WorldWideScience

Sample records for solving algebra problems

  1. Student Obstacles in Solving Algebraic Thinking Problems

    Science.gov (United States)

    Andini, W.; Suryadi, D.

    2017-09-01

    The aim of this research is to analize the student obstacles on solving algebraic thinking problems in low grades elementary school. This research is a preliminary qualitative research, and involved 66 students of grade 3 elementary school. From the analysis student test results, most of student experience difficulty in solving algebraic thinking problems. The main obstacle is the student’s difficulty in understanding the problem of generalizing the pattern because the students are not accustomed to see the rules that exist in generalize the pattern.

  2. Gender differences in algebraic thinking ability to solve mathematics problems

    Science.gov (United States)

    Kusumaningsih, W.; Darhim; Herman, T.; Turmudi

    2018-05-01

    This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.

  3. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    Science.gov (United States)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  4. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

    Science.gov (United States)

    Hoover, Jerome D; Healy, Alice F

    2017-12-01

    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  5. Solving algebraic computational problems in geodesy and geoinformatics the answer to modern challenges

    CERN Document Server

    Awange, Joseph L

    2004-01-01

    While preparing and teaching 'Introduction to Geodesy I and II' to - dergraduate students at Stuttgart University, we noticed a gap which motivated the writing of the present book: Almost every topic that we taughtrequiredsomeskillsinalgebra,andinparticular,computeral- bra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In preparing this book therefore, we haveattemptedtoputtogetherbasicconceptsofabstractalgebra which underpin the techniques for solving algebraic problems. Algebraic c- putational algorithms useful for solving problems which require exact solutions to nonlinear systems of equations are presented and tested on various problems. Though the present book focuses mainly on the two ?elds,theconceptsand techniquespresented hereinarenonetheless- plicable to other ?elds where algebraic computational problems might be encountered. In Engineering for example, network densi?cation and robo...

  6. W-algebra for solving problems with fuzzy parameters

    Science.gov (United States)

    Shevlyakov, A. O.; Matveev, M. G.

    2018-03-01

    A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.

  7. Primary school students’ strategies in early algebra problem solving supported by an online game

    NARCIS (Netherlands)

    van den Heuvel-Panhuizen, M.H.A.M; Kolovou, A.; Robitzsch, A.

    2013-01-01

    In this study we investigated the role of a dynamic online game on students’ early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10–12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying

  8. Assessing Algebraic Solving Ability: A Theoretical Framework

    Science.gov (United States)

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  9. Algebraic Reasoning in Solving Mathematical Problem Based on Learning Style

    Science.gov (United States)

    Indraswari, N. F.; Budayasa, I. K.; Ekawati, R.

    2018-01-01

    This study aimed to describe algebraic reasoning of secondary school’s pupils with different learning styles in solving mathematical problem. This study begins by giving the questionnaire to find out the learning styles and followed by mathematical ability test to get three subjects of 8th-grade whereas the learning styles of each pupil is visual, auditory, kinesthetic and had similar mathematical abilities. Then it continued with given algebraic problems and interviews. The data is validated using triangulation of time. The result showed that in the pattern of seeking indicator, subjects identified the things that were known and asked based on them observations. The visual and kinesthetic learners represented the known information in a chart, whereas the auditory learner in a table. In addition, they found the elements which makes the pattern and made a relationship between two quantities. In the pattern recognition indicator, they created conjectures on the relationship between two quantities and proved it. In the generalization indicator, they were determining the general rule of pattern found on each element of pattern using algebraic symbols and created a mathematical model. Visual and kinesthetic learners determined the general rule of equations which was used to solve problems using algebraic symbols, but auditory learner in a sentence.

  10. Primary School Students' Strategies in Early Algebra Problem Solving Supported by an Online Game

    Science.gov (United States)

    van den Heuvel-Panhuizen, Marja; Kolovou, Angeliki; Robitzsch, Alexander

    2013-01-01

    In this study we investigated the role of a dynamic online game on students' early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10-12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying quantities. Special software monitored the…

  11. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    Science.gov (United States)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  12. Expert Strategies in Solving Algebraic Structure Sense Problems: The Case of Quadratic Equations

    Science.gov (United States)

    Jupri, Al; Sispiyati, R.

    2017-02-01

    Structure sense, an intuitive ability towards symbolic expressions, including skills to interpret, to manipulate, and to perceive symbols in different roles, is considered as a key success in learning algebra. In this article, we report results of three phases of a case study on solving algebraic structure sense problems aiming at testing the appropriateness of algebraic structure sense tasks and at investigating expert strategies dealing with the tasks. First, we developed three tasks on quadratic equations based on the characteristics of structure sense for high school algebra. Next, we validated the tasks to seven experts. In the validation process, we requested these experts to solve each task using two different strategies. Finally, we analyzing expert solution strategies in the light of structure sense characteristics. We found that even if eventual expert strategies are in line with the characteristics of structure sense; some of their initial solution strategies used standard procedures which might pay less attention to algebraic structures. This finding suggests that experts have reconsidered their procedural work and have provided more efficient solution strategies. For further investigation, we consider to test the tasks to high school algebra students and to see whether they produce similar results as experts.

  13. Application of symbolic and algebraic manipulation software in solving applied mechanics problems

    Science.gov (United States)

    Tsai, Wen-Lang; Kikuchi, Noboru

    1993-01-01

    As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.

  14. The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems

    Science.gov (United States)

    Ng, Swee Fong; Lee, Kerry

    2009-01-01

    Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…

  15. A Systematic Approach for Solving the Great Circle Track Problems based on Vector Algebra

    Directory of Open Access Journals (Sweden)

    Chen Chih-Li

    2016-04-01

    Full Text Available A systematic approach, based on multiple products of the vector algebra (S-VA, is proposed to derive the spherical triangle formulae for solving the great circle track (GCT problems. Because the mathematical properties of the geometry and algebra are both embedded in the S-VA approach, derivations of the spherical triangle formulae become more understandable and more straightforward as compared with those approaches which use the complex linear combination of a vector basis. In addition, the S-VA approach can handle all given initial conditions for solving the GCT problems simpler, clearer and avoid redundant formulae existing in the conventional approaches. With the technique of transforming the Earth coordinates system of latitudes and longitudes into the Cartesian one and adopting the relative longitude concept, the concise governing equations of the S-VA approach can be easily and directly derived. Owing to the advantage of the S-VA approach, it makes the practical navigator quickly adjust to solve the GCT problems. Based on the S-VA approach, a program namely GCTPro_VA is developed for friendly use of the navigator. Several validation examples are provided to show the S-VA approach is simple and versatile to solve the GCT problems.

  16. Structuring students’ analogical reasoning in solving algebra problem

    Science.gov (United States)

    Lailiyah, S.; Nusantara, T.; Sa'dijah, C.; Irawan, E. B.; Kusaeri; Asyhar, A. H.

    2018-01-01

    The average achievement of Indonesian students’ mathematics skills according to Benchmark International Trends in Mathematics and Science Study (TIMSS) is ranked at the 38th out of 42 countries and according to the survey result in Program for International Student Assessment (PISA) is ranked at the 64th out of 65 countries. The low mathematics skill of Indonesian student has become an important reason to research more deeply about reasoning and algebra in mathematics. Analogical reasoning is a very important component in mathematics because it is the key to creativity and it can make the learning process in the classroom become effective. The major part of the analogical reasoning is about structuring including the processes of inferencing and decision-making happens. Those processes involve base domain and target domain. Methodologically, the subjects of this research were 42 students from class XII. The sources of data were derived from the results of thinks aloud, the transcribed interviews, and the videos taken while the subject working on the instruments and interviews. The collected data were analyzed using qualitative techniques. The result of this study described the structuring characteristics of students’ analogical reasoning in solving algebra problems from all the research subjects.

  17. Diagrams benefit symbolic problem-solving.

    Science.gov (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  18. Solving of Clock Problems Using An Algebraic Approach And Developing An Application For Automatic Conversion

    Science.gov (United States)

    Lakshmi Devaraj, Shanmuga

    2018-04-01

    The recent trend in learning Mathematics is through android apps like Byju’s. The clock problems asked in aptitude tests could be learnt using such computer applications. The Clock problems are of four categories namely: 1. What is the angle between the hands of a clock at a particular time 2. When the hands of a clock will meet after a particular time 3. When the hands of a clock will be at right angle after a particular time 4. When the hands of a clock will be in a straight line but not together after a particular time The aim of this article is to convert the clock problems which were solved using the traditional approach to algebraic equations and solve them. Shortcuts are arrived which help in solving the questions in just a few seconds. Any aptitude problem could be converted to an algebraic equation by tracing the way the problem proceeds by applying our analytical skills. Solving of equations would be the easiest part in coming up with the solution. Also a computer application could be developed by using the equations that were arrived at in the analysis part. The computer application aims at solving the four different problems in Clocks. The application helps the learners of aptitude for CAT and other competitive exams to know the approach of the problem. Learning Mathematics with a gaming tool like this would be interesting to the learners. This paper provides a path to creating gaming apps to learn Mathematics.

  19. Study of solving a Toda dynamic system with loop algebra

    International Nuclear Information System (INIS)

    Zhu Qiao; Yang Zhanying; Shi Kangjie; Wen Junqing

    2006-01-01

    The authors construct a Toda system with Loop algebra, and prove that the Lax equation L=[L,M] can be solved by means of solving a regular Riemann-Hilbert problem. In our system, M in Lax pair is an antisymmetrical matrix, while L=L + + M, and L + is a quasi-upper triangular matrix of loop algebra. In order to check our result, the authors exactly solve an R-H problem under a given initial condition as an example. (authors)

  20. The Algebra Teacher's Activity-a-Day, Grades 6-12 Over 180 Quick Challenges for Developing Math and Problem-Solving Skills

    CERN Document Server

    Thompson, Frances McBroom

    2010-01-01

    Fun-filled math problems that put the emphasis on problem-solving strategies and reasoning. The Algebra Teacher's Activity-a-Day offers activities for test prep, warm-ups, down time, homework, or just for fun. These unique activities are correlated with national math education standards and emphasize problem-solving strategies and logical reasoning skills. In many of the activities, students are encouraged to communicate their different approaches to other students in the class.: Filled with dozens of quick and fun algebra activities that can be used inside and outside the classroom; Designed

  1. Problems in abstract algebra

    CERN Document Server

    Wadsworth, A R

    2017-01-01

    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  2. Essential linear algebra with applications a problem-solving approach

    CERN Document Server

    Andreescu, Titu

    2014-01-01

    This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory;  • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them.   Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course.    ...

  3. The Role of Cognitive Processes, Foundational Math Skill, and Calculation Accuracy and Fluency in Word-Problem Solving versus Pre-Algebraic Knowledge

    Science.gov (United States)

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.

    2016-01-01

    The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534

  4. The structure of algebraic problem in high schools

    OpenAIRE

    Chio, José Angel; Álvarez, Aida; Estrada, Pablo

    2010-01-01

    The paper is aimed at discussing the importance of pupil’s knowledge of algebraic problem structure. The research started by diagnosing pupil’s actual command of algebraic problem structure. Finally suggestions to teachers of mathematics for facing difficulties in solving problems are given.

  5. The structure of algebraic problem in high schools

    Directory of Open Access Journals (Sweden)

    Chio, José Angel

    2010-01-01

    Full Text Available The paper is aimed at discussing the importance of pupil’s knowledge of algebraic problem structure. The research started by diagnosing pupil’s actual command of algebraic problem structure. Finally suggestions to teachers of mathematics for facing difficulties in solving problems are given.

  6. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu

    2008-01-01

    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  7. Basic math and pre-algebra practice problems for dummies

    CERN Document Server

    Zegarelli, Mark

    2013-01-01

    1001 Basic Math & Pre- Algebra Practice Problems For  Dummies   Practice makes perfect-and helps deepen your understanding of basic math and pre-algebra 1001 Basic Math & Pre-Algebra Practice Problems For Dummies, with free access to online practice problems, takes you beyond the instruction and guidance offered in Basic Math & Pre-Algebra For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in your math course. You begin with some basic arithmetic practice, move on to fractions, decimals, and per

  8. Effects of Modified Schema-Based Instruction on Real-World Algebra Problem Solving of Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    Science.gov (United States)

    Root, Jenny Rose

    2016-01-01

    The current study evaluated the effects of modified schema-based instruction (SBI) on the algebra problem solving skills of three middle school students with autism spectrum disorder and moderate intellectual disability (ASD/ID). Participants learned to solve two types of group word problems: missing-whole and missing-part. The themes of the word…

  9. Using CAS to Solve Classical Mathematics Problems

    Science.gov (United States)

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  10. Some Applications of Algebraic System Solving

    Science.gov (United States)

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  11. Investigation of the Practical Possibility of Solving Problems on Generalized Cellular Automata Associated with Cryptanalysis by Mean Algebraic Methods

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available A number of previous author’s papers proposed methods for constructing various cryptographic algorithms, including block ciphers and cryptographic hash functions, based on generalized cellular automata. This one is aimed at studying a possibility to use the algebraic cryptanalysis methods related to the construction of Gröbner bases for the generalized cellular automata to be applied in cryptography, i.e. this paper studies the possibility for using algebraic cryptanalysis methods to solve the problems of inversion of a generalized cellular automaton and recovering the key of such an automaton.If the cryptographic algorithm is represented as a system of polynomial equations over a certain finite field, then its breach is reduced to solving this system with respect to the key. Although the problem of solving a system of polynomial equations in a finite field is NP-difficult in the general case, the solution of a particular system can have low computational cost.Cryptanalysis based on the construction of a system of polynomial equations that links plain text, cipher-text and key, and its solution by algebraic methods, is usually called algebraic cryptanalysis. Among the main methods to solve systems of polynomial equations are those to construct Gröbner bases.Cryptanalysis of ciphers and hash functions based on generalized cellular automata can be reduced to various problems. We will consider two such problems: the problem of inversion of a generalized cellular automaton, which, in case we know the values of the cells after k iterations, enables us to find the initial values. And the task of recovering the key, which is to find the initial values of the remaining cells, using the cell values after k steps and the initial values of a part of the cells.A computational experiment was carried out to solve the two problems above stated in order to determine the maximum size of a generalized cellular automaton for which the solution of these

  12. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    Science.gov (United States)

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  13. Algebraic solution of the synthesis problem for coded sequences

    International Nuclear Information System (INIS)

    Leukhin, Anatolii N

    2005-01-01

    The algebraic solution of a 'complex' problem of synthesis of phase-coded (PC) sequences with the zero level of side lobes of the cyclic autocorrelation function (ACF) is proposed. It is shown that the solution of the synthesis problem is connected with the existence of difference sets for a given code dimension. The problem of estimating the number of possible code combinations for a given code dimension is solved. It is pointed out that the problem of synthesis of PC sequences is related to the fundamental problems of discrete mathematics and, first of all, to a number of combinatorial problems, which can be solved, as the number factorisation problem, by algebraic methods by using the theory of Galois fields and groups. (fourth seminar to the memory of d.n. klyshko)

  14. Factors Related to Problem Solving by College Students in Developmental Algebra.

    Science.gov (United States)

    Schonberger, Ann K.

    A study was conducted to contrast the characteristics of three groups of college students who completed a developmental algebra course at the University of Maine at Orono during 1980-81. On the basis of a two-part final examination, involving a multiple-choice test of algebraic concepts and skills and a free-response test of problem-solving…

  15. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  16. An approach for solving linear fractional programming problems ...

    African Journals Online (AJOL)

    The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...

  17. Discovering Steiner Triple Systems through Problem Solving

    Science.gov (United States)

    Sriraman, Bharath

    2004-01-01

    An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.

  18. The development and nature of problem-solving among first-semester calculus students

    Science.gov (United States)

    Dawkins, Paul Christian; Mendoza Epperson, James A.

    2014-08-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving

  19. An introduction to the history of algebra solving equations from Mesopotamian times to the Renaissance

    CERN Document Server

    Sesiano, Jacques

    2009-01-01

    This text should not be viewed as a comprehensive history of algebra before 1600, but as a basic introduction to the types of problems that illustrate the earliest forms of algebra. It would be particularly useful for an instructor who is looking for examples to help enliven a course on elementary algebra with problems drawn from actual historical texts. -Warren Van Egmond about the French edition for MathSciNet This book does not aim to give an exhaustive survey of the history of algebra up to early modern times but merely to present some significant steps in solving equations and, wherever

  20. Problems and proofs in numbers and algebra

    CERN Document Server

    Millman, Richard S; Kahn, Eric Brendan

    2015-01-01

    Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove theorems and solve problem sets in-depth; that is, where multiple steps are needed to prove or solve. This proof technique is developed by examining two specific content themes and their applications in-depth: number theory and algebra. This choice of content themes enables students to develop an understanding of proof technique in the context of topics with which they are already familiar, as well as reinforcing natural and conceptual understandings of mathematical methods and styles. The key to the text is its interesting and intriguing problems, exercises, theorems, and proofs, showing how students will transition from the usual, more routine calculus to abstraction while also learning how to “prove” or “sol...

  1. Dimensional analysis and qualitative methods in problem solving: II

    International Nuclear Information System (INIS)

    Pescetti, D

    2009-01-01

    We show that the underlying mathematical structure of dimensional analysis (DA), in the qualitative methods in problem-solving context, is the algebra of the affine spaces. In particular, we show that the qualitative problem-solving procedure based on the parallel decomposition of a problem into simple special cases yields the new original mathematical concepts of special points and special representations of affine spaces. A qualitative problem-solving algorithm piloted by the mathematics of DA is illustrated by a set of examples.

  2. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees

    2003-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential

  3. Solving Absolute Value Equations Algebraically and Geometrically

    Science.gov (United States)

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  4. Monte Carlo method for solving a parabolic problem

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.

  5. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R; Fuchs, Lynn S

    2014-08-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2 nd - grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty.

  6. Does Early Algebraic Reasoning Differ as a Function of Students’ Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044

  7. Facilitating case reuse during problem solving in algebra-based physics

    Science.gov (United States)

    Mateycik, Frances Ann

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual clinical interviews were conducted and quantitative examination data were collected to assess students' conceptual understanding, knowledge organization, and problem solving performance on a variety of problem tasks. The study began with a short one-time treatment of two independent, research-based strategies chosen to facilitate case reuse. Exploration of students' perceptions and use of the strategies lead investigators to select one of the two strategies to be implemented over a full semester of focus group interviews. The strategy chosen was structure mapping. Structure maps are defined as visual representations of quantities and their associations. They were created by experts to model the appropriate mental organization of knowledge elements for a given physical concept. Students were asked to use these maps as they were comfortable while problem solving. Data obtained from this phase of our study (Phase I) offered no evidence of improved problem solving schema. The 11 contact hour study was barely sufficient time for students to become comfortable using the maps. A set of simpler strategies were selected for their more explicit facilitation of analogical reasoning, and were used together during two more semester long focus group treatments (Phase II and Phase III of this study). These strategies included the use of a step-by-step process aimed at reducing cognitive load associated with mathematical procedure, direct reflection of principles involved in a given set of problems, and the direct comparison of problem pairs designed to be void of surface similarities (similar objects or object orientations) and sharing

  8. From dissecting ignorance to solving algebraic problems

    International Nuclear Information System (INIS)

    Ayyub, Bilal M.

    2004-01-01

    Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters

  9. From dissecting ignorance to solving algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Ayyub, Bilal M

    2004-09-01

    Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters.

  10. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    Science.gov (United States)

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  11. From Rota-Baxter algebras to pre-Lie algebras

    International Nuclear Information System (INIS)

    An Huihui; Ba, Chengming

    2008-01-01

    Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

  12. Solving the Unknown with Algebra: Poster/Teaching Guide for Pre-Algebra Students. Expect the Unexpected with Math[R

    Science.gov (United States)

    Actuarial Foundation, 2013

    2013-01-01

    "Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…

  13. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    Science.gov (United States)

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  14. Algebraic Thinking in Solving Linier Program at High School Level: Female Student’s Field Independent Cognitive Style

    Science.gov (United States)

    Hardiani, N.; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.

  15. DEVELOPMENT OF LARSON’S PROBLEMS SOLVING PATTERNS WITH "IDEAL" STRATEGIES

    Directory of Open Access Journals (Sweden)

    . Junarti

    2018-01-01

    Full Text Available Abstract: Mathematical Problem-solving is taught to improve students' high-order thinking skills. A heuristic problem-solving strategy is used to find different Problem-solving. This research is to: 1 describe the student's Problem-solving ability profile in finding the pattern of algebra solving through the "IDEAL" (Identify Define Explore Act Look back strategy by developing Larson’s Problem-solving pattern, 2 measuring the extent of the pattern can be formed by using " IDEAL". Finding patterns is part of the first heuristic strategy. The research method used a qualitative approach with descriptive analysis. Problems conveyed to students are done in pairs of two people, with the consideration that more discussion opportunities with friends make it possible to get more than five troubleshooting as Larson puts it. The results showed that: 1 profile Problem-solving ability found pattern with "IDEAL" strategy from student got result that from problem given to 20 student group can help solve algebra Problem-solving; 2 there are four kinds of Problem-solving patterns consisting of 3 Larson model Problem-solving patterns and one Problem-solving pattern using geometry sequence pattern. Keyword: Problem-solving Pattern, Heuristic, “IDEAL” Strategy Abstrak: Pemecahan masalah matematika diajarkan untuk meningkatkan kemampuan pemikiran tingkat tinggi mahasiswa.  Strategi pemecahan masalah heuristic digunakan untuk menemukan pemecahan masalah yang berbeda. Penelitian ini untuk: 1 menggambarkan profil kemampuan pemecahan masalah mahasiswa dalam menemukan pola pemecahan aljabar melalui strategi “IDEAL” (Identify Define Explore Act Look back dengan mengembangkan pola pemecahan masalah Larson, 2 mengukur sejauhmana pola yang dapat dibentuk mahasiswa dengan menggunakan strategi “IDEAL”. Menemukan Pola merupakan bagian dari strategi heuristik yang pertama. Metode penelitiannya menggunakan pendekatan kualitatif dengan  analisis deskriptif. Masalah

  16. Cognition-emotion interactions: patterns of change and implications for math problem solving

    Science.gov (United States)

    Trezise, Kelly; Reeve, Robert A.

