WorldWideScience

Sample records for solvent-free sample preparation

  1. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    Science.gov (United States)

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  2. Solvent Free Preparation of p-Cymene from Limonene Using Vietnamese Montmorillonite

    DEFF Research Database (Denmark)

    Nguyen, Thao-Tran Thi; Duus, Fritz; Le, Thach Ngoc

    2013-01-01

    p-Cymene, an important intermediate in industrial chemistry, has been prepared in good yields by thermally induced dehydrogenation of limonene under solvent-free reaction conditions using Vietnamese montmorillonite as an efficient green catalyst.......p-Cymene, an important intermediate in industrial chemistry, has been prepared in good yields by thermally induced dehydrogenation of limonene under solvent-free reaction conditions using Vietnamese montmorillonite as an efficient green catalyst....

  3. Solvent-free sample preparation by headspace solid-phase microextraction applied to the tracing of n-butyl nitrite abuse.

    Science.gov (United States)

    Tytgat, J; Daenens, P

    1996-01-01

    The most common alkyl nitrites encountered in forensic toxicology are iso-butyl, n-butyl and iso-pentyl(amyl) nitrites. All have become popular as an aphrodisiac, especially among the homosexual population. Alkyl nitrites are a volatile and unstable group of compounds, which hydrolyse in aqueous matrices to the alcohol and nitrite ion. Here we describe a fast, clean and sensitive procedure for the detection of hydrolysed n-butyl nitrite in whole human blood using a new, solvent-free sampling technique, the headspace solid-phase micro-extraction (HSPME), combined with GC/FID analysis. Sample preparation was investigated using two different stationary phases (100 microns polydimethylsiloxane and 85 microns polyacrylate), coating a fused silica fibre. The effect of different sampling times at fixed temperatures was also studied. Our results demonstrate that the HSPME/GC/FID procedure allows tracing of n-butyl nitrite abuse and detects hydrolysed n-butyl nitrite, i.e., released n-butanol, in whole blood at the 1 ng/mL level.

  4. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface functionalization of SBA-15 by the solvent-free method

    International Nuclear Information System (INIS)

    Wang Yimeng; Zheng Yingwu; Zhu Jianhua

    2004-01-01

    A solvent-free technique was employed for fast modification of mesoporous materials. Copper, chromium and iron oxide species could be highly dispersed in SBA-15 by manually grinding the corresponding precursor salts and the host, followed by calcinations for the first time. This method is more effective to spontaneously disperse oxide species onto SBA-15 than impregnation, probably forming monolayer or submonolayer dispersion of salts or oxides. Besides, Cr(VI) species dominate in the mixing sample while Cr(III) species dominate in the impregnation one. In the temperature programmed surface reaction of nitrosamines, the sample prepared by solvent-free method showed a higher catalytic activity than the impregnation one

  6. SHORT COMMUNICATION SOLVENT FREE PREPARATION OF N ...

    African Journals Online (AJOL)

    Preferred Customer

    KEYWORDS: Solvent free, Maleanilic acids, Maleic anhydride, Aniline derivatives ... associated with the carboxylic group between 3275-2877 cm-1, the weak –NH .... Chemical shifts (σ/ppm) relative to TMS*. O-H N-H Ha. Hb. Hc. Hd. He. Hf.

  7. Solvent-assisted dispersive solid-phase extraction: A sample preparation method for trace detection of diazinon in urine and environmental water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-09-02

    In this research, a sample preparation method termed solvent-assisted dispersive solid-phase extraction (SA-DSPE) was applied. The used sample preparation method was based on the dispersion of the sorbent into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was received by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the diazinon, the cloudy solution was centrifuged and diazinon in the sediment phase dissolved in ethanol and determined by gas chromatography-flame ionization detector. Under the optimized conditions (pH of solution=7.0, Sorbent: benzophenone, 2%, Disperser solvent: ethanol, 500μL, Centrifuge: centrifuged at 4000rpm for 3min), the method detection limit for diazinon was 0.2, 0.3, 0.3 and 0.3μgL(-1) for distilled water, lake water, waste water and urine sample, respectively. Furthermore, the pre-concentration factor was 363.8, 356.1, 360.7 and 353.38 in distilled water, waste water, lake water and urine sample, respectively. SA-DSPE was successfully used for trace monitoring of diazinon in urine, lake and waste water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-10-01

    In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-11-01

    Full Text Available The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.

  10. Preparation of Ultra-fine Calcium Carbonate by a Solvent-free ...

    African Journals Online (AJOL)

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  11. Sample preparation

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Sample preparation prior to HPLC analysis is certainly one of the most important steps to consider in trace or ultratrace analysis. For many years scientists have tried to simplify the sample preparation process. It is rarely possible to inject a neat liquid sample or a sample where preparation may not be any more complex than dissolution of the sample in a given solvent. The last process alone can remove insoluble materials, which is especially helpful with the samples in complex matrices if other interactions do not affect extraction. Here, it is very likely a large number of components will not dissolve and are, therefore, eliminated by a simple filtration process. In most cases, the process of sample preparation is not as simple as dissolution of the component interest. At times, enrichment is necessary, that is, the component of interest is present in very large volume or mass of material. It needs to be concentrated in some manner so a small volume of the concentrated or enriched sample can be injected into HPLC. 88 refs

  12. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    OpenAIRE

    Helena Prosen

    2014-01-01

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several...

  13. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    Directory of Open Access Journals (Sweden)

    Helena Prosen

    2014-05-01

    Full Text Available Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc. published in the last decade. Several innovative liquid-phase microextraction (LPME techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME, hollow fiber-liquid phase microextraction (HF-LPME, dispersive liquid-liquid microextraction (DLLME. Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  14. Applications of liquid-phase microextraction in the sample preparation of environmental solid samples.

    Science.gov (United States)

    Prosen, Helena

    2014-05-23

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several innovative liquid-phase microextraction (LPME) techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME). Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  15. Sample loading for C-14 measurement in the simulated organic solvent waste from a CANDU Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dianu, Magdalena; Podina, C.; Nita, Valentina

    2005-01-01

    Full text: Sample preparation is a critical step in obtaining accurate results in scintillation counting. Standard (22 ml) glass and plastic vials were used in these experiments. The preliminary research was conducted using glass vials to allow visual verification that a homogeneous solution is obtained at the desired cocktail/sample ratio. Then, the research was moved into plastic vials to reduce backgrounds and improve the counting rate. Samples were counted in a Model 2100 TR Packard TRI-CARB liquid scintillation analyzer. The paper mainly contains: - Composition and data about liquid scintillation cocktails used (tables); - Characterization of radioactive waste - organic solvent contaminated with C-14; - Sample loading (tables); - Efficiency vs Sample Loading - for each cocktail used. Organic solvent sample volumes were added to the vials in 0.5 ml increments from 1 ml to 2 ml. Then, the liquid scintillation cocktail was added so that the sample-cocktail volume was 20 ml. Each vial was shaken vigorously for several seconds after each addition to ensure homogeneity and count. Blank vials were prepared using C-14-free organic solvent samples in the same sample-cocktail proportions. After at least two hours, the samples and blank vials were counted for ten minutes, using a Packard counter. (authors)

  16. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    Science.gov (United States)

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  17. Multicomponent One-Pot Synthesis of Substituted Hantzsch Thiazole Derivatives Under Solvent Free Conditions

    Directory of Open Access Journals (Sweden)

    Bhaskar S. Dawane

    2009-01-01

    Full Text Available Thiazole derivatives were prepared by one-pot procedure by the reaction of α-haloketones, thiourea and substituted o-hydroxybenzaldehyde under environmentally solvent free conditions.

  18. Preparation of Risedronate Nanoparticles by Solvent Evaporation Technique

    Directory of Open Access Journals (Sweden)

    Eliska Vaculikova

    2014-11-01

    Full Text Available One approach for the enhancement of oral drug bioavailability is the technique of nanoparticle preparation. Risedronate sodium (Biopharmaceutical Classification System Class III was chosen as a model compound with high water solubility and low intestinal permeability. Eighteen samples of risedronate sodium were prepared by the solvent evaporation technique with sodium dodecyl sulfate, polysorbate, macrogol, sodium carboxymethyl cellulose and sodium carboxymethyl dextran as nanoparticle stabilizers applied in three concentrations. The prepared samples were characterized by dynamic light scattering and scanning electron microscopy. Fourier transform mid-infrared spectroscopy was used for verification of the composition of the samples. The particle size of sixteen samples was less than 200 nm. Polysorbate, sodium carboxymethyl dextran and macrogol were determined as the most favourable excipients; the particle size of the samples of risedronate with these excipients ranged from 2.8 to 10.5 nm.

  19. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Science.gov (United States)

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  20. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Dario, E-mail: dario.braga@unibo.it [Dipartimento di Chimica ' G.Ciamician' , Universita degli studi di Bologna, Via Selmi 2, 40126 Bologna (Italy); Grepioni, Fabrizia; Maini, Lucia; Mazzeo, Paolo P.; Rubini, Katia [Dipartimento di Chimica ' G.Ciamician' , Universita degli studi di Bologna, Via Selmi 2, 40126 Bologna (Italy)

    2010-08-10

    Co-crystals of phenazine and acridine with vanillin have been obtained by solvent-free reaction or thermal treatment of the solid reactants: their structures, thermal behaviour and eutectic formation have been investigated via single crystal X-ray diffraction, differential scanning calorimetry (DSC), variable temperature X-ray powder diffraction and hot-stage microscopy (HSM). Polymorph screening of the reagents has also been carried out.

  1. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin

    International Nuclear Information System (INIS)

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Mazzeo, Paolo P.; Rubini, Katia

    2010-01-01

    Co-crystals of phenazine and acridine with vanillin have been obtained by solvent-free reaction or thermal treatment of the solid reactants: their structures, thermal behaviour and eutectic formation have been investigated via single crystal X-ray diffraction, differential scanning calorimetry (DSC), variable temperature X-ray powder diffraction and hot-stage microscopy (HSM). Polymorph screening of the reagents has also been carried out.

  2. Metal retention in human transferrin: consequences of solvent composition in analytical sample preparation methods.

    Science.gov (United States)

    Quarles, C Derrick; Randunu, K Manoj; Brumaghim, Julia L; Marcus, R Kenneth

    2011-10-01

    The analysis of metal-binding proteins requires careful sample manipulation to ensure that the metal-protein complex remains in its native state and the metal retention is preserved during sample preparation or analysis. Chemical analysis for the metal content in proteins typically involves some type of liquid chromatography/electrophoresis separation step coupled with an atomic (i.e., inductively coupled plasma-optical emission spectroscopy or -mass spectrometry) or molecular (i.e., electrospray ionization-mass spectrometry) analysis step that requires altered-solvent introduction techniques. UV-VIS absorbance is employed here to monitor the iron content in human holo-transferrin (Tf) under various solvent conditions, changing polarity, pH, ionic strength, and the ionic and hydrophobic environment of the protein. Iron loading percentages (i.e. 100% loading equates to 2 Fe(3+):1 Tf) were quantitatively determined to evaluate the effect of solvent composition on the retention of Fe(3+) in Tf. Maximum retention of Fe(3+) was found in buffered (20 mM Tris) solutions (96 ± 1%). Exposure to organic solvents and deionized H(2)O caused release of ~23-36% of the Fe(3+) from the binding pocket(s) at physiological pH (7.4). Salt concentrations similar to separation conditions used for ion exchange had little to no effect on Fe(3+) retention in holo-Tf. Unsurprisingly, changes in ionic strength caused by additions of guanidine HCl (0-10 M) to holo-Tf resulted in unfolding of the protein and loss of Fe(3+) from Tf; however, denaturing and metal loss was found not to be an instantaneous process for additions of 1-5 M guanidinium to Tf. In contrast, complete denaturing and loss of Fe(3+) was instantaneous with ≥6 M additions of guanidinium, and denaturing and loss of iron from Tf occurred in parallel proportions. Changes to the hydrophobicity of Tf (via addition of 0-14 M urea) had less effect on denaturing and release of Fe(3+) from the Tf binding pocket compared to changes

  3. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  4. A Highly Efficient Solvent-Free Acetalization of Aldehydes to 1,1 ...

    African Journals Online (AJOL)

    1,1-Diacetates are prepared in excellent yields from aldehydes and acetic anhydride under solvent-free conditions at room temperature in short reaction times using catalytic amount of sulfonic acid functionalized silica (SiO2-Pr-SO3H) which could be easily handled and removed from the mixture of reaction. Keywords: 1 ...

  5. Development of solvent-free ambient mass spectrometry for green chemistry applications.

    Science.gov (United States)

    Liu, Pengyuan; Forni, Amanda; Chen, Hao

    2014-04-15

    Green chemistry minimizes chemical process hazards in many ways, including eliminating traditional solvents or using alternative recyclable solvents such as ionic liquids. This concept is now adopted in this study for monitoring solvent-free reactions and analysis of ionic liquids, solids, and catalysts by mass spectrometry (MS), without using any solvent. In our approach, probe electrospray ionization (PESI), an ambient ionization method, was employed for this purpose. Neat viscous room-temperature ionic liquids (RTILs) in trace amounts (e.g., 25 nL) could be directly analyzed without sample carryover effect, thereby enabling high-throughput analysis. With the probe being heated, it can also ionize ionic solid compounds such as organometallic complexes as well as a variety of neat neutral solid chemicals (e.g., amines). More importantly, moisture-sensitive samples (e.g., [bmim][AlCl4]) can be successfully ionized. Furthermore, detection of organometallic catalysts (including air-sensitive [Rh-MeDuPHOS][OTf]) in ionic liquids, a traditionally challenging task due to strong ion suppression effect from ionic liquids, can be enabled using PESI. In addition, PESI can be an ideal approach for monitoring solvent-free reactions. Using PESI-MS, we successfully examined the alkylation of amines by alcohols, the conversion of pyrylium into pyridinium, and the condensation of aldehydes with indoles as well as air- and moisture-sensitive reactions such as the oxidation of ferrocene and the condensation of pyrazoles with borohydride. Interestingly, besides the expected reaction products, the reaction intermediates such as the monopyrazolylborate ion were also observed, providing insightful information for reaction mechanisms. We believe that the presented solvent-free PESI-MS method would impact the green chemistry field.

  6. Solvent Front Position Extraction procedure with thin-layer chromatography as a mode of multicomponent sample preparation for quantitative analysis by instrumental technique.

    Science.gov (United States)

    Klimek-Turek, A; Sikora, E; Dzido, T H

    2017-12-29

    A concept of using thin-layer chromatography to multicomponent sample preparation for quantitative determination of solutes followed by instrumental technique is presented. Thin-layer chromatography (TLC) is used to separate chosen substances and their internal standard from other components (matrix) and to form a single spot/zone containing them at the solvent front position. The location of the analytes and internal standard in the solvent front zone allows their easy extraction followed by quantitation by HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Solvent extraction of Au(III) for preparation of a carrier-free multitracer and an Au tracer from an Au target

    International Nuclear Information System (INIS)

    Weginwar, R.G.; Kobayashi, Y.; Ambe, S.; Liu, B.; Enomoto, S.; Ambe, F.

    1996-01-01

    Separation of Au(III) and various carrier-free radionuclides by solvent extraction was investigated using an Au target irradiated by an energetic heavy-ion beam. Percentage extraction of Au(III) and coextraction of the radionuclides were determined with varying parameters such as kinds of solvent, molarity of HCl or pH, and Au concentration. Under the conditions where Au(III) was effectively extracted, namely extraction with ethyl acetate or isobutyl methyl ketone from 3 mol*dm -3 HCl, carrier-free radionuclides of many elements were found to be more or less coextracted. Coextraction of radionuclides of some elements was found to increase with an increase in the concentration of Au(III). This finding is ascribed to the formation of strong association of the complex of these elements with chloroauric acid. In order to avoid serious loss of these elements by the extraction, lowering of the Au(III) concentration or the use of a masking agent such as sodium citrate is necessary. Gold(III) was shown to be effectively back extracted with a 0.1 mol*dm -3 aqueous solution of 2-amino-2-hydroxymethyl-1,3-propanediol. Thus, a radiochemical procedure has been established for preparing a carrier-free multitracer and an Au tracer with carrier form from an Au target irradiated with a heavy-ion beam. Both tracers are now used individually for chemical and biological experiments. (author). 22 refs., 3 figs., 2 tabs

  8. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2012-01-01

    The diffusivity and structural relaxation characteristics of oligomer-grafted nanoparticles have been investigated with simulations of a previously proposed coarse-grained model at atmospheric pressure. Solvent-free, polymer-grafted nanoparticles as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent-free nanoparticles with longer chains have higher relative diffusivities than their short chain counterparts. Solvent-free nanoparticles with short chains undergo a glass transition as indicated by a vanishing diffusivity, diverging structural relaxation time and the formation of body-centered-cubic-like order. Nanoparticles with longer chains exhibit a more gradual increase in the structural relaxation time with decreasing temperature and concomitantly increasing particle volume fraction. The diffusivity of the long chain nanoparticles exhibits a minimum at an intermediate temperature and volume fraction where the polymer brushes of neighboring particles overlap, but must stretch to fill the interparticle space. © 2012 American Institute of Physics.

  9. Ester-free Thiol-X Resins: New Materials with Enhanced Mechanical Behavior and Solvent Resistance

    OpenAIRE

    Podgórski, Maciej; Becka, Eftalda; Chatani, Shunsuke; Claudino, Mauro; Bowman, Christopher N.

    2015-01-01

    A series of thiol-Michael and radical thiol-ene network polymers were successfully prepared from ester-free as well as ester-containing monomer formulations. Polymerization reaction rates, dynamic mechanical analysis, and solvent resistance experiments were performed and compared between compositions with varied ester loading. The incorporation of ester-free alkyl thiol, vinyl sulfone and allylic monomers significantly improved the mechanical properties when compared with commercial, mercapto...

  10. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  11. Accelerated Solvent Extraction: An Innovative Sample Extraction Technique for Natural Products

    International Nuclear Information System (INIS)

    Hazlina Ahmad Hassali; Azfar Hanif Abd Aziz; Rosniza Razali

    2015-01-01

    Accelerated solvent extraction (ASE) is one of the novel techniques that have been developed for the extraction of phytochemicals from plants in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yield and enhance the quality of extracts. This technique combines elevated temperatures and pressure with liquid solvents. This paper gives a brief overview of accelerated solvent extraction technique for sample preparation and its application to the extraction of natural products. Through practical examples, the effects of operational parameters such as temperature, volume of solvent used, extraction time and extraction yields on the performance of ASE are discussed. It is demonstrated that ASE technique allows reduced solvent consumption and shorter extraction time, while the extraction yields are even higher than those obtained with conventional methods. (author)

  12. Trends in sample preparation 2002. Development and application. Book of abstracts

    International Nuclear Information System (INIS)

    Wenzl, T.; Eberl, M.; Zischka, M.; Knapp, G.

    2002-01-01

    This conference comprised topics dealing with sample preparation such as: sample decomposition, solvent extraction, derivatization techniques and uncertainty in sample preparation. In particular microwave assisted sample preparation techniques and equipment were discussed. The papers were organized under the general topics: trace element analysis, trace analysis of organic compounds, high performance instrumentation in sample preparation, speciation analysis and posters session. Those papers of INIS interest are cited individually. (nevyjel)

  13. Trends in sample preparation 2002. Development and application. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Wenzl, T; Eberl, M; Zischka, M; Knapp, G [eds.

    2002-07-01

    This conference comprised topics dealing with sample preparation such as: sample decomposition, solvent extraction, derivatization techniques and uncertainty in sample preparation. In particular microwave assisted sample preparation techniques and equipment were discussed. The papers were organized under the general topics: trace element analysis, trace analysis of organic compounds, high performance instrumentation in sample preparation, speciation analysis and posters session. Those papers of INIS interest are cited individually. (nevyjel)

  14. Ester-free Thiol-X Resins: New Materials with Enhanced Mechanical Behavior and Solvent Resistance.

    Science.gov (United States)

    Podgórski, Maciej; Becka, Eftalda; Chatani, Shunsuke; Claudino, Mauro; Bowman, Christopher N

    A series of thiol-Michael and radical thiol-ene network polymers were successfully prepared from ester-free as well as ester-containing monomer formulations. Polymerization reaction rates, dynamic mechanical analysis, and solvent resistance experiments were performed and compared between compositions with varied ester loading. The incorporation of ester-free alkyl thiol, vinyl sulfone and allylic monomers significantly improved the mechanical properties when compared with commercial, mercaptopropionate-based thiol-ene or thiol-Michael networks. For polymers with no hydrolytically degradable esters, glass transition temperatures (T g 's) as high as 100 °C were achieved. Importantly, solvent resistance tests demonstrated enhanced stability of ester-free formulations over PETMP-based polymers, especially in concentrated basic solutions. Kinetic analysis showed that glassy step-growth polymers are readily formed at ambient conditions with conversions reaching 80% and higher.

  15. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Washington, A. L. II [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-03-03

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

  16. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    International Nuclear Information System (INIS)

    Washington, A. L. II; Peters, T. B.

    2014-01-01

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material

  17. Benign and efficient preparation of thioethers by solvent-free S-alkylation of thiols with alkyl halides catalyzed by potassium fluoride on alumina

    DEFF Research Database (Denmark)

    Nguyen, Kha Ngoc; Duus, Fritz; Luu, Thi Xuan Thi

    2016-01-01

    The preparation of thioethers by S-alkylation of various thiols with alkyl halides under solvent-free reaction conditions using potassium fluoride on alumina (KF/Al2O3) as a solid catalyst has been investigated in detail with respect to three different modes of reaction activation (ultrasound...... irradiation, microwave irradiation, and conventional heating) for obtaining maximum yield of the thioether. The importance of KF/Al2O3 as a particularly efficient catalyst was corroborated for all three modes of reaction activation, although the reaction time was found to be strongly dependent on the mode...

  18. Solvent free one pot synthesis of amidoalkyl naphthols over phosphotungstic acid

    Directory of Open Access Journals (Sweden)

    Divya P. Narayanan

    2017-07-01

    Full Text Available Montmorillonite KSF clay was effectively modified by the encapsulation of phosphotungstic acid into the clay layers via sonication followed by incipient wet impregnation method. The prepared catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM techniques. The catalytic activities of the prepared systems were investigated in the solvent free synthesis of amidoalkyl naphthols by the multicomponent one-pot condensation of an aldehyde, β-naphthol and an amide or urea. Excellent yield, shorter reaction time, easy work-up, and reusability of the catalyst are the main attractions of this green procedure.

  19. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    Science.gov (United States)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  20. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica

    DEFF Research Database (Denmark)

    Genina, Natalja; Hadi, Batol; Löbmann, Korbinian

    2018-01-01

    The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high...... friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus(®) (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed...... into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi...

  1. A Selenium-Based Ionic Liquid as a Recyclable Solvent for the Catalyst-Free Synthesis of 3-Selenylindoles

    Directory of Open Access Journals (Sweden)

    Eder J. Lenardão

    2013-04-01

    Full Text Available The ionic liquid 1-butyl-3-methylimidazolium methylselenite, [bmim][SeO2(OCH3], was successfully used as solvent in the catalyst-free preparation of 3-arylselenylindoles by the reaction of indole with ArSeCl at room temperature. The products were obtained selectively in good yields without the need of any additive and the solvent was easily reused for several cycles with good results.

  2. Solvent-Free Synthesis of Silver-Nanoparticles and their Use as Additive in Poly (Dicyclopentadiene)

    International Nuclear Information System (INIS)

    Abbas, M.; Kienberger, J.

    2013-01-01

    A solvent-free environmentally benign synthesis of oleylamine capped silver nanoparticles is presented. Upon heating 10 equivalents of oleylamine and silver nitrate at 165 degree C for 30 min followed by a precipitation step using ethanol as the precipitant particles characterized by an Z-average diameter of 63 nm were obtained. Dried particles can be easily redispersed in unpolar solvents or monomers, which pave the way for using them as an antimicrobial additive in polymeric materials. In particular, newly prepared Ag-particles were dispersed in dicyclopentadiene and the mixture was cured using ring opening metathesis polymerization yielding an antimicrobially equipped duroplastic material. (author)

  3. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  4. Preparation and Characterization of Astaxanthin Nanoparticles by Solvent-Diffusion Technique

    International Nuclear Information System (INIS)

    Anarjan, N.; Tan, C.P.

    2011-01-01

    In this work, astaxanthin nanoparticles were prepared in aqueous media using solvent-diffusion technique. Sodium caseinate, gelatin, Polysorbate 20 and gum Arabic were selected as different food grade surface active molecules for the stabilization of the produced nanoparticles. Results showed that among produced astaxanthin nanoparticles, the Polysorbate 20-stabilized nanoparticles showed the smallest particle size; gum Arabic-stabilized nanoparticles had the smallest polydispersity index and highest physical stability in simulated gastric fluid (SGF); and those stabilized using gelatin had the highest zeta potential. Sodium caseinate stabilized nanoparticles had the highest astaxanthin content in fresh samples as compared to other prepared nano dispersions. (author)

  5. Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis.

    Science.gov (United States)

    Filippou, Olga; Bitas, Dimitrios; Samanidou, Victoria

    2017-02-01

    Sample preparation is considered to be the most challenging step of the analytical procedure, since it has an effect on the whole analytical methodology, therefore it contributes significantly to the greenness or lack of it of the entire process. The elimination of the sample treatment steps, pursuing at the same time the reduction of the amount of the sample, strong reductions in consumption of hazardous reagents and energy also maximizing safety for operators and environment, the avoidance of the use of big amount of organic solvents, form the basis for greening sample preparation and analytical methods. In the last decade, the development and utilization of greener and sustainable microextraction techniques is an alternative to classical sample preparation procedures. In this review, the main green microextraction techniques (solid phase microextraction, stir bar sorptive extraction, hollow-fiber liquid phase microextraction, dispersive liquid - liquid microextraction, etc.) will be presented, with special attention to bioanalytical applications of these environment-friendly sample preparation techniques which comply with the green analytical chemistry principles. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2018-01-01

    Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  7. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations

    Directory of Open Access Journals (Sweden)

    Federico Fogolari

    2018-02-01

    Full Text Available Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  8. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2011-09-01

    Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  9. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    Science.gov (United States)

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Preparation of ultra-fine calcium carbonate by a solvent-free reaction using supersonic airflow and low temperatures

    OpenAIRE

    Cai, Yan-Hua; Ma, Dong-Mei; Peng, Ru-Fang; Chu, Shi-Jin

    2008-01-01

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  11. Accelerated solvent extraction (ASE) - a fast and automated technique with low solvent consumption for the extraction of solid samples (T12)

    International Nuclear Information System (INIS)

    Hoefler, F.

    2002-01-01

    Full text: Accelerated solvent extraction (ASE) is a modern extraction technique that significantly streamlines sample preparation. A common organic solvent as well as water is used as extraction solvent at elevated temperature and pressure to increase extraction speed and efficiency. The entire extraction process is fully automated and performed within 15 minutes with a solvent consumption of 18 ml for a 10 g sample. For many matrices and for a variety of solutes, ASE has proven to be equivalent or superior to sonication, Soxhlet, and reflux extraction techniques while requiring less time, solvent and labor. First ASE has been applied for the extraction of environmental hazards from solid matrices. Within a very short time ASE was approved by the U.S. EPA for the extraction of BNAs, PAHs, PCBs, pesticides, herbicides, TPH, and dioxins from solid samples in method 3545. Especially for the extraction of dioxins the extraction time with ASE is reduced to 20 minutes in comparison to 18 h using Soxhlet. In food analysis ASE is used for the extraction of pesticide and mycotoxin residues from fruits and vegetables, the fat determination and extraction of vitamins. Time consuming and solvent intensive methods for the extraction of additives from polymers as well as for the extraction of marker compounds from herbal supplements can be performed with higher efficiencies using ASE. For the analysis of chemical weapons the extraction process and sample clean-up including derivatization can be automated and combined with GC-MS using an online ASE-APEC-GC system. (author)

  12. Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Trecha, Danusia O.; Ferreira, Patricia da C.; Jacob, Raquel G.; Perin, Gelson [Universidade Federal de Pelotas (UFPEL), Pelotas, RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)]. E-mail: lenardao@ufpel.edu.br

    2009-07-01

    A general, clean and easy method for the conjugated addition of thiols to citral promoted by KF/Al{sub 2}O{sub 3} under solvent-free or using glycerin as recyclable solvent at room temperature is described. It was found that the solvent-free protocol is applicable to the direct reaction of thiophenol with the essential oil of lemon grass (Cymbopogon citratus) to afford directly 3,7-dimethyl-3-(phenylthio)oct-6-enal, a potential bactericide agent. The method was extended to other electron-poor alkenes with excellent results. For the solvent-free protocol, the use of microwave irradiation facilitated the procedure and accelerates the reaction. The catalytic system and glycerin can be reused up to three times without previous treatment with comparable activity. (author)

  13. Sample preparation optimization in fecal metabolic profiling.

    Science.gov (United States)

    Deda, Olga; Chatziioannou, Anastasia Chrysovalantou; Fasoula, Stella; Palachanis, Dimitris; Raikos, Νicolaos; Theodoridis, Georgios A; Gika, Helen G

    2017-03-15

    Metabolomic analysis of feces can provide useful insight on the metabolic status, the health/disease state of the human/animal and the symbiosis with the gut microbiome. As a result, recently there is increased interest on the application of holistic analysis of feces for biomarker discovery. For metabolomics applications, the sample preparation process used prior to the analysis of fecal samples is of high importance, as it greatly affects the obtained metabolic profile, especially since feces, as matrix are diversifying in their physicochemical characteristics and molecular content. However there is still little information in the literature and lack of a universal approach on sample treatment for fecal metabolic profiling. The scope of the present work was to study the conditions for sample preparation of rat feces with the ultimate goal of the acquisition of comprehensive metabolic profiles either untargeted by NMR spectroscopy and GC-MS or targeted by HILIC-MS/MS. A fecal sample pooled from male and female Wistar rats was extracted under various conditions by modifying the pH value, the nature of the organic solvent and the sample weight to solvent volume ratio. It was found that the 1/2 (w f /v s ) ratio provided the highest number of metabolites under neutral and basic conditions in both untargeted profiling techniques. Concerning LC-MS profiles, neutral acetonitrile and propanol provided higher signals and wide metabolite coverage, though extraction efficiency is metabolite dependent. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Solvent-Free Biginelli Condensation using Tungstate Sulfuric Acid: a Powerful and Reusable Catalyst for Selective Synthesis

    Directory of Open Access Journals (Sweden)

    Rezvan Rezaee Nasab

    2014-07-01

    Full Text Available Tungstate sulfuric acid (TSA has been prepared and used as a recyclable catalyst for the Biginelli syn-thesis of some biologically active quinazolinones/thiones under solvent-free conditions. This method has advantages such as the avoidance of organic solvents, high yield of pure products, short reaction times, and operational simplicity.  © 2014 BCREC UNDIP. All rightsReceived: 28th April 2014; Revised: 15th May 2014; Accepted: 26th May 2014[ How to Cite: Nasab, R.R., Karami, B., Khodabakhshi, S. (2014. Selective Solvent‐free Biginelli Condensation using Tungstate Sulfuric Acid as Powerful and Reusable Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-154. (doi:10.9767/bcrec.9.2.6794.148-154][ Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6794.148-154

  15. Tuning of Activated Carbon for Solvent-Free Oxidation of Cyclohexane

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2017-01-01

    Full Text Available Activated carbon (AC was prepared from carbonization of phosphoric acid soaked peanut shell at 380°C under inert atmosphere followed by activation with hydrogen peroxide. The AC was characterized by SEM, EDX, FTIR, TGA, and BET surface area and pore size analyzer. The potential of AC as a catalyst for solvent-free oxidation of cyclohexane to cyclohexanol and cyclohexanone (the mixture is known as KA oil in the presence of molecular oxygen at moderate temperature was investigated in a self-designed double-walled three-necked batch reactor. The effect of different reaction parameters/additive was optimized. The maximum productivity value (2.14 mmolg−1 h−1, without base, and 4.85 mmolg−1 h−1, with 0.2 mmol NaOH of the desired product was achieved under optimal reaction parameters: vol 12.5 mL, cat 0.4 g, time 14 h, oxygen flow 40 mL/min (pO2 760 Torr, stirring 1100 rpm, and temp 75°C. The AC shows recyclability for multiple runs without any significant loss in activity. Thus, the AC can be an efficient catalyst, due to low cost, ease of synthesis, easy recovery, nonleaching, and recyclability for multiple uses for the solvent-free oxidation of cyclohexane.

  16. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics

    Science.gov (United States)

    Campbell, Kate; Deery, Michael J.; Lilley, Kathryn S.; Ralser, Markus

    2014-01-01

    The combination of qualitative analysis with label-free quantification has greatly facilitated the throughput and flexibility of novel proteomic techniques. However, such methods rely heavily on robust and reproducible sample preparation procedures. Here, we benchmark a selection of in gel, on filter, and in solution digestion workflows for their application in label-free proteomics. Each procedure was associated with differing advantages and disadvantages. The in gel methods interrogated were cost effective, but were limited in throughput and digest efficiency. Filter-aided sample preparations facilitated reasonable processing times and yielded a balanced representation of membrane proteins, but led to a high signal variation in quantification experiments. Two in solution digest protocols, however, gave optimal performance for label-free proteomics. A protocol based on the detergent RapiGest led to the highest number of detected proteins at second-best signal stability, while a protocol based on acetonitrile-digestion, RapidACN, scored best in throughput and signal stability but came second in protein identification. In addition, we compared label-free data dependent (DDA) and data independent (SWATH) acquisition on a TripleTOF 5600 instrument. While largely similar in protein detection, SWATH outperformed DDA in quantification, reducing signal variation and markedly increasing the number of precisely quantified peptides. PMID:24741437

  17. Sample preparation of environmental samples using benzene synthesis followed by high-performance LSC

    International Nuclear Information System (INIS)

    Filippis, S. De; Noakes, J.E.

    1991-01-01

    Liquid scintillation counting (LSC) techniques have been widely employed as the detection method for determining environmental levels of tritium and 14 C. Since anthropogenic and nonanthropogenic inputs to the environment are a concern, sampling the environment surrounding a nuclear power facility or fuel reprocessing operation requires the collection of many different sample types, including agriculture products, water, biota, aquatic life, soil, and vegetation. These sample types are not suitable for the direct detection of tritium of 14 C for liquid scintillation techniques. Each sample type must be initially prepared in order to obtain the carbon or hydrogen component of interest and present this in a chemical form that is compatible with common chemicals used in scintillation counting applications. Converting the sample of interest to chemically pure benzene as a sample preparation technique has been widely accepted for processing samples for radiocarbon age-dating applications. The synthesized benzene is composed of the carbon or hydrogen atoms from the original sample and is ideal as a solvent for LSC with excellent photo-optical properties. Benzene synthesis followed by low-background scintillation counting can be applied to the preparation and measurement of environmental samples yielding good detection sensitivities, high radionuclide counting efficiency, and shorter preparation time. The method of benzene synthesis provides a unique approach to the preparation of a wide variety of environmental sample types using similar chemistry for all samples

  18. GRINDING SOLVENT-FREE PAAL-KNORR PYRROLE SYNTHESIS ...

    African Journals Online (AJOL)

    Paal-Knorr pyrrole synthesis on smectites as recyclable and green catalysts. Bull. Chem. Soc. .... 1-Propyl-2,5-dimethyl-1H-pyrrole (8a). Oil (reported as oil .... of pyrroles catalyzed by zirconium chloride under solvent-free conditions . Ultrason.

  19. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    Science.gov (United States)

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. New trends in sample preparation techniques for environmental analysis.

    Science.gov (United States)

    Ribeiro, Cláudia; Ribeiro, Ana Rita; Maia, Alexandra S; Gonçalves, Virgínia M F; Tiritan, Maria Elizabeth

    2014-01-01

    Environmental samples include a wide variety of complex matrices, with low concentrations of analytes and presence of several interferences. Sample preparation is a critical step and the main source of uncertainties in the analysis of environmental samples, and it is usually laborious, high cost, time consuming, and polluting. In this context, there is increasing interest in developing faster, cost-effective, and environmentally friendly sample preparation techniques. Recently, new methods have been developed and optimized in order to miniaturize extraction steps, to reduce solvent consumption or become solventless, and to automate systems. This review attempts to present an overview of the fundamentals, procedure, and application of the most recently developed sample preparation techniques for the extraction, cleanup, and concentration of organic pollutants from environmental samples. These techniques include: solid phase microextraction, on-line solid phase extraction, microextraction by packed sorbent, dispersive liquid-liquid microextraction, and QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe).

  1. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.

    2011-01-01

    that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  2. A Combined Synthetic and DFT Study on the Catalyst-Free and Solvent-Assisted Synthesis of 1,3,4-Oxadiazole-2-thiol Derivatives

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman-Beigi

    2013-01-01

    Full Text Available A novel practical and efficient catalyst-free method for the synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols has been developed, which is assisted by reaction solvent (DMF. The solvent effects on product selectivity were studied based on Onsager’s reaction field theory of electrostatic solvation. The ab initio theoretical studies on the effect of solvents on the process also supported the suitability of DMF as the reaction medium for the preparation of 1,3,4-oxadiazole-2-thiol derivatives.

  3. Microwave-assisted silica-promoted solvent-free synthesis of ...

    Indian Academy of Sciences (India)

    method using microwave irradiation with an excellent yield. The newly ... Table 1. Silica promoted microwave-assisted solvent-free synthesis of quinazolinone ... Time (min). Yield (%)a ..... thanks SC/ST cell of Bangalore University for research.

  4. Solvent-free microwave extraction of essential oil from Melaleuca leucadendra L.

    Directory of Open Access Journals (Sweden)

    Widya Ismanto Aviarina

    2018-01-01

    Full Text Available Cajuput (Melaleuca leucadendra L. oil is one of potential commodity that provides an important role for the country’s foreign exchange but the extraction of these essential oil is still using conventional method such as hydrodistillation which takes a long time to produce essential oil with good quality. Therefore it is necessary to optimize the extraction process using a more effective and efficient method. So in this study the extraction is done using solvent-free microwave extraction method that are considered more effective and efficient than conventional methods. The optimum yield in the extraction of cajuput oil using solvent-free microwave extraction method is 1.0674%. The optimum yield is obtained on the feed to distiller (F/D ratio of 0.12 g/mL with microwave power of 400 W. In the extraction of cajuput oil using solvent-free microwave extraction method is performed first-order and second-order kinetics modelling. Based on kinetics modelling that has been done, it can be said that the second-order kinetic model (R2 = 0.9901 can be better represent experimental results of extraction of cajuput oil that using solvent-free microwave extraction method when compared with the first-order kinetic model (R2 = 0.9854.

  5. Sample preparation techniques in trace element analysis by X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Valkovic, V.

    1983-11-01

    The report, written under a research contract with the IAEA, contains a detailed presentation of the most difficult problem encountered in the trace element analysis by methods of the X-ray emission spectroscopy, namely the sample preparation techniques. The following items are covered. Sampling - with specific consideration of aerosols, water, soil, biological materials, petroleum and its products, storage of samples and their handling. Pretreatment of samples - preconcentration, ashing, solvent extraction, ion exchange and electrodeposition. Sample preparations for PIXE - analysis - backings, target uniformity and homogeneity, effects of irradiation, internal standards and specific examples of preparation (aqueous, biological, blood serum and solid samples). Sample preparations for radioactive sources or tube excitation - with specific examples (water, liquid and solid samples, soil, geological, plants and tissue samples). Finally, the problem of standards and reference materials, as well as that of interlaboratory comparisons, is discussed

  6. NaHSO4-SiO2-Promoted Solvent-Free Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    K. Ravi Kumar

    2013-01-01

    Full Text Available An efficient protocol has been developed for the preparation of a library of benzoxazole, benzimidazole, and benzothiazole derivatives from reactions of acyl chlorides with o-substituted aminoaromatics in the presence of catalytic amount of silica-supported sodium hydrogen sulphate under solvent-free conditions. Simple workup procedure, high yield, easy availability, reusability, and use of ecofriendly catalyst are some of the striking features of the present protocol.

  7. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  8. Application of 2k Full Factorial Design in Optimization of Solvent-Free Microwave Extraction of Ginger Essential Oil

    Directory of Open Access Journals (Sweden)

    Mumtaj Shah

    2014-01-01

    Full Text Available The solvent-free microwave extraction of essential oil from ginger was optimized using a 23 full factorial design in terms of oil yield to determine the optimum extraction conditions. Sixteen experiments were carried out with three varying parameters, extraction time, microwave power, and type of sample for two levels of each. A first order regression equation best fits the experimental data. The predicted values calculated by the regression model were in good agreement with the experimental values. The results showed that the extraction time is the most prominent factor followed by microwave power level and sample type for extraction process. An average of 0.25% of ginger oil can be extracted using current setup. The optimum conditions for the ginger oil extraction using SFME were the extraction time 30 minutes, microwave power level 640 watts, and sample type, crushed sample. Solvent-free microwave extraction proves a green and promising technique for essential oil extraction.

  9. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    Science.gov (United States)

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    DEFF Research Database (Denmark)

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30....... The results from DSC, XRD showed that TEL was molecularly dispersed in the OSF-SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between TEL and its carriers. The OSF-SDs exhibited significantly higher AUC0-24 h and Cmax, but similar Tmax as compared...

  11. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    Science.gov (United States)

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  12. Solvent hold tank sample results for MCU-16-1363-1365. November 2016 monthly sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-22

    Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1363-1364-1365), pulled on 11/15/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1363-1364-1365 indicated the Isopar™L concentration is at its nominal level (100%). The extractant (MaxCalix) and the modifier (CS- 7SB) are 8% and 2 % below their nominal concentrations. The suppressor (TiDG) is 7% below its nominal concentration. This analysis confirms the trim and Isopar™ additions to the solvent in November. This analysis also indicates the solvent did not require further additions. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.

  13. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solvent-free, catalyst-free aza-Michael addition of cyclohexylamine to diethyl maleate: reaction mechanism and kinetics

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Trhlíková, Olga; Podešva, Jiří; Abbrent, Sabina; Steinhart, Miloš; Dybal, Jiří; Dušková-Smrčková, Miroslava

    2018-01-01

    Roč. 74, č. 1 (2018), s. 58-67 ISSN 0040-4020 Institutional support: RVO:61389013 Keywords : Aza-Michael addition * solvent-free * catalyst-free Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.651, year: 2016

  15. Predicting the activity coefficients of free-solvent for concentrated globular protein solutions using independently determined physical parameters.

