WorldWideScience

Sample records for solvent-free organic synthesis

  1. Organic Synthesis under Solvent-free Condition. An Environmentally ...

    Indian Academy of Sciences (India)

    Though it is a common practice to run the organic reactions in solvent media, the ... this concept is simple. That is, the ... to vigorous research activity and reinvestigation of known reac- tions to achieve ... experimental procedure, work up technique and saving in labour. These would be ... This is true not only of the crystals of ...

  2. An efficient synthesis of quinolines under solvent-free conditions

    Indian Academy of Sciences (India)

    Unknown

    An efficient synthesis of quinolines under solvent-free conditions. 201 was then irradiated with microwaves in a microwave oven (Samsung model# CE118KF) at 1050W (70% of total power) for 5 minutes (3 + 2 with an inter- mission of 5 minutes). The reaction mixture was cooled at room temperature and rendered basic (pH.

  3. GRINDING SOLVENT-FREE PAAL-KNORR PYRROLE SYNTHESIS ...

    African Journals Online (AJOL)

    Paal-Knorr pyrrole synthesis on smectites as recyclable and green catalysts. Bull. Chem. Soc. .... 1-Propyl-2,5-dimethyl-1H-pyrrole (8a). Oil (reported as oil .... of pyrroles catalyzed by zirconium chloride under solvent-free conditions . Ultrason.

  4. An Expedient Method for the Synthesis of Thiosemicarbazones under Microwave Irradiation in Solvent-free Medium

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping; ZHENG, Peng-Zhi; ZHU, Jun-Ge; LIU, Rui-Jie; QU, Gui-Rong

    2006-01-01

    A simple, efficient and eco-friendly method for the synthesis of thiosemicarbazones from thiosemicarbazides and aldehyde under microwave irradiation has been reported, and no solvent and catalyst were used. And the technique of microwave irradiation coupled with solvent-free condition proved to be a quite valuable method in the organic synthesis.

  5. Solvent-Free Synthesis of 2,20'-Dinitrobiphenyl: An Ullmann Coupling in the Introductory Organic Laboratory

    Science.gov (United States)

    Gregor, Richard W.; Goj, Laurel A.

    2011-01-01

    The formation of carbon-carbon bonds is an essential theme throughout organic chemistry. The use of transition-metal catalysts to form carbon-carbon bonds, once relegated to more advanced texts, is now commonly found in introductory organic textbooks. However, commensurate laboratory experiments for first-year organic students are more limited.…

  6. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  7. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    Science.gov (United States)

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  8. A facile solvent-free Synthesis Route for the Assembly of Highly CO2 Selective and H2S tolerant NiSIFSIX Metal-Organic Framework

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama; Belmabkhout, Youssef; Adil, Karim; Cairns, Amy J.; Bhatt, Prashant

    2015-01-01

    The development of materials for CO2 capture with high selectivity and high tolerance to H2S is of prime importance for various industrially relevant gas streams (e.g. natural gas and biogas upgrading as well as pre-combustion capture). Here, we report the successful fabrication of a MOF with combined exceptional CO2 capture properties and H2S tolerance, namely Ni SIFSIX based-MOF using both solvothermal and solvent-free methodologies.

  9. A facile solvent-free Synthesis Route for the Assembly of Highly CO2 Selective and H2S tolerant NiSIFSIX Metal-Organic Framework

    KAUST Repository

    Eddaoudi, Mohamed

    2015-07-06

    The development of materials for CO2 capture with high selectivity and high tolerance to H2S is of prime importance for various industrially relevant gas streams (e.g. natural gas and biogas upgrading as well as pre-combustion capture). Here, we report the successful fabrication of a MOF with combined exceptional CO2 capture properties and H2S tolerance, namely Ni SIFSIX based-MOF using both solvothermal and solvent-free methodologies.

  10. Grinding solvent-free Paal-Knorr pyrrole synthesis on smectites as ...

    African Journals Online (AJOL)

    Journal Home > Vol 32, No 1 (2018) > ... An environmentally benign method for the synthesis of N-substituted pyrroles from one-pot solvent-free ... conditions make this protocol practical, environmentally friendly and economically attractive.

  11. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  12. Microwave-assisted silica-promoted solvent-free synthesis of ...

    Indian Academy of Sciences (India)

    method using microwave irradiation with an excellent yield. The newly ... Table 1. Silica promoted microwave-assisted solvent-free synthesis of quinazolinone ... Time (min). Yield (%)a ..... thanks SC/ST cell of Bangalore University for research.

  13. Highly Efficient Method for Solvent-Free Synthesis of Diarylmethane ...

    African Journals Online (AJOL)

    NICO

    2011-02-25

    Feb 25, 2011 ... aFaculty of Chemistry, Bu-Ali Sina University, P.O. Box 651783868, Hamedan, Iran. ... Arylmethanes are useful compounds in organic synthesis and industry1 ... ketones,9,10 catalytic condensation of the Grignard reagent with.

  14. solvent-free synthesis of azomethines, spectral correlations

    African Journals Online (AJOL)

    B. S. Chandravanshi

    attention of organic and medicinal chemists [2, 3]. ... Spectroscopic data is very useful for studying the ground state equilibrium of ... determines the structure of unsaturated systems, such as E- or Z, s-cis and .... The IR and NMR spectra of selective ... The proposed mechanism for the synthesis of E- imines in presence of ...

  15. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  16. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids

    International Nuclear Information System (INIS)

    Gu, Shu-Ying; Gao, Xie-Feng; Zhang, Yi-Han

    2015-01-01

    A development of the novel and stable solvent-free ionic MoS 2 nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS 2 from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, 1 H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS 2 nanofluids show that inorganic MoS 2 cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS 2 nanofluids is presented. • The rheological behaviors can be tailored by

  17. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS{sub 2}) nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Shu-Ying, E-mail: gushuying@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Gao, Xie-Feng; Zhang, Yi-Han [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)

    2015-01-15

    A development of the novel and stable solvent-free ionic MoS{sub 2} nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS{sub 2} from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, {sup 1}H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS{sub 2} nanofluids show that inorganic MoS{sub 2} cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS{sub 2} nanofluids is presented. • The rheological

  18. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  19. A Solvent-free Synthesis of Polyhydroquinolines via Hantzsch ...

    African Journals Online (AJOL)

    NICO

    ABSTRACT. A simple and efficient procedure for the synthesis of polyhydroquinolines was developed, involving a one-pot four-component ... inhibition and most importantly as calcium channel blockers.8–15 ..... to magnetic nanoparticles.

  20. Solvent free lipase catalyzed synthesis of butyl caprylate

    Indian Academy of Sciences (India)

    MEERA T SOSE

    2017-11-10

    Nov 10, 2017 ... Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), ... study for the synthesis of butyl caprylate in presence of bio-catalyst. ..... −1 with Thermomyces lanuginosus lipase.26 The relation.

  1. Synthesis of Halide- and Solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Jensen, Torben René

    chloride or LiBH4 is present in the sample. The synthesis pathway has been shown to work for most of the already known metal borohydrides, M = Na, Ca, Sr, Ba, Y, La, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, but also new borohydrides are formed, M = Pr, Nd and Lu. Besides new compounds, new polymorphs...

  2. Chemoselective Synthesis of Dithioacetals from Bio-aldehydes with Zeolites under Ambient and Solvent-free Conditions

    DEFF Research Database (Denmark)

    Li, Hu; Yang, Tingting; Riisager, Anders

    2017-01-01

    of commercial and modified zeolites are excellent catalysts for thioacetalization of different thiols with carbonyl compounds, including biomass-derived aldehydes, at room temperature under solvent-free conditions. A near quantitative yield of dithioacetal was obtained over H-beta(19) at room temperature......Dithioacetals are an important class of versatile compounds extensively applied in pharmaceuticals, separations, electrochemistry, and organic synthesis, but few heterogeneous catalytic systems are reported to be generally applicable for their synthesis from a wide range of substrates. A series...

  3. An Efficient, Mild and Solvent-Free Synthesis of Benzene Ring Acylated Harmalines

    Directory of Open Access Journals (Sweden)

    Sabira Begum

    2009-12-01

    Full Text Available A facile synthesis of a series of benzene ring acylated analogues of harmaline has been achieved by Friedel-Crafts acylation under solvent-free conditions at room temperature using acyl halides/acid anhydrides and AlCl3. The reaction afforded 10- and 12-acyl analogues of harmaline in good yield, along with minor quantities of N-acyl-tryptamines and 8-acyl analogues of N-acyltryptamines.

  4. Silica Gel-Mediated Organic Reactions under Organic Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Satoaki Onitsuka

    2012-09-01

    Full Text Available Silica gel was found to be an excellent medium for some useful organic transformations under organic solvent-free conditions, such as (1 the Friedel-Crafts-type nitration of arenes using commercial aqueous 69% nitric acid alone at room temperature, (2 one-pot Wittig-type olefination of aldehydes with activated organic halides in the presence of tributyl- or triphenylphosphine and Hunig’s base, and (3 the Morita-Baylis-Hillman reaction of aldehydes with methyl acrylate. After the reactions, the desired products were easily obtained in good to excellent yields through simple manipulation.

  5. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  6. Solvent-Free Synthesis of Silver-Nanoparticles and their Use as Additive in Poly (Dicyclopentadiene)

    International Nuclear Information System (INIS)

    Abbas, M.; Kienberger, J.

    2013-01-01

    A solvent-free environmentally benign synthesis of oleylamine capped silver nanoparticles is presented. Upon heating 10 equivalents of oleylamine and silver nitrate at 165 degree C for 30 min followed by a precipitation step using ethanol as the precipitant particles characterized by an Z-average diameter of 63 nm were obtained. Dried particles can be easily redispersed in unpolar solvents or monomers, which pave the way for using them as an antimicrobial additive in polymeric materials. In particular, newly prepared Ag-particles were dispersed in dicyclopentadiene and the mixture was cured using ring opening metathesis polymerization yielding an antimicrobially equipped duroplastic material. (author)

  7. Solvent free one pot synthesis of amidoalkyl naphthols over phosphotungstic acid

    Directory of Open Access Journals (Sweden)

    Divya P. Narayanan

    2017-07-01

    Full Text Available Montmorillonite KSF clay was effectively modified by the encapsulation of phosphotungstic acid into the clay layers via sonication followed by incipient wet impregnation method. The prepared catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM techniques. The catalytic activities of the prepared systems were investigated in the solvent free synthesis of amidoalkyl naphthols by the multicomponent one-pot condensation of an aldehyde, β-naphthol and an amide or urea. Excellent yield, shorter reaction time, easy work-up, and reusability of the catalyst are the main attractions of this green procedure.

  8. Microwave-Assisted Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available A microporous metal-organic framework (MOF, cobalt-based zeolitic imidazolate framework-67 (ZIF-67, was synthesized by the combination of solvent-free hand-mill and microwave irradiation, without any organic solvent and within 30 minutes. The hand-milling process can mix the reactants well by the virtue of high moisture/water absorption capacity of reactants. In addition, the outstanding electromagnetic wave absorption capability of cobalt leads to efficient conversion to MOF structures before carbonization. The obtained ZIF-67 possesses high surface area and micropore volume.

  9. Solvent-Free Synthesis of Aryl Iodide Using Nano SiO2/HIO4 as a Reusable Acid Catalyst

    Directory of Open Access Journals (Sweden)

    A. Bamoniri

    2014-07-01

    Full Text Available An efficient and environmentally benign   method for the synthesis of aryl iodides have been developed by diazotization of aromatic amines with NaNO2 and nanosilica periodic acid (nano-SPIA as a green catalyst via grinding followed by a sandmeyer iodination by KI under solvent-free conditions at room temperature. The ensuing aryl diazonium salts supported on nano-SPIA were sufficiently stable to be kept at room temperature in the dry state. This method is a novel, efficient, eco-friendly route for solvent-free synthesis of aryl iodides.

  10. Solvent-Free Biginelli Condensation using Tungstate Sulfuric Acid: a Powerful and Reusable Catalyst for Selective Synthesis

    Directory of Open Access Journals (Sweden)

    Rezvan Rezaee Nasab

    2014-07-01

    Full Text Available Tungstate sulfuric acid (TSA has been prepared and used as a recyclable catalyst for the Biginelli syn-thesis of some biologically active quinazolinones/thiones under solvent-free conditions. This method has advantages such as the avoidance of organic solvents, high yield of pure products, short reaction times, and operational simplicity.  © 2014 BCREC UNDIP. All rightsReceived: 28th April 2014; Revised: 15th May 2014; Accepted: 26th May 2014[ How to Cite: Nasab, R.R., Karami, B., Khodabakhshi, S. (2014. Selective Solvent‐free Biginelli Condensation using Tungstate Sulfuric Acid as Powerful and Reusable Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-154. (doi:10.9767/bcrec.9.2.6794.148-154][ Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6794.148-154

  11. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    DEFF Research Database (Denmark)

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30....... The results from DSC, XRD showed that TEL was molecularly dispersed in the OSF-SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between TEL and its carriers. The OSF-SDs exhibited significantly higher AUC0-24 h and Cmax, but similar Tmax as compared...

  12. Microwave-assisted clean synthesis of amides via aza-wittig reaction under solvent-free condition

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, Murugan; Nagarajan, Sangaraiah; Velan, Poovan Shanmuga; Dinesh, Murugan; Ponnuswamy, Alagusundaram [Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Tamilnadu (India)

    2011-09-15

    A solvent-free microwave-assisted coupling of phosphazenes with acyl chlorides or carboxylic anhydrides in presence of triethylphosphite has been accomplished resulting in a clean synthesis of amides in good yields. Unlike the prevailing time-consuming solution phase methodologies employing chlorinated solvents, benzene (carcinogenic), etc, the present protocol is an eco friendly, rapid and simple approach. (author)

  13. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    Science.gov (United States)

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  14. Three Component Synthesis of Substituted 4H-[1,3]Dioxin Derivatives Under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hosseini-Tabatabaei

    2012-01-01

    Full Text Available Reaction between aryl aldehydes, acetylacetone and alkyl isocyanides in solvent-free conditions provided a simple and efficient one-pot route for the synthesis of 1-(2-alkylamino-6-methyl-4-aryl-4H-[1,3]dioxin-5-ylethanone derivatives in excellent yields.

  15. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    Energy Technology Data Exchange (ETDEWEB)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dep. de Farmacia y Quimica Medicinal

    2011-07-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  16. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    International Nuclear Information System (INIS)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo

    2011-01-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  17. Multicomponent One-Pot Synthesis of Substituted Hantzsch Thiazole Derivatives Under Solvent Free Conditions

    Directory of Open Access Journals (Sweden)

    Bhaskar S. Dawane

    2009-01-01

    Full Text Available Thiazole derivatives were prepared by one-pot procedure by the reaction of α-haloketones, thiourea and substituted o-hydroxybenzaldehyde under environmentally solvent free conditions.

  18. Nanocrystalline copper(II oxide-catalyzed one-pot four- component synthesis of polyhydroquinoline derivativesunder solvent-free conditions

    Directory of Open Access Journals (Sweden)

    J. Safaei-Ghomi

    2011-07-01

    Full Text Available The efficient and environmentally friendly method for the one-pot synthesis of polyhydroquinolines has been developed in the presence of CuO nanoparticles. The multi-component reactions of aldehydes, dimedone, ethyl acetoacetate andammonium acetate were carried out under solvent-free conditions to afford some polyhydroquinoline derivatives. This method provides several advantages including high yields, low reaction times and little catalyst loading.

  19. Acid catalyzed solvent free synthesis of new 1-acyl-4-benzhydryl substituted pyrazoles

    International Nuclear Information System (INIS)

    Sher, M.; Kausar, T.; Riaz, N.; Sharif, A.

    2016-01-01

    A convenient, cost effective and environmentally benign methodology has been developed, which delivered fourteen new 1-acyl-4-benzhyrdyl substituted pyrazole derivatives under solvent free conditions. Target compounds were synthesized in good to excellent yields simply by grinding reactants in a pestle and mortar with catalytic amount of conc. H/sub 2/SO/sub 4/. All the newly formed compounds were fully characterized with the help of detailed spectroscopic techniques including FTIR, NMR and GC-MS. (author)

  20. Predicting the Disorder–Order Transition of Solvent-Free Nanoparticle–Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu; Koch, Donald L.

    2013-01-01

    in the ordered phase, the cooperation of the oligomers in filling the space is hindered. Therefore, shorter oligomers feel a stronger entropic penalty in the ordered solid and favor the disordered phase. Strikingly, we found that the solvent-free system has a

  1. An Efficient Solvent-Free Protocol for the Synthesis of 1-Amidoalkyl-2-naphthols using Silica-Supported Molybdatophosphoric Acid

    Directory of Open Access Journals (Sweden)

    Abdolkarim Zare

    2010-01-01

    Full Text Available A highly efficient, green and simple solvent-free method for the synthesis of 1-amidoalkyl-2-naphthols via one-pot multi-components condensation of 2-naphthol, aromatic aldehydes and amides in the presence of catalytic amount of silica-supported molybdatophosphoric acid (H3PMo12O40.xH2O/SiO2, 3.17 mol% is described. The reactions proceed rapidly and the title compounds are produced in high to excellent yields.

  2. Green and solvent-free procedure for microwave-assisted synthesis ...

    Indian Academy of Sciences (India)

    tant tool in organic synthesis and therefore microwave chemistry can provide ... silica nanoparticles for preparation of highly substi- tuted pyridines.42 ..... MgO. 30. 60. 9. BaO. 25. 65. 10. NaOEt. 22. 70. 11. L-Alanine. 25. 65. 12. Montmorillonite.

  3. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar

    2017-08-09

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method for a series of transition-MS nanoparticles using thiourea as a reactive precursor without capping agents. This study also reports the synthesis of MS with single metals (Fe, Co, Ni, Cu, and Zn) and quaternary CuGa2In3S8 using the same synthesis protocol. Thiourea first melts to form a molten-state condition to serve as the reaction medium at a relatively low temperature (<200 °C), followed by its thermal decomposition to induce a reaction with the metal precursor to form different MS. This synthesis protocol, owing to its dynamic characteristics, involves the formation of a variety of organic carbon nitride polymeric complexes around the MS particles. Dynamic nuclear polarization surface-enhanced nuclear magnetic resonance spectroscopy is effective to identify the polymeric compositions and structures as well as their interactions with the MS. These results provided thorough structural descriptions of the MS nanoparticles surrounded by the carbon nitride species derived from thiourea, which may find various applications, including photocatalytic water splitting.

  4. Predicting the Disorder–Order Transition of Solvent-Free Nanoparticle–Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu

    2013-07-02

    The transition from a disordered to a face-centered-cubic phase in solvent-free oligomer-tethered nanoparticles is predicted using a density-functional theory for model hard spheres with tethered bead-spring oligomers. The transition occurs without a difference of volume fraction for the two phases, and the phase boundary is influenced by the loss of oligomer configurational entropy relative to an ideal random system in one phase compared with the other. When the particles are localized in the ordered phase, the cooperation of the oligomers in filling the space is hindered. Therefore, shorter oligomers feel a stronger entropic penalty in the ordered solid and favor the disordered phase. Strikingly, we found that the solvent-free system has a later transition than hard spheres for all investigated ratios of oligomer radius of gyration to particle radius. © 2013 American Chemical Society.

  5. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst

    Directory of Open Access Journals (Sweden)

    Martin Obst

    2016-11-01

    Full Text Available A method for the solvent-free photocatalytic conversion of solid and liquid substrates was developed, using a novel rod mill apparatus. In this setup, thin liquid films are realized which is crucial for an effective photocatalytic conversion due to the low penetration depth of light in heterogeneous systems. Several benzylic alcohols were oxidized with riboflavin tetraacetate as photocatalyst under blue light irradiation of the reaction mixture. The corresponding carbonyl compounds were obtained in moderate to good yields.

  6. Synthesis of β-phenylchalcogeno-α, β-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions

    International Nuclear Information System (INIS)

    Lenardao, Eder J.; Silva, Marcio S.; Mendes, Samuel R.; Azambuja, Francisco de; Jacob, Raquel G.; Perin, Gelson; Santos, Paulo Cesar Silva dos

    2007-01-01

    A simple, clean and efficient solvent-free protocol was developed for hydrochalcogenation of alkynes containing a Michael acceptor (ester, ketone and nitrile) with phenylchalcogenolate anions generated in situ from the respective diphenyl dichalcogenide (Se, Te, S), using alumina supported sodium borohydride. This efficient and improved method is general and furnishes the respective (Z)-β-phenylchalcogeno-α,β-unsaturated esters, ketones and nitriles, in good yield and higher selectivity, compared with those that use organic solvent and inert atmosphere. The use of microwave (MW) irradiation facilitates the procedure and accelerates the reaction. (author)

  7. Clean synthesis of biolubricant range esters using novel liquid lipase enzyme in solvent free medium.

    Science.gov (United States)

    Trivedi, Jayati; Aila, Mounika; Sharma, Chandra Dutt; Gupta, Piyush; Kaul, Savita

    2015-01-01

    In view of the rising global problems of environment pollution and degradation, the present process provides a 'green solution' to the synthesis of higher esters of lubricant range, more specifically in the range C12-C36, using different combinations of acids and alcohols, in a single step reaction. The esters produced are biodegradable in nature and have a plethora of uses, such as in additives, as lubricating oils and other hydraulic fluids. The enzymatic esterification was performed using liquid (non-immobilized or free) lipase enzyme, without any additional organic solvent. Soluble lipase proves to be superior to immobilized enzymes as it is more cost effective and provides a faster process for the production of higher esters of lubricant range. An interesting finding was, that the lipase enzyme showed higher conversion rates with increasing carbon number of straight chain alcohols and acids. Reactions were carried out for the optimization of initial water concentration, temperature, pH of the substrate mixture and the chain length of the substrates. Under optimized conditions, the method was suitable to achieve ~ 99% conversion. Thus, the process provides an environment friendly, enzymatic alternative to the chemical route which is currently used in the industrial synthesis of lubricant components.

  8. Facile synthesis of 1-naphthol azo dyes with nano SiO2/HIO4 under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    A.R. Pourali

    2013-09-01

    Full Text Available Nano-silica supported periodic acid (nano-SPIA has been utilized as a heterogeneous reagent for a highly efficient and one pot synthesis of azo dyes based on 1-naphthol under solvent-free conditions at room temperature. This method has some advantages, the reaction workup is very easy and the catalyst can be easily separated from the reaction mixture and one-pot procedure. The related products have been obtained in good to excellent yields, high purity and short reaction times. The structures of the products have been characterized by several techniques using UV-Vis, FT-IR, 1H NMR, 13C NMR and mass spectra.DOI: http://dx.doi.org/10.4314/bcse.v27i3.13

  9. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil.

    Science.gov (United States)

    Sun, Shangde; Zhu, Sha; Bi, Yanlan

    2014-09-01

    A novel enzymatic route of feruloylated structured lipids synthesis by the transesterification of ethyl ferulate (EF) with castor oil, in solvent-free system, was investigated. The transesterification reactions were catalysed by Novozym 435, Lipozyme RMIM, and Lipozyme TLIM, among which Novozym 435 showed the best catalysis performance. Effects of feruloyl donors, reaction variables, and ethanol removal on the transesterification were also studied. High EF conversion (∼100%) was obtained under the following conditions: enzyme load 20% (w/w, relative to the weight of substrates), reaction temperature 90 °C, substrate molar ratio 1:1 (EF/castor oil), 72 h, vacuum pressure 10 mmHg, and 200 rpm. Under these conditions, the transesterification product consisted of 62.6% lipophilic feruloylated structured lipids and 37.3% hydrophilic feruloylated lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    International Nuclear Information System (INIS)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo; Monge, Antonio

    2011-01-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  11. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dept. de Farmacia y Quimica Medicinal; Monge, Antonio [Universidad de Navarra, Pamplona (Spain). Centro de Investigacion en Farmacobiologia Aplicada. Unidad de Investigacion y Desarrollo de Medicamentos

    2011-07-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  12. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  13. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar; Abou-Hamad, Edy; Anjum, Dalaver H.; Gurinov, Andrei; Takanabe, Kazuhiro

    2017-01-01

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method

  14. MICROWAVES IN ORGANIC SYNTHESIS

    Science.gov (United States)

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  15. Microwave-Enhanced Sulphated Zirconia and SZ/MCM-41 Catalyzed Regioselective Synthesis of β-Amino Alcohols Under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Eduardo González-Zamora

    2008-04-01

    Full Text Available A solvent-free approach for the regioselective synthesis of β-amino alcohols inshorter reaction times and higher yields, compared to conventional heating is described. Itinvolves microwave (MW exposure of undiluted reactants in the presence of sulphatedzirconia (SZ or sulphated zirconia over MCM-41 (SZM as catalyst. Both acid materialscan be easily recovered and reused.

  16. An efficient solvent-free synthesis of meso-substituted dipyrromethanes using SnCl2•2H2O catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer Ahmed Shaikh

    2012-07-01

    Full Text Available Highly rapid and simple methodology has been developed for the quantitative synthesis of meso-substituted dipyrromethanes from lowest pyrrole/aldehyde ratio. The method was carried out by using SnCl2•2H2O as a catalyst under solvent free condition. The method is environmentally friendly, easy to workup, and gives excellent yield of the products.

  17. SOLVENT FREE ONE POT SYNTHESIS OF NOVEL NAPHTHO[1,8 ...

    African Journals Online (AJOL)

    KEY WORDS: Synthesis, Naphtho[1,8-gh]quinazoline-7,10-diones, One pot, ... In this regard, development of novel compounds and especially diverse small ..... catalysed by lithium bromide: An improved procedure for the Biginelli reaction.

  18. Solvent-free lipase catalysed synthesis of diacylgycerols as low-calorie food ingredients

    OpenAIRE

    Luis eVazquez

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short and medium chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its re-synthesis in th...

  19. Solvent-free lipase catalysed synthesis of diacylgycerols as low-calorie food ingredients

    Directory of Open Access Journals (Sweden)

    Luis eVazquez

    2016-02-01

    Full Text Available Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short and medium chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its re-synthesis in the enterocyte and its metabolism and absorption by the enterocyte are limited in comparison with the TAG, reducing chylomicron formation. In this work these two effects were combined to synthesize short and medium chain 1,3 diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase catalysed transesterification reactions were performed between short and medium chain fatty acid ethyl esters and glycerol. Different variables were investigated such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel or the addition of lecithin. Best reaction conditions were evaluated considering the conversion intopercentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica, other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei with 52% and 60.7% of DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs 1,2-DAG were Lipozyme RM IM (39.8% and 20.9%, respectively and Lipase PLG (Alcaligenes sp. (35.9% and 19.3%, respectively. By adding 1% (w/w of lecithin to the reaction with Novozym 435 and raw glycerol the reaction rate was considerably increased from 41.7% to 52.8% DAG at 24 h.

  20. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    Science.gov (United States)

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenes using grindstone chemistry

    Directory of Open Access Journals (Sweden)

    Devji S. Patel

    2016-09-01

    Full Text Available An easy solvent-free method is described for the synthesis of 3,4-dihydropyrano[c]chromenes by a one pot three component coupling reaction of aromatic aldehydes, malononitrile, and 4-hydroxycoumarin using basic ionic liquid as the catalyst by grindstone chemistry. The salient features of this one pot protocol are short reaction times, cleaner reaction profiles and simple workup.

  2. “Flash” Solvent-free Synthesis of Triazoles Using a Supported Catalyst

    Directory of Open Access Journals (Sweden)

    Ibtissem Jlalia

    2009-01-01

    Full Text Available A solvent-free synthesis of 1,4-disubstituted-1,2,3-triazoles using neat azides and alkynes and a copper(I polymer supported catalyst (Amberlyst® A21•CuI is presented herein. As it provides the products in high yields and purities within minutes, this method thus being characterized as a "flash" synthesis, and was exemplified through the synthesis of a 24-compound library on a small scale.

  3. An efficient solvent-free synthesis of imidazolines and benzimidazoles using K 4[Fe(CN 6] catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer A. Shaikh

    2012-01-01

    Full Text Available Imidazolines and Benzimidazoles have been efficiently synthesized in high yields by treatment of 1,2-diamine with aldehydes using the metal co-ordinate complex K 4[Fe(CN 6] as a catalysis. The method was carried out under solvent free condition via oxidation of carbon-nitrogen bond. The process is green, mild and inexpensive.

  4. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    Science.gov (United States)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-09-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10-2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost.

  5. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    Science.gov (United States)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-01-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10–2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost. PMID:26416434

  6. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  7. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang; He, Shuqing; An, Feng

    2013-01-01

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  9. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang, E-mail: chunxl@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); He, Shuqing [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Feng [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2013-08-15

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  10. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Bina S. Siddiqui

    2008-08-01

    Full Text Available A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total were in the 6-34% range and all compounds were fully characterized.

  11. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    Science.gov (United States)

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. NaHSO4-SiO2-Promoted Solvent-Free Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    K. Ravi Kumar

    2013-01-01

    Full Text Available An efficient protocol has been developed for the preparation of a library of benzoxazole, benzimidazole, and benzothiazole derivatives from reactions of acyl chlorides with o-substituted aminoaromatics in the presence of catalytic amount of silica-supported sodium hydrogen sulphate under solvent-free conditions. Simple workup procedure, high yield, easy availability, reusability, and use of ecofriendly catalyst are some of the striking features of the present protocol.

  13. Solvent-free synthesis of azomethines, spectral correlations and antimicrobial activities of some E-benzylidene-4-chlorobenzenamines

    Directory of Open Access Journals (Sweden)

    R. Suresh

    2015-07-01

    Full Text Available Some azomethines including substituted benzylidene-4-chlorobenzenamines (E-imines have been synthesized by fly-ash: PTS catalyzed microwave assisted condensation of 4-chloroaniline and substituted benzaldehydes under solvent-free conditions. The yield of the imines has been found to be more than 85%. The purity of all imines has been checked using their physical constants and UV, IR and NMR spectral data. These spectral data have been correlated with Hammett substituent constants and F and R parameters using single and multi-linear regression analysis. From the results of statistical analysis, the effect of substituents on the above spectral data has been studied. The antimicrobial activities of all imines have been studied using standard methods.