    2014-01-01

    Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry “unstable across time” subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities. PMID:25132830

  17. Cognition-emotion interactions: Patterns of change and implications for math problem solving

    Directory of Open Access Journals (Sweden)

    Kelly eTrezise

    2014-07-01

    Full Text Available Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry unstable across time subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone to account for differences in problem solving abilities.

  18. Analytical derivation: An epistemic game for solving mathematically based physics problems

    Science.gov (United States)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  19. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  20. Anticipating students' reasoning and planning prompts in structured problem-solving lessons

    Science.gov (United States)

    Vale, Colleen; Widjaja, Wanty; Doig, Brian; Groves, Susie

    2018-02-01

    Structured problem-solving lessons are used to explore mathematical concepts such as pattern and relationships in early algebra, and regularly used in Japanese Lesson Study research lessons. However, enactment of structured problem-solving lessons which involves detailed planning, anticipation of student solutions and orchestration of whole-class discussion of solutions is an ongoing challenge for many teachers. Moreover, primary teachers have limited experience in teaching early algebra or mathematical reasoning actions such as generalising. In this study, the critical factors of enacting the structured problem-solving lessons used in Japanese Lesson Study to elicit and develop primary students' capacity to generalise are explored. Teachers from three primary schools participated in two Japanese Lesson Study teams for this study. The lesson plans and video recordings of teaching and post-lesson discussion of the two research lessons along with students' responses and learning are compared to identify critical factors. The anticipation of students' reasoning together with preparation of supporting and challenging prompts was critical for scaffolding students' capacity to grasp and communicate generality.

  1. The effects of cumulative practice on mathematics problem solving.

    Science.gov (United States)

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.

  2. Integrating Study Skills and Problem Solving into Remedial Mathematics

    Science.gov (United States)

    Cornick, Jonathan; Guy, G. Michael; Beckford, Ian

    2015-01-01

    Students at a large urban community college enrolled in seven classes of an experimental remedial algebra programme, which integrated study skills instruction and collaborative problem solving. A control group of seven classes was taught in a traditional lecture format without study skills instruction. Student performance in the course was…

  3. Arithmetic and algebraic problem solving and resource allocation: the distinct impact of fluid and numerical intelligence.

    Science.gov (United States)

    Dix, Annika; van der Meer, Elke

    2015-04-01

    This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation. Copyright © 2014 Society for Psychophysiological Research.

  4. Reversible Reasoning and the Working Backwards Problem Solving Strategy

    Science.gov (United States)

    Ramful, Ajay

    2015-01-01

    Making sense of mathematical concepts and solving mathematical problems may demand different forms of reasoning. These could be either domain-based, such as algebraic, geometric or statistical reasoning, while others are more general such as inductive/deductive reasoning. This article aims at giving visibility to a particular form of reasoning…

  5. FOURTH SEMINAR TO THE MEMORY OF D.N. KLYSHKO: Algebraic solution of the synthesis problem for coded sequences

    Science.gov (United States)

    Leukhin, Anatolii N.

    2005-08-01

    The algebraic solution of a 'complex' problem of synthesis of phase-coded (PC) sequences with the zero level of side lobes of the cyclic autocorrelation function (ACF) is proposed. It is shown that the solution of the synthesis problem is connected with the existence of difference sets for a given code dimension. The problem of estimating the number of possible code combinations for a given code dimension is solved. It is pointed out that the problem of synthesis of PC sequences is related to the fundamental problems of discrete mathematics and, first of all, to a number of combinatorial problems, which can be solved, as the number factorisation problem, by algebraic methods by using the theory of Galois fields and groups.

  6. Strategies of solving arithmetic word problems in students with learning difficulties in mathematics

    OpenAIRE

    Kalan, Marko

    2015-01-01

    Problem solving as an important skill is, beside arithmetic, measure and algebra, included in standards of school mathematics (National Council of Teachers of Mathematics) (NCTM, 2000) and needed as a necessary skill for successfulness in science, technology, engineering and mathematics (STEM) (National Mathematics Advisory Panel, 2008). Since solving of human problems is connected to the real life, the arithmetic word problems (in short AWP) are an important kind of mathematics tasks in scho...

  7. Quadratic algebras

    CERN Document Server

    Polishchuk, Alexander

    2005-01-01

    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  8. Students’ difficulties in solving linear equation problems

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  9. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 second-grade students, we administered: (1) measures of calculations and…

  10. Head First Algebra A Learner's Guide to Algebra I

    CERN Document Server

    Pilone, Tracey

    2008-01-01

    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  11. Non-linear singular problems in p-adic analysis: associative algebras of p-adic distributions

    International Nuclear Information System (INIS)

    Albeverio, S; Khrennikov, A Yu; Shelkovich, V M

    2005-01-01

    We propose an algebraic theory which can be used for solving both linear and non-linear singular problems of p-adic analysis related to p-adic distributions (generalized functions). We construct the p-adic Colombeau-Egorov algebra of generalized functions, in which Vladimirov's pseudo-differential operator plays the role of differentiation. This algebra is closed under Fourier transformation and associative convolution. Pointvalues of generalized functions are defined, and it turns out that any generalized function is uniquely determined by its pointvalues. We also construct an associative algebra of asymptotic distributions, which is generated by the linear span of the set of associated homogeneous p-adic distributions. This algebra is embedded in the Colombeau-Egorov algebra as a subalgebra. In addition, a new technique for constructing weak asymptotics is developed

  12. Problem Solving Abilities and Perceptions in Alternative Certification Mathematics Teachers

    Science.gov (United States)

    Evans, Brian R.

    2012-01-01

    It is important for teacher educators to understand new alternative certification middle and high school teachers' mathematical problem solving abilities and perceptions. Teachers in an alternative certification program in New York were enrolled in a proof-based algebra course. At the beginning and end of a semester participants were given a…

  13. Using Computer Symbolic Algebra to Solve Differential Equations.

    Science.gov (United States)

    Mathews, John H.

    1989-01-01

    This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)

  14. An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group

    International Nuclear Information System (INIS)

    Wang, S.J.

    1993-04-01

    An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)

  15. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  16. "Playing the Game" of Story Problems: Coordinating Situation-Based Reasoning with Algebraic Representation

    Science.gov (United States)

    Walkington, Candace; Sherman, Milan; Petrosino, Anthony

    2012-01-01

    This study critically examines a key justification used by educational stakeholders for placing mathematics in context--the idea that contextualization provides students with access to mathematical ideas. We present interviews of 24 ninth grade students from a low-performing urban school solving algebra story problems, some of which were…

  17. Classical versus Computer Algebra Methods in Elementary Geometry

    Science.gov (United States)

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  18. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  19. Quantum complexity of graph and algebraic problems

    International Nuclear Information System (INIS)

    Doern, Sebastian

    2008-01-01

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  20. Quantum complexity of graph and algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Doern, Sebastian

    2008-02-04

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  1. Toward Solving the Problem of Problem Solving: An Analysis Framework

    Science.gov (United States)

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  2. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

  3. Solving Differential Equations in R: Package deSolve

    Science.gov (United States)

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  4. Solving Differential Equations in R: Package deSolve

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.

    2010-01-01

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

  5. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  6. Numerical stability in problems of linear algebra.

    Science.gov (United States)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  7. Solving differential–algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas

    2006-01-01

    of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....

  8. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  9. CIME-CIRM course Rationality Problems in Algebraic Geometry

    CERN Document Server

    Pirola, Gian

    2016-01-01

    Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.

  10. Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem

    International Nuclear Information System (INIS)

    Wei-Tao, Lu; Hua, Zhang; Shun-Jin, Wang

    2008-01-01

    Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge–Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP. (general)

  11. A difference quotient-numerical integration method for solving radiative transfer problems

    International Nuclear Information System (INIS)

    Ding Peizhu

    1992-01-01

    A difference quotient-numerical integration method is adopted to solve radiative transfer problems in an anisotropic scattering slab medium. By using the method, the radiative transfer problem is separated into a system of linear algebraic equations and the coefficient matrix of the system is a band matrix, so the method is very simple to evaluate on computer and to deduce formulae and easy to master for experimentalists. An example is evaluated and it is shown that the method is precise

  12. Solving the Stokes problem on a massively parallel computer

    DEFF Research Database (Denmark)

    Axelsson, Owe; Barker, Vincent A.; Neytcheva, Maya

    2001-01-01

    boundary value problem for each velocity component, are solved by the conjugate gradient method with a preconditioning based on the algebraic multi‐level iteration (AMLI) technique. The velocity is found from the computed pressure. The method is optimal in the sense that the computational work...... is proportional to the number of unknowns. Further, it is designed to exploit a massively parallel computer with distributed memory architecture. Numerical experiments on a Cray T3E computer illustrate the parallel performance of the method....

  13. Solving differential-algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph

    2006-01-01

    of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....

  14. Construction Example for Algebra System Using Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    FangAn Deng

    2015-01-01

    Full Text Available The construction example of algebra system is to verify the existence of a complex algebra system, and it is a NP-hard problem. In this paper, to solve this kind of problems, firstly, a mathematical optimization model for construction example of algebra system is established. Secondly, an improved harmony search algorithm based on NGHS algorithm (INGHS is proposed to find as more solutions as possible for the optimization model; in the proposed INGHS algorithm, to achieve the balance between exploration power and exploitation power in the search process, a global best strategy and parameters dynamic adjustment method are present. Finally, nine construction examples of algebra system are used to evaluate the optimization model and performance of INGHS. The experimental results show that the proposed algorithm has strong performance for solving complex construction example problems of algebra system.

  15. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students’ problem solving performance?

    Directory of Open Access Journals (Sweden)

    Alexandru Maries

    2018-03-01

    Full Text Available Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i asked to solve problems in which the diagrams were drawn for them or (ii explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  16. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?

    Science.gov (United States)

    Maries, Alexandru; Singh, Chandralekha

    2018-06-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  17. Cognitive Work Analysis: Preliminary Data for a Model of Problem Solving Strategies

    Science.gov (United States)

    Rothmayer, Mark; Blue, Jennifer

    2007-10-01

    Investigations into problem solving strategies are part of the field of physics education research where investigators seek to improve physics instruction by conducting basic research of problem solving abilities among students, differences in knowledge representations between experts and novices, and how to transfer knowledge structures more effectively onto novices. We developed a new conceptual research tool in our laboratory, where we could potentially map the step by step flow of problem solving strategies among experts and novices. This model is derived from the theory of Cognitive Work Analysis, which is grounded in ecological psychology, and as far as we know it has never been applied to a knowledge domain like physics. We collected survey data from 140 undergraduates enrolled in an algebra based introductory physics course at Miami University as part of a larger study aimed to test the validity of the model. Preliminary data will be presented and discussed.

  18. The multilevel fast multipole algorithm (MLFMA) for solving large-scale computational electromagnetics problems

    CERN Document Server

    Ergul, Ozgur

    2014-01-01

    The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examplesCovers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objectsDiscusses applications including scattering from airborne targets, scattering from red

  19. Applications of Lie algebras in the solution of dynamic problems

    International Nuclear Information System (INIS)

    Fellay, G.

    1983-01-01

    The purpose of this paper is to give some insight into the Lie-algebras and their applications. The first part introduces the elementary properties of such algebras, e.g. nilpotency, solvability, etc. The second part shows how to use the demonstrated theory for solving differential equations with time-dependent coefficients. (Auth.)

  20. Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving

    Science.gov (United States)

    Engerman, Jason; Rusek, Matthew; Clariana, Roy

    2014-01-01

    This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…

  1. GENERAL: Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem

    Science.gov (United States)

    Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin

    2008-07-01

    Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.

  2. Meanings Given to Algebraic Symbolism in Problem-Posing

    Science.gov (United States)

    Cañadas, María C.; Molina, Marta; del Río, Aurora

    2018-01-01

    Some errors in the learning of algebra suggest that students might have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing to analyze the students' capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process, depending on the characteristics of the algebraic…

  3. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    Science.gov (United States)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  4. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human

    2009-09-01

    Full Text Available Three forms of mathematics education at school level are distinguished: direct expository teaching with an emphasis on procedures, with the expectation that learners will at some later stage make logical and functional sense of what they have learnt and practised (the prevalent form, mathematically rigorous teaching in terms of fundamental mathematical concepts, as in the so-called “modern mathematics” programmes of the sixties, teaching and learning in the context of engaging with meaningful problems and focused both on learning to become good problem solvers (teaching for problem solving andutilising problems as vehicles for the development of mathematical knowledge andproficiency by learners (problem-centred learning, in conjunction with substantialteacher-led social interaction and mathematical discourse in classrooms.Direct expository teaching of mathematical procedures dominated in school systems after World War II, and was augmented by the “modern mathematics” movement in the period 1960-1970. The latter was experienced as a major failure, and was soon abandoned. Persistent poor outcomes of direct expository procedural teaching of mathematics for the majority of learners, as are still being experienced in South Africa, triggered a world-wide movement promoting teaching mathematics for and via problem solving in the seventies and eighties of the previous century. This movement took the form of a variety of curriculum experiments in which problem solving was the dominant classroom activity, mainly in the USA, Netherlands, France and South Africa. While initially focusing on basic arithmetic (computation with whole numbers and elementary calculus, the problem-solving movement started to address other mathematical topics (for example, elementary statistics, algebra, differential equations around the turn of the century. The movement also spread rapidly to other countries, including Japan, Singapore and Australia. Parallel with the

  5. Relation of deformed nonlinear algebras with linear ones

    International Nuclear Information System (INIS)

    Nowicki, A; Tkachuk, V M

    2014-01-01

    The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)

  6. Numerical linear algebra with applications using Matlab

    CERN Document Server

    Ford, William

    2014-01-01

    Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for

  7. Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.

    Science.gov (United States)

    Sialaros, Michalis; Christianidis, Jean

    2016-06-01

    Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.

  8. Positive projections of symmetric matrices and Jordan algebras

    DEFF Research Database (Denmark)

    Fuglede, Bent; Jensen, Søren Tolver

    2013-01-01

    An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....

  9. Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra

    OpenAIRE

    Lecoutre, César

    2014-01-01

    We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...

  10. Computers in nonassociative rings and algebras

    CERN Document Server

    Beck, Robert E

    1977-01-01

    Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer.Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, str

  11. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    Science.gov (United States)

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  12. Schwarz maps of algebraic linear ordinary differential equations

    Science.gov (United States)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  13. An algebraic method to solve the Tavis-Cummings problem

    International Nuclear Information System (INIS)

    Vadejko, I.P.; Miroshnichenko, G.P.; Rybin, A.V.; Timonen, J.

    2003-01-01

    We study cooperative behaviour of the system of two-level atoms coupled to a single mode of the electromagnetic field in the resonator. We have developed a general procedure allowing one to rewrite a polynomial deformed SU(2) algebra in terms of another polynomial deformation. Using these methods, we have constructed a perturbation series for the Tavis-Cummings Hamiltonian and diagonalized it in the third order. Based on the zero-order Hamiltonian we calculate the intensity of spontaneous emission of N two-level atoms inside a cavity, which are in thermal equilibrium with the reservoir. The atom-atom correlation determining superradiance in the system is analyzed

  14. Solving a Deconvolution Problem in Photon Spectrometry

    CERN Document Server

    Aleksandrov, D; Hille, P T; Polichtchouk, B; Kharlov, Y; Sukhorukov, M; Wang, D; Shabratova, G; Demanov, V; Wang, Y; Tveter, T; Faltys, M; Mao, Y; Larsen, D T; Zaporozhets, S; Sibiryak, I; Lovhoiden, G; Potcheptsov, T; Kucheryaev, Y; Basmanov, V; Mares, J; Yanovsky, V; Qvigstad, H; Zenin, A; Nikolaev, S; Siemiarczuk, T; Yuan, X; Cai, X; Redlich, K; Pavlinov, A; Roehrich, D; Manko, V; Deloff, A; Ma, K; Maruyama, Y; Dobrowolski, T; Shigaki, K; Nikulin, S; Wan, R; Mizoguchi, K; Petrov, V; Mueller, H; Ippolitov, M; Liu, L; Sadovsky, S; Stolpovsky, P; Kurashvili, P; Nomokonov, P; Xu, C; Torii, H; Il'kaev, R; Zhang, X; Peresunko, D; Soloviev, A; Vodopyanov, A; Sugitate, T; Ullaland, K; Huang, M; Zhou, D; Nystrand, J; Punin, V; Yin, Z; Batyunya, B; Karadzhev, K; Nazarov, G; Fil'chagin, S; Nazarenko, S; Buskenes, J I; Horaguchi, T; Djuvsland, O; Chuman, F; Senko, V; Alme, J; Wilk, G; Fehlker, D; Vinogradov, Y; Budilov, V; Iwasaki, T; Ilkiv, I; Budnikov, D; Vinogradov, A; Kazantsev, A; Bogolyubsky, M; Lindal, S; Polak, K; Skaali, B; Mamonov, A; Kuryakin, A; Wikne, J; Skjerdal, K

    2010-01-01

    We solve numerically a deconvolution problem to extract the undisturbed spectrum from the measured distribution contaminated by the finite resolution of the measuring device. A problem of this kind emerges when one wants to infer the momentum distribution of the neutral pions by detecting the it decay photons using the photon spectrometer of the ALICE LHC experiment at CERN {[}1]. The underlying integral equation connecting the sought for pion spectrum and the measured gamma spectrum has been discretized and subsequently reduced to a system of linear algebraic equations. The latter system, however, is known to be ill-posed and must be regularized to obtain a stable solution. This task has been accomplished here by means of the Tikhonov regularization scheme combined with the L-curve method. The resulting pion spectrum is in an excellent quantitative agreement with the pion spectrum obtained from a Monte Carlo simulation. (C) 2010 Elsevier B.V. All rights reserved.

  15. Parallel algorithms for network routing problems and recurrences

    International Nuclear Information System (INIS)

    Wisniewski, J.A.; Sameh, A.H.

    1982-01-01

    In this paper, we consider the parallel solution of recurrences, and linear systems in the regular algebra of Carre. These problems are equivalent to solving the shortest path problem in graph theory, and they also arise in the analysis of Fortran programs. Our methods for solving linear systems in the regular algebra are analogues of well-known methods for solving systems of linear algebraic equations. A parallel version of Dijkstra's method, which has no linear algebraic analogue, is presented. Considerations for choosing an algorithm when the problem is large and sparse are also discussed

  16. Classification and identification of Lie algebras

    CERN Document Server

    Snobl, Libor

    2014-01-01

    The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain cl...

  17. A semi-analytical iterative technique for solving chemistry problems

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed AL-Jawary

    2017-07-01

    Full Text Available The main aim and contribution of the current paper is to implement a semi-analytical iterative method suggested by Temimi and Ansari in 2011 namely (TAM to solve two chemical problems. An approximate solution obtained by the TAM provides fast convergence. The current chemical problems are the absorption of carbon dioxide into phenyl glycidyl ether and the other system is a chemical kinetics problem. These problems are represented by systems of nonlinear ordinary differential equations that contain boundary conditions and initial conditions. Error analysis of the approximate solutions is studied using the error remainder and the maximal error remainder. Exponential rate for the convergence is observed. For both problems the results of the TAM are compared with other results obtained by previous methods available in the literature. The results demonstrate that the method has many merits such as being derivative-free, and overcoming the difficulty arising in calculating Adomian polynomials to handle the non-linear terms in Adomian Decomposition Method (ADM. It does not require to calculate Lagrange multiplier in Variational Iteration Method (VIM in which the terms of the sequence become complex after several iterations, thus, analytical evaluation of terms becomes very difficult or impossible in VIM. No need to construct a homotopy in Homotopy Perturbation Method (HPM and solve the corresponding algebraic equations. The MATHEMATICA® 9 software was used to evaluate terms in the iterative process.

  18. Inequalities, Assessment and Computer Algebra

    Science.gov (United States)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…

  19. Analysis of junior high school students' attempt to solve a linear inequality problem

    Science.gov (United States)

    Taqiyuddin, Muhammad; Sumiaty, Encum; Jupri, Al

    2017-08-01

    Linear inequality is one of fundamental subjects within junior high school mathematics curricula. Several studies have been conducted to asses students' perform on linear inequality. However, it can hardly be found that linear inequality problems are in the form of "ax + b condition leads to the research questions concerning students' attempt on solving a simple linear inequality problem in this form. In order to do so, the written test was administered to 58 students from two schools in Bandung followed by interviews. The other sources of the data are from teachers' interview and mathematics books used by students. After that, the constant comparative method was used to analyse the data. The result shows that the majority approached the question by doing algebraic operations. Interestingly, most of them did it incorrectly. In contrast, algebraic operations were correctly used by some of them. Moreover, the others performed expected-numbers solution, rewriting the question, translating the inequality into words, and blank answer. Furthermore, we found that there is no one who was conscious of the existence of all-numbers solution. It was found that this condition is reasonably due to how little the learning components concern about why a procedure of solving a linear inequality works and possibilities of linear inequality solution.

  20. Algebraic Thinking: Conceptions of Elementary School Teachers

    OpenAIRE

    Rodrigues Rézio, Ana Sofia

    2015-01-01

    Students’ algebraic reasoning, at the beginning of their schooling years, includes the development and promotion of functional thinking and the understanding of mathematical properties, which can be stimulated by solving problems. In the latest Portuguese Program for Mathematics Elementary Education, we do not see the topic Algebra in the first year of school although some other topics include objectives of algebraic nature. This fact showed the importance of research about the introduction o...