    Directory of Open Access Journals (Sweden)

    Devin W McBride

    Full Text Available The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations.

  16. Fabrication of oxide-free graphene suspension and transparent thin films using amide solvent and thermal treatment

    International Nuclear Information System (INIS)

    Oh, Se Young; Kim, Sung Hwan; Chi, Yong Seung; Kang, Tae Jin

    2012-01-01

    Graphical abstract: New methodology for suspended graphene sheets of high-quality (oxide-free), high-yield (high concentration) using amide solvent exfoliation and thermal treatment at 800 °C. We confirmed that the van der Waals force between the graphene layers decreases as increasing thermal treatment temperatures as shown XRD data (b). Highlights: ► Propose of new methodology to prepare oxide-free graphene sheets suspension. ► The graphene suspension concentration is enhanced by thermal treatment. ► Decrease of van der Waals force between the graphene layers by high temperature and pressure. ► This method has the potential as technology for mass production. ► It could be applied in transparent and flexible electronic devices. - Abstract: High quality graphene sheets were produced from graphite by liquid phase exfoliation using N-methyl-2-pyrrolidone (NMP) and a subsequent thermal treatment to enhance the exfoliation. The exfoliation was enhanced by treatment with organic solvent and high thermal expansion producing high yields of the high-quality and defect-free graphene sheets. The graphene was successfully deposited on a flexible and transparent polymer film using the vacuum filtration method. SEM images of thin films of graphene treated at 800 °C showed uniform structure with no defects commonly found in films made of graphene produced by other techniques. Thin films of graphene prepared at higher temperatures showed superior transmittance and conductivity. The sheet-resistance of the graphene film treated at 800 °C was 2.8 × 10 3 kΩ/□ with 80% transmittance.

  17. Stability of an extemporaneously prepared alcohol-free phenobarbital suspension.

    Science.gov (United States)

    Cober, Mary Petrea; Johnson, Cary E

    2007-03-15

    The physical and chemical short-term stability of alcohol-free, oral suspensions of phenobarbital 10 mg/mL prepared from commercially available tablets in both a sugar and a sugar-free vehicle was assessed at room temperature. Phenobarbital oral suspension 10 mg/mL was prepared by crushing 10 60-mg tablets of phenobarbital with a mortar and pestle. A small amount of Ora-Plus was added to the phenobarbital powder to sufficiently wet the particles. A 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF was combined with the phenobarbital powder to produce a final volume of 60 mL. Three identical samples of each of the two different formulations were prepared and stored at room temperature in 2-oz amber plastic bottles. Immediately after preparation and at 15, 30, 60, and 115 days, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography. The samples were tasted and inspected for color and odor changes. The percent of the initial concentration remaining at each study time for each phenobarbital suspension was determined. Stability was defined as the retention of at least 90% of the initial concentration. There were no detectable changes in color, odor, and taste and no visible microbial growth in any sample. At least 98% of the initial phenobarbital concentration remained throughout the 115-day study period in both preparations. An extemporaneously prepared alcohol-free suspension of phenobarbital 10 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF was stable for at least 115 days when stored in 2-oz amber plastic bottles at room temperature.

  18. Use of a holder-vacuum tube device to save on-site hands in preparing urine samples for head-space gas-chromatography, and its application to determine the time allowance for sample sealing.

    Science.gov (United States)

    Kawai, Toshio; Sumino, Kimiaki; Ohashi, Fumiko; Ikeda, Masayuki

    2011-01-01

    To facilitate urine sample preparation prior to head-space gas-chromatographic (HS-GC) analysis. Urine samples containing one of the five solvents (acetone, methanol, methyl ethyl ketone, methyl isobutyl ketone and toluene) at the levels of biological exposure limits were aspirated into a vacuum tube via holder, a device commercially available for venous blood collection (the vacuum tube method). The urine sample, 5 ml, was quantitatively transferred to a 20-ml head-space vial prior to HS-GC analysis. The loaded tubes were stored at +4 ℃ in dark for up to 3 d. The vacuum tube method facilitated on-site procedures of urine sample preparation for HS-GC with no significant loss of solvents in the sample and no need of skilled hands, whereas on-site sample preparation time was significantly reduced. Furthermore, no loss of solvents was detected during the 3-d storage, irrespective of hydrophilic (acetone) or lipophilic solvent (toluene). In a pilot application, high performance of the vacuum tube method in sealing a sample in an air-tight space succeeded to confirm that no solvent will be lost when sealing is completed within 5 min after urine voiding, and that the allowance time is as long as 30 min in case of toluene in urine. The use of the holder-vacuum tube device not only saves hands for transfer of the sample to air-tight space, but facilitates sample storage prior to HS-GC analysis.

  19. Solvent-Free Lipase-Catalyzed Synthesis of Technical-Grade Sugar Esters and Evaluation of Their Physicochemical and Bioactive Properties

    Directory of Open Access Journals (Sweden)

    Ran Ye

    2016-05-01

    Full Text Available Technical-grade oleic acid esters of sucrose and fructose were prepared using solvent-free biocatalysis at 65 °C, without any downstream purification applied, and their physicochemical and bioactivity-related properties were evaluated and compared to a commercially available sucrose laurate emulsifier. To increase the conversion of sucrose and fructose oleate, prepared previously using solvent-free lipase-catalyzed esterification catalyzed by Rhizomucor miehei lipase (81% and 83% ester, respectively, the enzymatic reaction conditions was continued using CaSO4 to control the reactor’s air headspace and a lipase (from Candida antarctica B with a hydrophobic immobilization matrix to provide an ultralow water activity, and high-pressure homogenation, to form metastable suspensions of 2.0–3.3 micron sized saccharide particles in liquid-phase reaction media. These measures led to increased ester content of 89% and 96% for reactions involving sucrose and fructose, respectively. The monoester content among the esters decreased from 90% to <70% due to differences in regioselectivity between the lipases. The resultant technical-grade sucrose and fructose lowered the surface tension to <30 mN/m, and possessed excellent emulsification capability and stability over 36 h using hexadecane and dodecane as oils, comparable to that of sucrose laurate and Tween® 80. The technical-grade sugar esters, particularly fructose oleate, more effectively inhibited gram-positive foodborne pathogens (Lactobacillus plantarum, Pediococcus pentosaceus and Bacillus subtilis. Furthermore, all three sugar esters displayed antitumor activity, particularly the two sucrose esters. This study demonstrates the importance of controlling the biocatalysts’ water activity to achieve high conversion, the impact of a lipase’s regioselectivity in dictating product distribution, and the use of solvent-free biocatalysis to important biobased surfactants useful in foods, cosmetics

  20. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    Science.gov (United States)

    Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-01-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g−1 at 1.5 A g−1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g−1 at 1.5 A g−1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors. PMID:28989753

  1. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    Science.gov (United States)

    Anil Kumar, Yedluri; Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-09-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g-1 at 1.5 A g-1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g-1 at 1.5 A g-1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors.

  2. Solvent Hold Tank Sample Results for MCU-16-934-935-936: June 2016 Monthly Sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-934-935-936), pulled on 07/01/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-934-935-936 indicated the Isopar™L concentration is above its nominal level (101%). The modifier (CS-7SB) and the TiDG concentrations are 8% and 29 % below their nominal concentrations. This analysis confirms the solvent may require the addition of TiDG, and possibly of modifier. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, up to 21.1 ± 4 micrograms of mercury per gram of solvent (or 17.5 μg/mL) was detected in this sample (as determined by the XRF method of undigested sample). The current gamma level (1.41E5 dpm/mL) confirmed that the gamma concentration has returned to previous levels (as observed in the late 2015 samples) where the process operated normally and as expected.

  3. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    Science.gov (United States)

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  4. A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors.

    Science.gov (United States)

    Gao, Zhaodongfang; Yang, Junwei; Huang, Jing; Xiong, Chuanxi; Yang, Quanling

    2017-11-23

    Conducting polymer based supercapacitors usually suffer from the difficulty of achieving high specific capacitance and good long-term stability simultaneously. In this communication, a long-chain protonic acid doped solvent-free self-suspended polyaniline (S-PANI) fluid and reduced graphene oxide (RGO) were used to fabricate a three-dimensional RGO/S-PANI aerogel via a simple self-assembled hydrothermal method, which was then applied as a supercapacitor electrode. This 3D RGO/S-PANI composite exhibited a high specific capacitance of up to 480 F g -1 at a current density of 1 A g -1 and 334 F g -1 even at a high discharge rate of 40 A g -1 . An outstanding cycling performance, with 96.14% of the initial capacitance remaining after 10 000 charging/discharging cycles at a rate of 10 A g -1 , was also achieved. Compared with the conventional conducting polymer materials, the 3D RGO/S-PANI composite presented more reliable rate capability and cycling stability. Moreover, S-PANI possesses excellent processability, thereby revealing its enormous potential in large scale production. We anticipate that the solvent-free fluid technique is also applicable to the preparation of other 3D graphene/polymer materials for energy storage.

  5. Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach.

    Science.gov (United States)

    Husowitz, B; Talanquer, V

    2007-02-07

    Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.

  6. Solvent hold tank sample results for MCU-16-1317-1318-1319. September 2016 monthly sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1317-1318-1319), pulled on 09/12/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1317-1318-1319 indicated the Isopar™L concentration is above its nominal level (102%). The extractant (MaxCalix) and the modifier (CS-7SB) are 5% and 10 % below their nominal concentrations. The suppressor (TiDG) is 77% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below. This analysis confirms the Isopar™ addition to the solvent in August. This analysis also indicates the solvent may require the addition of TiDG, and possibly of modifier to restore them to nominal levels.

  7. Chemoselective Preparation of 1,1-Diacetates from Aldehydes, Mediated by a Keggin Heteropolyacid Under Solvent Free Conditions at Room Temperature

    Directory of Open Access Journals (Sweden)

    G. Romanelli

    2007-01-01

    Full Text Available A simple, general and efficient method has been developed for the conversion of aldehydes to 1,1-diacetates using acetic anhydride, a catalytic amount of non commercial Keggin heteropolyacid (H6 PalMo11O40 (1% mol in solvent free conditions at room temperature. Aromatic and aliphatic, simple and conjugated aldehydes were protected with excellent yields.

  8. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    Science.gov (United States)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  9. Waste minimization in analytical chemistry through innovative sample preparation techniques

    International Nuclear Information System (INIS)

    Smith, L. L.

    1998-01-01

    Because toxic solvents and other hazardous materials are commonly used in analytical methods, characterization procedures result in significant and costly amount of waste. We are developing alternative analytical methods in the radiological and organic areas to reduce the volume or form of the hazardous waste produced during sample analysis. For the radiological area, we have examined high-pressure, closed-vessel microwave digestion as a way to minimize waste from sample preparation operations. Heated solutions of strong mineral acids can be avoided for sample digestion by using the microwave approach. Because reactivity increases with pressure, we examined the use of less hazardous solvents to leach selected contaminants from soil for subsequent analysis. We demonstrated the feasibility of this approach by extracting plutonium from a NET reference material using citric and tartaric acids with microwave digestion. Analytical results were comparable to traditional digestion methods, while hazardous waste was reduced by a factor often. We also evaluated the suitability of other natural acids, determined the extraction performance on a wider variety of soil types, and examined the extraction efficiency of other contaminants. For the organic area, we examined ways to minimize the wastes associated with the determination of polychlorinated biphenyls (PCBs) in environmental samples. Conventional methods for analyzing semivolatile organic compounds are labor intensive and require copious amounts of hazardous solvents. For soil and sediment samples, we have a method to analyze PCBs that is based on microscale extraction using benign solvents (e.g., water or hexane). The extraction is performed at elevated temperatures in stainless steel cells containing the sample and solvent. Gas chromatography-mass spectrometry (GC/MS) was used to quantitate the analytes in the isolated extract. More recently, we developed a method utilizing solid-phase microextraction (SPME) for natural

  10. Sulfonate-terminated carbosilane dendron-coated nanotubes: a greener point of view in protein sample preparation.

    Science.gov (United States)

    González-García, Estefanía; Gutiérrez Ulloa, Carlos E; de la Mata, Francisco Javier; Marina, María Luisa; García, María Concepción

    2017-09-01

    Reduction or removal of solvents and reagents in protein sample preparation is a requirement. Dendrimers can strongly interact with proteins and have great potential as a greener alternative to conventional methods used in protein sample preparation. This work proposes the use of single-walled carbon nanotubes (SWCNTs) functionalized with carbosilane dendrons with sulfonate groups for protein sample preparation and shows the successful application of the proposed methodology to extract proteins from a complex matrix. SEM images of nanotubes and mixtures of nanotubes and proteins were taken. Moreover, intrinsic fluorescence intensity of proteins was monitored to observe the most significant interactions at increasing dendron generations under neutral and basic pHs. Different conditions for the disruption of interactions between proteins and nanotubes after protein extraction and different concentrations of the disrupting reagent and the nanotube were also tried. Compatibility of extraction and disrupting conditions with the enzymatic digestion of proteins for obtaining bioactive peptides was also studied. Finally, sulfonate-terminated carbosilane dendron-coated SWCNTs enabled the extraction of proteins from a complex sample without using non-environmentally friendly solvents that were required so far. Graphical Abstract Green protein extraction from a complex sample employing carbosilane dendron coated nanotubes.

  11. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    tetrabromobenzene- 1,3-disulphonamide (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  12. Grinding solvent-free Paal-Knorr pyrrole synthesis on smectites as ...

    African Journals Online (AJOL)

    Journal Home > Vol 32, No 1 (2018) > ... An environmentally benign method for the synthesis of N-substituted pyrroles from one-pot solvent-free ... conditions make this protocol practical, environmentally friendly and economically attractive.

  13. Anionic microemulsion to solvent stacking for on-line sample concentration of cationic analytes in capillary electrophoresis.

    Science.gov (United States)

    Kukusamude, Chunyapuk; Srijaranai, Supalax; Quirino, Joselito P

    2014-05-01

    The common SDS microemulsion (i.e. 3.3% SDS, 0.8% octane, and 6.6% butanol) and organic solvents were investigated for the stacking of cationic drugs in capillary zone electrophoresis using a low pH separation electrolyte. The sample was prepared in the acidic microemulsion and a high percentage of organic solvent was included in the electrolyte at anodic end of capillary. The stacking mechanism was similar to micelle to solvent stacking where the micelles were replaced by the microemulsion for the transport of analytes to the organic solvent rich boundary. This boundary is found between the microemulsion and anodic electrolyte. The effective electrophoretic mobility of the cations reversed from the direction of the anode in the microemulsion to the cathode in the boundary. Microemulsion to solvent stacking was successfully achieved with 40% ACN in the anodic electrolyte and hydrodynamic sample injection of 21 s at 1000 mbar (equivalent to 30% of the effective length). The sensitivity enhancement factors in terms of peak height and corrected peak area were 15 to 35 and 21 to 47, respectively. The linearity R(2) in terms of corrected peak area were >0.999. Interday precisions (%RSD, n = 6) were 3.3-4.0% for corrected peak area and 2.0-3.0% for migration time. Application to spiked real sample is also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  15. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. STUDIES ON SOLVENT EXTRACTION OF FREE HYDROGEN ...

    African Journals Online (AJOL)

    synthesized through glucose degradation (glycolysis) to lactic acid. ... g sample into a well stoppered plastic bottle and mixed with 20 mL of distilled .... Recovery of used solvent is necessary because methylchloroform is toxic to the bacteria.

  17. Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis.

    Science.gov (United States)

    Bağda, Esra; Altundağ, Hüseyin; Soylak, Mustafa

    2017-10-01

    In the present work, simple and sensitive extraction methods for selective determination of manganese have been successfully developed. The methods were based on solubilization of manganese in deep eutectic solvent medium. Three deep eutectic solvents with choline chloride (vitamin B4) and tartaric/oxalic/citric acids have been prepared. Extraction parameters were optimized with using standard reference material (1573a tomato leaves). The quantitative recovery values were obtained with 1.25 g/L sample to deep eutectic solvent (DES) volume, at 95 °C for 2 h. The limit of detection was found as 0.50, 0.34, and 1.23 μg/L for DES/tartaric, DES/oxalic, and DES/citric acid, respectively. At optimum conditions, the analytical signal was linear for the range of 10-3000 μg/L for all studied DESs with the correlation coefficient >0.99. The extraction methods were applied to different real samples such as basil herb, spinach, dill, and cucumber barks. The known amount of manganese was spiked to samples, and good recovery results were obtained.

  18. Solvent Hold Tank Sample Results for MCU-16-596-597-598: April 2016 Monthly Sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Advanced Characterization and Processing; Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Research Support

    2016-07-12

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-596-597-598), pulled on 04/30/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-596-597-598 indicated the Isopar™L concentration is above its nominal level (102%). The modifier (CS-7SB) is 14% below its nominal concentration, while the TiDG and MaxCalix concentrations are at and above their nominal concentrations, respectively. This analysis confirms the solvent may require the addition of modifier. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.

  19. Stability of extemporaneously prepared preservative-free prochlorperazine nasal spray.

    Science.gov (United States)

    Yellepeddi, Venkata K

    2018-01-01

    The stability of an extemporaneously prepared preservative-free prochlorperazine 5-mg/mL nasal spray was evaluated. The preservative-free prochlorperazine nasal spray was prepared by adding 250 mg of prochlorperazine edisylate to 50 mL of citrate buffer in a low-density polyethylene nasal spray bottle. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated using the major degradant prochlorperazine sulfoxide and by performing forced-degradation studies. For chemical stability studies, 3 100-μL samples of the preservative-free prochlorperazine from 5 nasal spray bottles stored at room temperature were collected at days 0, 20, 30, 45, and 60 and were assayed in triplicate using the stability-indicating HPLC method. Microbiological testing involved antimicrobial effectiveness testing based on United States Pharmacopeia ( USP ) chapter 51 and quantitative microbiological enumeration of aerobic bacteria, yeasts, and mold based on USP chapter 61. Samples for microbiological testing were collected at days 0, 30, and 60. The stability-indicating HPLC method clearly identified the degradation product prochlorperazine sulfoxide without interference from prochlorperazine. All tested solutions retained over 90% of the initial prochlorperazine concentration for the 60-day study period. There were no detectable changes in color, pH, and viscosity in any sample. There was no growth of bacteria, yeast, and mold for 60 days in all samples tested. An extemporaneously prepared preservative-free nasal spray solution of prochlorperazine edisylate 5 mg/mL was physically, chemically, and microbiologically stable for 60 days when stored at room temperature in low-density polyethylene bottles. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  20. Microwave-Assisted Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available A microporous metal-organic framework (MOF, cobalt-based zeolitic imidazolate framework-67 (ZIF-67, was synthesized by the combination of solvent-free hand-mill and microwave irradiation, without any organic solvent and within 30 minutes. The hand-milling process can mix the reactants well by the virtue of high moisture/water absorption capacity of reactants. In addition, the outstanding electromagnetic wave absorption capability of cobalt leads to efficient conversion to MOF structures before carbonization. The obtained ZIF-67 possesses high surface area and micropore volume.

  1. Review of online coupling of sample preparation techniques with liquid chromatography.

    Science.gov (United States)

    Pan, Jialiang; Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-03-07

    Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix

    International Nuclear Information System (INIS)

    Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin

    2017-01-01

    A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV–Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.

  3. Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhanlong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Zhu, Jiayi [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Luo, Xuan, E-mail: luox76@gmail.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Yewei [School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Qianfeng [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Zhang, Xing [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Bi, Yutie, E-mail: biyutie@sina.com [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Zhang, Lin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China)

    2017-04-01

    A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV–Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.

  4. Solvent Hold Tank Sample Results for MCU-16-1247-1248-1249: August 2016 Monthly Sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-12

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1247-1248-1249), pulled on 08/22/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1247-1248-1249 indicated the Isopar™L concentration is above its nominal level (101%). The extractant (MaxCalix) and the modifier (CS-7SB) are 7% and 9 % below their nominal concentrations. The suppressor (TiDG) is 63% below its nominal concentration. This analysis confirms the solvent may require the addition of TiDG, and possibly of modifier and MaxCalix to restore then to nominal levels. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. At the time of writing this report, A solvent trim batch containing TiDG, modifier and MaxCalix, was added to the SHT (October 2016) and expect the concentration of these components to be at their nominal values.

  5. Dichlorobenzene: an effective solvent for epoxy/graphene nanocomposites preparation.

    Science.gov (United States)

    Wei, Jiacheng; Saharudin, Mohd Shahneel; Vo, Thuc; Inam, Fawad

    2017-10-01

    It is generally recognized that dimethylformamide (DMF) and ethanol are good media to uniformly disperse graphene, and therefore have been used widely in the preparation of epoxy/graphene nanocomposites. However, as a solvent to disperse graphene, dichlorobenzene (DCB) has not been fully realized by the polymer community. Owing to high values of the dispersion component ( δ d ) of the Hildebrand solubility parameter, DCB is considered as a suitable solvent for homogeneous graphene dispersion. Therefore, epoxy/graphene nanocomposites have been prepared for the first time with DCB as a dispersant; DMF and ethanol have been chosen as the reference. The colloidal stability, mechanical properties, thermogravimetric analysis, dynamic mechanical analysis and scanning electron microscopic images of nanocomposites have been obtained. The results show that with the use of DCB, the tensile strength of graphene has been improved from 64.46 to 69.32 MPa, and its flexural strength has been increased from 97.17 to 104.77 MPa. DCB is found to be more effective than DMF and ethanol for making stable and homogeneous graphene dispersion and composites.

  6. Green sample preparation for liquid chromatography and capillary electrophoresis of anionic and cationic analytes.

    Science.gov (United States)

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2015-04-21

    A sample preparation device for the simultaneous enrichment and separation of cationic and anionic analytes was designed and implemented in an eight-channel configuration. The device is based on the use of an electric field to transfer the analytes from a large volume of sample into small volumes of electrolyte that was suspended into two glass micropipettes using a conductive hydrogel. This simple, economical, fast, and green (no organic solvent required) sample preparation scheme was evaluated using cationic and anionic herbicides as test analytes in water. The analytical figures of merit and ecological aspects were evaluated against the state-of-the-art sample preparation, solid-phase extraction. A drastic reduction in both sample preparation time (94% faster) and resources (99% less consumables used) was observed. Finally, the technique in combination with high-performance liquid chromatography and capillary electrophoresis was applied to analysis of quaternary ammonium and phenoxypropionic acid herbicides in fortified river water as well as drinking water (at levels relevant to Australian guidelines). The presented sustainable sample preparation approach could easily be applied to other charged analytes or adopted by other laboratories.

  7. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  8. LC-MS analysis of the plasma metabolome–a novel sample preparation strategy

    DEFF Research Database (Denmark)

    Skov, Kasper; Hadrup, Niels; Smedsgaard, Jørn

    2015-01-01

    Blood plasma is a well-known body fluid often analyzed in studies on the effects of toxic compounds as physiological or chemical induced changes in the mammalian body are reflected in the plasma metabolome. Sample preparation prior to LC-MS based analysis of the plasma metabolome is a challenge...... as plasma contains compounds with very different properties. Besides, proteins, which usually are precipitated with organic solvent, phospholipids, are known to cause ion suppression in electrospray mass spectrometry. We have compared two different sample preparation techniques prior to LC-qTOF analysis...... of plasma samples: The first is protein precipitation; the second is protein precipitation followed by solid phase extraction with sub-fractionation into three sub-samples; a phospholipid, a lipid and a polar sub-fraction. Molecular feature extraction of the data files from LC-qTOF analysis of the samples...

  9. An efficient synthesis of quinolines under solvent-free conditions

    Indian Academy of Sciences (India)

    Unknown

    An efficient synthesis of quinolines under solvent-free conditions. 201 was then irradiated with microwaves in a microwave oven (Samsung model# CE118KF) at 1050W (70% of total power) for 5 minutes (3 + 2 with an inter- mission of 5 minutes). The reaction mixture was cooled at room temperature and rendered basic (pH.

  10. Photo-triggered solvent-free metamorphosis of polymeric materials.

    Science.gov (United States)

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  11. SOLVENT HOLD TANK SAMPLE RESULTS FOR MCU-13-189, MCU-13-190, AND MCU-13-191: QUARTERLY SAMPLE FROM SEPTEMBER 2013

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Taylor-Pashow, K.

    2013-10-31

    Savannah River National Laboratory (SRNL) analyzed solvent samples from Modular Caustic-Side Solvent Extraction Unit (MCU) in support of continuing operations. A quarterly analysis of the solvent is required to maintain solvent composition within specifications. Analytical results of the analyses of Solvent Hold Tank (SHT) samples MCU-13-189, MCU-13-190, and MCU-13-191 received on September 4, 2013 are reported. The results show that the solvent (remaining heel in the SHT tank) at MCU contains excess Isopar L and a deficit concentration of modifier and trioctylamine when compared to the standard MCU solvent. As with the previous solvent sample results, these analyses indicate that the solvent does not require Isopar L trimming at this time. Since MCU is switching to NGS, there is no need to add TOA nor modifier. SRNL also analyzed the SHT sample for {{sup 137}Cs content and determined the measured value is within tolerance and the value has returned to levels observed in 2011.

  12. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    Science.gov (United States)

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  13. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    Science.gov (United States)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  14. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    Science.gov (United States)

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  15. Preparing poly (caprolactone) micro-particles through solvent-induced phase separation

    DEFF Research Database (Denmark)

    Li, Xiaoqiang; Kanjwal, Muzafar Ahmed; Stephansen, Karen

    2012-01-01

    Poly (caprolactone) (PCL) particles with the size distribution from 1 to 100 μm were prepared through solvent-induced phase separation, in which polyvinyl-alcohol (PVA) was used as the matrix-forming polymer to stabilize PCL particles. The cloud point data of PCL-acetone-water was determined...

  16. Atomic absorption determination of metals in soils using ultrasonic sample preparation

    International Nuclear Information System (INIS)

    Chmilenko, F.A.; Smityuk, N.M.; Baklanov, A.N.

    2002-01-01

    It was shown that ultrasonic treatment accelerates sample preparation of soil extracts from chernozem into different solvents by a factor of 6 to 60. These extracts are used for the atomic absorption determination of soluble species of Cd, Co, Cr, Cu, Ni, Pb, and Zn. The optimum ultrasound parameters (frequency, intensity, and treatment time) were found for preparing soil extracts containing analytes in concentrations required in agrochemical procedures. Different extractants used to extract soluble heavy metals from soils of an ordinary chernozem type in agrochemical procedures using ultrasonic treatment were classified in accordance with the element nature [ru

  17. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying.

    Science.gov (United States)

    Paudel, Amrit; Van den Mooter, Guy

    2012-01-01

    To investigate the influence of solvent properties on the phase behavior and physical stability of spray-dried solid dispersions containing naproxen and PVP K 25 prepared from binary cosolvent systems containing methanol, acetone and dichloromethane. The viscosity, polymer globular size and evaporation rate of the spray-drying feed solutions were characterized. The solid dispersions were prepared by spray-drying drug-polymer solutions in binary solvent blends containing different proportions of each solvent. The phase behavior was investigated with mDSC, pXRD, FT-IR and TGA. Further, physical stability of solid dispersions was assessed by analyzing after storage at 75% RH. The solid dispersions prepared from solvent/anti-solvent mixture showed better miscibility and physical stability over those prepared from the mixtures of good solvents. Thus, solid dispersions prepared from dichloromethane-acetone exhibited the best physicochemical attributes followed by those prepared from methanol-acetone. FT-IR analysis revealed differential drug-polymer interaction in solid dispersions prepared from various solvent blends, upon the exposure to elevated humidity. Spray-drying from a cocktail of good solvent and anti-solvent with narrower volatility difference produces solid dispersions with better miscibility and physical stability resulting from the simultaneous effect on the polymer conformation and better dispersivity of drug.

  18. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  19. Oligoquinolines under Solvent-free Microwave Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwi-Jeon; Kwon, Tae-Woo [Kyungsung University, Busan (Korea, Republic of)

    2015-01-15

    Quinolines are thermally stable and can be used as an excellent n-type semiconducting materials. Since quinolines are also known to be electron acceptor molecules, combination of various electron donor building blocks can be utilized in photonic and electronic organic light-emitting diode (OLED) applications. For example, donor.acceptor systems with phenothiazine (or carbazole) molecules as electron donors and the phenylquinoline group as an electron acceptor provide an efficient approach for the design of new materials exhibiting highly efficient charge-transfer photophysics and electroluminescence in OLEDs. We have described the Friedlander quinoline synthesis between aminobenzophenones and symmetrical diacetyl compounds having phenothiazine, carbazole, biphenyl, and phenyl moieties under solvent-free microwave irradiation in 12.98% isolated yields.

  20. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  1. Synthesis of 1-amidoalkyl-2-naphthols based on a three-component reaction catalyzed by boric acid as a solid heterogeneous catalyst under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Zahed Karimi-Jaberi

    2012-12-01

    Full Text Available An efficient method for the preparation of 1-amidoalkyl-2-naphthols has been described using a multi-component, one-pot condensation reaction of 2-naphthol, aldehydes and amides in the presence of boric acid under solvent-free conditions.DOI: http://dx.doi.org/10.4314/bcse.v26i3.18

  2. Solvent hold tank sample results for MCU-16-1363-1364-1365: November 2016 monthly sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-16

    Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1363-1364-1365), pulled on 11/15/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1363-1364-1365 indicated the Isopar™L concentration is at its nominal level (100%). The extractant (MaxCalix) and the modifier (CS- 7SB) are 8% and 2 % below their nominal concentrations. The suppressor (TiDG) is 7% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  3. Solvent hold tank sample results for MCU-16-1317-1318-1319: September 2016 monthly sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-16

    Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1317-1318-1319), pulled on 09/12/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1317-1318-1319 indicated the Isopar™L concentration is above its nominal level (102%). The extractant (MaxCalix) and the modifier (CS-7SB) are 5% and 9% below their nominal concentrations. The suppressor (TiDG) is 76% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  4. Solvent hold tank sample results for MCU-16-1247-1248-1249: August 2016 monthly sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-16

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1247-1248-1249), pulled on 08/22/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1247-1248-1249 indicated the Isopar™L concentration is above its nominal level (101%). The extractant (MaxCalix) and the modifier (CS-7SB) are 7% and 9 % below their nominal concentrations. The suppressor (TiDG) is 63% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  5. A high-throughput sample preparation method for cellular proteomics using 96-well filter plates.

    Science.gov (United States)

    Switzar, Linda; van Angeren, Jordy; Pinkse, Martijn; Kool, Jeroen; Niessen, Wilfried M A

    2013-10-01

    A high-throughput sample preparation protocol based on the use of 96-well molecular weight cutoff (MWCO) filter plates was developed for shotgun proteomics of cell lysates. All sample preparation steps, including cell lysis, buffer exchange, protein denaturation, reduction, alkylation and proteolytic digestion are performed in a 96-well plate format, making the platform extremely well suited for processing large numbers of samples and directly compatible with functional assays for cellular proteomics. In addition, the usage of a single plate for all sample preparation steps following cell lysis reduces potential samples losses and allows for automation. The MWCO filter also enables sample concentration, thereby increasing the overall sensitivity, and implementation of washing steps involving organic solvents, for example, to remove cell membranes constituents. The optimized protocol allowed for higher throughput with improved sensitivity in terms of the number of identified cellular proteins when compared to an established protocol employing gel-filtration columns. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Review of sample preparation techniques for the analysis of pesticide residues in soil.

    Science.gov (United States)

    Tadeo, José L; Pérez, Rosa Ana; Albero, Beatriz; García-Valcárcel, Ana I; Sánchez-Brunete, Consuelo

    2012-01-01

    This paper reviews the sample preparation techniques used for the analysis of pesticides in soil. The present status and recent advances made during the last 5 years in these methods are discussed. The analysis of pesticide residues in soil requires the extraction of analytes from this matrix, followed by a cleanup procedure, when necessary, prior to their instrumental determination. The optimization of sample preparation is a very important part of the method development that can reduce the analysis time, the amount of solvent, and the size of samples. This review considers all aspects of sample preparation, including extraction and cleanup. Classical extraction techniques, such as shaking, Soxhlet, and ultrasonic-assisted extraction, and modern techniques like pressurized liquid extraction, microwave-assisted extraction, solid-phase microextraction and QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) are reviewed. The different cleanup strategies applied for the purification of soil extracts are also discussed. In addition, the application of these techniques to environmental studies is considered.

  7. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids

    International Nuclear Information System (INIS)

    Gu, Shu-Ying; Gao, Xie-Feng; Zhang, Yi-Han

    2015-01-01

    A development of the novel and stable solvent-free ionic MoS 2 nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS 2 from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, 1 H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS 2 nanofluids show that inorganic MoS 2 cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS 2 nanofluids is presented. • The rheological behaviors can be tailored by

  8. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar; Cairns, Amy J.; Eddaoudi, Mohamed; Vittal, Jagadese J.

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal

  9. Preparation of Baking-Free Brick from Manganese Residue and Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-01-01

    Full Text Available The increasing amount of waste residue produced during the electrolytic preparation process of manganese has nowadays brought about serious environmental problems. The research on utilization of manganese slag has been a hot spot around the world. The utilization of manganese slag is not only environment friendly, but also economically feasible. In the current work, a summarization of the main methods to produced building materials from manganese slag materials was given. Baking-free brick, a promising building material, was produced from manganese slag with the addition of quicklime and cement. The physical properties, chemical composition, and mechanical performances of the obtained samples were measured by several analyses and characterization methods. Then the influence of adding materials and molding pressure during the preparation of baking-free brick samples on their compressive strength properties was researched. It is concluded that the baking-free brick prepared from manganese residue could have excellent compressive strength performance under certain formula.

  10. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    Science.gov (United States)

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  11. Dipyridine cobalt chloride as an efficient and chemoselective catalyst for the synthesis of 1,1-diacetates under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sobhan Rezayati

    2014-02-01

    Full Text Available 1,1-Diacetates(acylals were prepared by direct condensation of various aldehydes with acetic anhydride using dipyridine cobalt chloride (CoPy2Cl2 as an efficient and green catalyst under solvent-free conditions at room temperature. The important features of this catalyst method are that the catalyst is solid, stable at high temperatures, soluble in water, stable in air, immiscible in common organic solvents, and low toxic and, above all, it is reusable. CoPy2Cl2 can be recycled after a simple work-up and reused at least five runs without appreciable loss of its catalytic activity. High chemo-selectivity toward aldehyde in the presence of ketones is another advantage of the present method which provides selective protection of aldehydes in their mixtures with ketones.

  12. Microwave-assisted clean synthesis of amides via aza-wittig reaction under solvent-free condition

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, Murugan; Nagarajan, Sangaraiah; Velan, Poovan Shanmuga; Dinesh, Murugan; Ponnuswamy, Alagusundaram [Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Tamilnadu (India)

    2011-09-15

    A solvent-free microwave-assisted coupling of phosphazenes with acyl chlorides or carboxylic anhydrides in presence of triethylphosphite has been accomplished resulting in a clean synthesis of amides in good yields. Unlike the prevailing time-consuming solution phase methodologies employing chlorinated solvents, benzene (carcinogenic), etc, the present protocol is an eco friendly, rapid and simple approach. (author)

  13. Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Wang, Jialiang; Shi, Zixing; Ge, Yu; Wang, Yan; Fan, Jinchen; Yin, Jie

    2012-01-01

    Graphene (GP)-based polymer nanocomposites have attracted considerable scientific attention due to its pronounced improvement in mechanical, thermal and electrical properties compared with pure polymers. However, the preparation of well-dispersed and high-quality GP reinforced polymer composites remains a challenge. In this paper, a simple and facile approach for preparation of poly(methyl methacrylate) (PMMA) functionalized GP (GPMMA) via in situ free radical polymerization is reported. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, transmission electron microscope (TEM) and thermogravimetric analysis (TGA) are used to confirm the successful grafting of PMMA chains onto the GP sheets. Composite films are prepared by incorporating different amounts of GPMMA into the PMMA matrix through solution-casting method. Compared with pure PMMA, PMMA/GPMMA composites show simultaneously improved Young's modulus, tensile stress, elongation at break and thermal stability by addition of only 0.5 wt% GPMMA. The excellent reinforcement is attributed to good dispersion of high-quality GPMMA and strong interfacial adhesion between GPMMA and PMMA matrix as evidenced by scanning electron microscope (SEM) images of the fracture surfaces. Consequently, this simple protocol has great potential in the preparation of various high-performance polymer composites. Highlights: ► Functionalization of solvent exfoliated graphene by in situ polymerization. ► A simple and scalable method for preparing high-quality graphene. ► Functionalized graphene can be well-dispersed and have a strong interfacial adhesion with the polymer matrix. ► The nanocomposites exhibit a remarkable improvement of thermal and mechanical properties.

  14. Solvent-free functionalization of carbon nanotube buckypaper with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Abarca-Morales, Edgar; Pérez-Rey, Luis A.; Re, Marilena; Prete, Paola; Lovergine, Nico

    2015-01-01

    Graphical abstract: - Abstract: We demonstrate the possibility of fast and efficient solvent-free functionalization of buckypaper (BP) mats prefabricated from oxidized multiwalled carbon nanotubes (MWCNTs-ox), by using three representative amines of different structure: one monofunctional aliphatic amine, octadecylamine (ODA), one monofunctional aromatic amine, 1-aminopyrene (AP), and one aromatic diamine, 1,5-diaminonaphthalene (DAN). The functionalization procedure, which relies on the formation of amide bonds with carboxylic groups of MWCNTs-ox, is performed at 150–180 °C under reduced pressure and takes about 4 h including auxiliary degassing. The amine-treated BP samples (BP-ODA, BP-AP and BP-DAN, respectively) were characterized by means of a variety of analytical techniques such as Fourier-transform infrared and Raman spectroscopy, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, scanning helium ion microscopy, and atomic force microscopy. The highest amine content was found for BP-ODA, and the lowest one was observed for BP-DAN, with a possible contribution of non-covalently bonded amine molecules in all three cases. Despite of some differences in spectral and morphological characteristics for amine-functionalized BP samples, they have in common a dramatically increased stability in water as compared to pristine BP and, on the other hand, a relatively invariable electrical conductivity.

  15. studies on solvent extraction of free hydrogen cyanide from river water

    African Journals Online (AJOL)

    A method for free and strongly complexed cyanide measurement in river water was developed. Recovery tests from solution with and without river water, using various solvent combinations and background control were investigated to obtain an accurate and precise extraction method for the measurement of hydrogen ...

  16. Influences of surface and solvent on retention of HEMA/mixture components after evaporation.

    Science.gov (United States)

    Garcia, Fernanda C P; Wang, Linda; Pereira, Lúcia C G; de Andrade e Silva, Safira M; Júnior, Luiz M; Carrilho, Marcela Rocha de Oliveira

    2010-01-01

    This study examined the retention of solvents within experimental HEMA/solvent primers after two conditions for solvent evaporation: from a free surface or from dentine surface. Experimental primers were prepared by mixing 35% HEMA with 65% water, methanol, ethanol or acetone (v/v). Aliquots of each primer (50 microl) were placed on glass wells or they were applied to the surface of acid-etched dentine cubes (2mm x 2mm x 2mm) (n=5). For both conditions (i.e. from free surface or dentine cubes), change in primers mass due to solvent evaporation was gravimetrically measured for 10min at 51% RH and 21 degrees C. The rate of solvent evaporation was calculated as a function of loss of primers mass (%) over time. Data were analysed by two-way ANOVA and Student-Newman-Keuls (pevaporation rate (%/min) depending on the solvent present in the primer and the condition for evaporation (from free surface or dentine cubes) (pevaporation for HEMA/acetone primer was almost 2- to 10-times higher than for HEMA/water primer depending whether evaporation occurred, respectively, from a free surface or dentine cubes. The rate of solvent evaporation varied with time, being in general highest at the earliest periods. The rate of solvent evaporation and its retention into HEMA/solvent primers was influenced by the type of the solvent and condition allowed for their evaporation.

  17. Application of immunoaffinity columns for different food item samples preparation in micotoxins determination

    Directory of Open Access Journals (Sweden)

    Ćurčić Marijana

    2016-01-01

    Full Text Available In analytical methods used for monitoring of what special attention is paid to sample preparation. Therefore, the objective of this study was testing the efficiency of immunoaffinity columns (IAC that are based on solid phase extraction principles used for samples preparation in determining aflatoxins and ochratoxins. Aflatoxins and ochratoxins concentrations were determined in totally 56 samples of food items: wheat, corn, rice, barley and other grains (19 samples, flour and flour products from grain and additives for the bakery industry (7 samples, fruits and vegetables (3 samples, hazelnut, walnut, almond, coconut flour (4 samples, roasted cocoa beans, peanuts, tea, coffee (16 samples, spices (4 samples and meat and meat products (4 samples. Obtained results indicate advantage of IAC use for sample preparation based on enhanced specificity due to binding of extracted molecules to incorporated specific antibodies and rinsing the rest molecules from sample which could interfere with further analysis. Additional advantage is the usage of small amount of organic solvents and consequently decreased exposure of staff who conduct micotoxins determination. Of special interest is increase in method sensitivity since limit of quantification for aflatoxins and ochratoxins determination method is lower than maximal allowed concentration of these toxines prescribed by national rule book.

  18. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngme [Ewha Womans University, College of Pharmacy (Korea, Republic of); Sah, Eric [University of Notre Dame, College of Science (United States); Sah, Hongkee, E-mail: hsah@ewha.ac.kr [Ewha Womans University, College of Pharmacy (Korea, Republic of)

    2015-11-15

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.Graphical AbstractSchematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion

  19. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    International Nuclear Information System (INIS)

    Lee, Youngme; Sah, Eric; Sah, Hongkee

    2015-01-01

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.Graphical AbstractSchematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion

  20. Preparation of solid-state samples of a transition metal coordination compound for synchrotron radiation photoemission studies

    CERN Document Server

    Crotti, C; Celestino, T; Fontana, S

    2003-01-01

    The aim of this research was to identify a sample preparation method suitable for the study of transition metal complexes by photoemission spectroscopy with synchrotron radiation as the X-ray source, even in the case where the compound is not evaporable. Solid-phase samples of W(CO) sub 4 (dppe) [dppe=1,2-bis(diphenylphosphino)ethane] were prepared according to different methods and their synchrotron radiation XPS spectra measured. The spectra acquired from samples prepared by spin coating show core level peaks only slightly broader than the spectrum recorded from UHV evaporated samples. Moreover, for these samples the reproducibility of the binding energy values is excellent. The dependence of the spin coating technique on parameters such as solvent and solution concentration, spinning speed and support material was studied. The same preparation method also allowed the acquisition of valence band spectra, the main peaks of which were clearly resolved. The results suggest that use of the spin coating techniqu...

