05-01
This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become thinkable the mathematical community needed to accumulate over twenty centuries of reflection and effort: a precious instance of distributed intelligence at the cultural level. In geometry education after this crisis, relations between intuitions and geometrical reasoning must be established philosophically, rather than taken for granted. One approach seeks intuitive supports only for Euclidean explorations, viewing non-Euclidean inquiry as fundamentally non-intuitive in nature. We argue for moving beyond such an impoverished approach, using dynamic geometry environments to develop new intuitions even in the extremely challenging setting of hyperbolic geometry. Our efforts reverse the typical direction, using formal structures as a source for a new family of intuitions that emerge from exploring a digital model of hyperbolic geometry. This digital model is elaborated within a Euclidean dynamic geometry environment, enabling a conceptual dance that re-configures Euclidean knowledge as a support for building intuitions in hyperbolic space-intuitions based not directly on physical experience but on analogies extending Euclidean concepts.
International Nuclear Information System (INIS)
Wang, Hanchuang; Chen, Shengchang; Ren, Haoran; Liang, Donghui; Zhou, Huamin; She, Deping
2015-01-01
In current research of seismic data recovery problems, the sparsity-promoting method usually produces an insufficient recovery result at the locations of null traces. The HRT (hyperbolic Radon transform) method can be applied to problems of seismic data recovery with approximately hyperbolic events. Influenced by deviations of hyperbolic characteristics between real and ideal travel-time curves, some spurious events are usually introduced and the recovery effect of intermediate and far-offset traces is worse than that of near-offset traces. Sparsity-promoting recovery is primarily dependent on the sparsity of seismic data in the sparse transform domain (i.e. on the local waveform characteristics), whereas HRT recovery is severely affected by the global characteristics of the seismic events. Inspired by the above conclusion, a two-step recovery approach combining sparsity-promoting and time-invariant HRT methods is proposed, which is based on both local and global characteristics of the seismic data. Two implementation strategies are presented in detail, and the selection criteria of the relevant strategies is also discussed. Numerical examples of synthetic and real data verify that the new approach can achieve a better recovery effect by simultaneously overcoming the shortcomings of sparsity-promoting recovery and HRT recovery. (paper)
Creativity and Problem Solving
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui
2004-01-01
This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....
Creativity and problem Solving
Directory of Open Access Journals (Sweden)
René Victor Valqui Vidal
2004-12-01
Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.
Introduction to partial differential equations and Hilbert space methods
Gustafson, Karl E
1997-01-01
Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.
Stopping test of iterative methods for solving PDE
International Nuclear Information System (INIS)
Wang Bangrong
1991-01-01
In order to assure the accuracy of the numerical solution of the iterative method for solving PDE (partial differential equation), the stopping test is very important. If the coefficient matrix of the system of linear algebraic equations is strictly diagonal dominant or irreducible weakly diagonal dominant, the stopping test formulas of the iterative method for solving PDE is proposed. Several numerical examples are given to illustrate the applications of the stopping test formulas
DEFF Research Database (Denmark)
Hansen, David
2012-01-01
Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...
DEFF Research Database (Denmark)
Foss, Kirsten; Foss, Nicolai Juul
2006-01-01
as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...
1982-10-01
Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and Problem ’Solving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R
The Cousin problems in the viewpoint of partial differential equations
International Nuclear Information System (INIS)
Le Hung Son.
1990-01-01
In this paper we consider the Cousin problems for overdetermined systems of partial differential equations, which are generalizations of the Cauchy-Riemann system. The general methods for solving these problems are given. Applying the given methods we can solve the Cousin problems for many important systems in theoretical physics. (author). 19 refs
Asiri, Sharefa M.