  1. Elements of a cognitive model of physics problem solving: Epistemic games

    Directory of Open Access Journals (Sweden)

    Jonathan Tuminaro

    2007-07-01

    Full Text Available Although much is known about the differences between expert and novice problem solvers, knowledge of those differences typically does not provide enough detail to help instructors understand why some students seem to learn physics while solving problems and others do not. A critical issue is how students access the knowledge they have in the context of solving a particular problem. In this paper, we discuss our observations of students solving physics problems in authentic situations in an algebra-based physics class at the University of Maryland. We find that when these students are working together and interacting effectively, they often use a limited set of locally coherent resources for blocks of time of a few minutes or more. This coherence appears to provide the student with guidance as to what knowledge and procedures to access and what to ignore. Often, this leads to the students failing to apply relevant knowledge they later show they possess. In this paper, we outline a theoretical phenomenology for describing these local coherences and identify six organizational structures that we refer to as epistemic games. The hypothesis that students tend to function within the narrow confines of a fairly limited set of games provides a good description of our observations. We demonstrate how students use these games in two case studies and discuss the implications for instruction.

  2. Using Problem-solving Therapy to Improve Problem-solving Orientation, Problem-solving Skills and Quality of Life in Older Hemodialysis Patients.

    Science.gov (United States)

    Erdley-Kass, Shiloh D; Kass, Darrin S; Gellis, Zvi D; Bogner, Hillary A; Berger, Andrea; Perkins, Robert M

    2017-08-24

    To determine the effectiveness of Problem-Solving Therapy (PST) in older hemodialysis (HD) patients by assessing changes in health-related quality of life and problem-solving skills. 33 HD patients in an outpatient hemodialysis center without active medical and psychiatric illness were enrolled. The intervention group (n = 15) received PST from a licensed social worker for 6 weeks, whereas the control group (n = 18) received usual care treatment. In comparison to the control group, patients receiving PST intervention reported improved perceptions of mental health, were more likely to view their problems with a positive orientation and were more likely to use functional problem-solving methods. Furthermore, this group was also more likely to view their overall health, activity limits, social activities and ability to accomplish desired tasks with a more positive mindset. The results demonstrate that PST may positively impact mental health components of quality of life and problem-solving coping among older HD patients. PST is an effective, efficient, and easy to implement intervention that can benefit problem-solving abilities and mental health-related quality of life in older HD patients. In turn, this will help patients manage their daily living activities related to their medical condition and reduce daily stressors.

  3. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana

    2012-01-01

    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  4. A Comparative Study of Three Different Mathematical Methods for Solving the Unit Commitment Problem

    Directory of Open Access Journals (Sweden)

    Mehmet Kurban

    2009-01-01

    Full Text Available The unit commitment (UC problem which is an important subject in power system engineering is solved by using Lagragian relaxation (LR, penalty function (PF, and augmented Lagrangian penalty function (ALPF methods due to their higher solution quality and faster computational time than metaheuristic approaches. This problem is considered to be a nonlinear programming-(NP- hard problem because it is nonlinear, mixed-integer, and nonconvex. These three methods used for solving the problem are based on dual optimization techniques. ALPF method which combines the algorithmic aspects of both LR and PF methods is firstly used for solving the UC problem. These methods are compared to each other based on feasible schedule for each stage, feasible cost, dual cost, duality gap, duration time, and number of iterations. The numerical results show that the ALPF method gives the best duality gap, feasible and dual cost instead of worse duration time and the number of iterations. The four-unit Tuncbilek thermal plant which is located in Kutahya region in Turkey is chosen as a test system in this study. The programs used for all the analyses are coded and implemented using general algebraic modeling system (GAMS.

  5. Profile of male-field dependent (FD) prospective teacher's reflective thinking in solving contextual mathematical problem

    Science.gov (United States)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  6. Are diagrams always helpful tools? developmental and individual differences in the effect of presentation format on student problem solving.

    Science.gov (United States)

    Booth, Julie L; Koedinger, Kenneth R

    2012-09-01

    High school and college students demonstrate a verbal, or textual, advantage whereby beginning algebra problems in story format are easier to solve than matched equations (Koedinger & Nathan, 2004). Adding diagrams to the stories may further facilitate solution (Hembree, 1992; Koedinger & Terao, 2002). However, diagrams may not be universally beneficial (Ainsworth, 2006; Larkin & Simon, 1987). To identify developmental and individual differences in the use of diagrams, story, and equation representations in problem solving. When do diagrams begin to aid problem-solving performance? Does the verbal advantage replicate for younger students? Three hundred and seventy-three students (121 sixth, 117 seventh, 135 eighth grade) from an ethnically diverse middle school in the American Midwest participated in Experiment 1. In Experiment 2, 84 sixth graders who had participated in Experiment 1 were followed up in seventh and eighth grades. In both experiments, students solved algebra problems in three matched presentation formats (equation, story, story + diagram). The textual advantage was replicated for all groups. While diagrams enhance performance of older and higher ability students, younger and lower-ability students do not benefit, and may even be hindered by a diagram's presence. The textual advantage is in place by sixth grade. Diagrams are not inherently helpful aids to student understanding and should be used cautiously in the middle school years, as students are developing competency for diagram comprehension during this time. ©2011 The British Psychological Society.

  7. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    Science.gov (United States)

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  8. Review on solving the forward problem in EEG source analysis

    Directory of Open Access Journals (Sweden)

    Vergult Anneleen

    2007-11-01

    methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem.

  9. ANALYZING ALGEBRAIC THINKING USING “GUESS MY NUMBER” PROBLEMS

    Directory of Open Access Journals (Sweden)

    Estella De Los Santos

    2012-01-01

    Full Text Available The purpose of this study was to assess student knowledge of numeric, visual and algebraic representations. A definite gap between arithmetic and algebra has been documented in the research. The researchers’ goal was to identify a link between the two. Using four “Guess My Number problems, seventh and tenth grade students were asked to write numeric, visual, and algebraic representations. Seventh-grade students had significantly higher scores than tenth-grade students on visual representation responses. There were no significant differences between the seventh and tenth grade students’ responses on the numeric and algebraic representation. The researchers believed that the semi-concrete and visual models, such as used in this study, may provide the link between numeric and algebraic concepts for many students.

  10. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    Science.gov (United States)

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  11. Students’ difficulties in probabilistic problem-solving

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  12. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  13. Surveying Turkish high school and university students’ attitudes and approaches to physics problem solving

    Directory of Open Access Journals (Sweden)

    Nuri Balta

    2016-04-01

    Full Text Available Students’ attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS survey suggests that there are major differences between students in introductory physics and astronomy courses and physics experts in terms of their attitudes and approaches to physics problem solving. Here we discuss the validation, administration, and analysis of data for the Turkish version of the AAPS survey for high school and university students in Turkey. After the validation and administration of the Turkish version of the survey, the analysis of the data was conducted by grouping the data by grade level, school type, and gender. While there are no statistically significant differences between the averages of various groups on the survey, overall, the university students in Turkey were more expertlike than vocational high school students. On an item by item basis, there are statistically differences between the averages of the groups on many items. For example, on average, the university students demonstrated less expertlike attitudes about the role of equations and formulas in problem solving, in solving difficult problems, and in knowing when the solution is not correct, whereas they displayed more expertlike attitudes and approaches on items related to metacognition in physics problem solving. A principal component analysis on the data yields item clusters into which the student responses on various survey items can be grouped. A comparison of the responses of the Turkish and American university students enrolled in algebra-based introductory physics courses shows that on more than half of the items, the responses of these two groups were statistically significantly different, with the U.S. students on average responding to the items in a more expertlike manner.

  14. A Proposed Algebra Assessment for Use in a Problem-Analysis Framework

    Science.gov (United States)

    Walick, Christopher M.; Burns, Matthew K.

    2017-01-01

    Algebra is critical to high school graduation and college success, but student achievement in algebra frequently falls significantly below expected proficiency levels. While existing research emphasizes the importance of quality algebra instruction, there is little research about how to conduct problem analysis for struggling secondary students.…

  15. Reachability for Finite-State Process Algebras Using Static Analysis

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya; Nielson, Flemming

    2011-01-01

    of the Data Flow Analysis are used in order to “cut off” some of the branches in the reachability analysis that are not important for determining, whether or not a state is reachable. In this way, it is possible for our reachability algorithm to avoid building large parts of the system altogether and still......In this work we present an algorithm for solving the reachability problem in finite systems that are modelled with process algebras. Our method uses Static Analysis, in particular, Data Flow Analysis, of the syntax of a process algebraic system with multi-way synchronisation. The results...... solve the reachability problem in a precise way....

  16. Assertiveness and problem solving in midwives.

    Science.gov (United States)

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  17. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    Science.gov (United States)

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  18. Algebras of holomorphic functions and control theory

    CERN Document Server

    Sasane, Amol

    2009-01-01

    This accessible, undergraduate-level text illustrates the role of algebras of holomorphic functions in the solution of an important engineering problem: the stabilization of a linear control system. Its concise and self-contained treatment avoids the use of higher mathematics and forms a bridge to more advanced treatments. The treatment consists of two components: the algebraic framework, which serves as the abstract language for posing and solving the problem of stabilization; and the analysis component, which examines properties of specific rings of holomorphic functions. Elementary, self-co

  19. Gender Differences in Solving Mathematics Problems among Two-Year College Students in a Developmental Algebra Class and Related Factors.

    Science.gov (United States)

    Schonberger, Ann K.

    A study was conducted at the University of Maine at Orono (UMO) to examine gender differences with respect to mathematical problem-solving ability, visual spatial ability, abstract reasoning ability, field independence/dependence, independent learning style, and developmental problem-solving ability (i.e., formal reasoning ability). Subjects…

  20. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    Science.gov (United States)

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  1. A Newton method for solving continuous multiple material minimum compliance problems

    DEFF Research Database (Denmark)

    Stolpe, M; Stegmann, Jan

    method, one or two linear saddle point systems are solved. These systems involve the Hessian of the objective function, which is both expensive to compute and completely dense. Therefore, the linear algebra is arranged such that the Hessian is not explicitly formed. The main concern is to solve...

  2. A Newton method for solving continuous multiple material minimum compliance problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stegmann, Jan

    2007-01-01

    method, one or two linear saddle point systems are solved. These systems involve the Hessian of the objective function, which is both expensive to compute and completely dense. Therefore, the linear algebra is arranged such that the Hessian is not explicitly formed. The main concern is to solve...

  3. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  4. Problem solving stages in the five square problem.

    Science.gov (United States)

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

  5. Problem solving stages in the five square problem

    Directory of Open Access Journals (Sweden)

    Anna eFedor

    2015-08-01

    Full Text Available According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviourally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. 101 participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and 67 of them also had the possibility of reporting impasse while working on the task. We have found that 49% (19 out of 39 of the solvers and 13% (8 out of 62 of the non-solvers followed the classic four-stage model of insight. The rest of the participants had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model must be extended to explain variability on the individual level. We provide a model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviourally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behaviour to verify insight theory.

  6. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  7. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  8. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  9. Introduction to computational linear algebra

    CERN Document Server

    Nassif, Nabil; Erhel, Jocelyne

    2015-01-01

    Introduction to Computational Linear Algebra introduces the reader with a background in basic mathematics and computer programming to the fundamentals of dense and sparse matrix computations with illustrating examples. The textbook is a synthesis of conceptual and practical topics in ""Matrix Computations."" The book's learning outcomes are twofold: to understand state-of-the-art computational tools to solve matrix computations problems (BLAS primitives, MATLAB® programming) as well as essential mathematical concepts needed to master the topics of numerical linear algebra. It is suitable for s

  10. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  11. An algebraic sub-structuring method for large-scale eigenvalue calculation

    International Nuclear Information System (INIS)

    Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.

    2004-01-01

    We examine sub-structuring methods for solving large-scale generalized eigenvalue problems from a purely algebraic point of view. We use the term 'algebraic sub-structuring' to refer to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to provide approximate solutions to the original problem. We are interested in the question of which spectral components one should extract from each sub-structure in order to produce an approximate solution to the original problem with a desired level of accuracy. Error estimate for the approximation to the smallest eigenpair is developed. The estimate leads to a simple heuristic for choosing spectral components (modes) from each sub-structure. The effectiveness of such a heuristic is demonstrated with numerical examples. We show that algebraic sub-structuring can be effectively used to solve a generalized eigenvalue problem arising from the simulation of an accelerator structure. One interesting characteristic of this application is that the stiffness matrix produced by a hierarchical vector finite elements scheme contains a null space of large dimension. We present an efficient scheme to deflate this null space in the algebraic sub-structuring process

  12. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  13. Langevin equation with the deterministic algebraically correlated noise

    Energy Technology Data Exchange (ETDEWEB)

    Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Srokowski, T. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author). 58 refs.

  14. Langevin equation with the deterministic algebraically correlated noise

    International Nuclear Information System (INIS)

    Ploszajczak, M.; Srokowski, T.

    1995-01-01

    Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author)

  15. Simon on Problem-Solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    as a general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...... Simon, problem-solving, new organizational forms. JEL Code: D23, D83......Two of Herbert Simon's best-known papers are "The Architecture of Complexity" and "The Structure of Ill-Structured Problems." We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  16. Solving Environmental Problems

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph

    2017-01-01

    for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...

  17. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    Science.gov (United States)

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  18. Inequalities, assessment and computer algebra

    Science.gov (United States)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.

  19. Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)

    2017-06-21

    The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.

  20. Solving complex fisheries management problems

    DEFF Research Database (Denmark)

    Petter Johnsen, Jahn; Eliasen, Søren Qvist

    2011-01-01

    A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related...

  1. Threading homology through algebra selected patterns

    CERN Document Server

    Boffi, Giandomenico

    2006-01-01

    Aimed at graduate students and researchers in mathematics, this book takes homological themes, such as Koszul complexes and their generalizations, and shows how these can be used to clarify certain problems in selected parts of algebra, as well as their success in solving a number of them.

  2. Solving the generalized Langevin equation with the algebraically correlated noise

    International Nuclear Information System (INIS)

    Srokowski, T.; Ploszajczak, M.

    1997-01-01

    The Langevin equation with the memory kernel is solved. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated at the assumption that the system is in the thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Levy walks with divergent moments of the velocity distribution. The motion of a Brownian particle is considered both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle. (author)

  3. Axis Problem of Rough 3-Valued Algebras

    Institute of Scientific and Technical Information of China (English)

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  4. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    Science.gov (United States)

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  5. Simplified neural networks for solving linear least squares and total least squares problems in real time.

    Science.gov (United States)

    Cichocki, A; Unbehauen, R

    1994-01-01

    In this paper a new class of simplified low-cost analog artificial neural networks with on chip adaptive learning algorithms are proposed for solving linear systems of algebraic equations in real time. The proposed learning algorithms for linear least squares (LS), total least squares (TLS) and data least squares (DLS) problems can be considered as modifications and extensions of well known algorithms: the row-action projection-Kaczmarz algorithm and/or the LMS (Adaline) Widrow-Hoff algorithms. The algorithms can be applied to any problem which can be formulated as a linear regression problem. The correctness and high performance of the proposed neural networks are illustrated by extensive computer simulation results.

  6. Environmental problem-solving: Psychosocial factors

    Science.gov (United States)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  7. Auxiliary representations of Lie algebras and the BRST constructions

    International Nuclear Information System (INIS)

    Burdik, C.; Pashnev, A.I.; Tsulaya, M.M.

    2000-01-01

    The method of construction of auxiliary representations for a given Lie algebra is discussed in the framework of the BRST approach. The corresponding BRST charge turns out to be nonhermitian. This problem is solved by the introduction of the additional kernel operator in the definition of the scalar product in the Fock space. The existence of the kernel operator is proved for any Lie algebra

  8. Customer-centered problem solving.

    Science.gov (United States)

    Samelson, Q B

    1999-11-01

    If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.

  9. Elementary Business Calculus with Computer Algebra.

    Science.gov (United States)

    Judson, Phoebe T.

    1990-01-01

    Described are various ways that a computer algebra system (MAPLE) was used to facilitate the resequencing of skills and applications within an elementary college-level business calculus course. Experimental results confirmed earlier findings that skills acquisition is not a prerequisite to conceptual understanding or problem-solving ability. (JJK)

  10. Student’s scheme in solving mathematics problems

    Science.gov (United States)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  11. Algebraic properties of generalized inverses

    CERN Document Server

    Cvetković‐Ilić, Dragana S

    2017-01-01

    This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...

  12. Problem solving skills for schizophrenia.

    Science.gov (United States)

    Xia, J; Li, Chunbo

    2007-04-18

    The severe and long-lasting symptoms of schizophrenia are often the cause of severe disability. Environmental stress such as life events and the practical problems people face in their daily can worsen the symptoms of schizophrenia. Deficits in problem solving skills in people with schizophrenia affect their independent and interpersonal functioning and impair their quality of life. As a result, therapies such as problem solving therapy have been developed to improve problem solving skills for people with schizophrenia. To review the effectiveness of problem solving therapy compared with other comparable therapies or routine care for those with schizophrenia. We searched the Cochrane Schizophrenia Group's Register (September 2006), which is based on regular searches of BIOSIS, CENTRAL, CINAHL, EMBASE, MEDLINE and PsycINFO. We inspected references of all identified studies for further trials. We included all clinical randomised trials comparing problem solving therapy with other comparable therapies or routine care. We extracted data independently. For homogenous dichotomous data we calculated random effects, relative risk (RR), 95% confidence intervals (CI) and, where appropriate, numbers needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated weighted mean differences (WMD) using a random effects statistical model. We included only three small trials (n=52) that evaluated problem solving versus routine care, coping skills training or non-specific interaction. Inadequate reporting of data rendered many outcomes unusable. We were unable to undertake meta-analysis. Overall results were limited and inconclusive with no significant differences between treatment groups for hospital admission, mental state, behaviour, social skills or leaving the study early. No data were presented for global state, quality of life or satisfaction. We found insufficient evidence to confirm or refute the benefits of problem solving therapy as an additional

  13. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    Science.gov (United States)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  14. A Continuous Formulation for Logical Decisions in Differential Algebraic Systems using Mathematical Programs with Complementarity Constraints

    Directory of Open Access Journals (Sweden)

    Kody M. Powell

    2016-03-01

    Full Text Available This work presents a methodology to represent logical decisions in differential algebraic equation simulation and constrained optimization problems using a set of continuous algebraic equations. The formulations may be used when state variables trigger a change in process dynamics, and introduces a pseudo-binary decision variable, which is continuous, but should only have valid solutions at values of either zero or one within a finite time horizon. This formulation enables dynamic optimization problems with logical disjunctions to be solved by simultaneous solution methods without using methods such as mixed integer programming. Several case studies are given to illustrate the value of this methodology including nonlinear model predictive control of a chemical reactor using a surge tank with overflow to buffer disturbances in feed flow rate. Although this work contains novel methodologies for solving dynamic algebraic equation (DAE constrained problems where the system may experience an abrupt change in dynamics that may otherwise require a conditional statement, there remain substantial limitations to this methodology, including a limited domain where problems may converge and the possibility for ill-conditioning. Although the problems presented use only continuous algebraic equations, the formulation has inherent non-smoothness. Hence, these problems must be solved with care and only in select circumstances, such as in simulation or situations when the solution is expected to be near the solver’s initial point.

  15. Convergence of the standard RLS method and UDUT factorisation of covariance matrix for solving the algebraic Riccati equation of the DLQR via heuristic approximate dynamic programming

    Science.gov (United States)

    Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.

    2015-08-01

    The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.

  16. Perspectives on Problem Solving and Instruction

    Science.gov (United States)

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  17. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  18. Difficulties in Genetics Problem Solving.

    Science.gov (United States)

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  19. A novel algebraic procedure for solving non-linear evolution equations of higher order

    International Nuclear Information System (INIS)

    Huber, Alfred

    2007-01-01

    We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

  20. Student representational competence and self-assessment when solving physics problems

    Directory of Open Access Journals (Sweden)

    Noah D. Finkelstein

    2005-10-01

    Full Text Available Student success in solving physics problems is related to the representational format of the problem. We study student representational competence in two large-lecture algebra-based introductory university physics courses with approximately 600 participants total. We examined student performance on homework problems given in four different representational formats (mathematical, pictorial, graphical, verbal, with problem statements as close to isomorphic as possible. In addition to the homeworks, we examine students’ assessment of representations by providing follow-up quizzes in which they chose between various problem formats. As a control, some parts of the classes were assigned a random-format follow-up quiz. We find that there are statistically significant performance differences between different representations of nearly isomorphic statements of quiz and homework problems. We also find that allowing students to choose which representational format they use improves student performance under some circumstances and degrades it in others. Notably, one of the two courses studied shows much greater performance differences between the groups that received a choice of format and those that did not, and we consider possible causes. Overall, we observe that student representational competence is tied to both micro- and macrolevel features of the task and environment.

  1. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  2. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  3. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  4. An algorithm for analysis of the structure of finitely presented Lie algebras

    Directory of Open Access Journals (Sweden)

    Vladimir P. Gerdt

    1997-12-01

    Full Text Available We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most general mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering applications ranging from mathematical physics to combinatorial algebra. Some particular applications are constructionof prolongation algebras in the Wahlquist-Estabrook method for integrability analysis of nonlinear partial differential equations and investigation of Lie algebras arising in different physical models. The finite presentations also indicate a way to q-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic transformations which is sharply increased with growth of the number of generators and relations. For this reason, in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer results illustrating our algorithmand its actual implementation are also presented.