  14. Vanadium Hydrogen Sulfate Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Bis-(indolyl) methanes

    Energy Technology Data Exchange (ETDEWEB)

    Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D. Imani [Univ. of Guilan, Rasht (Iran, Islamic Republic of)

    2010-06-15

    We have developed a mild, simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and bis-(indolyl) methanes catalyzed by V(HSO{sub 4}){sub 3}. Based on our studies, this method offers several adavantages including mild reaction conditions, good to high yields of the products, short reaction times, solvent-free reaction conditions and simple experimental procedure. 3,4-Dihydropyrimidin-2(1H)-ones and their derivatives have attracted increasing interest due to their wide range of therapeutical and pharmacological properties, such as antiviral, antitumor, antibacterial, and antiinflammatory properties. Some of them have been successfully used as calcium channel blockers, antihypertensive agents, and α1a-antagonists. Moreover, several marine alkaloids whose molecular structures contain the dihydropyrimidinone core also exhibit interesting biological activities. Therefore, synthesis of these type of compounds is still of great importance.

  15. Vanadium Hydrogen Sulfate Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Bis-(indolyl) methanes

    International Nuclear Information System (INIS)

    Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D. Imani

    2010-01-01

    We have developed a mild, simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and bis-(indolyl) methanes catalyzed by V(HSO 4 ) 3 . Based on our studies, this method offers several adavantages including mild reaction conditions, good to high yields of the products, short reaction times, solvent-free reaction conditions and simple experimental procedure. 3,4-Dihydropyrimidin-2(1H)-ones and their derivatives have attracted increasing interest due to their wide range of therapeutical and pharmacological properties, such as antiviral, antitumor, antibacterial, and antiinflammatory properties. Some of them have been successfully used as calcium channel blockers, antihypertensive agents, and α1a-antagonists. Moreover, several marine alkaloids whose molecular structures contain the dihydropyrimidinone core also exhibit interesting biological activities. Therefore, synthesis of these type of compounds is still of great importance

  16. Oligoquinolines under Solvent-free Microwave Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwi-Jeon; Kwon, Tae-Woo [Kyungsung University, Busan (Korea, Republic of)

    2015-01-15

    Quinolines are thermally stable and can be used as an excellent n-type semiconducting materials. Since quinolines are also known to be electron acceptor molecules, combination of various electron donor building blocks can be utilized in photonic and electronic organic light-emitting diode (OLED) applications. For example, donor.acceptor systems with phenothiazine (or carbazole) molecules as electron donors and the phenylquinoline group as an electron acceptor provide an efficient approach for the design of new materials exhibiting highly efficient charge-transfer photophysics and electroluminescence in OLEDs. We have described the Friedlander quinoline synthesis between aminobenzophenones and symmetrical diacetyl compounds having phenothiazine, carbazole, biphenyl, and phenyl moieties under solvent-free microwave irradiation in 12.98% isolated yields.

  17. Microwave-assisted one-pot synthesis of ring-fused aminals under catalyst- and solvent-free conditions

    Science.gov (United States)

    Heterocyclic compounds hold a special place in drug discovery and variety of techniques such as combinatorial synthesis, parallel synthesis, and automated library production to increase the output of these entities has been developed. Although most of these techniques are rapid a...

  18. Solvent-free and room temperature synthesis of 3-arylquinolines from different anilines and styrene oxide in the presence of Al2O3/MeSO3H

    Directory of Open Access Journals (Sweden)

    Hashem Sharghi

    2017-09-01

    Full Text Available A highly efficient, simple and environmentally friendly synthesis of 3-arylquinolines has been developed in the presence of Al2O3/MeSO3H via one-pot reaction of anilines and styrene oxide. This methodology provides very rapid access to 3-arylquinolines in good to excellent yields under solvent-free conditions at room temperature in air.

  19. Mechanochemical Solvent-Free and Catalyst-Free One-Pot Synthesis of Pyrano[2,3-d]Pyrimidine-2,4(1H,3H-Diones with Quantitative Yields

    Directory of Open Access Journals (Sweden)

    M. Reza Naimi-Jamal

    2009-01-01

    Full Text Available Solvent-free synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H-diones by ball-milling and without any catalyst is described. This method provides several advantages such as being environmentally friendly, using a simple workup procedure, and affording high yields.

  20. Dipyridine cobalt chloride as an efficient and chemoselective catalyst for the synthesis of 1,1-diacetates under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sobhan Rezayati

    2014-02-01

    Full Text Available 1,1-Diacetates(acylals were prepared by direct condensation of various aldehydes with acetic anhydride using dipyridine cobalt chloride (CoPy2Cl2 as an efficient and green catalyst under solvent-free conditions at room temperature. The important features of this catalyst method are that the catalyst is solid, stable at high temperatures, soluble in water, stable in air, immiscible in common organic solvents, and low toxic and, above all, it is reusable. CoPy2Cl2 can be recycled after a simple work-up and reused at least five runs without appreciable loss of its catalytic activity. High chemo-selectivity toward aldehyde in the presence of ketones is another advantage of the present method which provides selective protection of aldehydes in their mixtures with ketones.

  1. Synthesis, characterization and catalytic application of silica supported tin oxide nanoparticles for synthesis of 2,4,5-tri and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2017-02-01

    Full Text Available Highly efficient and eco-friendly, one pot synthesis of 1,2,4,5-tetra substituted imidazoles and 2,4,5-trisubstituted imidazoles was reported under solvent free conditions using nanocrystalline silica supported tin oxide (SiO2:SnO2 as a catalyst with excellent yield. The present methodology offers several advantages such as mild reaction conditions, short reaction time, good yield, high purity of product, recyclable catalyst without a noticeable decrease in catalytic activity and can be used for large scale synthesis. The synthesized SiO2:SnO2 nanocrystalline catalyst was characterized by XRD, BET surface area and TEM techniques.

  2. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  3. Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

    Directory of Open Access Journals (Sweden)

    Shahnaz Rostamizadeh

    2017-01-01

    Full Text Available The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2 nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES with magnetic graphene oxide (Fe3O4-GO. It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO along with the amine groups post grafted to the surface of Fe3O4-GO led to preparation of an acid-base bifunctional magnetically recyclable nanocatalyst. It proved to be efficient nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives under mild reaction conditions with good to excellent yields. This heterogeneous catalyst also exhibited higher activities than acid or base functionalized mesoporous silica, magnetic GO or basic Al2O3 an even higher than some basic homogeneous catalysts such as triethylamine and piperazine. More importantly, due to the loaded iron oxide nanoparticles, this catalyst could be easily recovered from the reaction mixture using an external magnet and reused without significant decrease in activity even after 7 runs.

  4. Solvent-free microwave-assisted synthesis of novel pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines with potential antifungal activity

    Directory of Open Access Journals (Sweden)

    Paola Acosta

    2016-05-01

    Full Text Available Novel fused pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines 5 were prepared by a solvent-free microwave assisted reaction of heterocyclic o-aminonitriles 3 and cyanopyridines 4 in the presence of tBuOK as catalyst. This protocol provides a versatile procedure for the synthesis of the title compounds with the advantages of easy work-up, mild reaction conditions and good yields. All compounds were also tested for antifungal properties against two clinically important fungi; Candida albicans and Cryptococcus neoformans. Several compounds showed moderate activity against both fungi, being 5a the most active compound. Analysis of the antifungal behavior of properly grouped compounds allowed to determine that the position of the N in the pyrimidyl moiety per se does not play a role in the activity. In turn, the type of 4-R substituent appears to influence the activity. In addition to the above considerations, the lipophilicity of compounds measured as logP showed to be not related to the activity and regarding the dipole moment (D, no net correlation was observed, although it is the most active compounds (% inhibition >50% that have a D ⩾ 7.5, mainly against C. albicans.

  5. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems.

    Science.gov (United States)

    Lima, Lionete N; Oliveira, Gladson C; Rojas, Mayerlenis J; Castro, Heizir F; Da Rós, Patrícia C M; Mendes, Adriano A; Giordano, Raquel L C; Tardioli, Paulo W

    2015-04-01

    This work describes the preparation of biocatalysts for ethanolysis of soybean and babassu oils in solvent-free systems. Polystyrene, Amberlite (XAD-7HP), and octyl-silica were tested as supports for the immobilization of Pseudomonas fluorescens lipase (PFL). The use of octyl-silica resulted in a biocatalyst with high values of hydrolytic activity (650.0 ± 15.5 IU/g), immobilization yield (91.3 ± 0.3 %), and recovered activity (82.1 ± 1.5 %). PFL immobilized on octyl-silica was around 12-fold more stable than soluble PFL, at 45 °C and pH 8.0, in the presence of ethanol at 36 % (v/v). The biocatalyst provided high vegetable oil transesterification yields of around 97.5 % after 24 h of reaction using babassu oil and around 80 % after 48 h of reaction using soybean oil. The PFL-octyl-silica biocatalyst retained around 90 % of its initial activity after five cycles of transesterification of soybean oil. Octyl-silica is a promising support that can be used to immobilize PFL for subsequent application in biodiesel synthesis.

  6. Facile and solvent-free routes for the synthesis of size-controllable Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Ngo, Thanh Hieu; Tran, Dai Lam; Do, Hung Manh; Le, Van Hong; Nguyen, Xuan Phuc; Tran, Vinh Hoang

    2010-01-01

    Magnetite nanoparticles are one of the most important materials that are widely used in both medically diagnostic and therapeutic research. In this paper, we present some facile and non-toxic synthetic approaches for size-controllable preparations of magnetite nanoparticles, which are appropriate for biomedical applications, namely (i) co-precipitation; (ii) reduction–precipitation and (iii) oxidation–precipitation. Magnetic characterizations of the obtained nanoparticles have been studied and discussed. The oxidation precipitation route was chosen for investigation of the dependence of kinetic driven activation energy and that of coercive force on particle size (and temperature) during the course of the reaction. The structural–magnetic behavior was also correlated. Being solvent and surfactant-free, these methods are advantageous for synthesis and further functionalization towards biomedical applications

  7. Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products

    Directory of Open Access Journals (Sweden)

    Vahid Vahabi

    2014-08-01

    Full Text Available A rapid and efficient solvent-free one-pot synthesis of coumarin derivatives by Pechmann condensation reactions of phenols with ethyl acetoacetate using FeF3 as a catalyst under microwave irradiation is described. This one-pot synthesis on a solid inorganic support provides the products in good yields. The newly synthesized compounds were systematically characterized by IR, 1H-NMR, 13C-NMR, MS and elemental CHN analyses. The proposed solvent-free microwave irradiation method using the environmentally friendly catalyst FeF3 offers the unique advantages of high yields, shorter reaction times, easy and quick isolation of the products, excellent chemoselectivity, and a one-pot, green synthesis. The products were screened for antimicrobial activity, and the results showed that the compounds reacted against all the tested bacteria.

  8. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology.

    Directory of Open Access Journals (Sweden)

    Khairulazhar Jumbri

    Full Text Available Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM based on central composite rotatable design (CCRD was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435 as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield. The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.

  9. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology.

    Science.gov (United States)

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.

  10. Potassium Hydroxide Impregnated Alumina (KOH-Alumina) as a Recyclable Catalyst for the Solvent-Free Multicomponent Synthesis of Highly Functionalized Substituted Pyridazines and/or Substituted Pyridazin-3(2H)-ones under Microwave Irradiation.

    Science.gov (United States)

    Mecadon, Hormi; Myrboh, Bekington

    2011-01-01

    The work described herein employs potassium hydroxide impregnated alumina (KOH-alumina) as a mild, efficient, and recyclable catalyst for a one-pot solvent-free and environmentally safer synthesis of 3,4,6-triarylpyridazines and some substituted pyridazines from active methylene carbonyl species, 1,2-dicarbonyls, and hydrazine hydrate by microwave (MW) irradiation. The method offers highly convergent, inexpensive, and functionality-tolerable procedure for rapid access to important pyridazine compounds in good yields.

  11. A Facile Solvent Free Microwave Induced Synthesis and Antibacterial Activity of Some 3-(2’-Hydroxyphenyl-5-(Substituted Aryl-2-Pyrazoline-N1-Caboxaldehydes

    Directory of Open Access Journals (Sweden)

    Birbal Bajia

    2007-01-01

    Full Text Available A novel one pot formylation of 3-(2’-hydroxyphenyl-5-(substituted 2-pyrazolines has been carried out using microwave irradiation with formic acid. solvent free reaction afforded title compounds in 80-90% yield with high purity.synthesized compounds were tested for their antibacterial activity using standard drug.

  12. Synthesis of 1-amidoalkyl-2-naphthols based on a three-component reaction catalyzed by boric acid as a solid heterogeneous catalyst under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Zahed Karimi-Jaberi

    2012-12-01

    Full Text Available An efficient method for the preparation of 1-amidoalkyl-2-naphthols has been described using a multi-component, one-pot condensation reaction of 2-naphthol, aldehydes and amides in the presence of boric acid under solvent-free conditions.DOI: http://dx.doi.org/10.4314/bcse.v26i3.18

  13. Natrolite zeolite: A natural and reusable catalyst for one-pot synthesis of α-aminophosphonates under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Siavash Bahari

    2017-02-01

    Full Text Available α-Aminophosphonates are synthesized efficiently by one-pot reaction of aldehydes or ketones, amines, trialkyl phosphites in the presence of Natrolite zeolite as a natural catalyst under solvent-free conditions. Furthermore, the catalyst can be reused several times without any significant loss of catalytic activity.

  14. Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks.

    Science.gov (United States)

    Baidya, Avijit; Ganayee, Mohd Azhardin; Jakka Ravindran, Swathy; Tam, Kam Chiu; Das, Sarit Kumar; Ras, Robin H A; Pradeep, Thalappil

    2017-11-28

    In view of a great demand for paper-based technologies, nonwettable fibrous substrates with excellent durability have drawn much attention in recent years. In this context, the use of cellulose nanofibers (CNFs), the smallest unit of cellulosic substrates (5-20 nm wide and 500 nm to several microns in length), to design waterproof paper can be an economical and smart approach. In this study, an eco-friendly and facile methodology to develop a multifunctional waterproof paper via the fabrication of fluoroalkyl functionalized CNFs in the aqueous medium is presented. This strategy avoids the need for organic solvents, thereby minimizing cost as well as reducing safety and environmental concerns. Besides, it widens the applicability of such materials as nanocellulose-based aqueous coatings on hard and soft substrates including paper, in large areas. Water droplets showed a contact angle of 160° (±2°) over these surfaces and rolled off easily. While native CNFs are extremely hydrophilic and can be dispersed in water easily, these waterborne fluorinated CNFs allow the fabrication of a superhydrophobic film that does not redisperse upon submersion in water. Incorporated chemical functionalities provide excellent durability toward mechanochemical damages of relevance to daily use such as knife scratch, sand abrasion, spillage of organic solvents, etc. Mechanical flexibility of the chemically modified CNF composed paper remains intact despite its enhanced mechanical strength, without additives. Superhydrophobicity induced excellent microbial resistance of the waterproof paper which expands its utility in various paper-based technologies. This includes waterproof electronics, currency, books, etc., where the integrity of the fibers, as demonstrated here, is a much-needed criterion.

  15. An Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H-Ones and Thiones Catalyzed by a Novel Brønsted Acidic Ionic Liquid under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2015-02-01

    Full Text Available We report here an efficient and green method for Biginelli condensation reaction of aldehydes, β-ketoesters and urea or thiourea catalyzed by Brønsted acidic ionic liquid [Btto][p-TSA] under solvent-free conditions. Compared to the classical Biginelli reaction conditions, the present method has the advantages of giving good yields, short reaction times, near room temperature conditions and the avoidance of the use of organic solvents and metal catalyst.

  16. An efficient and high-yielding one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones catalyzed by sodium hydrogen carbonate under solvent-free conditions

    OpenAIRE

    Asieh Vafaee; Abolghasem Davoodnia; Mehdi Pordel; Mohammad Reza Bozorgmehr

    2015-01-01

    Sodium hydrogen carbonate, NaHCO3, efficiently catalyzes the one-pot, three-component reaction of phthalhydrazide, an aromatic aldehyde, and malononitrile or ethyl cyanoacetate under solvent-free conditions, to afford the corresponding 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in high yields. Easy work‐up, inexpensive and readily available catalyst and avoiding the use of harmful organic solvents are other advantages of this simple procedure.

  17. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    Science.gov (United States)

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structure factor of blends of solvent-free nanoparticle–organic hybrid materials: density-functional theory and small angle X-ray scattering

    KAUST Repository

    Yu, Hsiu-Yu

    2014-09-15

    © the Partner Organisations 2014. We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials. This journal is

  19. Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering.

    Science.gov (United States)

    Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L

    2014-12-07

    We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.

  20. Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Akbar Rostami-Vartooni

    2015-12-01

    Full Text Available In this study, Cu nanoparticles were immobilized on the surface of natural bentonite using Thymus vulgaris extract as a reducing and stabilizing agent. The natural bentonite-supported copper nanoparticles (Cu NPs/bentonite were characterized by FTIR spectroscopy, X-ray diffraction (XRD, X-ray fluorescence (XRF, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, selected area electron diffraction (SAED and Brunauer–Emmett–Teller (BET analysis. Afterward, the catalytic performance of the prepared catalyst was investigated for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol (4-NP in water. It was found that the Cu NPs/bentonite is a highly active and recyclable catalyst for related reactions.

  1. B2O3/Al2O3 as a new, highly efficient and reusable heterogeneous catalyst for the selective synthesis of β-enamino ketones and esters under solvent-free conditions

    International Nuclear Information System (INIS)

    Chen, Jiu-Xi; Gao, Wen-Xia; Jin, Hui-Le; Ding, Jin-Chang; Wu, Hua-Yue

    2010-01-01

    Boron oxide adsorbed on alumina (B 2 O 3 /Al 2 O 3 ) has been found to be a new and highly efficient heterogeneous catalyst for the synthesis of β-enamino ketones and esters by the enamination of various primary and secondary amines with β-dicarbonyl compounds under solvent-free conditions. The important features of this methodology are broad substrate scope, high yield, no requirement of metal catalysts, high regio- and chemoselectivity and environmental friendliness. In addition, the catalyst could be recovered easily after the reactions and reused without evident loss of reactivity. (author)

  2. Solvent-Free Lipase-Catalyzed Synthesis of Technical-Grade Sugar Esters and Evaluation of Their Physicochemical and Bioactive Properties

    Directory of Open Access Journals (Sweden)

    Ran Ye

    2016-05-01

    Full Text Available Technical-grade oleic acid esters of sucrose and fructose were prepared using solvent-free biocatalysis at 65 °C, without any downstream purification applied, and their physicochemical and bioactivity-related properties were evaluated and compared to a commercially available sucrose laurate emulsifier. To increase the conversion of sucrose and fructose oleate, prepared previously using solvent-free lipase-catalyzed esterification catalyzed by Rhizomucor miehei lipase (81% and 83% ester, respectively, the enzymatic reaction conditions was continued using CaSO4 to control the reactor’s air headspace and a lipase (from Candida antarctica B with a hydrophobic immobilization matrix to provide an ultralow water activity, and high-pressure homogenation, to form metastable suspensions of 2.0–3.3 micron sized saccharide particles in liquid-phase reaction media. These measures led to increased ester content of 89% and 96% for reactions involving sucrose and fructose, respectively. The monoester content among the esters decreased from 90% to <70% due to differences in regioselectivity between the lipases. The resultant technical-grade sucrose and fructose lowered the surface tension to <30 mN/m, and possessed excellent emulsification capability and stability over 36 h using hexadecane and dodecane as oils, comparable to that of sucrose laurate and Tween® 80. The technical-grade sugar esters, particularly fructose oleate, more effectively inhibited gram-positive foodborne pathogens (Lactobacillus plantarum, Pediococcus pentosaceus and Bacillus subtilis. Furthermore, all three sugar esters displayed antitumor activity, particularly the two sucrose esters. This study demonstrates the importance of controlling the biocatalysts’ water activity to achieve high conversion, the impact of a lipase’s regioselectivity in dictating product distribution, and the use of solvent-free biocatalysis to important biobased surfactants useful in foods, cosmetics

  3. 1,3-Dibromo 5,5-dimethylhydantoin (DBH-Catalyzed Solvent-Free Synthesis of 2-arylbenzimidazoles under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Mehdi Forouzani

    2012-01-01

    Full Text Available An expeditious synthesis of 2-aryl-benzimidazoles by the condensation of o-phenylenediamine with various arylaldehydes is described. This greener protocol is catalyzed by 1,3-Dibromo 5,5-dimethylhydantoin (DBH, and proceeds efficiently in the absence of any organic solvent under thermal condition and microwave irradiation in high yields.

  4. FeF(3) catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition.

    Science.gov (United States)

    Atar, Amol B; Jeong, Yeon Tae

    2014-05-01

    A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.

  5. One Pot Synthesis of α-Aminophosphonates Containing Bromo and 3,4,5-Trimethoxybenzyl Groups under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2007-02-01

    Full Text Available New α-aminophosphonates were synthesized by the Kabachnik-Fields reactionof 3,4,5-trimethoxybenzaldehyde (TMB with p- or m-bromoaniline and a dialkylphosphite under solvent-free conditions. TMB was prepared from gallic acid via a fourstep synthetic sequence involving etherification, esterification, hydrazidation andpotassium ferricyanide oxidation. The structures of all synthesized compounds wereconfirmed by elemental analysis, IR, 1H-, 13C- and 31P-NMR spectral data. Compound 7gwas also characterized by X-ray crystallography. A half-leaf method was used todetermine the in vivo curative efficacy of the eight title products against tobacco mosaicvirus (TMV. It was found that compounds 7g and 7h possess good in vivo curativeeffects against TMV.

  6. Magnetic Nanoparticle Immobilized N-Propylsulfamic Acid as a Recyclable and Efficient Nanocatalyst for the Synthesis of 2H-indazolo[2,1-b]phthalazine-triones in Solvent-Free Conditions: Comparison with Sulfamic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Amin; Tahmasbi, Bahman; Yari, Ako [Univ. of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-05-15

    N-Propylsulfamic acid supported onto magnetic Fe{sub 3}O{sub 4} nanoparticles (MNPs-PSA) was used as an efficient and magnetically recoverable catalyst for synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives from the three-component, one-pot condensation reaction of phthalhydrazide, aromatic aldehydes and cyclic 1,3-diones, in good to excellent yields at 100 .deg. C under solvent-free conditions. The catalyst was easily separated with the assistance of an external magnetic field from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency. In order to compare, the synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives in the presence of catalytic amount of sulfamic acid (SA) under same reaction condition was also reported.

  7. Nano crystalline ZnO catalyzed one pot three-component synthesis of 7-alkyl-6H,7H- naphtho[1',2':5,6]pyrano[3,2-c] chromen-6-ones under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    M. J. Piltan

    2016-08-01

    Full Text Available In the present paper, an efficient one-pot synthesis of 7-alkyl-6H,7H-naphtho[1',2':5,6]pyrano[3,2-c]chromen-6-ones is described by three-component reaction of β-naphthol, aromatic aldehydes and 4-hydroxycoumarin using ZnO nanoparticles under solvent-free conditions. The present method provides a novel and efficient procedure for the synthesis of chromene derivatives with some advantageous such as short reaction times, easy workup, high yields, wide range of products, reusability of the catalyst, little catalyst loading and green conditions in the presence of ZnO nanoparticles (7 mol% at 110 ºC.

  8. Organic synthesis

    International Nuclear Information System (INIS)

    Lallemand, J.Y.; Fetizon, M.

    1988-01-01

    The 1988 progress report of the Organic Synthesis Chemistry laboratory (Polytechnic School, France), is presented. The laboratory activities are centered on the chemistry of natural products, which have a biological activity and on the development of new reactions, useful in the organic synthesis. The research works involve the following domains: the natural products chemistry which are applied in pharmacology, the plants and insects chemistry, the organic synthesis, the radical chemistry new reactions and the bio-organic physicochemistry. The published papers, the congress communications and the thesis are listed [fr

  9. A convenient synthesis of 3-aryl-1,2,4-oxadiazoles from ethyl acetoacetate and amidoximes under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Juliana L. L. F. Regueira

    2012-06-01

    Full Text Available 1,2,4-Oxadiazole containing compounds have attracted great attention due to their applications in material chemistry and therapeutics. Herein we report a convenient synthesis of 3-aril-[1,2,4-oxadiazol-5yl] propan-2-one (3a-d by heating of b-ceto esters and an amidoximes without any solvent and in the absence of base. The arylamidoximes (1a-f was synthesized in moderate and excellent yields (31- 89% by reaction of nitrile with hydroxylamine hydrochloride in water at 25ºC. In the general synthetic strategy employed in our study is illustrated in scheme 1. The 3-aril-[1,2,4-oxadiazol-5yl] propan-2-one (3a-f were synthesized by treatment of arylamidoxime (1a-f with b-ceto esters for 4 hour without any solvent and in the absence of base. The reaction was monitored  by TLC   (thin layer chromatography. The heterocycles (3a-f were obtained in moderate and good yields (60-88%. The products were identified using both analytical and spectral data (IR, 1H and 13C NMR and all compounds are in full agreement with the proposed structure.

  10. A new magnetically recoverable catalyst promoting the synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via the Hantzsch condensation under solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Narges; Heidarizadeh, Fariba; Kiasat, Alireza

    2017-04-15

    In the current study, 1,4-dihydropyridine and polyhydroquinoline derivatives were efficiently synthesized under solvent-less conditions with a magnetic catalyst containing novel acidic ionic liquid functionalized silica modified Fe{sub 3}O{sub 4} nanoparticles through a four component combination of β-ketoester, aldehydes and ammonium acetate (1, 2, 2). Several approaches have been reported for synthesizing these derivatives, while each of these approaches have some weaknesses including long time of reaction, excess of volatile organic solvent, low efficiency, costly reagents, complex operation, high temperatures, production of a number of side products, and difficult catalyst recovery. The simple operation, short time of reaction (5–30 min) and the high efficiency (80–94%) are the special advantages of this technique. The immobilized catalyst exhibited an appropriate thermal stability and excellent recyclability. Different methods such as FT-IR, SEM, EDX, TGA-DTA, and VSM were used to confirm and characterize the catalyst. - Highlights: • A new acidic ionic liquid were first synthesized and applied in both symmetric and asymmetric hantzsch reactions for preparing 1, 4-dihydropyridine and polyhydroquinoline derivatives with high efficiencies under solvent-less conditions. • The immobilized catalyst exhibited an appropriate thermal stability and excellent recyclability. • The nanomagnetic catalyst could be recovered from solution with an external magnet at once, allowing undemanding recovery and reuse. • The catalyst was reused for five times with no considerable decrease in catalytic activity.

  11. Mechanochemical solvent-free in situ synthesis of drug-loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for controlled drug delivery

    Science.gov (United States)

    Nadizadeh, Zahra; Naimi-Jamal, M. Reza; Panahi, Leila

    2018-03-01

    In the present study, ibuprofen-loaded nano metal-organic frameworks (NMOFs) {Cu2(1,4-bdc)2(dabco)}n and {Cu2(1,4-bdc-NH2)2(dabco)}n (bdc=benzenedicarboxylic acid, and dabco=diazabicyclooctane) were synthesized by ball-milling at room temperature in 2 h. The produced drug-loaded Cu-NMOFs were studied as ibuprofen drug delivery system and exhibited well-defined drug release behavior, exceptionally high drug loading capacities and the ability to entrap the model drug. The loading efficiency for ibuprofen was determined about 50.54% and 50.27%, respectively. The drug release of NMOFs was also monitored, and all of the loaded drug was released in 1 day. The NMOFs were characterized by FT-IR spectroscopy, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), SEM (scanning electron microscopy), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), UV-vis spectroscopy and N2 adsorption porosimetry (BET&BJH).

  12. SHORT COMMUNICATION SOLVENT FREE PREPARATION OF N ...

    African Journals Online (AJOL)

    Preferred Customer

    KEYWORDS: Solvent free, Maleanilic acids, Maleic anhydride, Aniline derivatives ... associated with the carboxylic group between 3275-2877 cm-1, the weak –NH .... Chemical shifts (σ/ppm) relative to TMS*. O-H N-H Ha. Hb. Hc. Hd. He. Hf.

  13. Organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.E.

    1991-01-01

    This paper reports on reactions of organoboranes. Organoboron routes to unsaturated hydrocarbons. Boronic ester homologation. Properties of organosilicon compounds. Alkene synthesis (Peterson olefination). Allylsilanes and acylsilanes.

  14. Sustainable Alternatives for the Synthesis of Organics and Nanomaterials

    Science.gov (United States)

    The presentation summarizes recent activity in eco-friendly chemical synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reaction...

  15. Sustainable Strategies for the Synthesis of Organics and Nanomaterials

    Science.gov (United States)

    The presentation summarizes recent activity in eco-friendly chemical synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reaction...

  16. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2012-01-01

    The diffusivity and structural relaxation characteristics of oligomer-grafted nanoparticles have been investigated with simulations of a previously proposed coarse-grained model at atmospheric pressure. Solvent-free, polymer-grafted nanoparticles as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent-free nanoparticles with longer chains have higher relative diffusivities than their short chain counterparts. Solvent-free nanoparticles with short chains undergo a glass transition as indicated by a vanishing diffusivity, diverging structural relaxation time and the formation of body-centered-cubic-like order. Nanoparticles with longer chains exhibit a more gradual increase in the structural relaxation time with decreasing temperature and concomitantly increasing particle volume fraction. The diffusivity of the long chain nanoparticles exhibits a minimum at an intermediate temperature and volume fraction where the polymer brushes of neighboring particles overlap, but must stretch to fill the interparticle space. © 2012 American Institute of Physics.