2017-10-08
Partial Differential Equations (PDEs) are commonly used to model complex systems that arise for example in biology, engineering, chemistry, and elsewhere. The parameters (or coefficients) and the source of PDE models are often unknown and are estimated from available measurements. Despite its importance, solving the estimation problem is mathematically and numerically challenging and especially when the measurements are corrupted by noise, which is often the case. Various methods have been proposed to solve estimation problems in PDEs which can be classified into optimization methods and recursive methods. The optimization methods are usually heavy computationally, especially when the number of unknowns is large. In addition, they are sensitive to the initial guess and stop condition, and they suffer from the lack of robustness to noise. Recursive methods, such as observer-based approaches, are limited by their dependence on some structural properties such as observability and identifiability which might be lost when approximating the PDE numerically. Moreover, most of these methods provide asymptotic estimates which might not be useful for control applications for example. An alternative non-asymptotic approach with less computational burden has been proposed in engineering fields based on the so-called modulating functions. In this dissertation, we propose to mathematically and numerically analyze the modulating functions based approaches. We also propose to extend these approaches to different situations. The contributions of this thesis are as follows. (i) Provide a mathematical analysis of the modulating function-based method (MFBM) which includes: its well-posedness, statistical properties, and estimation errors. (ii) Provide a numerical analysis of the MFBM through some estimation problems, and study the sensitivity of the method to the modulating functions\\' parameters. (iii) Propose an effective algorithm for selecting the method\\'s design parameters
de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.
2018-05-01
Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.
Lectures on partial differential equations
Petrovsky, I G
1992-01-01
Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.
Astroidal geometry of hypocycloids and the Hessian topology of hyperbolic polynomials
International Nuclear Information System (INIS)
Arnol'd, Vladimir I
2001-01-01
The Hessian topology has just begun to be developed (in connection with the study of parabolic curves on smooth surfaces in Euclidean or projective space), in contrast to the symplectic and contact topologies related to it. For instance, it is not known how many (compact) parabolic curves can belong to the graph of a polynomial of a given (even of the fourth) degree in two variables or to a smooth algebraic surface of a given degree. The astroid is a hypocycloid with four cusp points. A hyperbolic polynomial is a homogeneous polynomial whose second differential has the signature (+,-) at any non-zero point. Hyperbolic polynomials and functions are connected with Morse theory and Sturm theory and with hypocycloids via caustics (and wave fronts) of periodic functions. The astroid is the caustic of the cosine of a double angle. The caustic of any periodic function has at least four cusp points, and if there are four of them, as is the case for the astroid, then these points form a parallelogram. The theory developed in this paper, based on the study of envelopes and inequalities between derivatives of smooth functions, proves that hyperbolic polynomials of degree four form a connected set and those of degree six form a disconnected set. These topological generalizations of the Sturm and Hurwitz theorems about the zeros of Fourier series give algebraic-geometric results on caustics and wave fronts as well and also establish relationships between these results and the Morse theory of anti-Rolle functions (whose zeros alternate with those of their derivatives)
Solved problems in electromagnetics
Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco
2017-01-01
This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .
Solved problems in electrochemistry
International Nuclear Information System (INIS)
Piron, D.L.
2004-01-01
This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Effects of nonlocal response on the density of states of hyperbolic metamaterials
DEFF Research Database (Denmark)
Yan, Wei; Wubs, Martijn; Mortensen, N. Asger
2012-01-01
. By expanding the Green function in a plane-wave basis and using the transfer matrix method to calculate the reflection coefficients, we study the local density of states (LDOS) of hyperbolic metamaterials. We show that the nonlocal response of the electron gas in the metal removes the singularity of both...... radiative and non-radiative local density of states, and also sets up a finite maximal value. We also briefly discuss the effects of the nonlocal response on other plasmonic structures, such as a metallic semi-infinite substrate and a metallic slab....
A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system
Jia, Meng; Fan, Yang-Yu; Tian, Wei-Jian
2011-03-01
Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 60872159).
A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system
International Nuclear Information System (INIS)
Jia Meng; Fan Yang-Yu; Tian Wei-Jian
2011-01-01
Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Spontaneously broken continuous symmetries in hyperbolic (or open) de Sitter spacetime
International Nuclear Information System (INIS)
Ratra, B.
1994-01-01
The functional Schroedinger approach is used to study scalar field theory in hyperbolic (or open) de Sitter spacetime. While on intermediate length scales (small compared to the spatial curvature length scale) the massless minimally coupled scalar field two-point correlation function does have a term that varies logarithmically with scale, as in flat and closed de Sitter spacetime, the spatial curvature tames the infrared behavior of this correlation function at larger scales in the open model. As a result, and contrary to what happens in flat and closed de Sitter spacetime, spontaneously broken continuous symmetries are not restored in open de Sitter spacetime (with more than one spatial dimension)
Geometry and dynamics in Gromov hyperbolic metric spaces with an emphasis on non-proper settings
Das, Tushar; Urbański, Mariusz
2016-01-01
This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.