  1. Analysis of solvent extracts from coal liquefaction in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Ying; Feng, Jie; Xie, Ke-Chang [Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024 (China); Kandiyoti, R. [Department of Chemical Engineering and Chemical Technology, Imperial College, University of London, London SW7 2BY (United Kingdom)

    2004-10-15

    Point of Ayr coal has been extracted using three solvents, tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP) at two temperatures 350 and 450 C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. The three solvents differ in solvent power and the ability to donate hydrogen atoms to stabilise free radicals produced by pyrolysis of the coal. The extracts were prepared in a flowing solvent reactor to minimise secondary thermal degradation of the primary extracts. Analysis of the pentane-insoluble fractions of the extracts was achieved by size exclusion chromatography, UV-fluorescence spectroscopy in NMP solvent and probe mass. With increasing extraction temperature, the ratio of the amount having big molecular weight to that having small molecular weight in tetralin extracts was increased; the tetralin extract yield increased from 12.8% to 75.9%; in quinoline, increasing extraction temperature did not have an effect on the molecular weight of products but there was a big increase in extract yield. The extracts in NMP showed the enhanced solvent extraction power at both temperatures, with a shift in the ratio of larger molecules to smaller molecules with increasing extraction temperature and with the highest conversion of Point of Ayr coal among these three solvents at both temperatures. Solvent adducts were detected in the tetralin and quinoline extracts by probe mass spectrometry; solvent products were formed from NMP at both temperatures.

  2. Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents

    Science.gov (United States)

    Wang, Yuru; Wang, Tianren; Chen, Xi; Xu, Yang; Li, Huanrong

    2018-04-01

    Herein, we prepared a Mn(II)-coordinated carbon dots (CDs) with fluorescence and MRI (magnetic resonance imaging) bimodal properties by a one-pot solvothermal method and separated via silica column chromatography. The quantum yield of the CDs increased greatly from 2.27% to 6.75% with increase of Mn(II) doping, meanwhile the CDs exhibited a higher MR activity (7.28 mM-1s-1) than that of commercial Gd-DTPA (4.63 mM-1s-1). In addition, white light emitting CDs were obtained by mixing the different types of CDs. Notably, these CDs exhibited different fluorescence emissions in different organic solvents and could be used to discriminate organic solvents based on the polarity and protonation of the solvents.

  3. Predicting the Disorder–Order Transition of Solvent-Free Nanoparticle–Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu

    2013-07-02

    The transition from a disordered to a face-centered-cubic phase in solvent-free oligomer-tethered nanoparticles is predicted using a density-functional theory for model hard spheres with tethered bead-spring oligomers. The transition occurs without a difference of volume fraction for the two phases, and the phase boundary is influenced by the loss of oligomer configurational entropy relative to an ideal random system in one phase compared with the other. When the particles are localized in the ordered phase, the cooperation of the oligomers in filling the space is hindered. Therefore, shorter oligomers feel a stronger entropic penalty in the ordered solid and favor the disordered phase. Strikingly, we found that the solvent-free system has a later transition than hard spheres for all investigated ratios of oligomer radius of gyration to particle radius. © 2013 American Chemical Society.

  4. An Expedient Method for the Synthesis of Thiosemicarbazones under Microwave Irradiation in Solvent-free Medium

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping; ZHENG, Peng-Zhi; ZHU, Jun-Ge; LIU, Rui-Jie; QU, Gui-Rong

    2006-01-01

    A simple, efficient and eco-friendly method for the synthesis of thiosemicarbazones from thiosemicarbazides and aldehyde under microwave irradiation has been reported, and no solvent and catalyst were used. And the technique of microwave irradiation coupled with solvent-free condition proved to be a quite valuable method in the organic synthesis.

  5. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology.

    Science.gov (United States)

    Freitas, Sergio; Merkle, Hans P; Gander, Bruno

    2005-02-02

    The therapeutic benefit of microencapsulated drugs and vaccines brought forth the need to prepare such particles in larger quantities and in sufficient quality suitable for clinical trials and commercialisation. Very commonly, microencapsulation processes are based on the principle of so-called "solvent extraction/evaporation". While initial lab-scale experiments are frequently performed in simple beaker/stirrer setups, clinical trials and market introduction require more sophisticated technologies, allowing for economic, robust, well-controllable and aseptic production of microspheres. To this aim, various technologies have been examined for microsphere preparation, among them are static mixing, extrusion through needles, membranes and microfabricated microchannel devices, dripping using electrostatic forces and ultrasonic jet excitation. This article reviews the current state of the art in solvent extraction/evaporation-based microencapsulation technologies. Its focus is on process-related aspects, as described in the scientific and patent literature. Our findings will be outlined according to the four major substeps of microsphere preparation by solvent extraction/evaporation, namely, (i) incorporation of the bioactive compound, (ii) formation of the microdroplets, (iii) solvent removal and (iv) harvesting and drying the particles. Both, well-established and more advanced technologies will be reviewed.

  6. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  7. Catalyst-free and solvent-free Michael addition of 1,3-dicarbonyl compounds to nitroalkenes by a grinding method

    Science.gov (United States)

    Xie, Zong-Bo; Wu, Ming-Yu; He, Ting; Le, Zhang-Gao

    2012-01-01

    Summary An environmentally benign, fast and convenient protocol has been developed for the Michael addition of 1,3-dicarbonyl compounds to β-nitroalkenes in good to excellent yields by a grinding method under catalyst- and solvent-free conditions. PMID:22563352

  8. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  9. Analytical Methods for Cs-137 and Other Radionuclides in Solvent Samples

    International Nuclear Information System (INIS)

    Pennebaker, F.M.

    2002-01-01

    Accurate characterization of individual waste components is critical to ensure design and operation of effective treatment processes and compliance with waste acceptance criteria. Current elemental analysis of organic matrices consists of conversion of the organic sample to aqueous by digesting the sample, which is inadequate in many cases. Direct analysis of the organic would increase sensitivity and decrease contamination and analysis time. For this project, we evaluated an Aridus membrane-desolvation sample introduction system for the direct analysis of organic solvents by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The desolvator-ICP-MS successfully analyzed solvent from the caustic-side solvent extraction (CSSX) process and tri-butyl phosphate (TBP) organic tank waste from F-canyon for a variety of elements. Detection limits for most elements were determined in the part per trillion (ppt) range. This technology should increase accuracy in support of SRTC activities involving CSSX and other site processes involving organic compounds

  10. Predicting the Disorder–Order Transition of Solvent-Free Nanoparticle–Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu; Koch, Donald L.

    2013-01-01

    in the ordered phase, the cooperation of the oligomers in filling the space is hindered. Therefore, shorter oligomers feel a stronger entropic penalty in the ordered solid and favor the disordered phase. Strikingly, we found that the solvent-free system has a

  11. [Sample preparation methods for chromatographic analysis of organic components in atmospheric particulate matter].

    Science.gov (United States)

    Hao, Liang; Wu, Dapeng; Guan, Yafeng

    2014-09-01

    The determination of organic composition in atmospheric particulate matter (PM) is of great importance in understanding how PM affects human health, environment, climate, and ecosystem. Organic components are also the scientific basis for emission source tracking, PM regulation and risk management. Therefore, the molecular characterization of the organic fraction of PM has become one of the priority research issues in the field of environmental analysis. Due to the extreme complexity of PM samples, chromatographic methods have been the chief selection. The common procedure for the analysis of organic components in PM includes several steps: sample collection on the fiber filters, sample preparation (transform the sample into a form suitable for chromatographic analysis), analysis by chromatographic methods. Among these steps, the sample preparation methods will largely determine the throughput and the data quality. Solvent extraction methods followed by sample pretreatment (e. g. pre-separation, derivatization, pre-concentration) have long been used for PM sample analysis, and thermal desorption methods have also mainly focused on the non-polar organic component analysis in PM. In this paper, the sample preparation methods prior to chromatographic analysis of organic components in PM are reviewed comprehensively, and the corresponding merits and limitations of each method are also briefly discussed.

  12. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    Science.gov (United States)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  13. Development of a new solvent-free flow efficiency coating for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Graham A.; Morse, Jennifer [Bredero Shaw, Houston, TX (United States)

    2005-07-01

    Pipeline design engineers have traditionally considered external anti-corrosion coatings for the protection of gas transmission pipelines, with less consideration given to the benefits of internal flow efficiency coatings. This paper reviews the benefits of using a traditional solvent-based flow efficiency coating, and the relationship between the internal surface roughness of a pipe, the pressure drop across the pipeline, and the maximum flow rate of gas through the pipeline. To improve upon existing solvent-based flow efficiency coatings, a research program was undertaken to develop a solvent-free coating. The stages in the development of this coating are discussed, resulting in the plant application of the coating and final qualification to API RP 5L2. (author)

  14. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  15. Facile and solvent-free routes for the synthesis of size-controllable Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Ngo, Thanh Hieu; Tran, Dai Lam; Do, Hung Manh; Le, Van Hong; Nguyen, Xuan Phuc; Tran, Vinh Hoang

    2010-01-01

    Magnetite nanoparticles are one of the most important materials that are widely used in both medically diagnostic and therapeutic research. In this paper, we present some facile and non-toxic synthetic approaches for size-controllable preparations of magnetite nanoparticles, which are appropriate for biomedical applications, namely (i) co-precipitation; (ii) reduction–precipitation and (iii) oxidation–precipitation. Magnetic characterizations of the obtained nanoparticles have been studied and discussed. The oxidation precipitation route was chosen for investigation of the dependence of kinetic driven activation energy and that of coercive force on particle size (and temperature) during the course of the reaction. The structural–magnetic behavior was also correlated. Being solvent and surfactant-free, these methods are advantageous for synthesis and further functionalization towards biomedical applications

  16. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.

    Science.gov (United States)

    Haberkorn, Niko; Weber, Stefan A L; Berger, Rüdiger; Theato, Patrick

    2010-06-01

    We describe the synthesis and characterization of a cross-linkable siloxane-derivatized tetraphenylbenzidine (DTMS-TPD), which was used for the fabrication of semiconducting highly ordered nanorod arrays on conductive indium tin oxide or Pt-coated substrates. The stepwise process allow fabricating of macroscopic areas of well-ordered free-standing nanorod arrays, which feature a high resistance against organic solvents, semiconducting properties and a good adhesion to the substrate. Thin films of the TPD derivate with good hole-conducting properties could be prepared by cross-linking and covalently attaching to hydroxylated substrates utilizing an initiator-free thermal curing at 160 degrees C. The nanorod arrays composed of cross-linked DTMS-TPD were fabricated by an anodic aluminum oxide (AAO) template approach. Furthermore, the nanorod arrays were investigated by a recently introduced method allowing to probe local conductivity on fragile structures. It revealed that more than 98% of the nanorods exhibit electrical conductance and consequently feature a good electrical contact to the substrate. The prepared nanorod arrays have the potential to find application in the fabrication of multilayered device architectures for building well-ordered bulk-heterojunction solar cells.

  17. Preparation of silver colloid and enhancement of dispersion stability in organic solvent

    International Nuclear Information System (INIS)

    Kim, Ki Young; Choi, Young Tai; Seo, Dae Jong; Park, Seung Bin

    2004-01-01

    Silver colloid of nanometer size was prepared in liquid phase by a reduction method. AgNO 3 , FeSO 4 .7H 2 O, and Na 3 C 6 H 5 O 7 .2H 2 O were used as silver precursor, reducing agent and dispersing agent, respectively. As precursor concentration was decreased or the concentration of dispersing agent was increased, the prepared particle size was decreased from 180 nm to 20 nm. Apparently, the particle size seemed to be decreased with the increase of stirring rate, but it was confirmed by TEM that the size of primary particle remained the same. This result indicates that the uniformity of precursor concentration in the reactor affects the particle size and the stirring rate should be kept higher than the critical value to prevent the agglomeration of particles. In order to make the dispersion stability of the prepared silver colloid maintained even in non-polar organic solvent, electrodialysis technique was applied. As ionic species in colloidal solution were removed by electrodialysis, the dispersability of the colloid in the organic solvent of long carbon chain was confirmed to be increased

  18. Fe–Al/clay as an efficient heterogeneous catalyst for solvent-free ...

    Indian Academy of Sciences (India)

    SiO2,27 amberlyst-15,28 etc. ... tometer, using Ni-filtered Cu Ka (0.15418 nm) radia- ... The spectral data of some ... C).29 1H NMR ... 3.99(q, j = 7.1 Hz, 2H), 5.12 (s,1H), 7.23 (d, j = 8.35 .... Recyclability was studied in both solvent-free and.

  19. Solvent-free covalent functionalization of nanodiamond with amines

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Santamaría-Bonfil, Adriana; Meza-Laguna, Victor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Gromovoy, Taras Yu. [Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Alvares-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Contreras-Torres, Flavio F.; Rizo, Juan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Zavala, Guadalupe [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos (Mexico); Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. (Mexico)

    2013-06-15

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  20. Solvent-free covalent functionalization of nanodiamond with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Santamaría-Bonfil, Adriana; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Alvares-Zauco, Edgar; Contreras-Torres, Flavio F.; Rizo, Juan; Zavala, Guadalupe; Basiuk, Vladimir A.

    2013-01-01

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  1. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    Science.gov (United States)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  2. Extraction, Scrub, and Strip Test Results for the Salt Waste Processing Facility Caustic Side Solvent Extraction Solvent Sample

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D(Cs) results.

  3. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    Science.gov (United States)

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  4. The effect of processing and composition on the properties of polylactide–multiwall carbon nanotube composites prepared by solvent casting

    International Nuclear Information System (INIS)

    Rizvi, Reza; Naguib, Hani; Kim, Jae-Kyung

    2010-01-01

    This study investigates the effects of processing solvent and filler concentration on the thermal, electrical and mechanical properties of polylactide (PLA)–multiwall carbon nanotube (MWNT) composites. PLA–MWNT composites were prepared by a solvent casting method using two different solvents, chloroform and 1,4-dioxane, in compositions of 0, 0.5, 2 and 5 wt% MWNTs. The dispersion of the MWNTs in PLA was examined using a scanning electron microscope and was found to be improved when 1,4-dioxane was used as the solvent as compared with when chloroform was used. Owing to their better MWNT dispersion, composites prepared using 1,4-dioxane displayed a greater dependence on the MWNT concentration of the thermal, electrical and mechanical properties. Composites prepared using 1,4-dioxane had a greater effect on PLA's decomposition temperature and displayed faster crystallization kinetics than those prepared using chloroform. Not only was the conductivity of 1,4-dioxane prepared composites greater than that of chloroform prepared composites, but also the filler percolation point was observed to be reduced as well (less than 0.5 wt% MWNTs). At 5 wt% MWNT composition, a 31% increase in Young's modulus was observed in 1,4-dioxane prepared composites while a 14% improvement was observed in chloroform prepared composites, as compared with neat PLA. On the basis of the results, it is believed that the chemical interaction between the carboxylated MWNTs and 1,4-dioxane allows for a better dispersion of the MWNTs in PLA

  5. Sample preparation: a critical step in the analysis of cholesterol oxidation products.

    Science.gov (United States)

    Georgiou, Christiana A; Constantinou, Michalis S; Kapnissi-Christodoulou, Constantina P

    2014-02-15

    In recent years, cholesterol oxidation products (COPs) have drawn scientific interest, particularly due to their implications on human health. A big number of these compounds have been demonstrated to be cytotoxic, mutagenic, and carcinogenic. The main source of COPs is through diet, and particularly from the consumption of cholesterol-rich foods. This raises questions about the safety of consumers, and it suggests the necessity for the development of a sensitive and a reliable analytical method in order to identify and quantify these components in food samples. Sample preparation is a necessary step in the analysis of COPs in order to eliminate interferences and increase sensitivity. Numerous publications have, over the years, reported the use of different methods for the extraction and purification of COPs. However, no method has, so far, been established as a routine method for the analysis of COPs in foods. Therefore, it was considered important to overview different sample preparation procedures and evaluate the different preparative parameters, such as time of saponification, the type of organic solvents for fat extraction, the stationary phase in solid phase extraction, etc., according to recovery, precision and simplicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS{sub 2}) nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Shu-Ying, E-mail: gushuying@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Gao, Xie-Feng; Zhang, Yi-Han [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)

    2015-01-15

    A development of the novel and stable solvent-free ionic MoS{sub 2} nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS{sub 2} from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, {sup 1}H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS{sub 2} nanofluids show that inorganic MoS{sub 2} cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS{sub 2} nanofluids is presented. • The rheological

  7. Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process

    Science.gov (United States)

    Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu

    2017-08-01

    The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.

  8. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    Science.gov (United States)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  9. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    Directory of Open Access Journals (Sweden)

    Jaya Mishra

    2018-04-01

    Full Text Available Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated. Mixtures of indomethacin (IND and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a ethanol and water mixtures and (b acetone and water mixtures. Different ratios of these solvents were chosen to study the effect of solvent mixtures on co-amorphous formulation. Residual crystallinity, thermal properties, salt/partial salt formation, and powder dissolution profiles of the IND–AA mixtures were investigated and compared to pure crystalline and amorphous IND. It was found that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced dissolution rate and maintained supersaturation compared to the crystalline and amorphous IND itself. The spray-dried samples resulting in co-amorphous samples were stable for at least seven months of storage.

  10. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    Science.gov (United States)

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  11. Diclofenac Loaded Lipid Nanovesicles Prepared by Double Solvent Displacement for Skin Drug Delivery.

    Science.gov (United States)

    Sala, M; Locher, F; Bonvallet, M; Agusti, G; Elaissari, A; Fessi, H

    2017-09-01

    Herein, we detail a promising strategy of nanovesicle preparation based on control of phospholipid self-assembly: the Double Solvent Displacement. A systematic study was conducted and diclofenac as drug model encapsulated. In vitro skin studies were carried out to identify better formulation for dermal/transdermal delivery. This method consists in two solvent displacements. The first one, made in a free water environment, has allowed triggering a phospholipid pre-organization. The second one, based on the diffusion into an aqueous phase has led to liposome formation. Homogeneous liposomes were obtained with a size close to 100 nm and a negative zeta potential around -40 mV. After incorporation of acid diclofenac, we obtained nanoliposomes with a size between 101 ± 45 and 133 ± 66 nm, a zeta potential between 34 ± 2 and 49 ± 3 mV, and the encapsulation efficiency (EE%) was between 58 ± 3 and 87 ± 5%. In vitro permeation studies showed that formulation with higher EE% dispayed the higher transdermal passage (18,4% of the applied dose) especially targeting dermis and beyond. Our results suggest that our diclofenac loaded lipid vesicles have significant potential as transdermal skin drug delivery system. Here, we produced cost effective lipid nanovesicles in a merely manner according to a process easily transposable to industrial scale. Graphical Abstract ᅟ.

  12. Effects of Extraction Solvents on the Quantification of Free Amino Acids in Lyophilised Brewer’s Yeast

    Directory of Open Access Journals (Sweden)

    Andreea STĂNILĂ

    2018-05-01

    Full Text Available The aim of this work was to test some solvents in order to improve the free amino acids extraction from lyophilised brewer’s yeast. The brewer’ yeast was treated with four types of extraction solvents: Solvent I – acetonitrile 25%/HCl 0.01M (ACN; Solvent II – ethanol 80%; solvent III – HCl 0.05M/deionized water (1/1 volume; Solvent IV – HCl 0.05M/ethanol 80% (1/1 volume. The supernatants were analysed by HPLC-DAD-ESI-MS method. Acetonitrile provided the less quantities and number of amino acids extracted due to its weaker polarity. Solvent II and IV (ethanol, respectively acidified ethanol, which have an increased polarity, extracted 15 amino acids due to the addition of HCl in solvent IV. Solvent III (acidified water proved to be the best extraction solvent for the amino acids from brewer’s yeast providing the separation of 17 compounds: GLN, ASN, SER, GLY, ALA, ORN, PRO, HIS, LYS, GLU, TRP, LEU, PHE, ILE, AAA, HPHE, TYR.

  13. Analysis of Biological Samples Using Paper Spray Mass Spectrometry: An Investigation of Impacts by the Substrates, Solvents and Elution Methods.

    Science.gov (United States)

    Ren, Yue; Wang, He; Liu, Jiangjiang; Zhang, Zhiping; McLuckey, Morgan N; Ouyang, Zheng

    2013-10-01

    Paper spray has been developed as a fast sampling ionization method for direct analysis of raw biological and chemical samples using mass spectrometry (MS). Quantitation of therapeutic drugs in blood samples at high accuracy has also been achieved using paper spray MS without traditional sample preparation or chromatographic separation. The paper spray ionization is a process integrated with a fast extraction of the analyte from the raw sample by a solvent, the transport of the extracted analytes on the paper, and a spray ionization at the tip of the paper substrate with a high voltage applied. In this study, the influence on the analytical performance by the solvent-substrate systems and the selection of the elution methods was investigated. The protein hemoglobin could be observed from fresh blood samples on silanized paper or from dried blood spots on silica-coated paper. The on-paper separation of the chemicals during the paper spray was characterized through the analysis of a mixture of the methyl violet 2B and methylene blue. The mode of applying the spray solvent was found to have a significant impact on the separation. The results in this study led to a better understanding of the analyte elution, on-paper separation, as well as the ionization processes of the paper spray. This study also help to establish a guideline for optimizing the analytical performance of paper spray for direct analysis of target analytes using mass spectrometry.

  14. Application of stable, nitroxide free radicals in solution to low magnetic fields measurements

    International Nuclear Information System (INIS)

    Besson, Rene

    1973-01-01

    The first attempts to use the Overhauser-Abragam effect for measuring low magnetic fields date back to 1956. However, the instability of the free radical used, PREMY'S Salt, as well as its virtual insolubility in solvents other than water, hampered the development of the nuclear magnetic resonance magnetometer realized in accordance to this principle: dynamic polarization of protons. New free radicals stable and soluble in many solvents, will enhanced the interest in the device. In particular, the use of 2,2,6,6, tetramethyl- piperidine-4-one-1-oxide (TANO or TANONE) leads to a high sensitivity, low field magnetometer. The methods of measurements, the required apparatus and sample preparation are first described. Next the results of measurements made both in high and low magnetic fields with various free radicals in different solvents are presented in tabular and graphical form. These measurements have determined which radical-solvent couple will yield a high dynamic polarization coefficient. In addition, the improvement obtained by complete deuteration of the free radical has been demonstrated. Problems connected with the application of such radicals in solution to the 'double effect probe' of the magnetometer built by LETI at CEN Grenoble and the solutions reached are discussed. (author) [fr

  15. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    Energy Technology Data Exchange (ETDEWEB)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dep. de Farmacia y Quimica Medicinal

    2011-07-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  16. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    International Nuclear Information System (INIS)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo

    2011-01-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  17. One Pot Synthesis of α-Aminophosphonates Containing Bromo and 3,4,5-Trimethoxybenzyl Groups under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2007-02-01

    Full Text Available New α-aminophosphonates were synthesized by the Kabachnik-Fields reactionof 3,4,5-trimethoxybenzaldehyde (TMB with p- or m-bromoaniline and a dialkylphosphite under solvent-free conditions. TMB was prepared from gallic acid via a fourstep synthetic sequence involving etherification, esterification, hydrazidation andpotassium ferricyanide oxidation. The structures of all synthesized compounds wereconfirmed by elemental analysis, IR, 1H-, 13C- and 31P-NMR spectral data. Compound 7gwas also characterized by X-ray crystallography. A half-leaf method was used todetermine the in vivo curative efficacy of the eight title products against tobacco mosaicvirus (TMV. It was found that compounds 7g and 7h possess good in vivo curativeeffects against TMV.

  18. Preparation and characterization of superfine ammonium perchlorate (AP) crystals through ceramic membrane anti-solvent crystallization

    Science.gov (United States)

    Ma, Zhenye; Li, Cheng; Wu, Rujun; Chen, Rizhi; Gu, Zhenggui

    2009-10-01

    In this paper, a novel ceramic membrane anti-solvent crystallization (CMASC) method was proposed for the safe and rapid preparation ammonium perchlorate (AP) crystals, in which the acetone and ethyl acetate were chosen as solvent and anti-solvent, respectively. Comparing with the conventional liquid anti-solvent crystallization (LASC), CMASC which successfully introduces ceramic membrane with regular pore structure to the LASC as feeding medium, is favorable to control the rate of feeding rate and, therefore, to obtain size and morphology controllable AP. Several kinds of micro-sized AP particles with different morphology were obtained including polyhedral-like, quadrate-like to rod-like. The effect of processing parameters on the crystal size and shape of AP crystals such as volume ratio of anti-solvent to solvent, feeding pressure and crystallization temperature were investigated. It is found that higher volume ratio of anti-solvent to solvent, higher feeding pressure and higher temperature result in smaller particle size. Scaning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the resulting AP crystals. The nucleation and growth kinetic of the resulting AP crystals were also discussed.

  19. Antimicrobial nanocapsules: from new solvent-free process to in vitro efficiency

    Directory of Open Access Journals (Sweden)

    Steelandt J

    2014-09-01

    Full Text Available Julie Steelandt,1 Damien Salmon,1,2 Elodie Gilbert,1 Eyad Almouazen,3 François NR Renaud,4 Laurène Roussel,1 Marek Haftek,5 Fabrice Pirot1,2 1University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Pharmacie Galénique Industrielle, 2Hospital Pharmacy, FRIPharm, Hospital Edouard Herriot, Hospices Civils de Lyon, 3Laboratoire d’Automatique et de Génie des Procédés, University Claude Bernard Lyon 1, 4University Claude Bernard Lyon 1, UMR CNRS 5510/MATEIS, 5University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Dermatologie, Lyon, France Abstract: Skin and mucosal infections constitute recurrent pathologies resulting from either inappropriate antiseptic procedures or a lack of efficacy of antimicrobial products. In this field, nanomaterials offer interesting antimicrobial properties (eg, long-lasting activity; intracellular and tissular penetration as compared to conventional products. The aim of this work was to produce, by a new solvent-free process, a stable and easily freeze-dryable chlorhexidine-loaded polymeric nanocapsule (CHX-NC suspension, and then to assess the antimicrobial properties of nanomaterials. The relevance of the process and the physicochemical properties of the CHX-NCs were examined by the assessment of encapsulation efficiency, stability of the nanomaterial suspension after 1 month of storage, and by analysis of granulometry and surface electric charge of nanocapsules. In vitro antimicrobial activities of the CHX-NCs and chlorhexidine digluconate solution were compared by measuring the inhibition diameters of two bacterial strains (Escherichia coli and Staphylococcus aureus and one fungal strain (Candida albicans cultured onto appropriate media. Based on the findings of this study, we report a new solvent-free process for the

  20. Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models

    National Research Council Canada - National Science Library

    Olson, Mark

    2004-01-01

    ... screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase...

  1. Preparation of chromatographic and solid-solvent extraction 99mTc generators using gel-type targets

    International Nuclear Information System (INIS)

    Le Van So

    2000-01-01

    We have studied two types of targets zirconium-molybdate (ZrMo) and titanium-molybdate (TiMo) prepared by precipitating reaction between ammonium-molybdate and zirconium-chloride or titanium-chloride solutions, respectively. Other types of targets were also prepared by co-precipitating ZrMo or TiMo with hydrous manganese-dioxide, hydrous silica, and hydrous titanium-dioxide or by impregnated ZrMo or TiMo with Iodate anions. The results on extraction of Tc-99m from neutron irradiated TiMo solid phase using solvents such as MEK, aceton, ethylic ether, chloroform, etc showed that separation yield (SY) of Tc-99m in case of aceton extraction was from 70% to 80% and in other cases non higher than 40%. The Tc-99m elution curves and column kinetic in case of aceton extraction (after evaporation of aceton and recovery of Tc-99m in 0,9% NaCl solution) was superior than in case chromatographic generator using saline eluant. As result obtained, two types of generators were successfully prepared and put into use: Chromatographic generator using titanium-molybdate target as packing material and saline as eluant. Solid-solvent extraction 99m Tc generator using titanium-molybdate target (as solid phase) and aceton as extracting solvent. (author)

  2. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process.

    Science.gov (United States)

    Chun, Nan-Hee; Wang, In-Chun; Lee, Min-Jeong; Jung, Yun-Taek; Lee, Sangkil; Kim, Woo-Sik; Choi, Guang J

    2013-11-01

    The creation of co-crystals of various insoluble drug substances has been extensively investigated as a promising approach to improve their pharmaceutical performance. In this study, co-crystal powders of indomethacin and saccharin (IMC-SAC) were prepared by an anti-solvent (water) addition and compared with co-crystals by evaporation method. No successful synthesis of a pharmaceutical co-crystal powder via an anti-solvent approach has been reported. Among solvents examined, methanol was practically the only one that resulted in the formation of highly pure IMC-SAC co-crystal powders by anti-solvent approach. The mechanism of a preferential formation of IMC-SAC co-crystal to IMC was explained with two aspects: phase solubility diagram and solution complexation concept. Accordingly, the anti-solvent approach can be considered as a competitive route for producing pharmaceutical co-crystal powders with acceptable properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Characterization of Samples from Old Solvent Tanks S1 through S22

    Energy Technology Data Exchange (ETDEWEB)

    Leyba, J.D.

    1999-03-25

    The Old Radioactive Waste Burial Ground (ORWBG, 643-E) contains 22 old solvent tanks (S1 - S22) which were used to receive and store spent PUREX solvent from F- and H-Canyons. The tanks are cylindrical, carbon-steel, single-wall vessels buried at varying depths. A detailed description of the tanks and their history can be found in Reference 1. A Sampling and Analysis Plan for the characterization of the material contained in the old solvent tanks was developed by the Analytical Development Section (ADS) in October of 19972. The Sampling and Analysis Plan identified several potential disposal facilities for the organic and aqueous phases present in the old solvent tanks which included the Solvent Storage Tank Facility (SSTF), the Mixed Waste Storage Facilities (MWSF), Transuranic (TRU) Pad, and/or the Consolidated Incineration Facility (CIF). In addition, the 241-F/H Tank Farms, TRU Pads, and/or the MWSF were identified as potential disposal facilities for the sludge phases present in the tanks. The purpose of this sampling and characterization was to obtain sufficient data on the material present in the old solvent tanks so that a viable path forward could be established for the closure of the tanks. Therefore, the parameters chosen for the characterization of the various materials present in the tanks were based upon the Waste Acceptance Criteria (WAC) of the SSTF3, TRU Pads4, MWSF5, CIF6, and/or 241-F/H Tank Farms7. Several of the WAC's have been revised, canceled, or replaced by new procedures since October of 1997 and hence where required, the results of this characterization program were compared against the latest revision of the appropriate WAC.

  4. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Claire M., E-mail: claire.thompson@anu.edu.au; Ellwood, Michael J., E-mail: michael.ellwood@anu.edu.au; Wille, Martin, E-mail: martin.wille@uni-tuebingen.de

    2013-05-02

    Graphical abstract: -- Highlights: •A new sample preparation method for seawater copper isotopic analysis (δ{sup 65}Cu). •Solvent-extraction was used to pre-concentrate metals from seawater samples. •Anion-exchange was used to purify copper from the metal-rich extract. •δ{sup 65}Cu was measured in the north Tasman Sea. •Seawater δ{sup 65}Cu may be linked to marine biological activity. -- Abstract: Stable copper (Cu) isotope geochemistry provides a new perspective for investigating and understanding Cu speciation and biogeochemical Cu cycling in seawater. In this work, sample preparation for isotopic analysis employed solvent-extraction with amino pyrollidine dithiocarbamate/diethyl dithiocarbamate (APDC/DDC), coupled with a nitric acid back-extraction, to concentrate Cu from seawater. This was followed by Cu-purification using anion-exchange. This straightforward technique is high yielding and fractionation free for Cu and allows precise measurement of the seawater Cu isotopic composition using multi-collector inductively coupled plasma mass-spectrometry. A deep-sea profile measured in the oligotrophic north Tasman Sea shows fractionation in the Cu isotopic signature in the photic zone but is relatively homogenised at depth. A minima in the Cu isotopic profile correlates with the chlorophyll a maximum at the site. These results indicate that a range of processes are likely to fractionate stable Cu isotopes in seawater.

  5. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    Science.gov (United States)

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  6. Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P

    2018-01-16

    The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be

  7. Molecular interactions and redox effects of carvacrol and thymol on myofibrillar proteins using a non-destructive and solvent-free methodological approach.

    Science.gov (United States)

    Lahmar, Aida; Akcan, Tolga; Chekir-Ghedira, Leila; Estévez, Mario

    2018-04-01

    The present study provides molecular insight into the effect of thymol and carvacrol on the oxidative damage caused to myofibrillar proteins by a hydroxyl-radical generating system (HRGS). An innovative model system was designed, in which gels, prepared with increasing levels of myofibrillar proteins, were oxidized by a HRGS (Fe 3+ /H 2 O 2 , 60 °C and 7 days) in the presence of lipids. The molecular affinity between myofibrillar proteins and both terpenes, as well as their effect on the oxidative stability of the gel systems, were studied using a non-destructive and solvent-free procedure based on fluorescence spectroscopy. Carvacrol displayed more affinity than thymol for establishing chemical interactions with protein residues. Both terpenes exhibited a significant antioxidant potential against the generation of lipid-derived volatile carbonyls and against the formation of protein crosslinking. This procedure may be applied to meat products to assess the effectiveness of a given antioxidant additive without size reduction or sample processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  9. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    DEFF Research Database (Denmark)

    Mishra, Jaya; Rades, Thomas; Löbmann, Korbinian

    2018-01-01

    Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA) mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated....... Mixtures of indomethacin (IND) and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a) ethanol and water mixtures and (b) acetone and water mixtures. Different ratios...... that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced...

  10. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.

    Science.gov (United States)

    Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R

    2016-01-01

    We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.

  11. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  12. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity

    Directory of Open Access Journals (Sweden)

    Flávia L. M. Jesus

    2017-01-01

    Full Text Available Andiroba (Carapa guianensis seeds are the source of an oil with a wide range of biological activities and ethnopharmacological uses. However, few studies have devoted attention to innovative formulations, including nanoemulsions. The present study aimed to obtain a colloidal system with the andiroba oil using a low-energy and organic-solvent-free method. Moreover, the preliminary residual larvicidal activity of the nanoemulsion against Aedes aegypti was evaluated. Oleic and palmitic acids were the major fatty acids, in addition to the phytosterol β-sitosterol and limonoids (tetranortriterpenoids. The required hydrophile-lipophile was around 11.0 and the optimal nanoemulsion was obtained using polysorbate 85. The particle size distribution suggested the presence of small droplets (mean diameter around 150 nm and low polydispersity index (around 0.150. The effect of temperature on particle size distribution revealed that no major droplet size increase occurred. The preliminary residual larvicidal assay suggested that the mortality increased as a function of time. The present study allowed achievement of a potential bioactive oil in water nanoemulsion that may be a promising controlled release system. Moreover, the ecofriendly approach involved in the preparation associated with the great bioactive potential of C. guianensis makes this nanoemulsion very promising for valorization of this Amazon raw material.

  13. Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Can; Cheng, Qin [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Gang [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Qing, E-mail: qing_li_2@brown.edu [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-05-01

    Highlights: • Graphene was prepared by one-step solvent exfoliation as superior electrode material. • Compared with RGO, prepared graphene exhibited stronger signal enhancement. • A widespread and highly-sensitive electrochemical sensing platform was constructed. - Abstract: Graphene was easily obtained via one-step ultrasonic exfoliation of graphite powder in N-methyl-2-pyrrolidone. Scanning electron microscopy, transmission electron microscopy, Raman and particle size measurements indicated that the exfoliation efficiency and the amount of produced graphene increased with ultrasonic time. The electrochemical properties and analytical applications of the resulting graphene were systematically studied. Compared with the predominantly-used reduced graphene oxides, the obtained graphene by one-step solvent exfoliation greatly enhanced the oxidation signals of various analytes, such as ascorbic acid (AA), dopamine (DA), uric acid (UA), xanthine (XA), hypoxanthine (HXA), bisphenol A (BPA), ponceau 4R, and sunset yellow. The detection limits of AA, DA, UA, XA, HXA, BPA, ponceau 4R, and sunset yellow were evaluated to be 0.8 μM, 7.5 nM, 2.5 nM, 4 nM, 10 nM, 20 nM, 2 nM, and 1 nM, which are much lower than the reported values. Thus, the prepared graphene via solvent exfoliation strategy displays strong signal amplification ability and holds great promise in constructing a universal and sensitive electrochemical sensing platform.

  14. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianqiao [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Kaminski, Michael D. [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Riffle, Judy S. [Department of Chemistry, Virginia Tech, Blacksburg, VA (United States); Chen Haitao [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Torno, Michael [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Finck, Martha R. [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Taylor, LaToyia [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Rosengart, Axel J. [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States)]. E-mail: arosenga@uchicago.edu

    2007-04-15

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 {mu}m) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.

  15. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    International Nuclear Information System (INIS)

    Liu Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.

    2007-01-01

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres

  16. Solvent-free ZnO dye-sensitised solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, E.; Anta, J.A. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla (Spain); Fernandez-Lorenzo, C.; Alcantara, R.; Martin-Calleja, J. [Departamento de Quimica Fisica, Universidad de Cadiz, Cadiz (Spain)

    2009-10-15

    Dye-sensitised solar cells (DSSC) based on commercial nanostructured zinc oxide combined with imidazolium-based room temperature ionic-liquid electrolytes are characterized. The electrolytes are based on a binary mixture of two ionic liquids, one of them used as source of iodide ions. The composition of this solvent-free electrolyte is optimized with respect to the concentration of iodine and iodide and the effect of additives such as lithium and tert-butylpyridine (TBP) on the photovoltaic performance and the recombination rate is analyzed and discussed. A maximum photoconversion efficiency of 3.4% at 1 sun illumination has been obtained for cells of 0.64 cm{sup 2} active area with the best performing compositions. Diffusion limitations due to slow transport processes are analyzed and discussed. (author)

  17. 40 CFR 761.323 - Sample preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample preparation. 761.323 Section... Remediation Waste Samples § 761.323 Sample preparation. (a) The comparison study requires analysis of a... concentrations by dilution. Any excess material resulting from the preparation of these samples, which is not...

  18. Sample preparation in foodomic analyses.

    Science.gov (United States)

    Martinović, Tamara; Šrajer Gajdošik, Martina; Josić, Djuro

    2018-04-16

    Representative sampling and adequate sample preparation are key factors for successful performance of further steps in foodomic analyses, as well as for correct data interpretation. Incorrect sampling and improper sample preparation can be sources of severe bias in foodomic analyses. It is well known that both wrong sampling and sample treatment cannot be corrected anymore. These, in the past frequently neglected facts, are now taken into consideration, and the progress in sampling and sample preparation in foodomics is reviewed here. We report the use of highly sophisticated instruments for both high-performance and high-throughput analyses, as well as miniaturization and the use of laboratory robotics in metabolomics, proteomics, peptidomics and genomics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Solvent-Free Synthesis of Aryl Iodide Using Nano SiO2/HIO4 as a Reusable Acid Catalyst

    Directory of Open Access Journals (Sweden)

    A. Bamoniri

    2014-07-01

    Full Text Available An efficient and environmentally benign   method for the synthesis of aryl iodides have been developed by diazotization of aromatic amines with NaNO2 and nanosilica periodic acid (nano-SPIA as a green catalyst via grinding followed by a sandmeyer iodination by KI under solvent-free conditions at room temperature. The ensuing aryl diazonium salts supported on nano-SPIA were sufficiently stable to be kept at room temperature in the dry state. This method is a novel, efficient, eco-friendly route for solvent-free synthesis of aryl iodides.

  20. Quality control of residual solvents in [18F]FDG preparations by gas chromatography

    International Nuclear Information System (INIS)

    Lee, Hak Jeong; Jeong, Jae Min; Lee, Yun Sang; Kim, Hyung Woo; Chang, Young Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2007-01-01

    Analysis of volatile organic solvents in 2-deoxy-2[ 18 F] fluoro-D-glucose ([ 18 F]FDG) preparations was performed by gas chromatography (GC), in accordance with USP. Analyses were carried out on a Hewlett-Packard 6890 gas chromatography equipped with an FID. We determined the amounts of ethanol and acetonitrile on every batch of our routine [ 18 F]FDG preparations, ranging between 5000 ppm and 100 ppm. In our routine preparation of [ 18 F]FDG, the amount of acetonitrile and ethanol in the final product were well below the maximum allowable limit described in the USP. Our [ 18 F]FDG preparations were in accordance with the suggested USP maximum allowable levels of the quality control analysis of volatile organic compounds

  1. Theory of solvent effects on the hyperfine splitting constants in ESR spectra of free radicals

    International Nuclear Information System (INIS)

    Abe, T.; Tero-Kubota, S.; Ikegami, Y.