  17. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    Science.gov (United States)

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. SHORT COMMUNICATION A SOLVENT FREE AND SELECTIVE ...

    African Journals Online (AJOL)

    Preferred Customer

    1Department of Chemistry and Chemical Engineering, Faculty of Material ... A very simple and efficient method is described for protection of alcohols and ... Hydroxyl group protection is important in the synthesis of some organic molecules. ..... applied this method for the protection of hydroxyl groups in these compounds.

  20. Photo-triggered solvent-free metamorphosis of polymeric materials.

    Science.gov (United States)

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  1. Preparation of Ultra-fine Calcium Carbonate by a Solvent-free ...

    African Journals Online (AJOL)

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  2. Two New 1,1,3,3-Tetramethylguanidinium Halochromates (C5H14N3CrO3X (X: Cl, F: Efficient Reagents for Oxidation of Organic Substrates under Solvent-Free Conditions and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Kıvılcım Şendıl

    2016-01-01

    Full Text Available Two new mild oxidizing agents 1,1,3,3-tetramethylguanidinium fluorochromate (TMGFC and 1,1,3,3-tetramethylguanidinium chlorochromate (TMGCC were prepared in high yields by reacting tetramethylguanidine with CrO3 and related acid. These reagents are suitable to oxidize various primary and secondary alcohols and oximes to the corresponding carbonyl compounds under solvent-free conditions and microwave irradiation.

  3. Perlite-SO3H nanoparticles as an efficient and reusable catalyst for one-pot three-component synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives under both microwave-assisted and thermal solvent-free conditions: Single crystal X-ray structure analysis and theoretical study

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2016-01-01

    Full Text Available A general synthetic route for the synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives has been developed using perlite-SO3H nanoparticles as efficient catalyst under both microwave-assisted and thermal solvent-free conditions. The combination of 2-naphthol, aldehyde and urea enabled the synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives in the presence of perlite-SO3H nanoparticles in good to excellent yields. This method provides several advantages like simple work-up, environmentally benign, and shorter reaction times along with high yields. In order to explore the recyclability of the catalyst, the perlite-SO3H nanoparticles in solvent-free conditions were used as catalyst for the same reaction repeatedly and the change in their catalytic activity was studied. It was found that perlite-SO3H nanoparticles could be reused for four cycles with negligible loss of their activity. Single crystal X-ray structure analysis and theoretical studies also were investigated for 4i product. The electronic properties of the compound have been analyzed using DFT calculations (B3LYP/6-311+G*. The FMO analysis suggests that charge transfer takes place within the molecule and the HOMO is localized mainly on naphthalene and oxazinone rings whereas the LUMO resides on the naphthalene ring.

  4. Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles as new and green catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones under solvent-free condition

    Directory of Open Access Journals (Sweden)

    Eshagh Rezaee Nezhad

    2013-10-01

    Full Text Available The aim of this research is to study Ni2+ supported on hydroxyapatite-core-shell magnetic γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+ as a green and recyclable catalyst for the Biginelli reaction under solvent-free conditions. One-pot multi-component condensation of 1,3-dicarbonyl compounds, urea and aldehydes at 80 oC affords the corresponding compounds in high yields and in short reaction times using γ-Fe2O3@HAp-Ni2+. The catalyst can be readily isolated using an external magnet and no obvious loss of activity was observed when the catalyst was reused in seven consecutive runs. The mean size and the surface morphology of the nanoparticles were characterized by transmission electron microscopy, scanning electron microscope, vibrating sample magnetometry, X-ray powder diffraction and Fourier transform infrared techniques.

  5. Molybdenum oxide supported on silica (MoO{sub 3}/SiO{sub 2}): an efficient and reusable catalyst for the synthesis of 1,8-dioxodecahydroacridines under solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khojastehnezhad, A.; Vafaei, M. [Islamic Azad University, Mashhad Branch, Department of Chemistry, Mashhad (Iran, Islamic Republic of); Moeinpour, F., E-mail: akhojastehnezhad@yahoo.com [Islamic Azad University, Bandar Abbas Branch, Department of Chemistry, Bandar Abbas (Iran, Islamic Republic of)

    2014-07-01

    Silica supported molybdenum oxide (MoO{sub 3}/SiO{sub 2}) was found to be and efficient, eco-friendly and heterogeneous catalyst for the multicomponent reaction of aromatic aldehydes, dimedone and ammonium acetate or aromatic amines under solvent-free conditions to afford the corresponding 1,8-dioxodecahydroacridines in high yields. The catalyst can be easily recovered and reused for several times without considerable loss of activity. Furthermore, the present method offers several advantages, such as an easy experimental and work-up procedures, short reaction times and good to excellent yields. For the characterization were used: Fourier transform infrared spectroscopy (Ft-IR), X-ray diffraction and scanning electron microscopy analyses. (Author)

  6. Molybdenum oxide supported on silica (MoO3/SiO2): an efficient and reusable catalyst for the synthesis of 1,8-dioxodecahydroacridines under solvent-free conditions

    International Nuclear Information System (INIS)

    Khojastehnezhad, A.; Vafaei, M.; Moeinpour, F.

    2014-01-01

    Silica supported molybdenum oxide (MoO 3 /SiO 2 ) was found to be and efficient, eco-friendly and heterogeneous catalyst for the multicomponent reaction of aromatic aldehydes, dimedone and ammonium acetate or aromatic amines under solvent-free conditions to afford the corresponding 1,8-dioxodecahydroacridines in high yields. The catalyst can be easily recovered and reused for several times without considerable loss of activity. Furthermore, the present method offers several advantages, such as an easy experimental and work-up procedures, short reaction times and good to excellent yields. For the characterization were used: Fourier transform infrared spectroscopy (Ft-IR), X-ray diffraction and scanning electron microscopy analyses. (Author)

  7. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  8. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar; Cairns, Amy J.; Eddaoudi, Mohamed; Vittal, Jagadese J.

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal

  9. Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

    Directory of Open Access Journals (Sweden)

    Harshita Sachdeva

    2012-01-01

    Full Text Available Various Biginelli compounds (dihydropyrimidinones have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7.

  10. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    Science.gov (United States)

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  11. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.

    2011-01-01

    that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  12. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    Unknown

    solvents to effect an asymmetric synthesis is an important step forward towards ... In continuation of our preliminary communication 2, we wish to ..... formation of chiral enamine 74 from the reaction of S-proline with pro-R carbonyl group.

  13. Solvent-free covalent functionalization of nanodiamond with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Santamaría-Bonfil, Adriana; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Alvares-Zauco, Edgar; Contreras-Torres, Flavio F.; Rizo, Juan; Zavala, Guadalupe; Basiuk, Vladimir A.

    2013-01-01

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  14. Solvent-free covalent functionalization of nanodiamond with amines

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Santamaría-Bonfil, Adriana; Meza-Laguna, Victor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Gromovoy, Taras Yu. [Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Alvares-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Contreras-Torres, Flavio F.; Rizo, Juan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Zavala, Guadalupe [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos (Mexico); Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. (Mexico)

    2013-06-15

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  15. Strategies for the Green Synthesis of Organics and Nanomaterials

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  16. Preparation of ultra-fine calcium carbonate by a solvent-free reaction using supersonic airflow and low temperatures

    OpenAIRE

    Cai, Yan-Hua; Ma, Dong-Mei; Peng, Ru-Fang; Chu, Shi-Jin

    2008-01-01

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  17. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2011-09-01

    Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  18. Solvent-free oxidation of secondary alcohols to carbonyl compounds by 1, 3-Dibromo-5, 5-Dimethylhydantoin (DBDMH) and 1, 3-Dichloro-5, 5-Dimethylhydantoin (DCDMH)

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: fatemehabbasi807@gmail.com [Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kianiborazjani, Maryam [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of); Saednia, Shahnaz [Young Researchers Club, Toyserkan Branch, Islamic Azad University, Toyserkan (Iran, Islamic Republic of)

    2014-02-15

    Aldehydes and ketones are important intermediates, especially for the construction of carbon-skeletons. The oxidation of alcohols is so important that a large number of methods and reagents have been reported for this purpose. N-halo reagents are widely used in organic synthesis and as a continuation of our interest in the application of N-halo compounds in organic synthesis, dibromo dimethylhydantoin (DBDMH) and dichloro dimethylhydantoin (DCDMH) were used for the oxidation of alcohols and our ongoing work on development of highly efficient oxidation protocols. We observed the oxidation of secondary alcohols with stoichiometric amounts of DBDMH and DCDMH under solvent-free conditions in the range of temperature 70-80 deg C. (author)

  19. Solvent-free one-pot cyclization and acetylation of chalcones: Synthesis of some 1-acetyl pyrazoles and spectral correlations of 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones

    Directory of Open Access Journals (Sweden)

    G. Thirunarayanan

    2016-11-01

    Full Text Available One-pot synthesis of some 1N-acetyl pyrazoles including 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones has been achieved via solvent-free microwave irradiation using substituted chalcones, hydrazine hydrate and acetic anhydride in the presence of catalytic amount of fly-ash: PTS catalyst. The yield of these 1N-acetyl pyrazole derivatives is more than 75%. The synthesized 1N-acetyl pyrazoline derivatives were characterized by their physical constants and spectral data. The infrared spectral νCN and CO (cm−1 frequencies, NMR chemical shifts (δ, ppm of Ha, Hb, Hc, CH3 protons, CN, CO and CH3 carbons of 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones have been assigned and correlated with Hammett substituent constants and Swain-Lupton’s parameters using single and multi-regression analysis. From the results of statistical analyses, the effect of substituents on the above group frequencies and chemical shifts of the acetylated pyrazoles were discussed.

  20. H-ferrierite zeolite: As an effective and reusable heterogeneous catalyst for synthesis of 1,5-benzothiazepine under solvent free condition and 1,3-dipolar cycloaddition in water

    Directory of Open Access Journals (Sweden)

    Thoraya A. Farghaly

    2017-05-01

    Full Text Available An efficient synthesis of new derivatives of 1,5-benzothiazepine has been developed by the reaction of various chalcones (1,3-diaryl-2-propenones with 2-amino-thiophenol in the presence of H-ferrierite zeolite as acidic catalyst without solvent. In addition, 1,3-dipolar cycloaddition of hydrazonoyl chlorides on CN bond of 1,5-benzothiazepines in water in the presence of Na2CO3/THAC as a base catalyst afforded 1,2,4-triazolo[3,4-d][1,5]benzothiazepines. The structure of all the newly synthesized compounds was established on the basis of spectral data (Mass, IR, 1H NMR, 13C NMR and elemental analysis.

  1. An Organocatalyzed and Ultrasound Accelerated Expeditious Synthetic Route to 1,5-Benzodiazepines under Solvent-Free Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Pravin V.; Shingate, Bapurao B.; Shingare, Murlidhar S. [Babasaheb Ambedkar Marathwada University, Aurngabad (India)

    2011-04-15

    In the present work, successful implementation of ultrasound irradiations for the rapid synthesis of 1,5- benzodiazepine derivatives under solvent-free conditions is demonstrated. Use of a novel catalyst i.e. camphor sulphonic acid in combination with ultrasound technique is reported for the first time. Comparative study for the synthesis of 1,5-benzodiazepines using conventional as well as ultrasonication method is discussed.

  2. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO{sub 4}] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu, E-mail: mitomay@pu-hiroshima.ac.jp [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho Shobara City, Hiroshima 727-0023 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Simion, Cristian [Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042 (Romania); Lee, Byeong Kyu [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2015-10-30

    Graphical abstract: A possible pathway for immobilization with the nano-Fe/Ca/CaO/[PO{sub 4}] treatment (a) {sup 133}Cs is adsorbed onto the soil particles, (b) Cs encapsulation through the formation of immobile salts, and (c) solid (small/finer or larger/aggregate) soil fraction separation. - Highlights: • Nano-Fe/Ca/CaO/[PO{sub 4}] composite for Cs immobilization in soil was developed. • Enhanced cesium separation and immobilization was done in dry condition. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • Nano-Fe/Ca/CaO/[PO{sub 4}] a highly potential amendment for the remediation of Cs. - Abstract: This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ({sup 133}Cs) and radioactive cesium species ({sup 134}Cs and {sup 137}Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO{sub 4}], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant {sup 133}Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO{sub 4}], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped {sup 134}Cs and {sup 137}Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that {sup 134}Cs and {sup 137}Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO{sub 4}] treated soil were characterized using SEM–EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil

  4. Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations

    Directory of Open Access Journals (Sweden)

    Serena Traboni

    2016-12-01

    Full Text Available tert-Butyldimethylsilyl (TBDMS and tert-butyldiphenylsilyl (TBDPS are alcohol protecting groups widely employed in organic synthesis in view of their compatibility with a wide range of conditions. Their regioselective installation on polyols generally requires lengthy reactions and the use of high boiling solvents. In the first part of this paper we demonstrate that regioselective silylation of sugar polyols can be conducted in short times with the requisite silyl chloride and a very limited excess of pyridine (2–3 equivalents. Under these conditions, that can be regarded as solvent-free conditions in view of the insolubility of the polyol substrates, the reactions are faster than in most examples reported in the literature, and can even be further accelerated with a catalytic amount of tetrabutylammonium bromide (TBAB. The strategy proved also useful for either the selective TBDMS protection of secondary alcohols or the fast per-O-trimethylsilylation of saccharide polyols. In the second part of the paper the scope of the silylation approach was significantly extended with the development of unprecedented “one-pot” and “solvent-free” sequences allowing the regioselective silylation/alkylation (or the reverse sequence of saccharide polyols in short times. The developed methodologies represent a very useful and experimentally simple tool for the straightforward access to saccharide building-blocks useful in organic synthesis.

  5. Solvent-free microwave-assisted synthesis of oxadiazoles ...

    Indian Academy of Sciences (India)

    TECS

    tion mixture was refluxed for 4–5 h on an oil bath, the contents were cooled to room temperature and poured onto crushed ice. It was then neutralized by. 5% sodium bicarbonate solution. The solid that separated was collected by filtration through a. Büchner funnel and dried. Further purification was done by recrystallization ...

  6. Highly efficient solvent-free synthesis of pyranopyrazoles by a ...

    Indian Academy of Sciences (India)

    bDepartment of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775, ... key advantages of this process are high yields, shorter reaction times, easy work-up, ... ing pyran derivatives and hydrazine hydrate,9 use of.

  7. Solvent-free microwave-mediated Michael addition reactions

    Indian Academy of Sciences (India)

    Unknown

    obviously difficult to scale up. In this context ... eco-friendly features such as, (i) no solvent is required to conduct the ... water soluble, addition of reaction mixture after com- ..... Yield: 855 mg (89%; viscous liquid). 3.4 Ethyl .... Jung M E 1993 Comprehensive organic synthesis ... Leshcheva I F and Bundel Y G 1997 Mendeleev.

  8. Tuning of Activated Carbon for Solvent-Free Oxidation of Cyclohexane

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2017-01-01

    Full Text Available Activated carbon (AC was prepared from carbonization of phosphoric acid soaked peanut shell at 380°C under inert atmosphere followed by activation with hydrogen peroxide. The AC was characterized by SEM, EDX, FTIR, TGA, and BET surface area and pore size analyzer. The potential of AC as a catalyst for solvent-free oxidation of cyclohexane to cyclohexanol and cyclohexanone (the mixture is known as KA oil in the presence of molecular oxygen at moderate temperature was investigated in a self-designed double-walled three-necked batch reactor. The effect of different reaction parameters/additive was optimized. The maximum productivity value (2.14 mmolg−1 h−1, without base, and 4.85 mmolg−1 h−1, with 0.2 mmol NaOH of the desired product was achieved under optimal reaction parameters: vol 12.5 mL, cat 0.4 g, time 14 h, oxygen flow 40 mL/min (pO2 760 Torr, stirring 1100 rpm, and temp 75°C. The AC shows recyclability for multiple runs without any significant loss in activity. Thus, the AC can be an efficient catalyst, due to low cost, ease of synthesis, easy recovery, nonleaching, and recyclability for multiple uses for the solvent-free oxidation of cyclohexane.

  9. Structure of Solvent-Free Nanoparticle−Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu; Koch, Donald L.

    2010-01-01

    that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its

  10. Structure of Solvent-Free Nanoparticle−Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu

    2010-11-16

    We derive the radial distribution function and the static structure factor for the particles in model nanoparticleorganic hybrid materials composed of nanoparticles and attached oligomeric chains in the absence of an intervening solvent. The assumption that the oligomers form an incompressible fluid of bead-chains attached to the particles that is at equilibrium for a given particle configuration allows us to apply a density functional theory for determining the equilibrium configuration of oligomers as well as the distribution function of the particles. A quasi-analytic solution is facilitated by a regular perturbation analysis valid when the oligomer radius of gyration R g is much greater than the particle radius a. The results show that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its neighborhood. © 2010 American Chemical Society.

  11. Green Synthesis of Organics and Nanomaterials and Sustainable Applications of Nano-Catalysts

    Science.gov (United States)

    The presentation summarizes our green chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety o...

  12. Greener Synthesis of Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  13. Green Synthesis of Organics and Nanomaterials and Sustainable Applications of Nano-Catalysts- HESTEC

    Science.gov (United States)

    The presentation summarizes our green chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety o...

  14. Eco-friendly Synthesis of Organics and Nanomaterials: Sustainable Applications of Nano-Catalysts

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  15. Microwave-Assisted Eco-Friendly Synthesis of Organics and Nanomaterials

    Science.gov (United States)

    This presentation summarizes our recent activity in MW-assisted synthesis, which involves benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The greener synthesis of heterocyclic compounds, coupling reac...

  16. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.P.; Reddi, R.S.B.; Bhattacharya, S. [Department of Chemistry, Centre of Advance Study, Banaras Hindu University, Varanasi-221005 (India); Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advance Study, Banaras Hindu University, Varanasi-221005 (India)

    2012-06-15

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied. - Graphical abstarct: Exploiting phase diagram study and solvent free synthesis a novel compound was synthesized and its single crystal growth, atomic packing, energy band gap and refractive index were studied. Highlights: Black-Right-Pointing-Pointer Novel organic complex was synthesized using Green or solvent free synthesis. Black-Right-Pointing-Pointer Phase diagram study provided the information to identify the worthy composition of novel complex. Black-Right-Pointing-Pointer The single crystal of the sufficient size was grown from the ethanol solution. Black-Right-Pointing-Pointer Crystal analysis suggested that the covalent bond is formed between the two parent compounds. Black-Right-Pointing-Pointer The transmittance of the crystal was found to be 70% and it was transparent from 412 to 850 nm.

  17. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline–3-hydroxy-4-methoxybenzaldehyde

    International Nuclear Information System (INIS)

    Sharma, K.P.; Reddi, R.S.B.; Bhattacharya, S.; Rai, R.N.

    2012-01-01

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV–Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied. - Graphical abstarct: Exploiting phase diagram study and solvent free synthesis a novel compound was synthesized and its single crystal growth, atomic packing, energy band gap and refractive index were studied. Highlights: ► Novel organic complex was synthesized using Green or solvent free synthesis. ► Phase diagram study provided the information to identify the worthy composition of novel complex. ► The single crystal of the sufficient size was grown from the ethanol solution. ► Crystal analysis suggested that the covalent bond is formed between the two parent compounds. ► The transmittance of the crystal was found to be 70% and it was transparent from 412 to 850 nm.

  18. Solvent-free functionalization of carbon nanotube buckypaper with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Abarca-Morales, Edgar; Pérez-Rey, Luis A.; Re, Marilena; Prete, Paola; Lovergine, Nico

    2015-01-01

    Graphical abstract: - Abstract: We demonstrate the possibility of fast and efficient solvent-free functionalization of buckypaper (BP) mats prefabricated from oxidized multiwalled carbon nanotubes (MWCNTs-ox), by using three representative amines of different structure: one monofunctional aliphatic amine, octadecylamine (ODA), one monofunctional aromatic amine, 1-aminopyrene (AP), and one aromatic diamine, 1,5-diaminonaphthalene (DAN). The functionalization procedure, which relies on the formation of amide bonds with carboxylic groups of MWCNTs-ox, is performed at 150–180 °C under reduced pressure and takes about 4 h including auxiliary degassing. The amine-treated BP samples (BP-ODA, BP-AP and BP-DAN, respectively) were characterized by means of a variety of analytical techniques such as Fourier-transform infrared and Raman spectroscopy, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, scanning helium ion microscopy, and atomic force microscopy. The highest amine content was found for BP-ODA, and the lowest one was observed for BP-DAN, with a possible contribution of non-covalently bonded amine molecules in all three cases. Despite of some differences in spectral and morphological characteristics for amine-functionalized BP samples, they have in common a dramatically increased stability in water as compared to pristine BP and, on the other hand, a relatively invariable electrical conductivity.

  19. Green Synthesis of a Fluorescent Natural Product

    Science.gov (United States)

    Young, Douglas M.; Welker, Jacob J. C.; Doxsee, Kenneth M.

    2011-01-01

    Synthesis of 4-methylumbelliferone via the acid-catalyzed Pechmann condensation introduces students to several types of organic reactions: transesterification, electrophilic aromatic substitution, and alcohol dehydration. Performed with a recyclable, solid catalyst and under solvent-free conditions, the experiment illustrates many of the…

  20. YCl3-Catalyzed Highly Selective Ring Opening of Epoxides by Amines at Room Temperature and under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Wuttichai Natongchai

    2017-11-01

    Full Text Available A simple, efficient, and environmentally benign approach for the synthesis of β-amino alcohols is herein described. YCl3 efficiently carried out the ring opening of epoxides by amines to produce β-amino alcohols under solvent-free conditions at room temperature. This catalytic approach is very effective, with several aromatic and aliphatic oxiranes and amines. A mere 1 mol % concentration of YCl3 is enough to deliver β-amino alcohols in good to excellent yields with high regioselectivity.

  1. Nano Fe{sub 2}O{sub 3,} clinoptilolite and H{sub 3}PW{sub 12}O{sub 40} as efficient catalysts for solvent-free synthesis of 5(4H)-isoxazolone under microwave irradiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fozooni, Samieh, E-mail: samieh.fozooni@uk.ac.ir, E-mail: s_fozooni@yahoo.com [Shahid Bahonar University, Kerman (Iran, Islamic Republic of). Mining Engineering Department. Zarand High Education Center; Hosseinzadeh, Nasrin Gholam; Akhgar, Mohammad Reza [Islamic Azad University, Kerman (Iran, Islamic Republic of). Department of Chemistry; Hamidian, Hooshang [Payame Noor University (PNU), Tehran (Iran, Islamic Republic of). Department of Chemistry

    2013-10-15

    A quick and solvent-free approach involving the exposure of neat reactants to microwave irradiation in conjunction with the use of clinoptilolite, H{sub 3}PW{sub 12}O{sub 40} and Fe{sub 2}O{sub 3} nanoparticle catalysts is described. In this work, condensation of hydroxylamine hydrochloride, sodium acetate, acetoacetic or benzoyl acetic ethyl ester and appropriate aldehydes by employing catalysts gave 5(4H)-isoxazolone only in one step. Catalyst amount, temperature effects and catalysts reusability were monitored. Among the catalysts, Fe{sub 2}O{sub 3} nanoparticles had better performance than other catalysts from viewpoint of yield and reaction time. The present protocol offers several advantages, such as short reaction time, reasonable yield, mild reaction condition and recycling catalysts with a very easy workup. (author)

  2. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    Science.gov (United States)

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. An Efficient, Solvent-Free Process for Synthesizing Anhydrous MgCl2

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Vemuri, Venkata Rama S.; Barpaga, Dushyant; Schaef, Herbert T.; Loring, John S.; Martin, Paul F.; Lao, David; Nune, Satish K.; McGrail, Bernard P.

    2018-01-02

    A new efficient and solvent-free method for the synthesis of anhydrous MgCl2 from its hexahydrate is proposed. Fluidized dehydration of MgCl2·6H2O feedstock at 200 °C in a porous bed reactor yields MgCl2·nH2O (0 < n < 1), which has a similar diffraction pattern as activated MgCl2. The MgCl2·nH2O is then ammoniated directly using liquefied NH3 in the absence of solvent to form MgCl2·6NH3. Calcination of the hexammoniate complex at 300 °C then yields anhydrous MgCl2. Both dehydration and deammoniation were thoroughly studied using in situ as well as ex situ characterization techniques. Specifically, a detailed understanding of the dehydration process was monitored by in situ PXRD and in situ FTIR techniques where formation of salt with nH2O (n = 4, 2, 1, <1) was characterized. Given the reduction in thermal energy required to produce dehydrated feedstock with this method compared with current strategies, significant cost benefits are expected. Overall, the combined effect of activation, macroporosity, and coordinated water depletion allows the formation of hexammoniate without using solvent, thus minimizing waste formation.

  4. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    Science.gov (United States)

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    tetrabromobenzene- 1,3-disulphonamide (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  6. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  7. Solvent Free Preparation of p-Cymene from Limonene Using Vietnamese Montmorillonite

    DEFF Research Database (Denmark)

    Nguyen, Thao-Tran Thi; Duus, Fritz; Le, Thach Ngoc

    2013-01-01

    p-Cymene, an important intermediate in industrial chemistry, has been prepared in good yields by thermally induced dehydrogenation of limonene under solvent-free reaction conditions using Vietnamese montmorillonite as an efficient green catalyst.......p-Cymene, an important intermediate in industrial chemistry, has been prepared in good yields by thermally induced dehydrogenation of limonene under solvent-free reaction conditions using Vietnamese montmorillonite as an efficient green catalyst....

  8. An Efficient and Clean One-Pot Synthesis of 3,4-Dihydropyrimidine-2-(1H)-ones Catalyzed by SrCl{sub 2}·6H{sub 2}O-HCl in Solvent or Solvent-Free Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nasr-Esfahani, Masoud [Yasouj University, Yasouj (Iran, Islamic Republic of); Khosropour, Ahmad Reza [Razi University, Kermanshah (Iran, Islamic Republic of)

    2005-09-15

    We have found an efficient, inexpensive and straightforward procedure for one-pot synthesis of dihydropyrimidinones using SrCl{sub 2}·6H{sub 2}O-HCl catalyst system. Also found was the performance of the catalyst system is greatly facilitated when used without solvents, important from the view point of industry or green chemistry. Moreover, nonhygroscopic, inexpensive and non-toxic nature of the catalyst for this transformation is other noteworthy merit of this procedure. In recent years, 3,4-dihydropyrimidin-2(1H)-one derivatives have gained much interest for their biological and pharmaceutical properties, such as HIV gp-120-CD4 inhibitors, calcium channel blockers, α-adrenergic and neuropeptide Y antagonists, as well as antihypertensive, antitumor, antibacterial and anti-inflammatory agents. The scope of this pharmacophore has been further increased by the identification of monastrol as a novel cell-permeable lead compound for the development of new anticancer drugs bearing the dihydropyrimidinone core. Thus the development of facile and environmentally friendly synthetic methods towards dihydropyrimidinones constitutes an active area of investigation in organic synthesis.

  9. ZnAl2O4@SiO2 nanocomposite catalyst for the acetylation of alcohols, phenols and amines with acetic anhydride under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Saeed Farhadi; Kosar Jahanara

    2014-01-01

    A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process, and characterized by X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and N2 adsorption-desorption measurements. The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Under optimized conditions, efficient acetylation of these substrates with acetic anhy-dride over the ZnAl2O4@SiO2 nanocomposite was obtained. Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature, while the reaction time was longer for the acetylation of alcohols and phenols, showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups. The catalyst can be reused without obvious loss of catalytic activity. The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4. The method gives high yields, and is clean, cost effective, compatible with sub-strates having other functional groups and it is suitable for practical organic synthesis.

  10. Organic synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Daub, G.H.; Kerr, V.N.; Williams, D.L.; Whaley, T.W.

    1978-01-01

    Some general considerations concerning organic synthesis with stable isotopes are presented. Illustrative examples are described and discussed. The examples include DL-2-amino-3-methyl- 13 C-butanoic-3,4- 13 C 2 acid (DL-valine- 13 C 3 ); methyl oleate-1- 13 C; thymine-2,6- 13 C 2 ; 2-aminoethanesulfonic- 13 C acid (taurine- 13 C); D-glucose-6- 13 C; DL-2-amino-3-methylpentanoic-3,4- 13 C 2 acid (DL-isoleucine- 13 C 2 ); benzidine- 15 N 2 ; and 4-ethylsulfonyl-1-naphthalene-sulfonamide- 15 N

  11. A Diazonium Salt-Based Ionic Liquid for Solvent-FreeModification of Carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu [ORNL; Huang, Jing-Fang [ORNL; Li, Zuojiang [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2006-01-01

    A novel ionic liquid that consists of p-butylbenzenediazonium ions and bis(trifluoromethanesulfonyl)amidates (Tf{sub 2}N{sup -}) has been synthesized as a task-specific ionic liquid for the solvent-free modification of carbon materials. The use of anions Tf{sub 2}N{sup =} is the key to rendering the hydrophobicity, low liquidus temperature, and ionicity to this novel molten salt. This diazonium salt has a melting point of 7.2 C and a moderate electric conductivity of 527 {micro} s/cm at 25 C. The thermal stability of this diazonium ionic liquid has been investigated by high-resolution thermogravimetric analysis (HRTGA). The compound is stable up to about 90 C in nitrogen, which is only 10 C less than its solid tetrafluoroborate counterpart. The modification of carbon materials has been carried out through both thermal and electrochemical activations of diazonium ions to generate free radical intermediates without the use of any solvent. The surface-coverage loadings of 3.38 {micro} mol/m{sup 2} and 6.07 {micro} mol/m{sup 2} for covalently attached organic functionalities have been achieved by the thermally induced functionalization and electrochemically assisted reaction, respectively.