Shock and rarefaction waves in a hyperbolic model of incompressible materials
Directory of Open Access Journals (Sweden)
Tommaso Ruggeri
2013-01-01
Full Text Available The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended quasi-thermal-incompressible (EQTI model, recently proposed by Gouin & Ruggeri (H. Gouin, T. Ruggeri, Internat. J. Non-Linear Mech. 47 688–693 (2012. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.
Physical properties of scalar and spinor field states with the Rindler-Milne (hyperbolic) symmetry
International Nuclear Information System (INIS)
Ritus, V.I.
2001-01-01
It is shown that right and left combinations of the positive- and negative-frequency hyperbolically symmetric solutions of the Klein-Fock-Gordon equation possess an everywhere timelike current density vector with a definite Lorentz-invariant sing of the charge density, and similar combinations of solutions to the Dirac equation possess the energy-momentum tensor with everywhere real eigenvalues and a definite Lorentz-invariant sing of the energy density. These right and left modes, just as their ±-frequency components, are eigenfunctions of the Lorentz generator [ru
De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas
2017-04-01
We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.
Ferrari, Lorenzo; Lu, Dylan; Lepage, Dominic; Liu, Zhaowei
2014-09-01
We study the spontaneous emission enhancement inside a hyperbolic metamaterial, composed of a periodic stack of silver and silicon layers. After showing that the decay rate outside the multilayer can be spectrally altered via the metallic filling ratio, we embed the source within the individual silicon layers, and predict a 3-fold increase of the Purcell factor with respect to its outer value. Then we include the emitter in a polymethyl-methacrylate (PMMA) layer, and extract the plasmonic modes by means of a triangular and a rectangular grating, obtaining respectively a 10-fold and 6-fold enhancement in the power emitted into the far-field.
Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Davidovich, M. V., E-mail: davidovichmv@info.sgu.ru [Saratov State University (Russian Federation)
2016-12-15
Dispersion equations are obtained and analysis and homogenization are carried out in periodic and quasiperiodic plane layered structures consisting of alternating dielectric layers, metal and dielectric layers, as well as graphene sheets and dielectric (SiO{sub 2}) layers. Situations are considered when these structures acquire the properties of hyperbolic metamaterials (HMMs), i.e., materials the real parts of whose effective permittivity tensor have opposite signs. It is shown that the application of solely dielectric layers is more promising in the context of reducing losses.
International Nuclear Information System (INIS)
Lee, J. K.; Choi, I. K.; Jun, S. H.; Park, K. O.; Seo, Y. S.; Seo, S. M.; Koo, I. S.; Jang, M. H.
2001-01-01
Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchially structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance, in this thesis, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks
Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials
Kang, Yongqiang; Liu, Hongmei
2018-02-01
A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.
Hyperbolic orbits of Earth flybys and effects of ungravity-inspired conservative potentials
International Nuclear Information System (INIS)
Bertolami, O; Francisco, F; Gil, P J S
2016-01-01
In this work we take a critical look at the available data on the flyby anomaly and on the current limitations of attempts to develop an explanation. We aim to verify how conservative corrections to gravity could affect the hyperbolic trajectories of Earth flybys. We use ungravity-inspired potentials as illustrative examples and show how the resulting orbital simulations differ from the observed anomaly. We also get constraints on the model parameters from the observed flyby velocity shifts. The conclusion is that no kind of conservative potential can be the cause of the flyby anomaly. (paper)
Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds
Energy Technology Data Exchange (ETDEWEB)
Assel, Benjamin; Martelli, Dario; Murthy, Sameer; Yokoyama, Daisuke [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom)
2017-03-17
We study supersymmetric gauge theories with an R-symmetry, defined on non-compact, hyperbolic, Riemannian three-manifolds, focusing on the case of a supersymmetry-preserving quotient of Euclidean AdS{sub 3}. We compute the exact partition function in these theories, using the method of localization, thus reducing the problem to the computation of one-loop determinants around a supersymmetric locus. We evaluate the one-loop determinants employing three different techniques: an index theorem, the method of pairing of eigenvalues, and the heat kernel method. Along the way, we discuss aspects of supersymmetry in manifolds with a conformal boundary, including supersymmetric actions and boundary conditions.