    1982-01-01

    An expression for the effects of solvation and hydrogen bonding on the hyperfine splitting constants of a free radical has been derived by obtaining π-electron spin densities of the radical in solution by perturbation theory. When no hydrogen bonding occurs between the radical and a solvent molecule, the splitting constant is approximately proportional to the Block and Walker parameter of theta(epsilon/sub r/) identical with 3 epsilon/sub r/ (ln epsilon/sub r/)/(epsilon/sub r/ ln epsilon/sub r/ - epsilon/sub r/ + 1) - 6/(ln epsilon/sub r/) - 2, where epsilon/sub r/ is the relative permittivity of the solvent. The expression is successfully applied to the di-tert-butyl nitroxide radical, the 1-methyl-4-(methoxycarbonyl)pyridinyl radical, and other free radicals. The effects of hydrogen bonding are discussed

  2. A Diazonium Salt-Based Ionic Liquid for Solvent-FreeModification of Carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu [ORNL; Huang, Jing-Fang [ORNL; Li, Zuojiang [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2006-01-01

    A novel ionic liquid that consists of p-butylbenzenediazonium ions and bis(trifluoromethanesulfonyl)amidates (Tf{sub 2}N{sup -}) has been synthesized as a task-specific ionic liquid for the solvent-free modification of carbon materials. The use of anions Tf{sub 2}N{sup =} is the key to rendering the hydrophobicity, low liquidus temperature, and ionicity to this novel molten salt. This diazonium salt has a melting point of 7.2 C and a moderate electric conductivity of 527 {micro} s/cm at 25 C. The thermal stability of this diazonium ionic liquid has been investigated by high-resolution thermogravimetric analysis (HRTGA). The compound is stable up to about 90 C in nitrogen, which is only 10 C less than its solid tetrafluoroborate counterpart. The modification of carbon materials has been carried out through both thermal and electrochemical activations of diazonium ions to generate free radical intermediates without the use of any solvent. The surface-coverage loadings of 3.38 {micro} mol/m{sup 2} and 6.07 {micro} mol/m{sup 2} for covalently attached organic functionalities have been achieved by the thermally induced functionalization and electrochemically assisted reaction, respectively.

  3. Silica Gel-Mediated Organic Reactions under Organic Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Satoaki Onitsuka

    2012-09-01

    Full Text Available Silica gel was found to be an excellent medium for some useful organic transformations under organic solvent-free conditions, such as (1 the Friedel-Crafts-type nitration of arenes using commercial aqueous 69% nitric acid alone at room temperature, (2 one-pot Wittig-type olefination of aldehydes with activated organic halides in the presence of tributyl- or triphenylphosphine and Hunig’s base, and (3 the Morita-Baylis-Hillman reaction of aldehydes with methyl acrylate. After the reactions, the desired products were easily obtained in good to excellent yields through simple manipulation.

  4. Exploring the ab initio/classical free energy perturbation method: The hydration free energy of water

    International Nuclear Information System (INIS)

    Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.

    2000-01-01

    The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to

  5. Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.

  6. Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents.

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew

    2016-04-01

    We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongfei; Jiang Sunmin [Nanjing Medical University, School of Pharmacy (China); Shen Hong [Nanjing Brain Hospital Affiliated to Nanjing Medical University, Neuro-Psychiatric Institute (China); Qin Shan; Liu Juanjuan; Zhang Qing; Li Rui, E-mail: chongloutougao@gmail.com; Xu Qunwei, E-mail: qunweixu@163.com [Nanjing Medical University, School of Pharmacy (China)

    2011-06-15

    The preparation of solid lipid nanoparticles (SLNs) suffers from the drawback of poor incorporation of water-soluble drugs. The aim of this study was therefore to assess various formulation and process parameters to enhance the incorporation of a water-soluble drug (diclofenac sodium, DS) into SLNs prepared by the emulsion/solvent evaporation method. Results showed that the entrapment efficiency (EE) of DS was increased to approximately 100% by lowering the pH of dispersed phase. The EE of DS-loaded SLNs (DS-SLNs) had been improved by the existence of cosurfactants and increment of PVA concentration. Stabilizers and their combination with PEG 400 in the dispersed phase also resulted in higher EE and drug loading (DL). EE increased and DL decreased as the phospholipid/DS ratio became greater, while the amount of DS had an opposite effect. Ethanol turned out to be the ideal solvent making DS-SLNs. EE and DL of DS-SLNs were not affected by either the stirring speed or the viscosity of aqueous and dispersed phase. According to the investigations, drug solubility in dispersion medium played the most important role in improving EE.

  8. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    Science.gov (United States)

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  9. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    Science.gov (United States)

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  10. An Efficient, Mild and Solvent-Free Synthesis of Benzene Ring Acylated Harmalines

    Directory of Open Access Journals (Sweden)

    Sabira Begum

    2009-12-01

    Full Text Available A facile synthesis of a series of benzene ring acylated analogues of harmaline has been achieved by Friedel-Crafts acylation under solvent-free conditions at room temperature using acyl halides/acid anhydrides and AlCl3. The reaction afforded 10- and 12-acyl analogues of harmaline in good yield, along with minor quantities of N-acyl-tryptamines and 8-acyl analogues of N-acyltryptamines.

  11. Cogeneration of biodiesel and nontoxic cottonseed meal from cottonseed processed by two-phase solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junfeng, E-mail: qianjunfeng80@126.co [Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China) and College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yun Zhi; Shi Haixian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2010-12-15

    In the present work, the preparation of biodiesel from cottonseed oil produced by two-phase solvent extraction (TSE) was studied. The experimental results of TSE process of cottonseed showed that the optimal extraction conditions were 30 g samples, 240 mL extraction solvent mixture and methanol/petroleum ether volume ratio 60:40, extraction temperature 30 deg. C, extraction time 30 min. Under the extraction conditions, the extraction rate of cottonseed oil could achieve 98.3%, the free fatty acid (FFA) and water contents of cottonseed oil were reduced to 0.20% and 0.037%, respectively, which met the requirement of alkali-catalyzed transesterification. The free gossypol (FG) content in cottonseed meal produced from two-phase solvent extraction could reduce to 0.014% which was far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources. After the TSE process of cottonseed, the investigations were carried out on transesterification of methanol with oil-petroleum ether solution coming from TSE process in the presence of sodium hydroxide (CaO) as the solid base catalyst. The influences of weight ratio of petroleum ether to cottonseed oil, reaction temperature, molar ratio of methanol to oil, alkali catalyst amount and reaction time on cottonseed oil conversion were respectively investigated by mono-factor experiments. The conversion of cottonseed oil into fatty acid methyl ester (FAME) could achieve 98.6% with 3:1 petroleum ether/oil weight ratio, 65 deg. C reaction temperature, 9:1 methanol/oil mole ratio, 4% (catalyst/oil weight ratio, w/w) solid base catalyst amount and 3 h reaction time. The properties of FAME product prepared from cottonseed oil produced by two-phase solvent extraction met the ASTM specifications for biodiesel.

  12. Cogeneration of biodiesel and nontoxic cottonseed meal from cottonseed processed by two-phase solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Junfeng [Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China); College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yun, Zhi; Shi, Haixian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2010-12-15

    In the present work, the preparation of biodiesel from cottonseed oil produced by two-phase solvent extraction (TSE) was studied. The experimental results of TSE process of cottonseed showed that the optimal extraction conditions were 30 g samples, 240 mL extraction solvent mixture and methanol/petroleum ether volume ratio 60:40, extraction temperature 30 C, extraction time 30 min. Under the extraction conditions, the extraction rate of cottonseed oil could achieve 98.3%, the free fatty acid (FFA) and water contents of cottonseed oil were reduced to 0.20% and 0.037%, respectively, which met the requirement of alkali-catalyzed transesterification. The free gossypol (FG) content in cottonseed meal produced from two-phase solvent extraction could reduce to 0.014% which was far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources. After the TSE process of cottonseed, the investigations were carried out on transesterification of methanol with oil-petroleum ether solution coming from TSE process in the presence of sodium hydroxide (CaO) as the solid base catalyst. The influences of weight ratio of petroleum ether to cottonseed oil, reaction temperature, molar ratio of methanol to oil, alkali catalyst amount and reaction time on cottonseed oil conversion were respectively investigated by mono-factor experiments. The conversion of cottonseed oil into fatty acid methyl ester (FAME) could achieve 98.6% with 3:1 petroleum ether/oil weight ratio, 65 C reaction temperature, 9:1 methanol/oil mole ratio, 4% (catalyst/oil weight ratio, w/w) solid base catalyst amount and 3 h reaction time. The properties of FAME product prepared from cottonseed oil produced by two-phase solvent extraction met the ASTM specifications for biodiesel. (author)

  13. Sample contamination with NMP-oxidation products and byproduct-free NMP removal from sample solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cesar Berrueco; Patricia Alvarez; Silvia Venditti; Trevor J. Morgan; Alan A. Herod; Marcos Millan; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2009-05-15

    1-Methyl-2-pyrrolidinone (NMP) is widely used as a solvent for coal-derived products and as eluent in size exclusion chromatography. It was observed that sample contamination may take place, through reactions of NMP, during extraction under refluxing conditions and during the process of NMP evaporation to concentrate or isolate samples. In this work, product distributions from experiments carried out in contact with air and under a blanket of oxygen-free nitrogen have been compared. Gas chromatography/mass spectrometry (GC-MS) clearly shows that oxidation products form when NMP is heated in the presence of air. Upon further heating, these oxidation products appear to polymerize, forming material with large molecular masses. Potentially severe levels of interference have been encountered in the size exclusion chromatography (SEC) of actual samples. Laser desorption mass spectrometry and SEC agree in showing an upper mass limit of nearly 7000 u for a residue left after distilling 'pure' NMP in contact with air. Furthermore, experiments have shown that these effects could be completely avoided by a strict exclusion of air during the refluxing and evaporation of NMP to dryness. 45 refs., 13 figs.

  14. Nanocomposites with Liquid-Like Multiwalled Carbon Nanotubes Dispersed in Epoxy Resin without Solvent Process

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2014-01-01

    Full Text Available Liquid-like multiwall carbon nanotubes (MWNTs were prepared with as-received carboxylic MWNTs-COOH and poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-b-PPO-b-PEO through hydrogen bonding. The sample has liquid-like behavior above 58°C. The MWNTs content is 26.6 wt%. The liquid-like MWNTs nanofluids were incorporated into epoxy matrix with solvent-free process and dispersed well. When the liquid-like MWNTs nanofluids content is up to 1 wt%, the impact toughness of the nanocomposite is 153% higher than the pure epoxy matrix.

  15. Solvent Hold Tank Sample Results for MCU-16-701-702-703: May 2016 Monthly Sample and MCU-16-710-711-712: May 2016 Superwashed Sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    The Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-701, MCU-16-702 and MCU-16-703), pulled on 05/23/2016, and another set of SHT samples (MCU-16-710, MCU-16-711, and MCU-16-712) were pulled on 05/28/2016 after the solvent was superwashed with 300 mM sodium hydroxide for analysis. Samples MCU-16-701, MCU-16-702, and MCU-16-703 were combined into one sample (MCU-16-701-702-703) and samples MCU-16-710, MCU- 16-711, and MCU-16-712 were combined into one sample (MCU-16-710-711-712). Of the two composite samples MCU-16-710-711-712 represents the current chemical state of the solvent at MCU. All analytical conclusions are based on the chemical analysis of MCU-16-710-711-712. There were no chemical differences between MCU-16-701-702-703 and superwashed MCU-16-710-711-712. Analysis of the composited sample MCU-16-710-712-713 indicated the Isopar™L concentration is above its nominal level (102%). The modifier (CS-7SB) is 16% below its nominal concentration, while the TiDG and MaxCalix concentrations are at and above their nominal concentrations, respectively. The TiDG level has begun to decrease, and it is 7% below its nominal level as of May 28, 2016. Based on this current analysis, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.

  16. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route

    International Nuclear Information System (INIS)

    Okada, Masahiro; Fujii, Syuji; Nishimura, Taiki; Nakamura, Yoshinobu; Takeda, Shoji; Furuzono, Tsutomu

    2012-01-01

    Highlights: ► Hydroxyapatite (HAp) nanoparticles stabilized polymer melt-in-water emulsions without any molecular surfactants. ► Interaction between polymer and HAp played a crucial role. ► HAp-coated polymer particles were obtained from the emulsions without any organic solvents. - Abstract: Hydroxyapatite (HAp) nanoparticle-coated biodegradable polymer particles were fabricated from a nanoparticle-stabilized emulsion in the absence of any molecular surfactants or organic solvents. First, a polymer melt-in-water emulsion was prepared by mixing a water phase containing nanosized HAp particles as a particulate emulsifier and an oil phase consisting of poly(ε-caprolactone) (PCL) or poly(L-lactide-co-ε-caprolactone) (P(LLA-CL)) above its melting point. It was clarified that the interaction between ester/carboxyl groups of the polymers and the HAp nanoparticles at the polymer–water interface played a crucial role to prepare the nanoparticle-stabilized emulsion. The HAp nanoparticle-coated biodegradable polymer particle (a polymer solid-in-water emulsion) was fabricated by cooling the emulsion. The particle morphology and particle size were evaluated using scanning electron microscope.

  17. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    Science.gov (United States)

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    Science.gov (United States)

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.

  19. Improvement of a sample preparation method assisted by sodium deoxycholate for mass-spectrometry-based shotgun membrane proteomics.

    Science.gov (United States)

    Lin, Yong; Lin, Haiyan; Liu, Zhonghua; Wang, Kunbo; Yan, Yujun

    2014-11-01

    In current shotgun-proteomics-based biological discovery, the identification of membrane proteins is a challenge. This is especially true for integral membrane proteins due to their highly hydrophobic nature and low abundance. Thus, much effort has been directed at sample preparation strategies such as use of detergents, chaotropes, and organic solvents. We previously described a sample preparation method for shotgun membrane proteomics, the sodium deoxycholate assisted method, which cleverly circumvents many of the challenges associated with traditional sample preparation methods. However, the method is associated with significant sample loss due to the slightly weaker extraction/solubilization ability of sodium deoxycholate when it is used at relatively low concentrations such as 1%. Hence, we present an enhanced sodium deoxycholate sample preparation strategy that first uses a high concentration of sodium deoxycholate (5%) to lyse membranes and extract/solubilize hydrophobic membrane proteins, and then dilutes the detergent to 1% for a more efficient digestion. We then applied the improved method to shotgun analysis of proteins from rat liver membrane enriched fraction. Compared with other representative sample preparation strategies including our previous sodium deoxycholate assisted method, the enhanced sodium deoxycholate method exhibited superior sensitivity, coverage, and reliability for the identification of membrane proteins particularly those with high hydrophobicity and/or multiple transmembrane domains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Standardization of solvent extraction procedure for determination of uranium in seawater

    International Nuclear Information System (INIS)

    Sukanta Maity; Sahu, S.K.; Pandit, G.G.

    2015-01-01

    Solvent extraction procedure using ammonium pyrolidine dithiocarbamate complexing agent in methyl isobutyl ketone organic phase and acid exchange back-extraction is described for the simultaneous quantitative pre-concentration of uranium in seawater followed by its determination by differential pulse adsorptive stripping voltammetry. Solvent extraction time is optimized for extraction of uranium from seawater. Solvent extraction efficiency for uranium in seawater at different pH was carried out. The method gives a recovery of 98 ± 2 % for 400 mL sample at pH 3.0 ± 0.02, facilitating the rapid and interference free analysis of seawater samples. (author)

  1. Evaluation of sample preparation protocols for spider venom profiling by MALDI-TOF MS.

    Science.gov (United States)

    Bočánek, Ondřej; Šedo, Ondrej; Pekár, Stano; Zdráhal, Zbyněk

    2017-07-01

    Spider venoms are highly complex mixtures containing biologically active substances with potential for use in biotechnology or pharmacology. Fingerprinting of venoms by Matrix-Assisted Laser Desorption-Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS) is a thriving technology, enabling the rapid detection of peptide/protein components that can provide comparative information. In this study, we evaluated the effects of sample preparation procedures on MALDI-TOF mass spectral quality to establish a protocol providing the most reliable analytical outputs. We adopted initial sample preparation conditions from studies already published in this field. Three different MALDI matrixes, three matrix solvents, two sample deposition methods, and different acid concentrations were tested. As a model sample, venom from Brachypelma albopilosa was used. The mass spectra were evaluated on the basis of absolute and relative signal intensities, and signal resolution. By conducting three series of analyses at three weekly intervals, the reproducibility of the mass spectra were assessed as a crucial factor in the selection for optimum conditions. A sample preparation protocol based on the use of an HCCA matrix dissolved in 50% acetonitrile with 2.5% TFA deposited onto the target by the dried-droplet method was found to provide the best results in terms of information yield and repeatability. We propose that this protocol should be followed as a standard procedure, enabling the comparative assessment of MALDI-TOF MS spider venom fingerprints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst

    Directory of Open Access Journals (Sweden)

    Martin Obst

    2016-11-01

    Full Text Available A method for the solvent-free photocatalytic conversion of solid and liquid substrates was developed, using a novel rod mill apparatus. In this setup, thin liquid films are realized which is crucial for an effective photocatalytic conversion due to the low penetration depth of light in heterogeneous systems. Several benzylic alcohols were oxidized with riboflavin tetraacetate as photocatalyst under blue light irradiation of the reaction mixture. The corresponding carbonyl compounds were obtained in moderate to good yields.

  3. Estimate of electrostatic solvation free energy of electron in various polar solvents by using modified born equation

    International Nuclear Information System (INIS)

    Yamashita, Kazuo; Kitamura, Mitsutaka; Imai, Hideo

    1976-01-01

    The modified Born equation was tentatively applied to estimate the electrostatic free energies of solvation of the electron in various polar solvents. The related data of halide ions and a datum of the hydration free energy of the electron obtained by radiation chemical studies were used for the numerical calculations. (auth.)

  4. Recent Trends in Microextraction Techniques Employed in Analytical and Bioanalytical Sample Preparation

    Directory of Open Access Journals (Sweden)

    Abuzar Kabir

    2017-12-01

    Full Text Available Sample preparation has been recognized as a major step in the chemical analysis workflow. As such, substantial efforts have been made in recent years to simplify the overall sample preparation process. Major focusses of these efforts have included miniaturization of the extraction device; minimizing/eliminating toxic and hazardous organic solvent consumption; eliminating sample pre-treatment and post-treatment steps; reducing the sample volume requirement; reducing extraction equilibrium time, maximizing extraction efficiency etc. All these improved attributes are congruent with the Green Analytical Chemistry (GAC principles. Classical sample preparation techniques such as solid phase extraction (SPE and liquid-liquid extraction (LLE are being rapidly replaced with emerging miniaturized and environmentally friendly techniques such as Solid Phase Micro Extraction (SPME, Stir bar Sorptive Extraction (SBSE, Micro Extraction by Packed Sorbent (MEPS, Fabric Phase Sorptive Extraction (FPSE, and Dispersive Liquid-Liquid Micro Extraction (DLLME. In addition to the development of many new generic extraction sorbents in recent years, a large number of molecularly imprinted polymers (MIPs created using different template molecules have also enriched the large cache of microextraction sorbents. Application of nanoparticles as high-performance extraction sorbents has undoubtedly elevated the extraction efficiency and method sensitivity of modern chromatographic analyses to a new level. Combining magnetic nanoparticles with many microextraction sorbents has opened up new possibilities to extract target analytes from sample matrices containing high volumes of matrix interferents. The aim of the current review is to critically audit the progress of microextraction techniques in recent years, which has indisputably transformed the analytical chemistry practices, from biological and therapeutic drug monitoring to the environmental field; from foods to phyto

  5. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Science.gov (United States)

    Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...

  6. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    Science.gov (United States)

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  7. FeF(3) catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition.

    Science.gov (United States)

    Atar, Amol B; Jeong, Yeon Tae

    2014-05-01

    A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.

  8. A Solvent-Free Base Liberation of a Tertiary Aminoalkyl Halide by Flow Chemistry

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Skovby, Tommy; Mealy, Michael J.

    2016-01-01

    A flow setup for base liberation of 3-(N,N-dimethylamino)propyl chloride hydrochloride and solvent-free separation of the resulting free base has been developed. Production in flow profits from an on-demand approach, useful for labile aminoalkyl halides. The requirement for obtaining a dry product...... has been fulfilled by the simple use of a saturated NaOH solution, followed by isolation of the liquid phases by gravimetric separation. The flow setup has an E factor reduction of nearly 50%, and a distillation step has been avoided. The method exemplifies how flow chemistry can be exploited...

  9. Three Component Synthesis of Substituted 4H-[1,3]Dioxin Derivatives Under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hosseini-Tabatabaei

    2012-01-01

    Full Text Available Reaction between aryl aldehydes, acetylacetone and alkyl isocyanides in solvent-free conditions provided a simple and efficient one-pot route for the synthesis of 1-(2-alkylamino-6-methyl-4-aryl-4H-[1,3]dioxin-5-ylethanone derivatives in excellent yields.

  10. SOLVENT-FREE TETRAHYDROPYRANYLATION (THP) OF ALCOHOLS AND PHENOLS AND THEIR REGENERATION BY CATALYTIC ALUMINUM CHLORIDE HEXAHYDRATE

    Science.gov (United States)

    Catalytic amount of aluminum chloride hexahydrate enables solvent-free tetrahydropyranylation (THP) of alcohols and phenols at moderate temperatures. A simple addition of methanol helps to regenerate the corresponding alcohols and phenols thus rendering these protection and depro...

  11. Challenges in TEM sample preparation of solvothermally grown CuInS2 films.

    Science.gov (United States)

    Frank, Anna; Changizi, Rasa; Scheu, Christina

    2018-06-01

    Transmission electron microscopy (TEM) is a widely used tool to characterize materials. The required samples need to be electron transparent which should be achieved without changing the microstructure. This work describes different TEM sample preparation techniques of nanostructured CuInS 2 thin films on fluorine-doped tin oxide substrates, synthesized solvothermally using l-cysteine as sulfur source. Focused ion beam lamellae, conventional cross section samples and scratch samples have been prepared and investigated. It was possible to prepare appropriate samples with each technique, however, each technique brings with it certain advantages and disadvantages. FIB preparation of solvothermally synthesized CuInS 2 suffers from two main drawbacks. First, the whole CuInS 2 layer displays a strongly increased Cu content caused by Cu migration and preferential removal of In. Further, electron diffraction shows the formation of an additional CuS phase after Ga + bombardment. Second, diffraction analysis is complicated by a strong contribution of crystalline Pt introduced during the FIB preparation and penetrating into the porous film surface. The conventional cross sectional CuInS 2 sample also shows a Cu signal enhancement which is caused by contribution of the brass tube material used for embedding. Additionally, Cu particles have been observed inside the CuInS 2 which have been sputtered on the film during preparation. Only the scratch samples allow an almost artefact-free and reliable elemental quantification using energy-dispersive X-ray spectroscopy. However, scratch samples suffer from the drawback that it is not possible to determine the layer thickness, which is possible for both cross sectional preparation techniques. Consequently, it is concluded that the type of sample preparation should be chosen dependent on the required information. A full characterization can only be achieved when the different techniques are combined. Copyright © 2018 Elsevier Ltd. All

  12. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    Science.gov (United States)

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. © 2016 The Author(s).

  13. Synchrotron/crystal sample preparation

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    The Center for Applied Optics (CAO) of the University of Alabama in Huntsville (UAH) prepared this final report entitled 'Synchrotron/Crystal Sample Preparation' in completion of contract NAS8-38609, Delivery Order No. 53. Hughes Danbury Optical Systems (HDOS) is manufacturing the Advanced X-ray Astrophysics Facility (AXAF) mirrors. These thin-walled, grazing incidence, Wolter Type-1 mirrors, varying in diameter from 1.2 to 0.68 meters, must be ground and polished using state-of-the-art techniques in order to prevent undue stress due to damage or the presence of crystals and inclusions. The effect of crystals on the polishing and grinding process must also be understood. This involves coating special samples of Zerodur and measuring the reflectivity of the coatings in a synchrotron system. In order to gain the understanding needed on the effect of the Zerodur crystals by the grinding and polishing process, UAH prepared glass samples by cutting, grinding, etching, and polishing as required to meet specifications for witness bars for synchrotron measurements and for investigations of crystals embedded in Zerodur. UAH then characterized these samples for subsurface damage and surface roughness and figure.

  14. Results Of Analytical Sample Crosschecks For Next Generation Solvent Extraction Samples Isopar L Concentration And pH

    International Nuclear Information System (INIS)

    Peters, T.; Fink, S.

    2011-01-01

    As part of the implementation process for the Next Generation Cesium Extraction Solvent (NGCS), SRNL and F/H Lab performed a series of analytical cross-checks to ensure that the components in the NGCS solvent system do not constitute an undue analytical challenge. For measurement of entrained Isopar(reg s ign) L in aqueous solutions, both labs performed similarly with results more reliable at higher concentrations (near 50 mg/L). Low bias occurred in both labs, as seen previously for comparable blind studies for the baseline solvent system. SRNL recommends consideration to use of Teflon(trademark) caps on all sample containers used for this purpose. For pH measurements, the labs showed reasonable agreement but considerable positive bias for dilute boric acid solutions. SRNL recommends consideration of using an alternate analytical method for qualification of boric acid concentrations.

  15. Standard methods for sampling and sample preparation for gamma spectroscopy

    International Nuclear Information System (INIS)

    Taskaeva, M.; Taskaev, E.; Nikolov, P.

    1993-01-01

    The strategy for sampling and sample preparation is outlined: necessary number of samples; analysis and treatment of the results received; quantity of the analysed material according to the radionuclide concentrations and analytical methods; the minimal quantity and kind of the data needed for making final conclusions and decisions on the base of the results received. This strategy was tested in gamma spectroscopic analysis of radionuclide contamination of the region of Eleshnitsa Uranium Mines. The water samples was taken and stored according to the ASTM D 3370-82. The general sampling procedures were in conformity with the recommendations of ISO 5667. The radionuclides was concentrated by coprecipitation with iron hydroxide and ion exchange. The sampling of soil samples complied with the rules of ASTM C 998, and their sample preparation - with ASTM C 999. After preparation the samples were sealed hermetically and measured. (author)

  16. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non‐Polar Solvents by using Conductometry

    Science.gov (United States)

    Iseda, Kazuya

    2018-01-01

    Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717

  17. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non-Polar Solvents by using Conductometry.

    Science.gov (United States)

    Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki

    2018-03-01

    In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.

  18. [Sample preparation and bioanalysis in mass spectrometry].

    Science.gov (United States)

    Bourgogne, Emmanuel; Wagner, Michel

    2015-01-01

    The quantitative analysis of compounds of clinical interest of low molecular weight (sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.

  19. A Correlation between the Activity of Candida antarctica Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John

    2016-01-01

    in an inhibitory effect which is also confirmed by the binding free energies for the solvent and substrate molecules estimated from the simulations. Consequently, the catalytic activity of CALB decreases in polar solvents. This effect is significant, and CALB is over 10 orders of magnitude more active in nonpolar...... of the enzyme may be ascribed to binding of solvent molecules to the enzyme active site region and the solvation energy of substrate molecules in the different solvents. Polar solvent molecules interact strongly with CALB and compete with the substrate to bind to the active site region, resulting...

  20. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  1. METALLOGRAPHIC SAMPLE PREPARATION STATION-CONSTRUCTIVE CONCEPT

    Directory of Open Access Journals (Sweden)

    AVRAM Florin Timotei

    2016-11-01

    Full Text Available In this paper we propose to present the issues involved in the case of the constructive conception of a station for metallographic sample preparation. This station is destined for laboratory work. The metallographic station is composed of a robot ABB IRB1600, a metallographic microscope, a gripping device, a manipulator, a laboratory grinding and polishing machine. The robot will be used for manipulation of the sample preparation and the manipulator take the sample preparation for processing.

  2. Solvent Hold Tank Sample Results for MCU-16-991-992-993: July 2016 Monthly sample and MCU-16-1033-1034-1035: July 2016 Superwashed Sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-25

    SRNL received one set of SHT samples (MCU-16-991, MCU-16-992 and MCU-16-993), pulled on 07/13/2016 and another set of SHT samples (MCU-16-1033, MCU-16-1034, and MCU-16-1035) that were pulled on 07/24/2016 after the solvent was superwashed with 300 mM sodium hydroxide for analysis. Samples MCU-16-991, MCU-16-992, and MCU-16-993 were combined into one sample (MCU-16-991-992-993) and samples MCU-16-1033, MCU-16-1034, and MCU-16-1035 were combined into one sample (MCU-16-1033-1034-1035). Of the two composite samples MCU-16-1033-1034-1035 represents the current chemical state of the solvent at MCU. All analytical conclusions are based on the chemical analysis of MCU-16-1033-1034-1035. There were no chemical differences between MCU-16- 991-992-993 and superwashed MCU-16-1033-1034-1035.

  3. First-Row-Transition Ion Metals(II-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Nuno M. R. Martins

    2017-11-01

    Full Text Available A series of first-row transition-metals combined with ethylenediamine tetraacetic acid (EDTA, as metal-based N,O-chelating ligands, at the surface of ferrite magnetic nanoparticles (MNPs was prepared by a co-precipitation method. Those EDTA functionalized MNPs with general formula Fe3O4@EDTA-M2+ [M = Mn2+ (1, Fe2+ (2, Co2+ (3, Ni2+ (4, Cu2+ (5 or Zn2+ (6] were characterized by FTIR (Fourier Transform Infrared spectroscopy, powder XRD (X-ray Diffraction, SEM (Scanning Electron Microscope, EDS (Energy Dispersive Spectrometer, VSM (Vibrating Sample Magnetometer and TGA (Thermal Gravity Analysis. The application of the magnetic NPs towards the microwave-assisted oxidation of several alcohol substrates in a solvent-free medium was evaluated. The influence of reaction parameters such as temperature, time, type of oxidant, and presence of organic radicals was investigated. This study demonstrates that these MNPs can act as efficient catalysts for the conversion of alcohols to the corresponding ketones or aldehydes with high selectivity and yields up to 99% after 2 h of reaction at 110 °C using t-BuOOH as oxidant. Moreover, they have the advantage of being magnetically recoverable catalysts that can be easily recycled in following runs.

  4. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Science.gov (United States)

    Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui. Pan

    2017-01-01

    Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...

  5. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    Science.gov (United States)

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  6. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  7. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    Science.gov (United States)

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    Science.gov (United States)

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  9. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  10. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    Science.gov (United States)

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  11. Sample preparation guidelines for two-dimensional electrophoresis.

    Science.gov (United States)

    Posch, Anton

    2014-12-01

    Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.

  12. Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes

    KAUST Repository

    Chisca, Stefan

    2015-01-01

    The preparation of crosslinked membranes with a zwitterionic structure based on a facile reaction between a newly synthesized copolyazole with free OH groups and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) is reported. The new OH-functionalized copolyazole is soluble in common organic solvents, such as tetrahydrofuran (THF), dimethylsulfoxide (DMSO), N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) and can be easily processed by phase inversion. After crosslinking with GPTMS, the membranes acquire high solvent resistance. We show the membrane performance and the influence of the crosslinking reaction conditions on the thermal stability, surface polarity, pore morphology, and solvent resistance. By using UV-spectroscopy we monitored the solvent resistance of the membranes in four aggressive solvents (THF, DMSO, DMF and NMP) for 30 days. After this time, only minor changes (less than 2%) were detected for membranes subjected to a crosslinking reaction for 6 hours or longer. Our data suggest that the novel crosslinked membranes can be used for industrial applications in wide harsh environments in the presence of organic solvents.

  13. Two New 1,1,3,3-Tetramethylguanidinium Halochromates (C5H14N3CrO3X (X: Cl, F: Efficient Reagents for Oxidation of Organic Substrates under Solvent-Free Conditions and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Kıvılcım Şendıl

    2016-01-01

    Full Text Available Two new mild oxidizing agents 1,1,3,3-tetramethylguanidinium fluorochromate (TMGFC and 1,1,3,3-tetramethylguanidinium chlorochromate (TMGCC were prepared in high yields by reacting tetramethylguanidine with CrO3 and related acid. These reagents are suitable to oxidize various primary and secondary alcohols and oximes to the corresponding carbonyl compounds under solvent-free conditions and microwave irradiation.

  14. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Science.gov (United States)

    2010-04-01

    ... conjunction with spices, seasonings, and flavorings. 182.40 Section 182.40 Food and Drugs FOOD AND DRUG... in conjunction with spices, seasonings, and flavorings. Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings that are generally recognized as safe for their intended...

  15. 21 CFR 582.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Science.gov (United States)

    2010-04-01

    ... conjunction with spices, seasonings, and flavorings. 582.40 Section 582.40 Food and Drugs FOOD AND DRUG... in conjunction with spices, seasonings, and flavorings. Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings that are generally recognized as safe for their intended...

  16. Liposomal preparation by supercritical fluids technology | Zhong ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... technology (SCF) has been utilized in liposomal preparation because of its friendliness, nontoxicity to the environment and its possibility to achieve solvent-free liposomes and industrial-scale of liposome production under the conditions of current good manufacturing practice (cGMP).

  17. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    Science.gov (United States)

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  18. Direct quantification of lipopeptide biosurfactants in biological samples via HPLC and UPLC-MS requires sample modification with an organic solvent.

    Science.gov (United States)

    Biniarz, Piotr; Łukaszewicz, Marcin

    2017-06-01

    The rapid and accurate quantification of biosurfactants in biological samples is challenging. In contrast to the orcinol method for rhamnolipids, no simple biochemical method is available for the rapid quantification of lipopeptides. Various liquid chromatography (LC) methods are promising tools for relatively fast and exact quantification of lipopeptides. Here, we report strategies for the quantification of the lipopeptides pseudofactin and surfactin in bacterial cultures using different high- (HPLC) and ultra-performance liquid chromatography (UPLC) systems. We tested three strategies for sample pretreatment prior to LC analysis. In direct analysis (DA), bacterial cultures were injected directly and analyzed via LC. As a modification, we diluted the samples with methanol and detected an increase in lipopeptide recovery in the presence of methanol. Therefore, we suggest this simple modification as a tool for increasing the accuracy of LC methods. We also tested freeze-drying followed by solvent extraction (FDSE) as an alternative for the analysis of "heavy" samples. In FDSE, the bacterial cultures were freeze-dried, and the resulting powder was extracted with different solvents. Then, the organic extracts were analyzed via LC. Here, we determined the influence of the extracting solvent on lipopeptide recovery. HPLC methods allowed us to quantify pseudofactin and surfactin with run times of 15 and 20 min per sample, respectively, whereas UPLC quantification was as fast as 4 and 5.5 min per sample, respectively. Our methods provide highly accurate measurements and high recovery levels for lipopeptides. At the same time, UPLC-MS provides the possibility to identify lipopeptides and their structural isoforms.

  19. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination.

    Science.gov (United States)

    Pérez-Rodríguez, Michael; Pellerano, Roberto Gerardo; Pezza, Leonardo; Pezza, Helena Redigolo

    2018-05-15

    Tetracyclines are widely used for both the treatment and prevention of diseases in animals as well as for the promotion of rapid animal growth and weight gain. This practice may result in trace amounts of these drugs in products of animal origin, such as milk and eggs, posing serious risks to human health. The presence of tetracycline residues in foods can lead to the transmission of antibiotic-resistant pathogenic bacteria through the food chain. In order to ensure food safety and avoid exposure to these substances, national and international regulatory agencies have established tolerance levels for authorized veterinary drugs, including tetracycline antimicrobials. In view of that, numerous sensitive and specific methods have been developed for the quantification of these compounds in different food matrices. One will note, however, that the determination of trace residues in foods such as milk and eggs often requires extensive sample extraction and preparation prior to conducting instrumental analysis. Sample pretreatment is usually the most complicated step in the analytical process and covers both cleaning and pre-concentration. Optimal sample preparation can reduce analysis time and sources of error, enhance sensitivity, apart from enabling unequivocal identification, confirmation and quantification of target analytes. The development and implementation of more environmentally friendly analytical procedures, which involve the use of less hazardous solvents and smaller sample sizes compared to traditional methods, is a rapidly increasing trend in analytical chemistry. This review seeks to provide an updated overview of the main trends in sample preparation for the determination of tetracycline residues in foodstuffs. The applicability of several extraction and clean-up techniques employed in the analysis of foodstuffs, especially milk and egg samples, is also thoroughly discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Combination syringe provides air-free blood samples

    Science.gov (United States)

    Pool, S. L.

    1970-01-01

    Standard syringe and spinal needle are combined in unique manner to secure air-free blood samples. Combination syringe obtains air free samples because air bubbles become insignificant when samples greater than 1 cc are drawn.

  1. High temperature solvent extraction of oil shale and bituminous coal using binary solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, G.K.E. [Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle, RWTH Aachen (Germany)

    1997-12-31

    A high volatile bituminous coal from the Saar Basin and an oil shale from the Messel deposit, both Germany, were extracted with binary solvent mixtures using the Advanced Solvent Extraction method (ASE). Extraction temperature and pressure were kept at 100 C, respectively 150 C, and 20,7 MPa. After the heating phase (5 min) static extractions were performed with mixtures (v:v, 1:3) of methanol with toluene, respectively trichloromethane, for further 5 min. Extract yields were the same or on a higher level compared to those from classical soxhlet extractions (3 days) using the same solvents at 60 C. Comparing the results from ASE with those from supercritical fluid extraction (SFE) the extract yields were similar. Increasing the temperature in ASE releases more soluble organic matter from geological samples, because compounds with higher molecular weight and especially more polar substances were solubilized. But also an enhanced extraction efficiency resulted for aliphatic and aromatic hydrocarbons which are used as biomarkers in Organic Geochemistry. Application of thermochemolysis with tetraethylammonium hydroxide (TEAH) using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) on the extraction residues shows clearly that at higher extraction temperatures minor amounts of free fatty acids or their methyl esters (original or produced by ASE) were trapped inside the pore systems of the oil shale or the bituminous coal. ASE offers a rapid and very efficient extraction method for geological samples reducing analysis time and costs for solvents. (orig.)

  2. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases.

    Science.gov (United States)

    Boyacı, Ezel; Rodríguez-Lafuente, Ángel; Gorynski, Krzysztof; Mirnaghi, Fatemeh; Souza-Silva, Érica A; Hein, Dietmar; Pawliszyn, Janusz

    2015-05-11

    In chemical analysis, sample preparation is frequently considered the bottleneck of the entire analytical method. The success of the final method strongly depends on understanding the entire process of analysis of a particular type of analyte in a sample, namely: the physicochemical properties of the analytes (solubility, volatility, polarity etc.), the environmental conditions, and the matrix components of the sample. Various sample preparation strategies have been developed based on exhaustive or non-exhaustive extraction of analytes from matrices. Undoubtedly, amongst all sample preparation approaches, liquid extraction, including liquid-liquid (LLE) and solid phase extraction (SPE), are the most well-known, widely used, and commonly accepted methods by many international organizations and accredited laboratories. Both methods are well documented and there are many well defined procedures, which make them, at first sight, the methods of choice. However, many challenging tasks, such as complex matrix applications, on-site and in vivo applications, and determination of matrix-bound and free concentrations of analytes, are not easily attainable with these classical approaches for sample preparation. In the last two decades, the introduction of solid phase microextraction (SPME) has brought significant progress in the sample preparation area by facilitating on-site and in vivo applications, time weighted average (TWA) and instantaneous concentration determinations. Recently introduced matrix compatible coatings for SPME facilitate direct extraction from complex matrices and fill the gap in direct sampling from challenging matrices. Following introduction of SPME, numerous other microextraction approaches evolved to address limitations of the above mentioned techniques. There is not a single method that can be considered as a universal solution for sample preparation. This review aims to show the main advantages and limitations of the above mentioned sample

  3. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    Science.gov (United States)

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  4. Solvent effects on extraction of polycyclic aromatic hydrocarbons in ambient aerosol samples

    Directory of Open Access Journals (Sweden)

    Flasch Mira

    2016-01-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs in the ambient particulate matter pose one of the most important issues in the focus of environmental management. The concentration of their representative, Benzo(apyrene (BaP, undergoes limitations according to European Union directive. However, a successful control over the pollution levels and their sources is limited by the high uncertainty of analytical and statistical approaches used for their characterization. Here we compare differences in PAH concentrations related to the use of different solvents in the course of ultrasonic extraction of a certified reference material (PM10-like PAH mixture and filter samples of ambient particulate matter collected in Austria for the CG-MS PAH analysis. Using solvents of increasing polarity: Cyclohexane (0,006, Toluene (0,099, Dichloromethane (0,309, Acetone (0,43 and Acetonitrile (0,460, as well as mixtures of those, filters representing high and low concentrations of particulate matter were investigated. Although some scatter of the obtained concentrations was observed no trend related to the polarity of the solvent became visible. Regarding the reproducibility, which can be expected of PAH analysis no significant difference between the different solvents was determined. This result is valid for all compounds under investigation.

  5. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  6. Acid catalyzed solvent free synthesis of new 1-acyl-4-benzhydryl substituted pyrazoles

    International Nuclear Information System (INIS)

    Sher, M.; Kausar, T.; Riaz, N.; Sharif, A.

    2016-01-01

    A convenient, cost effective and environmentally benign methodology has been developed, which delivered fourteen new 1-acyl-4-benzhyrdyl substituted pyrazole derivatives under solvent free conditions. Target compounds were synthesized in good to excellent yields simply by grinding reactants in a pestle and mortar with catalytic amount of conc. H/sub 2/SO/sub 4/. All the newly formed compounds were fully characterized with the help of detailed spectroscopic techniques including FTIR, NMR and GC-MS. (author)

  7. Synthesis of β-phenylchalcogeno-α, β-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions

    International Nuclear Information System (INIS)

    Lenardao, Eder J.; Silva, Marcio S.; Mendes, Samuel R.; Azambuja, Francisco de; Jacob, Raquel G.; Perin, Gelson; Santos, Paulo Cesar Silva dos

    2007-01-01

    A simple, clean and efficient solvent-free protocol was developed for hydrochalcogenation of alkynes containing a Michael acceptor (ester, ketone and nitrile) with phenylchalcogenolate anions generated in situ from the respective diphenyl dichalcogenide (Se, Te, S), using alumina supported sodium borohydride. This efficient and improved method is general and furnishes the respective (Z)-β-phenylchalcogeno-α,β-unsaturated esters, ketones and nitriles, in good yield and higher selectivity, compared with those that use organic solvent and inert atmosphere. The use of microwave (MW) irradiation facilitates the procedure and accelerates the reaction. (author)

  8. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    Science.gov (United States)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  9. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents

    Science.gov (United States)

    2014-01-01

    Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the

  10. Collection and preparation of samples for gamma spectrometry

    International Nuclear Information System (INIS)

    Pan Jingquan

    1994-01-01

    The paper presents the basic principles of sample collection and preparation: setting up unified sampling program, methods and procedures, sample packing, transportation and storage, determination of sample quantity, sample pretreatment and preparation of samples to be analysed, etc. for gamma spectrometry. And the paper also describes briefly the main methods and special issues of sampling and preparation for the same environmental and biological samples, such as, air, water, grass, soil and foods

  11. Development and Physicochemical Characterization of Sirolimus Solid Dispersions Prepared by Solvent Evaporation Method

    Directory of Open Access Journals (Sweden)

    Shahram Emami

    2014-12-01

    Full Text Available Purpose: The aim of the present investigation was preparation and characterization of sirolimus solid dispersions by solvent evaporation technique to improve its dissolution properties. Methods: Polyvinylpyrrolidone (PVP, Poloxamer 188 and Cremophore RH40 were used to prepare the solid dispersions of sirolimus. In vitro dissolution study using USP type I apparatus, were performed in distilled water (containing SLS 0.4% for pure sirolimus, physical mixtures, Rapamune and prepared solid dispersions. The characterization of solid dispersions was performed using Fourier Transform Infrared (FTIR Spectroscopy and Differential Scanning Calorimetry (DSC. Results: More than 75% of sirolimus was released within 30 minutes from all prepared solid dispersions. The dissolution rate of all prepared solid dispersion powders were more than physical mixtures. The absence of sirolimus peak in the DSC spectrum of solid dispersions indicated the conversion of crystalline form of sirolimus into amorphous form. The results from FT-IR spectroscopy showed that there was no significant change in the FT-IR spectrum of solid dispersions indicating absence of well-defined interaction between drug and carriers. Conclusion: It was concluded that solid dispersion method, using PVP, Poloxamer 188 and Cremophore RH40 can improve dissolution rate of sirolimus.