  12. Surface functionalization of SBA-15 by the solvent-free method

    International Nuclear Information System (INIS)

    Wang Yimeng; Zheng Yingwu; Zhu Jianhua

    2004-01-01

    A solvent-free technique was employed for fast modification of mesoporous materials. Copper, chromium and iron oxide species could be highly dispersed in SBA-15 by manually grinding the corresponding precursor salts and the host, followed by calcinations for the first time. This method is more effective to spontaneously disperse oxide species onto SBA-15 than impregnation, probably forming monolayer or submonolayer dispersion of salts or oxides. Besides, Cr(VI) species dominate in the mixing sample while Cr(III) species dominate in the impregnation one. In the temperature programmed surface reaction of nitrosamines, the sample prepared by solvent-free method showed a higher catalytic activity than the impregnation one

  13. Solvent free amorphisation for pediatric formulations (minitablets) using mesoporous silica

    DEFF Research Database (Denmark)

    Monsuur, Fred; Choudhari, Yogesh; Reddy, Upendra

    2016-01-01

    Introduction: Most silica based amorphisation strategies are using organic solvent loading methods. Towards pediatric formulations this is creating concerns. With this in mind the development of a dry amorphisation strategy was the focus of this study. The high internal surface area of mesoporous...... silica gel is densely crowded with silanol groups, which can provide hydrogen-bonding possibilities with a drug, potentially resulting in amorphisation. Purpose: Amorphous drugs provide an advantage in solubility; however, their low physical stability always remained concern. Additional there was a need...... to understand the mechanism and variables of dry amorphisation. Method: Ibuprofen (IBU) and Syloid® silica at different ratios were co-milled at variable milling times between 1 and 90 min. The interaction with; and amorphisation of IBU; on Syloid® silica was analyzed using SEM, FTIR, DSC and XRD. The co...

  14. A Highly Efficient Solvent-Free Acetalization of Aldehydes to 1,1 ...

    African Journals Online (AJOL)

    1,1-Diacetates are prepared in excellent yields from aldehydes and acetic anhydride under solvent-free conditions at room temperature in short reaction times using catalytic amount of sulfonic acid functionalized silica (SiO2-Pr-SO3H) which could be easily handled and removed from the mixture of reaction. Keywords: 1 ...

  15. Solvent-free microwave extraction of essential oil from Melaleuca leucadendra L.

    Directory of Open Access Journals (Sweden)

    Widya Ismanto Aviarina

    2018-01-01

    Full Text Available Cajuput (Melaleuca leucadendra L. oil is one of potential commodity that provides an important role for the country’s foreign exchange but the extraction of these essential oil is still using conventional method such as hydrodistillation which takes a long time to produce essential oil with good quality. Therefore it is necessary to optimize the extraction process using a more effective and efficient method. So in this study the extraction is done using solvent-free microwave extraction method that are considered more effective and efficient than conventional methods. The optimum yield in the extraction of cajuput oil using solvent-free microwave extraction method is 1.0674%. The optimum yield is obtained on the feed to distiller (F/D ratio of 0.12 g/mL with microwave power of 400 W. In the extraction of cajuput oil using solvent-free microwave extraction method is performed first-order and second-order kinetics modelling. Based on kinetics modelling that has been done, it can be said that the second-order kinetic model (R2 = 0.9901 can be better represent experimental results of extraction of cajuput oil that using solvent-free microwave extraction method when compared with the first-order kinetic model (R2 = 0.9854.

  16. Organic synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Blazer, R.M.; Daub, G.H.; Kerr, V.N.; Williams, D.L.; Whaley, T.W.

    1982-01-01

    Described is a scheme for the synthesis of L-arginine-1- 13 C utilizing methods developed for the synthesis of L-ornithine-1- 13 C from L-ornithine-2- 13 C and then converting ornithine into arginine with the enzyme acylase

  17. Eco-friendly Synthesis of Organics and Nanomaterials ...

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety of name reactions2 are the primary beneficiaries as exemplified by the synthesis of N-aryl azacycloalkanes, isoindoles, and dihydropyrazoles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,3-dioxanes, pyrazoles, catalyzed by basic water or polystyrene sulfonic acid (PSSA) in conjunction with microwave (MW) irradiation.2 Vitamins B1, B2, C, and tea and wine polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water.3a Shape-controlled synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using sugars will be presented.3b A general method has been developed for the cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic systems; bimetallic systems,3c and SWNT, MWNT, and C-60.3d The strategy is extended to the formation of biodegradable carboxymethylcellulose (CMC) composite films with noble nanometals;3e such metal decoration and alignment of carbon nanotubes in CMC is possible using MW approach3f which also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol).3g MW hydrothermal process delivers m

  18. Synthesis Road Map Problems in Organic Chemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Jones, T. Nicholas

    2014-01-01

    Road map problems ask students to integrate their knowledge of organic reactions with pattern recognition skills to "fill in the blanks" in the synthesis of an organic compound. Students are asked to identify familiar organic reactions in unfamiliar contexts. A practical context, such as a medicinally useful target compound, helps…

  19. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  20. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Dario, E-mail: dario.braga@unibo.it [Dipartimento di Chimica ' G.Ciamician' , Universita degli studi di Bologna, Via Selmi 2, 40126 Bologna (Italy); Grepioni, Fabrizia; Maini, Lucia; Mazzeo, Paolo P.; Rubini, Katia [Dipartimento di Chimica ' G.Ciamician' , Universita degli studi di Bologna, Via Selmi 2, 40126 Bologna (Italy)

    2010-08-10

    Co-crystals of phenazine and acridine with vanillin have been obtained by solvent-free reaction or thermal treatment of the solid reactants: their structures, thermal behaviour and eutectic formation have been investigated via single crystal X-ray diffraction, differential scanning calorimetry (DSC), variable temperature X-ray powder diffraction and hot-stage microscopy (HSM). Polymorph screening of the reagents has also been carried out.

  1. Fe–Al/clay as an efficient heterogeneous catalyst for solvent-free ...

    Indian Academy of Sciences (India)

    SiO2,27 amberlyst-15,28 etc. ... tometer, using Ni-filtered Cu Ka (0.15418 nm) radia- ... The spectral data of some ... C).29 1H NMR ... 3.99(q, j = 7.1 Hz, 2H), 5.12 (s,1H), 7.23 (d, j = 8.35 .... Recyclability was studied in both solvent-free and.

  2. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin

    International Nuclear Information System (INIS)

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Mazzeo, Paolo P.; Rubini, Katia

    2010-01-01

    Co-crystals of phenazine and acridine with vanillin have been obtained by solvent-free reaction or thermal treatment of the solid reactants: their structures, thermal behaviour and eutectic formation have been investigated via single crystal X-ray diffraction, differential scanning calorimetry (DSC), variable temperature X-ray powder diffraction and hot-stage microscopy (HSM). Polymorph screening of the reagents has also been carried out.

  3. SOLVENT-FREE TETRAHYDROPYRANYLATION (THP) OF ALCOHOLS AND PHENOLS AND THEIR REGENERATION BY CATALYTIC ALUMINUM CHLORIDE HEXAHYDRATE

    Science.gov (United States)

    Catalytic amount of aluminum chloride hexahydrate enables solvent-free tetrahydropyranylation (THP) of alcohols and phenols at moderate temperatures. A simple addition of methanol helps to regenerate the corresponding alcohols and phenols thus rendering these protection and depro...

  4. Development of solvent-free ambient mass spectrometry for green chemistry applications.

    Science.gov (United States)

    Liu, Pengyuan; Forni, Amanda; Chen, Hao

    2014-04-15

    Green chemistry minimizes chemical process hazards in many ways, including eliminating traditional solvents or using alternative recyclable solvents such as ionic liquids. This concept is now adopted in this study for monitoring solvent-free reactions and analysis of ionic liquids, solids, and catalysts by mass spectrometry (MS), without using any solvent. In our approach, probe electrospray ionization (PESI), an ambient ionization method, was employed for this purpose. Neat viscous room-temperature ionic liquids (RTILs) in trace amounts (e.g., 25 nL) could be directly analyzed without sample carryover effect, thereby enabling high-throughput analysis. With the probe being heated, it can also ionize ionic solid compounds such as organometallic complexes as well as a variety of neat neutral solid chemicals (e.g., amines). More importantly, moisture-sensitive samples (e.g., [bmim][AlCl4]) can be successfully ionized. Furthermore, detection of organometallic catalysts (including air-sensitive [Rh-MeDuPHOS][OTf]) in ionic liquids, a traditionally challenging task due to strong ion suppression effect from ionic liquids, can be enabled using PESI. In addition, PESI can be an ideal approach for monitoring solvent-free reactions. Using PESI-MS, we successfully examined the alkylation of amines by alcohols, the conversion of pyrylium into pyridinium, and the condensation of aldehydes with indoles as well as air- and moisture-sensitive reactions such as the oxidation of ferrocene and the condensation of pyrazoles with borohydride. Interestingly, besides the expected reaction products, the reaction intermediates such as the monopyrazolylborate ion were also observed, providing insightful information for reaction mechanisms. We believe that the presented solvent-free PESI-MS method would impact the green chemistry field.

  5. A Solvent-Free Base Liberation of a Tertiary Aminoalkyl Halide by Flow Chemistry

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Skovby, Tommy; Mealy, Michael J.

    2016-01-01

    A flow setup for base liberation of 3-(N,N-dimethylamino)propyl chloride hydrochloride and solvent-free separation of the resulting free base has been developed. Production in flow profits from an on-demand approach, useful for labile aminoalkyl halides. The requirement for obtaining a dry product...... has been fulfilled by the simple use of a saturated NaOH solution, followed by isolation of the liquid phases by gravimetric separation. The flow setup has an E factor reduction of nearly 50%, and a distillation step has been avoided. The method exemplifies how flow chemistry can be exploited...

  6. The application of green chemistry methods in organophosphorus synthesis

    International Nuclear Information System (INIS)

    Odinets, Irina L; Matveeva, E V

    2012-01-01

    Data concerning the synthesis of organophosphorus compounds in ionic liquids, in water and under solvent-free conditions are considered and summarized. It is shown that this strategy, which complies with the definition of green chemistry, has advantages in terms of the rate of the process and the yields of target products as compared with syntheses in common organic solvents. The Wittig, Horner–Wadsworth–Emmons, Kabachnik–Fields, Arbuzov and Michaelis reactions are considered as examples. The bibliography includes 178 references.

  7. A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors.

    Science.gov (United States)

    Gao, Zhaodongfang; Yang, Junwei; Huang, Jing; Xiong, Chuanxi; Yang, Quanling

    2017-11-23

    Conducting polymer based supercapacitors usually suffer from the difficulty of achieving high specific capacitance and good long-term stability simultaneously. In this communication, a long-chain protonic acid doped solvent-free self-suspended polyaniline (S-PANI) fluid and reduced graphene oxide (RGO) were used to fabricate a three-dimensional RGO/S-PANI aerogel via a simple self-assembled hydrothermal method, which was then applied as a supercapacitor electrode. This 3D RGO/S-PANI composite exhibited a high specific capacitance of up to 480 F g -1 at a current density of 1 A g -1 and 334 F g -1 even at a high discharge rate of 40 A g -1 . An outstanding cycling performance, with 96.14% of the initial capacitance remaining after 10 000 charging/discharging cycles at a rate of 10 A g -1 , was also achieved. Compared with the conventional conducting polymer materials, the 3D RGO/S-PANI composite presented more reliable rate capability and cycling stability. Moreover, S-PANI possesses excellent processability, thereby revealing its enormous potential in large scale production. We anticipate that the solvent-free fluid technique is also applicable to the preparation of other 3D graphene/polymer materials for energy storage.

  8. Selenium and tellurium reagents in organic synthesis

    International Nuclear Information System (INIS)

    Comasseto, J.V.

    1984-01-01

    A review of the contribution of the University of Sao Paulo (SP, Brazil) to the organic synthesis of selenium and tellurium reagents is made. Major reactions amoung selenium compounds and insaturated substrates, phosphorus, ester enolates as well as the use of phase transference catalysed reactions to produce arylselenolate are described. For tellurium, interactions of its compounds with organic substrates and reactive intermediates (e.g. benzino diazomethane) are reported. (C.L.B.) [pt

  9. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  10. A Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-03-01

    Full Text Available In tissue engineering, there is limited availability of a simple, fast and solvent-free process for fabricating micro-porous thin membrane scaffolds. This paper presents the first report of a novel surface suspension melt technique to fabricate a micro-porous thin membrane scaffolds without using any organic solvent. Briefly, a layer of polycaprolactone (PCL particles is directly spread on top of water in the form of a suspension. After that, with the use of heat, the powder layer is transformed into a melted layer, and following cooling, a thin membrane is obtained. Two different sizes of PCL powder particles (100 µm and 500 µm are used. Results show that membranes made from 100 µm powders have lower thickness, smaller pore size, smoother surface, higher value of stiffness but lower ultimate tensile load compared to membranes made from 500 µm powder. C2C12 cell culture results indicate that the membrane supports cell growth and differentiation. Thus, this novel membrane generation method holds great promise for tissue engineering.

  11. Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones

    Directory of Open Access Journals (Sweden)

    Loredana Maiuolo

    2016-01-01

    Full Text Available A library of C-alkyl and C-aryl nitrones has been obtained by direct condensation of primary N-substituted hydroxylamine hydrochlorides with various aldehydes and ketones without catalysts or base. The synthetic procedure, performed under MW irradiation in the absence of solvent, does not require the presence of a base, is fast, clean, high-yielding and characterized by simple work-up.

  12. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  13. Solvent-free lipase-catalyzed synthesis of diacylgycerols as low-calorie food ingredients

    OpenAIRE

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos F.

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in th...

  14. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients.

    Science.gov (United States)

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h.

  15. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method

    Science.gov (United States)

    Siregar, S. S.; Awaluddin, A.

    2018-04-01

    Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.

  16. Antimicrobial nanocapsules: from new solvent-free process to in vitro efficiency

    Directory of Open Access Journals (Sweden)

    Steelandt J

    2014-09-01

    Full Text Available Julie Steelandt,1 Damien Salmon,1,2 Elodie Gilbert,1 Eyad Almouazen,3 François NR Renaud,4 Laurène Roussel,1 Marek Haftek,5 Fabrice Pirot1,2 1University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Pharmacie Galénique Industrielle, 2Hospital Pharmacy, FRIPharm, Hospital Edouard Herriot, Hospices Civils de Lyon, 3Laboratoire d’Automatique et de Génie des Procédés, University Claude Bernard Lyon 1, 4University Claude Bernard Lyon 1, UMR CNRS 5510/MATEIS, 5University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Dermatologie, Lyon, France Abstract: Skin and mucosal infections constitute recurrent pathologies resulting from either inappropriate antiseptic procedures or a lack of efficacy of antimicrobial products. In this field, nanomaterials offer interesting antimicrobial properties (eg, long-lasting activity; intracellular and tissular penetration as compared to conventional products. The aim of this work was to produce, by a new solvent-free process, a stable and easily freeze-dryable chlorhexidine-loaded polymeric nanocapsule (CHX-NC suspension, and then to assess the antimicrobial properties of nanomaterials. The relevance of the process and the physicochemical properties of the CHX-NCs were examined by the assessment of encapsulation efficiency, stability of the nanomaterial suspension after 1 month of storage, and by analysis of granulometry and surface electric charge of nanocapsules. In vitro antimicrobial activities of the CHX-NCs and chlorhexidine digluconate solution were compared by measuring the inhibition diameters of two bacterial strains (Escherichia coli and Staphylococcus aureus and one fungal strain (Candida albicans cultured onto appropriate media. Based on the findings of this study, we report a new solvent-free process for the

  17. Highly Regio- and Stereoselective Diels-Alder Cycloadditions via Two-Step and Multicomponent Reactions Promoted by Infrared Irradiation under Solvent-Free Conditions

    Science.gov (United States)

    Flores-Conde, Maria Ines; Reyes, Leonor; Herrera, Rafael; Rios, Hulme; Vazquez, Miguel A.; Miranda, Rene; Tamariz, Joaquin; Delgado, Francisco

    2012-01-01

    Infrared irradiation promoted the Diels-Alder cycloadditions of exo-2-oxazolidinone dienes 1–3 with the Knoevenagel adducts 4–6, as dienophiles, leading to the synthesis of new 3,5-diphenyltetrahydrobenzo[d]oxazol-2-one derivatives (7, 9, 11 and 13–17), under solvent-free conditions. These cycloadditions were performed with good regio- and stereoselectivity, favoring the para-endo cycloadducts. We also evaluated the one-pot three-component reaction of active methylene compounds 20, benzaldehydes 21 and exo-2-oxazolidinone diene 2 under the same reaction conditions. A cascade Knoevenagel condensation/Diels-Alder cycloaddition reaction was observed, resulting in the final adducts 13–16 in similar yields. These procedures are environmentally benign, because no solvent and no catalyst were employed in these processes. The regioselectivity of these reactions was rationalized by Frontier Molecular Orbital (FMO) calculations. PMID:22489113

  18. Highly Regio- and Stereoselective Diels-Alder Cycloadditions via Two-Step and Multicomponent Reactions Promoted by Infrared Irradiation under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Francisco Delgado

    2012-02-01

    Full Text Available Infrared irradiation promoted the Diels-Alder cycloadditions of exo-2-oxazolidinone dienes 1–3 with the Knoevenagel adducts 4–6, as dienophiles, leading to the synthesis of new 3,5-diphenyltetrahydrobenzo[d]oxazol-2-one derivatives (7, 9, 11 and 13–17, under solvent-free conditions. These cycloadditions were performed with good regio- and stereoselectivity, favoring the para-endo cycloadducts. We also evaluated the one-pot three-component reaction of active methylene compounds 20, benzaldehydes 21 and exo-2-oxazolidinone diene 2 under the same reaction conditions. A cascade Knoevenagel condensation/Diels-Alder cycloaddition reaction was observed, resulting in the final adducts 13–16 in similar yields. These procedures are environmentally benign, because no solvent and no catalyst were employed in these processes. The regioselectivity of these reactions was rationalized by Frontier Molecular Orbital (FMO calculations.

  19. Organic and biochemical synthesis group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Stable isotopes, because of their unique properties and non-radioactive nature, have great potential for many fields of science and technology. In particular, isotopes of carbon, nitrogen, oxygen, and sulfur (the basic building blocks of all biological molecules) would be widely used in biomedical and environmental research if they were economically available in sufficient quantities and in the required chemical forms. The major objective of our program continues to be stimulation of the widespread utilization of stable isotopes and commercial involvement through development and demonstration of applications which have potential requirements for large quantities of isotopes. Thus, demand will be created which is necessary for large-scale production of stable isotopes and labeled compounds and concomitant low unit costs. The program continues to produce a variety of labeled materials needed for clinical, biomedical, chemical, and environmental applications which serve as effective demonstrations of unique and advantageous utilization of stable isotopes. Future commercial involvement should benefit, and is a consideration in our research and development, from the technology transfer that can readily be made as a result of our organic and biochemical syntheses and also of various techniques involved in applications

  20. Solvent-free ZnO dye-sensitised solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, E.; Anta, J.A. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla (Spain); Fernandez-Lorenzo, C.; Alcantara, R.; Martin-Calleja, J. [Departamento de Quimica Fisica, Universidad de Cadiz, Cadiz (Spain)

    2009-10-15

    Dye-sensitised solar cells (DSSC) based on commercial nanostructured zinc oxide combined with imidazolium-based room temperature ionic-liquid electrolytes are characterized. The electrolytes are based on a binary mixture of two ionic liquids, one of them used as source of iodide ions. The composition of this solvent-free electrolyte is optimized with respect to the concentration of iodine and iodide and the effect of additives such as lithium and tert-butylpyridine (TBP) on the photovoltaic performance and the recombination rate is analyzed and discussed. A maximum photoconversion efficiency of 3.4% at 1 sun illumination has been obtained for cells of 0.64 cm{sup 2} active area with the best performing compositions. Diffusion limitations due to slow transport processes are analyzed and discussed. (author)

  1. Development of a new solvent-free flow efficiency coating for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Graham A.; Morse, Jennifer [Bredero Shaw, Houston, TX (United States)

    2005-07-01

    Pipeline design engineers have traditionally considered external anti-corrosion coatings for the protection of gas transmission pipelines, with less consideration given to the benefits of internal flow efficiency coatings. This paper reviews the benefits of using a traditional solvent-based flow efficiency coating, and the relationship between the internal surface roughness of a pipe, the pressure drop across the pipeline, and the maximum flow rate of gas through the pipeline. To improve upon existing solvent-based flow efficiency coatings, a research program was undertaken to develop a solvent-free coating. The stages in the development of this coating are discussed, resulting in the plant application of the coating and final qualification to API RP 5L2. (author)

  2. Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory

    KAUST Repository

    Chremos, Alexandros

    2011-01-01

    The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hard-sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American Institute of Physics.

  3. Solvent-Free Patterning of Colloidal Quantum Dot Films Utilizing Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Hohyun Keum

    2017-01-01

    Full Text Available Colloidal quantum dots (QDs with properties that can be tuned by size, shape, and composition are promising for the next generation of photonic and electronic devices. However, utilization of these materials in such devices is hindered by the limited compatibility of established semiconductor processing techniques. In this context, patterning of QD films formed from colloidal solutions is a critical challenge and alternative methods are currently being developed for the broader adoption of colloidal QDs in functional devices. Here, we present a solvent-free approach to patterning QD films by utilizing a shape memory polymer (SMP. The high pull-off force of the SMP below glass transition temperature (Tg in conjunction with the conformal contact at elevated temperatures (above Tg enables large-area, rate-independent, fine patterning while preserving desired properties of QDs.

  4. Olive oil glycero lysis with the immobilized lipase Candida antarctica in a solvent free system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A. K.; Mukhopadhyay, M.

    2012-11-01

    In the present work, the solvent free lipase glycerolysis of olive oil for the production of monoglyceride (MG) and diglyceride (DG) with an immobilized Lipase B Candida antarctica was studied. The experiments were performed in batch mode by varying different process parameters. The Results showed that the MG and DG yields were dependent on operating conditions such as time, temperature, glycerol/ oil molar ratio, enzyme concentration and the water content in glycerol. The optimum operating time for maximum MG, 26 wt% and DG, 30 wt% production was 3h. The initial reaction rate was studied by varying different process parameters for 1h. The initial reaction rate increased at 30 degree centigrade temperature, 2:1 glycerol/oil molar ratio, 3.5% (w/w) water content in glycerol and 0.015g of enzyme loading. Comparative data for MG and DG yields for different oils and enzyme combinations were presented.

  5. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  6. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    Science.gov (United States)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  7. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Science.gov (United States)

    2010-04-01

    ... conjunction with spices, seasonings, and flavorings. 182.40 Section 182.40 Food and Drugs FOOD AND DRUG... in conjunction with spices, seasonings, and flavorings. Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings that are generally recognized as safe for their intended...

  8. 21 CFR 582.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Science.gov (United States)

    2010-04-01

    ... conjunction with spices, seasonings, and flavorings. 582.40 Section 582.40 Food and Drugs FOOD AND DRUG... in conjunction with spices, seasonings, and flavorings. Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings that are generally recognized as safe for their intended...

  9. Solvent-free, catalyst-free aza-Michael addition of cyclohexylamine to diethyl maleate: reaction mechanism and kinetics

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Trhlíková, Olga; Podešva, Jiří; Abbrent, Sabina; Steinhart, Miloš; Dybal, Jiří; Dušková-Smrčková, Miroslava

    2018-01-01

    Roč. 74, č. 1 (2018), s. 58-67 ISSN 0040-4020 Institutional support: RVO:61389013 Keywords : Aza-Michael addition * solvent-free * catalyst-free Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.651, year: 2016

  10. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    Science.gov (United States)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  11. Eco-friendly all-carbon paper electronics fabricated by a solvent-free drawing method

    International Nuclear Information System (INIS)

    Kanaparthi, Srinivasulu; Badhulika, Sushmee

    2016-01-01

    Here we report the fabrication of high-performance all-carbon temperature and infrared (IR) sensors with a solvent-free multiwalled carbon nanotube (MWCNT) trace as the sensing element and commercial graphite pencil trace as the electrical contact on recyclable and biodegradable cellulose filter paper without using any toxic materials or complex procedures. The temperature sensor shows a large negative temperature coefficient of resistance (TCR) in the range of −3100 ppm K −1 to −4900 ppm K −1 , which is comparable to available commercial temperature sensors, and an activation energy of 34.85 meV. The IR sensor shows a high responsivity of 58.5 V W −1 , which is greater than reported IR sensors with similar dimensions. A detailed study of the conduction mechanism in MWCNTs with temperature and the photo response with IR illumination was done and it was found that the conduction is due to thermally assisted hopping in band tails and the photo response is bolometric in nature. The successful fabrication of these sensors on cellulose filter paper with a comparable performance to existing components indicates that it is possible to fabricate high-performance electronics using low-cost, eco-friendly materials without the need for expensive clean-room processing techniques or harmful chemicals. (paper)

  12. Diffusivities, viscosities, and conductivities of solvent-free ionically grafted nanoparticles

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    A new class of conductive composite materials, solvent-free ionically grafted nanoparticles, were modeled by coarse-grained molecular dynamics methods. The grafted oligomeric counterions were observed to migrate between different cores, contributing to the unique properties of the materials. We investigated the dynamics by analyzing the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities) and counterion migration kinetics. Temperature dependence of all properties follows the Arrhenius equation, but chain length and grafting density have distinct effects on different properties. In particular, structural effects on the diffusion coefficients are described by the Rouse model and the theory of nanoparticles diffusing in polymer solutions, viscosities are strongly influenced by clustering of cores, and conductivities are dominated by the motions of oligomeric counterions. We analyzed the migration kinetics of oligomeric counterions in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. © 2013 The Royal Society of Chemistry.

  13. Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry

    Science.gov (United States)

    Kurth, Laurie L.; Kurth, Mark J.

    2014-01-01

    Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…

  14. Alum an Efficient Catalyst for Erlenmeyer Synthesis

    African Journals Online (AJOL)

    NICO

    this paper we describe the use of alum as a catalyst in the. Erlenmeyer reaction, under solvent-free condition using ultra- sonic irradiation. The application of solvent-free reaction conditions in organic chemistry has been explored extensively within the last decade. It was shown to be an efficient technique for various organic.

  15. Enantioselective biotransformations of nitriles in organic synthesis.

    Science.gov (United States)

    Wang, Mei-Xiang

    2015-03-17

    The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by

  16. Novel Aryne Chemistry in Organic Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhijian [Iowa State Univ., Ames, IA (United States)

    2006-12-12

    Arynes are among the most intensively studied systems in chemistry. However, many aspects of the chemistry of these reactive intermediates are not well understood yet and their use as reagents in synthetic organic chemistry has been somewhat limited, due to the harsh conditions needed to generate arynes and the often uncontrolled reactivity exhibited by these species. Recently, o-silylaryl triflates, which can generate the corresponding arynes under very mild reaction conditions, have been found very useful in organic synthesis. This thesis describes several novel and useful methodologies by employing arynes, which generate from o-silylaryl triflates, in organic synthesis. An efficient, reliable method for the N-arylation of amines, sulfonamides and carbamates, and the O-arylation of phenols and carboxylic acids is described in Chapter 1. Amines, sulfonamides, phenols, and carboxylic acids are good nucleophiles, which can react with arynes generated from a-silylaryl triflates to afford the corresponding N- and O-arylated products in very high yields. The regioselectivity of unsymmetrical arynes has also been studied. A lot of useful, functional groups can tolerate our reaction conditions. Carbazoles and dibenzofurans are important heteroaromatic compounds, which have a variety of biological activities. A variety of substituted carbazoles and dibenzofwans are readily prepared in good to excellent yields starting with the corresponding o-iodoanilines or o-iodophenols and o-silylaryl triflates by a treatment with CsF, followed by a Pd-catalyzed cyclization, which overall provides a one-pot, two-step process. By using this methodology, the carbazole alkaloid mukonine has been concisely synthesized in a very good yield. Insertion of an aryne into a σ-bond between a nucleophile and an electrophile (Nu-E) should potentially be a very beneficial process from the standpoint of organic synthesis. A variety of substituted ketones and sulfoxides have been synthesized in good

  17. Solvent-free optical recording of structural colours on pre-imprinted photocrosslinkable nanostructures

    Science.gov (United States)

    Jiang, Hao; Rezaei, Mohamad; Abdolahi, Mahssa; Kaminska, Bozena

    2017-09-01

    Optical digital information storage media, despite their ever-increasing storage capacity and data transfer rate, are vulnerable to the potential risk of turning inaccessible. For this reason, long-term eye-readable full-colour optical archival storage is in high demand for preserving valuable information from cultural, intellectual, and scholarly resources. However, the concurrent requirements in recording colours inexpensively and precisely, and preserving colours for the very long term (for at least 100 years), have not yet been met by existing storage techniques. Structural colours hold the promise to overcome such challenges. However, there is still the lack of an inexpensive, rapid, reliable, and solvent-free optical patterning technique for recording structural colours. In this paper, we introduce an enabling technique based on optical and thermal patterning of nanoimprinted SU-8 nanocone arrays. Using photocrosslinking and thermoplastic flow of SU-8, diffractive structural colours of nanocone arrays are recorded using ultra-violet (UV) exposure followed by the thermal development and reshaping of nanocones. Different thermal treatment procedures in reshaping nanocones are investigated and compared, and two-step progressive baking is found to allow the controllable reshaping of nanocones. The height of the nanocones and brightness of diffractive colours are modulated by varying the UV exposure dose to enable grey-scale patterning. An example of recorded full-colour image through half-tone patterning is also demonstrated. The presented technique requires only low-power continuous-wave UV light and is very promising to be adopted for professional and consumer archival storage applications.