Directory of Open Access Journals (Sweden)
Xuefeng Wei
2016-12-01
Full Text Available This article concerns the wave interaction problem for a strictly hyperbolic system of conservation laws whose Riemann solutions involve delta shock waves. To cover all situations, the global solutions are constructed when the initial data are taken as three piecewise constant states. It is shown that the Riemann solutions are stable with respect to a specific small perturbation of the Riemann initial data. In addition, some interesting nonlinear phenomena are captured during the process of constructing the solutions, such as the generation and decomposition of delta shock waves.
Vranish, John M. (Inventor)
2010-01-01
A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.
Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling
Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.
2018-01-01
Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.
Kantarci, T.
2012-01-01
The five essays in this dissertation address a range of topics in the micro-economic literature on partial retirement. The focus is on the labor market behavior of older age groups. The essays examine the economic and non-economic determinants of partial retirement behavior, the effect of partial
Nonlinear partial differential equations of second order
Dong, Guangchang
1991-01-01
This book addresses a class of equations central to many areas of mathematics and its applications. Although there is no routine way of solving nonlinear partial differential equations, effective approaches that apply to a wide variety of problems are available. This book addresses a general approach that consists of the following: Choose an appropriate function space, define a family of mappings, prove this family has a fixed point, and study various properties of the solution. The author emphasizes the derivation of various estimates, including a priori estimates. By focusing on a particular approach that has proven useful in solving a broad range of equations, this book makes a useful contribution to the literature.
Boundary value problems and partial differential equations
Powers, David L
2005-01-01
Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples
International Nuclear Information System (INIS)
Yomba, Emmanuel
2008-01-01
With the aid of symbolic computation, we demonstrate that the known method which is based on the new generalized hyperbolic functions and the new kinds of generalized hyperbolic function transformations, generates classes of exact solutions to a system of coupled nonlinear Schroedinger equations. This system includes the modified Hubbard model and the system of coupled nonlinear Schroedinger derived by Lazarides and Tsironis. Four types of solutions for this system are given explicitly, namely: new bright-bright, new dark-dark, new bright-dark and new dark-bright solitons
Essential partial differential equations analytical and computational aspects
Griffiths, David F; Silvester, David J
2015-01-01
This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test unde...
Solving a robust airline crew pairing problem with column generation
Muter, I.; Birbil, S.I.; Bülbül, K.; Sahin, G.; Yenigün, H.; Tas, D.; Tüzün, D.
2013-01-01
In this study, we solve a robust version of the airline crew pairing problem. Our concept of robustness was partially shaped during our discussions with small local airlines in Turkey which may have to add a set of extra flights into their schedule at short notice during operation. Thus, robustness
A numerical method for solving singular De`s
Energy Technology Data Exchange (ETDEWEB)
Mahaver, W.T.
1996-12-31
A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.
Hyperbolic umbilic caustics from oblate water drops with tilted illumination: Observations
Jobe, Oli; Thiessen, David B.; Marston, Philip L.
2017-11-01
Various groups have reported observations of hyperbolic umbilic diffraction catastrophe patterns in the far-field scattering by oblate acoustically levitated drops with symmetric illumination. In observations of that type the drop's symmetry axis is vertical and the illuminating light beam (typically an expanded laser beam) travels horizontally. In the research summarized here, scattering patterns in the primary rainbow region and drop measurements were recorded with vertically tilted laser beam illumination having a grazing angle as large as 4 degrees. The findings from these observations may be summarized as follows: (a) It remains possible to adjust the drop aspect ratio (diameter/height) = D/H so as to produce a V-shaped hyperbolic umbilic focal section (HUFS) in the far-field scattering. (b) The shift in the required D/H was typically an increase of less than 1% and was quadratic in the tilt. (c) The apex of the V-shaped HUFS was shifted vertically by an amount proportional to the tilt with a coefficient close to unity. The levitated drops had negligible up-down asymmetry. Our method of investigation should be useful for other generalized rainbows with tilted illumination.