  12. Microfluidic Sample Preparation for Diagnostic Cytopathology

    Science.gov (United States)

    Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino

    2014-01-01

    The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972

  13. Solvent hold tank sample results for MCU-17-150-152 (July 2017) and MCU-17-153-155 (August 2017): Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-20

    A trend summary that includes the last two Solvent Hold Tank (SHT) monthly samples is shown; MCU- 17-150-152 (July SHT) and MCU-17-153-155 (August SHT). Since the last SHT sample sent for analysis was the August sample the chemical state of the solvent is best approximated by the chemical analysis of the August SHT sample (MCU-17-153-155). This report mainly focused on the chemical analysis of the August SHT sample. The analysis data from the July SHT sample are presented in the “trend” plots of this report. Analysis of the August SHT sample (MCU-17-153-155) indicated that the modifier (CS-7SB) was 2% below but the extractant (MaxCalix) concentration was at its nominal recommended level (169,000 mg/L and 46,400 mg/L respectively). The suppressor (TiDG) level has decreased since the last measurement taken while the Modular Caustic-Side Solvent Extraction unit (MCU) was operating in January 2017, but has remained steady in the range of 666 (observed in April) to 715 mg/L (observed in the August 2017 sample) since February 2017, well above the minimum recommended level (479 mg/L), but below the nominal level. The “flat” trends observed in the TiDG, MaxCalix, modifier, and Gamma measurement are consistent with the solvent being idle since January 10, 2017. A strong correlation between density and modifier concentration in the solvent continues to be observed in the SHT samples. This analysis confirms the Isopar™L addition to the solvent in January 2017. This analysis also indicates the solvent did not require further additions. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time if the Modular Caustic-Side Solvent Extraction Unit (MCU) returns to processing radioactive liquid waste. Otherwise, the levels of these components will remain steady. A future Isopar™L trimming addition to the solvent is recommended when MCU resumes processing

  14. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    International Nuclear Information System (INIS)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo; Monge, Antonio

    2011-01-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  15. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dept. de Farmacia y Quimica Medicinal; Monge, Antonio [Universidad de Navarra, Pamplona (Spain). Centro de Investigacion en Farmacobiologia Aplicada. Unidad de Investigacion y Desarrollo de Medicamentos

    2011-07-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  16. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan, E-mail: kimyager_erkan@hotmail.com; Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2} (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L{sup −1} (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. - Highlights: • Switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2}. • The switchable polarity solvent has been used for the microextraction of cadmium(II). • The important factors were optimized. • The method was applied to determination of cadmium in real samples.

  17. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  18. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  19. Synthetic surfactant- and cross-linker-free preparation of highly stable lipid-polymer hybrid nanoparticles as potential oral delivery vehicles.

    Science.gov (United States)

    Wang, Taoran; Xue, Jingyi; Hu, Qiaobin; Zhou, Mingyong; Chang, Chao; Luo, Yangchao

    2017-06-05

    The toxicity associated with concentrated synthetic surfactants and the poor stability at gastrointestinal condition are two major constraints for practical applications of solid lipid nanoparticles (SLN) as oral delivery vehicles. In this study, a synthetic surfactant-free and cross-linker-free method was developed to fabricate effective, safe, and ultra-stable lipid-polymer hybrid nanoparticles (LPN). Bovine serum albumin (BSA) and dextran varying in molecular weights were first conjugated through Maillard reaction and the conjugates were exploited to emulsify solid lipid by a solvent diffusion and sonication method. The multilayer structure was formed by self-assembly of BSA-dextran micelles to envelope solid lipid via a pH- and heating-induced facile process with simultaneous surface deposition of pectin. The efficiency of different BSA-dextran conjugates was systematically studied to prepare LPN with the smallest size, the most homogeneous distribution and the greatest stability. The molecular interactions were characterized by Fourier transform infrared and fluorescence spectroscopies. Both nano spray drying and freeze-drying methods were tested to produce spherical and uniform pectin-coated LPN powders that were able to re-assemble nanoscale structure when redispersed in water. The results demonstrated the promise of a synthetic surfactant- and cross-linker-free technique to prepare highly stable pectin-coated LPN from all natural biomaterials as potential oral delivery vehicles.

  20. Preparation, Characterisation and In Vivo Evaluation of Silybin ...

    African Journals Online (AJOL)

    Results: Silybin nanoparticles were successfully prepared using o/w emulsion solvent evaporation technique. The nanoparticles sustained the release of the drug both in vitro and in vivo for up to 10 days and offered better pharmacokinetic properties than the free drug itself. Intravenous nanoparticulate administration ...

  1. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    Unknown

    solvents to effect an asymmetric synthesis is an important step forward towards ... In continuation of our preliminary communication 2, we wish to ..... formation of chiral enamine 74 from the reaction of S-proline with pro-R carbonyl group.

  2. Innovative methods for inorganic sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Essling, A.M.; Huff, E.A.; Graczyk, D.G.

    1992-04-01

    Procedures and guidelines are given for the dissolution of a variety of selected materials using fusion, microwave, and Parr bomb techniques. These materials include germanium glass, corium-concrete mixtures, and zeolites. Emphasis is placed on sample-preparation approaches that produce a single master solution suitable for complete multielement characterization of the sample. In addition, data are presented on the soil microwave digestion method approved by the Environmental Protection Agency (EPA). Advantages and disadvantages of each sample-preparation technique are summarized.

  3. Innovative methods for inorganic sample preparation

    International Nuclear Information System (INIS)

    Essling, A.M.; Huff, E.A.; Graczyk, D.G.

    1992-04-01

    Procedures and guidelines are given for the dissolution of a variety of selected materials using fusion, microwave, and Parr bomb techniques. These materials include germanium glass, corium-concrete mixtures, and zeolites. Emphasis is placed on sample-preparation approaches that produce a single master solution suitable for complete multielement characterization of the sample. In addition, data are presented on the soil microwave digestion method approved by the Environmental Protection Agency (EPA). Advantages and disadvantages of each sample-preparation technique are summarized

  4. Mechanochemical Solvent-Free and Catalyst-Free One-Pot Synthesis of Pyrano[2,3-d]Pyrimidine-2,4(1H,3H-Diones with Quantitative Yields

    Directory of Open Access Journals (Sweden)

    M. Reza Naimi-Jamal

    2009-01-01

    Full Text Available Solvent-free synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H-diones by ball-milling and without any catalyst is described. This method provides several advantages such as being environmentally friendly, using a simple workup procedure, and affording high yields.

  5. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    Science.gov (United States)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  6. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents.

    Directory of Open Access Journals (Sweden)

    Bożena Szermer-Olearnik

    Full Text Available Lipopolysaccharide (LPS, endotoxin, pyrogen constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol. During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 10(3 and 10(5 EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 10(3-10(5 EU/10(9 PFU (plaque forming units down to an average of 2.8 EU/10(9 PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli and F8 (P. aeruginosa.

  7. Flash pyrolysis of coal-solvent slurry prepared from the oxidized coal and the coal dissolved in solvent; Ichibu yokaishita sanka kaishitsutan slurry no jinsoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Maki, T.; Mae, K.; Okutsu, H.; Miura, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-28

    In order to develop a high-efficiency coal pyrolysis method, flash pyrolysis was experimented on slurry prepared by using liquid-phase oxidation reformed coal and a methanol-based solvent mixture. Australian Morwell coal was used for the experiment. The oxidized coal, into which carboxyl groups have been introduced, has the condensation structure relaxed largely, and becomes highly fluid slurry by means of the solvent. Char production can be suppressed by making the oxidation-pretreated coal into slurry, resulting in drastically improved pyrolytic conversion. The slurry was divided into dissolved solution, dried substance, extracted residue, and residual slurry, which were pyrolized independently. The dissolved solution showed very high conversion. Improvement in the conversion is contributed by separating the dissolved substances (coal macromolecules) at molecular levels, coagulating the molecules, suppressing cross-link formation, and reducing molecular weight of the dissolved substances. Oxidized coal can be dissolved to 80% or higher by using several kinds of mixed solvents. As a result of the dissolution, a possibility was suggested on pyrolysis which is easy in handling and high in conversion. 7 refs., 6 figs., 2 tabs.

  8. An Efficient, Solvent-Free Process for Synthesizing Anhydrous MgCl2

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Vemuri, Venkata Rama S.; Barpaga, Dushyant; Schaef, Herbert T.; Loring, John S.; Martin, Paul F.; Lao, David; Nune, Satish K.; McGrail, Bernard P.

    2018-01-02

    A new efficient and solvent-free method for the synthesis of anhydrous MgCl2 from its hexahydrate is proposed. Fluidized dehydration of MgCl2·6H2O feedstock at 200 °C in a porous bed reactor yields MgCl2·nH2O (0 < n < 1), which has a similar diffraction pattern as activated MgCl2. The MgCl2·nH2O is then ammoniated directly using liquefied NH3 in the absence of solvent to form MgCl2·6NH3. Calcination of the hexammoniate complex at 300 °C then yields anhydrous MgCl2. Both dehydration and deammoniation were thoroughly studied using in situ as well as ex situ characterization techniques. Specifically, a detailed understanding of the dehydration process was monitored by in situ PXRD and in situ FTIR techniques where formation of salt with nH2O (n = 4, 2, 1, <1) was characterized. Given the reduction in thermal energy required to produce dehydrated feedstock with this method compared with current strategies, significant cost benefits are expected. Overall, the combined effect of activation, macroporosity, and coordinated water depletion allows the formation of hexammoniate without using solvent, thus minimizing waste formation.

  9. Newly introduced sample preparation techniques: towards miniaturization.

    Science.gov (United States)

    Costa, Rosaria

    2014-01-01

    Sampling and sample preparation are of crucial importance in an analytical procedure, representing quite often a source of errors. The technique chosen for the isolation of analytes greatly affects the success of a chemical determination. On the other hand, growing concerns about environmental and human safety, along with the introduction of international regulations for quality control, have moved the interest of scientists towards specific needs. Newly introduced sample preparation techniques are challenged to meet new criteria: (i) miniaturization, (ii) higher sensitivity and selectivity, and (iii) automation. In this survey, the most recent techniques introduced in the field of sample preparation will be described and discussed, along with many examples of applications.

  10. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  11. An efficient solvent-free synthesis of imidazolines and benzimidazoles using K 4[Fe(CN 6] catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer A. Shaikh

    2012-01-01

    Full Text Available Imidazolines and Benzimidazoles have been efficiently synthesized in high yields by treatment of 1,2-diamine with aldehydes using the metal co-ordinate complex K 4[Fe(CN 6] as a catalysis. The method was carried out under solvent free condition via oxidation of carbon-nitrogen bond. The process is green, mild and inexpensive.

  12. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.; Koch, Donald L.

    2012-01-01

    as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent

  13. Rapid determination of benzene derivatives in water samples by trace volume solvent DLLME prior to GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Chun Peng; Wei, Chao Hai; Feng, Chun Hua [South China Univ. of Technology, Guangzhou Higher Education Mega Center (China). College of Environmental Science and Engineering; Guangdong Regular Higher Education Institutions, Guangzhou (China). Key Lab. of Environmental Protection and Eco-Remediation

    2012-05-15

    An inexpensive, simple and environmentally friendly method based on dispersive liquid liquid microextraction (DLLME) for rapid determination of benzene derivatives in water samples was proposed. A significant improvement of DLLME procedure was achieved. Trace volume ethyl acetate (60 {mu}L) was exploited as dispersion solvent instead of common ones such as methanol and acetone, the volume of which was more than 0.5 mL, and the organic solvent required in DLLME was reduced to a great extent. Only 83-{mu}L organic solvent was consumed in the whole analytic process and the preconcentration procedure was less than 10 min. The advantageous approach coupled with gas chromatograph-flame ionization detector was proposed for the rapid determination of benzene, toluene, ethylbenzene and xylene isomers in water samples. Results showed that the proposed approach was an efficient method for rapid determination of benzene derivatives in aqueous samples. (orig.)

  14. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  15. Ball Milling Assisted Solvent and Catalyst Free Synthesis of Benzimidazoles and Their Derivatives.

    Science.gov (United States)

    El-Sayed, Taghreed H; Aboelnaga, Asmaa; Hagar, Mohamed

    2016-08-24

    Benzoic acid and o-phenylenediamine efficiently reacted under the green solvent-free Ball Milling method. Several reaction parameters were investigated such as rotation frequency; milling balls weight and milling time. The optimum reaction condition was milling with 56.6 g weight of balls at 20 Hz frequency for one hour milling time. The study was extended for synthesis of a series of benzimidazol-2-one or benzimidazol-2-thione using different aldehydes; carboxylic acids; urea; thiourea or ammonium thiocyanate with o-phenylenediamine. Moreover; the alkylation of benzimidazolone or benzimidazolthione using ethyl chloroacetate was also studied.

  16. Determination of Technetium-99 in Environmental Samples by Solvent Extraction at Controlled Valence

    DEFF Research Database (Denmark)

    Chen, Q.J.; Aarkrog, A.; Dahlgaard, H.

    1989-01-01

    Distribution coefficients of technetium and ruthenium are determined under different conditions with CCl4, cyclohexanone, and 5% tri-isooctylamine (TIOA)/xylene. A method for analyzing 99Tc in environmental samples has been developed by solvent extraction in which the valences of technetium...

  17. Advances in the sample preparation and the detector for a combined solvent extraction-liquid scintillation method of low-level plutonium measurement

    International Nuclear Information System (INIS)

    Perdue, P.T.; Christian, D.J.; Thorngate, J.H.; McDowell, W.J.; Case, G.N.

    1976-07-01

    A combined solvent extraction-liquid scintillation technique, developed at Oak Ridge National Laboratory (ORNL), has many possible applications to the determination of low levels of plutonium and other alpha-emitting nuclides. Using these procedures, plutonium can be extracted from biological or environmental samples and introduced directly into a liquid scintillator. Quenching of the scintillator is thus minimized so that spectroscopic techniques may be employed. Existing chemical procedures and counting equipment were reviewed and improved. Purification of the di(2-ethylhexyl)phosphoric acid (used as the actinide extractant) was found necessary. Destruction of organic material in the sample and control of the valence state of plutonium were found to be major sources of irreproducibility. Methods were developed to allow samples separated with commonly used ion exchange techniques to be extracted into the scintillator. Comparisons were made of a wide variety of the components and parameters of the detector system to find the best combination of pulse-height resolution and pulse-shape discrimination. When a single phototube was used, optimum performance was obtained using a hemispherical reflector-sample holder viewed sideways by an RCA 8575 photomultiplier tube used in conjunction with a special integrating preamplifier and a good quality linear amplifier that used delay lines to shape the pulses

  18. An overview of industrial solvent use or is there life after chlorinated solvents?

    International Nuclear Information System (INIS)

    Green, B.

    1991-01-01

    Everyone using industrial chemicals has been affected by the fire- storm of new regulations governing solvent use. How will companies currently using hazardous solvents prepare for the changes ahead? What will the impact be on commonly used industrial solvents? What effect are environmental pressures having on solvent use and disposal? Are the responsible individuals in your company up-to-date on phase-out schedules? This paper is written for an audience of compliance coordinators, consultants, production engineers and corporate management. In it, the either addresses the above questions and discusses the specific products affected. The author reviews currently available alternatives to chlorinated and hazardous solvents and introduces a simple system for rating alternatives. The program also includes a discussion of solvent minimization programs and worker reeducation

  19. Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics.

    Science.gov (United States)

    Awasthi, Shalini; Kapil, Venkat; Nair, Nisanth N

    2016-06-15

    Metadynamics (MTD) is a very powerful technique to sample high-dimensional free energy landscapes, and due to its self-guiding property, the method has been successful in studying complex reactions and conformational changes. MTD sampling is based on filling the free energy basins by biasing potentials and thus for cases with flat, broad, and unbound free energy wells, the computational time to sample them becomes very large. To alleviate this problem, we combine the standard Umbrella Sampling (US) technique with MTD to sample orthogonal collective variables (CVs) in a simultaneous way. Within this scheme, we construct the equilibrium distribution of CVs from biased distributions obtained from independent MTD simulations with umbrella potentials. Reweighting is carried out by a procedure that combines US reweighting and Tiwary-Parrinello MTD reweighting within the Weighted Histogram Analysis Method (WHAM). The approach is ideal for a controlled sampling of a CV in a MTD simulation, making it computationally efficient in sampling flat, broad, and unbound free energy surfaces. This technique also allows for a distributed sampling of a high-dimensional free energy surface, further increasing the computational efficiency in sampling. We demonstrate the application of this technique in sampling high-dimensional surface for various chemical reactions using ab initio and QM/MM hybrid molecular dynamics simulations. Further, to carry out MTD bias reweighting for computing forward reaction barriers in ab initio or QM/MM simulations, we propose a computationally affordable approach that does not require recrossing trajectories. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. FREE RADICAL SCAVENGING CAPACITY OF PAPAVER SOMNIFERUM L. AND DETERMINATION OF PHARMACOLOGICALLY ACTIVE ALKALOIDS USING CAPILLARY ELECTROPHORESIS

    Directory of Open Access Journals (Sweden)

    Marián Valko

    2012-02-01

    Full Text Available The free radical generation is related to the oxidation process in biological systems as well as in foods. It was found that oxidation is affected by antioxidants that can act as radical scavengers. Objective of the present work was to study the free radical scavenging capacity of opium poppy (Papaver somniferum L. extract by using the DPPH test and to verify the suitability of the micellar electrokinetic capillary chromatography (MEKC technique for analytical assessment and determination of three major poppy alkaloids (thebaine, morphine and papaverine. Because of its generally high separation efficiency, the MEKC is successfully used for analytical evaluation of biologically active substances usually without special claims for sample preparation. The results of DPPH test have shown that poppy contains components capable of terminating free radicals. We have confirmed that nature of the solvent used for the electrophoretic medium in MEKC has a strong influence on the separation efficiency. In our experiments, the most effective solvent was mixture of water to acetonitrile (ratio 4:6.

  1. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    Science.gov (United States)

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  2. Preparation and calibration by liquid scintillation of a sample of Cl 36

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Los Arcos, J.M.; Rodriguez Barquero, L.; Suarez, C.

    1989-01-01

    A procedure to prepare a sample of Clorine 36, as Li 36 Cl, able to be measured by liquid scintillation counting, is described. The sample is chemically stable, with no variation of the quenching parameter up to 4 mg of LiCl per 15 ml of scintillator, keeps constant the counting efficiency for concentration higher than 40 μg of Li 36 Cl in that volume, and shows no deterioration over a 3 weed period. The Li 36 Cl solution has been standarized using the free parameter method with different volumes of toluene, PCS and Instagel, to an uncertainty of 0,3% (Author)

  3. The Rate of Success of the Accelerated Solvent Extraction (Ase of Fat and Organochlorine Pesticides from Dried Fish Meat Samples

    Directory of Open Access Journals (Sweden)

    Ana Andreea CIOCA

    2017-05-01

    Full Text Available The replacement of conventional sample preparation techniques with newer techniques which are automated, faster and more eco-friendly, is nowadays desired in every analytical laboratory. One of the techniques with the attributes mentioned above is the Accelerated Solvent Extraction. In order to evaluate how successful this method is for the extraction of fat and organochlorine pesticides (OCPs from dried fish meat samples, we have tested two series of diverse fish using Dionex™ 350 ASE provided by Thermo Scientific™ (Germany. For a more interesting approach, we added to our investigation 7 polychlorinated biphenyl (PCBs, 3 thricholorobenzenes, 2 tetrachlorobenzenes, 1 pentachlorobenzenes and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. The study focused on comparing the recoveries of these analytes from different fish samples, after replacing the conventional reference method of the laboratory with ASE. The ASE parameters tested were previously used for the extraction of fat and polybrominated diphenyl ethers (PBDE from fish samples: temperature: 120 ° C; static time: 5 min; number of cycles: 3; flushing volume: 25%; rinse with nitrogen: 90 s; solvent: cyclohexane/ethyl acetate (ratio 1:1. The ASE method provided similar and in some cases better results when compared to the standard reference method, more rapidly, eco-friendly and safer. Any high or low recoveries of the analytes taken into study are attributed to random or systematic errors during the Clean-up step of the extracts and the quantification with Gas Chromatography coupled with Tandem Mass-Spectrometry (GC MS/MS.

  4. FreeSASA: An open source C library for solvent accessible surface area calculations.

    Science.gov (United States)

    Mitternacht, Simon

    2016-01-01

    Calculating solvent accessible surface areas (SASA) is a run-of-the-mill calculation in structural biology. Although there are many programs available for this calculation, there are no free-standing, open-source tools designed for easy tool-chain integration. FreeSASA is an open source C library for SASA calculations that provides both command-line and Python interfaces in addition to its C API. The library implements both Lee and Richards' and Shrake and Rupley's approximations, and is highly configurable to allow the user to control molecular parameters, accuracy and output granularity. It only depends on standard C libraries and should therefore be easy to compile and install on any platform. The library is well-documented, stable and efficient. The command-line interface can easily replace closed source legacy programs, with comparable or better accuracy and speed, and with some added functionality.

  5. Accurate calculation of conformational free energy differences in explicit water: the confinement-solvation free energy approach.

    Science.gov (United States)

    Esque, Jeremy; Cecchini, Marco

    2015-04-23

    The calculation of the free energy of conformation is key to understanding the function of biomolecules and has attracted significant interest in recent years. Here, we present an improvement of the confinement method that was designed for use in the context of explicit solvent MD simulations. The development involves an additional step in which the solvation free energy of the harmonically restrained conformers is accurately determined by multistage free energy perturbation simulations. As a test-case application, the newly introduced confinement/solvation free energy (CSF) approach was used to compute differences in free energy between conformers of the alanine dipeptide in explicit water. The results are in excellent agreement with reference calculations based on both converged molecular dynamics and umbrella sampling. To illustrate the general applicability of the method, conformational equilibria of met-enkephalin (5 aa) and deca-alanine (10 aa) in solution were also analyzed. In both cases, smoothly converged free-energy results were obtained in agreement with equilibrium sampling or literature calculations. These results demonstrate that the CSF method may provide conformational free-energy differences of biomolecules with small statistical errors (below 0.5 kcal/mol) and at a moderate computational cost even with a full representation of the solvent.

  6. An Organocatalyzed and Ultrasound Accelerated Expeditious Synthetic Route to 1,5-Benzodiazepines under Solvent-Free Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Pravin V.; Shingate, Bapurao B.; Shingare, Murlidhar S. [Babasaheb Ambedkar Marathwada University, Aurngabad (India)

    2011-04-15

    In the present work, successful implementation of ultrasound irradiations for the rapid synthesis of 1,5- benzodiazepine derivatives under solvent-free conditions is demonstrated. Use of a novel catalyst i.e. camphor sulphonic acid in combination with ultrasound technique is reported for the first time. Comparative study for the synthesis of 1,5-benzodiazepines using conventional as well as ultrasonication method is discussed.

  7. Quantitative sample preparation of some heavy elements

    International Nuclear Information System (INIS)

    Jaffey, A.H.

    1977-01-01

    A discussion is given of some techniques that have been useful in quantitatively preparing and analyzing samples used in the half-life determinations of some plutonium and uranium isotopes. Application of these methods to the preparation of uranium and plutonium samples used in neutron experiments is discussed

  8. Norfloxacin release from surfactant-free nanoparticles of poly (DL-lactide-co-glycolide) and biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, J.K. [Chosun College of Science and Technology, Gwangju (Korea); Jeong, Y.I. [Chonnam National University, Gwangju (Korea); Jang, M.K. [Suncheon National University, Suncheon (Korea); Lee, C.H. [Korea Food and Drug Administration, Seoul (Korea); Nah, J.W. [Suncheon National University, Suncheon (Korea)

    2002-07-01

    We have prepared the surfactant-free nanoparticles of poly(DL- lactide-co-glycolide)(PLGA) by dialysis method and their physicochemical properties such as particle size and drug contents were investigated against various solvent. The size of PLGA nanoparticles prepared by using dimethylacetamide (DMAc), dimethylformamide (DMF), and dimethylsulfoxide (DMSO) was smaller than that from acetone. Also, the order of drug contents was DMAc>DMF>DMSO=acetone. These phenomena could be expected from the fact that solvent affects the size of nanoparticles and drug contents. The PLGA nanoparticles have a good spherical shapes as observed from scanning electron microscopy (SEM) and transmission electron microscopy (TEM), Also, surfactant-free nanoparticles entrapping norfloxacin (NFx) have a good drug loading capacity without free-drug on the surface of nanoparticles confirmed by the analysis of X-ray powder diffraction. Release kinetics of NFx used as a model drug was governed not only by drug contents but also by particle size. Also, the biodegradation rate of PLGA nanoparticles prepared from DMF was faster than that prepared from acetone, indicating that the biodegradation of PLGA nanoparticles is size-dependent. (author). 25 refs., 3 tabs., 5 figs.

  9. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, GM; Paterno, GM; Tregnago, G; Treat, N; Stingelin, N; Yacoot, A; Cacialli, F

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8???nm), was used to measure the cr...

  11. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C-61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, G. M.; Paterno, G. M.; Tregnago, G.; Treat, N.; Stingelin, N.; Yacoot, A.; Cacialli, F.

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crys...

  12. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  13. Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach.

    Science.gov (United States)

    Samaeeaghmiyoni, Vahid; Idrissi, Hosni; Groten, Jonas; Schwaiger, Ruth; Schryvers, Dominique

    2017-03-01

    Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation-controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Benchmarking sample preparation/digestion protocols reveals tube-gel being a fast and repeatable method for quantitative proteomics.

    Science.gov (United States)

    Muller, Leslie; Fornecker, Luc; Van Dorsselaer, Alain; Cianférani, Sarah; Carapito, Christine

    2016-12-01

    Sample preparation, typically by in-solution or in-gel approaches, has a strong influence on the accuracy and robustness of quantitative proteomics workflows. The major benefit of in-gel procedures is their compatibility with detergents (such as SDS) for protein solubilization. However, SDS-PAGE is a time-consuming approach. Tube-gel (TG) preparation circumvents this drawback as it involves directly trapping the sample in a polyacrylamide gel matrix without electrophoresis. We report here the first global label-free quantitative comparison between TG, stacking gel (SG), and basic liquid digestion (LD). A series of UPS1 standard mixtures (at 0.5, 1, 2.5, 5, 10, and 25 fmol) were spiked in a complex yeast lysate background. TG preparation allowed more yeast proteins to be identified than did the SG and LD approaches, with mean numbers of 1979, 1788, and 1323 proteins identified, respectively. Furthermore, the TG method proved equivalent to SG and superior to LD in terms of the repeatability of the subsequent experiments, with mean CV for yeast protein label-free quantifications of 7, 9, and 10%. Finally, known variant UPS1 proteins were successfully detected in the TG-prepared sample within a complex background with high sensitivity. All the data from this study are accessible on ProteomeXchange (PXD003841). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Selin Şahin

    2017-06-01

    Full Text Available Response surface methodology (RSM and artificial neural networks (ANN were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC and oleuropein yields in olive tree leaf (Olea europaea extracts, obtained after solvent-free microwave-assisted extraction (SFMAE. The SFMAE processing conditions were: microwave irradiation power 250–350 W, extraction time 2–3 min, and the amount of sample 5–10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis, with a minimum inhibitory concentration (MIC value of 1.25 mg/mL.

  16. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties.

    Science.gov (United States)

    Şahin, Selin; Samli, Ruya; Tan, Ayşe Seher Birteksöz; Barba, Francisco J; Chemat, Farid; Cravotto, Giancarlo; Lorenzo, José M

    2017-06-24

    Response surface methodology (RSM) and artificial neural networks (ANN) were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC) and oleuropein yields in olive tree leaf ( Olea europaea ) extracts, obtained after solvent-free microwave-assisted extraction (SFMAE). The SFMAE processing conditions were: microwave irradiation power 250-350 W, extraction time 2-3 min, and the amount of sample 5-10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm) was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis , with a minimum inhibitory concentration (MIC) value of 1.25 mg/mL.

  17. 7 CFR 27.21 - Preparation of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Preparation of samples of cotton. 27.21 Section 27.21... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.21 Preparation of samples of cotton. The samples from each bale shall be prepared as specified in this section...

  18. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.

    Science.gov (United States)

    Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L

    2018-02-01

    Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.

  19. Sample preparation in alkaline media

    International Nuclear Information System (INIS)

    Nobrega, Joaquim A.; Santos, Mirian C.; Sousa, Rafael A. de; Cadore, Solange; Barnes, Ramon M.; Tatro, Mark

    2006-01-01

    The use of tetramethylammonium hydroxide, tertiary amines and strongly alkaline reagents for sample treatment involving extraction and digestion procedures is discussed in this review. The preparation of slurries is also discussed. Based on literature data, alkaline media offer a good alternative for sample preparation involving an appreciable group of analytes in different types of samples. These reagents are also successfully employed in tailored speciation procedures wherein there is a critical dependence on maintenance of chemical forms. The effects of these reagents on measurements performed using spectroanalytical techniques are discussed. Several undesirable effects on transport and atomization processes necessitate use of the method of standard additions to obtain accurate results. It is also evident that alkaline media can improve the performance of techniques such as inductively coupled plasma mass spectrometry and accessories, such as autosamplers coupled to graphite furnace atomic absorption spectrometers

  20. Urine sample preparation for proteomic analysis.

    Science.gov (United States)

    Olszowy, Pawel; Buszewski, Boguslaw

    2014-10-01

    Sample preparation for both environmental and more importantly biological matrices is a bottleneck of all kinds of analytical processes. In the case of proteomic analysis this element is even more important due to the amount of cross-reactions that should be taken into consideration. The incorporation of new post-translational modifications, protein hydrolysis, or even its degradation is possible as side effects of proteins sample processing. If protocols are evaluated appropriately, then identification of such proteins does not bring difficulties. However, if structural changes are provided without sufficient attention then protein sequence coverage will be reduced or even identification of such proteins could be impossible. This review summarizes obstacles and achievements in protein sample preparation of urine for proteome analysis using different tools for mass spectrometry analysis. The main aim is to present comprehensively the idea of urine application as a valuable matrix. This article is dedicated to sample preparation and application of urine mainly in novel cancer biomarkers discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modified Dispersive Liquid-Liquid Micro Extraction Using Green Solvent for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Vegetable Samples

    International Nuclear Information System (INIS)

    Kin, C.M.; Shing, W.L.

    2016-01-01

    According to International Agency for Research on Cancer (IARC), most of Polycyclic Aromatic Hydrocarbons (PAHs) known as genotoxic human carcinogen and mutagenic. PAHs represent as poorly degradable pollutants that exist in soils, sediments, surface water and atmosphere. A simple, rapid and sensitive extraction method termed modified Dispersive Liquid-Liquid Micro extraction (DLLME) using green solvent was developed to determine PAHs in vegetable samples namely radish, cabbage and cucumber prior to Gas Chromatography Flame Ionization Detection (GC-FID). The extraction method is based on replacing chlorinated organic extraction solvent in the conventional DLLME with low toxic solvent, 1-bromo-3-methylbutane without using dispersive solvent. Several experimental factors such as type and volume of extraction solvents, extraction time, confirmation of 12 PAHs by GC-MS, recovery percentages on vegetable samples and the comparative analysis with conventional DLLME were carried out. Both DLLME were successfully extracted 12 types of PAHs. In modified DLLME, the recoveries of the analytes obtained were in a range of 72.72 - 88.07 % with RSD value below 7.5 % which is comparable to the conventional DLLME. The use of microliter of low toxic extraction solvent without addition of dispersive solvent caused the method is economic and environmental friendly which is fulfill the current requirement, green chemistry based analytical method. (author)

  2. Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

    Directory of Open Access Journals (Sweden)

    Shahnaz Rostamizadeh

    2017-01-01

    Full Text Available The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2 nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES with magnetic graphene oxide (Fe3O4-GO. It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO along with the amine groups post grafted to the surface of Fe3O4-GO led to preparation of an acid-base bifunctional magnetically recyclable nanocatalyst. It proved to be efficient nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives under mild reaction conditions with good to excellent yields. This heterogeneous catalyst also exhibited higher activities than acid or base functionalized mesoporous silica, magnetic GO or basic Al2O3 an even higher than some basic homogeneous catalysts such as triethylamine and piperazine. More importantly, due to the loaded iron oxide nanoparticles, this catalyst could be easily recovered from the reaction mixture using an external magnet and reused without significant decrease in activity even after 7 runs.

  3. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents.

    Science.gov (United States)

    Prasad, Kamalesh; Mondal, Dibyendu; Sharma, Mukesh; Freire, Mara G; Mukesh, Chandrakant; Bhatt, Jitkumar

    2018-01-15

    Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nanocrystalline copper(II oxide-catalyzed one-pot four- component synthesis of polyhydroquinoline derivativesunder solvent-free conditions

    Directory of Open Access Journals (Sweden)

    J. Safaei-Ghomi

    2011-07-01

    Full Text Available The efficient and environmentally friendly method for the one-pot synthesis of polyhydroquinolines has been developed in the presence of CuO nanoparticles. The multi-component reactions of aldehydes, dimedone, ethyl acetoacetate andammonium acetate were carried out under solvent-free conditions to afford some polyhydroquinoline derivatives. This method provides several advantages including high yields, low reaction times and little catalyst loading.

  5. Natrolite zeolite: A natural and reusable catalyst for one-pot synthesis of α-aminophosphonates under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Siavash Bahari

    2017-02-01

    Full Text Available α-Aminophosphonates are synthesized efficiently by one-pot reaction of aldehydes or ketones, amines, trialkyl phosphites in the presence of Natrolite zeolite as a natural catalyst under solvent-free conditions. Furthermore, the catalyst can be reused several times without any significant loss of catalytic activity.

  6. Recent advances in applications of nanomaterials for sample preparation.

    Science.gov (United States)

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. In situ liquid-liquid extraction as a sample preparation method for matrix-assisted laser desorption/ionization MS analysis of polypeptide mixtures

    DEFF Research Database (Denmark)

    Kjellström, Sven; Jensen, Ole Nørregaard

    2003-01-01

    A novel liquid-liquid extraction (LLE) procedure was investigated for preparation of peptide and protein samples for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). LLE using ethyl acetate as the water-immiscible organic solvent enabled segregation of hydrophobic...... matrix to the organic solvent enhanced the efficiency of the LLE-MALDI MS method for analysis of hydrophobic peptides and proteins. LLE-MALDI MS enabled the detection of the hydrophobic membrane protein bacteriorhodopsin as a component in a simple protein mixture. Peptide mixtures containing...... phosphorylated, glycosylated, or acylated peptides were successfully separated and analyzed by the in situ LLE-MALDI MS technique and demonstrate the potential of this method for enhanced separation and structural analysis of posttranslationally modified peptides in proteomics research....

  8. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    Science.gov (United States)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  9. Liquid scintillation: Sample preparation and counting atypical emissions

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Liquid scintillation sample preparation has the most published information but the least amount of definitive technical direction because the chemical and physical nature of the samples from biological investigations varies widely. This chapter discusses the following related topics: Aqueous Samples; Tissue Solubilizers; Absorption of 14 CO 2 ; Sample Combustion Methods; Heterogeneous Systems; Sample Preparation Problems (colored samples, chemiluminescence, photoluminescence, static electricity); Counting Various Types of Emitters; Counting Atypical Emissions. 2 refs., 2 figs

  10. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Marilyn Emily [Los Alamos National Laboratory; Kim, Yu S [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  11. Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskite

    KAUST Repository

    Zhang, Yuhai; Sinatra, Lutfan; Alarousu, Erkki; Yin, Jun; El-Zohry, Ahmed M.; Bakr, Osman; Mohammed, Omar F.

    2018-01-01

    diode or solar cell. Here, we report a new approach to preparing ligand-free perovskite NCs of CsPbBr, which retained high photoluminescence quantum yield (44%). Such an approach involves a polar solvent (acetonitrile) and two small molecules (ammonium

  12. Insecticide solvents: interference with insecticidal action.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans.

  13. Recent advances in column switching sample preparation in bioanalysis.

    Science.gov (United States)

    Kataoka, Hiroyuki; Saito, Keita

    2012-04-01

    Column switching techniques, using two or more stationary phase columns, are useful for trace enrichment and online automated sample preparation. Target fractions from the first column are transferred online to a second column with different properties for further separation. Column switching techniques can be used to determine the analytes in a complex matrix by direct sample injection or by simple sample treatment. Online column switching sample preparation is usually performed in combination with HPLC or capillary electrophoresis. SPE or turbulent flow chromatography using a cartridge column and in-tube solid-phase microextraction using a capillary column have been developed for convenient column switching sample preparation. Furthermore, various micro-/nano-sample preparation devices using new polymer-coating materials have been developed to improve extraction efficiency. This review describes current developments and future trends in novel column switching sample preparation in bioanalysis, focusing on innovative column switching techniques using new extraction devices and materials.

  14. Preparation of intact mitochondria using free-flow isoelectric focusing with post-pH gradient sample injection for morphological, functional and proteomics studies

    International Nuclear Information System (INIS)

    He, Yu-Chen; Kong, Fan-Zhi; Fan, Liu-Yin; Wu, Jane Y.; Liu, Xiao-Ping; Li, Jun; Sun, Yan; Zhang, Qiang; Yang, Ying; Wu, Xue-Jing; Xiao, Hua; Cao, Cheng-Xi

    2017-01-01

    Mitochondria play essential roles in both energy metabolism and cell signaling, which are critical for cell survival. Although significant efforts have been invested in understanding mitochondrial biology, methods for intact mitochondria preparation are technically challenging and remain to be improved. New methods for heterogeneous mitochondria purification will therefore boost our understanding on their physiological and biophysical properties. Herein, we developed a novel recycling free-flow isoelectric focusing (RFFIEF) with post-pH gradient sample injection (post-PGSI) for preparative separation of mitochondria. Crude mitochondria of rabbit liver obtained from differential centrifugation were purified by the developed method according to their pI values as six fractions. Transmission electron microscope images revealed that intact mitochondria existed in two fractions of pH 6.24 and 6.61, degenerative mitochondria were in two fractions of pH 5.46 and 5.72, and inner membrane vesicles (IMVs) appeared in the fractions of pH 4.70 and 5.04. Membrane potential measurement proved a dramatic difference between intact mitochondria and IMVs, which reflected the bioactivity of obtained populations. Particularly, proteomics analyses revealed that more number of proteins were identified in the intact fractions than that of IMVs or crude mitochondria, which demonstrated that RFFIEF could be powerful tool for the preparation of intact organelle as well as their proteomic and in-depth biological analysis. - Highlights: • Mitochondrial subpopulation was successfully separated according to their pIs via the developed RFFIEF method. • The post-PGSI method was introduced for the first time to achieve higher recovery of intact mitochondria. • Quick preparation of mitochondria subpopulation via the developed RFFIEF for both pI determination and downstream research.

  15. Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskite

    KAUST Repository

    Zhang, Yuhai

    2018-02-23

    Although ligands of long carbon chains are very crucial to form stable colloidal perovskite nanocrystals (NCs), they create a severe barrier for efficient charge injection or extraction in quantum-dot-based optoelectronics, such as light emitting diode or solar cell. Here, we report a new approach to preparing ligand-free perovskite NCs of CsPbBr, which retained high photoluminescence quantum yield (44%). Such an approach involves a polar solvent (acetonitrile) and two small molecules (ammonium acetate and cesium chloride), which replace the organic ligand and still protect the nanocrystals from dissolution. The successful removal of hydrophobic long ligands was evidenced by Fourier transform infrared spectroscopy, ζ potential analysis, and thermogravimetric analysis. Unlike conventional perovskite NCs that are extremely susceptible to polar solvents, the ligand-free CsPbBr NCs show robust resistance to polar solvents. Our ligand-free procedure opens many possibilities not only from a material hybridization perspective but also in optimizing charge injection and extraction in semiconductor quantum-dot-based optoelectronics applications.

  16. Modular microfluidic system for biological sample preparation

    Science.gov (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  17. Alternating sample changer and an automatic sample changer for liquid scintillation counting of alpha-emitting materials

    International Nuclear Information System (INIS)

    Thorngate, J.H.

    1977-08-01

    Two sample changers are described that were designed for liquid scintillation counting of alpha-emitting samples prepared using solvent-extraction chemistry. One operates manually but changes samples without exposing the photomultiplier tube to light, allowing the high voltage to remain on for improved stability. The other is capable of automatically counting up to 39 samples. An electronic control for the automatic sample changer is also described

  18. Indigenous development of automated metallographic sample preparation system

    International Nuclear Information System (INIS)

    Kulkarni, A.P.; Pandit, K.M.; Deshmukh, A.G.; Sahoo, K.C.