  18. Application of 2k Full Factorial Design in Optimization of Solvent-Free Microwave Extraction of Ginger Essential Oil

    Directory of Open Access Journals (Sweden)

    Mumtaj Shah

    2014-01-01

    Full Text Available The solvent-free microwave extraction of essential oil from ginger was optimized using a 23 full factorial design in terms of oil yield to determine the optimum extraction conditions. Sixteen experiments were carried out with three varying parameters, extraction time, microwave power, and type of sample for two levels of each. A first order regression equation best fits the experimental data. The predicted values calculated by the regression model were in good agreement with the experimental values. The results showed that the extraction time is the most prominent factor followed by microwave power level and sample type for extraction process. An average of 0.25% of ginger oil can be extracted using current setup. The optimum conditions for the ginger oil extraction using SFME were the extraction time 30 minutes, microwave power level 640 watts, and sample type, crushed sample. Solvent-free microwave extraction proves a green and promising technique for essential oil extraction.

  19. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica

    DEFF Research Database (Denmark)

    Genina, Natalja; Hadi, Batol; Löbmann, Korbinian

    2018-01-01

    The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high...... friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus(®) (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed...... into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi...

  20. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles

    Directory of Open Access Journals (Sweden)

    Fukumori Yoshinobu

    2011-08-01

    Full Text Available Abstract Due to the vast importance of peptides in biological processes, there is an escalating need for synthetic peptides to be used in a wide variety of applications. However, the consumption of organic solvent is extremely large in chemical peptide syntheses because of the multiple condensation steps in organic solvents. That is, the current synthesis method is not environmentally friendly. From the viewpoint of green sustainable chemistry, we focused on developing an organic solvent-free synthetic method using water, an environmentally friendly solvent. Here we described in-water synthesis technology using water-dispersible protected amino acids.

  1. Organic or organometallic template mediated clay synthesis

    Science.gov (United States)

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  2. Synthesis of polyaryl rigid-core carbosilane dendrimers for supported organic synthesis

    NARCIS (Netherlands)

    Wander, M.; Hausoul, P.J.C.; Sliedregt, L.A.J.M.; van Steen, B.J.; van Koten, G.; Klein Gebbink, R.J.M.

    2009-01-01

    Carbosilane dendrimers can be used as soluble supports for organic synthesis, since their structure allows separation of excess reagents from the supported products, eventually yielding products of high purity and in high yield, as in solid-phase organic synthesis (SPOS). In previous studies often

  3. Mechanochemical synthesis of organic compounds and composites with their participation

    Energy Technology Data Exchange (ETDEWEB)

    Lyakhov, Nikolai Z; Grigorieva, Tatiana F; Barinova, Antonina P; Vorsina, I A [Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2010-05-13

    The results of experimental studies in the mechanochemical synthesis of organic compounds and composites with their participation published over the last 15 years are described systematically. The key reactions of organic compounds are considered: synthesis of the salts of organic acids, acylation, substitution, dehalogenation, esterification, hydrometallation and other reactions. Primary attention is devoted to systems and compounds that cannot be obtained by traditional chemistry methods.

  4. Optimization of the production of biodiesel by a commercial immobilized lipase in a solvent-free system using a response surface methodology

    Directory of Open Access Journals (Sweden)

    ZORICA KNEZEVIC

    2008-02-01

    Full Text Available Response surface methodology was used for the evaluation of the effects of various factors on the synthesis of biodiesel catalyzed with immobilized lipase from Rhizomucor miehei in a solvent-free system. The production of biodiesel was optimized and model response equations were obtained, enabling the prediction of biodiesel production from the values of the four main factors. It would seem that the reaction temperature and the amount of water predominantly determined the conversion process while the methanol/oil molar ratio had no significant influence on the reaction rate. The temperature and amount of water showed negative interactive effects on the observed reaction rate per amount of enzyme. However, there were no significant interactions among the other variables according to the test of statistical significance. The highest yield of 10.15 mol kg-1 enzyme was observed at 45 °C with a 6:1 methanol to oil molar ratio and with no added water in the system.

  5. Fundamentals and applications of organic electrochemistry synthesis, materials, devices

    CERN Document Server

    Fuchigami, Toshio; Inagi, Shinsuke

    2014-01-01

    This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry.  The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and phy...

  6. Microwave-assisted 'greener' synthesis of organics and nanomaterials

    Science.gov (United States)

    Microwave selective heating techniques in conjunction with greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted ...

  7. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials

    Science.gov (United States)

    Trends in greener and sustainable process development during the past 25 years are abridged involving the use of alternate energy inputs (mechanochemistry, ultrasound- or microwave irradiation), photochemistry, and greener reaction media as applied to synthesis of organics and na...

  8. Solvent-free and catalyst-free chemistry: A benign pathway to sustainability

    Science.gov (United States)

    In the past decade, alternative benign organic methodologies have become an imperative part of organic syntheses and novel chemical reactions. The various new and innovative sustainable organic reactions and methodologies using no solvents or catalysts and employing alternative ...

  9. Non-covalent synthesis of organic nanostructures

    NARCIS (Netherlands)

    Prins, L.J.; Timmerman, P.; Reinhoudt, David

    1998-01-01

    This review describes the synthesis, characterization and functionalization of hydrogen bonded, box-like assemblies. These assemblies are formed upon mixing bismelamine calix[4]arenes with a complementary barbiturate in apolar solvents. Various techniques for the characterization have been used,

  10. Sustainable Applications of Nano-Catalysts and Alternative Methods in the Greener Synthesis and Transformations of Chemical

    Science.gov (United States)

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a var...

  11. Sustainable Biomimetic Approach to Nanomaterials and Applications of Nano-Catalysts in Green Synthesis and Environmental Remediation.

    Science.gov (United States)

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reactions, and a vari...

  12. Cycloadditions of ketene acetals under microwave irradiation in solvent-free conditions

    International Nuclear Information System (INIS)

    Diaz-Ortiz, A.; Diez-Barra, E.; La Hoz, A. De; Prieto, P.; Moreno, A.

    1994-01-01

    When subjected to microwave irradiation ketene acetals undergo 1.3-dipolar and hetero-Diels-Alder cycloadditions within 5-12 min to give excellent yields of easily purified heterocyclic products. This efficient and rapid synthesis has the advantage of employing milder reaction conditions than those of classical thermal heating. (author)

  13. Greener Approach to Organics and Nanomaterials and Sustainable Applications of Nano-Catalysts

    Science.gov (United States)

    The presentation summarizes our green chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety ...

  14. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Science.gov (United States)

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  15. Camera-enabled techniques for organic synthesis

    Directory of Open Access Journals (Sweden)

    Steven V. Ley

    2013-05-01

    Full Text Available A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future.

  16. BIOMIMETIC STRATEGIES IN ORGANIC SYNTHESIS. TERPENES

    Directory of Open Access Journals (Sweden)

    V. Kulcitki

    2012-12-01

    Full Text Available The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.

  17. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

    Czech Academy of Sciences Publication Activity Database

    Manley, David W.; Walton, J. C.

    2015-01-01

    Roč. 11, Sep 9 (2015), s. 1570-1582 ISSN 1860-5397 Institutional support: RVO:61388963 Keywords : carboxylic acids * free radicals * organic synthesis * photocatalysis * titania Subject RIV: CC - Organic Chemistry Impact factor: 2.697, year: 2015 http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-11-173

  18. Synthesis of Ibuprofen in the Introductory Organic Laboratory

    Science.gov (United States)

    Kjonaas, Richard A.; Williams, Peggy E.; Counce, David A.; Crawley, Lindsey R.

    2011-01-01

    A method for the synthesis of ibuprofen in introductory organic chemistry laboratory courses is reported. This experiment requires two 3-h lab sessions. All of the reactions and techniques are a standard part of any introductory organic chemistry course. In the first lab session, students reduce p-isobutylacetophenone to an alcohol and then…

  19. First-Row-Transition Ion Metals(II-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Nuno M. R. Martins

    2017-11-01

    Full Text Available A series of first-row transition-metals combined with ethylenediamine tetraacetic acid (EDTA, as metal-based N,O-chelating ligands, at the surface of ferrite magnetic nanoparticles (MNPs was prepared by a co-precipitation method. Those EDTA functionalized MNPs with general formula Fe3O4@EDTA-M2+ [M = Mn2+ (1, Fe2+ (2, Co2+ (3, Ni2+ (4, Cu2+ (5 or Zn2+ (6] were characterized by FTIR (Fourier Transform Infrared spectroscopy, powder XRD (X-ray Diffraction, SEM (Scanning Electron Microscope, EDS (Energy Dispersive Spectrometer, VSM (Vibrating Sample Magnetometer and TGA (Thermal Gravity Analysis. The application of the magnetic NPs towards the microwave-assisted oxidation of several alcohol substrates in a solvent-free medium was evaluated. The influence of reaction parameters such as temperature, time, type of oxidant, and presence of organic radicals was investigated. This study demonstrates that these MNPs can act as efficient catalysts for the conversion of alcohols to the corresponding ketones or aldehydes with high selectivity and yields up to 99% after 2 h of reaction at 110 °C using t-BuOOH as oxidant. Moreover, they have the advantage of being magnetically recoverable catalysts that can be easily recycled in following runs.

  20. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity

    Directory of Open Access Journals (Sweden)

    Flávia L. M. Jesus

    2017-01-01

    Full Text Available Andiroba (Carapa guianensis seeds are the source of an oil with a wide range of biological activities and ethnopharmacological uses. However, few studies have devoted attention to innovative formulations, including nanoemulsions. The present study aimed to obtain a colloidal system with the andiroba oil using a low-energy and organic-solvent-free method. Moreover, the preliminary residual larvicidal activity of the nanoemulsion against Aedes aegypti was evaluated. Oleic and palmitic acids were the major fatty acids, in addition to the phytosterol β-sitosterol and limonoids (tetranortriterpenoids. The required hydrophile-lipophile was around 11.0 and the optimal nanoemulsion was obtained using polysorbate 85. The particle size distribution suggested the presence of small droplets (mean diameter around 150 nm and low polydispersity index (around 0.150. The effect of temperature on particle size distribution revealed that no major droplet size increase occurred. The preliminary residual larvicidal assay suggested that the mortality increased as a function of time. The present study allowed achievement of a potential bioactive oil in water nanoemulsion that may be a promising controlled release system. Moreover, the ecofriendly approach involved in the preparation associated with the great bioactive potential of C. guianensis makes this nanoemulsion very promising for valorization of this Amazon raw material.

  1. Synthesis of organic compounds 15 N enriched

    International Nuclear Information System (INIS)

    Oliveira, Claudineia Raquel de; Bendassolli, Jose Albertino; Prestes, Clelber Vieira; Tavares, Glauco Arnold

    2002-01-01

    The aim of this work was to develop urea- 15 N and glycine- 15 N synthesis for agronomic and biological studies. The production of these compounds was evaluated due to the fact of increasing use of urea, comparing to others solid fertilizers and the importance of glycine in the studies of protein metabolism. A non-conventional method was carried out to synthesize urea. The process involved reaction among Co, NH 3 anidrid and S at low temperature (100 deg C) and of pressure (0,81 mPa) compared to the conventional method. Monolise halets reaction was carried out for glycine synthesis with chloroacetic and ammonia 2 deg C. Both compounds are economic viable, they can be produced at a lower price than the trade market one. (author)

  2. Solvent free hydroxylation of the methyl esters of Blighia unijugata seed oil in the presence of cetyltrimethylammonium permanganate

    Directory of Open Access Journals (Sweden)

    Adewuyi Adewale

    2011-12-01

    Full Text Available Abstract Extraction of oil from the seed of Blighia unijugata gave a yield of 50.82 ± 1.20% using hexane in a soxhlet extractor. The iodine and saponification values were 67.60 ± 0.80 g iodine/100 g and 239.20 ± 1.00 mg KOH/g respectively with C18:1 being the dominant fatty acid. Unsaturated methyl esters of Blighia unijugata which had been previously subjected to urea adduct complexation was used to synthesize methyl 9, 10-dihydroxyoctadecanoate via hydroxylation in the presence of cetyltrimethylammonium permanganate (CTAP. The reaction was monitored and confirmed using FTIR and GC-MS. This study has revealed that oxidation reaction of mono unsaturated bonds using CTAP could be achieved under solvent free condition.

  3. Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Trecha, Danusia O.; Ferreira, Patricia da C.; Jacob, Raquel G.; Perin, Gelson [Universidade Federal de Pelotas (UFPEL), Pelotas, RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)]. E-mail: lenardao@ufpel.edu.br

    2009-07-01

    A general, clean and easy method for the conjugated addition of thiols to citral promoted by KF/Al{sub 2}O{sub 3} under solvent-free or using glycerin as recyclable solvent at room temperature is described. It was found that the solvent-free protocol is applicable to the direct reaction of thiophenol with the essential oil of lemon grass (Cymbopogon citratus) to afford directly 3,7-dimethyl-3-(phenylthio)oct-6-enal, a potential bactericide agent. The method was extended to other electron-poor alkenes with excellent results. For the solvent-free protocol, the use of microwave irradiation facilitated the procedure and accelerates the reaction. The catalytic system and glycerin can be reused up to three times without previous treatment with comparable activity. (author)

  4. Solvent-free one-pot 1,3-dipolar cycloaddition reactions of ...

    Indian Academy of Sciences (India)

    The synthetic utility of microwave irradiation in organic ..... ized by using frontier molecular orbital theory and 1H ... Expected broad signals for N–H proton around δ 3.40 and alco- holic OH groups around δ 5.20 ppm are also obtained.

  5. Enzymatic preparation of "functional oil" rich in feruloylated structured lipids with solvent-free ultrasound pretreatment.

    Science.gov (United States)

    Zhang, Haiping; Zheng, Mingming; Shi, Jie; Tang, Hu; Deng, Qianchun; Huang, Fenghong; Luo, Dan

    2018-05-15

    In this study, a series of functional oils rich in feruloylated structured lipids (FSLs) was prepared by enzymatic transesterification of ethyl ferulate (EF) with triglycerides under ultrasound pretreatment. A conversion of more than 92.7% and controllable FSLs (3.1%-26.3%) can be obtained under the following conditions: 16% enzyme, substrate ratio 1:5 (oil/EF, mol/mol), 85 °C, ultrasound 1 h, pulse mode 3 s/3s (working/waiting), and 17.0 W/mL. Compared to conventional mechanical stirring, the activation energy decreased from 50.0 kJ/mol to 40.7 kJ/mol. The apparent kinetic constant increased by more than 13 times, and the time required for the maximum conversion reduced sharply from 20-60 h to 4-6h, which was the fastest rate for enzymatic synthesis of FSLs. The antioxidant activities of the functional oil significantly increased 1.0- to 8.1-fold more than that of the raw oil. The functional oil could be widely applied in various fields of functional foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ultrasound-assisted catalytic synthesis of acyclic imides in the presence of p-toluenesulfonic acid under solvent free conditions

    Directory of Open Access Journals (Sweden)

    Nasr-Esfahani Masoud

    2012-01-01

    Full Text Available A rapid and convenient preparation of acyclic imides by the reaction of aliphatic and aromatic nitriles with acyclic carboxylic anhydride in the presence of catalytic amounts of p-toluenesulfonic acid under thermal or ultrasonic conditions is reported. The advantages of this procedure are moderate reaction times, good to excellent yields, use of inexpensive and ecofriendly catalyst. The reaction of nitriles with aliphatic anhydrides proceeds in thermal conditions, while by the use of ultrasound irradiations these reactions get accelerated.

  7. A low-cost, environment-friendly and solvent-free route for synthesis of AgBr nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Shahsavani, E.; Khalaji, A.D.; Feizi, N.; Das, D.; Matalobos, J.S.; Kučeráková, Monika; Dušek, Michal

    2015-01-01

    Roč. 82, Jun (2015), s. 18-25 ISSN 0749-6036 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : AgBr * nanoparticles * thiosemicarbazone * XRD * SEM * TEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.117, year: 2015

  8. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  9. Chromium metal organic frameworks and synthesis of metal organic frameworks

    Science.gov (United States)

    Zhou, Hong-Cai; Liu, Tian-Fu; Lian, Xizhen; Zou, Lanfang; Feng, Dawei

    2018-04-24

    The present invention relates to monocrystalline metal organic frameworks comprising chromium ions and carboxylate ligands and the use of the same, for example their use for storing a gas. The invention also relates to methods for preparing metal organic frameworks comprising chromium, titanium or iron ions and carboxylate ligands. The methods of the invention allow such metal organic frameworks to be prepared in monocrystalline or polycrystalline forms.

  10. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  11. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  12. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    NJD

    and ketones. Although the yields of aldehyde and ketone were high using this method, disadvantages included the need to use dimethyl sulphide, a volatile organic .... 1d. DABCO, CH2Cl2,. 5 h. 97. 1h water. TBBDA. 10 min. 85. –. PBBS. 10 min. 80. TEMPO, CuCl, O2,. 15 h. 72. 1j. (bmim)(PF6), 65°C. (NO3)3CeBrO3, 90°C.

  13. Molecular catalysis and high-volume organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Khidekel, M L; Vasserberg, V E

    1977-01-01

    The field of catalysis is very wide. The properties of catalysts are briefly reviewed and compared with the properties of enzymes. Various uses of enxymes in industry (sugar from corn, cellulose breakdown, etc.) are pointed out. The types of homogeneous and heterogeneous catalysts for use in organic synthesis are discussed. 48 refs. (SJR)

  14. Synthesis of Bisphenol Z: An Organic Chemistry Experiment

    Science.gov (United States)

    Gregor, Richard W.

    2012-01-01

    A student achievable synthesis of bisphenol Z, 4,4'-(cyclohexane-1,1-diyl)diphenol, from the acid-catalyzed reaction of phenol with cyclohexanone is presented. The experiment exemplifies all the usual pedagogy for the standard topic of electrophilic aromatic substitution present in the undergraduate organic chemistry curriculum, while providing…

  15. Synthesis and Chemistry of Organic Geminal Di- and Triazides.

    Science.gov (United States)

    Häring, Andreas P; Kirsch, Stefan F

    2015-11-06

    This review recapitulates all available literature dealing with the synthesis and reactivity of geminal organic di- and triazides. These compound classes are, to a large extent, unexplored despite their promising chemical properties and their simple preparation. In addition, the chemistry of carbonyl diazide (2) and tetraazidomethane (105) is described in separate sections.

  16. Nanoporous ionic organic networks: from synthesis to materials applications

    OpenAIRE

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-01-01

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of specia...

  17. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route

    International Nuclear Information System (INIS)

    Okada, Masahiro; Fujii, Syuji; Nishimura, Taiki; Nakamura, Yoshinobu; Takeda, Shoji; Furuzono, Tsutomu

    2012-01-01

    Highlights: ► Hydroxyapatite (HAp) nanoparticles stabilized polymer melt-in-water emulsions without any molecular surfactants. ► Interaction between polymer and HAp played a crucial role. ► HAp-coated polymer particles were obtained from the emulsions without any organic solvents. - Abstract: Hydroxyapatite (HAp) nanoparticle-coated biodegradable polymer particles were fabricated from a nanoparticle-stabilized emulsion in the absence of any molecular surfactants or organic solvents. First, a polymer melt-in-water emulsion was prepared by mixing a water phase containing nanosized HAp particles as a particulate emulsifier and an oil phase consisting of poly(ε-caprolactone) (PCL) or poly(L-lactide-co-ε-caprolactone) (P(LLA-CL)) above its melting point. It was clarified that the interaction between ester/carboxyl groups of the polymers and the HAp nanoparticles at the polymer–water interface played a crucial role to prepare the nanoparticle-stabilized emulsion. The HAp nanoparticle-coated biodegradable polymer particle (a polymer solid-in-water emulsion) was fabricated by cooling the emulsion. The particle morphology and particle size were evaluated using scanning electron microscope.

  18. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion

    NARCIS (Netherlands)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J.; Busscher, Henk J.; van der Mei, Henny C.

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the

  19. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    Science.gov (United States)

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  20. Using Pd-salen complex as an efficient catalyst for the copper- and solvent-free coupling of acyl chlorides with terminal alkynes under aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    Mohammad

    2010-01-01

    The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-l,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine as base, giving excellent ynones under aerobic conditions.

  1. Catalyst-free and solvent-free Michael addition of 1,3-dicarbonyl compounds to nitroalkenes by a grinding method

    Science.gov (United States)

    Xie, Zong-Bo; Wu, Ming-Yu; He, Ting; Le, Zhang-Gao

    2012-01-01

    Summary An environmentally benign, fast and convenient protocol has been developed for the Michael addition of 1,3-dicarbonyl compounds to β-nitroalkenes in good to excellent yields by a grinding method under catalyst- and solvent-free conditions. PMID:22563352

  2. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    Science.gov (United States)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  3. Chemoselective Preparation of 1,1-Diacetates from Aldehydes, Mediated by a Keggin Heteropolyacid Under Solvent Free Conditions at Room Temperature

    Directory of Open Access Journals (Sweden)

    G. Romanelli

    2007-01-01

    Full Text Available A simple, general and efficient method has been developed for the conversion of aldehydes to 1,1-diacetates using acetic anhydride, a catalytic amount of non commercial Keggin heteropolyacid (H6 PalMo11O40 (1% mol in solvent free conditions at room temperature. Aromatic and aliphatic, simple and conjugated aldehydes were protected with excellent yields.

  4. Organic Synthesis in Simulated Interstellar Ice Analogs

    Science.gov (United States)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  5. Ohmic Heating: An Emerging Concept in Organic Synthesis.

    Science.gov (United States)

    Silva, Vera L M; Santos, Luis M N B F; Silva, Artur M S

    2017-06-12

    The ohmic heating also known as direct Joule heating, is an advanced thermal processing method, mainly used in the food industry to rapidly increase the temperature for either cooking or sterilization purposes. Its use in organic synthesis, in the heating of chemical reactors, is an emerging method that shows great potential, the development of which has started recently. This Concept article focuses on the use of ohmic heating as a new tool for organic synthesis. It presents the fundamentals of ohmic heating and makes a qualitative and quantitative comparison with other common heating methods. A brief description of the ohmic reactor prototype in operation is presented as well as recent examples of its use in organic synthesis at laboratory scale, thus showing the current state of the research. The advantages and limitations of this heating method, as well as its main current applications are also discussed. Finally, the prospects and potential implications of ohmic heating in future research in chemical synthesis are proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 15 CFR 715.1 - Annual declaration requirements for production by synthesis of unscheduled discrete organic...

    Science.gov (United States)

    2010-01-01

    ... production by synthesis of unscheduled discrete organic chemicals (UDOCs). 715.1 Section 715.1 Commerce and... DISCRETE ORGANIC CHEMICALS (UDOCs) § 715.1 Annual declaration requirements for production by synthesis of unscheduled discrete organic chemicals (UDOCs). (a) Declaration of production by synthesis of UDOCs for...

  7. Synthesis of Organics in the Early Solar Nebula

    Science.gov (United States)

    Johnson, Natasha M.; Manning, S.; Nuth, J. A., III

    2007-10-01

    It is unknown what process or processes made the organics that are found or detected in extraterrestrial materials. One process that forms organics are Fischer-Tropsch type (FTT) reactions. Fischer-Tropsch type synthesis produces complex hydrocarbons by hydrogenating carbon monoxide via surface mediated reactions. The products of these reactions have been well-studied using `natural’ catalysts [1] and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to material near three AU [2]. We use FTT synthesis to coat Fe-silicate amorphous grains with organic material to simulate the chemistry in the early Solar Nebula. These coatings are composed of macromolecular organic phases [3]. Previous work also showed that as the grains became coated, Haber-Bosch type reactions took place resulting in nitrogen-bearing organics [4]. Our experiments consist of circulating CO, N2, and H2 gas through Fe- amorphous silicate grains that are maintained at a specific temperature in a closed system. The gases are passed through an FTIR spectrometer and are measured to monitor the reaction progress. Samples are analyzed using FTIR, and GCMS (including pyrolysis) and extraction techniques are used to analyze the organic coatings. These experiments show that these types of reactions are an effective means to produce complex hydrocarbons. We present the analysis of the produced organics (solid and gas phase) and the change in the production rate of several compounds as the grains become coated. Organics generated by this technique could represent the carbonaceous material incorporated in comets and meteorites. References: [1] Hayatsu and Anders 1981. Topics in Current Chemistry 99:1-37. [2] Kress and Tielens 2001. MAPS 36:75-91. [3] Johnson et al. 2004. #1876. 35th LPSC. [4] Hill and Nuth 2003. Astrobiology 3:291-304. This work was supported by a grant from NASA.

  8. Optimization of 2-ethylhexyl palmitate production using lipozyme RM IM as catalyst in a solvent-free system.

    Science.gov (United States)

    Richetti, Aline; Leite, Selma G F; Antunes, Octávio A C; de Souza, Andrea L F; Lerin, Lindomar A; Dallago, Rogério M; Paroul, Natalia; Di Luccio, Marco; Oliveira, J Vladimir; Treichel, Helen; de Oliveira, Débora

    2010-04-01

    This work reports the application of a lipase in the 2-ethylhexyl palmitate esterification in a solvent-free system with an immobilized lipase (Lipozyme RM IM). A sequential strategy was used applying two experimental designs to optimize the 2-ethylhexyl palmitate production. An empirical model was then built so as to assess the effects of process variables on the reaction conversion. Afterwards, the operating conditions that optimized 2-ethylhexyl palmitate production were established as being acid/alcohol molar ratio 1:3, temperature of 70 degrees C, stirring rate of 150 rpm, 10 wt.% of enzyme, leading to a reaction conversion as high as 95%. From this point, a kinetic study was carried out evaluating the effect of acid:alcohol molar ratio, the enzyme concentration and the temperature on product conversion. The results obtained in this step permit to verify that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt.%) and temperature of 70 degrees C, led to conversions next to 100%.

  9. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    Science.gov (United States)

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  10. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties.

    Science.gov (United States)

    Şahin, Selin; Samli, Ruya; Tan, Ayşe Seher Birteksöz; Barba, Francisco J; Chemat, Farid; Cravotto, Giancarlo; Lorenzo, José M

    2017-06-24

    Response surface methodology (RSM) and artificial neural networks (ANN) were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC) and oleuropein yields in olive tree leaf ( Olea europaea ) extracts, obtained after solvent-free microwave-assisted extraction (SFMAE). The SFMAE processing conditions were: microwave irradiation power 250-350 W, extraction time 2-3 min, and the amount of sample 5-10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm) was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis , with a minimum inhibitory concentration (MIC) value of 1.25 mg/mL.

  11. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Selin Şahin

    2017-06-01

    Full Text Available Response surface methodology (RSM and artificial neural networks (ANN were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC and oleuropein yields in olive tree leaf (Olea europaea extracts, obtained after solvent-free microwave-assisted extraction (SFMAE. The SFMAE processing conditions were: microwave irradiation power 250–350 W, extraction time 2–3 min, and the amount of sample 5–10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis, with a minimum inhibitory concentration (MIC value of 1.25 mg/mL.

  12. Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process

    Science.gov (United States)

    Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu

    2017-08-01

    The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.

  13. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.

    Science.gov (United States)

    Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L

    2018-02-01

    Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.

  14. Mechanochemical synthesis of small organic molecules

    Directory of Open Access Journals (Sweden)

    Tapas Kumar Achar

    2017-09-01

    Full Text Available With the growing interest in renewable energy and global warming, it is important to minimize the usage of hazardous chemicals in both academic and industrial research, elimination of waste, and possibly recycle them to obtain better results in greener fashion. The studies under the area of mechanochemistry which cover the grinding chemistry to ball milling, sonication, etc. are certainly of interest to the researchers working on the development of green methodologies. In this review, a collection of examples on recent developments in organic bond formation reactions like carbon–carbon (C–C, carbon–nitrogen (C–N, carbon–oxygen (C–O, carbon–halogen (C–X, etc. is documented. Mechanochemical syntheses of heterocyclic rings, multicomponent reactions and organometallic molecules including their catalytic applications are also highlighted.

  15. Organic synthesis provides opportunities to transform drug discovery

    Science.gov (United States)

    Blakemore, David C.; Castro, Luis; Churcher, Ian; Rees, David C.; Thomas, Andrew W.; Wilson, David M.; Wood, Anthony

    2018-03-01

    Despite decades of ground-breaking research in academia, organic synthesis is still a rate-limiting factor in drug-discovery projects. Here we present some current challenges in synthetic organic chemistry from the perspective of the pharmaceutical industry and highlight problematic steps that, if overcome, would find extensive application in the discovery of transformational medicines. Significant synthesis challenges arise from the fact that drug molecules typically contain amines and N-heterocycles, as well as unprotected polar groups. There is also a need for new reactions that enable non-traditional disconnections, more C-H bond activation and late-stage functionalization, as well as stereoselectively substituted aliphatic heterocyclic ring synthesis, C-X or C-C bond formation. We also emphasize that syntheses compatible with biomacromolecules will find increasing use, while new technologies such as machine-assisted approaches and artificial intelligence for synthesis planning have the potential to dramatically accelerate the drug-discovery process. We believe that increasing collaboration between academic and industrial chemists is crucial to address the challenges outlined here.

  16. H2 O2 –HBr: A metal-free and organic solvent-free reagent system ...

    Indian Academy of Sciences (India)

    Administrator

    Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, ... A novel, practical and environmentally benign approach has been developed for .... pure products was applied; A Fisons instruments gas.

  17. Intramolecular Diels-Alder Reactions in Organic Synthesis

    OpenAIRE

    Sizemore, Nicholas Blandford Luke

    2014-01-01

    Intramolecular Diels-Alder (IMDA) reactions are an important class of reactions in synthetic organic chemistry for the rapid construction of polycyclic frameworks. Three classes of IMDA reactions were investigated synthetically and computationally: 1) all-carbon type 1 IMDA reactions, 2) N-acylnitroso type 2 IMDA reactions, and 3) cyano-azadiene IMDA reactions. The first class was implemented in research toward the total synthesis of maoecrystal Z and isopalhinine A. The second class was stud...