Shah, Syed Awais Wahab
2017-11-24
This paper addresses the problem of blind demixing of instantaneous mixtures in a multiple-input multiple-output communication system. The main objective is to present efficient blind source separation (BSS) algorithms dedicated to moderate or high-order QAM constellations. Four new iterative batch BSS algorithms are presented dealing with the multimodulus (MM) and alphabet matched (AM) criteria. For the optimization of these cost functions, iterative methods of Givens and hyperbolic rotations are used. A pre-whitening operation is also utilized to reduce the complexity of design problem. It is noticed that the designed algorithms using Givens rotations gives satisfactory performance only for large number of samples. However, for small number of samples, the algorithms designed by combining both Givens and hyperbolic rotations compensate for the ill-whitening that occurs in this case and thus improves the performance. Two algorithms dealing with the MM criterion are presented for moderate order QAM signals such as 16-QAM. The other two dealing with the AM criterion are presented for high-order QAM signals. These methods are finally compared with the state of art batch BSS algorithms in terms of signal-to-interference and noise ratio, symbol error rate and convergence rate. Simulation results show that the proposed methods outperform the contemporary batch BSS algorithms.
Dynamics in non-globally-hyperbolic static spacetimes: III. Anti-de Sitter spacetime
International Nuclear Information System (INIS)
Ishibashi, Akihiro; Wald, Robert M
2004-01-01
In recent years, there has been considerable interest in theories formulated in anti-de Sitter (AdS) spacetime. However, AdS spacetime fails to be globally hyperbolic, so a classical field satisfying a hyperbolic wave equation on AdS spacetime need not have a well-defined dynamics. Nevertheless, AdS spacetime is static, so the possible rules of dynamics for a field satisfying a linear wave equation are constrained by our previous general analysis-given in paper II-where it was shown that the possible choices of dynamics correspond to choices of positive, self-adjoint extensions of a certain differential operator, A. In the present paper, we reduce the analysis of electromagnetic and gravitational perturbations in AdS spacetime to scalar wave equations. We then apply our general results to analyse the possible dynamics of scalar, electromagnetic and gravitational perturbations in AdS spacetime. In AdS spacetime, the freedom (if any) in choosing self-adjoint extensions of A corresponds to the freedom (if any) in choosing suitable boundary conditions at infinity, so our analysis determines all the possible boundary conditions that can be imposed at infinity. In particular, we show that other boundary conditions besides the Dirichlet and Neumann conditions may be possible, depending on the value of the effective mass for scalar field perturbations, and depending on the number of spacetime dimensions and type of mode for electromagnetic and gravitational perturbations
Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.
Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer
2017-07-21
Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.
Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope
Govyadinov, Alexander A.
2017-07-14
Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.
Directory of Open Access Journals (Sweden)
Pi-Gang Luan
2018-01-01
Full Text Available The energy propagation of electromagnetic fields in the effective medium of a one-dimensional photonic crystal consisting of dielectric and metallic layers is investigated. We show that the medium behaves like Drude and Lorentz medium, respectively, when the electric field is parallel and perpendicular to the layers. For arbitrary time-varying electromagnetic fields in this medium, the energy density formula is derived. We prove rigorously that the group velocity of any propagating mode obeying the hyperbolic dispersion must be slower than the speed of light in vacuum, taking into account the frequency dependence of the permittivity tensor. That is, it is not possible to have superluminal propagation in this dispersive hyperbolic medium consisting of real dielectric and metallic material layers. The propagation velocity of a wave packet is also studied numerically. This packet velocity is very close to the velocity of the propagating mode having the central frequency and central wave vector of the wave packet. When the frequency spread of the wave packet is not narrow enough, small discrepancy between these two velocities manifests, which is caused by the non-penetration effect of the evanescent modes. This work reveals that no superluminal phenomenon can happen in a dispersive anisotropic metamaterial medium made of real materials.