    2005-01-01

    Surface preparation of specimens for Metallographic studies on irradiated material involves a lot of remote handling of radioactive material by skilled manpower. These are laborious and man-rem intensive activities and put limitations on number of samples that can be prepared for the metallographic studies. To overcome these limitations, automated systems have been developed for surface preparation of specimens in PIE division. The system includes (i) Grinding and polishing stations (ii) Water jet cleaning station (iii) Ultrasonic cleaning stations (iv) Drying station (v) Sample loading and unloading station (vi) Dispenser for slurries and diluents and (vii) Automated head for movement of the sample holder disc from one station to other. System facilities the operator for programming/changing sequence of the sample preparations including remote changing of grinding/polishing discs from the stations. Two such systems have been installed and commissioned in Hot Cell for PIE Division. These are being used for preparation of irradiated samples from nuclear fuels and structural components. This development has increased the throughput of metallography work and savings in terms of (man-severts) radiation exposure to operators. This presentation will provide details of the challenges in undertaking this developmental work. (author)

  19. One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenes using grindstone chemistry

    Directory of Open Access Journals (Sweden)

    Devji S. Patel

    2016-09-01

    Full Text Available An easy solvent-free method is described for the synthesis of 3,4-dihydropyrano[c]chromenes by a one pot three component coupling reaction of aromatic aldehydes, malononitrile, and 4-hydroxycoumarin using basic ionic liquid as the catalyst by grindstone chemistry. The salient features of this one pot protocol are short reaction times, cleaner reaction profiles and simple workup.

  20. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  1. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  2. High performance screen-printed electrodes prepared by a green solvent approach for lithium-ion batteries

    Science.gov (United States)

    Gören, A.; Mendes, J.; Rodrigues, H. M.; Sousa, R. E.; Oliveira, J.; Hilliou, L.; Costa, C. M.; Silva, M. M.; Lanceros-Méndez, S.

    2016-12-01

    New inks based on lithium iron phosphate and graphite for cathode and anode, respectively, were developed for printable lithium-ion batteries using the "green solvent" N,N‧-dimethylpropyleneurea (DMPU) and poly(vinylidene fluoride), PVDF, as a binder. The results were compared with the ones from inks developed with the conventionally used solvent N-methyl-2-pyrrolidone, NMP. The rheological properties of the PVDF/DMPU binder solution shows a more pronounced shear thinning behavior than the PVDF/NMP solution. Cathode inks prepared with 2.25 mL and 2.50 mL of DMPU for 1 g of electrode mass show an apparent viscosity of 3 Pa s and 2 Pa s for a shear rate of 100 s-1, respectively, being therefore processable by screen-printing or doctor blade techniques. The electrodes prepared with DMPU and processed by screen-printing show a capacity of 52 mAh g-1 at 2C for the cathode and 349 mAh g-1 at C/5 for the anode, after 45 charge-discharge cycles. The electrochemical performance of both electrodes was evaluated in a full-cell and after 9 cycles, the discharge capacity value is 81 mAh g-1, showing a discharge capacity retention of 64%. The new inks presented in this work are thus suitable for the development of printed batteries and represent a step forward towards more environmental friendly processes.

  3. Direct construction of diverse metallophthalocyanines by manifold substrates in a deep eutectic solvent

    Science.gov (United States)

    Shaabani, Ahmad; Hooshmand, Seyyed Emad; Afshari, Ronak; Shaabani, Shabnam; Ghasemi, Vahid; Atharnezhad, Mojtaba; Akbari, Masoud

    2018-02-01

    Direct access to a wide range of metal-free phthalocyanines and metallophthalocyanines in deep eutectic solvents (DESs), is reported. Substituted and unsubstituted phthalocyanines of Mn, Fe, Co, Ni, Cu, Zn, Pd, In, and Pt with various raw materials such as phthalonitriles, phthalimides, phthalic anhydrides and phthalic acids are successfully prepared in the DES based on choline chloride and urea in a very short reaction time with appropriate yields. It has been shown that DES as a green and rapidly degraded reaction medium in the environment plays a triple role as a solvent, organocatalyst, and reactant in this process. Moreover, the DES system could be separated and reused in four consecutive reaction runs with no considerable loss in catalytic activity.

  4. New materials for sample preparation techniques in bioanalysis.

    Science.gov (United States)

    Nazario, Carlos Eduardo Domingues; Fumes, Bruno Henrique; da Silva, Meire Ribeiro; Lanças, Fernando Mauro

    2017-02-01

    The analysis of biological samples is a complex and difficult task owing to two basic and complementary issues: the high complexity of most biological matrices and the need to determine minute quantities of active substances and contaminants in such complex sample. To succeed in this endeavor samples are usually subject to three steps of a comprehensive analytical methodological approach: sample preparation, analytes isolation (usually utilizing a chromatographic technique) and qualitative/quantitative analysis (usually with the aid of mass spectrometric tools). Owing to the complex nature of bio-samples, and the very low concentration of the target analytes to be determined, selective sample preparation techniques is mandatory in order to overcome the difficulties imposed by these two constraints. During the last decade new chemical synthesis approaches has been developed and optimized, such as sol-gel and molecularly imprinting technologies, allowing the preparation of novel materials for sample preparation including graphene and derivatives, magnetic materials, ionic liquids, molecularly imprinted polymers, and much more. In this contribution we will review these novel techniques and materials, as well as their application to the bioanalysis niche. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Solvent effect on Rb+ to K+ ion mutation: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Kim, Hag Sung

    2000-01-01

    The solvent effects on the relative free energies of solvation and the difference in partition coefficients (log P) for Rb + to K + mutation in several solvents have been investigated using Monte Carlo simulation (MCS) of statistical perturbation theory (SPT). In comparing the relative free energies for interconversion of one ion pair, Rb + to K + , in H 2 O (TIP4P) in this study with the relative free energies of the computer simulations and the experimental, we found that the figure in this study is -5.00 ± 0.11 kcal/mol. There is good agreement among various studies, taking into account both methods used to obtain the hydration free energies and standard deviations. There is also good agreement between the calculated structural properties of this study and the simulations, ab initio and the experimental results. We have explained the deviation of the relationship between the free energy difference and the Onsager dielectric function of solvents by the electron pair donor properties of the solvents. For the Rb + and K + ion pair, the Onsager dielectric function of solvents (or solvent permittivity), donor number of solvent and the differences in solvation dominate the differences in the relative free energies of solvation and partition coefficients

  6. Solvent-free and catalyst-free chemistry: A benign pathway to sustainability

    Science.gov (United States)

    In the past decade, alternative benign organic methodologies have become an imperative part of organic syntheses and novel chemical reactions. The various new and innovative sustainable organic reactions and methodologies using no solvents or catalysts and employing alternative ...

  7. Sample Preparation for Electron Probe Microanalysis-Pushing the Limits.

    Science.gov (United States)

    Geller, Joseph D; Engle, Paul D

    2002-01-01

    There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the "k-ratios," to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very

  8. Homogeneous immunosubtraction integrated with sample preparation is enabled by a microfluidic format

    Science.gov (United States)

    Apori, Akwasi A.; Herr, Amy E.

    2011-01-01

    Immunosubtraction is a powerful and resource-intensive laboratory medicine assay that reports both protein mobility and binding specificity. To expedite and automate this electrophoretic assay, we report on advances to the electrophoretic immunosubtraction assay by introducing a homogeneous, not heterogeneous, format with integrated sample preparation. To accomplish homogeneous immunosubtraction, a step-decrease in separation matrix pore-size at the head of a polyacrylamide gel electrophoresis (PAGE) separation channel enables ‘subtraction’ of target analyte when capture antibody is present (as the large immune-complex is excluded from PAGE), but no subtraction when capture antibody is absent. Inclusion of sample preparation functionality via small pore size polyacrylamide membranes is also key to automated operation (i.e., sample enrichment, fluorescence sample labeling, and mixing of sample with free capture antibody). Homogenous sample preparation and assay operation allows on-the-fly, integrated subtraction of one to multiple protein targets and reuse of each device. Optimization of the assay is detailed which allowed for ~95% subtraction of target with 20% non-specific extraction of large species at the optimal antibody-antigen ratio, providing conditions needed for selective target identification. We demonstrate the assay on putative markers of injury and inflammation in cerebrospinal fluid (CSF), an emerging area of diagnostics research, by rapidly reporting protein mobility and binding specificity within the sample matrix. We simultaneously detect S100B and C-reactive protein, suspected biomarkers for traumatic brain injury (TBI), in ~2 min. Lastly, we demonstrate S100B detection (65 nM) in raw human CSF with a lower limit of detection of ~3.25 nM, within the clinically relevant concentration range for detecting TBI in CSF. Beyond the novel CSF assay introduced here, a fully automated immunosubtraction assay would impact a spectrum of routine but labor

  9. Results of Analyses of the Next Generation Solvent for Parsons

    International Nuclear Information System (INIS)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-01

    Savannah River National Laboratory (SRNL) prepared a nominal 150 gallon batch of Next Generation Solvent (NGS) for Parsons. This material was then analyzed and tested for cesium mass transfer efficiency. The bulk of the results indicate that the solvent is qualified as acceptable for use in the upcoming pilot-scale testing at Parsons Technology Center. This report describes the analysis and testing of a batch of Next Generation Solvent (NGS) prepared in support of pilot-scale testing in the Parsons Technology Center. A total of ∼150 gallons of NGS solvent was prepared in late November of 2011. Details for the work are contained in a controlled laboratory notebook. Analysis of the Parsons NGS solvent indicates that the material is acceptable for use. SRNL is continuing to improve the analytical method for the guanidine.

  10. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing.

    Science.gov (United States)

    Luo, Hu; Yin, Shaohui; Zhang, Guanhua; Liu, Chunhui; Tang, Qingchun; Guo, Meijian

    2017-10-01

    Ion-beam-thinning is a well-established sample preparation technique for transmission electron microscopy (TEM), but tedious procedures and labor consuming pre-thinning could seriously reduce its efficiency. In this work, we present a simple pre-thinning technique by using magnetorheological (MR) polishing to replace manual lapping and dimpling, and demonstrate the successful preparation of electron-transparent single crystal silicon samples after MR polishing and single-sided ion milling. Dimples pre-thinned to less than 30 microns and with little mechanical surface damage were repeatedly produced under optimized MR polishing conditions. Samples pre-thinned by both MR polishing and traditional technique were ion-beam thinned from the rear side until perforation, and then observed by optical microscopy and TEM. The results show that the specimen pre-thinned by MR technique was free from dimpling related defects, which were still residual in sample pre-thinned by conventional technique. Nice high-resolution TEM images could be acquired after MR polishing and one side ion-thinning. MR polishing promises to be an adaptable and efficient method for pre-thinning in preparation of TEM specimens, especially for brittle ceramics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chemoselective Synthesis of Dithioacetals from Bio-aldehydes with Zeolites under Ambient and Solvent-free Conditions

    DEFF Research Database (Denmark)

    Li, Hu; Yang, Tingting; Riisager, Anders

    2017-01-01

    of commercial and modified zeolites are excellent catalysts for thioacetalization of different thiols with carbonyl compounds, including biomass-derived aldehydes, at room temperature under solvent-free conditions. A near quantitative yield of dithioacetal was obtained over H-beta(19) at room temperature......Dithioacetals are an important class of versatile compounds extensively applied in pharmaceuticals, separations, electrochemistry, and organic synthesis, but few heterogeneous catalytic systems are reported to be generally applicable for their synthesis from a wide range of substrates. A series...

  12. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents.

    Science.gov (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y

    2000-01-01

    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  13. Roles of ethylene glycol solvent and polymers in preparing uniformly distributed MgO nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunxi Hai

    2017-06-01

    Full Text Available This study focus on specifying the roles of solvent ethylene glycol (EG and polymers for synthesis of uniformly distributed magnesium oxide (MgO nanoparticles with average crystallite size of around 50 nm through a modified polyol method. Based on different characterization results, it was concluded that, Mg2+ ions was precipitated by the −OH and CO32− ions decomposed from urea in ethylene glycol (EG medium (CO(NH22 → NH3 + HNCO, HNCO + H2O → NH3 + CO2, thus forming well crystallized Mg5(CO34(OH2 (H2O4 precursor which could be converted to MgO by calcination. Surface protectors PEG and PVP have no obvious influences on cyrtsal structure, morphology and size uniformity of as-prepared precursors and target MgO nanoparticles. In comparison with polymers PEG and PVP, solvent EG plays an important role in controlling the morphology and diameter uniformity of MgO nanoparticles.

  14. Preparation of honey sample for tritium monitoring

    International Nuclear Information System (INIS)

    Chen Bingru; Wang Chenlian; Wang Weihua

    1989-01-01

    The method of preparation of honey sample for tritium monitoring was described. The equipments consist of an air and honey supply system, a quartz combustor with CM-type monolithic combustion catalyst and a condensation system. In the equipments, honey sample was converted into cooling water by the distilling, cracking and carbonizing procedures for tritium counting. The recovery ratio is 99.0 ± 4.5 percent for tritiated water and 96.0 ± 2.0 for tritiated organic compounds. It is a feasible preparing method for the total tritium monitoring in honey sample

  15. Assessment of the influence of different sample processing and cold storage duration on plant free proline content analyses.

    Science.gov (United States)

    Teklić, Tihana; Spoljarević, Marija; Stanisavljević, Aleksandar; Lisjak, Miroslav; Vinković, Tomislav; Parađiković, Nada; Andrić, Luka; Hancock, John T

    2010-01-01

    A method which is widely accepted for the analysis of free proline content in plant tissues is based on the use of 3% sulfosalicylic acid as an extractant, followed by spectrophotometric quantification of a proline-ninhydrin complex in toluene. However, sample preparation and storage may influence the proline actually measured. This may give misleading or difficult to compare data. To evaluate free proline levels fresh and frozen strawberry (Fragaria × ananassa Duch.) leaves and soybean [Glycine max (L.) Merr.] hypocotyl tissues were used. These were ground with or without liquid nitrogen and proline extracted with sulfosalicylic acid. A particular focus was the influence of plant sample cold storage duration (1, 4 and 12 weeks at -20°C) on tissue proline levels measured. The free proline content analyses, carried out in leaves of Fragaria × ananassa Duch. as well as in hypocotyls of Glycine max (L.) Merr., showed a significant influence of the sample preparation method and cold storage period. Long-term storage of up to 12 weeks at -20°C led to a significant increase in the measured proline in all samples analysed. The observed changes in proline content in plant tissue samples stored at -20°C indicate the likelihood of the over-estimation of the proline content if the proline analyses are delayed. Plant sample processing and cold storage duration seem to have an important influence on results of proline analyses. Therefore it is recommended that samples should be ground fresh and analysed immediately. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Application of non-ionic surfactant as a developed method for the enhancement of two-phase solvent bar microextraction for the simultaneous determination of three phthalate esters from water samples.

    Science.gov (United States)

    Bandforuzi, Samereh Ranjbar; Hadjmohammadi, Mohammad Reza

    2018-08-03

    The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). Under the optimum conditions, linearity was observed in the range of 1-800 ng mL -1 for dimethylphthalate (DMP) and 0.5-800 ng mL -1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL -1 and 0.04-0.1 ng mL -1 , respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL -1 of PEs were 1.8-2.1% and 2.1-2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples. Copyright © 2018. Published by Elsevier B.V.

  17. Sorption behaviour of polystyrene grafted sago starch in various solvents

    International Nuclear Information System (INIS)

    Janarthanan, P.; Yunus, W.M.Z.W.; Ahmed, M.B.; Rahman, M.Z.; Haron, M.J.; Silong, S.

    2001-01-01

    This paper describes swelling properties of polystyrene grafted sago starch in dimethyl sulfoxide (DMSO); chloroform (CHCl/sub 3/), water, acetone carbon tetrachloride (CCl/sub 4/) cyclohexanone and toluene. The copolymer for this study was prepared by grafting styrene onto sago starch using ceric ammonium nitrate as a redox initiator. Solvent uptake of the copolymer with respect to time was obtained by soaking the samples in chosen solvents for various time intervals at 25+-1 degree centigrade. The results obtained from swelling of polystyrene grafted sago starch in polar and non polar solvents showed that the percentage of swelling at equilibrium and the swelling rate coefficient decreased in the following order: DMSO > water > acetone cyclohexanone approx. CHCl/sub 3/ > toluene approx. CCl/sub 4/. Dimethyl sulfoxide showed the highest percentage of swelling at equilibrium that is 765%. Diffusions of the solvents onto the polymers were found to be of a Fickian only for DMSO. (author)

  18. Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%

    Science.gov (United States)

    Wu, Tongyue; Wu, Jihuai; Tu, Yongguang; He, Xin; Lan, Zhang; Huang, Miaoliang; Lin, Jianming

    2017-10-01

    The perovskite layer is the most crucial factor for the high performance perovskite solar cells. Based on solvent engineering, we develop a ternary-mixed-solvent method for the growth of high-quality [Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3] cation-anion-mixed perovskite films by introducing N-methyl-2-pyrrolidone (NMP) into the precursor mixed solution. By controlling rapid nucleation and retarding crystal growth via intermediate phase PbI2-NMP (Lewis acid-base adduct), a dense, large grain, pinhole-free and long charge carrier lifetime perovskite film is obtained. By optimizing the precursor solvent composition, the perovskite solar cell achieves an impressive power conversion efficiency of 19.61% under one-sun illumination. The research presented here provides a facile, low-cost and highly efficient way for the preparation of perovskite solar cells.

  19. Platelet-rich fibrin prepared from stored whole-blood samples.

    Science.gov (United States)

    Isobe, Kazushige; Suzuki, Masashi; Watanabe, Taisuke; Kitamura, Yutaka; Suzuki, Taiji; Kawabata, Hideo; Nakamura, Masayuki; Okudera, Toshimitsu; Okudera, Hajime; Uematsu, Kohya; Nakata, Koh; Tanaka, Takaaki; Kawase, Tomoyuki

    2017-12-01

    In regenerative therapy, self-clotted platelet concentrates, such as platelet-rich fibrin (PRF), are generally prepared on-site and are immediately used for treatment. If blood samples or prepared clots can be preserved for several days, their clinical applicability will expand. Here, we prepared PRF from stored whole-blood samples and examined their characteristics. Blood samples were collected from non-smoking, healthy male donors (aged 27-67 years, N = 6), and PRF clots were prepared immediately or after storage for 1-2 days. Fibrin fiber was examined by scanning electron microscopy. Bioactivity was evaluated by means of a bioassay system involving human periosteal cells, whereas PDGF-BB concentrations were determined by an enzyme-linked immunosorbent assay. Addition of optimal amounts of a 10% CaCl 2 solution restored the coagulative ability of whole-blood samples that contained an anticoagulant (acid citrate dextrose) and were stored for up to 2 days at ambient temperature. In PRF clots prepared from the stored whole-blood samples, the thickness and cross-links of fibrin fibers were almost identical to those of freshly prepared PRF clots. PDGF-BB concentrations in the PRF extract were significantly lower in stored whole-blood samples than in fresh samples; however, both extracts had similar stimulatory effects on periosteal-cell proliferation. Quality of PRF clots prepared from stored whole-blood samples is not reduced significantly and can be ensured for use in regenerative therapy. Therefore, the proposed method enables a more flexible treatment schedule and choice of a more suitable platelet concentrate immediately before treatment, not after blood collection.

  20. The effect of sample preparation on uranium hydriding

    International Nuclear Information System (INIS)

    Banos, A.; Stitt, C.A.; Scott, T.B.

    2016-01-01

    Highlights: • Distinct differences in uranium hydride growth rates and characteristics between different surface preparation methods. • The primary difference between the categories of sample preparations is the level of strain present in the surface. • Greater surface-strain, leads to higher nucleation number density, implying a preferred attack of strained vs unstrained metal. • As strain is reduced, surface features such as carbides and grain boundaries become more important in controlling the UH3 location. - Abstract: The influence of sample cleaning preparation on the early stages of uranium hydriding has been examined, by using four identical samples but concurrently prepared using four different methods. The samples were reacted together in the same corrosion cell to ensure identical exposure conditions. From the analysis, it was found that the hydride nucleation rate was proportional to the level of strain exhibiting higher number density for the more strained surfaces. Additionally, microstructure of the metal plays a secondary role regarding initial hydrogen attack on the highly strained surfaces yet starts to dominate the system while moving to more pristine samples.

  1. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    Science.gov (United States)

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient sample preparation from complex biological samples using a sliding lid for immobilized droplet extractions.

    Science.gov (United States)

    Casavant, Benjamin P; Guckenberger, David J; Beebe, David J; Berry, Scott M

    2014-07-01

    Sample preparation is a major bottleneck in many biological processes. Paramagnetic particles (PMPs) are a ubiquitous method for isolating analytes of interest from biological samples and are used for their ability to thoroughly sample a solution and be easily collected with a magnet. There are three main methods by which PMPs are used for sample preparation: (1) removal of fluid from the analyte-bound PMPs, (2) removal of analyte-bound PMPs from the solution, and (3) removal of the substrate (with immobilized analyte-bound PMPs). In this paper, we explore the third and least studied method for PMP-based sample preparation using a platform termed Sliding Lid for Immobilized Droplet Extractions (SLIDE). SLIDE leverages principles of surface tension and patterned hydrophobicity to create a simple-to-operate platform for sample isolation (cells, DNA, RNA, protein) and preparation (cell staining) without the need for time-intensive wash steps, use of immiscible fluids, or precise pinning geometries. Compared to other standard isolation protocols using PMPs, SLIDE is able to perform rapid sample preparation with low (0.6%) carryover of contaminants from the original sample. The natural recirculation occurring within the pinned droplets of SLIDE make possible the performance of multistep cell staining protocols within the SLIDE by simply resting the lid over the various sample droplets. SLIDE demonstrates a simple easy to use platform for sample preparation on a range of complex biological samples.

  3. Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Taylor-Pashow, K. M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-04-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating

  4. Simplified polymer characterization after microwave assisted sample preparation (T9)

    International Nuclear Information System (INIS)

    Lafer, M.; Kettisch, P.; Gfrerrer, M.

    2002-01-01

    Full text: Beside the determination of fillers and heavy metals in polymers after decomposition more often stabilizers, fire inhibitors and antistatic additive agents are measured alter using fast microwave accelerated solvent extraction. Determination of heavy metal traces for example in food packaging materials needs high sample weight to detect small amounts of impurities. High sample weight is also needed for plastic waste providing the homogeneity for representative analysis. Due to the high concentration of' organic carbon and the fact that the materials swim on the acid surface, closed vessel digestion had limits concerning sample weight. A new vessel insert in combination with extremely fast reaction control allows now to double or triple usual sample weights. High performance vessels can also be used to decompose polymers filled with TiO 2 , talcum, fibers or similar within short one or two step procedures gaining solutions without precipitates. Additional filtration or sample treatment is not necessary. For the determination of organic components more and more classical, but time consuming methods are replaced by microwave assisted solvent extraction. Instead of hours or even half days using Soxhlet extraction samples can be extracted within minutes using vessels and rotors similar to those used for decomposition. The dual use of one basic microwave instrument for both, analysis of inorganic as well as organic parameters will help to increase efficiency by reduced costs. (author)

  5. Novel sample preparation method for surfactant containing suppositories: effect of micelle formation on drug recovery.

    Science.gov (United States)

    Kalmár, Éva; Ueno, Konomi; Forgó, Péter; Szakonyi, Gerda; Dombi, György

    2013-09-01

    Rectal drug delivery is currently at the focus of attention. Surfactants promote drug release from the suppository bases and enhance the formulation properties. The aim of our work was to develop a sample preparation method for HPLC analysis for a suppository base containing 95% hard fat, 2.5% Tween 20 and 2.5% Tween 60. A conventional sample preparation method did not provide successful results as the recovery of the drug failed to fulfil the validation criterion 95-105%. This was caused by the non-ionic surfactants in the suppository base incorporating some of the drug, preventing its release. As guidance for the formulation from an analytical aspect, we suggest a well defined surfactant content based on the turbidimetric determination of the CMC (critical micelle formation concentration) in the applied methanol-water solvent. Our CMC data correlate well with the results of previous studies. As regards the sample preparation procedure, a study was performed of the effects of ionic strength and pH on the drug recovery with the avoidance of degradation of the drug during the procedure. Aminophenazone and paracetamol were used as model drugs. The optimum conditions for drug release from the molten suppository base were found to be 100 mM NaCl, 20-40 mM NaOH and a 30 min ultrasonic treatment of the final sample solution. As these conditions could cause the degradation of the drugs in the solution, this was followed by NMR spectroscopy, and the results indicated that degradation did not take place. The determined CMCs were 0.08 mM for Tween 20, 0.06 mM for Tween 60 and 0.04 mM for a combined Tween 20, Tween 60 system. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. On the development of automatic sample preparation devices

    International Nuclear Information System (INIS)

    Oesselmann, J.

    1987-01-01

    Modern mass spectrometers for stable isotope analysis offer accurate isotope ratio results from gaseous samples (CO 2 , N 2 , H 2 , SO 2 ) in a completely automated fashion. However, most samples of interest either are associated with contaminant gases or the gas has to be liberated by a chemical procedure prior to measurement. In most laboratories this sample preparation step is performed manually. As a consequence, sample throughput is rather low and - despite skilful operation - the preparation procedure varies slightly from one sample to the next affecting mainly the reproducibility of the data. (author)

  7. Sample Preparation for Electron Probe Microanalysis—Pushing the Limits

    Science.gov (United States)

    Geller, Joseph D.; Engle, Paul D.

    2002-01-01

    There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very

  8. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  9. Development of a Novel Self-Enclosed Sample Preparation Device for DNA/RNA Isolation in Space

    Science.gov (United States)

    Zhang, Ye; Mehta, Satish K.; Pensinger, Stuart J.; Pickering, Karen D.

    2011-01-01

    Modern biology techniques present potentials for a wide range of molecular, cellular, and biochemistry applications in space, including detection of infectious pathogens and environmental contaminations, monitoring of drug-resistant microbial and dangerous mutations, identification of new phenotypes of microbial and new life species. However, one of the major technological blockades in enabling these technologies in space is a lack of devices for sample preparation in the space environment. To overcome such an obstacle, we constructed a prototype of a DNA/RNA isolation device based on our novel designs documented in the NASA New Technology Reporting System (MSC-24811-1/3-1). This device is self-enclosed and pipette free, purposely designed for use in the absence of gravity. Our design can also be modified easily for preparing samples in space for other applications, such as flowcytometry, immunostaining, cell separation, sample purification and separation according to its size and charges, sample chemical labeling, and sample purification. The prototype of our DNA/RNA isolation device was tested for efficiencies of DNA and RNA isolation from various cell types for PCR analysis. The purity and integrity of purified DNA and RNA were determined as well. Results showed that our developed DNA/RNA isolation device offers similar efficiency and quality in comparison to the samples prepared using the standard protocol in the laboratory.

  10. Preparation of Polysaccharide-Based Microspheres by a Water-in-Oil Emulsion Solvent Diffusion Method for Drug Carriers

    Directory of Open Access Journals (Sweden)

    Yodthong Baimark

    2013-01-01

    Full Text Available Polysaccharide-based microspheres of chitosan, starch, and alginate were prepared by the water-in-oil emulsion solvent diffusion method for use as drug carriers. Blue dextran was used as a water-soluble biomacromolecular drug model. Scanning electron microscopy showed sizes of the resultant microspheres that were approximately 100 μm or less. They were spherical in shape with a rough surface and good dispersibility. Microsphere matrices were shown as a sponge. Drug loading efficiencies of all the microspheres were higher than 80%, which suggested that this method has potential to prepare polysaccharide-based microspheres containing a biomacromolecular drug model for drug delivery applications.

  11. 40 CFR 205.160-2 - Test sample selection and preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Test sample selection and preparation... sample selection and preparation. (a) Vehicles comprising the sample which are required to be tested... maintained in any manner unless such preparation, tests, modifications, adjustments or maintenance are part...

  12. Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations

    Directory of Open Access Journals (Sweden)

    Serena Traboni

    2016-12-01

    Full Text Available tert-Butyldimethylsilyl (TBDMS and tert-butyldiphenylsilyl (TBDPS are alcohol protecting groups widely employed in organic synthesis in view of their compatibility with a wide range of conditions. Their regioselective installation on polyols generally requires lengthy reactions and the use of high boiling solvents. In the first part of this paper we demonstrate that regioselective silylation of sugar polyols can be conducted in short times with the requisite silyl chloride and a very limited excess of pyridine (2–3 equivalents. Under these conditions, that can be regarded as solvent-free conditions in view of the insolubility of the polyol substrates, the reactions are faster than in most examples reported in the literature, and can even be further accelerated with a catalytic amount of tetrabutylammonium bromide (TBAB. The strategy proved also useful for either the selective TBDMS protection of secondary alcohols or the fast per-O-trimethylsilylation of saccharide polyols. In the second part of the paper the scope of the silylation approach was significantly extended with the development of unprecedented “one-pot” and “solvent-free” sequences allowing the regioselective silylation/alkylation (or the reverse sequence of saccharide polyols in short times. The developed methodologies represent a very useful and experimentally simple tool for the straightforward access to saccharide building-blocks useful in organic synthesis.

  13. Comparison of Three Sample Preparation Methods for Analysis of Chemical Warfare Agent Stimulants in Water

    International Nuclear Information System (INIS)

    Alessandro Sassolini

    2015-01-01

    Analytical chemistry in CBRNe (Chemical Biological Radiological Nuclear explosive) context requires not only high quality data; quickness, ruggedness and robustness are also mandatory. In this work, three samples preparation methods were compared using several organophosphorus pesticides as test compounds, used as stimulants of nerve CWA (Chemical Warfare Agents) to choose the one with best characteristics. Result was obtained better with the Dispersive Liquid-Liquid Micro Extraction (DLLME), relatively new in CBRNe field, obtaining uncertainty for different simulants between 8 and 15 % while a quantification limit between 0.01 and 0.08 μg/ l. To optimize this extraction method, different organo chlorinated solvents also tested but not relevant difference in these tests was obtained. In this work, all samples were analyzed by using a gas chromatography coupled with mass spectrometer (GC-MS) and also with Gas Chromatograph coupled with Nitrogen Phosphorous Detector (NPD) for DLLME samples to evaluate a low cost and rugged instrument adapt to field analytical methods with good performance in terms of uncertainty and sensibility even if poorer respect to the mass spectrometry. (author)

  14. FISHprep: A Novel Integrated Device for Metaphase FISH Sample Preparation

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    We present a novel integrated device for preparing metaphase chromosomes spread slides (FISHprep). The quality of cytogenetic analysis from patient samples greatly relies on the efficiency of sample pre-treatment and/or slide preparation. In cytogenetic slide preparation, cell cultures...... are routinely used to process samples (for culture, arrest and fixation of cells) and/or to expand limited amount of samples (in case of prenatal diagnostics). Arguably, this expansion and other sample pretreatments form the longest part of the entire diagnostic protocols spanning over 3–4 days. We present here...... with minimal handling for metaphase FISH slide preparation....

  15. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: Effect of sample preparation on MALDI-MS of synthetic polymers.

    Science.gov (United States)

    Kooijman, Pieter C; Kok, Sander; Honing, Maarten

    2017-02-28

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the aim of the experiment. Because the underlying principles of MALDI are still not fully known, a priori determination of optimal sample preparation protocols is often not possible. Employing an automated sample preparation quality assessment method recently presented by us we quantified the sample preparation quality obtained using various sample preparation protocols. Six conventional matrices with and without added potassium as a cationization agent and six ionic liquid matrices (ILMs) were assessed using poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(methyl methacrylate) (PMMA) as samples. All sample preparation protocols were scored and ranked based on predefined quality parameters and spot-to-spot repeatability. Clearly distinctive preferences were observed in matrix identity and cationization agent for PEG, PTHF and PMMA, as the addition of an excess of potassium cationization agent results in an increased score for PMMA and a contrasting matrix-dependent effect for PTHF and PEG. The addition of excess cationization agent to sample mixtures dissipates any overrepresentation of high molecular weight polymer species. Our results show reduced ionization efficiency and similar sample deposit homogeneity for all tested ILMs, compared with well-performing conventional MALDI matrices. The results published here represent a start in the unsupervised quantification of sample preparation quality for MALDI samples. This method can select the best sample preparation parameters for any synthetic polymer sample and the results can be used to formulate hypotheses on MALDI principles. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenggao, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Jiangsu, Suzhou 215006 (China); Sun, Hui; Cheng, Li-Tien [Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112 (United States); Dzubiella, Joachim [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany and Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Li, Bo, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Department of Chemistry and Biochemistry, Department of Pharmacology, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0365 (United States)

    2016-08-07

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the

  17. Effect of Different Solvents on Total Phenolic Contents and Antioxidant Activity of Zizyphus jujube Miller Fruits

    Directory of Open Access Journals (Sweden)

    Gholamhossein Davarynejad

    2017-10-01

    Full Text Available Introduction: Phenolic compounds have an ability to scavenge free radicals and cause the balance of reactive oxygen species (ROS in our body. This balance prevents atherosclerosis, coronary heart and cancer diseases. Butylated hydroxyl toluene (BHT is a well-known synthetic antioxidant, which is restricted to be used due to its probable toxic effects. Therefore, replacement of synthetic antioxidants with plant materials with high amounts of antioxidant activity, which protect the body from free radicals and many diseases caused by lipid peroxidation, is an appropriate option. ZiziphusjujubaMiller is one of the forty species belonging to Rhamnaceae family, which produces a great deal of industrial raw materials for horticultural, ornamental, food, and pharmaceutical industries. Antioxidants can be extracted by various solvents and extraction methods. Solvent extraction is the most common method used for separating natural antioxidants. Solvent properties undoubtedly play a key role in the extraction of antioxidative compounds. The type and yield of antioxidant extracted have been found to vary as affected by the solvent properties such as polarity, viscosity and vapor pressure. Therefore, it is difficult to develop a unified standard method for the extraction of antioxidants from all plant materials. Materials and Methods: Plant materials Fresh fruits were collected from Birjand, Iran, in late summer 2014. The samples were air dried under the shade at room temperature. Dried fruits were ground by using a mortar and pestle and were separately extracted by distilled water and organic solvents such as methanol, ethanol and acetone (50%, 90% and100% (v/v. After filtering through the Whatman paper #3 and removing the solvents (using a rotary evaporator (BUCHI V-850 and water (using a freeze dryer, (OPERON, FDB-5503, Korea, the dried extracts were stored in refrigerator for further analysis. Determination of Total Phenolic Content (TPC Samples were

  18. Congener Production in Blood Samples During Preparation and Storage

    DEFF Research Database (Denmark)

    Felby, Søren; Nielsen, Erik

    1995-01-01

    Retsmedicin, congener production, preparation, head space GC, acetone, isobutanol, storage, blood samples, n-propanol, methanol, methylethylketone......Retsmedicin, congener production, preparation, head space GC, acetone, isobutanol, storage, blood samples, n-propanol, methanol, methylethylketone...

  19. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion

    NARCIS (Netherlands)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J.; Busscher, Henk J.; van der Mei, Henny C.

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the

  20. Solvent-Free Patterning of Colloidal Quantum Dot Films Utilizing Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Hohyun Keum

    2017-01-01

    Full Text Available Colloidal quantum dots (QDs with properties that can be tuned by size, shape, and composition are promising for the next generation of photonic and electronic devices. However, utilization of these materials in such devices is hindered by the limited compatibility of established semiconductor processing techniques. In this context, patterning of QD films formed from colloidal solutions is a critical challenge and alternative methods are currently being developed for the broader adoption of colloidal QDs in functional devices. Here, we present a solvent-free approach to patterning QD films by utilizing a shape memory polymer (SMP. The high pull-off force of the SMP below glass transition temperature (Tg in conjunction with the conformal contact at elevated temperatures (above Tg enables large-area, rate-independent, fine patterning while preserving desired properties of QDs.

  1. Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells.

    Science.gov (United States)

    Glatter, Timo; Ahrné, Erik; Schmidt, Alexander

    2015-11-06

    We evaluated different in-solution and FASP-based sample preparation strategies for absolute protein quantification. Label-free quantification (LFQ) was employed to compare different sample preparation strategies in the bacterium Pseudomonas aeruginosa and human embryonic kidney cells (HEK), and organismal-specific differences in general performance and enrichment of specific protein classes were noted. The original FASP protocol globally enriched for most proteins in the bacterial sample, whereas the sodium deoxycholate in-solution strategy was more efficient with HEK cells. Although detergents were found to be highly suited for global proteome analysis, higher intensities were obtained for high-abundant nucleic acid-associated protein complexes, like the ribosome and histone proteins, using guanidine hydrochloride. Importantly, we show for the first time that the observable total proteome mass of a sample strongly depends on the sample preparation protocol, with some protocols resulting in a significant underestimation of protein mass due to incomplete protein extraction of biased protein groups. Furthermore, we demonstrate that some of the observed abundance biases can be overcome by incorporating a nuclease treatment step or, alternatively, a correction factor for complementary sample preparation approaches.

  2. Quantification of residual solvents in antibody drug conjugates using gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Medley, Colin D., E-mail: medley.colin@gene.com [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States); Kay, Jacob [Research Pharmaceutical Services, 520 Virginia Dr. Fort, Washington, PA (United States); Li, Yi; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P. [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States)

    2014-11-19

    Highlights: • Sensitive residual solvents detection in ADCs. • 125 ppm QL for common conjugation solvents. • Generic and validatable method. - Abstract: The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.

  3. Diffusivities, viscosities, and conductivities of solvent-free ionically grafted nanoparticles

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    A new class of conductive composite materials, solvent-free ionically grafted nanoparticles, were modeled by coarse-grained molecular dynamics methods. The grafted oligomeric counterions were observed to migrate between different cores, contributing to the unique properties of the materials. We investigated the dynamics by analyzing the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities) and counterion migration kinetics. Temperature dependence of all properties follows the Arrhenius equation, but chain length and grafting density have distinct effects on different properties. In particular, structural effects on the diffusion coefficients are described by the Rouse model and the theory of nanoparticles diffusing in polymer solutions, viscosities are strongly influenced by clustering of cores, and conductivities are dominated by the motions of oligomeric counterions. We analyzed the migration kinetics of oligomeric counterions in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. © 2013 The Royal Society of Chemistry.

  4. Formulation, characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique.

    Science.gov (United States)

    Jelvehgari, Mitra; Barar, Jaleh; Valizadeh, Hadi; Shadrou, Sanam; Nokhodchi, Ali

    2011-01-01

    The aim was to prepare theophylline-loaded Eudragit RS 100 microsphere to achieve sustained release pattern with relatively high production yield. To this end, microspheres were prepared by oil/oil solvent evaporation method using an acetone-methanol mixture and liquid paraffin system containing aluminum tristearate. Drug release profiles were determined at pH 1.2 and 7.4. Morphology and solid state of microspheres were examined using SEM, DSC, X-ray powder diffraction (XRPD), and FT-IR. As the ratio of acetone/methanol increased during the preparation of microspheres the size of microsphere was reduced. The highest drug loading efficiency (87.21%) was obtained for the microsphere containing a high ratio of polymer to drug (6:1) and high volume of acetone. SEM studies showed that the microspheres are almost spherical with a few pores and cracks at surfaces. The FT-IR, XRPD and DSC results ruled out any chemical interaction between theophylline and Eudragit. The microspheres prepared with low ratio of polymer to drug (1:2) showed faster dissolution rate than those with high polymer to drug ratio. The ratio of polymer to drug and the volume of polymer solvent were found to be the key factors affecting the release profile which could lead to microspheres with desired release behavior.

  5. Development and optimization of a novel sample preparation method cored on functionalized nanofibers mat-solid-phase extraction for the simultaneous efficient extraction of illegal anionic and cationic dyes in foods.

    Science.gov (United States)

    Qi, Feifei; Jian, Ningge; Qian, Liangliang; Cao, Weixin; Xu, Qian; Li, Jian

    2017-09-01

    A simple and efficient three-step sample preparation method was developed and optimized for the simultaneous analysis of illegal anionic and cationic dyes (acid orange 7, metanil yellow, auramine-O, and chrysoidine) in food samples. A novel solid-phase extraction (SPE) procedure based on nanofibers mat (NFsM) was proposed after solvent extraction and freeze-salting out purification. The preferred SPE sorbent was selected from five functionalized NFsMs by orthogonal experimental design, and the optimization of SPE parameters was achieved through response surface methodology (RSM) based on the Box-Behnken design (BBD). Under the optimal conditions, the target analytes could be completely adsorbed by polypyrrole-functionalized polyacrylonitrile NFsM (PPy/PAN NFsM), and the eluent was directly analyzed by high-performance liquid chromatography-diode array detection (HPLC-DAD). The limits of detection (LODs) were between 0.002 and 0.01 mg kg -1 , and satisfactory linearity with correlation coefficients (R > 0.99) for each dye in all samples was achieved. Compared with the Chinese standard method and the published methods, the proposed method was simplified greatly with much lower requirement of sorbent (5.0 mg) and organic solvent (2.8 mL) and higher sample preparation speed (10 min/sample), while higher recovery (83.6-116.5%) and precision (RSDs < 7.1%) were obtained. With this developed method, we have successfully detected illegal ionic dyes in three common representative foods: yellow croaker, soybean products, and chili seasonings. Graphical abstract Schematic representation of the process of the three-step sample preparation.

  6. Green and Bio-Based Solvents.

    Science.gov (United States)

    Calvo-Flores, Francisco G; Monteagudo-Arrebola, María José; Dobado, José A; Isac-García, Joaquín

    2018-04-24

    Chemical reactions and many of the procedures of separation and purification employed in industry, research or chemistry teaching utilize solvents massively. In the last decades, with the birth of Green Chemistry, concerns about the employment of solvents and the effects on human health, as well as its environmental impacts and its dependence on non-renewable raw materials for manufacturing most of them, has drawn the attention of the scientific community. In this work, we review the concept of green solvent and the properties and characteristics to be considered green. Additionally, we discuss the different possible routes to prepare many solvents from biomass, as an alternative way to those methods currently applied in the petrochemical industry.

  7. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Holm, René

    2013-01-01

    Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar...... amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification...... tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics...

  8. Enhanced spot preparation for liquid extractive sampling and analysis

    Science.gov (United States)

    Van Berkel, Gary J.; King, Richard C.