  18. Thallium (III) salts utilization in organic synthesis. Part II

    International Nuclear Information System (INIS)

    Ferraz, H.M.C.

    1989-01-01

    The utilizations of thallium (III) salts in organic synthesis with carbonylic and acitylenic substrates are presented. The reactions of carbonylic substra3ts with kitones and the oxidation reactions of acetylenic substrates are shown. Others reactions including thallium (III) salts and non aromatic unsatured substracts, as cleasage of ethers and epoxide using thallium trinitrate, hydrazones treatments with thallium triacetates, etc, are also mentioned. (C.G.C.) [pt

  19. Organized Mesoporous Alumina: Synthesis, Structure and Potential in Catalysis

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří

    2003-01-01

    Roč. 254, - (2003), s. 327-338 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA MŠk ME 404 Institutional research plan: CEZ:AV0Z4040901 Keywords : organized mesoporous alumina * mesoporous molecular sieves * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  20. Greener routes to organics and nanomaterials: Sustainable applications of nano-catalysts (JA)

    Science.gov (United States)

    Sustainable synthetic activity involving alternate energy input and greener reaction medium in aqueous or under solvent-free conditions is summarized. This includes the synthesis of heterocyclic compounds, coupling reactions, and a variety of reactions catalyzed by basic water o...

  1. Engineering and Applications of fungal laccases for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2008-11-01

    Full Text Available Abstract Laccases are multi-copper containing oxidases (EC 1.10.3.2, widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed.

  2. Fast and efficient method for reduction of carbonyl compounds with NaBH{sub 4} /wet SiO{sub 2} under solvent free condition

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Bahyar, Tarifeh [Urmia University, Urmia (Iran, Islamic Republic of). Faculty of Sciences. Dept. of Chemistry]. E-mail: b.zeynizadeh@mail.urmia.ac.ir

    2005-11-15

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, {alpha},{beta}-unsaturated enals and enones, {alpha}-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO{sub 2} (30% m/m) under solvent free condition. The reactions were performed at room tempere or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  3. Fast and efficient method for reduction of carbonyl compounds with NaBH4 /wet SiO2 under solvent free condition

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Bahyar, Tarifeh

    2005-01-01

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO 2 (30% m/m) under solvent free condition. The reactions were performed at room temperature or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  4. α-Imino Esters in Organic Synthesis: Recent Advances.

    Science.gov (United States)

    Eftekhari-Sis, Bagher; Zirak, Maryam

    2017-06-28

    α-Imino esters are useful precursors for the synthesis of a variety of types of natural and unnatural α-amino acid derivatives, with a wide range of biological activities. Due to the adjacent ester group, α-imino esters are more reactive relative to other types of imines and undergo different kinds of reactions, including organometallics addition, metal catalyzed vinylation and alkynylation, aza-Henry, aza-Morita-Baylis-Hillman, imino-ene, Mannich-type, and cycloaddition reactions, as well as hydrogenation and reduction. This review discusses the mechanism, scope, and applications of the reactions of α-imino esters and related compounds in organic synthesis, covering the literature from the last 12 years.

  5. Synthesis and characterization of organically linked ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Christine; Riedel, Ingo; Parisi, Juergen [Energy and Semiconductor Research Laboratory (EHF), University of Oldenburg, Carl-von Ossietzky-Strasse 9-11, 26129 Oldenburg (Germany); Kruska, Carsten; Heimbrodt, Wolfram [Department of Physics and Material Sciences Center, Philipps-University Marburg, Renthof 5, 35032 Marburg (Germany); Feser, Clemens [NEXT ENERGY - EWE Research Centre for Energy Technology e.V., Carl-von Ossietzky-Strasse 15, 26129 Oldenburg (Germany); Beenken, Wichard J.D. [Department of Theoretical Physics I, Ilmenau University of Technology, Weimarer Strasse 25, 98693 Ilmenau (Germany); Hoppe, Harald [Department of Experimental Physics I, Ilmenau University of Technology, Weimarer Strasse 32, 98693 Ilmenau (Germany)

    2012-11-15

    We report on the solution-based synthesis and characterization of three-dimensional networks of ZnO nanoparticles where the formation of structures is achieved by covalently linking the nanocrystals with bifunctional organic ligands. The colloidal synthesis will be presented with application of two ligands that vary in size and binding sites. Furthermore we report on structural characterization of dried powders and thin films by means of X-ray diffraction and electron microscopy in order to examine the regularity of the structures. We also present first investigations of the optical properties and electrical conductance behavior in lateral direction of the differently linked hybrid ZnO networks. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Synthesis and characterization of organically linked ZnO nanoparticles

    International Nuclear Information System (INIS)

    Chory, Christine; Riedel, Ingo; Parisi, Juergen; Kruska, Carsten; Heimbrodt, Wolfram; Feser, Clemens; Beenken, Wichard J.D.; Hoppe, Harald

    2012-01-01

    We report on the solution-based synthesis and characterization of three-dimensional networks of ZnO nanoparticles where the formation of structures is achieved by covalently linking the nanocrystals with bifunctional organic ligands. The colloidal synthesis will be presented with application of two ligands that vary in size and binding sites. Furthermore we report on structural characterization of dried powders and thin films by means of X-ray diffraction and electron microscopy in order to examine the regularity of the structures. We also present first investigations of the optical properties and electrical conductance behavior in lateral direction of the differently linked hybrid ZnO networks. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03217a Click here for additional data file.

    Science.gov (United States)

    Crawford, Deborah; Casaban, José; Haydon, Robert; Giri, Nicola; McNally, Tony

    2015-01-01

    Grinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)2(PPh3)2 as well as the commercially important metal organic frameworks (MOFs) Cu3(BTC)2 (HKUST-1), Zn(2-methylimidazolate)2 (ZIF-8, MAF-4) and Al(fumarate)(OH). Notably, Al(fumarate)(OH) has not previously been synthesised mechanochemically. Quantitative conversions occur to give products at kg h–1 rates which, after activation, exhibit surface areas and pore volumes equivalent to those of materials produced by conventional solvent-based methods. Some reactions can be performed either under completely solvent-free conditions whereas others require the addition of small amounts of solvent (typically 3–4 mol equivalents). Continuous neat melt phase synthesis is also successfully demonstrated by both twin screw and single screw extrusion for ZIF-8. The latter technique provided ZIF-8 at 4 kg h–1. The space time yields (STYs) for these methods of up to 144 × 103 kg per m3 per day are orders of magnitude greater than STYs for other methods of making MOFs. Extrusion methods clearly enable scaling of mechanochemical and melt phase synthesis under solvent-free or low-solvent conditions, and may also be applied in synthesis more generally. PMID:29308131

  8. Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yoshinobu Fukumori

    2013-07-01

    Full Text Available We have previously developed water-based microwave (MW-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

  9. Electrical energy sources for organic synthesis on the early earth

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  10. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun

    2014-06-26

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new class of porous solid materials, MOFs are attractive for a variety of industrial applications including separation membranes-a rapidly developing research area. Many reports have discussed the synthesis and applications of MOFs and MOF thin films, but relatively few have addressed MOF membranes. This critical review provides an overview of the diverse MOF membranes that have been prepared, beginning with a brief introduction to the current techniques for the fabrication of MOF membranes. Gas and liquid separation applications with different MOF membranes are also included (175 references). This journal is © the Partner Organisations 2014.

  11. Greener and Sustainable Trends in Synthesis of Organics and ...

    Science.gov (United States)

    Trends in greener and sustainable process development during the past 25 years are abridged involving the use of alternate energy inputs (mechanochemistry, ultrasound- or microwave irradiation), photochemistry, and greener reaction media as applied to synthesis of organics and nanomaterials. In the organic synthesis arena, examples comprise assembly of heterocyclic compounds, coupling and a variety of other name reactions catalyzed by basic water or recyclable magnetic nanocatalysts. Generation of nanoparticles benefits from the biomimetic approaches where vitamins, sugars, and plant polyphenols, including agricultural waste residues, can serve as reducing and capping agents. Metal nanocatalysts (Pd, Au, Ag, Ni, Ru, Ce, Cu, etc.) immobilized on biodegradable supports such as cellulose and chitosan, or on recyclable magnetic ferrites via ligands, namely dopamine or glutathione, are receiving special attention. These strategic approaches attempt to address most of the Green Chemistry Principles while producing functional chemicals with utmost level of waste minimization. Feature article for celebration of 25 years of Green Chemistry on invitation from American Chemical Society (ACS) journal, ACS Sustainable Chemistry & Engineering.

  12. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    Science.gov (United States)

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  13. Synthesis Under 'Greener' Conditions: Role of Sustainable Nano-Catalysts

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a varie...

  14. Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent free system

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    By-product formation is a serious problem in the lipase-catalyzed acyl exchange of phospholipids (PL). By-products are formed due to parallel hydrolysis reactions and acyl migration in the reaction system. A clear elucidation of these side reactions is important for practical operation in order...... to minimize by-products during reaction. In the present study we examined the Lipozyme RM IM-catalyzed acidolysis for the production of structured phospholipids between phosphatidylcholine (PC) and caprylic acid in the solvent free system. A five-factor response surface design was used to evaluate...

  15. Benign and efficient preparation of thioethers by solvent-free S-alkylation of thiols with alkyl halides catalyzed by potassium fluoride on alumina

    DEFF Research Database (Denmark)

    Nguyen, Kha Ngoc; Duus, Fritz; Luu, Thi Xuan Thi

    2016-01-01

    The preparation of thioethers by S-alkylation of various thiols with alkyl halides under solvent-free reaction conditions using potassium fluoride on alumina (KF/Al2O3) as a solid catalyst has been investigated in detail with respect to three different modes of reaction activation (ultrasound...... irradiation, microwave irradiation, and conventional heating) for obtaining maximum yield of the thioether. The importance of KF/Al2O3 as a particularly efficient catalyst was corroborated for all three modes of reaction activation, although the reaction time was found to be strongly dependent on the mode...

  16. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, GM; Paterno, GM; Tregnago, G; Treat, N; Stingelin, N; Yacoot, A; Cacialli, F

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8???nm), was used to measure the cr...

  17. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C-61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, G. M.; Paterno, G. M.; Tregnago, G.; Treat, N.; Stingelin, N.; Yacoot, A.; Cacialli, F.

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crys...

  18. Tetrabutylammonium Bromide Media Aza-Michael Addition of 1,2,3,6-Tetrahydrophthalimide to Symmetrical Fumaric Esters and Acrylic Esters under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Mohammadreza Zamanloo

    2010-10-01

    Full Text Available The aza-Michael addition of 1,2,3,6-tetrahydrophthalimide with symmetrical fumaric esters has been performed efficiently in a solvent-free system at 100 °C and using 1,4-diazabicyclo[2.2.2]octane (DABCO as a base in the presence of tetrabutylammonium bromide (TBAB. The products were obtained in good to high yields within 2.5-7.0 h. This reaction worked well on linear alkyl fumarates and was not effective with nonlinear alkyl fumarates. Although the reaction was also applicable to acrylates such as n-butyl acrylate, methacrylates and crotonates were not suitable Michael acceptors for this reaction.

  19. Nanoporous ionic organic networks: from synthesis to materials applications.

    Science.gov (United States)

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-11-21

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of special importance and possess extreme application profiles. Within these nanoporous ionic organic networks (NIONs), here with a pore size in the range from sub-1 nm to 100 nm, we observe a synergistic coupling of the electrostatic interaction of charges, the nanoconfinement within pores and the addressable functional units in soft matter resulting in a wide variety of functions and applications, above all catalysis, energy storage and conversion, as well as environment-related operations. This review aims to highlight the recent progress in this area, and seeks to raise original perspectives that will stimulate future advancements at both the fundamental and applied level.

  20. Laser-Printed Organic Thin-Film Transistors

    KAUST Repository

    Diemer, Peter J.; Harper, Angela F.; Niazi, Muhammad Rizwan; Petty, Anthony J.; Anthony, John E.; Amassian, Aram; Jurchescu, Oana D.

    2017-01-01

    their incorporation in large-scale manufacturing processes. Here, the first ever organic thin-film transistor fabricated with an electrophotographic laser printing process using a standard office laser printer is reported. This completely solvent-free additive

  1. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  2. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    Science.gov (United States)

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  3. One step paired electrochemical synthesis of iron and iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ordoukhanian Juliet

    2016-09-01

    Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.

  4. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision

    International Nuclear Information System (INIS)

    Ananikov, V P; Khemchyan, L L; Ivanova, Yu V; Dilman, A D; Levin, V V; Bukhtiyarov, V I; Sorokin, A M; Prosvirin, I P; Romanenko, A V; Simonov, P A; Vatsadze, S Z; Medved'ko, A V; Nuriev, V N; Nenajdenko, V G; Shmatova, O I; Muzalevskiy, V M; Koptyug, I V; Kovtunov, K V; Zhivonitko, V V; Likholobov, V A

    2014-01-01

    The challenges of the modern society and the growing demand of high-technology sectors of industrial production bring about a new phase in the development of organic synthesis. A cutting edge of modern synthetic methods is introduction of functional groups and more complex structural units into organic molecules with unprecedented control over the course of chemical transformation. Analysis of the state-of-the-art achievements in selective organic synthesis indicates the appearance of a new trend — the synthesis of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with absolute selectivity. Most advanced approaches to organic synthesis anticipated in the near future can be defined as 'atomic precision' in chemical reactions. The present review considers selective methods of organic synthesis suitable for transformation of complex functionalized molecules under mild conditions. Selected key trends in the modern organic synthesis are considered including the preparation of organofluorine compounds, catalytic cross-coupling and oxidative cross-coupling reactions, atom-economic addition reactions, methathesis processes, oxidation and reduction reactions, synthesis of heterocyclic compounds, design of new homogeneous and heterogeneous catalytic systems, application of photocatalysis, scaling up synthetic procedures to industrial level and development of new approaches to investigation of mechanisms of catalytic reactions. The bibliography includes 840 references

  5. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Nina Kann

    2010-09-01

    Full Text Available Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  6. Sustainable Synthesis of Organics and Nanomaterials Using Microwave Irradiation

    Science.gov (United States)

    MW-assisted synthesis of heterocyclic compounds and nanomaterials under benign conditions is summarized. Shape-controlled aqueous synthesis of noble nanostructures via MW spontaneous reduction of metal salts using -D-glucose, sucrose, and maltose will be presented. A general met...

  7. Sequential Dy(OTf)3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates.

    Science.gov (United States)

    Yan, Yi-Ling; Guo, Jiun-Rung; Liang, Chien-Fu

    2017-09-19

    Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf) 3 -catalyzed glycosylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical composition and antibacterial activity of Origanum saccatum P.H. Davis essential oil obtained by solvent-free microwave extraction: comparison with hydrodistillation.

    Science.gov (United States)

    Sozmen, Fazli; Uysal, Burcu; Oksal, Birsen S; Kose, Elif Odabas; Deniz, I Gokhan

    2011-01-01

    The components of the essential oils (EOs) obtained by solvent-free microwave extraction (SFME) and hydrodistillation (HD) from endemic Origanum saccatum P.H. Davis were identified by using GC/MS. The main constituents of both EOs obtained by SFME and HD, respectively, from O. saccatum were p-cymene (72.5 and 70.6%), thymol (9.32 and 8.11%), and carvacrol (7.18 and 6.36%). The EO obtained by SFME contained substantially higher amounts of oxygenated compounds and lower amounts of monoterpenes than did the EO obtained by HD. The antibacterial activities of the EOs obtained by SFME and HD were evaluated with the disc diffusion method by comparison with 10 different bacterial strains. The antibacterial activity of the EO extracted by SFME was found to be more effective than that of the EO extracted by HD against seven of the tested bacteria.

  9. A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts.

    Science.gov (United States)

    Mao, Wei; Ma, Hongzhu; Wang, Bo

    2009-08-15

    A mild simple method for nitration of aromatic compounds, various solid acids as catalysts, the air treated with the corona discharge generator as nitrating agent, the liquid-phase nitration of toluene, at ambient temperature and atmospheric pressure without solvent has been investigated. The results show that SO(4)(2-)/TiO(2) (ST) and SO(4)(2-)/TiO(2) doped with CeO(2) (STC) catalysts displayed good nitration activity in the experiments. It is an attractive method for the environmentally friendly synthesis of nitroaromatic compounds. Moreover, only mononitrotoluenes were detected in the products, and the ratio of para-nitrotoluene and ortho-nitrotoluene was approximately 1:1 with various catalysts. A maximum yield of about 11.4% was achieved for mononitrotoluenes in STC reaction system in 3h.

  10. Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process

    Directory of Open Access Journals (Sweden)

    Ameen Shahid

    2017-03-01

    Full Text Available A sustainable, green one-pot process for the synthesis of dihydropyrimidinones (DHPMs derivatives by a three-component reaction of β-ketoester derivatives, aldehyde and urea or thiourea over the alkali-treated H-ZSM-5 zeolite under ball-milling was developed. Isolation of the product with ethyl acetate shadowed by vanishing of solvent was applied. The hierachical zeolite catalyst (MFI27_6 showed high yield (86%–96% of DHPMs in a very short time (10–30 min. The recyclability of the catalyst for the subsequent reactions was examined in four subsequent runs. The catalyst was shown to be robust without a detectable reduction in catalytic activity, and high yields of products showed the efficient protocol of the Biginelli reactions.

  11. The CP molecule labyrinth: a paradigm of how endeavors in total synthesis lead to discoveries and inventions in organic synthesis.

    Science.gov (United States)

    Nicolaou, K C; Baran, Phil S

    2002-08-02

    Imagine an artist carving a sculpture from a marble slab and finding gold nuggets in the process. This thought is not a far-fetched description of the work of a synthetic chemist pursuing the total synthesis of a natural product. At the end of the day, he or she will be judged by the artistry of the final work and the weight of the gold discovered in the process. However, as colorful as this description of total synthesis may be, it does not entirely capture the essence of the endeavor, for there is much more to be told, especially with regard to the contrast of frustrating failures and exhilarating moments of discovery. To fully appreciate the often Herculean nature of the task and the rewards that accompany it, one must sense the details of the enterprise behind the scenes. A more vivid description of total synthesis as a struggle against a tough opponent is perhaps appropriate to dramatize these elements of the experience. In this article we describe one such endeavor of total synthesis which, in addition to reaching the target molecule, resulted in a wealth of new synthetic strategies and technologies for chemical synthesis. The total synthesis of the CP molecules is compared to Theseus' most celebrated athlos (Greek for exploit, accomplishment): the conquest of the dreaded Minotaur, which he accomplished through brilliance, skill, and bravery having traversed the famous labyrinth with the help of Ariadne. This story from Greek mythology comes alive in modern synthetic expeditions toward natural products as exemplified by the total synthesis of the CP molecules which serve as a paradigm for modern total synthesis endeavors, where the objectives are discovery and invention in the broader sense of organic synthesis.

  12. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-01-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good

  13. organic template free synthesis of zsm11 from kaolinite clay

    African Journals Online (AJOL)

    user

    diffusion assistance and tortuosity, as depicted in Figure. 1. Hongyuan and others [6] .... characterized by nearly equal peak height of Al and Si, another means to ..... method for nanocrystalline zeolite synthesis. Chemical communication.

  14. Synthesis, characterisation and non-isothermal degradation kinetics ...

    Indian Academy of Sciences (India)

    Synthesis of a novel co-polymer made by the addition polymerisation between MEGDMA and 4-AB by aza-Michael addition (AMA) polymerisation method is a fascinating field of research. The present investigationyielded a hazardous metal catalyst-free and toxic solvent-free methodology. The AMA polymerisation was ...

  15. SYNTHESIS AND IN VITRO ANTIMICROBIAL EVALUATION OF 5 ...

    African Journals Online (AJOL)

    Preferred Customer

    An efficient synthesis of a new series of 5-amino-7-aryl-6-cyano-4H-pyrano[3,2-b] ... friendly catalyst under a thermal solvent-free green procedure is described. ... oxide [14], SB-DABCO [15], silica nanoparticles [16], ionic liquid [bmim]BF4 [17], ...

  16. An eco-sustainable green approach for the synthesis of ...

    Indian Academy of Sciences (India)

    sustainable green approach for the synthesis of propargylamines using LiOTf as a reusable catalyst under solvent-free condition. Someshwar D Dindulkar Baek Kwan Kwon Taek Lim Yeon Tae Jeong. Volume 125 Issue 1 January 2013 pp 101- ...

  17. Recent developments on ultrasound-assisted organic synthesis in aqueous medium

    Directory of Open Access Journals (Sweden)

    Banerjee Bubun

    2017-01-01

    Full Text Available In the recent past, a number of methods were reported on the application of ultrasound in organic reactions for the synthesis of diverse organic scaffolds. On the other hand, as far as green chemistry is concerned, water is the safest of all solvents. Thus, a “strong collaboration” between ultrasonic irradiation and aqueous medium holds the key to the development of an environmentally sustainable protocol. The present review summarizes the latest developments in ultrasound-assisted and water-mediated organic synthesis reported to date.

  18. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    Science.gov (United States)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  19. On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells

    KAUST Repository

    Lee, Chuan-Pei

    2009-08-01

    Titanium carbide (TiC) is an extremely hard conducting ceramic material often used as a coating for titanium alloys as well as steel and aluminum components to improve their surface properties. In this study, conducting ceramic nanoparticles (CCNPs) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached 1.68%, which was higher than that without adding TiC (1.18%); however, cell efficiency decreased when the TiC content reached 1.0 wt%. The electrochemical impedance spectroscopy (EIS) technique was employed to analyze the interfacial resistance in DSSCs, and it was found that the resistance of the charge-transfer process at the Pt counter electrode (Rct1) decreased when up to 1.0 wt% TiC was added. Presumably, this was due to the formation of the extended electron transfer surface (EETS) which facilitates electron transfer to the bulk electrolyte, resulting in a decrease of the dark current, whereby the open-circuit potential (VOC) could be improved. Furthermore, a significant increase in the fill factor (FF) for all TiC additions was related to the decrease in the series resistance (RS) of the DSSCs. However, at 1.0 wt% TiC, the largest charge-transfer resistance at the TiO2/dye/electrolyte interface was observed and resulted from the poor penetration of the electrolyte into the porous TiO2. The long-term stability of DSSCs with a binary ionic liquid electrolyte, which is superior to that of an organic solvent-based electrolyte, was also studied. © 2009 Elsevier B.V. All rights reserved.

  20. Vinylphosphonium and 2-aminovinylphosphonium salts – preparation and applications in organic synthesis

    Directory of Open Access Journals (Sweden)

    Anna Kuźnik

    2017-12-01

    Full Text Available The main synthetic routes towards vinylphosphonium salts and their wide applications in organic synthesis are discussed in this review. Particular attention is paid to the use of these compounds as building blocks for the synthesis of carbo- and heterocyclic systems after their prior transformation into the corresponding phosphorus ylides, followed by the intramolecular Wittig reaction with various types of nucleophiles containing a carbonyl function in their structures.

  1. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion.

    Science.gov (United States)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J; Busscher, Henk J; van der Mei, Henny C

    2010-11-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the amino groups of the amino-PPX layer were used to introduce the initiator from a vapor phase for atom transfer radical polymerization of acrylamide to form polyacrylamide (PAAm) brushes. The modification steps were verified by means of X-ray photoelectron spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy. Adhesion of Staphylococcus aureus ATCC 12600 and Escherichia coli 3.14 to an amino-PPX-PAAm brush coating in a parallel plate flow chamber was strongly reduced with respect to non-coated silicone rubber - by 93% and 99%, respectively. For E. coli 3.14, this reduction is larger than that obtained for solvent functionalization of γ-aminopropyltriethoxysilane-PAAm brushes due to the higher density of amino groups introduced by the CVD of amino-PPX. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction.

    Science.gov (United States)

    Chenni, Mohammed; El Abed, Douniazad; Rakotomanomana, Njara; Fernandez, Xavier; Chemat, Farid

    2016-01-19

    Solvent-free microwave extraction (SFME) and conventional hydro-distillation (HD) were used for the extraction of essential oils (EOs) from Egyptian sweet basil (Ocimum basilicum L.) leaves. The two resulting EOs were compared with regards to their chemical composition, antioxidant, and antimicrobial activities. The EO analyzed by GC and GC-MS, presented 65 compounds constituting 99.3% and 99.0% of the total oils obtained by SFME and HD, respectively. The main components of both oils were linalool (43.5% SFME; 48.4% HD), followed by methyl chavicol (13.3% SFME; 14.3% HD) and 1,8-cineole (6.8% SFME; 7.3% HD). Their antioxidant activity were studied with the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging method. The heating conditions effect was evaluated by the determination of the Total Polar Materials (TPM) content. The antimicrobial activity was investigated against five microorganisms: two Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and one yeast, Candida albicans. Both EOs showed high antimicrobial, but weak antioxidant, activities. The results indicated that the SFME method may be a better alternative for the extraction of EO from O. basilicum since it could be considered as providing a richer source of natural antioxidants, as well as strong antimicrobial agents for food preservation.

  3. Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE in a solvent-free system

    Directory of Open Access Journals (Sweden)

    Aline Simões

    2015-06-01

    Full Text Available The transesterification reaction of babassu oil with ethanol mediated by Burkholderia cepacia lipase immobilized on SiO2-PVA composite was assessed in a packed bed reactor running in the continuous mode. Experiments were performed in a solvent-free system at 50 °C. The performance of the reactor (14 mm ×210 mm was evaluated using babassu oil and ethanol at two molar ratios of 1:7 and 1:12, respectively, and operational limits in terms of substrate flow rate were determined. The system’s performance was quantified for different flow rates corresponding to space times between 7 and 13 h. Under each condition, the impact of the space time on the ethyl esters formation, the transesterification yield and productivity were determined. The oil to ethanol molar ratio was found as a critical parameter in the conversion of babassu oil into the correspondent ethyl esters. The highest transesterification yield of 96.0 ± 0.9% and productivity of 41.1 ± 1.6 mgester gcatalyst-1h-1 were achieved at the oil to ethanol molar ratio of 1:12 and for space times equal or higher than 11 h. Moreover, the immobilized lipase was found stable with respect to its catalytic characteristics, exhibiting a half-life of 32 d.

  4. Molecular interactions and redox effects of carvacrol and thymol on myofibrillar proteins using a non-destructive and solvent-free methodological approach.

    Science.gov (United States)

    Lahmar, Aida; Akcan, Tolga; Chekir-Ghedira, Leila; Estévez, Mario

    2018-04-01

    The present study provides molecular insight into the effect of thymol and carvacrol on the oxidative damage caused to myofibrillar proteins by a hydroxyl-radical generating system (HRGS). An innovative model system was designed, in which gels, prepared with increasing levels of myofibrillar proteins, were oxidized by a HRGS (Fe 3+ /H 2 O 2 , 60 °C and 7 days) in the presence of lipids. The molecular affinity between myofibrillar proteins and both terpenes, as well as their effect on the oxidative stability of the gel systems, were studied using a non-destructive and solvent-free procedure based on fluorescence spectroscopy. Carvacrol displayed more affinity than thymol for establishing chemical interactions with protein residues. Both terpenes exhibited a significant antioxidant potential against the generation of lipid-derived volatile carbonyls and against the formation of protein crosslinking. This procedure may be applied to meat products to assess the effectiveness of a given antioxidant additive without size reduction or sample processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    International Nuclear Information System (INIS)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco; Treat, Neil; Stingelin, Natalie

    2016-01-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction

  6. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    Science.gov (United States)

    Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  7. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Treat, Neil; Stingelin, Natalie [Department of Materials Science, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  8. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Basiuk, Vladimir A.; Meza-Laguna, Víctor; Contreras-Torres, Flavio F.; Martínez, Melchor; Rojas-Aguilar, Aarón; Salerno, Marco

    2012-01-01

    Highlights: ► Diamines were used for one-step functionalization of nanotubes and nanodiamond. ► We found experimental evidences of cross-linking effects in these nanomaterials. ► We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  9. Solvent-free sample preparation by headspace solid-phase microextraction applied to the tracing of n-butyl nitrite abuse.

    Science.gov (United States)

    Tytgat, J; Daenens, P

    1996-01-01

    The most common alkyl nitrites encountered in forensic toxicology are iso-butyl, n-butyl and iso-pentyl(amyl) nitrites. All have become popular as an aphrodisiac, especially among the homosexual population. Alkyl nitrites are a volatile and unstable group of compounds, which hydrolyse in aqueous matrices to the alcohol and nitrite ion. Here we describe a fast, clean and sensitive procedure for the detection of hydrolysed n-butyl nitrite in whole human blood using a new, solvent-free sampling technique, the headspace solid-phase micro-extraction (HSPME), combined with GC/FID analysis. Sample preparation was investigated using two different stationary phases (100 microns polydimethylsiloxane and 85 microns polyacrylate), coating a fused silica fibre. The effect of different sampling times at fixed temperatures was also studied. Our results demonstrate that the HSPME/GC/FID procedure allows tracing of n-butyl nitrite abuse and detects hydrolysed n-butyl nitrite, i.e., released n-butanol, in whole blood at the 1 ng/mL level.

  10. Sustained Release of Lidocaine from Solvent-Free Biodegradable Poly[(d,l)-Lactide-co-Glycolide] (PLGA): In Vitro and In Vivo Study.