Shah, Syed Awais Wahab; Abed-Meraim, Karim; Al-Naffouri, Tareq Y.
2017-01-01
This paper addresses the problem of blind demixing of instantaneous mixtures in a multiple-input multiple-output communication system. The main objective is to present efficient blind source separation (BSS) algorithms dedicated to moderate or high-order QAM constellations. Four new iterative batch BSS algorithms are presented dealing with the multimodulus (MM) and alphabet matched (AM) criteria. For the optimization of these cost functions, iterative methods of Givens and hyperbolic rotations are used. A pre-whitening operation is also utilized to reduce the complexity of design problem. It is noticed that the designed algorithms using Givens rotations gives satisfactory performance only for large number of samples. However, for small number of samples, the algorithms designed by combining both Givens and hyperbolic rotations compensate for the ill-whitening that occurs in this case and thus improves the performance. Two algorithms dealing with the MM criterion are presented for moderate order QAM signals such as 16-QAM. The other two dealing with the AM criterion are presented for high-order QAM signals. These methods are finally compared with the state of art batch BSS algorithms in terms of signal-to-interference and noise ratio, symbol error rate and convergence rate. Simulation results show that the proposed methods outperform the contemporary batch BSS algorithms.
Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times
Finster, Felix; Strohmaier, Alexander
2015-08-01
We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope
Govyadinov, Alexander A.; Konečná , Andrea; Chuvilin, Andrey; Vé lez, Saü l; Dolado, Irene; Nikitin, Alexey Y.; Lopatin, Sergei; Casanova, Fè lix; Hueso, Luis E.; Aizpurua, Javier; Hillenbrand, Rainer
2017-01-01
Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.
A novel grid multiwing chaotic system with only non-hyperbolic equilibria
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-05-01
The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.
Waves in hyperbolic and double negative metamaterials including rogues and solitons
Boardman, A. D.; Alberucci, A.; Assanto, G.; Grimalsky, V. V.; Kibler, B.; McNiff, J.; Nefedov, I. S.; Rapoport, Yu G.; Valagiannopoulos, C. A.
2017-11-01
The topics here deal with some current progress in electromagnetic wave propagation in a family of substances known as metamaterials. To begin with, it is discussed how a pulse can develop a leading edge that steepens and it is emphasised that such self-steepening is an important inclusion within a metamaterial environment together with Raman scattering and third-order dispersion whenever very short pulses are being investigated. It is emphasised that the self-steepening parameter is highly metamaterial-driven compared to Raman scattering, which is associated with a coefficient of the same form whether a normal positive phase, or a metamaterial waveguide is the vehicle for any soliton propagation. It is also shown that the influence of magnetooptics provides a beautiful and important control mechanism for metamaterial devices and that, in the future, this feature will have a significant impact upon the design of data control systems for optical computing. A major objective is fulfiled by the investigations of the fascinating properties of hyperbolic media that exhibit asymmetry of supported modes due to the tilt of optical axes. This is a topic that really merits elaboration because structural and optical asymmetry in optical components that end up manipulating electromagnetic waves is now the foundation of how to operate some of the most successful devices in photonics and electronics. It is pointed out, in this context, that graphene is one of the most famous plasmonic media with very low losses. It is a two-dimensional material that makes the implementation of an effective-medium approximation more feasible. Nonlinear non-stationary diffraction in active planar anisotropic hyperbolic metamaterials is discussed in detail and two approaches are compared. One of them is based on the averaging over a unit cell, while the other one does not include sort of averaging. The formation and propagation of optical spatial solitons in hyperbolic metamaterials is also
Directory of Open Access Journals (Sweden)
Francine Blanchet-Sadri
2011-08-01
Full Text Available Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible with all letters; partial words without holes are said to be full words (or simply words. Given an infinite partial word w, the number of distinct full words over the alphabet that are compatible with factors of w of length n, called subwords of w, refers to a measure of complexity of infinite partial words so-called subword complexity. This measure is of particular interest because we can construct partial words with subword complexities not achievable by full words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we establish connections between subword complexity and recurrence in this more general framework.
Domain decomposition methods for solving an image problem
Energy Technology Data Exchange (ETDEWEB)
Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)
1994-12-31
The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.