  5. Problem Solving on a Monorail.

    Science.gov (United States)

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  6. Quantum cluster algebra structures on quantum nilpotent algebras

    CERN Document Server

    Goodearl, K R

    2017-01-01

    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  7. Effects of Using Problem of the Week in Teaching on Teacher Learning and Change in Algebraic Thinking and Algebra

    Science.gov (United States)

    Wu, Zhonghe

    2017-01-01

    The study investigated the effects of using the problem of the week in teaching (POWT) on teachers' learning and changes in knowledge and teaching skills, in algebraic thinking and algebra tasks, in the setting of a university mathematics education graduate program. The graduate students participated in learning POWT weekly in a mathematics…

  8. Answers to selected problems in multivariable calculus with linear algebra and series

    CERN Document Server

    Trench, William F

    1972-01-01

    Answers to Selected Problems in Multivariable Calculus with Linear Algebra and Series contains the answers to selected problems in linear algebra, the calculus of several variables, and series. Topics covered range from vectors and vector spaces to linear matrices and analytic geometry, as well as differential calculus of real-valued functions. Theorems and definitions are included, most of which are followed by worked-out illustrative examples.The problems and corresponding solutions deal with linear equations and matrices, including determinants; vector spaces and linear transformations; eig

  9. Spontaneous gestures influence strategy choices in problem solving.

    Science.gov (United States)

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  10. A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems

    Directory of Open Access Journals (Sweden)

    A. Karimi Dizicheh

    2013-01-01

    wavelet suitable for large intervals, and then the Legendre-Guass collocation points of the Legendre wavelet are derived. Using this strategy, the iterative spectral method converts the differential equation to a set of algebraic equations. Solving these algebraic equations yields an approximate solution for the differential equation. The proposed method is illustrated by some numerical examples, and the result is compared with the exponentially fitted Runge-Kutta method. Our proposed method is simple and highly accurate.

  11. Self-affirmation improves problem-solving under stress.

    Science.gov (United States)

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  12. The effect of problem-based and lecture-based instructional strategies on learner problem solving performance, problem solving processes, and attitudes

    Science.gov (United States)

    Visser, Yusra Laila

    This study compared the effect of lecture-based instruction to that of problem-based instruction on learner performance (on near-transfer and far-transfer problems), problem solving processes (reasoning strategy usage and reasoning efficiency), and attitudes (overall motivation and learner confidence) in a Genetics course. The study also analyzed the effect of self-regulatory skills and prior-academic achievement on performance for both instructional strategies. Sixty 11th grade students at a public math and science academy were assigned to either a lecture-based instructional strategy or a problem-based instructional strategy. Both treatment groups received 18 weeks of Genetics instruction through the assigned instructional strategy. In terms of problem solving performance, results revealed that the lecture-based group performed significantly better on near-transfer post-test problems. The problem-based group performed significantly better on far-transfer post-test problems. In addition, results indicated the learners in the lecture-based instructional treatment were significantly more likely to employ data-driven reasoning in the solving of problems, whereas learners in the problem-based instructional treatment were significantly more likely to employ hypothesis-driven reasoning in problem solving. No significant differences in reasoning efficiency were uncovered between treatment groups. Preliminary analysis of the motivation data suggested that there were no significant differences in motivation between treatment groups. However, a post-research exploratory analysis suggests that overall motivation was significantly higher in the lecture-based instructional treatment than in the problem-based instructional treatment. Learner confidence was significantly higher in the lecture-based group than in the problem-based group. A significant positive correlation was detected between self-regulatory skills scores and problem solving performance scores in the problem

  13. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    Science.gov (United States)

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  14. Self-affirmation improves problem-solving under stress.

    Directory of Open Access Journals (Sweden)

    J David Creswell

    Full Text Available High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  15. Conceptual problem solving in high school physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  16. Conceptual problem solving in high school physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2015-09-01

    Full Text Available Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers’ implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  17. Lesion mapping of social problem solving.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

  18. Applied linear algebra and matrix analysis

    CERN Document Server

    Shores, Thomas S

    2018-01-01

    In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...

  19. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.

  20. LEGO Robotics: An Authentic Problem Solving Tool?

    Science.gov (United States)

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  1. The bubble algebra: structure of a two-colour Temperley-Lieb Algebra

    International Nuclear Information System (INIS)

    Grimm, Uwe; Martin, Paul P

    2003-01-01

    We define new diagram algebras providing a sequence of multiparameter generalizations of the Temperley-Lieb algebra, suitable for the modelling of dilute lattice systems of two-dimensional statistical mechanics. These algebras give a rigorous foundation to the various 'multi-colour algebras' of Grimm, Pearce and others. We determine the generic representation theory of the simplest of these algebras, and locate the nongeneric cases (at roots of unity of the corresponding parameters). We show by this example how the method used (Martin's general procedure for diagram algebras) may be applied to a wide variety of such algebras occurring in statistical mechanics. We demonstrate how these algebras may be used to solve the Yang-Baxter equations

  2. Mathematical problem solving in primary school

    NARCIS (Netherlands)

    Kolovou, A.

    2011-01-01

    A student is engaged in (non-routine) problem solving when there is no clear pathway to the solution. In contrast to routine problems, non-routine ones cannot be solved through the direct application of a standard procedure. Consider the following problem: In a quiz you get two points for each

  3. Algebra 2u, Mathematics (Experimental): 5216.26.

    Science.gov (United States)

    Crawford, Glenda

    The sixth in a series of six guidebooks on minimum course content for second-year algebra, this booklet presents an introduction to sequences, series, permutation, combinations, and probability. Included are arithmetic and geometric progressions and problems solved by counting and factorials. Overall course goals are specified, a course outline is…

  4. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    OpenAIRE

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach problem-solving skills. The present study, as a first study in Turkey, may provide valuable insight for nurse academicians employed at üniversities. Purpose of ...

  5. Improving mathematical problem solving skills through visual media

    Science.gov (United States)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  6. Capturing Problem-Solving Processes Using Critical Rationalism

    Science.gov (United States)

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  7. A Quantitative Reasoning Approach to Algebra Using Inquiry-Based Learning

    Directory of Open Access Journals (Sweden)

    Victor I. Piercey

    2017-07-01

    Full Text Available In this paper, I share a hybrid quantitative reasoning/algebra two-course sequence that challenges the common assumption that quantitative literacy and reasoning are less rigorous mathematics alternatives to algebra and illustrates that a quantitative reasoning framework can be used to teach traditional algebra. The presentation is made in two parts. In the first part, which is somewhat philosophical and theoretical, I explain my personal perspective of what I mean by “algebra” and “doing algebra.” I contend that algebra is a form of communication whose value is precision, which allows us to perform algebraic manipulations in the form of simplification and solving moves. A quantitative reasoning approach to traditional algebraic manipulations rests on intentional and purposeful use of simplification and solving moves within contextual situations. In part 2, I describe a 6-week instructional module intended for undergraduate business students that was delivered to students who had placed into beginning algebra. The perspective described in part 1 heavily informed the design of this module. The course materials, which involve the use of Excel in multiple authentic contexts, are built around the use of inquiry-based learning. Upon completion of this module, the percentage of students who successfully complete model problems in an assessment is in the same range as surveyed students in precalculus and calculus, approximately two “grade levels” ahead of their placement.

  8. Using qualitative problem-solving strategies to highlight the role of conceptual knowledge in solving problems

    Science.gov (United States)

    Leonard, William J.; Dufresne, Robert J.; Mestre, Jose P.

    1996-12-01

    We report on the use of qualitative problem-solving strategies in teaching an introductory, calculus-based physics course as a means of highlighting the role played by conceptual knowledge in solving problems. We found that presenting strategies during lectures and in homework solutions provides an excellent opportunity to model for students the type of concept-based, qualitative reasoning that is valued in our profession, and that student-generated strategies serve a diagnostic function by providing instructors with insights on students' conceptual understanding and reasoning. Finally, we found strategies to be effective pedagogical tools for helping students both to identify principles that could be applied to solve specific problems, as well as to recall the major principles covered in the course months after it was over.

  9. Problem Solving Reasoning and Problem Based Instruction in Geometry Learning

    Science.gov (United States)

    Sulistyowati, F.; Budiyono, B.; Slamet, I.

    2017-09-01

    This research aims to analyze the comparison Problem Solving Reasoning (PSR) and Problem Based Instruction (PBI) on problem solving and mathematical communication abilities viewed from Self-Regulated Learning (SRL). Learning was given to grade 8th junior high school students. This research uses quasi experimental method, and then with descriptive analysis. Data were analyzed using two-ways multivariate analysis of variance (MANOVA) and one-way analysis of variance (ANOVA) with different cells. The result of data analysis were learning model gives different effect, level of SRL gives the same effect, and there is no interaction between the learning model with the SRL on the problem solving and mathematical communication abilities. The t-test statistic was used to find out more effective learning model. Based on the test, regardless of the level of SRL, PSR is more effective than PBI for problemsolving ability. The result of descriptive analysis was PSR had the advantage in creating learning that optimizing the ability of learners in reasoning to solve a mathematical problem. Consequently, the PSR is the right learning model to be applied in the classroom to improve problem solving ability of learners.

  10. How to solve mathematical problems

    CERN Document Server

    Wickelgren, Wayne A

    1995-01-01

    Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.

  11. Social problem-solving among adolescents treated for depression.

    Science.gov (United States)

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems

    Science.gov (United States)

    Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.

    2015-10-01

    In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.

  13. A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.

    Science.gov (United States)

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2016-12-01

    Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    Science.gov (United States)

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  15. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    Science.gov (United States)

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  16. Development of abstract mathematical reasoning: the case of algebra.

    Science.gov (United States)

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.

  17. Teaching materials of algebraic equation

    Science.gov (United States)

    Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi

    2017-12-01

    The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.

  18. Using Analogy to Solve a Three-Step Physics Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2010-10-01

    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two-step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  19. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    1995-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  20. Processes involved in solving mathematical problems

    Science.gov (United States)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  1. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ

    2010-01-01

    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.

  2. Solving Complex Problems to Create Charter Extension Options

    DEFF Research Database (Denmark)

    Tippmann, Esther; Nell, Phillip Christopher

    undertaken by 29 subsidiary units supports our hypotheses, demonstrating that these activities are a means to systematically reduce inherent problem solving biases. This study contributes to problem solving theory, the literature on headquarters’ roles in complex organizations, as well as the literature......This study examines subsidiary-driven problem solving processes and their potential to create advanced solutions for charter extension options. Problem solving theory suggests that biases in problem formulation and solution search can confine problem solving potential. We thus argue that balanced...... solution search, or activities to reconcile the need for some solution features to be locally-tailored while others can be internationally standardized, mediates the relationships between problem complexity/headquarters involvement and the capacity to create advanced solutions. An analysis of 67 projects...

  3. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    Energy Technology Data Exchange (ETDEWEB)

    2017-10-24

    ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  4. Conceptual problem solving in high school physics

    OpenAIRE

    Jennifer L. Docktor; Natalie E. Strand; José P. Mestre; Brian H. Ross

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in w...

  5. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna

    1989-01-01

    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  6. Language and mathematical problem solving among bilinguals.

    Science.gov (United States)

    Bernardo, Allan B I

    2002-05-01

    Does using a bilingual's 1st or 2nd language have an effect on problem solving in semantically rich domains like school mathematics? The author conducted a study to determine whether Filipino-English bilingual students' understanding and solving of word problems in arithmetic differed when the problems were in the students' 1st and 2nd languages. Two groups participated-students whose 1st language was Filipino and students whose 1st language was English-and easy and difficult arithmetic problems were used. The author used a recall paradigm to assess how students understood the word problems and coded the solution accuracy to assess problem solving. The results indicated a 1st-language advantage; that is, the students were better able to understand and solve problems in their 1st language, whether the 1st language was English or Filipino. Moreover, the advantage was more marked with the easy problems. The theoretical and practical implications of the results are discussed.

  7. Dreams and creative problem-solving.

    Science.gov (United States)

    Barrett, Deirdre

    2017-10-01

    Dreams have produced art, music, novels, films, mathematical proofs, designs for architecture, telescopes, and computers. Dreaming is essentially our brain thinking in another neurophysiologic state-and therefore it is likely to solve some problems on which our waking minds have become stuck. This neurophysiologic state is characterized by high activity in brain areas associated with imagery, so problems requiring vivid visualization are also more likely to get help from dreaming. This article reviews great historical dreams and modern laboratory research to suggest how dreams can aid creativity and problem-solving. © 2017 New York Academy of Sciences.

  8. The Missing Curriculum in Physics Problem-Solving Education

    Science.gov (United States)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  9. Grade 11 Students' Interconnected Use of Conceptual Knowledge, Procedural Skills, and Strategic Competence in Algebra: A Mixed Method Study of Error Analysis

    Science.gov (United States)

    Egodawatte, Gunawardena; Stoilescu, Dorian

    2015-01-01

    The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…

  10. Metacognition: Student Reflections on Problem Solving

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  11. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  12. An su(1, 1) algebraic approach for the relativistic Kepler-Coulomb problem

    International Nuclear Information System (INIS)

    Salazar-Ramirez, M; Granados, V D; MartInez, D; Mota, R D

    2010-01-01

    We apply the Schroedinger factorization method to the radial second-order equation for the relativistic Kepler-Coulomb problem. From these operators we construct two sets of one-variable radial operators which are realizations for the su(1, 1) Lie algebra. We use this algebraic structure to obtain the energy spectrum and the supersymmetric ground state for this system.

  13. Translation among Symbolic Representations in Problem-Solving. Revised.

    Science.gov (United States)

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  14. Properties of coupled-cluster equations originating in excitation sub-algebras

    Science.gov (United States)

    Kowalski, Karol

    2018-03-01

    In this paper, we discuss properties of single-reference coupled cluster (CC) equations associated with the existence of sub-algebras of excitations that allow one to represent CC equations in a hybrid fashion where the cluster amplitudes associated with these sub-algebras can be obtained by solving the corresponding eigenvalue problem. For closed-shell formulations analyzed in this paper, the hybrid representation of CC equations provides a natural way for extending active-space and seniority number concepts to provide an accurate description of electron correlation effects. Moreover, a new representation can be utilized to re-define iterative algorithms used to solve CC equations, especially for tough cases defined by the presence of strong static and dynamical correlation effects. We will also explore invariance properties associated with excitation sub-algebras to define a new class of CC approximations referred to in this paper as the sub-algebra-flow-based CC methods. We illustrate the performance of these methods on the example of ground- and excited-state calculations for commonly used small benchmark systems.

  15. Algebraic structures in generalized Clifford analysis and applications to boundary value problems

    Directory of Open Access Journals (Sweden)

    José Játem

    2015-12-01

    Full Text Available The present article has a threefold purpose: First it is a survey of the algebraic structures of generalized Clifford-type algebras and shows the main results of the corresponding Clifford-type analysis and its application to boundary value problems known so far. Second it is aimed to implement algorithms to provide the fast and accurate computation of boundary value problems for inhomogeneous equations in the framework of the generalized Clifford analysis. Finally it is also aimed to encourage the development of a generalized discrete Clifford analysis.

  16. Innovative problem solving by wild spotted hyenas

    Science.gov (United States)

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  17. Contextualized teaching on the problem solving performance of students

    Directory of Open Access Journals (Sweden)

    Rolando V. Obiedo

    2017-12-01

    Full Text Available This study investigated the effect of contextualized teaching on students’ problem solving skills in physics through a quasi-experimental approach. Problem solving performance of students was described quantitatively through their mean problem solving scores and problem solving skills level. A unit plan patterned from the cognitive apprenticeship approach and contextualized using maritime context of ship stability was implemented on the experimental group while the control group had the conventional lecture method. Pre and post assessment, which is a researcher-developed word problem assessment, was administered to both groups. Results indicated increased problem solving mean scores (p < 0.001, problem solving skill level (p < 0.001 of the experimental group while the control group increased only their problem solving skill level (p = 0.008. Thus, contextualized teaching can improve the problem solving performance of students. This study recommends using contextualization using other physics topics where other contexts can be applied.

  18. Abordaje didáctico de la comprensión de los problemas algebraicos en el nivel secundario de la República Dominicana / A didactic approach to algebraic problems understanding at public junior high scools of Dominican Republic

    Directory of Open Access Journals (Sweden)

    Eugenia Altagracia Castro Araujo

    2017-09-01

    Full Text Available ABSTRACT This paper describes partial results of a research on the understanding of algebraic problems in the secondary level of the Dominican Republic, where the current state of this problem is characterized in public schools in the country with the objective of offering a didactic approach. The research was carried out with the use of methods of the theoretical level, in particular, the analysis-synthesis and the documentary revision, as well as empirical methods. For the characterization, the indicators of teaching planning dimensions, execution of teaching-learning the process of the understanding of algebraic problems and analysis of the performance of the students in the understanding of algebraic problems are established. From this characterization, a methodological strategy was designed as a solution to the problem described. Keywords: problem-solving, abstract thinking, instructional design, teaching method.

  19. Problem representation and mathematical problem solving of students of varying math ability.

    Science.gov (United States)

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  20. Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)

    Science.gov (United States)

    Habiballa, Hashim; Jendryscik, Radek

    2017-11-01

    The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.

  1. Creativity and Insight in Problem Solving

    Science.gov (United States)

    Golnabi, Laura

    2016-01-01

    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  2. The Process of Solving Complex Problems

    Science.gov (United States)

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  3. Block Model Approach in Problem Solving: Effects on Problem Solving Performance of the Grade V Pupils in Mathematics

    Science.gov (United States)

    de Guzman, Niño Jose P.; Belecina, Rene R.

    2012-01-01

    The teaching of mathematics involves problem solving skills which prove to be difficult on the part of the pupils due to misrepresentation of the word problems. Oftentimes, pupils tend to represent the phrase "more than" as addition and the word difference as "- ". This paper aims to address the problem solving skills of grade…

  4. Understanding catastrophizing from a misdirected problem-solving perspective.

    Science.gov (United States)

    Flink, Ida K; Boersma, Katja; MacDonald, Shane; Linton, Steven J

    2012-05-01

    The aim is to explore pain catastrophizing from a problem-solving perspective. The links between catastrophizing, problem framing, and problem-solving behaviour are examined through two possible models of mediation as inferred by two contemporary and complementary theoretical models, the misdirected problem solving model (Eccleston & Crombez, 2007) and the fear-anxiety-avoidance model (Asmundson, Norton, & Vlaeyen, 2004). In this prospective study, a general population sample (n= 173) with perceived problems with spinal pain filled out questionnaires twice; catastrophizing and problem framing were assessed on the first occasion and health care seeking (as a proxy for medically oriented problem solving) was assessed 7 months later. Two different approaches were used to explore whether the data supported any of the proposed models of mediation. First, multiple regressions were used according to traditional recommendations for mediation analyses. Second, a bootstrapping method (n= 1000 bootstrap resamples) was used to explore the significance of the indirect effects in both possible models of mediation. The results verified the concepts included in the misdirected problem solving model. However, the direction of the relations was more in line with the fear-anxiety-avoidance model. More specifically, the mediation analyses provided support for viewing catastrophizing as a mediator of the relation between biomedical problem framing and medically oriented problem-solving behaviour. These findings provide support for viewing catastrophizing from a problem-solving perspective and imply a need to examine and address problem framing and catastrophizing in back pain patients. ©2011 The British Psychological Society.

  5. A literature review of expert problem solving using analogy

    OpenAIRE

    Mair, C; Martincova, M; Shepperd, MJ

    2009-01-01

    We consider software project cost estimation from a problem solving perspective. Taking a cognitive psychological approach, we argue that the algorithmic basis for CBR tools is not representative of human problem solving and this mismatch could account for inconsistent results. We describe the fundamentals of problem solving, focusing on experts solving ill-defined problems. This is supplemented by a systematic literature review of empirical studies of expert problem solving of non-trivial pr...

  6. Problem solving and problem strategies in the teaching and learning ...

    African Journals Online (AJOL)

    Perennial poor performance recorded annually in both internal and external examinations in Mathematics has been a great concern for the Mathematics Educators in Nigeria. This paper discusses problem-solving and influence of problem-solving strategies on students' performance in mathematics. The concept of ...

  7. [Investigation of problem solving skills among psychiatric patients].

    Science.gov (United States)

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  8. A parallel algorithm for solving linear equations arising from one-dimensional network problems

    International Nuclear Information System (INIS)

    Mesina, G.L.

    1991-01-01

    One-dimensional (1-D) network problems, such as those arising from 1- D fluid simulations and electrical circuitry, produce systems of sparse linear equations which are nearly tridiagonal and contain a few non-zero entries outside the tridiagonal. Most direct solution techniques for such problems either do not take advantage of the special structure of the matrix or do not fully utilize parallel computer architectures. We describe a new parallel direct linear equation solution algorithm, called TRBR, which is especially designed to take advantage of this structure on MIMD shared memory machines. The new method belongs to a family of methods which split the coefficient matrix into the sum of a tridiagonal matrix T and a matrix comprised of the remaining coefficients R. Efficient tridiagonal methods are used to algebraically simplify the linear system. A smaller auxiliary subsystem is created and solved and its solution is used to calculate the solution of the original system. The newly devised BR method solves the subsystem. The serial and parallel operation counts are given for the new method and related earlier methods. TRBR is shown to have the smallest operation count in this class of direct methods. Numerical results are given. Although the algorithm is designed for one-dimensional networks, it has been applied successfully to three-dimensional problems as well. 20 refs., 2 figs., 4 tabs

  9. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  10. Using a general problem-solving strategy to promote transfer.