    2015-09-22

    A method for performing surface sampling of an analyte, includes the step of placing the analyte on a stage with a material in molar excess to the analyte, such that analyte-analyte interactions are prevented and the analyte can be solubilized for further analysis. The material can be a matrix material that is mixed with the analyte. The material can be provided on a sample support. The analyte can then be contacted with a solvent to extract the analyte for further processing, such as by electrospray mass spectrometry.

  9. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    Science.gov (United States)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  10. Application of solvent-assisted dispersive solid phase extraction as a new, fast, simple and reliable preconcentration and trace detection of lead and cadmium ions in fruit and water samples.

    Science.gov (United States)

    Behbahani, Mohammad; Ghareh Hassanlou, Parmoon; Amini, Mostafa M; Omidi, Fariborz; Esrafili, Ali; Farzadkia, Mehdi; Bagheri, Akbar

    2015-11-15

    In this research, a new sample treatment technique termed solvent-assisted dispersive solid phase extraction (SA-DSPE) was developed. The new method was based on the dispersion of the sorbent into the sample to maximize the contact surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by injecting a mixture solution of the sorbent and disperser solvent into the aqueous sample. Thereby, a cloudy solution formed. The cloudy solution resulted from the dispersion of the fine particles of the sorbent in the bulk aqueous sample. After extraction, the cloudy solution was centrifuged and the enriched analytes in the sediment phase dissolved in ethanol and determined by flame atomic absorption spectrophotometer. Under the optimized conditions, the detection limit for lead and cadmium ions was 1.2 μg L(-1) and 0.2 μg L(-1), respectively. Furthermore, the preconcentration factor was 299.3 and 137.1 for cadmium and lead ions, respectively. SA-DSPE was successfully applied for trace determination of lead and cadmium in fruit (Citrus limetta, Kiwi and pomegranate) and water samples. Finally, the introduced sample preparation method can be used as a simple, rapid, reliable, selective and sensitive method for flame atomic absorption spectrophotometric determination of trace levels of lead and cadmium ions in fruit and water samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. On-line Automated Sample Preparation-Capillary Gas Chromatography for the Analysis of Plasma Samples.

    NARCIS (Netherlands)

    Louter, A.J.H.; van der Wagt, R.A.C.A.; Brinkman, U.A.T.

    1995-01-01

    An automated sample preparation module, (the automated sample preparation with extraction columns, ASPEC), was interfaced with a capillary gas chromatograph (GC) by means of an on-column interface. The system was optimised for the determination of the antidepressant trazodone in plasma. The clean-up

  12. Solvent-free microwave-mediated Michael addition reactions

    Indian Academy of Sciences (India)

    Unknown

    obviously difficult to scale up. In this context ... eco-friendly features such as, (i) no solvent is required to conduct the ... water soluble, addition of reaction mixture after com- ..... Yield: 855 mg (89%; viscous liquid). 3.4 Ethyl .... Jung M E 1993 Comprehensive organic synthesis ... Leshcheva I F and Bundel Y G 1997 Mendeleev.

  13. Cr(VI) generation during sample preparation of solid samples – A ...

    African Journals Online (AJOL)

    Cr(VI) generation during sample preparation of solid samples – A chromite ore case study. R.I Glastonbury, W van der Merwe, J.P Beukes, P.G van Zyl, G Lachmann, C.J.H Steenkamp, N.F Dawson, M.H Stewart ...

  14. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    Science.gov (United States)

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  15. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    Science.gov (United States)

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-03-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

  16. 6. Label-free selective plane illumination microscopy of tissue samples

    Directory of Open Access Journals (Sweden)

    Muteb Alharbi

    2017-10-01

    Conclusion: Overall this method meets the demands of the current needs for 3D imaging tissue samples in a label-free manner. Label-free Selective Plane Microscopy directly provides excellent information about the structure of the tissue samples. This work has highlighted the superiority of Label-free Selective Plane Microscopy to current approaches to label-free 3D imaging of tissue.

  17. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Pena, M.T.; Pensado, Luis; Casais, M.C.; Mejuto, M.C.; Cela, Rafael [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia. Instituto de Investigacion y Analisis Alimentario, Santiago de Compostela (Spain)

    2007-04-15

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 {mu}g kg{sup -1} dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials. (orig.)

  18. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    Science.gov (United States)

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials.

  19. Tuning of Preparational Factors Affecting the Morphological Structure and Gas Separation Property of Asymmetric Polysulfone Membranes

    Science.gov (United States)

    Yuenyao, C.; Ruangdit, S.; Chittrakarn, T.

    2017-09-01

    The aim of this work was to study the effect of preparational factors such as solvent type, evaporation time (ET) and non-solvent additive, on the morphological structure, physical and gas separation properties of the prepared membrane samples by tuning of these parameters. Flat sheet asymmetric polysulfone (PSF) membranes were prepared by the dry/wet phase inversion process combined with the double coagulation bath method. The alteration of the prepared membranes were analyzed through scientific techniques such as Scanning Electron Microscope (SEM) and Dynamic Mechanical Thermal Analysis (DMTA). Furthermore, gas separation performance of membrane samples was measured in term of gas permeation and ideal selectivity of CO2/CH4. Experimental results showed that the change of preparational factors affected to the gas permeation of asymmetric PSF membranes. For example, the selective layer thickness increased with increasing of ET. This lead to increase significantly of ideal selectivity of CO2/CH4. The CO2/CH4 ideal selectivity was also increased with increase of ethanol (non-solvent additive) concentration in casting solution. In summary, the tuning of preparational factors affected to morphological structure, physical and gas separation properties of PSF membranes.

  20. Green methods for preparing highly co2 selective and h2s tolerant metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama; Belmabkhout, Youssef

    2015-01-01

    A green route for preparing a metal organic framework include mixing metal precursor with a ligand precursor to form a solvent-free mixture; adding droplets of water to the mixture; heating the mixture at a first temperature after adding the water

  1. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    Science.gov (United States)

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation and Characterization of Estradiol-Loaded PLGA Nanoparticles Using Homogenization-Solvent Diffusion Method

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2008-09-01

    Full Text Available Background: The inherent shortcomings of conventional drug delivery systems containing estrogens and the potential of nanoparticles (NPs have offered tremendous scope for investigation. Although polymeric NPs have been used as drug carriers for many active agents, the use of appropriate polymer and method of NP preparation to overcome different challenges is very important. Materials and methods: Poly lactide-co-glycolide (PLGA NPs containing estradiol valerate were prepared by the modified spontaneous emulsification solvent diffusion method. Several parameters including the drug/polymer ratios in range of 2.5-10%, poly vinyl alcohol (PVA in concentration of 0-4% as stabilizer and internal phase volume and composition were examined to optimize formulation. The size distribution and morphology of the NPs, encapsulation efficacy and in vitro release profile in phosphate buffer medium (pH 7.4 during 12 hrs were then investigated. Results: The NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. By adjustment of the process parameters, the size and the drug encapsulation efficacy as well as the drug release kinetics can be optimally controlled. The mean particle size of the best formula with encapsulation efficiency of 100% was 175 ± 19, in which release profile was best fitted to Higuchi's model of release which showed that release mechanism was mainly controlled by diffusion of the drug to the release medium. Conclusion: According to the size and surface properties of the prepared particles, it may be concluded that they are a good formulation for non-parenteral routes of administration.

  3. Current trends in sample preparation for cosmetic analysis.

    Science.gov (United States)

    Zhong, Zhixiong; Li, Gongke

    2017-01-01

    The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics.

    Science.gov (United States)

    Gong, Zhi-Gang; Hu, Jing; Wu, Xi; Xu, Yong-Jiang

    2017-07-04

    Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.

  5. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    Science.gov (United States)

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  6. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent.

    Science.gov (United States)

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2015-06-07

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation 〈Nsolv〉, and second osmotic virial coefficient B2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.

  7. An efficient solvent-free synthesis of meso-substituted dipyrromethanes using SnCl2•2H2O catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer Ahmed Shaikh

    2012-07-01

    Full Text Available Highly rapid and simple methodology has been developed for the quantitative synthesis of meso-substituted dipyrromethanes from lowest pyrrole/aldehyde ratio. The method was carried out by using SnCl2•2H2O as a catalyst under solvent free condition. The method is environmentally friendly, easy to workup, and gives excellent yield of the products.

  8. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  9. Soil sample preparation using microwave digestion for uranium analysis

    International Nuclear Information System (INIS)

    Mohagheghi, Amir H.; Preston, Rose; Akbarzadeh, Mansoor; Bakthiar, Steven

    2000-01-01

    A new sample preparation procedure has been developed for digestion of soil samples for uranium analysis. The technique employs a microwave oven digestion system to digest the sample and to prepare it for separation chemistry and analysis. The method significantly reduces the volume of acids used, eliminates a large fraction of acid vapor emissions, and speeds up the analysis time. The samples are analyzed by four separate techniques: Gamma Spectrometry, Alpha Spectroscopy using the open digestion method, Kinetic Phosphorescence Analysis (KPA) using open digestion, and KPA by Microwave digestion technique. The results for various analytical methods are compared and used to confirm the validity of the new procedure. The details of the preparation technique along with its benefits are discussed

  10. 7 CFR 61.34 - Drawing and preparation of sample.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Drawing and preparation of sample. 61.34 Section 61.34 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Cottonseed Samplers § 61.34 Drawing and preparation of sample. Each licensed cottonseed sampler shall draw...

  11. Preparation and Characterization of Tripterygium wilfordii Multi-Glycoside Nanoparticle Using Supercritical Anti-Solvent Process

    Directory of Open Access Journals (Sweden)

    Fengli Chen

    2014-02-01

    Full Text Available The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW powders by the supercritical antisolvent precipitation process (SAS, and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15–35 MPa, precipitation temperature (45–65 °C, drug solution flow rates (3–7 mL/min and drug concentrations (10–30 mg/mL were investigated. The nanospheres obtained with mean diameters ranged from 77.5 to 131.8 nm. The processed and unprocessed GTW were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermal gravimetric analysis. The present study was designed to investigate the beneficial effect of the GTW nanoparticles on adjuvant-induced arthritis in albino rats. The processed and unprocessed GTW were tested against Freund’s complete adjuvant-induced arthritis in rats. Blood samples were collected for the estimation of interleukins (IL-1α, IL-1β and tumor necrosis factor-α (TNF-α. It was concluded that physicochemical properties and anti-inflammatory activity of GTW nanoparticles could be improved by physical modification, such as particle size reduction using supercritical antisolvent (SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and anti-inflammatory activity of GTW.

  12. Solvent hold tank sample results for MCU-16-1488-1493 (December 2016), MCU-17-86-88 (January 2017), and MCU-17-119-121 (February 2017): Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-30

    A trend summary of three Solvent Hold Tank (SHT) monthly samples; MCU-16-1488-1493 (December 2016), MCU-17-86-88 (January 2017), and MCU-17-119-121 (February 2017) are reported. Analyses indicate that the modifier (CS-7SB) and the extractant (MaxCalix) concentrations are at their nominal recommended levels (169,000 mg/L and 46,300 mg/L respectively). The suppressor (TiDG) level has decreased to a steady state level of 673 mg/L well above the minimum recommended level (479 mg/L). This analysis confirms the Isopar™ addition to the solvent in January 18, 2017. This analysis also indicates the solvent did not require further additions. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). Another impurity observed in the samples was mercury. Up to 38 ± 8 micrograms of mercury per mL of solvent was detected in these samples (the average of the CV-AA and XRF methods). The higher mercury concentration in the solvent (as determined in the last three monthly samples) is possibly due to the higher mercury concentration in Salt Batches 8 and 9 (Tank 49H) or mixing of previously undisturbed areas of high mercury concentration in Tank 49H. The gamma level (0.21E5 dpm/mL) measured in the February SHT sample was one order of magnitude lower than the gamma levels observed in the December and January SHT samples. The February gamma level is consistent with the solvent being idle (since January 10, 2017). The gamma levels observed in the December and January SHT samples were consistent with previous monthly measurements where the process operated normally. The laboratory will continue to monitor

  13. Tooth enamel sample preparation using alkaline treatment in ESR dosimetry

    International Nuclear Information System (INIS)

    Yongzeng, Zhou; Jiadong, Wang; Xiaomei, Jia; Ke, Wu; Jianbo, Cong

    2002-01-01

    Tooth enamel sample preparation using alkaline treatment was studied and compared with traditional mechanical method in this paper. 20 adult teeth were used. Samples were placed into NaOH solution. This method requires 4-5 weeks and the enamel was separated from dentin. Experimental results show that 8M NaOH was appropriate for separating enamel from dentin and that there is no difference in background signal relative intensity between samples prepared by mechanical and by chemical methods. There is also no difference in radiosensitivity between samples prepared by two methods mentioned above. Dose response curve for tooth enamel samples isolated by 8M NaOH solution was obtained

  14. Sample preparation for special PIE-techniques at ITU

    International Nuclear Information System (INIS)

    Toscano, E.H.; Manzel, R.

    2002-01-01

    Several sample preparation techniques were developed and installed in hot cells. The techniques were conceived to evaluate the performance of highly burnt fuel rods and include: (a) a device for the removal of the fuel, (b) a method for the preparation of the specimen ends for the welding of new end caps and for the careful cleaning of samples for Transmission Electron Microscopy and Glow Discharge Mass Spectroscopy, (c) a sample pressurisation device for long term creep tests, and (d) a diameter measuring device for creep or burst samples. Examples of the determination of the mechanical properties, the behaviour under transient conditions and for the assessment of the corrosion behaviour of high burnup cladding materials are presented. (author)

  15. Analysis of cesium extracting solvent using GCMS and HPLC

    International Nuclear Information System (INIS)

    White, T.L.; Herman, C.C.; Crump, S.L.; Marinik, A.R.; Lambert, D.P.; Eibling, R.E.

    2007-01-01

    A high-level waste (HLW) remediation process scheduled to begin in 2007 at the Savannah River Site is the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The MCU will use a hydrocarbon solvent (diluent) containing a cesium extractant, a calix[4]arene compound, to extract radioactive cesium from caustic HLW. The resulting decontaminated HLW waste or raffinate will be processed into grout at the Saltstone Production Facility (SPF). The cesium containing CSSX stream will undergo washing with dilute nitric acid followed by stripping of the cesium nitrate into a very dilute nitric acid or the strip effluent stream and the CSSX solvent will be recycled. The Defense Waste Processing Facility (DWPF) will receive the strip effluent stream and immobilize the cesium into borosilicate glass. Excess CSSX solvent carryover from the MCU creates a potential flammability problem during DWPF processing. Bench-scale DWPF process testing was performed with simulated waste to determine the fate of the CSSX solvent components. A simple high performance liquid chromatography (HPLC) method was developed to identify the modifier (which is used to increase Cs extraction and extractant solubility) and extractant within the DWPF process. The diluent and trioctylamine (which is used to suppress impurity effect and ion-pair disassociation) were determined using gas chromatography mass spectroscopy (GCMS). To close the organic balance, two types of sample preparation methods were needed. One involved extracting aqueous samples with methylene chloride or hexane, and the second was capturing the off gas of the DWPF process using carbon tubes and rinsing the tubes with carbon disulfide for analysis. This paper addresses the development of the analytical methods and the bench-scale simulated waste study results. (author)

  16. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    Science.gov (United States)

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  17. High-throughput automated microfluidic sample preparation for accurate microbial genomics.

    Science.gov (United States)

    Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C

    2017-01-27

    Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications.

  18. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    Science.gov (United States)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  19. Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory

    KAUST Repository

    Chremos, Alexandros

    2011-01-01

    The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hard-sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American Institute of Physics.

  20. In planta passive sampling devices for assessing subsurface chlorinated solvents.

    Science.gov (United States)

    Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G

    2014-06-01

    Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Coacervative extraction as a green technique for sample preparation for the analysis of organic compounds.

    Science.gov (United States)

    Melnyk, A; Wolska, L; Namieśnik, J

    2014-04-25

    One of the present trends in analytical chemistry is miniaturization, which is one of the methods of green analytical chemistry application. A particular emphasis is placed on the elimination of the use of large amounts of organic solvents which are toxic and harmful to the environment, maintaining high efficiency of the extraction process, high recovery values and low values of quantification (LOQ) and detection (LOD) limits. These requirements are fulfilled by coacervative extraction (CAE) technique. In this review, theoretical aspects of the coacervation process are presented along with environmental and bioanalytical applications of this technique, its advantages, limitations and competitiveness with other techniques. Due to its simplicity and rapidity, CAE is an excellent alternative for currently practiced procedures of sample preparation for the analysis of organic compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    Science.gov (United States)

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    Science.gov (United States)

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Automated sample preparation using membrane microtiter extraction for bioanalytical mass spectrometry.

    Science.gov (United States)

    Janiszewski, J; Schneider, P; Hoffmaster, K; Swyden, M; Wells, D; Fouda, H

    1997-01-01

    The development and application of membrane solid phase extraction (SPE) in 96-well microtiter plate format is described for the automated analysis of drugs in biological fluids. The small bed volume of the membrane allows elution of the analyte in a very small solvent volume, permitting direct HPLC injection and negating the need for the time consuming solvent evaporation step. A programmable liquid handling station (Quadra 96) was modified to automate all SPE steps. To avoid drying of the SPE bed and to enhance the analytical precision a novel protocol for performing the condition, load and wash steps in rapid succession was utilized. A block of 96 samples can now be extracted in 10 min., about 30 times faster than manual solvent extraction or single cartridge SPE methods. This processing speed complements the high-throughput speed of contemporary high performance liquid chromatography mass spectrometry (HPLC/MS) analysis. The quantitative analysis of a test analyte (Ziprasidone) in plasma demonstrates the utility and throughput of membrane SPE in combination with HPLC/MS. The results obtained with the current automated procedure compare favorably with those obtained using solvent and traditional solid phase extraction methods. The method has been used for the analysis of numerous drug prototypes in biological fluids to support drug discovery efforts.

  5. Evaluation of spectral libraries and sample preparation for DIA-LC-MS analysis of host cell proteins

    DEFF Research Database (Denmark)

    Heissel, Søren; Bunkenborg, Jakob; Kristiansen, Max Per

    2018-01-01

    in the field of tuberculosis and has not previously been studied by LC-MS. The developed method and acquired experiences served to develop a generalized strategy for HCP-characterization in our laboratory. We evaluated the use of different spectral libraries, recorded in data-dependent mode for obtaining...... the highest HCP coverage, combined with SWATH-based absolute quantification. The accuracy of two label-free absolute quantification strategies was evaluated using stable isotope peptides. Two different sample preparation workflows were evaluated for optimal HCP yield. . The label-free strategy produced...... accurate quantification across several orders of magnitude, and the calculated purity was found to be in agreement with previously obtained ELISA data....

  6. Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes

    Science.gov (United States)

    2015-01-01

    The reliability of free energy simulations (FES) is limited by two factors: (a) the need for correct sampling and (b) the accuracy of the computational method employed. Classical methods (e.g., force fields) are typically used for FES and present a myriad of challenges, with parametrization being a principle one. On the other hand, parameter-free quantum mechanical (QM) methods tend to be too computationally expensive for adequate sampling. One widely used approach is a combination of methods, where the free energy difference between the two end states is computed by, e.g., molecular mechanics (MM), and the end states are corrected by more accurate methods, such as QM or hybrid QM/MM techniques. Here we report two new approaches that significantly improve the aforementioned scheme; with a focus on how to compute corrections between, e.g., the MM and the more accurate QM calculations. First, a molecular dynamics trajectory that properly samples relevant conformational degrees of freedom is generated. Next, potential energies of each trajectory frame are generated with a QM or QM/MM Hamiltonian. Free energy differences are then calculated based on the QM or QM/MM energies using either a non-Boltzmann Bennett approach (QM-NBB) or non-Boltzmann free energy perturbation (NB-FEP). Both approaches are applied to calculate relative and absolute solvation free energies in explicit and implicit solvent environments. Solvation free energy differences (relative and absolute) between ethane and methanol in explicit solvent are used as the initial test case for QM-NBB. Next, implicit solvent methods are employed in conjunction with both QM-NBB and NB-FEP to compute absolute solvation free energies for 21 compounds. These compounds range from small molecules such as ethane and methanol to fairly large, flexible solutes, such as triacetyl glycerol. Several technical aspects were investigated. Ultimately some best practices are suggested for improving methods that seek to connect

  7. Preparation and Characterization of EG-Chitosan Nanocomposites via Direct Exfoliation: A Green Methodology

    Directory of Open Access Journals (Sweden)

    Christian Demitri

    2015-12-01

    Full Text Available In this study, free-standing expanded graphite chitosan (EG-chitosan nanocomposite films have been prepared using a novel green and simple preparation method, starting from a commercial expandable graphite (GIC. The in situ exfoliation of GIC by a solvent-free sonication method was monitored as a function of the process parameters using X-ray diffraction (XRD, transmission electron microscopy (TEM, dynamic light scattering (DLS and UV-visible transmittance (UV-VIS analyses. The optimal process parameters were selected in order to obtain an efficient dispersion of EG in chitosan solutions. The effective EG amount after the in situ exfoliation was also determined by thermogravimetric analyses.

  8. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS Fabrication of Polysulfone Membranes

    Directory of Open Access Journals (Sweden)

    Xiaobo Dong

    2018-05-01

    Full Text Available Organic solvents, such as N-methyl-2-pyrrolidone (NMP and dimethylacetamide (DMAc, have been traditionally used to fabricate polymeric membranes. These solvents may have a negative impact on the environment and human health; therefore, using renewable solvents derived from biomass is of great interest to make membrane fabrication sustainable. Methyl-5-(dimethylamino-2-methyl-5-oxopentanoate (Rhodiasolv PolarClean is a bio-derived, biodegradable, nonflammable and nonvolatile solvent. Polysulfone is a commonly used polymer to fabricate membranes due to its thermal stability, strong mechanical strength and good chemical resistance. From cloud point curves, PolarClean showed potential to be a solvent for polysulfone. Membranes prepared with PolarClean were investigated in terms of their morphology, porosity, water permeability and protein rejection, and were compared to membranes prepared with traditional solvents. The pores of polysulfone/PolarClean membranes were sponge-like, and the membranes displayed higher water flux values (176.0 ± 8.8 LMH along with slightly higher solute rejection (99.0 ± 0.51%. On the other hand, PSf/DMAc membrane pores were finger-like with lower water flux (63.1 ± 12.4 LMH and slightly lower solute rejection (96 ± 2.00% when compared to PSf/PolarClean membranes.

  9. Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples.

    Science.gov (United States)

    Zarei, Ali Reza; Nedaei, Maryam; Ghorbanian, Sohrab Ali

    2018-06-08

    In this work, for the first time, ferrofluid of magnetic montmorillonite nanoclay and deep eutectic solvent was prepared and coupled with directly suspended droplet microextraction. Incorporation of ferrofluid in a miniaturized sample preparation technique resulted in achieving high extraction efficiency while developing a green analytical method. The prepared ferrofluid has strong sorbing properties and hydrophobic characteristics. In this method, a micro-droplet of ferrofluid was suspended into the vortex of a stirring aqueous solution and after completing the extraction process, was easily separated from the solution by a magnetic rod without any operational problems. The predominant experimental variables affecting the extraction efficiency of explosives were evaluated. Under optimal conditions, the limits of detection were in the range 0.22-0.91 μg L -1 . The enrichment factors were between 23 and 93 and the relative standard deviations were <10%. The relative recoveries were ranged from 88 to 104%. This method was successfully applied for the extraction and preconcentration of explosives in water and soil samples, followed their determination by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Preparation, characterization and antimicrobial property of ag+- nano Chitosan/ZSM-5: novel Hybrid Biocomposites

    Directory of Open Access Journals (Sweden)

    Maasoumeh Khatamiana

    2016-10-01

    Full Text Available Objective(s: Binary hybrids of chitosan-zeolite have many interesting applications in separation and bacteriostatic activity. Materials and Methods: Template free ZSM-5 zeolite was synthesized by hydrothermal method, physical hydrogels of nano chitosan in the colloidal domain were obtained in the absence of toxic organic solvent and then nano chitosan/ZSM-5 hybrid composites with nano chitosan contents of 0.35%, 3.5%, 35% wt.% were prepared. The as prepared hybrid composites were ion-exchanged with Ag cations. Results: XRD and FT-IR results revealed a good crystalinity of as synthesized template frees ZSM-5 with BET surface area of 307 m2g-1. Presence of chitosan in composites was confirmed by XRD patterns and FT-IR spectroscopic analysis, the chitosan content in composite was obtained with TG analysis. SEM analysis of composites shows that chitosan particles were dispersed within the nanometer scale. The antimicrobial activity of different samples was investigated and the results showed that the Ag+-exchanged samples have the highest antibacterial properties. Cancer cell line A549 cell line were cultured in designated medium treated with Ag+-exchanged samples at the concentration of 0.01 to 0.5 mg/ml. After 24 and 48 hours incubation, the efficacy of Ag+-exchanged samples to treat cancer cell lines were measured by means of cell viability test via MTT assay. Concentrations of 0.05 and 0.1 mg/ml of Ag+-exchanged samples induced a very low toxicity. Conclusion: These hybrid composite materials have potential applications on tissue engineering and antimicrobial food packaging.

  11. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu, E-mail: cylsy@163.com [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Yong [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Wang, Fengju [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Meng, Weiwei; Yang, Xinlin [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Li, Peng [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Jiang, Jianxin [State Key Laboratory of Trauma Burns and Combined Injury, The Third Military Medical University, Chongqing 400042 (China); Tan, Huimin [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng, Yongfa [Guangdong Fuyang Biotechnology Co., Ltd., Heyuan, Guangdong 517000 (China)

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed. - Highlights: • The novel solvent precipitation method was developed to prepare the porous superabsorbent polymer. • The swelling rate was promoted and the harmful residual monomer was leached after modification. • The modified polymer showed good biological safety. • It showed good hemostasis to arterial hemorrhage model of the animal. • The hemostatic mechanism of the modified superabsorbent polymer was discussed.

  12. Hydrogen exchange during cell-free incorporation of deuterated amino acids and an approach to its inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Tonelli, Marco; Singarapu, Kiran K. [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry (United States); Makino, Shin-ichi; Sahu, Sarata C.; Matsubara, Yuko [University of Wisconsin-Madison, Center for Eukaryotic Structural Genomics (CESG), Department of Biochemistry (United States); Endo, Yaeta [Ehime University, Cell-Free Science and Technology Research Center (Japan); Kainosho, Masatsune [Tokyo Metropolitan University, Center for Priority Areas (Japan); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry (United States)

    2011-12-15

    Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H{sub 2}O, exchange reactions can lead to contamination of {sup 2}H sites by {sup 1}H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing {sup 1}H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM l-methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U-{sup 2}H, {sup 15}N]-chlorella ubiquitin without and with added inhibitors, and [U-{sup 15}N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U-{sup 13}C, {sup 15}N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at C{sup {alpha}} sites, with the exception of Gly, and at C{sup {beta}} sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asn-H{sup {beta}}, Asp-H{sup {beta}}, Gln-H{sup {gamma}}, Glu-H{sup {gamma}}, and Lys-H{sup {epsilon}}. The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of

  13. Recovery of hafnium values from loaded extraction solvent

    International Nuclear Information System (INIS)

    Abodishish, H.A.

    1989-01-01

    This patent describes an improvement in a process for recovering high purity hafnium hydroxide from a methyl isobutyl ketone organic solvent that is substantially free of sulfate ions and contains hafnium thiocyanate and thiocyanic acid. The improvement comprising reacting the organic solvent with ammonia to produce a reaction product in the form of a methyl isobutyl ketone organic solvent that is substantially free of sulfate ions and contains ammonium thiocyanite solution and hafnium hydroxide; separating the constituents of the reaction product in accordance with their respective specific gravities to produce a hafnium hydroxide sludge as one of the separation products; and removing the liquid component of the sludge to yield a high purity hafnium hydroxide ready for calcination to hafnium oxide

  14. Sample preparations for spark source mass spectrography

    International Nuclear Information System (INIS)

    Catlett, C.W.; Rollins, M.B.; Griffin, E.B.; Dorsey, J.G.

    1977-10-01

    Methods have been developed for the preparation of various materials for spark source mass spectrography. The essential features of these preparations (all which can provide adequate precision in a cost-effective manner) consist in obtaining spark-stable electrode sample pieces, a common matrix, a reduction of anomolous effects in the spark, the incorporation of a suitable internal standard for plate response normalization, and a reduction in time

  15. Present status of NMCC and sample preparation method for bio-samples

    International Nuclear Information System (INIS)

    Futatsugawa, S.; Hatakeyama, S.; Saitou, S.; Sera, K.

    1993-01-01

    In NMCC(Nishina Memorial Cyclotron Center) we are doing researches on PET of nuclear medicine (Positron Emission Computed Tomography) and PIXE analysis (Particle Induced X-ray Emission) using a small cyclotron of compactly designed. The NMCC facilities have been opened to researchers of other institutions since April 1993. The present status of NMCC is described. Bio-samples (medical samples, plants, animals and environmental samples) have mainly been analyzed by PIXE in NMCC. Small amounts of bio-samples for PIXE are decomposed quickly and easily in a sealed PTFE (polytetrafluoroethylene) vessel with a microwave oven. This sample preparation method of bio-samples also is described. (author)

  16. Finding even more anthropogenic indicators in mildly prepared sediment samples

    DEFF Research Database (Denmark)

    Enevold, Renée; Odgaard, Bent Vad

    2016-01-01

    be worth the effort to prepare the NPP samples with as mild a preparation method as possible. We have mildly prepared NPP samples from a small forest hollow, Tårup Lund, Denmark. From the recovered NPP assemblages we attempt identifying anthropogenic indicators by comparing to the environmental information......NPPs in anthropogenic soils and archaeological samples are often numerous in types as well as in abundance. Preparing these soil samples with methods based on acid digestion holds the potential of severe bias leaving the NPP assemblages devoid of acid vulnerable NPPs. In many cases it might...... derived from sediment, pollen and macrofossil analyses. The sediment from the forest hollow encompasses environmental information from the last 6000 years, including a period of locally intense pastoral and/or agricultural activity during the Iron Age. Keywords: NPP diversity, forest hollow, anthropogenic...

  17. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    Science.gov (United States)

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sampling, storage and sample preparation procedures for X ray fluorescence analysis of environmental materials

    International Nuclear Information System (INIS)

    1997-06-01

    X ray fluorescence (XRF) method is one of the most commonly used nuclear analytical technique because of its multielement and non-destructive character, speed, economy and ease of operation. From the point of view of quality assurance practices, sampling and sample preparation procedures are the most crucial steps in all analytical techniques, (including X ray fluorescence) applied for the analysis of heterogeneous materials. This technical document covers recent modes of the X ray fluorescence method and recent developments in sample preparation techniques for the analysis of environmental materials. Refs, figs, tabs

  19. Measurement of residual solvents in a drug substance by a purge-and-trap method.

    Science.gov (United States)

    Lakatos, Miklós

    2008-08-05

    The purge-and-trap (P&T) gas extraction method combined with gas chromatography was studied for its suitability for quantitative residual solvents determination in a water-soluble active pharmaceutical ingredient (API). Some analytical method performance characteristics were investigated, namely, the repeatability, the accuracy and the detection limit of determination. The results show that the P&T technique is--as expected--more sensitive than the static headspace, thus it can be used for the determination of residual solvents pertaining to the ICH Class 1 group. It was found that it could be an alternative sample preparation method besides the static headspace (HS) method.

  20. Analysis of recovered solvents from coal liquefaction in a flowing-solvent reactor by SEC and UV-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Y.; Feng, J.; Xie, K.C.; Kandiyoti, R. [Taiyuan University of Technology, Taiyuan (China)

    2005-08-01

    Point of Ayr coal has been extracted using three solvents: tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP); at two temperatures: 350 {sup o}C and 450{sup o}C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. These solvents differ in solvent power and the ability to donate hydrogen atoms to stabilize free radicals produced by pyrolysis of the coal. Analysis of the fresh solvents and recovered solvents from coal liquefaction was achieved by size exclusion chromatography and UV-fluorescence spectroscopy. In the blank run, it was testified that the filling material sand and the steel powder did not react with solvent with increasing reaction temperature. The role of hydrogen donation in the tetralin extracts was to increase the proportion of large molecules with increasing extraction temperature. Quinoline and NMP both have the powerful extracting capability to get more materials out of coal with increasing extraction temperature.

  1. Analysis of recovered solvents from coal liquefaction in a flowing-solvent reactor by SEC and UV-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Ying Li; Jie Feng; Ke-Chang Xie; R. Kandiyoti [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology for Ministry of Education and Shanxi Province

    2005-08-01

    Point of Ayr coal has been extracted using three solvents: tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP); at two temperatures: 350{sup o}C and 450{sup o}C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. These solvents differ in solvent power and the ability to donate hydrogen atoms to stabilize free radicals produced by pyrolysis of the coal. Analysis of the fresh solvents and recovered solvents from coal liquefaction was achieved by size exclusion chromatography and UV-fluorescence spectroscopy. In the blank run, it was testified that the filling material sand and the steel powder did not react with solvent with increasing reaction temperature. The role of hydrogen donation in the tetralin extracts was to increase the proportion of large molecules with increasing extraction temperature. Quinoline and NMP both have the powerful extracting capability to get more materials out of coal with increasing extraction temperature.

  2. An Efficient Solvent-Free Protocol for the Synthesis of 1-Amidoalkyl-2-naphthols using Silica-Supported Molybdatophosphoric Acid

    Directory of Open Access Journals (Sweden)

    Abdolkarim Zare

    2010-01-01

    Full Text Available A highly efficient, green and simple solvent-free method for the synthesis of 1-amidoalkyl-2-naphthols via one-pot multi-components condensation of 2-naphthol, aromatic aldehydes and amides in the presence of catalytic amount of silica-supported molybdatophosphoric acid (H3PMo12O40.xH2O/SiO2, 3.17 mol% is described. The reactions proceed rapidly and the title compounds are produced in high to excellent yields.

  3. Viscoelasticity of various gel films prepared from solvent-soluble constituents in coal; Sekitanchu no yobai kayoseibun kara sakuseishita shushu no gel maku no nendansei

    Energy Technology Data Exchange (ETDEWEB)

    Takanohashi, T.; Isoda, S.; Doi, S.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    Viscoelasticity of gel films prepared from solvent-soluble constituents without ash of coal using the mixed solvent of carbon disulfide and N-methyl-2-pyrrolidinone (CS2-NMP) was measured to study the network structure of the constituents. In experiment, Upper Freeport coal and Zao Zhuang coal were used as specimens. Viscoelasticity of various gels with different weight fractions of solvent was measured by creep measurement under a fixed load and stress-strain analysis under variable loads. In the 2nd and 3rd creep measurements, although no large changes in elastic strain and viscoelastic strain were found, viscous strain gradually decreased with an increase in viscosity. In the case of small weight fraction of solvent, small viscous strain and viscoelastic strain were found, while slightly large elastic strain was found. It was thus suggested that this elastic strain is derived from not only physical cross-linked networks by coal-solvent interaction but also those by coal-coal interaction in polymer chains of coal itself. 9 refs., 4 figs., 1 tab.

  4. A novel sample preparation method using rapid nonheated saponification method for the determination of cholesterol in emulsified foods.

    Science.gov (United States)

    Jeong, In-Seek; Kwak, Byung-Man; Ahn, Jang-Hyuk; Leem, Donggil; Yoon, Taehyung; Yoon, Changyong; Jeong, Jayoung; Park, Jung-Min; Kim, Jin-Man

    2012-10-01

    In this study, nonheated saponification was employed as a novel, rapid, and easy sample preparation method for the determination of cholesterol in emulsified foods. Cholesterol content was analyzed using gas chromatography with a flame ionization detector (GC-FID). The cholesterol extraction method was optimized for maximum recovery from baby food and infant formula. Under these conditions, the optimum extraction solvent was 10 mL ethyl ether per 1 to 2 g sample, and the saponification solution was 0.2 mL KOH in methanol. The cholesterol content in the products was determined to be within the certified range of certified reference materials (CRMs), NIST SRM 1544 and SRM 1849. The results of the recovery test performed using spiked materials were in the range of 98.24% to 99.45% with an relative standard devitation (RSD) between 0.83% and 1.61%. This method could be used to reduce sample pretreatment time and is expected to provide an accurate determination of cholesterol in emulsified food matrices such as infant formula and baby food. A novel, rapid, and easy sample preparation method using nonheated saponification was developed for cholesterol detection in emulsified foods. Recovery tests of CRMs were satisfactory, and the recoveries of spiked materials were accurate and precise. This method was effective and decreased the time required for analysis by 5-fold compared to the official method. © 2012 Institute of Food Technologists®

  5. Label-Free Quantitative Analysis of Mitochondrial Proteomes Using the Multienzyme Digestion-Filter Aided Sample Preparation (MED-FASP) and "Total Protein Approach".

    Science.gov (United States)

    Wiśniewski, Jacek R

    2017-01-01

    Determination of proteome composition and measuring of changes in protein titers provide important information with a substantial value for studying mitochondria.This chapter describes a workflow for the quantitative analysis of mitochondrial proteome with a focus on sample preparation and quantitative analysis of the data. The workflow involves the multienzyme digestion-filter aided sample preparation (MED-FASP) protocol enabling efficient extraction of proteins and high rate of protein-to-peptide conversion. Consecutive protein digestion with Lys C and trypsin enables generation of peptide fractions with minimal overlap, largely increases the number of identified proteins, and extends their sequence coverage. Abundances of proteins identified by multiple peptides can be assessed by the "Total Protein Approach."

  6. Influences of different sample preparation methods on tooth enamel ESR signals

    International Nuclear Information System (INIS)

    Zhang Wenyi; Jiao Ling; Zhang Liang'an; Pan Zhihong; Zeng Hongyu

    2005-01-01

    Objective: To study the influences of different sample preparation methods on tooth enamel ESR signals in order to reduce the effect of dentine on their sensitivities to radiation. Methods: The enamel was separated from dentine of non-irradiated adult teeth by mechanical, chemical, or both methods. The samples of different preparations were scanned by an ESR spectrometer before and after irradiation. Results: The response of ESR signals of samples prepared with different methods to radiation dose was significantly different. Conclusion: The selection of sample preparation method is very important for dose reconstruction by tooth enamel ESR dosimetry, especially in the low dose range. (authors)

  7. Global metabolite analysis of yeast: evaluation of sample preparation methods

    DEFF Research Database (Denmark)

    Villas-Bôas, Silas Granato; Højer-Pedersen, Jesper; Åkesson, Mats Fredrik

    2005-01-01

    Sample preparation is considered one of the limiting steps in microbial metabolome analysis. Eukaryotes and prokaryotes behave very differently during the several steps of classical sample preparation methods for analysis of metabolites. Even within the eukaryote kingdom there is a vast diversity...

  8. Nitropyrroles, Diels-Alder reactions assisted by microwave irradiation and solvent effect. An experimental and theoretical study

    Science.gov (United States)

    Mancini, Pedro M. E.; Kneeteman, María N.; Cainelli, Mauro; Ormachea, Carla M.; Domingo, Luis R.

    2017-11-01

    The behaviors of N-tosylnitropyrroles acting as electrophilic dienophiles in polar Diels-Alder reactions joint to different dienes of increeased nucleophilicity are analyzed. The reactions were developed under microwave irradiation using toluene or protic ionic liquids (PILs) as solvents and in free solvent conditions. In all the cases explored we observed good yields in short reaction times. For these reactions, the free solvent condition and the use of protic ionic liquids as solvents offer similar results. However, the free solvent conditions favor environmental sustainability. The role of PILs in these polar Diels-Alder reactions has been theoretically studied within the Molecular Electron Density Theory.

  9. Fluidics platform and method for sample preparation and analysis

    Science.gov (United States)

    Benner, W. Henry; Dzenitis, John M.; Bennet, William J.; Baker, Brian R.

    2014-08-19

    Herein provided are fluidics platform and method for sample preparation and analysis. The fluidics platform is capable of analyzing DNA from blood samples using amplification assays such as polymerase-chain-reaction assays and loop-mediated-isothermal-amplification assays. The fluidics platform can also be used for other types of assays and analyzes. In some embodiments, a sample in a sealed tube can be inserted directly. The following isolation, detection, and analyzes can be performed without a user's intervention. The disclosed platform may also comprises a sample preparation system with a magnetic actuator, a heater, and an air-drying mechanism, and fluid manipulation processes for extraction, washing, elution, assay assembly, assay detection, and cleaning after reactions and between samples.

  10. Direct saponification preparation and analysis of free and conjugated phytosterols in sugarcane (Saccharum officinarum L.) by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Feng, Simin; Liu, Songbai; Luo, Zisheng; Tang, Kaichen

    2015-08-15

    A simple method based on direct saponification followed by RP-HPLC analysis was developed for quantification of free and conjugated sterols in sugarcane. Acid hydrolysis prior to alkaline saponification was used to determined acylated steryl glycoside and steryl glycoside in sugarcane. The applicability and generality of this method were improved with intensive investigation. Compared to traditional solvent extraction method, this method was more time saving and appropriate for characterization of sterol fractions in sugarcane. This method was successfully applied for determination of free and conjugated sterols in different sugarcane samples. The results exhibited that stigmasterol (varied from 883.3 ± 23.5 to 1823.9 ± 24.5 μg/g dry weigh) and β-sitosterol (varied from 117.6 ± 19.9 to 801.4 ± 33.5 μg/g dry weight) were major phytosterols in the sugarcane sample, and their glycosylated forms accounted for almost 87.0% of stigmasterol and 87.5% of β-sitosterol in sugarcane, respectively. In addition, among other parts of sugarcane, tips contained the greatest amount of phytosterols. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Mark A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmosphere of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the

  12. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    International Nuclear Information System (INIS)

    Wall, Mark A.

    2016-01-01

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmosphere of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the

  13. Combining Electrochemical Sensors with Miniaturized Sample Preparation for Rapid Detection in Clinical Samples

    Science.gov (United States)

    Bunyakul, Natinan; Baeumner, Antje J.