    Science.gov (United States)

    Kau, Yi-Chuan; Liao, Chia-Chih; Chen, Ying-Chi; Liu, Shih-Jung

    2014-09-16

    Local anesthetics are commonly used for pain relief by regional nerve blocking. In this study, we fabricated solvent-free biodegradable pellets to extend the duration of lidocaine release without any significant local or systemic toxicity levels. To manufacture the pellets, poly[(d,l)-lactide-co-glycolide] (PLGA) was first pre-mixed with lidocaine powder into different ratios. The powder mixture was then compressed with a mold (diameter of 1, 5, 8 or 10 mm) and sintered at 65 °C to form pellets. The in vitro release study showed that the lidocaine/PLGA pellets exhibited a tri-phase release behavior (a burst, a diffusion-controlled release and a degradation-dominated release) and reached completion around day 28. Scanning electron microscope (SEM) photos show that small channels could be found on the surfaces of the pellets on day 2. Furthermore, the polymer matrix swelled and fell apart on day 7, while the pellets became viscous after 10 days of in vitro elution. Perineural administration of the lidocaine/PLGA pellets produced anti-hypersensitivity effects lasting for at least 24 h in rats, significant when compared to the control group (a pure PLGA was pellet administered). In addition, no inflammation was detected within the nerve and in the neighboring muscle by histopathology.

  11. Sustained Release of Lidocaine from Solvent-Free Biodegradable Poly[(d,l-Lactide-co-Glycolide] (PLGA: In Vitro and In Vivo Study

    Directory of Open Access Journals (Sweden)

    Yi-Chuan Kau

    2014-09-01

    Full Text Available Local anesthetics are commonly used for pain relief by regional nerve blocking. In this study, we fabricated solvent-free biodegradable pellets to extend the duration of lidocaine release without any significant local or systemic toxicity levels. To manufacture the pellets, poly[(d,l-lactide-co-glycolide] (PLGA was first pre-mixed with lidocaine powder into different ratios. The powder mixture was then compressed with a mold (diameter of 1, 5, 8 or 10 mm and sintered at 65 °C to form pellets. The in vitro release study showed that the lidocaine/PLGA pellets exhibited a tri-phase release behavior (a burst, a diffusion-controlled release and a degradation-dominated release and reached completion around day 28. Scanning electron microscope (SEM photos show that small channels could be found on the surfaces of the pellets on day 2. Furthermore, the polymer matrix swelled and fell apart on day 7, while the pellets became viscous after 10 days of in vitro elution. Perineural administration of the lidocaine/PLGA pellets produced anti-hypersensitivity effects lasting for at least 24 h in rats, significant when compared to the control group (a pure PLGA was pellet administered. In addition, no inflammation was detected within the nerve and in the neighboring muscle by histopathology.

  12. Molecular imaging of banknote and questioned document using solvent-free gold nanoparticle-assisted laser desorption/ionization imaging mass spectrometry.

    Science.gov (United States)

    Tang, Ho-Wai; Wong, Melody Yee-Man; Chan, Sharon Lai-Fung; Che, Chi-Ming; Ng, Kwan-Ming

    2011-01-01

    Direct chemical analysis and molecular imaging of questioned documents in a non/minimal-destructive manner is important in forensic science. Here, we demonstrate that solvent-free gold-nanoparticle-assisted laser desorption/ionization mass spectrometry is a sensitive and minimal destructive method for direct detection and imaging of ink and visible and/or fluorescent dyes printed on banknotes or written on questioned documents. Argon ion sputtering of a gold foil allows homogeneous coating of a thin layer of gold nanoparticles on banknotes and checks in a dry state without delocalizing spatial distributions of the analytes. Upon N(2) laser irradiation of the gold nanoparticle-coated banknotes or checks, abundant ions are desorbed and detected. Recording the spatial distributions of the ions can reveal the molecular images of visible and fluorescent ink printed on banknotes and determine the printing order of different ink which may be useful in differentiating real banknotes from fakes. The method can also be applied to identify forged parts in questioned documents, such as number/writing alteration on a check, by tracing different writing patterns that come from different pens.

  13. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Basiuk, Vladimir A. [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos (Mexico); Meza-Laguna, Victor; Contreras-Torres, Flavio F.; Martinez, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Salerno, Marco [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Diamines were used for one-step functionalization of nanotubes and nanodiamond. Black-Right-Pointing-Pointer We found experimental evidences of cross-linking effects in these nanomaterials. Black-Right-Pointing-Pointer We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  14. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    Science.gov (United States)

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  15. Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole

    Directory of Open Access Journals (Sweden)

    Martina Tireli

    2017-11-01

    Full Text Available Copper-catalyzed mechanochemical click reactions using Cu(II, Cu(I and Cu(0 catalysts have been successfully implemented to provide novel 6-phenyl-2-(trifluoromethylquinolines with a phenyl-1,2,3-triazole moiety at O-4 of the quinoline core. Milling procedures proved to be significantly more efficient than the corresponding solution reactions, with up to a 15-fold gain in yield. Efficiency of both solution and milling procedures depended on the p-substituent in the azide reactant, resulting in H < Cl < Br < I reactivity bias. Solid-state catalysis using Cu(II and Cu(I catalysts entailed the direct involvement of the copper species in the reaction and generation of highly luminescent compounds which hindered in situ monitoring by Raman spectroscopy. However, in situ monitoring of the milling processes was enabled by using Cu(0 catalysts in the form of brass milling media which offered a direct insight into the reaction pathway of mechanochemical CuAAC reactions, indicating that the catalysis is most likely conducted on the surface of milling balls. Electron spin resonance spectroscopy was used to determine the oxidation and spin states of the respective copper catalysts in bulk products obtained by milling procedures.

  16. Solvent-free, improved synthesis of pure bixbyite phase of iron and manganese mixed oxides as low-cost, potential oxygen carrier for chemical looping with oxygen uncoupling

    Czech Academy of Sciences Publication Activity Database

    Mungse, P.B.; Saravanan, G.; Nishibori, M.; Šubrt, Jan; Labhsetwar, N.K.

    2017-01-01

    Roč. 89, č. 4 (2017), s. 511-521 ISSN 0033-4545. [International Conference Solid State Chemistry 2016 /12./. Prague, 18.09.2016-23.09.2016] Institutional support: RVO:61388980 Keywords : CO capture and sequestration * Lattice * Mixed metal oxides * Reactive oxygen * Thermal power plants Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 2.626, year: 2016

  17. Green Synthesis of Acetals/Ketals: Efficient Solvent-Free Process for the Carbonyl/Hydroxyl Group Protection Catalyzed by SBA-15 Materials

    Czech Academy of Sciences Publication Activity Database

    Pérez-Mayoral, E.; Martín-Aranda, R. M.; López-Peinado, A. J.; Ballesteros, P.; Zukal, Arnošt; Čejka, Jiří

    2009-01-01

    Roč. 52, 1-2 (2009), s. 148-152 ISSN 1022-5528 R&D Projects: GA AV ČR 1QS400400560 Institutional research plan: CEZ:AV0Z40400503 Keywords : acid and basic heterogeneous catalysts * mesoporous molecular sieves * acatalation reactions * fine chemicals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.379, year: 2009

  18. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun; Xue, Ming; Zhu, Guangshan

    2014-01-01

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new

  19. Synthesis of the Commercial Fragrance Compound Ethyl 6-Acetoxyhexanoate: A Multistep Ester Experiment for the Second-Year Organic Laboratory

    Science.gov (United States)

    McCullagh, James V.; Hirakis, Sophia P.

    2017-01-01

    This synthesis of ethyl 6-acetoxyhexanoate (Berryflor) is designed as an experiment for use in a second-year organic chemistry course focusing on the synthesis and reaction of esters. The compound is described as having a raspberry-like odor with jasmine and anise aspects. A two-step procedure for its synthesis beginning with inexpensive…

  20. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  1. Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors

    Science.gov (United States)

    Leistenschneider, Desirée; Jäckel, Nicolas; Hippauf, Felix; Presser, Volker

    2017-01-01

    A solvent-free synthesis of hierarchical porous carbons is conducted by a facile and fast mechanochemical reaction in a ball mill. By means of a mechanochemical ball-milling approach, we obtained titanium(IV) citrate-based polymers, which have been processed via high temperature chlorine treatment to hierarchical porous carbons with a high specific surface area of up to 1814 m2 g−1 and well-defined pore structures. The carbons are applied as electrode materials in electric double-layer capacitors showing high specific capacitances with 98 F g−1 in organic and 138 F g−1 in an ionic liquid electrolyte as well as good rate capabilities, maintaining 87% of the initial capacitance with 1 M TEA-BF4 in acetonitrile (ACN) and 81% at 10 A g−1 in EMIM-BF4. PMID:28781699

  2. Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors

    Directory of Open Access Journals (Sweden)

    Desirée Leistenschneider

    2017-07-01

    Full Text Available A solvent-free synthesis of hierarchical porous carbons is conducted by a facile and fast mechanochemical reaction in a ball mill. By means of a mechanochemical ball-milling approach, we obtained titanium(IV citrate-based polymers, which have been processed via high temperature chlorine treatment to hierarchical porous carbons with a high specific surface area of up to 1814 m2 g−1 and well-defined pore structures. The carbons are applied as electrode materials in electric double-layer capacitors showing high specific capacitances with 98 F g−1 in organic and 138 F g−1 in an ionic liquid electrolyte as well as good rate capabilities, maintaining 87% of the initial capacitance with 1 M TEA-BF4 in acetonitrile (ACN and 81% at 10 A g−1 in EMIM-BF4.

  3. Histidine as a catalyst in organic synthesis: A facile in situ synthesis ...

    Indian Academy of Sciences (India)

    Unknown

    They are also used in the synthesis of many nitrogen-containing biologically ... addition to hydroxylamine, results in formation of an imine, azoxy compound 15, ... GC-MS, m/z: 211 (M+), 194 (base peak); 13C NMR (DMSO-d6) δ : 31⋅14 ...

  4. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications

    Directory of Open Access Journals (Sweden)

    Chang Cai Bai

    2017-09-01

    Full Text Available Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4 linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

  5. Studies on the use of haloperoxidases in organic synthesis

    NARCIS (Netherlands)

    Franssen, M.C.R.

    1987-01-01

    The subject of this thesis is the use of haloperoxidases in synthetic organic chemistry. Haloperoxidases are enzymes capable of halogenating a variety of organic compounds. They require hydrogen peroxide and halide ions as cosubstrates. The enzymes operate under mild conditions, compared to

  6. Mechanochemical synthesis of thioureas, ureas and guanidines

    Directory of Open Access Journals (Sweden)

    Vjekoslav Štrukil

    2017-09-01

    Full Text Available In this review, the recent progress in the synthesis of ureas, thioureas and guanidines by solid-state mechanochemical ball milling is highlighted. While the literature is abundant on their preparation in conventional solution environment, it was not until the advent of solvent-free manual grinding using a mortar and pestle and automated ball milling that new synthetic opportunities have opened. The mechanochemical approach not only has enabled the quantitative synthesis of (thioureas and guanidines without using bulk solvents and the generation of byproducts, but it has also been established as a means to develop "click-type" chemistry for these classes of compounds and the concept of small molecule desymmetrization. Moreover, mechanochemistry has been demonstrated as an effective tool in reaction discovery, with emphasis on the reactivity differences in solution and in the solid state. These three classes of organic compounds share some structural features which are reflected in their physical and chemical properties, important for application as organocatalysts and sensors. On the other hand, the specific and unique nature of each of these functionalities render (thioureas and guanidines as the key constituents of pharmaceuticals and other biologically active compounds.

  7. New Trend for Acceleration Solid Phase Extraction Process Based on Using Magnetic Nano-adsorbents along with Surface Functionalization through Microwave Assisted Solvent-free Technique.

    Science.gov (United States)

    Ahmed, Salwa A; Soliman, Ezzat M

    2015-01-01

    The use of a microwave assisted solvent-free technique for silica coating of iron magnetic nanoparticles (Fe3O4-MNPs) and their functionalization with three aliphatic diamines: 1,2-ethylenediamine (1,2EDA), 1,5-pentanediamine (1,5PDA) and 1.8-octanediamine (1,8-ODA), were successfully achieved in a very short time. Only 60 min were needed for the nano-adsorbent modification as compared with more than 1000 min using conventional methods under reflux conditions. Their surface characteristics (observed by TEM, XRD and FT-IR), in addition to Cu(II) adsorption capacities (1.805, 1.928 and 2.116 mmol g(-1)) and time of equilibration (5 s) were almost the same. Thus, the time required to accomplish the solid phase extraction process is greatly reduced. On the other hand, the phenomenon of the fast equilibration kinetics was successfully extended on using the functionalized aliphatic diamines magnetic nano-adsorbents as precursors for further microwave treatment. Three selective magnetic nano-adsorbents (Fe3O4-MNPs-SiO2-1,2EDA-3FSA, Fe3O4-MNPs-SiO2-1,5PDA-3FSA and Fe3O4-MNPs-SiO2-1,8ODA-3FSA) were obtained via the reaction with 3-formayl salicylic acid (3FSA) as a selective reagent for Fe(III). At 5 s contact time, they exhibited maximum Fe(III) uptake equal to 4.512, 4.987 and 5.367 mmol g(-1), respectively. Furthermore, modeling of values of metal uptake capacity obtained at different shaking time intervals supports pseudo-second order kinetics.

  8. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    Science.gov (United States)

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  9. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    Science.gov (United States)

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  10. Facile and Green Synthesis of Saturated Cyclic Amines

    Directory of Open Access Journals (Sweden)

    Arruje Hameed

    2017-10-01

    Full Text Available Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.

  11. Microwave-Assisted Synthesis of Phenothiazine and Quinoline Derivatives

    Science.gov (United States)

    Găină, Luiza; Cristea, Castelia; Moldovan, Claudia; Porumb, Dan; Surducan, Emanoil; Deleanu, Călin; Mahamoud, Abdalah; Barbe, Jacques; Silberg, Ioan A.

    2007-01-01

    Application of a dynamic microwave power system in the chemical synthesis of some phenothiazine and quinoline derivatives is described. Heterocyclic ring formation, aromatic nucleophilic substitution and heterocyclic aldehydes/ketones condensation reactions were performed on solid support, or under solvent free reaction conditions. The microwave-assisted Duff formylation of phenothiazine was achieved. Comparison of microwave-assisted synthesis with the conventional synthetic methods demonstrates advantages related to shorter reaction times and in some cases better reaction yields.

  12. Microwave-Assisted Synthesis of Phenothiazine and Qinoline Derivatives

    Directory of Open Access Journals (Sweden)

    Ioan A. Silberg

    2007-02-01

    Full Text Available Application of a dynamic microwave power system in the chemical synthesis ofsome phenothiazine and quinoline derivatives is described. Heterocyclic ring formation,aromatic nucleophilic substitution and heterocyclic aldehydes/ketones condensationreactions were performed on solid support, or under solvent free reaction conditions. Themicrowave-assisted Duff formylation of phenothiazine was achieved. Comparison ofmicrowave-assisted synthesis with the conventional synthetic methods demonstratesadvantages related to shorter reaction times and in some cases better reaction yields.

  13. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    International Nuclear Information System (INIS)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien; Deleporte, Emmanuelle; Audebert, Pierre; Galmiche, Laurent

    2009-01-01

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH 2 ) n NH 3 ) 2 PbX 4 . These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH 2 ) n NH 3 + ) to study the relationship between their structures and the optical properties of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  14. Structure factor of blends of solvent-free nanoparticle–organic hybrid materials: density-functional theory and small angle X-ray scattering

    KAUST Repository

    Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A.; Koch, Donald L.

    2014-01-01

    . The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona

  15. Metal organic framework synthesis in the presence of surfactants : Towards hierarchical MOFs?

    NARCIS (Netherlands)

    Seoane, B.; Dikhtiarenko, A.; Mayoral, A.; Tellez, C.; Coronas, J.; Kapteijn, F.; Gascon, J.

    2015-01-01

    The effect of synthesis pH and H2O/EtOH molar ratio on the textural properties of different aluminium trimesate metal organic frameworks (MOFs) prepared in the presence of the well-known cationic surfactant cetyltrimethylammonium bromide (CTAB) at 120 °C was studied with the purpose of obtaining a

  16. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    Science.gov (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  17. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-01-01

    Full Text Available A modulated synthesis of Zr-metal organic framework (Zr-MOF) with improved ease of handling and decreased reaction time is reported to yield highly crystalline Zr-MOF with well-defined octahedral shaped crystals for practical hydrogen storage...

  18. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  19. Synthesis and characterization of a new organic semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Tiffour, Imane [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); Dehbi, Abdelkader [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Mourad, Abdel-Hamid I., E-mail: ahmourad@uaeu.ac.ae [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box 15551 (United Arab Emirates); Belfedal, Abdelkader [Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); LPCMME, Département de Physique, Université d' Oran Es-sénia, 3100 Oran (Algeria)

    2016-08-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε{sub r}, the activation energy E{sub a}, the optical transmittance T and the gap energy E{sub g} have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10{sup −5} S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10{sup −4} S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ{sub max}) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  20. Synthesis and characterization of a new organic semiconductor material

    International Nuclear Information System (INIS)

    Tiffour, Imane; Dehbi, Abdelkader; Mourad, Abdel-Hamid I.; Belfedal, Abdelkader

    2016-01-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε_r, the activation energy E_a, the optical transmittance T and the gap energy E_g have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10"−"5 S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10"−"4 S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ_m_a_x) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  1. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.

    Science.gov (United States)

    Wang, Changlong; Astruc, Didier

    2014-01-01

    This review provides the basic concepts, an overall survey and the state-of-the art of plasmon-based nanogold photocatalysis using visible light including fundamental understanding and major applications to organic reactions and clean energy-conversion systems. First, the basic concepts of localized surface plasmon resonance (LSPR) are recalled, then the major preparation methods of AuNP-based plasmonic photocatalysts are reviewed. The major part of the review is dedicated to the latest progress in the application of nanogold plasmonic photocatalysis to organic transformations and energy conversions, and the proposed mechanisms are discussed. In conclusion, new challenges and perspectives are proposed and analyzed.

  2. Synthesis and Applications of Inorganic/Organic-Polymer Nanocomposites

    Science.gov (United States)

    Goyal, Anubha

    This research work focuses on developing new synthesis routes to fabricate polymer nanocomposites tailored towards different applications. A simple, one-step method has been devised for synthesizing free-standing, flexible metal nanoparticle-polydimethylsiloxane films. This process simplifies prevalent methods to synthesize nanocomposites, in that here nanoparticles are created in situ while curing the polymer. This route circumvents the need for pre-synthesized nanoparticles, external reducing agents and stabilizers, thereby significantly reducing processing time and cost. The resulting nanocomposite also demonstrates enhancement in mechanical and antibacterial properties, with other envisaged applications in biomedical devices and catalysis. Applying the same mechanism as that used for the formation of bulk metalsiloxane nanocomposites, metal core-siloxane shell nanoparticles and siloxane nanowires were synthesized, with octadecylsilane as the precursor and in situ formed metal nanoparticles (gold, silver) as the catalyst. This method offers some unique advantages over the previously existing methods. This is a room temperature route which does not require high temperature refluxing or the use of pre-synthesized nanoparticles. Furthermore, this synthesis process gives a control over the shape of resulting nanocomposite structures (1-D wires or 0-D spherical particles). High thermal stability of polydimethylsiloxane (PDMS) makes it viable to alternatively synthesize metal nanoparticles in the polymer matrix by thermal decomposition process. This technique is generic across a range of metals (palladium, iron, nickel) and results in nanoparticles with a very narrow size distribution. Membranes with palladium nanoparticles demonstrate catalytic activity in ethylene hydrogenation reaction. Additionally, a new nanocomposite electrode has been developed for flexible and light-weight Li-ion batteries. Flexible films were prepared by the integration of the poly

  3. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis, characterization and application of an inorgano organic ...

    Indian Academy of Sciences (India)

    Its chemical stability has been assessed in various mineral acids, bases and organic solvents. Ion exchange capacity (IEC) has been determined and distribution behaviour towards several metal ions in different electrolyte solutions with varying concentrations has been studied and a few binary separations achieved.

  6. SYNTHESIS OF TETRACATIONIC ORGANIC SALT FROM 4,4 ...

    African Journals Online (AJOL)

    conventional organic solvents [4-6] and in electrochemistry [7, 8]. ... for the high solubility of the salt in water and other polar solvents such as methanol ..... Hu, L.; Xie, B.; Li, J. Efficient Baeyer-Villiger electro-oxidation of ketones with molecular.

  7. Green chemistry principles in organic compound synthesis and analysis

    Directory of Open Access Journals (Sweden)

    Ruchi Verma

    2014-03-01

    Full Text Available The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  8. Synthesis of silver nanocubes in a hydrophobic binary organic solvent.

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.; Sun, Y. (Center for Nanoscale Materials)

    2010-01-01

    Synthesis of metal nanoparticles with controlled shapes in hydrophobic solvents is challenging because homogeneous nucleation with high rate in these solvents is favorable for the formation of multiply twinned (MT) nanoparticles with spherical morphology. In this work, we report an inhomogeneous nucleation strategy in a binary hydrophobic solvent mediated by dimethyldistearylammonium chloride (DDAC), resulting in the coexistence of single-crystalline Ag polyhedrons and MT Ag quasi-spheres at the beginning of the reaction. In the consequent step, the MT Ag nanoparticles are selectively etched and dissolved through oxidation by NO{sub 3}{sup -} ions (from the Ag precursor, AgNO{sub 3}) with the assistance of Cl{sup -} ions (from DDAC). The dissolved Ag species are then reduced and deposited on the more stable single-crystalline polyhedrons to form Ag nanocubes. Synergy of the oxidative etching of MT particles and growth of single-crystalline particles leads to Ag nanocubes with high purity when the ripening time is long enough. For example, refluxing a mixing solvent of octyl ether and oleylamine containing AgNO{sub 3} (0.02 M) and DDAC (0.03 M) at 260 C for 1 h results in Ag nanocubes with an average edge length of 34 nm and a purity higher than 95%.

  9. Sulfated polyborate: A mild, efficient catalyst for synthesis of N-tert ...

    Indian Academy of Sciences (India)

    Rapid, efficient and inexpensive method for synthesis of N-tert-butyl/N-trityl protected amides via Ritter reaction of nitriles with tertiary alcohols in the presence of a sulfated polyborate catalyst under solvent-free conditions is described. The catalyst has the advantage of Lewis as well as Bronsted acidity and recyclability ...

  10. A Simple and Efficient Synthesis of 12-Aryl-8,9,10,12 ...

    African Journals Online (AJOL)

    Highly effective zinc oxide nanoparticles catalyzed solvent-free synthesis of some tetrahydrobenzo[a]xanthen-11-one derivatives via one-pot multi-component reaction of aldehydes, 2-naphthol and dimedone. The present approach creates a variety of biologically active heterocyclic compounds in excellent yields and short ...

  11. Hyaluronate synthesis by synovial villi in organ culture

    International Nuclear Information System (INIS)

    Myers, S.L.; Christine, T.A.

    1983-01-01

    Individual canine synovial villi were used to establish short-term synovial organ cultures. These villi incorporated 3 H-glucosamine into highly-polymerized 3 H-hyaluronic acid ( 3 H-HA), which was the only 3 H-glycosaminoglycan identified in the culture medium. Some 3 H-HA, and larger amounts of other 3 H-glycosaminoglycans, were recovered from cultured tissues. Culture medium 3 H-HA content was proportional to the surface area of cultured villi. Organ cultures of nonvillous synovium were compared with villi; nonvillous cultures synthesized less 3 H-HA per mm2 of their synovial intimal surface than villi. These cultures complement cell culture techniques for in vitro studies of synovial lining cell function

  12. Organic superconductors: A current overview, synthesis, structure and theory

    International Nuclear Information System (INIS)

    Wang, H.H.; Beno, M.A.; Carlson, K.D.; Geiser, U.; Kini, A.M.; Williams, J.M.

    1990-01-01

    To date, four types of crystal packing motifs (β, θ, κ and α) are known to lead to superconductivity in the BEDT-TTF based materials, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene. The syntheses, crystal structures, physical properties and band electronic structures of these materials will be reviewed. Recent progress made in the oxygen containing analogue, BEDO-TTF [bis(ethylenedioxo)tetrathiofulvalene] will be presented. The implication and future prospect of organic superconductors will be discussed

  13. Synthesis of Amino Acid Precursors with Organic Solids in Planetesimals with Liquid Water

    Science.gov (United States)

    Kebukawa, Y; Misawa, S.; Matsukuma, J.; Chan, Q. H. S.; Kobayashi, J.; Tachibana, S.; Zolensky, M. E.

    2017-01-01

    Amino acids are important ingredients of life that would have been delivered to Earth by extraterrestrial sources, e.g., comets and meteorites. Amino acids are found in aqueously altered carbonaceous chondrites in good part in the form of precursors that release amino acids after acid hydrolysis. Meanwhile, most of the organic carbon (greater than 70 weight %) in carbonaceous chondrites exists in the form of solvent insoluble organic matter (IOM) with complex macromolecular structures. Complex macromolecular organic matter can be produced by either photolysis of interstellar ices or aqueous chemistry in planetesimals. We focused on the synthesis of amino acids during aqueous alteration, and demonstrated one-pot synthesis of a complex suite of amino acids simultaneously with IOM via hydrothermal experiments simulating the aqueous processing

  14. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Mobasseri, Rezvan [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Karimi, Mahdi [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tian, Lingling, E-mail: lingling_tian@nus.edu.sg [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ramakrishna, Seeram [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China)

    2017-05-01

    Dextran sulfate-chitosan (DS-CS) nanoparticles, which possesses properties such as nontoxicity, biocompatibility and biodegradability have been employed as drug carriers in cancer therapy. In this study, DS-CS nanoparticles were synthesized and their sizes were controlled by a modification of the divalent cations cross-linkers (Ca{sup 2+}, Zn{sup 2+} or Mg{sup 2+}). Based on the optimized processing parameters, lapatinib encapsulated nanoparticles were developed and characterized by Dynamics Light Scattering (DLS) measurements, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Calcium chloride (CaCl{sub 2}) facilitated the formation of bare (100.3 ± 0.80 nm) and drug-loaded nanoparticles (134.3 ± 1.3 nm) with narrow size distributions being the best cross-linker. The surface potential of drug-loaded nanoparticles was − 16.8 ± 0.47 mV and its entrapment and loading efficiency were 76.74 ± 1.73% and 47.36 ± 1.27%, respectively. Cellular internalization of nanoparticles was observed by fluorescence microscopy and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay was used to determine cytotoxicity of bare and drug-loaded nanoparticles in comparison to the free drug lapatinib. The MTT assay showed that drug-loaded nanoparticles had comparable anticancer activity to free drug within a duration of 48 h. The aforementioned results showed that the DS-CS nanoparticles were able to entrap, protect and release the hydrophobic drug, lapatinib in a controlled pattern and could further serve as a suitable drug carrier for cancer therapy. - Highlights: • The best condition to prepare best size (about 100 nm) dextran-chitosan nanoparticles is proposed. • Divalent cationic cross-linker can act as hardener and compress the particles. • Drug/dextran mixing in a toxic solvent free method provides hydrophobic drug encapsulation within a hydrophilic system. • High entrapment efficiency of Lapatinib in polymeric

  15. Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: synthesis and proof of concept

    NARCIS (Netherlands)

    García, S.J.; Fischer, H.R.; White, P.A.; Mardel, J.; González-García, Y.; Mol, J.M.C.; Hughes, A.E.

    2011-01-01

    In this paper a self-healing anticorrosive organic coating based on an encapsulated water reactive organic agent is presented. A reactive silyl ester is proposed as a new organic reactive healing agent and its synthesis, performance, incorporation into an organic coating and evaluation of

  16. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis.

    Science.gov (United States)

    Talabér, Gergely; Jondal, Mikael; Okret, Sam

    2013-11-05

    Systemic glucocorticoids (GCs) mainly originate from de novo synthesis in the adrenal cortex under the control of the hypothalamus-pituitary-adrenal (HPA)-axis. However, research during the last 1-2 decades has revealed that additional organs express the necessary enzymes and have the capacity for de novo synthesis of biologically active GCs. This includes the thymus, intestine, skin and the brain. Recent research has also revealed that locally synthesized GCs most likely act in a paracrine or autocrine manner and have significant physiological roles in local homeostasis, cell development and immune cell activation. In this review, we summarize the nature, regulation and known physiological roles of extra-adrenal GC synthesis. We specifically focus on the thymus in which GC production (by both developing thymocytes and epithelial cells) has a role in the maintenance of proper immunological function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Toward an experimental synthesis of the chondritic insoluble organic matter

    Science.gov (United States)

    Biron, Kasia; Derenne, Sylvie; Robert, FrançOis; Rouzaud, Jean-NoëL.

    2015-08-01

    Based on the statistical model proposed for the molecular structure of the insoluble organic matter (IOM) isolated from the Murchison meteorite, it was recently proposed that, in the solar T-Tauri disk regions where (photo)dissociation of gaseous molecules takes place, aromatics result from the cyclization/aromatization of short aliphatics. This hypothesis is tested in this study, with n-alkanes being submitted to high-frequency discharge at low pressure. The contamination issue was eliminated using deuterated precursor. IOM was formed and studied using solid-state nuclear magnetic resonance, pyrolysis coupled to gas chromatography and mass spectrometry, RuO4 oxidation, and high-resolution transmission electron microscopy. It exhibits numerous similarities at the molecular level with the hydrocarbon backbone of the natural IOM, reinforcing the idea that the initial precursors of the IOM were originally chains in the gas. Moreover, a fine comparison between the chemical structure of several meteorite IOM suggests either that (i) the meteorite IOMs share a common precursor standing for the synthetic IOM or that (ii) the slight differences between the meteorite IOMs reflect differences in their environment at the time of their formation i.e., related to plasma temperature that, in turn, dictates the dissociation-recombination rates of organic fragments.

  18. Structural versatility of Metal-organic frameworks: Synthesis and Characterization

    KAUST Repository

    Alsadun, Norah S.