    Science.gov (United States)

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. Pre-Service Mathematics Teachers’ Problem Solving Processes with Geometer’s Sketchpad: Mirror Problem

    OpenAIRE

    ÖÇAL, Mehmet Fatih; ŞİMŞEK, Mertkan

    2016-01-01

    Problem solving skill is the core of mathematics education and its importance cannot be denied. This study specifically examined 56 freshmen pre-service mathematics teachers’ problem solving processes on a specific problem with the help of Geometer’s Sketchpad (GSP). They were grouped into two-person teams to solve a problem called "the mirror problem". They were expected to solve it by means of GSP. According to their works on GSP and related reflections, there appeared two differe...

  12. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S

    1982-04-01

    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  13. Using Systemic Problem Solving (SPS) to Assess Student ...

    African Journals Online (AJOL)

    This paper focuses on the uses of systemic problem solving in chemistry at the tertiary level. Traditional problem solving (TPS) is a useful tool to help teachers examine recall of information, comprehension, and application. However, systemic problem solving (SPS) can challenge students and probe higher cognitive skills ...

  14. Transformational and derivational strategies in analogical problem solving.

    Science.gov (United States)

    Schelhorn, Sven-Eric; Griego, Jacqueline; Schmid, Ute

    2007-03-01

    Analogical problem solving is mostly described as transfer of a source solution to a target problem based on the structural correspondences (mapping) between source and target. Derivational analogy (Carbonell, Machine learning: an artificial intelligence approach Los Altos. Morgan Kaufmann, 1986) proposes an alternative view: a target problem is solved by replaying a remembered problem-solving episode. Thus, the experience with the source problem is used to guide the search for the target solution by applying the same solution technique rather than by transferring the complete solution. We report an empirical study using the path finding problems presented in Novick and Hmelo (J Exp Psychol Learn Mem Cogn 20:1296-1321, 1994) as material. We show that both transformational and derivational analogy are problem-solving strategies realized by human problem solvers. Which strategy is evoked in a given problem-solving context depends on the constraints guiding object-to-object mapping between source and target problem. Specifically, if constraints facilitating mapping are available, subjects are more likely to employ a transformational strategy, otherwise they are more likely to use a derivational strategy.

  15. Solving inversion problems with neural networks

    Science.gov (United States)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  16. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

    Science.gov (United States)

    Mills, Nadia Monrose

    2015-01-01

    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  17. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    Science.gov (United States)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  18. Characterizing the Nature of Students' Feature Noticing-and-Using with Respect to Mathematical Symbols across Different Levels of Algebra Exposure

    Science.gov (United States)

    Sullivan, Patrick

    2013-01-01

    The purpose of this study is to examine the nature of what students notice about symbols and use as they solve unfamiliar algebra problems based on familiar algebra concepts and involving symbolic inscriptions. The researcher conducted a study of students at three levels of algebra exposure: (a) students enrolled in a high school pre-calculus…

  19. Systematic Problem Solving in Production: The NAX Approach

    DEFF Research Database (Denmark)

    Axelsdottir, Aslaug; Nygaard, Martin; Edwards, Kasper

    2017-01-01

    This paper outlines the NAX problem solving approach developed by a group of problem solving experts at a large Danish Producer of medical equipment. The company, “Medicmeter” is one of Denmark’s leading companies when it comes to lean and it has developed a strong problem solving culture. The ma...

  20. On identities of free finitely generated alternative algebras over a field of characteristic 3

    International Nuclear Information System (INIS)

    Pchelintsev, S V

    2001-01-01

    In 1981 Filippov solved in the affirmative Shestakov's problem on the strictness of the inclusions in the chains of varieties generated by free alternative and Mal'cev algebras of finite rank over a field of characteristic distinct from 2 and 3. In the present paper an analogous result is proved for alternative algebras over a field of characteristic 3. The proof is based on the construction of three families of identities that hold on the algebras of the corresponding rank. A disproof of the identities on algebras of larger rank is carried out with the help of a prime commutative alternative algebra. It is also proved that in varieties of alternative algebras of finite basis rank over a field of characteristic 3 every soluble algebra is nilpotent

  1. Finding the radical of an algebra of linear transformations

    NARCIS (Netherlands)

    Cohen, A.M.; Ivanyos, G.; Wales, D.B.

    1997-01-01

    We present a method that reduces the problem of computing the radical of a matrix algebra over an arbitrary field to solving systems of semilinear equations. The complexity of the algorithm, measured in the number of arithmetic operations and the total number of the coefficients passed to an oracle

  2. Find the Dimensions: Students Solving a Tiling Problem

    Science.gov (United States)

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  3. Rationality problem for algebraic tori

    CERN Document Server

    Hoshi, Akinari

    2017-01-01

    The authors give the complete stably rational classification of algebraic tori of dimensions 4 and 5 over a field k. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank 4 and 5 is given. The authors show that there exist exactly 487 (resp. 7, resp. 216) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 4, and there exist exactly 3051 (resp. 25, resp. 3003) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 5. The authors make a procedure to compute a flabby resolution of a G-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a G-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby G-lattices of rank up to 6 and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for G-...

  4. Internet Computer Coaches for Introductory Physics Problem Solving

    Science.gov (United States)

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  5. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    Science.gov (United States)

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  6. Teaching Effective Problem Solving Strategies for Interns

    Science.gov (United States)

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  7. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  8. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding

    Science.gov (United States)

    Crooks, Noelle M.; Alibali, Martha W.

    2013-01-01

    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the

  9. Jordan algebras versus C*- algebras

    International Nuclear Information System (INIS)

    Stormer, E.

    1976-01-01

    The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

  10. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    Science.gov (United States)

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  11. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    Science.gov (United States)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  12. Problem-Solving during Shared Reading at Kindergarten

    Science.gov (United States)

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

    2015-01-01

    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  13. Strategy Keys as Tools for Problem Solving

    Science.gov (United States)

    Herold-Blasius, Raja

    2017-01-01

    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  14. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2006-01-01

    as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  15. Interactive problem solving using LOGO

    CERN Document Server

    Boecker, Heinz-Dieter; Fischer, Gerhard

    2014-01-01

    This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more

  16. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  17. Modeling visual problem solving as analogical reasoning.

    Science.gov (United States)

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    Science.gov (United States)

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  19. Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses

    Science.gov (United States)

    Martínez-Sierra, Gustavo; García-González, María del Socorro

    2016-01-01

    Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…

  20. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    Science.gov (United States)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  1. [Problem-solving strategies and marital satisfaction].

    Science.gov (United States)

    Kriegelewicz, Olga

    2006-01-01

    This study investigated the relation between problem-solving strategies in the marital conflict and marital satisfaction. Four problem-solving strategies (Dialogue, Loyalty, Escalation of conflict and Withdrawal) were measured by the Problem-Solving Strategies Inventory, in two versions: self-report and report of partners' perceived behaviour. This measure refers to the concept of Rusbult, Johnson and Morrow, and meets high standards of reliability (alpha Cronbach from alpha = 0.78 to alpha = 0.94) and validity. Marital satisfaction was measured by Marriage Success Scale. The sample was composed of 147 marital couples. The study revealed that satisfied couples, in comparison with non-satisfied couples, tend to use constructive problem-solving strategies (Dialogue and Loyalty). They rarely use destructive strategies like Escalation of conflict or Withdrawal. Dialogue is the strategy connected with satisfaction in a most positive manner. These might be very important guidelines to couples' psychotherapy. Loyalty to oneself is a significant positive predictor of male satisfaction is also own Loyalty. The study shows that constructive attitudes are the most significant predictors of marriage satisfaction. It is therefore worth concentrating mostly on them in the psychotherapeutic process instead of eliminating destructive attitudes.

  2. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi

    2013-12-01

    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  3. Genetics problem solving and worldview

    Science.gov (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  4. impact of the curriculum reform on problem solving ability in ...

    African Journals Online (AJOL)

    unesco

    that “learning is problem solving”. Therefore, teaching problem solving is teaching people how to learn, so is problem solving in chemistry education. Kalbag (4) states that problem solving orientation in chemistry education has an importance in that problem solving converts information into knowledge. Kalbag further states.

  5. Concept mapping instrumental support for problem solving

    NARCIS (Netherlands)

    Stoyanov, S.; Stoyanov, Slavi; Kommers, Petrus A.M.

    2008-01-01

    The main theoretical position of this paper is that it is the explicit problem-solving support in concept mapping software that produces a stronger effect in problem-solving performance than the implicit support afforded by the graphical functionality of concept mapping software. Explicit

  6. Decision-Making Styles and Problem-Solving Appraisal.

    Science.gov (United States)

    Phillips, Susan D.; And Others

    1984-01-01

    Compared decision-making style and problem-solving appraisal in 243 undergraduates. Results suggested that individuals who employ rational decision-making strategies approach problematic situations, while individuals who endorse dependent decisional strategies approach problematic situations without confidence in their problem-solving abilities.…

  7. The Effect of Problem Solving Teaching with Texts of Turkish Lesson on Students’ Problem Solving Skills

    OpenAIRE

    Havva ILGIN; Derya ARSLAN

    2012-01-01

    In this research, by carrying out activities based on texts, effect of providing problem solving skill on students’ levels of problem solving attainment was tried to be identified. Research was performed according to pretest-posttest Experimental Model with Control Group, in 2008-2009 educational year at second grade of an elementary school in Denizli province. For nine weeks, four hours in a week, while teacher guide book was being followed in control group in Turkish language lesson, texts ...

  8. Secondary School Pre-Service Mathematics Teachers' Content Knowledge of Algebraic Word Problem in Nigeria

    Science.gov (United States)

    Usman, Ahmed Ibrahim

    2015-01-01

    Knowledge and understanding of mathematical operations serves as a pre-reequisite for the successful translation of algebraic word problems. This study explored pre-service teachers' ability to recognize mathematical operations as well as use of those capabilities in constructing algebraic expressions, equations, and their solutions. The outcome…

  9. A problem-solving routine for improving hospital operations.

    Science.gov (United States)

    Ghosh, Manimay; Sobek Ii, Durward K

    2015-01-01

    The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.

  10. PROBLEM SOLVING IN SCHOOL MATHEMATICS BASED ON HEURISTIC STRATEGIES

    Directory of Open Access Journals (Sweden)

    NOVOTNÁ, Jarmila

    2014-03-01

    Full Text Available The paper describes one of the ways of developing pupils’ creative approach to problem solving. The described experiment is a part of a longitudinal research focusing on improvement of culture of problem solving by pupils. It deals with solving of problems using the following heuristic strategies: Analogy, Guess – check – revise, Systematic experimentation, Problem reformulation, Solution drawing, Way back and Use of graphs of functions. Most attention is paid to the question whether short-term work, in this case only over the period of three months, can result in improvement of pupils’ abilities to solve problems whose solving algorithms are easily accessible. It also answers the question which strategies pupils will prefer and with what results. The experiment shows that even short-term work can bear positive results as far as pupils’ approach to problem solving is concerned.

  11. Conceptual Problem Solving in High School Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  12. Interactive Problem-Solving Interventions

    African Journals Online (AJOL)

    Frew Demeke Alemu

    concerted efforts of unofficial actors to establish unofficial communication ... Frew Demeke Alemu (LLB, LLM in International Human Rights Law from Lund ..... 24 Tamra Pearson d'Estrée (2009), “Problem-Solving Approaches”, (in The SAGE ...

  13. Implementing the Standards: Teaching Informal Algebra.

    Science.gov (United States)

    Schultz, James E.

    1991-01-01

    Presents suggestions for developing algebraic concepts beginning in the early grades to develop a gradual building from informal to formal algebraic concepts that progresses over the K-12 curriculum. Includes suggestions for representing relationships, solving equations, employing meaningful applications of algebra, and using of technology. (MDH)

  14. Negotiation as a metaphor for distributed problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Smith, R.G.

    1983-01-01

    The authors describe the concept of distributed problem solving and defines it as the cooperative solution of problems by a decentralized and loosely coupled collection of problem solvers. This approach to problem solving offers the promise of increased performance and provides a useful medium for exploring and developing new problem-solving techniques. A framework is presented called the contract net that specifies communication and control in a distribution problem solver. Task distribution is viewed as an interactive process, a discussion carried on between a node with a task to be executed and a group of nodes that may be able to execute the task. The kinds of information are described that must be passed between nodes during the discussion in order to obtain effective problem-solving behavior. This discussion is the origin of the negotiation metaphor: task distribution is viewed as a form of contract negotiation. 32 references.

  15. Problem solving using soft systems methodology.

    Science.gov (United States)

    Land, L

    This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.

  16. Problem solving therapy - use and effectiveness in general practice.

    Science.gov (United States)

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  17. [Methods for teaching problem-solving in medical schools].

    Science.gov (United States)

    Shumway, J M; Vargas, M E; Heller, L E

    1984-01-01

    The need to include in the medical curriculum instructional activities to promote the development of problem-solving abilities has been asserted at the national and international levels. In research on the mental process involved in the solution of problems in medicine, problem-solving has been defined as a hypothetical-deductive activity engaged in by experienced physicians, in which the early generation of hypotheses influences the subsequent gathering of information. This article comments briefly on research on the mental process by which medical problems are solved. It describes the methods that research has shown to be most applicable in instruction to develop problem-solving abilities, and presents some educational principles that justify their application. The "trail-following" approach is the method that has been most commonly used to study the physician's problem-solving behavior. The salient conclusions from this research are that in the problem-solving process the diagnostic hypothesis is generated very early on and with limited data; the number of hypotheses is small; the problem-solving approach is specific to the type of medical problem and case in hand; and the accumulation of medical knowledge and experience forms the basis of clinical competence. Four methods for teaching the solution of problems are described: case presentation, the rain of ideas, the nominal groups technique and decision-making consensus, the census and analysis of forces in the field, and the analysis of clinical decisions. These methods are carried out in small groups. The advantages of the small groups are that the students are active participants in the learning process, they receive formative evaluation of their performance in a setting conductive to learning, and are able to interact with their instructor if he makes proper use of the right questioning techniques. While no single problem-solving method can be useful to all students or in all the problems they encounter

  18. The Solving of Problems in Chemistry: the more open-ended problems

    Science.gov (United States)

    Reid, Norman; Yang, Mei-Jung

    2002-01-01

    Most problem solving in chemistry tends to be algorithmic in nature, while problems in life tend to be very open ended. This paper offers a simple classification of problems and seeks to explore the many factors which may be important in the successful solving of problems. It considers the place of procedures and algorithms. It analyses the role of long-term memory, not only in terms of what is known, but how that knowledge was acquired. It notes the great importance of the limitations of working memory space and the importance of confidence which comes from experience. Finally, various psychological factors are discussed. This paper argues that solving open-ended problems is extremely important in education and that offering learners experience of this in a group work context is a helpful way forward.

  19. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  20. The Unified Problem-Solving Method Development Language UPML

    OpenAIRE

    Fensel, Dieter; Motta, Enrico; van Harmelen, Frank; Benjamins, V. Richard; Crubezy, Monica; Decker, Stefan; Gaspari, Mauro; Groenboom, Rix; Grosso, William; Musen, Mark; Plaza, Enric; Schreiber, Guus; Studer, Rudi; Wielinga, Bob

    2003-01-01

    Problem-solving methods provide reusable architectures and components for implementing the reasoning part of knowledge-based systems. The UNIFIED PROBLEM-SOLVING METHOD DESCRIPTION LANGUAGE (UPML) has been developed to describe and implement such architectures and components to facilitate their semi-automatic reuse and adaptation. In a nutshell, UPML is a framework for developing knowledge-intensive reasoning systems based on libraries ofg eneric problem-solving components. The paper describe...

  1. Strategies, Not Solutions: Involving Students in Problem Solving.

    Science.gov (United States)

    Von Kuster, Lee N.

    1984-01-01

    Defines problem solving, discusses the use of problems developed by students that are relevant to their own lives, presents examples of practical mathematics problems that deal with local situations, discusses fringe benefits of this type of problem solving, and addresses teachers' concern that this method consumes too much time. (MBR)

  2. Innovation and problem solving: a review of common mechanisms.

    Science.gov (United States)

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Learning problem-solving skills in a distance education physics course

    Science.gov (United States)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  4. Algebraic Functions, Computer Programming, and the Challenge of Transfer

    Science.gov (United States)

    Schanzer, Emmanuel Tanenbaum

    2015-01-01

    Students' struggles with algebra are well documented. Prior to the introduction of functions, mathematics is typically focused on applying a set of arithmetic operations to compute an answer. The introduction of functions, however, marks the point at which mathematics begins to focus on building up abstractions as a way to solve complex problems.…

  5. Quantitative Reasoning in Problem Solving

    Science.gov (United States)

    Ramful, Ajay; Ho, Siew Yin

    2015-01-01

    In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.

  6. Measuring Problem Solving Skills in "Portal 2"

    Science.gov (United States)

    Shute, Valerie J.; Wang, Lubin

    2013-01-01

    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  7. Extended conformal algebras

    International Nuclear Information System (INIS)

    Goddard, Peter

    1990-01-01

    The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

  8. Some Issues about the Introduction of First Concepts in Linear Algebra during Tutorial Sessions at the Beginning of University

    Science.gov (United States)

    Grenier-Boley, Nicolas

    2014-01-01

    Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…

  9. Teaching Creative Problem Solving.

    Science.gov (United States)

    Christensen, Kip W.; Martin, Loren

    1992-01-01

    Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)

  10. On Teaching Problem Solving in School Mathematics

    Directory of Open Access Journals (Sweden)

    Erkki Pehkonen

    2013-12-01

    Full Text Available The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open problems (i.e., problem fields. Next we discuss the objectives of the Finnish curriculum that are connected with problem solving. Some examples and research results are taken from a Finnish–Chilean research project that monitors the development of problem-solving skills in third grade pupils. Finally, some ideas on “teacher change” are put forward. It is not possible to change teachers, but only to provide hints for possible change routes: the teachers themselves should work out the ideas and their implementation.

  11. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    Science.gov (United States)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  12. Teacher Practices with Toddlers during Social Problem Solving Opportunities

    Science.gov (United States)

    Gloeckler, Lissy; Cassell, Jennifer

    2012-01-01

    This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…

  13. Geometric and Algebraic Approaches in the Concept of Complex Numbers

    Science.gov (United States)

    Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.

    2006-01-01

    This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…

  14. Teaching Problem Solving Skills to Elementary Age Students with Autism

    Science.gov (United States)

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  15. The effects of monitoring environment on problem-solving performance.

    Science.gov (United States)

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  16. The semantic system is involved in mathematical problem solving.

    Science.gov (United States)

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Examining problem solving in physics-intensive Ph.D. research

    Directory of Open Access Journals (Sweden)

    Anne E. Leak

    2017-07-01

    Full Text Available Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging. Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting, while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options. In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation. Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver’s perspective. This framework will be examined and refined in future work. Understanding problems

  18. Examining problem solving in physics-intensive Ph.D. research

    Science.gov (United States)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students

  19. Relativistic algebraic spinors and quantum motions in phase space

    International Nuclear Information System (INIS)

    Holland, P.R.

    1986-01-01

    Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C 4 , a Jordan-Wigner algebra G 4 , and Wigner transformations. To do this we solve the problem of the conditions under which elements in C 4 generate minimal ideals, and extend this to G 4 . This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations

  20. Using Technology to Facilitate Reasoning: Lifting the Fog from Linear Algebra

    Science.gov (United States)

    Berry, John S.; Lapp, Douglas A.; Nyman, Melvin A.

    2008-01-01

    This article discusses student difficulties in grasping concepts from linear algebra. Using an example from an interview with a student, we propose changes that might positively impact student understanding of concepts within a problem-solving context. In particular, we illustrate barriers to student understanding and suggest technological…

  1. Methods of solving sequence and series problems

    CERN Document Server

    Grigorieva, Ellina

    2016-01-01

    This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions,Met...

  2. Solving global optimization problems on GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)

    2016-06-08

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  3. The Role of Expository Writing in Mathematical Problem Solving

    Science.gov (United States)

    Craig, Tracy S.

    2016-01-01

    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  4. Psychosocial dimensions of solving an indoor air problem.

    Science.gov (United States)

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  5. Problem Solving Strategies among Primary School Teachers

    Science.gov (United States)

    Yew, Wun Thiam; Lian, Lim Hooi; Meng, Chew Cheng

    2017-01-01

    The purpose of this article was to examine problem solving strategies among primary school teachers. The researchers employed survey research design to examine their problem solving strategies. The participants of this study consisted of 120 primary school teachers from a public university in Peninsula Malaysia who enrolled in a 4-year Graduating…

  6. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    Science.gov (United States)

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  7. Solved problems in electrochemistry

    International Nuclear Information System (INIS)

    Piron, D.L.

    2004-01-01

    This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems

  8. Problem-solving deficits in Iranian people with borderline personality disorder.

    Science.gov (United States)

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  9. Spin structures on algebraic curves and their applications in string theories

    International Nuclear Information System (INIS)

    Ferrari, F.

    1990-01-01

    The free fields on a Riemann surface carrying spin structures live on an unramified r-covering of the surface itself. When the surface is represented as an algebraic curve related to the vanishing of the Weierstrass polynomial, its r-coverings are algebraic curves as well. We construct explicitly the Weierstrass polynomial associated to the r-coverings of an algebraic curve. Using standard techniques of algebraic geometry it is then possible to solve the inverse Jacobi problem for the odd spin structures. As an application we derive the partition functions of bosonic string theories in many examples, including two general curves of genus three and four. The partition functions are explicitly expressed in terms of branch points apart from a factor which is essentially a theta constant. 53 refs., 4 figs. (Author)

  10. Algebraic dynamics algorithm: Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG ShunJin; ZHANG Hua

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  11. Algebraic dynamics algorithm:Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  12. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    Science.gov (United States)

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  13. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    Science.gov (United States)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  14. Using reflection techniques for flexible problem solving (with examples from diagnosis)

    NARCIS (Netherlands)

    Teije, A. ten; Harmelen, van F.A.H.