    2015-01-01

    Clinical analyses benefit world-wide from rapid and reliable diagnostics tests. New tests are sought with greatest demand not only for new analytes, but also to reduce costs, complexity and lengthy analysis times of current techniques. Among the myriad of possibilities available today to develop new test systems, amperometric biosensors are prominent players—best represented by the ubiquitous amperometric-based glucose sensors. Electrochemical approaches in general require little and often enough only simple hardware components, are rugged and yet provide low limits of detection. They thus offer many of the desirable attributes for point-of-care/point-of-need tests. This review focuses on investigating the important integration of sample preparation with (primarily electrochemical) biosensors. Sample clean up requirements, miniaturized sample preparation strategies, and their potential integration with sensors will be discussed, focusing on clinical sample analyses. PMID:25558994

  14. Organic Synthesis under Solvent-free Condition. An Environmentally ...

    Indian Academy of Sciences (India)

    Though it is a common practice to run the organic reactions in solvent media, the ... this concept is simple. That is, the ... to vigorous research activity and reinvestigation of known reac- tions to achieve ... experimental procedure, work up technique and saving in labour. These would be ... This is true not only of the crystals of ...

  15. Characterization of Polyamide 66 membranes prepared by phase inversion using formic acid and hydrochloric acid such as solvents

    Directory of Open Access Journals (Sweden)

    Patrícia Poletto

    2011-12-01

    Full Text Available The membranes properties prepared from water/formic acid (FA/ polyamide 66 (PA66 and water/hydrochloric acid (HCl/polyamide 66 (PA 66 systems has been studied. The different solvents interact distinctly with the polymer, affecting the membrane morphology. The asymmetric structure of the membranes showed a dense top layer and a porous sublayer. The membranes M-HCl prepared from HCl/PA 66 system showed a larger dense layer (around 23 μm in compared to those prepared from FA/PA 66 system (M-FA (around 10 μm. The membrane morphology was a determinant factor in results of water absorption, porosity and pure water flux. The lower thickness of dense layer in M-FA membranes resulted in a higher water absorption and, consequently, porosity, approximately 50%, compared with M-HCl membranes, approximately 15%. The same trend was observed to permeate flux, the lower thickness of dense layer higher pure water flux.

  16. The solvent effects on dimethyl phthalate investigated by FTIR characterization, solvent parameter correlation and DFT computation

    Science.gov (United States)

    Chen, Yi; Zhang, Hui; Zhou, Wenzhao; Deng, Chao; Liao, Jian

    2018-06-01

    This study set out with the aim of investigating the solvent effects on dimethyl phthalate (DMP) using FTIR characterization, solvent parameter correlation and DFT calculation. DMP exposed to 17 organic solvents manifested varying shift in the carbonyl stretching vibration frequency (νCdbnd O). Non-alkanols induced Band I and alkanols produced Band I and Band II. Through correlating the νCdbnd O with the empirical solvent scales including acceptor parameter (AN), Schleyer's linear free energy parameter (G), and linear free salvation energy relationships (LSER), Band I was mainly ascribed to non-specific effects from either non-alkanols or alkanol polymers ((alkanol)n). νCdbnd O of the latter indicated minor red shift and less variability compared to the former. An assumption was made and validated about the sequestering of hydroxyl group by the bulky hydrophobic chain in (alkanol)n, creating what we refer to as "screening effects". Ab initio calculation, on the other hand, provided insights for possible hydrogen binding between DMP and (ethanol)n or between ethanol monomers. The two components of Band I observed in inert solvents were assigned to the two Cdbnd O groups adopting differentiated conformations. This in turn prompted our consideration that hydrogen binding was highly selective in favor of lowly associated (alkanol)n and the particular Cdbnd O group having relatively less steric hindrance and stronger electron-donating capacity. Band II was therefore believed to derive from hydrogen-bond interactions mainly in manner of 1:1 and 1:2 DMP-(alkanol)n complexes.

  17. Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation

    Czech Academy of Sciences Publication Activity Database

    Vaculíková, E.; Grünwaldová, Veronika; Král, V.; Dohnal, J.; Jampílek, J.

    2012-01-01

    Roč. 17, č. 11 (2012), s. 13221-13234 ISSN 1420-3049 Institutional support: RVO:61388980 Keywords : candesartan cilexetil * atorvastatin * nanoparticles * solvent evaporation * excipients * dynamic light scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 2.428, year: 2012

  18. Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy.

    Science.gov (United States)

    Zhang, Ying; Huang, Tao; Jorgens, Danielle M; Nickerson, Andrew; Lin, Li-Jung; Pelz, Joshua; Gray, Joe W; López, Claudia S; Nan, Xiaolin

    2017-01-01

    Sample preparation is critical to biological electron microscopy (EM), and there have been continuous efforts on optimizing the procedures to best preserve structures of interest in the sample. However, a quantitative characterization of the morphological changes associated with each step in EM sample preparation is currently lacking. Using correlative EM and superresolution microscopy (SRM), we have examined the effects of different drying methods as well as osmium tetroxide (OsO4) post-fixation on cell morphology during scanning electron microscopy (SEM) sample preparation. Here, SRM images of the sample acquired under hydrated conditions were used as a baseline for evaluating morphological changes as the sample went through SEM sample processing. We found that both chemical drying and critical point drying lead to a mild cellular boundary retraction of ~60 nm. Post-fixation by OsO4 causes at least 40 nm additional boundary retraction. We also found that coating coverslips with adhesion molecules such as fibronectin prior to cell plating helps reduce cell distortion from OsO4 post-fixation. These quantitative measurements offer useful information for identifying causes of cell distortions in SEM sample preparation and improving current procedures.

  19. A Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-03-01

    Full Text Available In tissue engineering, there is limited availability of a simple, fast and solvent-free process for fabricating micro-porous thin membrane scaffolds. This paper presents the first report of a novel surface suspension melt technique to fabricate a micro-porous thin membrane scaffolds without using any organic solvent. Briefly, a layer of polycaprolactone (PCL particles is directly spread on top of water in the form of a suspension. After that, with the use of heat, the powder layer is transformed into a melted layer, and following cooling, a thin membrane is obtained. Two different sizes of PCL powder particles (100 µm and 500 µm are used. Results show that membranes made from 100 µm powders have lower thickness, smaller pore size, smoother surface, higher value of stiffness but lower ultimate tensile load compared to membranes made from 500 µm powder. C2C12 cell culture results indicate that the membrane supports cell growth and differentiation. Thus, this novel membrane generation method holds great promise for tissue engineering.

  20. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  1. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review.

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.

  2. Solvent Handbook Database System user's manual

    International Nuclear Information System (INIS)

    1993-03-01

    Industrial solvents and cleaners are used in maintenance facilities to remove wax, grease, oil, carbon, machining fluids, solder fluxes, mold release, and various other contaminants from parts, and to prepare the surface of various metals. However, because of growing environmental and worker-safety concerns, government regulations have already excluded the use of some chemicals and have restricted the use of halogenated hydrocarbons because they affect the ozone layer and may cause cancer. The Solvent Handbook Database System lets you view information on solvents and cleaners, including test results on cleaning performance, air emissions, recycling and recovery, corrosion, and non-metals compatibility. Company and product safety information is also available

  3. 15N sample preparation for mass spectroscopy analysis

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Salati, E.; Matsui, E.

    1973-01-01

    Technics for preparing 15 N samples to be analised is presented. Dumas method and oxidation by sodium hypobromite method are described in order to get the appropriate sample. Method to calculate 15 N ratio from mass spectrometry dates is also discussed [pt

  4. Preparation of archaeological samples for its dating by thermoluminescence

    International Nuclear Information System (INIS)

    Mejia F, D.

    2000-01-01

    The present work shows the results of the preparation of archaeological samples for their dating by thermoluminescence (Tl) using the Fine grain technique established by Zimmerman but with the varying of such preparation was realized in normal daylight conditions, only the taking of the Tl readings were realized in dark room and red light. In the chapter 1 basic concepts are described about: matter constitution, radioactivity, units and radiation magnitudes, and thermoluminescence. In the chapter 2 some theoretical aspects on dating are showed. It is described how realizing the samples collection, the fine grain method, the determination of the accumulated dose through the years or paleodoses (P=Q+I) by mean of the increasing to obtain the dose equivalent dose (Q) and the signal regeneration method to obtain the correction factor by supra linearity (1), the determination of the annual dose rate to apply the age equation and the evaluation of the age uncertainty with the error limits. The development of experimental part with samples from the archaeological site named Edzna in Campeche, Mexico is described in the chapter 3. The results are presented in the chapter 4. It was obtained an age for the sample named CH7 it was obtained an age of 389 ± years. In conclusion the preparation of the archaeological samples for their dating by Tl in the conditions before mentioned is reliable, but they must be realized more studies with samples of well known age, preparing them in normal daylight conditions and simultaneously in dark room with red light. In order to observe how respond the minerals present in the sample at different dose rapidity, the same samples must be radiated with radiation sources with different dose rate. (Author)

  5. Solvent extraction method for rapid separation of strontium-90 in milk and food samples

    International Nuclear Information System (INIS)

    Hingorani, S.B.; Sathe, A.P.

    1991-01-01

    A solvent extraction method, using tributyl phosphate, for rapid separation of strontium-90 in milk and other food samples has been presented in this report in view of large number of samples recieved after Chernobyl accident for checking radioactive contamination. The earlier nitration method in use for the determination of 90 Sr through its daughter 90 Y takes over two weeks for analysis of a sample. While by this extraction method it takes only 4 to 5 hours for sample analysis. Complete estimation including initial counting can be done in a single day. The chemical recovery varies between 80-90% compared to nitration method which is 65-80%. The purity of the method has been established by following the decay of yttrium-90 separated. Some of the results obtained by adopting this chemical method for food analysis are included. The method is, thus, found to be rapid and convenient for accurate estimation of strontium-90 in milk and food samples. (author). 2 tabs., 1 fig

  6. Iron Fischer-Tropsch Catalysts Prepared by Solvent-Deficient Precipitation (SDP: Effects of Washing, Promoter Addition Step, and Drying Temperature

    Directory of Open Access Journals (Sweden)

    Kyle M. Brunner

    2015-07-01

    Full Text Available A novel, solvent-deficient precipitation (SDP method for catalyst preparation in general and for preparation of iron FT catalysts in particular is reported. Eight catalysts using a 23 factorial design of experiments to identify the key preparation variables were prepared. The catalysts were characterized by electron microprobe, N2 adsorption, TEM, XRD, and ICP. Results show that the morphology of the catalysts, i.e., surface area, pore volume, pore size distribution, crystallite sizes, and promoter distribution are significantly influenced by (1 whether or not the precursor catalyst is washed, (2 the promoter addition step, and (3 the drying condition (temperature. Consequently, the activity, selectivity, and stability of the catalysts determined from fixed-bed testing are also affected by these three variables. Unwashed catalysts prepared by a one-step method and dried at 100 °C produced the most active catalysts for FT synthesis. The catalysts of this study prepared by SDP compared favorably in activity, productivity, and stability with Fe FT catalysts reported in the literature. It is believed that this facile SDP approach has promise for development of future FT catalysts, and also offers a potential alternate route for the preparation of other catalysts for various other applications.

  7. Solvent optimization extraction of antioxidants from foxtail millet species' insoluble fibers and their free radical scavenging properties.

    Science.gov (United States)

    Bangoura, Mohamed Lamine; Nsor-Atindana, John; Ming, Zhou Hui

    2013-11-15

    In this study, water and 80% of four organic solvents were employed to optimize the extraction of antioxidants from two species of foxtail millet's insoluble fibers under the same temperature, time, and solid/solvent ratio. The results showed that the acetone was able to extract the maximum amount of antioxidants (2.32 mg/g fiber for white specie and 3.86 mg/g fiber for yellow specie) followed by methanol and propanol from both samples. The neutral and the ethanol on the other hand extracted small amount of the antioxidants from the two fiber materials. While considerable level of Total Polyphenols Content (TPC) was recorded in both the water and the organic solvents' extracts, only traces of Total Flavonoid content (TFC) were observed in water, methanol and ethanol extracts. Propanol and acetone extracts was negative to the TFC test. The potency of both white and yellow foxtail millets' insoluble fibers antioxidant extracts was investigated using five different in vitro tests. It was realized that there was a variation in their capacities to quench DPPH and ABTS(+) radicals for the time running of 0-60 min. The samples from the yellow cereal exhibited high inhibition capacity against ABTS(+). No correlation was observed between TPC and radical scavenging capacities for DPPH and ABTS(+). In general, the yellow species contained more antioxidants in comparison with the white one and this accounted for its high antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  9. Micropore-free surface-activated carbon for the analysis of polychlorinated dibenzo-p-dioxins-dibenzofurans and non-ortho-substituted polychlorinated biphenyls in environmental samples.

    Science.gov (United States)

    Kemmochi, Yukio; Tsutsumi, Kaori; Arikawa, Akihiro; Nakazawa, Hiroyuki

    2002-11-22

    2,3,7,8-Substituted polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and non-ortho-substituted polychlorinated biphenyls (PCBs) account for almost all of the total toxic equivalents (TEQ) in environmental samples. Activated carbon columns are used to fractionate the samples for GC-MS analysis or bioassay. Micropore-free surface-activated carbon is highly selective for PCDD/Fs and non-ortho-PCBs and can improve the conventional activated carbon column clean-up. Along with sulfuric acid-coated diatomaceous earth columns, micropore-free surface-activated carbon provides a rapid, robust, and high-throughput sample preparation method for PCDD/Fs and non-ortho-PCBs analysis.

  10. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.

    2018-05-18

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent‐induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant‐derived polyphenol, and terephthaloyl chloride. Alpha‐pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X‐ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut‐off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.

  11. Chlorinated solvents in groundwater of the United States

    Science.gov (United States)

    Moran, M.J.; Zogorski, J.S.; Squillace, P.J.

    2007-01-01

    Four chlorinated solvents-methylene chloride, perchloroethene (PCE), 1,1,1-trichloroethane, and trichloroethene (TCE)-were analyzed in samples of groundwater taken throughout the conterminous United States by the U.S. Geological Survey. The samples were collected between 1985 and 2002 from more than 5,000 wells. Of 55 volatile organic compounds (VOCs) analyzed in groundwater samples, solvents were among the most frequently detected. Mixtures of solvents in groundwater were common and may be the result of common usage of solvents or degradation of one solvent to another. Relative to other VOCs with Maximum Contaminant Levels (MCLs), PCE and TCE ranked high in terms of the frequencies of concentrations greater than or near MCLs. The probability of occurrence of solvents in groundwater was associated with dissolved oxygen content of groundwater, sources such as urban land use and population density, and hydraulic properties of the aquifer. The results reinforce the importance of understanding the redox conditions of aquifers and the hydraulic properties of the saturated and vadose zones in determining the intrinsic susceptibility of groundwater to contamination by solvents. The results also reinforce the importance of controlling sources of solvents to groundwater. ?? 2007 American Chemical Society.

  12. Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

    Directory of Open Access Journals (Sweden)

    Harshita Sachdeva

    2012-01-01

    Full Text Available Various Biginelli compounds (dihydropyrimidinones have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7.

  13. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection

    Science.gov (United States)

    Cox, Courtney E.; Phifer, Jeremy R.; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T.; O'Loughlin, Elizabeth J.; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T.; Paluch, Andrew S.

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  14. Sample preparation and EFTEM of Meat Samples for Nanoparticle Analysis in Food

    International Nuclear Information System (INIS)

    Lari, L; Dudkiewicz, A

    2014-01-01

    Nanoparticles are used in industry for personal care products and the preparation of food. In the latter application, their functions include the prevention of microbes' growth, increase of the foods nutritional value and sensory quality. EU regulations require a risk assessment of the nanoparticles used in foods and food contact materials before the products can reach the market. However, availability of validated analytical methodologies for detection and characterisation of the nanoparticles in food hampers appropriate risk assessment. As part of a research on the evaluation of the methods for screening and quantification of Ag nanoparticles in meat we have tested a new TEM sample preparation alternative to resin embedding and cryo-sectioning. Energy filtered TEM analysis was applied to evaluate thickness and the uniformity of thin meat layers acquired at increasing input of the sample demonstrating that the protocols used ensured good stability under the electron beam, reliable sample concentration and reproducibility

  15. Sample preparation and EFTEM of Meat Samples for Nanoparticle Analysis in Food

    Science.gov (United States)

    Lari, L.; Dudkiewicz, A.

    2014-06-01

    Nanoparticles are used in industry for personal care products and the preparation of food. In the latter application, their functions include the prevention of microbes' growth, increase of the foods nutritional value and sensory quality. EU regulations require a risk assessment of the nanoparticles used in foods and food contact materials before the products can reach the market. However, availability of validated analytical methodologies for detection and characterisation of the nanoparticles in food hampers appropriate risk assessment. As part of a research on the evaluation of the methods for screening and quantification of Ag nanoparticles in meat we have tested a new TEM sample preparation alternative to resin embedding and cryo-sectioning. Energy filtered TEM analysis was applied to evaluate thickness and the uniformity of thin meat layers acquired at increasing input of the sample demonstrating that the protocols used ensured good stability under the electron beam, reliable sample concentration and reproducibility.

  16. An Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H-Ones and Thiones Catalyzed by a Novel Brønsted Acidic Ionic Liquid under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2015-02-01

    Full Text Available We report here an efficient and green method for Biginelli condensation reaction of aldehydes, β-ketoesters and urea or thiourea catalyzed by Brønsted acidic ionic liquid [Btto][p-TSA] under solvent-free conditions. Compared to the classical Biginelli reaction conditions, the present method has the advantages of giving good yields, short reaction times, near room temperature conditions and the avoidance of the use of organic solvents and metal catalyst.

  17. The Safe and Efficient Evaporation of a Solvent from Solution

    Science.gov (United States)

    Mahon, Andrew R.

    1997-02-01

    The process of evaporating a solvent from a solution can cause problems for many students. By using a water-vacuum aspirator, backflashes of water can flood the sample tube and be detrimental to the experiment. This type of apparatus can also cause problems by drawing the solution it is evaporating back into the vacuum hose, causing the student to lose part or all of the products of their experiment. Macroscale and Microscale Organic Experiments, 2nd edition (1), suggested two techniques to dissolve solvents from a mixture. It suggested blowing a stream of air over the solution from a Pasteur pipet, or attaching a Pasteur pipet to an aspirator and drawing air over the surface of the liquid. Again, the danger of blowing air over the solution leaves the risk of splattering the solution, and drawing air over the surface of the liquid as described further endangers the products of the experiment through the risk of sucking the products up into the pipet aspirator. In an effort to eliminate these problems, a new technique has been developed. By inverting an ordinary 200-mL vacuum flask and pulling a steady current of air from the vacuum apparatus through it, any type of small container can be placed under it, allowing the solvent to be evaporated in a steady, mistake-free manner . By evaporating the solvent from the container that the products will be submitted in, no sample is lost through the process of transferring it from a vacuum flask or beaker to the final container.

  18. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  19. Determination of persistent organic pollutants in solid environmental samples using accelerated solvent extraction and supercritical fluid extraction. Exhaustive extraction and sorption/desorption studies of PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, E.

    1998-10-01

    Human activity is constantly causing environmental problems due to production and release of numerous chemicals. A group of compounds of special concern is persistent organic pollutants (POP). These toxic, lipophilic chemicals have a high chemical and biological stability, and tend to accumulate in the lipid phase of living organisms. A major sink for POPs are sediments, and consequently these are important for the distribution of POPs in the aquatic environment. Traditionally, determination of POPs relay on exhaustive extraction using liquid extraction techniques (e.g. Soxhlet extraction developed in the late 19th century) followed by gas chromatographic analysis. Since liquid-solid extraction normally requires large volumes of organic solvents in combination with long extraction times and extract clean-up, there has been an increasing demand for improved technology. This should result in reduced organic solvent consumption and sample preparation time, at the same time improving the environment and cutting costs for POP monitoring. In this thesis two modern techniques with capability of fulfilling at least one of these goals have been investigated: (1) Supercritical Fluid Extraction (SFE), and (2) Accelerated Solvent Extraction (ASE). Polychlorinated biphenyls (PCBs) were chosen as model compounds in all experiments performed on environmental matrices, since they cover a relatively large range of physiochemical parameters. Important parameters influencing the overall extraction efficiency in ASE and SFE, are discussed and illustrated for a large number of sediments. It was demonstrated that, by careful consideration of the experimental parameters, both techniques are capable of replacing old methods such as Soxhlet extraction. ASE is somewhat faster than SFE, but the extracts generated in SFE are much cleaner and can be analyzed without sample clean-up. Consequently the overall sample preparation time may be substantially lower using SFE. However, ASE is important

  20. Sample preparation composite and replicate strategy for assay of solid oral drug products.

    Science.gov (United States)

    Harrington, Brent; Nickerson, Beverly; Guo, Michele Xuemei; Barber, Marc; Giamalva, David; Lee, Carlos; Scrivens, Garry

    2014-12-16

    In pharmaceutical analysis, the results of drug product assay testing are used to make decisions regarding the quality, efficacy, and stability of the drug product. In order to make sound risk-based decisions concerning drug product potency, an understanding of the uncertainty of the reportable assay value is required. Utilizing the most restrictive criteria in current regulatory documentation, a maximum variability attributed to method repeatability is defined for a drug product potency assay. A sampling strategy that reduces the repeatability component of the assay variability below this predefined maximum is demonstrated. The sampling strategy consists of determining the number of dosage units (k) to be prepared in a composite sample of which there may be a number of equivalent replicate (r) sample preparations. The variability, as measured by the standard error (SE), of a potency assay consists of several sources such as sample preparation and dosage unit variability. A sampling scheme that increases the number of sample preparations (r) and/or number of dosage units (k) per sample preparation will reduce the assay variability and thus decrease the uncertainty around decisions made concerning the potency of the drug product. A maximum allowable repeatability component of the standard error (SE) for the potency assay is derived using material in current regulatory documents. A table of solutions for the number of dosage units per sample preparation (r) and number of replicate sample preparations (k) is presented for any ratio of sample preparation and dosage unit variability.

  1. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.; Perez Manriquez, Liliana; Puspasari, Tiara; Scholes, Colin A.; Kentish, Sandra E.; Peinemann, Klaus-Viktor

    2018-01-01

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane

  2. Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples.

    Science.gov (United States)

    Wang, Huazi; Hu, Lu; Liu, Xinya; Yin, Shujun; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang

    2017-09-22

    In the present study, a simple and rapid sample preparation method designated ultrasound-assisted dispersive liquid-liquid microextraction based on a deep eutectic solvent (DES) followed by high-performance liquid chromatography with ultraviolet (UV) detection (HPLC-UVD) was developed for the extraction and determination of UV filters from water samples. The model analytes were 2,4-dihydroxybenzophenone (BP-1), benzophenone (BP) and 2-hydroxy-4-methoxybenzophenone (BP-3). The hydrophobic DES was prepared by mixing trioctylmethylammonium chloride (TAC) and decanoic acid (DecA). Various influencing factors (selection of the extractant, amount of DES, ultrasound duration, salt addition, sample volume, sample pH, centrifuge rate and duration) on UV filter recovery were systematically investigated. Under optimal conditions, the proposed method provided good recoveries in the range of 90.2-103.5% and relative standard deviations (inter-day and intra-day precision, n=5) below 5.9%. The enrichment factors for the analytes ranged from 67 to 76. The limits of detection varied from 0.15 to 0.30ngmL -1 , depending on the analytes. The linearities were between 0.5 and 500ngmL -1 for BP-1 and BP and between 1 and 500ngmL -1 for BP-3, with coefficients of determination greater than 0.99. Finally, the proposed method was applied to the determination of UV filters in swimming pool and river water samples, and acceptable relative recoveries ranging from 82.1 to 106.5% were obtained. Copyright © 2017. Published by Elsevier B.V.

  3. Use of robotic systems for radiochemical sample changing and for analytical sample preparation

    International Nuclear Information System (INIS)

    Delmastro, J.R.; Hartenstein, S.D.; Wade, M.A.

    1989-01-01

    Two uses of the Perkin-Elmer (PE) robotic system will be presented. In the first, a PE robot functions as an automatic sample changer for up to five low energy photon spectrometry (LEPS) detectors operated with a Nuclear Data ND 6700 system. The entire system, including the robot, is controlled by an IBM PC-AT using software written in compiled BASIC. Problems associated with the development of the system and modifications to the robot will be presented. In the second, an evaluation study was performed to assess the abilities of the PE robotic system for performing complex analytical sample preparation procedures. For this study, a robotic system based upon the PE robot and auxiliary devices was constructed and programmed to perform the preparation of final product samples (UO 3 ) for accountability and impurity specification analyses. These procedures require sample dissolution, dilution, and liquid-liquid extraction steps. The results of an in-depth evaluation of all system components will be presented

  4. Evidences for decarbonation and exfoliation of layered double hydroxide in N,N-dimethylformamide-ethanol solvent mixture

    International Nuclear Information System (INIS)

    Gordijo, Claudia R.; Leopoldo Constantino, Vera R.; Oliveira Silva, Denise de

    2007-01-01

    The behavior of a Hydrotalcite-like material (carbonate-containing Mg,Al-layered double hydroxide) in N,N-dimethylformamide (DMF)-ethanol mixture, at ambient temperature, has been investigated. The releasing of CO 2 and production of a formate-containing material occurred mainly for 1:1 (v/v) solvent mixture. Decarbonation of Hydrotalcite is promoted by DMF hydrolysis followed by neutralization of brucite-like layers through HCOO - intercalation. Translucent colloidal dispersion of LDH nanoparticles from the formate-containing phase was characterized by transmission electron (TEM) and atomic force (AFM) microscopies. The absence of (00l) reflection at X-ray diffraction (XRD) pattern for dried colloidal dispersion indicated delamination of Hydrotalcite. The restacked sample exhibited broad reflections and typical hydroxide ordered layers non-basal (110) diffraction peaks. A LDH-HCOO - material was also prepared and characterized by FTIR and FT-Raman spectroscopies. Decarbonation and exfoliation of Hydrotalcite in N,N-dimethylformamide-ethanol mixed solvent provide an interesting method for preparation of new intercalated LDH materials. - Graphical abstract: Hydrotalcite suspended in 1:1 (v/v) N,N-dimethylformamide-ethanol solvent mixture, at ambient temperature, undergoes decarbonation and exfoliation. The process is promoted by DMF hydrolysis. Restacking of LDH layers is achieved by evaporating the solvent

  5. Optimization of preparation conditions of polyamide thin film composite membrane for organic solvent nanofiltration

    International Nuclear Information System (INIS)

    Namvar-Mahboub, Mahdieh; Pakizeh, Majid

    2014-01-01

    Separation performance of polyamide composite membranes is affected by several parameters during formation of thin upper layer via interfacial polymerization. We investigated the effect of various polyamide synthesis conditions on the performance of organic solvent resistant polyamide composite membranes through the model equations designed by 2-level fractional factorial design. The dewaxing solvent recovery was selected as separation process. Five factors were changed in two level includin; TMC concentration (0.05-0.1%), MPD concentration (1-2%), support immersion time in organic solution (2-4 min), support immersion time in aqueous solution (1-2 min), and curing temperature (70-80 .deg. C). The resultant equations showed 93.48% and 94.82% of the variability (R 2 adj ) in data used to fit oil rejection and permeate flux models, respectively. The analysis of variance revealed that both models were high significant. It was also observed that TMC concentration, MPD concentration and immersion time in TMC have more pronounced effect on the oil rejection and permeate flux than other factors and interactions. Optimal polyamide preparation conditions were obtained using multiple response method for 94% oil rejection as target value. According to the results, the best value of permeate flux (8.86 l/(m 2 ·h)) was found at TMC concentration of 0.1%, MPD concentration of 1.94%, immersion time in TMC of 3.88 min, immersion time in MPD of 1.95 min and curing temperature of 71.96 .deg. C with desirability factor of 1

  6. An efficient and high-yielding one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones catalyzed by sodium hydrogen carbonate under solvent-free conditions

    OpenAIRE

    Asieh Vafaee; Abolghasem Davoodnia; Mehdi Pordel; Mohammad Reza Bozorgmehr

    2015-01-01

    Sodium hydrogen carbonate, NaHCO3, efficiently catalyzes the one-pot, three-component reaction of phthalhydrazide, an aromatic aldehyde, and malononitrile or ethyl cyanoacetate under solvent-free conditions, to afford the corresponding 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in high yields. Easy work‐up, inexpensive and readily available catalyst and avoiding the use of harmful organic solvents are other advantages of this simple procedure.

  7. Sample preparation of energy materials for X-ray nanotomography with micromanipulation.

    Science.gov (United States)

    Chen-Wiegart, Yu-chen Karen; Camino, Fernando E; Wang, Jun

    2014-06-06

    X-ray nanotomography presents an unprecedented opportunity to study energy storage/conversion materials at nanometer scales in three dimensions, with both elemental and chemical sensitivity. A critical step in obtaining high-quality X-ray nanotomography data is reliable sample preparation to ensure that the entire sample fits within the field of view of the X-ray microscope. Although focused-ion-beam lift-out has previously been used for large sample (few to tens of microns) preparation, a difficult undercut and lift-out procedure results in a time-consuming sample preparation process. Herein, we propose a much simpler and direct sample preparation method to resolve the issues that block the view of the sample base after milling and during the lift-out process. This method is applied on a solid-oxide fuel cell and a lithium-ion battery electrode, before numerous critical 3D morphological parameters are extracted, which are highly relevant to their electrochemical performance. A broad application of this method for microstructure study with X-ray nanotomography is discussed and presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Large-volume injection of sample diluents not miscible with the mobile phase as an alternative approach in sample preparation for bioanalysis: an application for fenspiride bioequivalence.

    Science.gov (United States)

    Medvedovici, Andrei; Udrescu, Stefan; Albu, Florin; Tache, Florentin; David, Victor

    2011-09-01

    Liquid-liquid extraction of target compounds from biological matrices followed by the injection of a large volume from the organic layer into the chromatographic column operated under reversed-phase (RP) conditions would successfully combine the selectivity and the straightforward character of the procedure in order to enhance sensitivity, compared with the usual approach of involving solvent evaporation and residue re-dissolution. Large-volume injection of samples in diluents that are not miscible with the mobile phase was recently introduced in chromatographic practice. The risk of random errors produced during the manipulation of samples is also substantially reduced. A bioanalytical method designed for the bioequivalence of fenspiride containing pharmaceutical formulations was based on a sample preparation procedure involving extraction of the target analyte and the internal standard (trimetazidine) from alkalinized plasma samples in 1-octanol. A volume of 75 µl from the octanol layer was directly injected on a Zorbax SB C18 Rapid Resolution, 50 mm length × 4.6 mm internal diameter × 1.8 µm particle size column, with the RP separation being carried out under gradient elution conditions. Detection was made through positive ESI and MS/MS. Aspects related to method development and validation are discussed. The bioanalytical method was successfully applied to assess bioequivalence of a modified release pharmaceutical formulation containing 80 mg fenspiride hydrochloride during two different studies carried out as single-dose administration under fasting and fed conditions (four arms), and multiple doses administration, respectively. The quality attributes assigned to the bioanalytical method, as resulting from its application to the bioequivalence studies, are highlighted and fully demonstrate that sample preparation based on large-volume injection of immiscible diluents has an increased potential for application in bioanalysis.

  9. Preparation of carbon-free TEM microgrids by metal sputtering

    International Nuclear Information System (INIS)

    Janbroers, S.; Kruijff, T.R. de; Xu, Q.; Kooyman, P.J.; Zandbergen, H.W.

    2009-01-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  10. Preparation of carbon-free TEM microgrids by metal sputtering.

    Science.gov (United States)

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.

  11. Comparison of sample preparation procedures on metal(loid) fractionation patterns in lichens.

    Science.gov (United States)

    Kroukamp, E M; Godeto, T W; Forbes, P B C

    2017-08-13

    The effects of different sample preparation strategies and storage on metal(loid) fractionation trends in plant material is largely underresearched. In this study, a bulk sample of lichen Parmotrema austrosinense (Zahlbr.) Hale was analysed for its total extractable metal(loid) content by ICP-MS, and was determined to be adequately homogenous (sample were prepared utilising a range of sample preservation techniques and subjected to a modified sequential extraction procedure or to total metal extraction. Both experiments were repeated after 1-month storage at 4 °C. Cryogenic freezing gave the best reproducibility for total extractable elemental concentrations between months, indicating this to be the most suitable method of sample preparation in such studies. The combined extraction efficiencies were >82% for As, Cu, Mn, Pb, Sr and Zn but poor for other elements, where sample preparation strategies 'no sample preparation' and 'dried in a desiccator' had the best extraction recoveries. Cryogenic freezing procedures had a significantly (p sample cleaning and preservation when species fractionation patterns are of interest. This study also shows that the assumption that species stability can be ensured through cryopreservation and freeze drying techniques needs to be revisited.

  12. The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate

    KAUST Repository

    Kim, Dooli

    2016-08-15

    Ionic liquids have been considered green solvents for membrane fabrication. However, the high viscosity of their polymer solutions hinders the formation of membranes with strong mechanical properties. In this study, acetone was explored as a co-solvent with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) to dissolve cellulose acetate. The effects of acetone on the thermodynamic and kinetic aspects of the polymer solutions were studied and the physicochemical properties and separation capability of their resultant membranes were analyzed. The Hansen solubility parameters of [EMIM]OAc were measured by the software HSPiP and these data demonstrated that acetone was a suitable co-solvent to increase the solubility of cellulose acetate. The Gibbs free energy of mixing ΔGm was estimated to determine the proper composition of the polymer solution with better solubility. The study of the kinetics of phase separation showed that the demixing rate of the CA polymer solution in acetone and [EMIM]OAc was higher than that for solutions in [EMIM]OAc only. The membranes prepared from the former solution had higher water permeance and better mechanical stability than those prepared from the later solution. Adding acetone as a co-solvent opened the opportunity of fabricating membranes with higher polymer concentrations for higher separation capability and better mechanical properties. © 2016

  13. The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate

    KAUST Repository

    Kim, Dooli; Le, Ngoc Lieu; Nunes, Suzana Pereira

    2016-01-01

    Ionic liquids have been considered green solvents for membrane fabrication. However, the high viscosity of their polymer solutions hinders the formation of membranes with strong mechanical properties. In this study, acetone was explored as a co-solvent with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) to dissolve cellulose acetate. The effects of acetone on the thermodynamic and kinetic aspects of the polymer solutions were studied and the physicochemical properties and separation capability of their resultant membranes were analyzed. The Hansen solubility parameters of [EMIM]OAc were measured by the software HSPiP and these data demonstrated that acetone was a suitable co-solvent to increase the solubility of cellulose acetate. The Gibbs free energy of mixing ΔGm was estimated to determine the proper composition of the polymer solution with better solubility. The study of the kinetics of phase separation showed that the demixing rate of the CA polymer solution in acetone and [EMIM]OAc was higher than that for solutions in [EMIM]OAc only. The membranes prepared from the former solution had higher water permeance and better mechanical stability than those prepared from the later solution. Adding acetone as a co-solvent opened the opportunity of fabricating membranes with higher polymer concentrations for higher separation capability and better mechanical properties. © 2016

  14. Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis.

    Science.gov (United States)

    Eby, P; Gibson, J J; Yi, Y

    2015-07-15

    Storage trials were conducted for 2 to 3 months using a hydrocarbon and carbon dioxide gas mixture with known carbon isotopic composition to simulate typical hold times for gas samples prior to isotopic analysis. A range of containers (both pierced and unpierced) was periodically sampled to test for δ(13)C isotopic fractionation. Seventeen containers were tested for free-gas storage (20°C, 1 atm pressure) and 7 containers were tested for dissolved-gas storage, the latter prepared by bubbling free gas through tap water until saturated (20°C, 1 atm) and then preserved to avoid biological activity by acidifying to pH 2 with phosphoric acid and stored in the dark at 5°C. Samples were extracted using valves or by piercing septa, and then introduced into an isotope ratio mass spectrometer for compound-specific δ(13)C measurements. For free gas, stainless steel canisters and crimp-top glass serum bottles with butyl septa were most effective at preventing isotopic fractionation (pierced and unpierced), whereas silicone and PTFE-butyl septa allowed significant isotopic fractionation. FlexFoil and Tedlar bags were found to be effective only for storage of up to 1 month. For dissolved gas, crimp-top glass serum bottles with butyl septa were again effective, whereas silicone and PTFE-butyl were not. FlexFoil bags were reliable for up to 2 months. Our results suggest a range of preferred containers as well as several that did not perform very well for isotopic analysis. Overall, the results help establish better QA/QC procedures to avoid isotopic fractionation when storing environmental gas samples. Recommended containers for air transportation include steel canisters and glass serum bottles with butyl septa (pierced and unpierced). Copyright © 2015 John Wiley & Sons, Ltd.

  15. Variational Approach to Enhanced Sampling and Free Energy Calculations

    Science.gov (United States)

    Valsson, Omar; Parrinello, Michele

    2014-08-01

    The ability of widely used sampling methods, such as molecular dynamics or Monte Carlo simulations, to explore complex free energy landscapes is severely hampered by the presence of kinetic bottlenecks. A large number of solutions have been proposed to alleviate this problem. Many are based on the introduction of a bias potential which is a function of a small number of collective variables. However constructing such a bias is not simple. Here we introduce a functional of the bias potential and an associated variational principle. The bias that minimizes the functional relates in a simple way to the free energy surface. This variational principle can be turned into a practical, efficient, and flexible sampling method. A number of numerical examples are presented which include the determination of a three-dimensional free energy surface. We argue that, beside being numerically advantageous, our variational approach provides a convenient and novel standpoint for looking at the sampling problem.

  16. YCl3-Catalyzed Highly Selective Ring Opening of Epoxides by Amines at Room Temperature and under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Wuttichai Natongchai

    2017-11-01

    Full Text Available A simple, efficient, and environmentally benign approach for the synthesis of β-amino alcohols is herein described. YCl3 efficiently carried out the ring opening of epoxides by amines to produce β-amino alcohols under solvent-free conditions at room temperature. This catalytic approach is very effective, with several aromatic and aliphatic oxiranes and amines. A mere 1 mol % concentration of YCl3 is enough to deliver β-amino alcohols in good to excellent yields with high regioselectivity.

  17. Field Sample Preparation Method Development for Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    Leibman, C.; Weisbrod, K.; Yoshida, T.

    2015-01-01

    Non-proliferation and International Security (NA-241) established a working group of researchers from Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to evaluate the utilization of in-field mass spectrometry for safeguards applications. The survey of commercial off-the-shelf (COTS) mass spectrometers (MS) revealed no instrumentation existed capable of meeting all the potential safeguards requirements for performance, portability, and ease of use. Additionally, fieldable instruments are unlikely to meet the International Target Values (ITVs) for accuracy and precision for isotope ratio measurements achieved with laboratory methods. The major gaps identified for in-field actinide isotope ratio analysis were in the areas of: 1. sample preparation and/or sample introduction, 2. size reduction of mass analyzers and ionization sources, 3. system automation, and 4. decreased system cost. Development work in 2 through 4, numerated above continues, in the private and public sector. LANL is focusing on developing sample preparation/sample introduction methods for use with the different sample types anticipated for safeguard applications. Addressing sample handling and sample preparation methods for MS analysis will enable use of new MS instrumentation as it becomes commercially available. As one example, we have developed a rapid, sample preparation method for dissolution of uranium and plutonium oxides using ammonium bifluoride (ABF). ABF is a significantly safer and faster alternative to digestion with boiling combinations of highly concentrated mineral acids. Actinides digested with ABF yield fluorides, which can then be analyzed directly or chemically converted and separated using established column chromatography techniques as needed prior to isotope analysis. The reagent volumes and the sample processing steps associated with ABF sample digestion lend themselves to automation and field

  18. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems.

    Science.gov (United States)

    Lima, Lionete N; Oliveira, Gladson C; Rojas, Mayerlenis J; Castro, Heizir F; Da Rós, Patrícia C M; Mendes, Adriano A; Giordano, Raquel L C; Tardioli, Paulo W

    2015-04-01

    This work describes the preparation of biocatalysts for ethanolysis of soybean and babassu oils in solvent-free systems. Polystyrene, Amberlite (XAD-7HP), and octyl-silica were tested as supports for the immobilization of Pseudomonas fluorescens lipase (PFL). The use of octyl-silica resulted in a biocatalyst with high values of hydrolytic activity (650.0 ± 15.5 IU/g), immobilization yield (91.3 ± 0.3 %), and recovered activity (82.1 ± 1.5 %). PFL immobilized on octyl-silica was around 12-fold more stable than soluble PFL, at 45 °C and pH 8.0, in the presence of ethanol at 36 % (v/v). The biocatalyst provided high vegetable oil transesterification yields of around 97.5 % after 24 h of reaction using babassu oil and around 80 % after 48 h of reaction using soybean oil. The PFL-octyl-silica biocatalyst retained around 90 % of its initial activity after five cycles of transesterification of soybean oil. Octyl-silica is a promising support that can be used to immobilize PFL for subsequent application in biodiesel synthesis.

  19. Two mini-preparation protocols to DNA extraction from plants with ...

    African Journals Online (AJOL)

    Were standardized two previously reported standard plant DNA extraction methods, but improved them on mini preparations to use the samples for population genetic analysis. The combination of CTAB lysis procedure-solvent extraction and DNA column purification (DNeasy plant mini kit modification) enables a faster and ...

  20. Improved performance of mesostructured perovskite solar cells via an anti-solvent method

    Science.gov (United States)

    Hao, Jiabin; Hao, Huiying; Cheng, Feiyu; Li, Jianfeng; Zhang, Haiyu; Dong, Jingjing; Xing, Jie; Liu, Hao; Wu, Jian

    2018-06-01

    One-step solution process is a facile and widely used procedure to prepare organic-inorganic perovskite materials. However, the poor surface morphology of the films attributed to the uncontrollable nucleation and crystal growth in the process is unfavorable to solar cells. In this study, an anti-solvent treatment during the one-step solution process, in which ethyl acetate (EA) was dropped on the sample during spinning the precursor solution containing CH3NH3Cl, was adopted to fabricate perovskite materials and solar cells. It was found that the morphology of the perovskite film was significantly improved due to the rapid nucleation and slow crystal growth process. The modified process enabled us to fabricate the mesoporous solar cell with power conversion efficiency of 14%, showing an improvement of 40% over the efficiency of 9.7% of the device prepared by conventional one-step method. The controlling effect of annealing time on the morphology, crystal structure and transport properties of perovskite layer as well as the performance of device fabricated by the anti-solvent method were investigated and the possible mechanism was discussed.