    1996-01-01

    Flexible problem solving consists of the dynamic selection and configuration of problem solving methods for a particular problem type, depending on the particular problem and the goal of problem solving. In this paper, we propose an architecture that supports such flexible problem solving

  15. Cognitive Predictors of Everyday Problem Solving across the Lifespan.

    Science.gov (United States)

    Chen, Xi; Hertzog, Christopher; Park, Denise C

    2017-01-01

    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  16. Beyond Gamification:From Problem-solving to Problem-making

    OpenAIRE

    Ruffino, Paolo

    2014-01-01

    The problem I would like to highlight in this contribution is that gamification has been thought about too much as a tool for problem solving, and not enough as a tool for problem making. The idea of gamification as a tool for problem making could be more useful – although maybe paradoxically. As long as a technique is presented as a method for the solution of problems it can too easily become an authoritative proposal, which takes one solution and vision as necessarily better than the others...

  17. Relative Effects of Problem-Solving and Concept Mapping ...

    African Journals Online (AJOL)

    Relative Effects of Problem-Solving and Concept Mapping Instructional ... mapping strategies are also discussed and their significance and importance to students. ... development of problem solving skills before the end of SSCE Programmebr ...

  18. Impact of Context-Rich, Multifaceted Problems on Students' Attitudes Towards Problem-Solving

    Science.gov (United States)

    Ogilvie, Craig

    2008-04-01

    Young scientists and engineers need strong problem-solving skills to enable them to address the broad challenges they will face in their careers. These challenges will likely be ill-defined and open-ended with either unclear goals, insufficient constraints, multiple possible solutions, and different criteria for evaluating solutions so that our young scientists and engineers must be able to make judgments and defend their proposed solutions. In contrast, many students believe that problem-solving is being able to apply set procedures or algorithms to tasks and that their job as students is to master an ever-increasing list of procedures. This gap between students' beliefs and the broader, deeper approaches of experts is a strong barrier to the educational challenge of preparing students to succeed in their future careers. To start to address this gap, we have used multi-faceted, context-rich problems in a sophomore calculus-based physics course. To assess whether there was any change in students' attitudes or beliefs towards problem-solving, students were asked to reflect on their problem-solving at the beginning and at the end of the semester. These reflections were coded as containing one or more problem-solving ideas. The change in students' beliefs will be shown in this talk.

  19. Using Digital Mapping Tool in Ill-Structured Problem Solving

    Science.gov (United States)

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  20. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    Science.gov (United States)

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  1. Collaborative problem solving with a total quality model.

    Science.gov (United States)

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  2. Students' Competence in some Problem Solving Skills throughout ...

    African Journals Online (AJOL)

    Students' Competence in some Problem Solving Skills throughout their B.Sc. Course. ... there is a need for explicitly identifying important cognitive skills and strategies and ... Keywords: Cognitive skills, thinking skills, problem solving, students' ...

  3. Solving-Problems and Hypermedia Systems

    Directory of Open Access Journals (Sweden)

    Ricardo LÓPEZ FERNÁNDEZ

    2009-06-01

    Full Text Available The solving problems like the transfer constitute two nuclei, related, essential in the cognitive investigation and in the mathematical education. No is in and of itself casual that, from the first moment, in the investigations on the application gives the computer science to the teaching the mathematics, cybernetic models were developed that simulated processes problem solving and transfer cotexts (GPS, 1969 and IDEA (Interactive Decision Envisioning Aid, Pea, BrunerCohen, Webster & Mellen, 1987. The present articulates it analyzes, that can contribute to the development in this respect the new technologies hypermedias, give applications that are good to implement processes of learning the heuristic thought and give the capacity of «transfer». From our perspective and from the experience that we have developed in this field, to carry out a function gives analysis and the theories on the problem solving, it requires that we exercise a previous of interpretation the central aspsects over the theories gives the solving problem and transfer starting from the classic theories on the prosecution of the information. In this sense, so much the theory gives the dual memory as the most recent, J. Anderson (1993 based on the mechanisms activation nodes information they allow to establish an interpretation suggester over the mental mechanism that you/they operate in the heuristic processes. On this analysis, the present articulates it develops a theoritical interpretation over the function gives the supports based on technology hypermedia advancing in the definition of a necessary theoretical body, having in it counts that on the other hand the practical experimentation is permanent concluding in the efficiency and effectiveness gives the support hypermedia like mechanism of comunication in the processes heuristic learning.

  4. Teaching effective problem solving skills to radiation protection students

    International Nuclear Information System (INIS)

    Waller, Edward

    2008-01-01

    Full text: Problem solving skills are essential for all radiation protection personnel. Although some students have more natural problem solving skills than others, all students require practice to become comfortable using these skills. At the University of Ontario Institute of Technology (UOIT), a unique one-semester course was developed as part of the core curriculum to teach students problem solving skills and elements of modelling and simulation. The underlying emphasis of the course was to allow students to develop their own problem solving strategies, both individually and in groups. Direction was provided on how to examine problems from different perspectives, and how to determine the proper root problem statement. A five-point problem solving strategy was presented as: 1) Problem definition; 2) Solution generation; 3) Decision; 4) Implementation; 5) Evaluation. Within the strategy, problem solving techniques were integrated from diverse areas such as: De Bono 's six thinking hats, Kepner-Tregoe decision analysis, Covey's seven habits of highly effective people, Reason's swiss cheese theory of complex failure, and Howlett's common failure modes. As part of the evaluation step, students critically explore areas such as ethics and environmental responsibility. In addition to exploring problem solving methods, students learn the usefulness of simulation methods, and how to model and simulate complex phenomena of relevance to radiation protection. Computational aspects of problem solving are explored using the commercially available MATLAB computer code. A number of case studies are presented as both examples and problems to the students. Emphasis was placed on solutions to problems of interest to radiation protection, health physics and nuclear engineering. A group project, pertaining to an accident or event related to the nuclear industry is a course requirement. Students learn to utilize common time and project management tools such as flowcharting, Pareto

  5. Effects of Concept Mapping and Problem Solving Instructional ...

    African Journals Online (AJOL)

    Administrator

    (iii). lack of organizational skill in solving quantitative problems. (Onwu, 1982, Onwu ... improved in terms of conceptual thinking, intuitive knowledge and insightful ... Problem Solving: This is a cognitive learning strategy which has to do with ...

  6. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    Science.gov (United States)

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Pre-service mathematics teachers’ ability in solving well-structured problem

    Science.gov (United States)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  8. Perbedaan Keterampilan Pemecahan Masalah pada Pembelajaran Fisika Menggunakan Metode Problem Posing dan Problem Solving

    OpenAIRE

    Rahman, Adetya; Hartini, Sri; An'nur, Syubhan

    2015-01-01

    Teachers should be able to choose the method of learning that can help students in learning physics, namely the method of problem posing and problem solving method. The purposes of this study are : (1) describe the learning physics skills by using problem posing method, (2) describe the learning physics skills by using problem solving method, and (3) know difference between learning physics skills by using problem posing method and problem solving method in class XI of Science SMAN 6 Banjarma...

  9. Three-M in Word Problem Solving

    Science.gov (United States)

    Hajra, Sayonita Ghosh; Kofman, Victoria

    2018-01-01

    We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…

  10. Analysis of problem solving in terms of cognitive style

    Science.gov (United States)

    Anthycamurty, Rr C. C.; Mardiyana; Saputro, D. R. S.

    2018-03-01

    The purpose of this study was to analyze the problem solving based on the type of cognitive style. Subjects used in this study are students of class X SMK located in Purworejo. The method used in this research is qualitative descriptive. Data collection techniques used in this research is a problem-solving test to determine student problem solving and GEFT to determine the type of cognitive style possessed by students. The result of this research is to determine the mastery of each type in cognitive style, that is Field Independent type and Field Dependent type on problem solving indicator. The impact of this research is the teacher can know the mastery of student problem solving on each type of cognitive style so that teacher can determine the proper way of delivering to student at next meeting.

  11. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  12. Algebraic model checking for Boolean gene regulatory networks.

    Science.gov (United States)

    Tran, Quoc-Nam

    2011-01-01

    We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.

  13. Teaching problem solving: Don't forget the problem solver(s)

    Science.gov (United States)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  14. Students' Problem Solving and Justification

    Science.gov (United States)

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  15. The Effect of Problem Solving and Problem Posing Models and Innate Ability to Students Achievement

    Directory of Open Access Journals (Sweden)

    Ratna Kartika Irawati

    2015-04-01

    Full Text Available Pengaruh Model Problem Solving dan Problem Posing serta Kemampuan Awal terhadap Hasil Belajar Siswa   Abstract: Chemistry concepts understanding features abstract quality and requires higher order thinking skills. Yet, the learning on chemistry has not boost the higher order thinking skills of the students. The use of the learning model of Problem Solving and Problem Posing in observing the innate ability of the student is expected to resolve the issue. This study aims to determine the learning model which is effective to improve the study of the student with different level of innate ability. This study used the quasi-experimental design. The research data used in this research is the quiz/test of the class which consist of 14 multiple choice questions and 5 essay questions. The data analysis used is ANOVA Two Ways. The results showed that Problem Posing is more effective to improve the student compared to Problem Solving, students with high level of innate ability have better outcomes in learning rather than the students with low level of innate ability after being applied with the Problem solving and Problem posing model, further, Problem Solving and Problem Posing is more suitable to be applied to the students with high level of innate ability. Key Words: problem solving, problem posing, higher order thinking skills, innate ability, learning outcomes   Abstrak: Pemahaman konsep-konsep kimia yang bersifat abstrak membutuhkan keterampilan berpikir tingkat tinggi. Pembelajaran kimia belum mendorong siswa melakukan keterampilan berpikir tingkat tinggi. Penggunaan model pembelajaran Problem Solving dan Problem Posing dengan memperhatikan kemampuan awal siswa diduga dapat mengatasi masalah tersebut. Penelitian ini bertujuan untuk mengetahui model pembelajaran yang efektif dalam meningkatkan hasil belajar dengan kemampuan awal siswa yang berbeda. Penelitian ini menggunakan rancangan eksperimen semu. Data penelitian menggunakan tes hasil belajar

  16. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    Science.gov (United States)

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  17. Does Solving Insight-Based Problems Differ from Solving Learning-Based Problems? Some Evidence from an ERP Study

    Science.gov (United States)

    Leikin, Roza; Waisman, Ilana; Leikin, Mark

    2016-01-01

    We asked: "What are the similarities and differences in mathematical processing associated with solving learning-based and insight-based problems?" To answer this question, the ERP research procedure was employed with 69 male adolescent subjects who solved specially designed insight-based and learning-based tests. Solutions of…

  18. ACE - an algebraic compiler and encoder for the Chalk River datatron computer

    International Nuclear Information System (INIS)

    Kennedy, J.M.; Okazaki, E.A.; Millican, M.

    1960-03-01

    ACE is a program written for the Chalk River Datatron (Burroughs 205) Computer to enable the machine to compile a program for solving a problem from instructions supplied by the user in a notation related much more closely to algebra than to the machine's own code. (author)

  19. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    Science.gov (United States)

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach…

  20. Interference thinking in constructing students’ knowledge to solve mathematical problems

    Science.gov (United States)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  1. Effectiveness of discovery learning model on mathematical problem solving

    Science.gov (United States)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn

    2017-08-01

    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  2. Solved problems in classical electromagnetism

    CERN Document Server

    Franklin, Jerrold

    2018-01-01

    This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.

  3. Cognitive functioning and social problem-solving skills in schizophrenia.

    Science.gov (United States)

    Hatashita-Wong, Michi; Smith, Thomas E; Silverstein, Steven M; Hull, James W; Willson, Deborah F

    2002-05-01

    This study examined the relationships between symptoms, cognitive functioning, and social skill deficits in schizophrenia. Few studies have incorporated measures of cognitive functioning and symptoms in predictive models for social problem solving. For our study, 44 participants were recruited from consecutive outpatient admissions. Neuropsychological tests were given to assess cognitive function, and social problem solving was assessed using structured vignettes designed to evoke the participant's ability to generate, evaluate, and apply solutions to social problems. A sequential model-fitting method of analysis was used to incorporate social problem solving, symptom presentation, and cognitive impairment into linear regression models. Predictor variables were drawn from demographic, cognitive, and symptom domains. Because this method of analysis was exploratory and not intended as hierarchical modelling, no a priori hypotheses were proposed. Participants with higher scores on tests of cognitive flexibility were better able to generate accurate, appropriate, and relevant responses to the social problem-solving vignettes. The results suggest that cognitive flexibility is a potentially important mediating factor in social problem-solving competence. While other factors are related to social problem-solving skill, this study supports the importance of cognition and understanding how it relates to the complex and multifaceted nature of social functioning.

  4. Fostering information problem solving skills through completion problems and prompts

    NARCIS (Netherlands)

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, November). Fostering information problem solving skills through completion problems and prompts. Poster presented at the ICO Fall School 2012, Girona, Spain.

  5. Problem-formulation and problem-solving in self-organized communities

    DEFF Research Database (Denmark)

    Foss, Nicolai J.; Frederiksen, Lars; Rullani, Francesco

    2016-01-01

    Building on the problem-solving perspective, we study behaviors related to projects and the communication-based antecedents of such behaviors in the free open-source software (FOSS) community. We examine two kinds of problem/project-behaviors: Individuals can set up projects around the formulation...

  6. Problem solving in foundation engineering using foundationPro

    CERN Document Server

    Yamin, Mohammad

    2016-01-01

    This book is at once a supplement to traditional foundation engineering textbooks and an independent problem-solving learning tool. The book is written primarily for university students majoring in civil or construction engineering taking foundation analysis and design courses to encourage them to solve design problems. Its main aim is to stimulate problem solving capability and foster self-directed learning. It also explains the use of the foundationPro software, available at no cost, and includes a set of foundation engineering applications. Taking a unique approach, Dr. Yamin summarizes the general step-by-step procedure to solve various foundation engineering problems, illustrates traditional applications of these steps with longhand solutions, and presents the foundationPro solutions. The special structure of the book allows it to be used in undergraduate and graduate foundation design and analysis courses in civil and construction engineering. The book stands as valuable resource for students, faculty, ...

  7. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents

    Science.gov (United States)

    Stacey, Kaye

    2005-01-01

    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  8. AI tools in computer based problem solving

    Science.gov (United States)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  9. Problem Solving with General Semantics.

    Science.gov (United States)

    Hewson, David

    1996-01-01

    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  10. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    Science.gov (United States)

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  11. Neural bases for basic processes in heuristic problem solving: Take solving Sudoku puzzles as an example.

    Science.gov (United States)

    Qin, Yulin; Xiang, Jie; Wang, Rifeng; Zhou, Haiyan; Li, Kuncheng; Zhong, Ning

    2012-12-01

    Newell and Simon postulated that the basic steps in human problem-solving involve iteratively applying operators to transform the state of the problem to eventually achieve a goal. To check the neural basis of this framework, the present study focused on the basic processes in human heuristic problem-solving that the participants identified the current problem state and then recalled and applied the corresponding heuristic rules to change the problem state. A new paradigm, solving simplified Sudoku puzzles, was developed for an event-related functional magnetic resonance imaging (fMRI) study in problem solving. Regions of interest (ROIs), including the left prefrontal cortex, the bilateral posterior parietal cortex, the anterior cingulated cortex, the bilateral caudate nuclei, the bilateral fusiform, as well as the bilateral frontal eye fields, were found to be involved in the task. To obtain convergent evidence, in addition to traditional statistical analysis, we used the multivariate voxel classification method to check the accuracy of the predictions for the condition of the task from the blood oxygen level dependent (BOLD) response of the ROIs, using a new classifier developed in this study for fMRI data. To reveal the roles that the ROIs play in problem solving, we developed an ACT-R computational model of the information-processing processes in human problem solving, and tried to predict the BOLD response of the ROIs from the task. Advances in human problem-solving research after Newell and Simon are then briefly discussed. © 2012 The Institute of Psychology, Chinese Academy of Sciences and Blackwell Publishing Asia Pty Ltd.

  12. Behavioral flexibility and problem solving in an invasive bird.

    Science.gov (United States)

    Logan, Corina J

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  13. Solving Multiple Timetabling Problems at Danish High Schools

    DEFF Research Database (Denmark)

    Kristiansen, Simon

    name; Elective Course Student Sectioning. The problem is solved using ALNS and solutions are proven to be close to optimum. The algorithm has been implemented and made available for the majority of the high schools in Denmark. The second Student Sectioning problem presented is the sectioning of each...... high schools. Two types of consultations are presented; the Parental Consultation Timetabling Problem (PCTP) and the Supervisor Consultation Timetabling Problem (SCTP). One mathematical model containing both consultation types has been created and solved using an ALNS approach. The received solutions...... problems as mathematical models and solve them using operational research techniques. Two of the models and the suggested solution methods have resulted in implementations in an actual decision support software, and are hence available for the majority of the high schools in Denmark. These implementations...

  14. Teaching Quantitative Reasoning: A Better Context for Algebra

    Directory of Open Access Journals (Sweden)

    Eric Gaze

    2014-01-01

    Full Text Available This editorial questions the preeminence of algebra in our mathematics curriculum. The GATC (Geometry, Algebra, Trigonometry, Calculus sequence abandons the fundamental middle school math topics necessary for quantitative literacy, while the standard super-abundance of algebra taught in the abstract fosters math phobia and supports a culturally acceptable stance that math is not relevant to everyday life. Although GATC is seen as a pipeline to STEM (Science, Technology, Engineering, Mathematics, it is a mistake to think that the objective of producing quantitatively literate citizens is at odds with creating more scientists and engineers. The goal must be to create a curriculum that addresses the quantitative reasoning needs of all students, providing meaningful engagement in mathematics that will simultaneously develop quantitative literacy and spark an interest in STEM fields. In my view, such a curriculum could be based on a foundation of proportional reasoning leading to higher-order quantitative reasoning via modeling (including algebraic reasoning and problem solving and statistical literacy (through the exploration and study of data.

  15. Insightful problem solving in an Asian elephant.

    Directory of Open Access Journals (Sweden)

    Preston Foerder

    Full Text Available The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  16. Insightful problem solving in an Asian elephant.

    Science.gov (United States)

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  17. Social problem solving ability predicts mental health among undergraduate students.

    Science.gov (United States)

    Ranjbar, Mansour; Bayani, Ali Asghar; Bayani, Ali

    2013-11-01

    The main objective of this study was predicting student's mental health using social problem solving- ability. In this correlational. descriptive study, 369 (208 female and 161 male) from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson's correlation, t test, and stepwise regression analysis. Data analysis showed significant relationship between social problem solving ability and mental health (P Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P social problem solving ability and mental health.

  18. New method for solving multidimensional scattering problem

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1991-01-01

    A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed

  19. Indoor Air Quality Problem Solving Tool

    Science.gov (United States)

    Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.

  20. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie

    1999-01-01

    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  1. Counterfactual Problem Solving and Situated Cognition

    Directory of Open Access Journals (Sweden)

    Glebkin V.V.,

    2017-08-01

    Full Text Available The paper describes and interprets data of a study on counterfactual problem solving in representatives of modern industrial culture. The study was inspired by similar experiments carried out by A.R. Luria during his expedition to Central Asia. The hypothesis of our study was that representatives of modern industrial culture would solve counterfactual puzzles at a slower rate and with higher numbers of mistakes than similar non-counterfactual tasks. The experiments we conducted supported this hypothesis as well as provided us with some insights as to how to further develop it. For instance, we found no significant differences in time lag in solving counterfactual and ‘realistic’ tasks between the subjects with mathematical and the ones with liberal arts education. As an interpretation of the obtained data, we suggest a two-stage model of counterfactual problem solving: on the first stage, where situated cognition dominates, the realistic situation is transferred into the system of symbols unrelated to this very situation; on the second stage, operations are carried out within the framework of this new system of symbols.

  2. Relationship between Problem-Solving Ability and Career Maturity ...

    African Journals Online (AJOL)

    This study investigated the relationship between problem-solving ability and career maturity of secondary school students in Ibadan, Oyo State, Nigeria. 230 final year secondary school students completed self-report measures of problem solving and career maturity. Multiple regression analysis was used to analyse the data ...

  3. A problem solving model for regulatory policy making

    NARCIS (Netherlands)

    Boer, A.; van Engers, T.; Sileno, G.; Wyner, A.; Benn, N.

    2011-01-01

    In this paper we discuss how the interests and field theory promoted by public administration as a stakeholder in policy argumentation, directly arise from its problem solving activities, using the framework for public administration problem solving we proposed in [1,2]. We propose that calls for

  4. Rumination decreases parental problem-solving effectiveness in dysphoric postnatal mothers.

    Science.gov (United States)

    O'Mahen, Heather A; Boyd, Alex; Gashe, Caroline

    2015-06-01

    Postnatal depression is associated with poorer parenting quality, but there are few studies examining maternal-specific cognitive processes that may impact on parenting quality. In this study, we examined the impact of rumination on parental problem-solving effectiveness in dysphoric and non-dysphoric postnatal mothers. Fifty-nine mothers with a infant aged 12 months and under, 20 of whom had a Beck Depression Score II (BDI-II) score ≥ 14, and 39 who scored less than 14 on the BDI-II were randomly assigned to either a rumination or distraction condition. Problem-solving effectiveness was assessed post-induction with the "Postnatal Parental Problem-Solving Task" (PPST), which was adapted from the Means Ends Problem-solving task. Parental problem-solving confidence was also assessed. Dysphoric ruminating mothers exhibited poorer problem-solving effectiveness and poorer confidence regarding their problem-solving compared to dysphoric distracting, non-dysphoric distracting, and non-dysphoric ruminating mothers. A self-report measure of depressed mood was used. Rumination may be a key mechanism associated with both depressive mood and maternal parenting quality during the postnatal period. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  5. Patterns of problem-solving in children's literacy and arithmetic.

    Science.gov (United States)

    Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James

    2009-11-01

    Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years I and 2 on the arithmetic (addition and subtraction) than literacy-based tasks (reading and spelling). However, across all four tasks, the children showed a tendency to move from less sophisticated procedural-based strategies, which included phonological strategies for reading and spelling and counting-all and finger modellingfor addition and subtraction, to more efficient retrieval methods from Years I to 2. Distinct patterns in children's problem-solving skill were identified on the literacy and arithmetic tasks using two separate cluster analyses. There was a strong association between these two profiles showing that those children with more advanced problem-solving skills on the arithmetic tasks also showed more advanced profiles on the literacy tasks. The results highlight how different-aged children show flexibility in their use of problem-solving strategies across literacy and arithmetical contexts and reinforce the importance of studying variations in children's problem-solving skill across different educational contexts.

  6. Introspection in Problem Solving

    Science.gov (United States)

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  7. Understanding adults’ strong problem-solving skills based on PIAAC

    OpenAIRE

    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano

    2017-01-01

    Purpose Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic, work-related and everyday life factors that are associated with a strong problem-solving performance. Design/methodology/approach The study builds...

  8. Problem Solving and Critical Thinking Skills of Undergraduate Nursing Students

    Directory of Open Access Journals (Sweden)

    Yalçın KANBAY

    2013-12-01

    Full Text Available Due to the fact that critical thinking and problem solving skills are essential components of educational and social lives of individuals, this present study which investigate critical thinking and problem solving skills of undergraduate students of nursing was planned. This is a descriptive study. The study population consisted of undergraduate nursing students of a university during the 2011-2012 academic year. Any specific sampling method was not determined and only the voluntary students was enrolled in the study . Several participants were excluded due to incomplete questionnaires, and eventually a total of 231 nursing students were included in the final sampling. Socio Demographic Features Data Form and the California Critical Thinking Disposition Scale and Problem Solving Inventory were used for data collection. The mean age of 231 subjects (148 girls, 83 boys was 21.34. The mean score of critical thinking was 255.71 for the first-grade, 255.57 for the second-grade, 264.73 for the third-grade, and 256.468 for the forth-grade students. The mean score of critical thinking was determined as 257.41 for the sample, which can be considered as an average value. Although there are mean score differences of critical thinking between the classes , they were not statistically significant (p> 0.05. With regard to the mean score of problem solving, the first-grade students had 92.86, the second-grade students had 94. 29, the third-grade students had 87.00, and the forth-grade students had 92.87. The mean score of problem solving was determined as 92.450 for the sample. Although there are differences between the classes in terms of mean scores of problem solving, it was not found statistically significant (p> 0.05. In this study, statistically significant correlation could not be identified between age and critical thinking skills of the subjects (p>0.05. However, a negative correlation was identified at low levels between critical thinking skills and

  9. An Integrated Architecture for Engineering Problem Solving

    National Research Council Canada - National Science Library

    Pisan, Yusuf

    1998-01-01

    .... This thesis describes the Integrated Problem Solving Architecture (IPSA) that combines qualitative, quantitative and diagrammatic reasoning skills to produce annotated solutions to engineering problems...

  10. Two-Level Adaptive Algebraic Multigrid for a Sequence of Problems with Slowly Varying Random Coefficients [Adaptive Algebraic Multigrid for Sequence of Problems with Slowly Varying Random Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kalchev, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ketelsen, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, P. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-07

    Our paper proposes an adaptive strategy for reusing a previously constructed coarse space by algebraic multigrid to construct a two-level solver for a problem with nearby characteristics. Furthermore, a main target application is the solution of the linear problems that appear throughout a sequence of Markov chain Monte Carlo simulations of subsurface flow with uncertain permeability field. We demonstrate the efficacy of the method with extensive set of numerical experiments.

  11. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    Science.gov (United States)

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  12. Development and validation of a physics problem-solving assessment rubric

    Science.gov (United States)

    Docktor, Jennifer Lynn

    Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.

  13. Enhancing memory and imagination improves problem solving among individuals with depression.

    Science.gov (United States)

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  14. The algebraic-hyperbolic approach to the linearized gravitational constraints on a Minkowski background

    International Nuclear Information System (INIS)

    Winicour, Jeffrey

    2017-01-01

    An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed. (note)

  15. A reflexive perspective in problem solving

    OpenAIRE

    Chio, José Angel; Álvarez, Aida; López, Margarita

    2013-01-01

    The objective of this paper is to favour the methodological process of reflexive analysis in problem solving in the general teaching methods that concentrates in strengthening the dimensional analysis, to gain a greater preparation of the students for the solution of mathematical problems.

  16. What is physics problem solving competency?

    DEFF Research Database (Denmark)

    Niss, Martin

    2018-01-01

    on the nature of physics problem- solving competency. The first, Sommerfeld’s, is a “theory first, phenomenon second” approach. Here the relevant problems originate in one of the theories of physics and the job goal of the problem- solver is to make a mathematical analysis of the suitable equation......A central goal of physics education is to teach problem-solving competency, but the nature of this competency is not well-described in the literature. The present paperarticle uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions......(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi’s position is a “phenomenon first, theory second” approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions...

  17. Homogeneous Buchberger algorithms and Sullivant's computational commutative algebra challenge

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    2005-01-01

    We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge.......We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge....

  18. Quantum algebras as quantizations of dual Poisson–Lie groups

    International Nuclear Information System (INIS)

    Ballesteros, Ángel; Musso, Fabio

    2013-01-01

    A systematic computational approach for the explicit construction of any quantum Hopf algebra (U z (g), Δ z ) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δ z is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λ g ) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by the dual map δ*. From this perspective, the coproduct for U z (g) is just the pull-back of the group law for G*, and the Poisson analogues of the quantum commutation rules for U z (g) are given by the unique Poisson–Lie structure Λ g on G* whose linearization is the Poisson analogue of the initial Lie algebra g. This approach is shown to be a very useful technical tool in order to solve the Lie bialgebra quantization problem explicitly since, once a Lie bialgebra (g, δ) is given, the full dual Poisson–Lie group (G*, Λ) can be obtained either by applying standard Poisson–Lie group techniques or by implementing the algorithm presented here with the aid of symbolic manipulation programs. As a consequence, the quantization of (G*, Λ) will give rise to the full U z (g) quantum algebra, provided that ordering problems are appropriately fixed through the choice of certain local coordinates on G* whose coproduct fulfils a precise ‘quantum symmetry’ property. The applicability of this approach is explicitly demonstrated by reviewing the construction of several instances of quantum deformations of physically relevant Lie algebras such as sl(2,R), the (2+1) anti-de Sitter algebra so(2, 2) and the Poincaré algebra in (3+1) dimensions. (paper)

  19. Interpersonal Problem-Solving Deficits in Self-Poisoning Patients.

    Science.gov (United States)

    McLeavey, Breda C.; And Others

    1987-01-01

    Compared self-poisoning patients with psychiatric patients and nonpatient controls on problem-solving skills and locus of control. The psychiatric and self-poisoning groups showed deficits on interpersonal problem solving compared with nonpatient controls. The self-poisoning group performed below or at the level of the psychiatric group. Locus of…

  20. Problem Solving in Technology Education: A Taoist Perspective.

    Science.gov (United States)

    Flowers, Jim

    1998-01-01

    Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)

  1. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  2. Problem Solving in Practice

    Science.gov (United States)

    Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia

    2017-01-01

    Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…

  3. Topological أ-algebras with Cأ-enveloping algebras II

    Indian Academy of Sciences (India)

    necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.

  4. Solving a novel confinement problem by spartaeine salticids that are predisposed to solve problems in the context of predation.

    Science.gov (United States)

    Cross, Fiona R; Jackson, Robert R

    2015-03-01

    Intricate predatory strategies are widespread in the salticid subfamily Spartaeinae. The hypothesis we consider here is that the spartaeine species that are proficient at solving prey-capture problems are also proficient at solving novel problems. We used nine species from this subfamily in our experiments. Eight of these species (two Brettus, one Cocalus, three Cyrba, two Portia) are known for specialized invasion of other spiders' webs and for actively choosing other spiders as preferred prey ('araneophagy'). Except for Cocalus, these species also use trial and error to derive web-based signals with which they gain dynamic fine control of the resident spider's behaviour ('aggressive mimicry').The ninth species, Paracyrba wanlessi, is not araneophagic and instead specializes at preying on mosquitoes. We presented these nine species with a novel confinement problem that could be solved by trial and error. The test spider began each trial on an island in a tray of water, with an atoll surrounding the island. From the island, the spider could choose between two potential escape tactics (leap or swim), but we decided at random before the trial which tactic would fail and which tactic would achieve partial success. Our findings show that the seven aggressive-mimic species are proficient at solving the confinement problem by repeating 'correct' choices and by switching to the alternative tactic after making an 'incorrect' choice. However, as predicted, there was no evidence of C. gibbosus or P. wanlessi, the two non-aggressive-mimic species, solving the confinement problem. We discuss these findings in the context of an often-made distinction between domain-specific and domain-general cognition.

  5. Worry and problem-solving skills and beliefs in primary school children.

    Science.gov (United States)

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  6. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    Science.gov (United States)

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  7. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  8. Teaching problem-solving skills to nuclear engineering students

    Science.gov (United States)

    Waller, E.; Kaye, M. H.

    2012-08-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and accurate analysis of the problems, design of solutions (focusing on public safety, environmental stewardship and ethics), solution execution and monitoring results. A three-month course in problem solving, modelling and simulation was designed and a collaborative approach was undertaken with instructors from both industry and academia. Training was optimised for the laptop-based pedagogy, which provided unique advantages for a course that includes modelling and simulation components. The concepts and tools learned as part of the training were observed to be utilised throughout the duration of student university studies and interviews with students who have entered the workforce indicate that the approaches learned and practised are retained long term.

  9. Problem-Solving Phase Transitions During Team Collaboration.

    Science.gov (United States)

    Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M

    2018-01-01

    Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.

  10. Fostering Information Problem Solving Skills Through Completion Problems and Prompts

    NARCIS (Netherlands)

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, September). Fostering Information Problem Solving Skills Through Completion Problems and Prompts. Poster presented at the EARLI SIG 6 & 7 "Instructional Design" and "Learning and Instruction with Computers", Bari, Italy.

  11. Sensitivity theory for general non-linear algebraic equations with constraints

    International Nuclear Information System (INIS)

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  12. Emergent Leadership in Children's Cooperative Problem Solving Groups

    Science.gov (United States)

    Sun, Jingjng; Anderson, Richard C.; Perry, Michelle; Lin, Tzu-Jung

    2017-01-01

    Social skills involved in leadership were examined in a problem-solving activity in which 252 Chinese 5th-graders worked in small groups on a spatial-reasoning puzzle. Results showed that students who engaged in peer-managed small-group discussions of stories prior to problem solving produced significantly better solutions and initiated…

  13. Investigasi Kemampuan Problem Solving dan Problem Posing Matematis Mahasiswa Via Pendekatan Realistic

    OpenAIRE

    Afriansyah, Ekasatya Aldila

    2016-01-01

    Mathematical problem solving and problem posing skill are the mathematical skills that need to be owned by students. By having this skill, students can be more creative in expressing ideas by connecting the knowledge that they held previously. But in reality, there are some students who are lack of problem solving skill; therefore it is really important to improve learning through appropriate approach. Realistic approach had been chosen as the learning theory to be applied in the class. This ...

  14. Improving mathematical problem solving : A computerized approach

    NARCIS (Netherlands)

    Harskamp, EG; Suhre, CJM

    Mathematics teachers often experience difficulties in teaching students to become skilled problem solvers. This paper evaluates the effectiveness of two interactive computer programs for high school mathematics problem solving. Both programs present students with problems accompanied by instruction

  15. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    Science.gov (United States)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  16. Problem solving and Program design using the TI-92

    NARCIS (Netherlands)

    Ir.ing. Ton Marée; ir Martijn van Dongen

    2000-01-01

    This textbook is intended for a basic course in problem solving and program design needed by scientists and engineers using the TI-92. The TI-92 is an extremely powerful problem solving tool that can help you manage complicated problems quickly. We assume no prior knowledge of computers or

  17. Analogy as a strategy for supporting complex problem solving under uncertainty.

    Science.gov (United States)

    Chan, Joel; Paletz, Susannah B F; Schunn, Christian D

    2012-11-01

    Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.

  18. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    Science.gov (United States)

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  19. Quantum cluster algebras and quantum nilpotent algebras

    Science.gov (United States)

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  20. Threshold Concepts in the Development of Problem-solving Skills

    Directory of Open Access Journals (Sweden)

    Shelly Wismath

    2015-03-01

    Full Text Available Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called Problems and Puzzles, which introduced students to the theory and practice of problem solving via puzzles. Based on classroom observation and other qualitative data collected over three semesters, we have identified three significant changes in student behaviour at specific points in the course. These changes can be posited to reveal three underlying threshold concepts in the evolution and establishment of students’ problem-solving skills.

  1. An Approach for Solving Linear Fractional Programming Problems

    OpenAIRE

    Andrew Oyakhobo Odior

    2012-01-01

    Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...

  2. Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS

    Science.gov (United States)

    Landsman, N. P.

    Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.

  3. Problem Solving Frameworks for Mathematics and Software Development

    Science.gov (United States)

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley

    2012-01-01

    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  4. Solving Problems with the Percentage Bar

    Science.gov (United States)

    van Galen, Frans; van Eerde, Dolly

    2013-01-01

    At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…

  5. Rational approximatons for solving cauchy problems

    Directory of Open Access Journals (Sweden)

    Veyis Turut

    2016-08-01

    Full Text Available In this letter, numerical solutions of Cauchy problems are considered by multivariate Padé approximations (MPA. Multivariate Padé approximations (MPA were applied to power series solutions of Cauchy problems that solved by using He’s variational iteration method (VIM. Then, numerical results obtained by using multivariate Padé approximations were compared with the exact solutions of Cauchy problems.

  6. Threshold Concepts in the Development of Problem-Solving Skills

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; MacKay, Bruce

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  7. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    Science.gov (United States)

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  8. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.

    Science.gov (United States)

    Shama, Gilli; Dreyfus, Tommy

    1994-01-01

    Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…

  9. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    OpenAIRE

    Jennifer L. Docktor; Jay Dornfeld; Evan Frodermann; Kenneth Heller; Leonardo Hsu; Koblar Alan Jackson; Andrew Mason; Qing X. Ryan; Jie Yang

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of...

  10. Quasi exactly solvable operators and abstract associative algebras

    International Nuclear Information System (INIS)

    Brihaye, Y.; Kosinski, P.

    1998-01-01

    We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra

  11. Algebraic Properties of Toeplitz Operators on the Polydisk

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2011-01-01

    Full Text Available We discuss some algebraic properties of Toeplitz operators on the Bergman space of the polydisk Dn. Firstly, we introduce Toeplitz operators with quasihomogeneous symbols and property (P. Secondly, we study commutativity of certain quasihomogeneous Toeplitz operators and commutators of diagonal Toeplitz operators. Thirdly, we discuss finite rank semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols. Finally, we solve the finite rank product problem for Toeplitz operators on the polydisk.

  12. Behaviors of Problem-Solving Groups

    National Research Council Canada - National Science Library

    Bennis, Warren G

    1958-01-01

    The results of two studies are contained in this report in summary form. They represent the first parts of a program of research designed to study the effects of change and history on the on the behaviors of problem-solving Groups...

  13. Solving Large Clustering Problems with Meta-Heuristic Search

    DEFF Research Database (Denmark)

    Turkensteen, Marcel; Andersen, Kim Allan; Bang-Jensen, Jørgen

    In Clustering Problems, groups of similar subjects are to be retrieved from data sets. In this paper, Clustering Problems with the frequently used Minimum Sum-of-Squares Criterion are solved using meta-heuristic search. Tabu search has proved to be a successful methodology for solving optimization...... problems, but applications to large clustering problems are rare. The simulated annealing heuristic has mainly been applied to relatively small instances. In this paper, we implement tabu search and simulated annealing approaches and compare them to the commonly used k-means approach. We find that the meta-heuristic...

  14. Solving L-L Extraction Problems with Excel Spreadsheet

    Science.gov (United States)

    Teppaitoon, Wittaya

    2016-01-01

    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  15. Instructional Design-Based Research on Problem Solving Strategies

    Science.gov (United States)

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  16. Logo Programming, Problem Solving, and Knowledge-Based Instruction.

    Science.gov (United States)

    Swan, Karen; Black, John B.

    The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…

  17. School Leaders' Problem Framing: A Sense-Making Approach to Problem-Solving Processes of Beginning School Leaders

    Science.gov (United States)

    Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen

    2009-01-01

    In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…

  18. Glogs as Non-Routine Problem Solving Tools in Mathematics

    Science.gov (United States)

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  19. The art and science of problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2005-01-01

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...... solving facilitation both as science and art will be presented. A case study related to examination's planning will be discussed to illustrate the main concepts in practice. In addition, other cases studies will also be shortly presented....

  20. Solving multiconstraint assignment problems using learning automata.

    Science.gov (United States)

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the

  1. Regularization method for solving the inverse scattering problem

    International Nuclear Information System (INIS)

    Denisov, A.M.; Krylov, A.S.

    1985-01-01

    The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table

  2. Calculus Problem Solving Behavior of Mathematic Education Students

    Science.gov (United States)

    Rizal, M.; Mansyur, J.

    2017-04-01

    The purpose of this study is to obtain a description of the problem-solving behaviour of mathematics education students. The attainment of the purpose consisted of several stages: (1) to gain the subject from the mathematic education of first semester students, each of them who has a high, medium, and low competence of mathematic case. (2) To give two mathematical problems with different characteristics. The first problem (M1), the statement does not lead to a resolution. The second problem (M2), a statement leads to problem-solving. (3) To explore the behaviour of problem-solving based on the step of Polya (Rizal, 2011) by way of thinking aloud and in-depth interviews. The obtained data are analysed as suggested by Miles and Huberman (1994) but at first, time triangulation is done or data’s credibility by providing equivalent problem contexts and at different times. The results show that the behavioral problem solvers (mathematic education students) who are capable of high mathematic competency (ST). In understanding M1, ST is more likely to pay attention to an image first, read the texts piecemeal and repeatedly, then as a whole and more focus to the sentences that contain equations, numbers or symbols. As a result, not all information can be received well. When understanding the M2, ST can link the information from a problem that is stored in the working memory to the information on the long-term memory. ST makes planning to the solution of M1 and M2 by using a formula based on similar experiences which have been ever received before. Another case when implementing the troubleshooting plans, ST complete the M1 according to the plan, but not all can be resolved correctly. In contrast to the implementation of the solving plan of M2, ST can solve the problem according to plan quickly and correctly. According to the solving result of M1 and M2, ST conducts by reading the job based on an algorithm and reasonability. Furthermore, when SS and SR understand the

  3. Domain decomposition methods for solving an image problem

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  4. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2016-05-01

    Full Text Available Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach, applying those principles to the specific conditions in the problem (Specific Application of Physics, using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression.

  5. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    Science.gov (United States)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  6. Appreciative Problem Solving

    DEFF Research Database (Denmark)

    Hansen, David

    2012-01-01

    Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...

  7. The Association of DRD2 with Insight Problem Solving.

    Science.gov (United States)

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene ( DRD2 ) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.

  8. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    Directory of Open Access Journals (Sweden)

    Martine Baars

    2017-08-01

    Full Text Available Self-regulated learning (SRL skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale, motivation (i.e., autonomous and controlled motivation, mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels. In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  9. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    Science.gov (United States)

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  10. A SiQuENC for solving physics problems

    Science.gov (United States)

    Liao, David

    2018-04-01

    Students often struggle in AP Physics 1 because they have not been previously trained to develop qualitative arguments. Extensive literature on multiple representations and qualitative reasoning provides strategies to address this challenge. Table I presents three examples, including SiQuENC, which I adapted from a strategy promoted by Etkina et al. To remind students that they can use qualitative reasoning (e.g., arguing from proportionalities), rather than relying only on algebra, I replaced "Solve" with "Analyze." I added a "Communicate" step to guide planning of written responses to AP Physics 1 and 2 questions. To perform this step, draw a circled number around each key point identified in figures, equations, and sentence fragments. Then, convert numbered points into sentences.

  11. Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks

    Science.gov (United States)

    Schönauer, Monika; Brodt, Svenja; Pöhlchen, Dorothee; Breßmer, Anja; Danek, Amory H.; Gais, Steffen

    2018-01-01

    During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving. PMID:29535620

  12. Characteristics of students in comparative problem solving

    Science.gov (United States)

    Irfan, M.; Sudirman; Rahardi, R.

    2018-01-01

    Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.

  13. EISPACK-J: subprogram package for solving eigenvalue problems

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Tsutsui, Tsuneo

    1979-05-01

    EISPACK-J, a subprogram package for solving eigenvalue problems, has been developed and subprograms with a variety of functions have been prepared. These subprograms can solve standard problems of complex matrices, general problems of real matrices and special problems in which only the required eigenvalues and eigenvectors are calculated. They are compared to existing subprograms, showing their features through benchmark tests. Many test problems, including realistic scale problems, are provided for the benchmark tests. Discussions are made on computer core storage and computing time required for each subprogram, and accuracy of the solution. The results show that the subprograms of EISPACK-J, based on Householder, QR and inverse iteration methods, are the best in computing time and accuracy. (author)

  14. Algebra

    CERN Document Server

    Sepanski, Mark R

    2010-01-01

    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  15. Assessment of vertical transfer in problem solving: Mapping the problem design space

    Science.gov (United States)

    Von Korff, Joshua; Hu, Dehui; Rebello, N. Sanjay

    2012-02-01

    In schema-based theories of cognition, vertical transfer occurs when a learner constructs a new schema to solve a transfer task or chooses between several possible schemas. Vertical transfer is interesting to study, but difficult to measure. Did the student solve the problem using the desired schema or by an alternative method? Perhaps the problem cued the student to use certain resources without knowing why? In this paper, we consider some of the threats to validity in problem design. We provide a theoretical framework to explain the challenges faced in designing vertical transfer problems, and we contrast these challenges with horizontal transfer problem design. We have developed this framework from a set of problems that we tested on introductory mechanics students, and we illustrate the framework using one of the problems.

  16. The algebraic method of the scattering inverse problem solution under untraditional statements

    CERN Document Server

    Popushnoj, M N

    2001-01-01

    The algebraic method of the scattering inverse problem solution under untraditional statements is proposed consistently in this review, in the framework of which some quantum theory od scattering charged particles problem were researched afterwards. The inverse problem of scattering theory of charged particles on the complex plane of the Coulomb coupling constant (CCC) is considered. A procedure of interaction potential restoration is established for the case when the energy, orbital moment quadrate and CCC are linearly dependent. The relation between one-parametric problems of the potential scattering of charged particles is investigated

  17. Pose and Solve Varignon Converse Problems

    Science.gov (United States)

    Contreras, José N.

    2014-01-01

    The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

  18. Problem-Solving: Scaling the "Brick Wall"

    Science.gov (United States)

    Benson, Dave

    2011-01-01

    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  19. A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology.

    Science.gov (United States)

    McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron

    2011-03-01

    Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.

  20. The role of problem solving method on the improvement of mathematical learning

    Directory of Open Access Journals (Sweden)

    Saeed Mokhtari-Hassanabad

    2012-10-01

    Full Text Available In history of education, problem solving is one of the important educational goals and teachers or parents have intended that their students have capacity of problem solving. In present research, it is tried that study the problem solving method for mathematical learning. This research is implemented via quasi-experimental method on 49 boy students at high school. The results of Leven test and T-test indicated that problem solving method has more effective on the improvement of mathematical learning than traditional instruction method. Therefore it seems that teachers of mathematics must apply the problem solving method in educational systems till students became self-efficiency in mathematical problem solving.

  1. Writing and mathematical problem solving in Grade 3

    Directory of Open Access Journals (Sweden)

    Belinda Petersen

    2017-06-01

    Full Text Available This article looks at writing tasks as a methodology to support learners’ mathematical problemsolving strategies in the South African Foundation Phase context. It is a qualitative case study and explores the relation between the use of writing in mathematics and development of learners’ problem-solving strategies and conceptual understanding. The research was conducted in a suburban Foundation Phase school in Cape Town with a class of Grade 3 learners involved in a writing and mathematics intervention. Writing tasks were modelled to learners and implemented by them while they were engaged in mathematical problem solving. Data were gathered from a sample of eight learners of different abilities and included written work, interviews, field notes and audio recordings of ability group discussions. The results revealed an improvement in the strategies and explanations learners used when solving mathematical problems compared to before the writing tasks were implemented. Learners were able to reflect critically on their thinking through their written strategies and explanations. The writing tasks appeared to support learners in providing opportunities to construct and apply mathematical knowledge and skills in their development of problem-solving strategies.

  2. Concept Learning versus Problem Solving: Is There a Difference?

    Science.gov (United States)

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  3. Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II

    Science.gov (United States)

    Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael

    2008-01-01

    Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.

  4. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    Science.gov (United States)

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (Pproblem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (PProblem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. The Effect of Using an Explicit General Problem Solving Teaching Approach on Elementary Pre-Service Teachers' Ability to Solve Heat Transfer Problems

    Science.gov (United States)

    Mataka, Lloyd M.; Cobern, William W.; Grunert, Megan L.; Mutambuki, Jacinta; Akom, George

    2014-01-01

    This study investigate the effectiveness of adding an "explicit general problem solving teaching strategy" (EGPS) to guided inquiry (GI) on pre-service elementary school teachers' ability to solve heat transfer problems. The pre-service elementary teachers in this study were enrolled in two sections of a chemistry course for pre-service…

  6. Factors affecting the social problem-solving ability of baccalaureate nursing students.

    Science.gov (United States)

    Lau, Ying

    2014-01-01

    The hospital environment is characterized by time pressure, uncertain information, conflicting goals, high stakes, stress, and dynamic conditions. These demands mean there is a need for nurses with social problem-solving skills. This study set out to (1) investigate the social problem-solving ability of Chinese baccalaureate nursing students in Macao and (2) identify the association between communication skill, clinical interaction, interpersonal dysfunction, and social problem-solving ability. All nursing students were recruited in one public institute through the census method. The research design was exploratory, cross-sectional, and quantitative. The study used the Chinese version of the Social Problem Solving Inventory short form (C-SPSI-R), Communication Ability Scale (CAS), Clinical Interactive Scale (CIS), and Interpersonal Dysfunction Checklist (IDC). Macao nursing students were more likely to use the two constructive or adaptive dimensions rather than the three dysfunctional dimensions of the C-SPSI-R to solve their problems. Multiple linear regression analysis revealed that communication ability (ß=.305, pproblem-solving after controlling for covariates. Macao has had no problem-solving training in its educational curriculum; an effective problem-solving training should be implemented as part of the curriculum. With so many changes in healthcare today, nurses must be good social problem-solvers in order to deliver holistic care. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Social problem-solving in high-functioning schizophrenia: specific deficits in sending skills.

    Science.gov (United States)

    Vaskinn, Anja; Sundet, Kjetil; Hultman, Christina M; Friis, Svein; Andreassen, Ole A

    2009-02-28

    This study examined social problem-solving performance in high-functioning schizophrenia (n=26) and its relation to neurocognition. Ten healthy controls were used as a comparison group. Social problem-solving was assessed with the Assessment of Interpersonal Problem Solving Skills (AIPSS) method. The schizophrenia group was outperformed by healthy controls on all AIPSS measures, reaching statistical significance for sending skills. Exploration of the internal relationship between different aspects of social problem-solving showed that identification of an interpersonal problem (a receiving skill) was not correlated with formulating solutions to the problem (processing skills) or successfully role-playing solutions (interpersonal sending skills). Non-verbal performance in the role-play (an interpersonal sending skill) was not significantly correlated with identification of an interpersonal problem or the generation of solutions. This suggests a dissociation of social problem-solving processes. Social problem-solving was significantly associated with psychomotor speed, verbal learning, semantic fluency and cognitive flexibility. Clinical implications are that remediation of social problem-solving skills should focus on role-playing (nonverbal) interpersonal behaviors, rather than on verbally analyzing an interpersonal problem and clarifying alternative solutions.

  8. Personality and problem-solving in common mynas (Acridotheres tristis).

    Science.gov (United States)

    Lermite, Françoise; Peneaux, Chloé; Griffin, Andrea S

    2017-01-01

    Animals show consistent individual differences in behaviour across time and/or contexts. Recently, it has been suggested that proactive personality types might also exhibit fast cognitive styles. The speed with which individuals sample environmental cues is one way in which correlations between personality and cognition might arise. Here, we measured a collection of behavioural traits (competitiveness, neophobia, neophilia, task-directed motivation and exploration) in common mynas (Acridotheres tristis) and measured their relationship with problem solving. We predicted that fast solving mynas would interact with (i.e. sample) the problem solving task at higher rates, but also be more competitive, less neophobic, more neophilic, and more exploratory. Mynas that were faster to solve a novel foraging problem were no more competitive around food and no more inclined to take risks. Unexpectedly, these fast-solving mynas had higher rates of interactions with the task, but also displayed lower levels of exploration. It is possible that a negative relation between problem solving and spatial exploration arose as a consequence of how inter-individual variation in exploration was quantified. We discuss the need for greater consensus on how to measure exploratory behaviour before we can advance our understanding of relationships between cognition and personality more effectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Social support, problem solving, and the longitudinal course of newlywed marriage.

    Science.gov (United States)

    Sullivan, Kieran T; Pasch, Lauri A; Johnson, Matthew D; Bradbury, Thomas N

    2010-04-01

    Married couples (N = 172) were observed as newlyweds and observed again 1 year later while engaging in 2 problem-solving and 2 personal support discussions. Microanalytic coding of these conversations was used to examine associations between problem-solving and social support behaviors for 1 year and their relative contributions to 10-year trajectories of self-reported relationship satisfaction and dissolution. Results demonstrated that initially lower levels of positive support behaviors and higher levels of negative support behaviors predicted 1-year increases in negative emotion displayed during problem-solving conversations. Emotions coded from the initial problem-solving conversations did not predict 1-year changes in social support behaviors. Controlling for emotions displayed during problem-solving interactions eliminated or reduced associations between initial social support behaviors and (a) later levels of satisfaction and (b) relationship dissolution. These findings corroborate models that prioritize empathy, validation, and caring as key elements in the development of intimacy (e.g., Reis & Shaver, 1988) and suggest that deficits in these domains foreshadow deterioration in problem solving and conflict management. Implications for integrating support and problem solving in models of relationship change are outlined, as are implications for incorporating social support in education programs for developing relationships.

  10. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    Science.gov (United States)

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  11. Self-directed questions to improve students' ability in solving chemical problems

    Science.gov (United States)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  12. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    Science.gov (United States)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  13. Social problem solving ability predicts mental health among undergraduate students

    Directory of Open Access Journals (Sweden)

    Mansour Ranjbar

    2013-01-01

    Methods : In this correlational- descriptive study, 369 (208 female and 161 male from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson′s correlation, t test, and stepwise regression analysis. Results : Data analysis showed significant relationship between social problem solving ability and mental health (P < 0.01. Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P < 0.01. Conclusions: The results of our study demonstrated that there is a significant correlation between social problem solving ability and mental health.

  14. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    Science.gov (United States)

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  15. Working memory components as predictors of children's mathematical word problem solving.

    Science.gov (United States)

    Zheng, Xinhua; Swanson, H Lee; Marcoulides, George A

    2011-12-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N=310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM, reading, and math calculation. Structural equation modeling analyses indicated that (a) all three WM components significantly predicted problem-solving accuracy, (b) reading skills and calculation proficiency mediated the predictive effects of the central executive system and the phonological loop on solution accuracy, and (c) academic mediators failed to moderate the relationship between the visual-spatial sketchpad and solution accuracy. The results support the notion that all components of WM play a major role in predicting problem-solving accuracy, but basic skills acquired in specific academic domains (reading and math) can compensate for some of the influence of WM on children's mathematical word problem solving. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Iwahori-Hecke algebras and Schur algebras of the symmetric group

    CERN Document Server

    Mathas, Andrew

    1999-01-01

    This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the q-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and q-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in Chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the q-Schur algebras. T...

  17. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  18. Improving insight and non-insight problem solving with brief interventions.

    Science.gov (United States)

    Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma

    2013-02-01

    Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.

  19. DDASAC, Double-Precision Differential or Algebraic Sensitivity Analysis

    International Nuclear Information System (INIS)

    Caracotsios, M.; Stewart, W.E.; Petzold, L.

    1997-01-01

    1 - Description of program or function: DDASAC solves nonlinear initial-value problems involving stiff implicit systems of ordinary differential and algebraic equations. Purely algebraic nonlinear systems can also be solved, given an initial guess within the region of attraction of a solution. Options include automatic reconciliation of inconsistent initial states and derivatives, automatic initial step selection, direct concurrent parametric sensitivity analysis, and stopping at a prescribed value of any user-defined functional of the current solution vector. Local error control (in the max-norm or the 2-norm) is provided for the state vector and can include the sensitivities on request. 2 - Method of solution: Reconciliation of initial conditions is done with a damped Newton algorithm adapted from Bain and Stewart (1991). Initial step selection is done by the first-order algorithm of Shampine (1987), extended here to differential-algebraic equation systems. The solution is continued with the DASSL predictor- corrector algorithm (Petzold 1983, Brenan et al. 1989) with the initial acceleration phase detected and with row scaling of the Jacobian added. The backward-difference formulas for the predictor and corrector are expressed in divide-difference form, and the fixed-leading-coefficient form of the corrector (Jackson and Sacks-Davis 1980, Brenan et al. 1989) is used. Weights for error tests are updated in each step with the user's tolerances at the predicted state. Sensitivity analysis is performed directly on the corrector equations as given by Catacotsios and Stewart (1985) and is extended here to the initialization when needed. 3 - Restrictions on the complexity of the problem: This algorithm, like DASSL, performs well on differential-algebraic systems of index 0 and 1 but not on higher-index systems; see Brenan et al. (1989). The user assigns the work array lengths and the output unit. The machine number range and precision are determined at run time by a

  20. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    Science.gov (United States)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  1. Problem Solving and the Development of Expertise in Management.

    Science.gov (United States)

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  2. Student’s thinking process in solving word problems in geometry

    Science.gov (United States)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-05-01

    This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.

  3. Parents' and Teachers' Opinions of Preschool Children's Social Problem-Solving and Behavioural Problems

    Science.gov (United States)

    Kasik, László; Gál, Zita

    2016-01-01

    The aim of our study was to shed light on (1) what Hungarian mothers, fathers and teachers of 4-6-year-olds think of these children's social problem-solving (SPS) and their difficulties in terms of problem-solving, adaptability and prosocial behaviour; (2) studying any correlation between the examined aspects and (3) the connection between one's…

  4. Transformational and transactional leadership and problem solving in restaurant industry

    OpenAIRE

    Huhtala, Nina

    2013-01-01

    The study tries to give information on the leadership behavior of restaurant managers in their problem solving. The results of the study were collected by evaluating three restaurant managers by interviewing them. The restaurant managers’ answers were compared to transformational and transactional leadership model and the aspects of it. Their problem solving skills were evaluated by the help of a rational and creative problem solving model. The study showed that restaurant managers have both ...

  5. Self-Assessment of Problem Solving Disposition in Medical Students

    Directory of Open Access Journals (Sweden)

    Silvia Lizett Olivares-Olivares

    2014-01-01

    Full Text Available Medical schools are committed to both students and society to develop capabilities required to succeed in health care environments. Present diagnosis and treatment methods become obsolete faster, demanding that medical schools incorporate competency-based education to keep pace with future demands. This study was conducted to assess the problem solving disposition of medical students. A three-subcategory model of the skill is proposed. The instrument was validated on content by a group of 17 experts in medical education and applied to 135 registered students on the sixth year of the M.D. Physician Surgeon program at a private medical school. Cronbach’s alpha indicated an internal consistency of 0.751. The findings suggest that selected items have both homogeneity and validity. The factor analysis resulted in components that were associated with three problem-solving subcategories. The students’ perceptions are higher in the pattern recognition and application of general strategies for problem solving subcategories of the Problem solving disposition model.

  6. Error Patterns in Problem Solving.

    Science.gov (United States)

    Babbitt, Beatrice C.

    Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…

  7. Simulated annealing algorithm for solving chambering student-case assignment problem

    Science.gov (United States)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  8. How to solve applied mathematics problems

    CERN Document Server

    Moiseiwitsch, B L

    2011-01-01

    This workbook bridges the gap between lectures and practical applications, offering students of mathematics, engineering, and physics the chance to practice solving problems from a wide variety of fields. 2011 edition.

  9. Solving Differential Equations in R: Package deSolve

    Directory of Open Access Journals (Sweden)

    Karline Soetaert

    2010-02-01

    Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in

  10. The role of qualitative discussion in problem solving

    International Nuclear Information System (INIS)

    Cerny, V.

    1998-01-01

    The paper contributes to the methodology of problem solving in physics. We argue that the task of solving a problem does not end by obtaining the result. We claim that a question like 'Why the result came out as it did?' can be meaningfully posed and that deeper understanding of the subject comes out as a result of a discussion on possible answers to such a question (Author)

  11. Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking

    Science.gov (United States)

    Pearn, Catherine; Stephens, Max

    2015-01-01

    Many researchers argue that a deep understanding of fractions is important for a successful transition to algebra. Teaching, especially in the middle years, needs to focus specifically on those areas of fraction knowledge and operations that support subsequent solution processes for algebraic equations. This paper focuses on the results of Year 6…

  12. The Markov moment problem and extremal problems

    CERN Document Server

    Kreĭn, M G; Louvish, D

    1977-01-01

    In this book, an extensive circle of questions originating in the classical work of P. L. Chebyshev and A. A. Markov is considered from the more modern point of view. It is shown how results and methods of the generalized moment problem are interlaced with various questions of the geometry of convex bodies, algebra, and function theory. From this standpoint, the structure of convex and conical hulls of curves is studied in detail and isoperimetric inequalities for convex hulls are established; a theory of orthogonal and quasiorthogonal polynomials is constructed; problems on limiting values of integrals and on least deviating functions (in various metrics) are generalized and solved; problems in approximation theory and interpolation and extrapolation in various function classes (analytic, absolutely monotone, almost periodic, etc.) are solved, as well as certain problems in optimal control of linear objects.

  13. Scientific Approach to Improve Mathematical Problem Solving Skills Students of Grade V

    Science.gov (United States)

    Roheni; Herman, T.; Jupri, A.

    2017-09-01

    This study investigates the skills of elementary school students’ in problem solving through the Scientific Approach. The purpose of this study is to determine mathematical problem solving skills of students by using Scientific Approach is better than mathematical problem solving skills of students by using Direct Instruction. This study is using quasi-experimental method. Subject of this study is students in grade V in one of state elementary school in Cirebon Regency. Instrument that used in this study is mathematical problem solving skills. The result of this study showed that mathematical problem solving skills of students who learn by using Scientific Approach is more significant than using Direct Instruction. Base on result and analysis, the conclusion is that Scientific Approach can improve students’ mathematical problem solving skills.

  14. The Effect of Reading Comprehension and Problem Solving Strategies on Classifying Elementary 4th Grade Students with High and Low Problem Solving Success

    Science.gov (United States)

    Ulu, Mustafa

    2017-01-01

    In this study, the effect of fluent reading (speed, reading accuracy percentage, prosodic reading), comprehension (literal comprehension, inferential comprehension) and problem solving strategies on classifying students with high and low problem solving success was researched. The sampling of the research is composed of 279 students at elementary…

  15. Scaffolding for solving problem in static fluid: A case study

    Science.gov (United States)

    Koes-H, Supriyono; Muhardjito, Wijaya, Charisma P.

    2018-01-01

    Problem solving is one of the basic abilities that should be developed from learning physics. However, students still face difficulties in the process of non-routine problem-solving. Efforts are necessary to be taken in order to identify such difficulties and the solutions to solve them. An effort in the form of a diagnosis of students' performance in problem solving can be taken to identify their difficulties, and various instructional scaffolding supports can be utilized to eliminate the difficulties. This case study aimed to describe the students' difficulties in solving static fluid problems and the effort to overcome such difficulties through different scaffolding supports. The research subjects consisted of four 10-grade students of (Public Senior High School) SMAN 4 Malang selected by purposive sampling technique. The data of students' difficulties were collected via think-aloud protocol implemented on students' performance in solving non-routine static fluid problems. Subsequently, combined scaffolding supports were given to the students based on their particular difficulties. The research findings pointed out that there were several conceptual difficulties discovered from the students when solving static fluid problems, i.e. the use of buoyancy force formula, determination of all forces acting on a plane in a fluid, the resultant force on a plane in a fluid, and determination of a plane depth in a fluid. An effort that can be taken to overcome such conceptual difficulties is providing a combination of some appropriate scaffolding supports, namely question prompts with specific domains, simulation, and parallel modeling. The combination can solve students' lack of knowledge and improve their conceptual understanding, as well as help them to find solutions by linking the problems with their prior knowledge. According to the findings, teachers are suggested to diagnose the students' difficulties so that they can provide an appropriate combination of

  16. Solving potential field problems in composite media with complicated geometries

    International Nuclear Information System (INIS)

    Yeh, H.

    1977-01-01

    Recently, Yeh developed a method of solving potential field problems for complicated geometries and theorems of piecewise continuous eigenfunctions which can be used to solve boundary-value problems in composite media by the separation of variables. This paper shows that by a proper arrangement of matching conditions and boundary conditions, this method and these theorems can be applied simultaneously so that the problems in composite media with complicated geometries can be solved. To illustrate this, a heat-conduction problem in a composite cylinder with an abrupt change in cross-section area is solved. Also presented in this paper are the method of handling the nonhomogeneous boundary conditions for composite media and the extension of one of the above-mentioned theorems to include imperfect contact on material boundaries

  17. Algorithmic and experimental methods in algebra, geometry, and number theory

    CERN Document Server

    Decker, Wolfram; Malle, Gunter

    2017-01-01

    This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved.  The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It off...

  18. Human Problem Solving in 2012

    Science.gov (United States)

    Funke, Joachim

    2013-01-01

    This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…

  19. Solving the SAT problem using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Arunava Bhattacharjee

    2017-08-01

    Full Text Available In this paper we propose our genetic algorithm for solving the SAT problem. We introduce various crossover and mutation techniques and then make a comparative analysis between them in order to find out which techniques are the best suited for solving a SAT instance. Before the genetic algorithm is applied to an instance it is better to seek for unit and pure literals in the given formula and then try to eradicate them. This can considerably reduce the search space, and to demonstrate this we tested our algorithm on some random SAT instances. However, to analyse the various crossover and mutation techniques and also to evaluate the optimality of our algorithm we performed extensive experiments on benchmark instances of the SAT problem. We also estimated the ideal crossover length that would maximise the chances to solve a given SAT instance.

  20. Creativity and problem Solving

    Directory of Open Access Journals (Sweden)

    René Victor Valqui Vidal

    2004-12-01

    Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.