    2017-05-01

    Metal-Organic Frameworks (MOFs), an emerging class of porous crystalline materials, have shown promising properties for diverse applications such as catalysis, gas storage and separation. The high degree of tunability of MOFs vs other solid materials enable the assembly of advanced materials with fascinating properties for specific applications. Nevertheless, the precise control in the construction of MOFs at the molecular level remains challenging. Particularly, the formation of pre-targeted multi-nuclear Molecular Building Block (MBB) precursors to unveil materials with targeted structural characteristics is captivating. The aim of my master project in the continuous quest of the group of Prof. Eddaoudi in exploring different synthetic pathways to control the assembly of Rare Earth (RE) based MOF. After giving a general overview about MOFs, I will discuss in this thesis the results of my work on the use of tri-topic oriented organic carboxylate building units with the aim to explore the assembly/construction of new porous RE based MOFs. In chapter 2 will discuss the assembly of 3-c linkers with RE metals was then evaluated based on symmetry and angularity of the three connected linkers. The focus of chapter 3 is cerium based MOFs and heterometallic system, based on 3-c ligands with different length and symmetry. Overall, the incompatibility of 3-c ligands with the 12-c cuo MBB did not allow to any formation of higher neuclearity (˃6), but it has resulted in affecting the connectivity of the cluster.

  19. Facile synthesis of organically capped PbS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nejo, Ayorinde O.; Nejo, Adeola A.; Pullabhotla, Rajasekhar V.S.R. [Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa (South Africa); Revaprasadu, Neerish, E-mail: nrevapra@pan.uzulu.ac.za [Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa (South Africa)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Hexadecylamine and tri-n-octylphosphine oxide capped PbS nanoparticles have been synthesized. Black-Right-Pointing-Pointer By varying the reaction conditions various morphologies were formed. Black-Right-Pointing-Pointer The formation of the anisotropic particles is due to different growth mechanisms. - Abstract: PbS nanocubes and nanorods were successfully synthesized through a facile route using hexadecylamine (HDA) and tri-n-octylphosphine oxide (TOPO) as surfactants. The structure and morphology of the as-prepared PbS nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM. The morphology of the PbS was influenced by the variation in lead source and organic surfactant. Particles in the shape of spheres, perfect cubes and rods were obtained by variation in reaction conditions. A possible growth mechanism to explain the formation of these PbS nanocubes and nanorods is also discussed.

  20. Aging changes of molecular synthesis in the respiratory organs as revealed by microscopic radioautography

    International Nuclear Information System (INIS)

    Nagata, T.

    2001-01-01

    For the purpose of elucidating the aging changes of macromolecular synthesis such as DNA, RNA, proteins, glycoproteins, glycides and lipids in various organ systems of experimental animals and men, we have studied respiratory organs of aging mice as a series of systematic studies using light and electron microscopic radioautography in various organ systems after incorporations with macromolecular precursors. The experimental animals mainly used were dd Y strain mice at various aging groups from embryo to postnatal day 1 and 3, weeks 1 and 2, months 1, 2, 6, 12 up to 2 year senescent stages. The animals were injected with such macromolecular precursors as 3 H - thymidine for DNA, 3 H-uridine for RNA, 3 H-leucine for proteins, 35 SO 4 for glycoproteins. The results demonstrated that these precursors were incorporated into various cell types in the lungs and tracheas at various ages from perinatal to juvenile, mature and senescent stages showing specific patterns of macromolecular synthesis. It is concluded that these specific pattern of macromolecular synthesis in respective cell types demonstrated the organ specificity of aging. (author)

  1. Timing of RNA synthesis for sperimiogenesis in organ cultures of Drosophila melanogaster teste

    Energy Technology Data Exchange (ETDEWEB)

    Gould-Somero, M; Holland, L

    1974-01-01

    A method for the organ culture of Drosophila testes is described which supports the differentiation of primary spermatocytes through the meiotic divisions to elongating spermatids. Autoradiographic and inhibitor studies reveal no evidence for RNA synthesis by developing spermatids of Drosophila melanogaster; most, if not all, of the RNA required for the differentiation and elongation of sperm is synthesized earlier in the primary spermatocytes. Primary spermatocytes will differentiate into elongating spermatids in organ culture, despite severe (96 to 98%) inhibition of /sup 3/H-uridine incorporation into RNA effected by 50 ..mu..g/ml 3'-deoxyadenosine. Protein synthesis in spermatids continues to be active in the presence of 3'-deoxyadenosine, but that in growing spermatocytes is severely inhibited.

  2. An improved synthesis of pentacene: rapid access to a benchmark organic semiconductor.

    Science.gov (United States)

    Pramanik, Chandrani; Miller, Glen P

    2012-04-20

    Pentacene is an organic semiconductor used in a variety of thin-film organic electronic devices. Although at least six separate syntheses of pentacene are known (two from dihydropentacenes, two from 6,13-pentacenedione and two from 6,13-dihydro-6,13-dihydroxypentacene), none is ideal and several utilize elevated temperatures that may facilitate the oxidation of pentacene as it is produced. Here, we present a fast (-2 min of reaction time), simple, high-yielding (≥ 90%), low temperature synthesis of pentacene from readily available 6,13-dihydro-6,13-dihydroxypentacene. Further, we discuss the mechanism of this highly efficient reaction. With this improved synthesis, researchers gain rapid, affordable access to high purity pentacene in excellent yield and without the need for a time consuming sublimation.

  3. An Improved Synthesis of Pentacene: Rapid Access to a Benchmark Organic Semiconductor

    Directory of Open Access Journals (Sweden)

    Glen P. Miller

    2012-04-01

    Full Text Available Pentacene is an organic semiconductor used in a variety of thin-film organic electronic devices. Although at least six separate syntheses of pentacene are known (two from dihydropentacenes, two from 6,13-pentacenedione and two from 6,13-dihydro-6,13-dihydroxypentacene, none is ideal and several utilize elevated temperatures that may facilitate the oxidation of pentacene as it is produced. Here, we present a fast (~2 min of reaction time, simple, high-yielding (≥90%, low temperature synthesis of pentacene from readily available 6,13-dihydro-6,13-dihydroxypentacene. Further, we discuss the mechanism of this highly efficient reaction. With this improved synthesis, researchers gain rapid, affordable access to high purity pentacene in excellent yield and without the need for a time consuming sublimation.

  4. KH in Paraffin - KH(P): A Useful Base for Organic Synthesis

    Science.gov (United States)

    Taber, Douglass F.; Nelson, Christopher G.

    2011-01-01

    The preparation of KH as a one:one homogenate with paraffin, termed KH(P), is reported. KH(P), a solid at room temperature, is stable without special handling. On suspension in THF with a phosphonium salt, KH(P) rapidly generates the ylide. Wittig condensation with aromatic, aliphatic and α, β-unsaturated aldehydes proceeds with high Z-selectivity. KH(P) should be a generally useful base for organic synthesis. PMID:17081034

  5. Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate Organic Chemistry I

    Science.gov (United States)

    Sloop, Joseph C.; Tsoi, Mai Yin; Coppock, Patrick

    2016-01-01

    A problem-solving scaffold approach to synthesis was developed and implemented in two intervention sections of Chemistry 2211K (Organic Chemistry I) at Georgia Gwinnett College (GGC). A third section of Chemistry 2211K at GGC served as the control group for the experiment. Synthesis problems for chapter quizzes and the final examination were…

  6. Metal Organic Frameworks: Explorations and Design Strategies for MOF Synthesis

    KAUST Repository

    AbdulHalim, Rasha

    2016-11-27

    Metal-Organic Frameworks (MOFs) represent an emerging new class of functional crystalline solid-state materials. In the early discovery of this now rapidly growing class of materials significant challenges were often encountered. However, MOFs today, with its vast structural modularity, reflected by the huge library of the available chemical building blocks, and exceptional controlled porosity, stand as the most promising candidate to address many of the overbearing societal challenges pertaining to energy and environmental sustainability. A variety of design strategies have been enumerated in the literature which rely on the use of predesigned building blocks paving the way towards potentially more predictable structures. The two major design strategies presented in this work are the molecular building block (MBB) and supermolecular building block (SBB) -based approaches for the rationale assembly of functional MOF materials with the desired structural features. In this context, we targeted two highly connected MOF platforms, namely rht-MOF and shp-MOF. These two MOF platforms are classified based on their topology, defined as the underlying connectivity of their respective net, as edge transitive binodal nets; shp being (4,12)-connected net and rht being (3,24)-connected net. These highly connected nets were deliberately targeted due to the limited number of possible nets for connecting their associated basic building units. Two highly porous materials were designed and successfully constructed; namely Y-shp-MOF-5 and rht-MOF-10. The Y-shp-MOF-5 features a phenomenal water stability with an exquisite behavior when exposed to water, positioning this microporous material as the best adsorbent for moisture control applications. The shp-MOF platform proved to be modular to ligand functionalization and thus imparting significant behavioral changes when hydrophilic and hydrophobic functionalized ligands were introduced on the resultant MOF. On the other hand, rht

  7. A Versatile Route for the Synthesis of Nickel Oxide Nanostructures Without Organics at Low Temperature

    Directory of Open Access Journals (Sweden)

    Shah MA

    2008-01-01

    Full Text Available AbstractNickel oxide nanoparticles and nanoflowers have been synthesized by a soft reaction of nickel powder and water without organics at 100 °C. The mechanism for the formation of nanostructures is briefly described in accordance with decomposition of metal with water giving out hydrogen. The structure, morphology, and the crystalline phase of resulting nanostructures have been characterized by various techniques. Compared with other methods, the present method is simple, fast, economical, template-free, and without organics. In addition, the approach is nontoxic without producing hazardous waste and could be expanded to provide a general and convenient strategy for the synthesis of nanostructures to other functional nanomaterials.

  8. I2/K2CO3: An efficient catalyst for the synthesis of 5-aryl-2,6-dicyano ...

    Indian Academy of Sciences (India)

    Abstract. Molecular iodine in the presence of potassium carbonate has been found to be an efficient and eco- friendly catalyst for the synthesis of polysubstituted dicyanoanilines from aldehydes, acetone and malononitrile under solvent-free thermal condition. The experimental procedure is simple, includes shorter reaction ...

  9. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    Science.gov (United States)

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  10. Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites.

    Science.gov (United States)

    Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H; Ramasse, Quentin M; Hoppe, Peter; Nittler, Larry R

    2014-10-28

    Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.

  11. Wet SiO2 As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH3CN under Solvent-Free and Acid-Free Conditions

    International Nuclear Information System (INIS)

    Kouhkan, Mehri; Zeynizadeh, Behzad

    2010-01-01

    Reduction of carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins was carried out readily with NaBH 3 CN in the presence of wet SiO 2 as a neutral media. The reactions were performed at solvent-free conditions in oil bath (70 - 80 .deg. C) or under microwave irradiation (240 W) to give the product alcohols in high to excellent yields. Regioselective 1,2-reduction of conjugated carbonyl compounds took place in a perfect selectivity without any side product formation

  12. Wet SiO{sub 2} As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH{sub 3}CN under Solvent-Free and Acid-Free Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kouhkan, Mehri; Zeynizadeh, Behzad [Urmia University, Urmia (Iran, Islamic Republic of)

    2010-10-15

    Reduction of carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins was carried out readily with NaBH{sub 3}CN in the presence of wet SiO{sub 2} as a neutral media. The reactions were performed at solvent-free conditions in oil bath (70 - 80 .deg. C) or under microwave irradiation (240 W) to give the product alcohols in high to excellent yields. Regioselective 1,2-reduction of conjugated carbonyl compounds took place in a perfect selectivity without any side product formation.

  13. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-06-01

    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  14. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Ganesh Kumar, V.; Stalin Dhas, T.; Karthick, V. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Singaravelu, G. [Nanoscience Division, Department of Zoology, Thiruvalluvar University, Vellore 632115 (India); Elanchezhiyan, M. [Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113 (India)

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet–visible (UV–vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ∼ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. - Highlights: • Size controlled synthesis of gold nanoparticles from blue green alga Spirulina platensis • Stability of gold nanoparticles at different temperatures • Potent antibacterial efficacy against Gram positive organisms.

  15. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  16. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks.

    Science.gov (United States)

    Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D

    2017-07-01

    Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  17. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal–organic frameworks

    Directory of Open Access Journals (Sweden)

    Thomas P. Vaid

    2017-07-01

    Full Text Available Traditional synthesis of metal–organic frameworks (MOFs involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a `solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs, rather than an organic solvent, in `ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  18. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Deleporte, Emmanuelle, E-mail: Emmanuelle.Deleporte@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Audebert, Pierre; Galmiche, Laurent [Laboratoire de Photophysique et Photochimie Supramoleculaires et Macromoleculaires de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France)

    2009-06-15

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH{sub 2}){sub n}NH{sub 3}{sup +}) to study the relationship between their structures and the optical properties of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  19. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  20. Direct Synthesis of 7 nm Thick Zinc(II)-Benzimidazole-Acetate Metal-Organic Framework Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Feng; Kumar, Prashant; Xu, Wenqian; Mkhoyan, K. Andre; Tsapatsis, Michael

    2018-01-09

    Two-dimensional metal-organic frameworks (MOFs) are promising candidates for high performance gas sepa-ration membranes. Currently, MOF nanosheets are mostly fabricated through delamination of layered MOFs, which often re-sults in a low yield of intact free-standing nanosheets. In this work, we present a direct synthesis method for zinc(II)-benzimidazole-acetate (Zn(Bim)OAc) MOF nanosheets. The obtained nanosheets have a lateral dimension of 600 nm when synthesized at room temperature. By adjusting the synthesis temperature, the morphology of obtained nanosheets can be readily tuned from nanosheets to nanobelts. A thickness of 7 nm is determined for Zn(Bim)OAc using high-angle annular dark-field scanning transmission electron microscopy, which makes these nanosheets promising building blocks of gas sepa-ration membranes.

  1. Synthesis and identification of organic components of 'Red Oil' (contact research)

    International Nuclear Information System (INIS)

    Miyata, Teijiro; Takada, Junichi; Nakagiri, Naotaka; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji; Nishio, Gunji

    1999-05-01

    To make clear the organic constituents of the energetic material described as 'Red Oil', laboratory studies were made on the synthesis and identification of chemical constituents of the materials obtained in the synthesis. In the studies, the synthesis was made using a variety of solvent systems (100%TBP/HNO 3 , 100%TBP/HNO 3 /U, 30%TBP/70%n-Dodecane/HNO 3 , 30%TBP/70%n-Dodecane/HNO 3 /U) with an experimental apparatus (1.0 liter under) under conditions, e.g., a temperature range 129 - 192degC and a reaction time 90 - 270 minutes, and GC and GC/MS techniques were mainly used for the identification. A GC analysis showed that the 'Red Oil' prepared from a solvent system (30%TBP/70%n-Dodecane/HNO 3 ) should comprised more than 150 degraded products, 94 products of which were identified purely by a GC/MS technique. Major components found, except for TBP and n-Dodecane being used as the starting materials, were mono- and di-nitro compounds of them, dodecanones, n-butyl nitrate, DBP and MBP. The quantitative analysis of gases formed in the 'Red Oil' synthesis experiments showed that they consisted of various compounds, the order of decreasing content in volume % were NO 2 (23 - 50), CO 2 (17 - 34), N 2 O(5.5 - 15), N 2 (4.3 - 12), CO(4 - 12), NO(1.5 - 8), and hydrocarbons (0.7 - 1.2), and that no detectable presence of O 2 and N 2 . Most of the components in the distillated volatiles collected in the condenser were n-botyl nitrate, but n-butanol were found in relatively small quantities. No significant effect of uranyl nitrate was found on the organic constituents in the 'Red Oil' synthesized. (author)

  2. Synthesis and identification of organic components of `Red Oil` (contact research)

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Teijiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Takada, Junichi; Nakagiri, Naotaka; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji; Nishio, Gunji

    1999-05-01

    To make clear the organic constituents of the energetic material described as `Red Oil`, laboratory studies were made on the synthesis and identification of chemical constituents of the materials obtained in the synthesis. In the studies, the synthesis was made using a variety of solvent systems (100%TBP/HNO{sub 3}, 100%TBP/HNO{sub 3}/U, 30%TBP/70%n-Dodecane/HNO{sub 3}, 30%TBP/70%n-Dodecane/HNO{sub 3}/U) with an experimental apparatus (1.0 liter under) under conditions, e.g., a temperature range 129 - 192degC and a reaction time 90 - 270 minutes, and GC and GC/MS techniques were mainly used for the identification. A GC analysis showed that the `Red Oil` prepared from a solvent system (30%TBP/70%n-Dodecane/HNO{sub 3}) should comprised more than 150 degraded products, 94 products of which were identified purely by a GC/MS technique. Major components found, except for TBP and n-Dodecane being used as the starting materials, were mono- and di-nitro compounds of them, dodecanones, n-butyl nitrate, DBP and MBP. The quantitative analysis of gases formed in the `Red Oil` synthesis experiments showed that they consisted of various compounds, the order of decreasing content in volume % were NO{sub 2} (23 - 50), CO{sub 2} (17 - 34), N{sub 2}O(5.5 - 15), N{sub 2}(4.3 - 12), CO(4 - 12), NO(1.5 - 8), and hydrocarbons (0.7 - 1.2), and that no detectable presence of O{sub 2} and N{sub 2}. Most of the components in the distillated volatiles collected in the condenser were n-botyl nitrate, but n-butanol were found in relatively small quantities. No significant effect of uranyl nitrate was found on the organic constituents in the `Red Oil` synthesized. (author)

  3. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    International Nuclear Information System (INIS)

    Butova, V V; Soldatov, M A; Guda, A A; Lomachenko, K A; Lamberti, C

    2016-01-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references

  4. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    Science.gov (United States)

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  5. Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules.

    Science.gov (United States)

    Holade, Yaovi; Servat, Karine; Tingry, Sophie; Napporn, Teko W; Remita, Hynd; Cornu, David; Kokoh, K Boniface

    2017-10-06

    Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics-based electrocatalysis in alkaline media at the solid-liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher-value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000.

    Science.gov (United States)

    Wang, Timothy C; Vermeulen, Nicolaas A; Kim, In Soo; Martinson, Alex B F; Stoddart, J Fraser; Hupp, Joseph T; Farha, Omar K

    2016-01-01

    The synthesis of NU-1000, a highly robust mesoporous (containing pores >2 nm) metal-organic framework (MOF), can be conducted efficiently on a multigram scale from inexpensive starting materials. Tetrabromopyrene and (4-(ethoxycarbonyl)phenyl)boronic acid can easily be coupled to prepare the requisite organic strut with four metal-binding sites in the form of four carboxylic acids, while zirconyl chloride octahydrate is used as a precursor for the well-defined metal oxide clusters. NU-1000 has been reported as an excellent candidate for the separation of gases, and it is a versatile scaffold for heterogeneous catalysis. In particular, it is ideal for the catalytic deactivation of nerve agents, and it shows great promise as a new generic platform for a wide range of applications. Multiple post-synthetic modification protocols have been developed using NU-1000 as the parent material, making it a potentially useful scaffold for several catalytic applications. The procedure for the preparation of NU-1000 can be scaled up reliably, and it is suitable for the production of 50 g of the tetracarboxylic acid containing organic linker and 200 mg-2.5 g of NU-1000. The entire synthesis is performed without purification by column chromatography and can be completed within 10 d.

  7. A short designed semi-aromatic organic nanotube – synthesis, chiroptical characterization, and host properties

    DEFF Research Database (Denmark)

    Wixe, Torbjörn; Christensen, Niels Johan; Lidin, Sven

    2014-01-01

    to molecular dynamics simulations in chloroform). The synthesis of the tube, a heptamer, is based on a series of Friedländer condensations and the use of pyrido[3,2-d]pyrimidine units as masked 2-amino aldehydes, as a general means to propagate organic tubular structures and the introduction of a methoxy group...... for modification toward solubility and functionalization are described. The electronic CD spectra of the tube and molecular intermediates are correlated with theoretical spectra calculated with time-dependent density functional theory to characterize the chirality of the tube. Both experimental (NMR...

  8. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  9. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  10. Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties

    KAUST Repository

    Eddaoudi, Mohamed; Sava, Dorina F.; Eubank, Jarrod F.; Adil, Karim; Guillerm, Vincent

    2014-01-01

    This review highlights various design and synthesis approaches toward the construction of ZMOFs, which are metal–organic frameworks (MOFs) with topologies and, in some cases, features akin to traditional inorganic zeolites. The interest in this unique subset of MOFs is correlated with their exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components, which ultimately allow for tailoring of the pore size, pore shape, and/or properties towards specific applications.

  11. Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties

    KAUST Repository

    Eddaoudi, Mohamed

    2014-10-24

    This review highlights various design and synthesis approaches toward the construction of ZMOFs, which are metal–organic frameworks (MOFs) with topologies and, in some cases, features akin to traditional inorganic zeolites. The interest in this unique subset of MOFs is correlated with their exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components, which ultimately allow for tailoring of the pore size, pore shape, and/or properties towards specific applications.

  12. Parameters Affecting the Synthesis of (Z)-3-hexen-1-yl acetate by Transesterifacation in Organic Solvent

    International Nuclear Information System (INIS)

    Liaquat, M.; Mehmood, T.; Khan, S. U.; Ahmed, Z.; Saeed, M.; Aslam, S.; Khan, J.; Ali, N.; Jahangir, M.; Nawaz, M.

    2015-01-01

    (Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Crude acetone powders extracted lipases from five plant seedlings of rapeseed, wheat, barley, linseed and maize were investigated for their use in the synthesis of flavor esters with vinyl acetate by transesterification in organic solvents. Rape seedlings showed the highest degree of (Z)-3-hexen-1-yl acetate synthesis with a yield of 76 percentage in 72 h. Rape seedling was chosen as promising biocatalyst to evaluate the effects of some of reaction parameters on (Z)-3-hexen-1-yl acetate synthesis using vinyl acetate and (Z)-3-hexen-1-ol at 40 Degree C in n-hexane with 50 g/L enzyme as catalyst. Acetonitrile proved distinctly superior solvent. The percent remaining activity relative to fresh seedlings powders was highest in wheat and barley. Highest ester yield of 80 percentage was obtained with 0.8 M of substrate concentrations within 48 h. Crude rapeseed lipase afforded a conversion 93 percentage of ethyl alcohol. Higher ester yield was achieved within first 24 h with added molecular. The crude rape seedlings lipase is low cost yet effective, showed potential for the production of green note esters industrially. (author)

  13. Protein synthesis evaluation in brain and other organs in human by PET

    International Nuclear Information System (INIS)

    Bustany, P.; Comar, D.

    1985-01-01

    The choice of treatment in diseases of the nervous system cannot be based only on symptomatology, but on a presumed underlying pathological state. These pathological states often involve direct modifications of neuronal metabolism. Two areas of cellular biochemistry can be studied in vivo in humans: 1) glucose or oxygen consumption which is mainly responsible for energy and lipid metabolism. 2) amino acid metabolism, which is involved in protein and neurotransmitter synthesis. Here the authors examine protein synthesis, which is the basis of cellular integrity and tissue structure. Study of protein synthesis (PS) by positron emission tomography (PET) is governed by specific requirements dictated by 1) the metabolic pathways we want to explore (the fate of the tracer directly influences the analysis of the results); 2) The construction and validation of a mathematical model to be applied to the computerized images; and 3) the human pathology being studied. The timing of scanning and the experimental protocol must include in their conception some physiological constraints such as volume of organs, rapidity of biological phenomena, etc. All these steps are detailed in the following paragraphs

  14. Silica sulfuric acid and as an efficient catalyst for the Friedlander quinoline synthesis from simple ketones and ortho - amino aryl ketones under microwave irradiation

    International Nuclear Information System (INIS)

    Zolfigol, M. A.; Salehi, P.; Shiri, M.; Faal Rastegar, T.; Ghaderi, A.

    2008-01-01

    The synthesis of quinoline derivatives via Friedlander method from ortho-amino aryl ketones in the presence of a catalytic amount of silica sulfuric acid under solvent-free condition and microwave irradiation was described. A good range of simple ketones such as cyclohexanone and deoxybenzoin were used

  15. Zr(HSO44: An Efficient Catalyst for the Synthesis of 3-(2'- Benzothiazolyl-2,3-dihydroquinazolin- 4(1H-ones

    Directory of Open Access Journals (Sweden)

    Liqiang Wu

    2012-01-01

    Full Text Available A simple and efficient synthesis of 3-(2'-benzothiazolyl-2,3-dihydro quinazolin-4(1H- ones has been accomplished by the one-pot condensation of isatoic anhydride, aldehyde and 2-aminobenzothiazole under solvent-free conditions in the presence of Zr(HSO44.

  16. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    Science.gov (United States)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  17. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis

    Science.gov (United States)

    The development of organic synthesis under sustainable conditions is a primary goal of practicing green chemists who want to prevent pollution and design safer pathways. Although, it is challenging to avoid the use of catalysts, or solvents in all the organic reactions but progre...

  18. Saccharin Derivative Synthesis via [1,3] Thermal Sigmatropic Rearrangement: A Multistep Organic Chemistry Experiment for Undergraduate Students

    Science.gov (United States)

    Fonseca, Custódia S. C.

    2016-01-01

    Saccharin (1,2-benzisothiazole-3-one 1,1-dioxide) is an artificial sweetener used in the food industry. It is a cheap and easily available organic compound that may be used in organic chemistry laboratory classes for the synthesis of related heterocyclic compounds and as a derivatizing agent. In this work, saccharin is used as a starting material…

  19. Integration of Fermentation and Organic Synthesis: Studies of Roquefortine C and Biosynthetic Derivatives

    Science.gov (United States)

    Gober, Claire Marie

    Roquefortine C is one of the most ubiquitous indoline alkaloids of fungal origin. It has been isolated from over 30 different species of Penicillium fungi and has garnered attention in recent years for its role as a biosynthetic precursor to the triazaspirocyclic natural products glandicoline B, meleagrin, and oxaline. The triazaspirocyclic motif, which encompasses three nitrogen atoms attached to one quaternary carbon forming a spirocyclic scaffold, is a unique chemical moiety that has been shown to impart a wide array of biological activity, from anti-bacterial activity and antiproliferative activity against cancer cell lines to anti-biofouling against marine organisms. Despite the promise of these compounds in the pharmaceutical and materials industries, few syntheses of triazaspirocycles exist in the literature. The biosynthesis of roquefortine C-derived triazaspirocycles, however, provides inspiration for the synthesis of these compounds, namely through a nitrone-promoted transannular rearrangement. This type of internal rearrangement has never been carried out synthetically and would provide an efficient stereoselective synthesis of triazaspirocycles. This work encompasses efforts towards elucidating the biosynthetic pathway of roquefortine C-derived triazaspirocycles as well as synthetic efforts towards the construction of triazaspirocycles. Chapter 1 will discuss a large-scale fermentation procedure for the production of roquefortine C from Penicillium crustosum. Chapters 2 and 3 explore (through enzymatic and synthetic means, respectively) the formation of the key indoline nitrone moiety required for the proposed transannular rearrangement. Finally, chapter 4 will discuss synthetic efforts towards the synthesis of triazaspirocycles. This work has considerably enhanced our understanding of the roquefortine C biosynthetic pathway and the unique chemistry of this natural product, and our efforts towards the synthesis of triazaspirocycles will facilitate the

  20. Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Manoj B. Gawande

    2013-10-01

    Full Text Available Magnetically recyclable nano-catalysts and their use in aqueous media is a perfect combination for the development of greener sustainable methodologies in organic synthesis. It is well established that magnetically separable nano-catalysts avoid waste of catalysts or reagents and it is possible to recover >95% of catalysts, which is again recyclable for subsequent use. Water is the ideal medium to perform the chemical reactions with magnetically recyclable nano-catalysts, as this combination adds tremendous value to the overall benign reaction process development. In this review, we highlight recent developments inthe use of water and magnetically recyclable nano-catalysts (W-MRNs for a variety of organic reactions namely hydrogenation, condensation, oxidation, and Suzuki–Miyaura cross-coupling reactions, among others.

  1. Synthesis of Pd and Rh metal nanoparticles in the interlayer space of organically modified montmorillonite

    International Nuclear Information System (INIS)

    Patel, Hasmukh A.; Bajaj, Hari C.; Jasra, Raksh Vir

    2008-01-01

    This study reports the synthesis of palladium and rhodium metal nanoparticles supported on montmorillonite (MMT) and partially organically modified MMT (POMM) using tetraamine palladium and hexaamine rhodium complex as precursor for palladium and rhodium respectively. The synthesized nanoparticles were characterized by powder X-ray diffraction PXRD and TEM. The PXRD study shows characteristic crystallographic planes for Pd and Rh metal and confirm the formation of metal nanoparticles in MMT and POMM. The TEM images reveal the effect of organic modification of MMT on decreasing particle size of Pd and Rh metal. The Pd and Rh metal nanoparticles are agglomerated in pristine MMT while nanoparticles are well dispersed in POMM. ICP-AES analysis was carried out to estimate quantitative amount of Pd and Rh metal in MMT and POMM

  2. Thiophene fused azacoronenes: regioselective synthesis, self organization, charge transport, and its incorporation in conjugated polymers

    Science.gov (United States)

    Liu, Yi; He, Bo

    2015-09-15

    A regioselective synthesis of an azacoronene fused with two peripheral thiophene groups has been realized through a concise synthetic route. The resulting thienoazacoronene (TAC) derivatives show high degree of self-organization in solution, in single crystals, in the bulk, and in spuncast thin films. Spuncast thin film field-effect transistors of the TACs exhibited mobilities up to 0.028 cm.sup.2V.sup.-1 S.sup.-1, which is among the top field effect mobilities for solution processed discotic materials. Organic photovoltaic devices using TAC-containing conjugated polymers as the donor material exhibited a high open-circuit voltage of 0.89 V, which was ascribable to TAC's low-lying highest occupied molecular orbital energy level.

  3. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  4. Organic Analysis of Catalytic Fischer-Tropsch Synthesis Products and Ordinary Chondrite Meteorites by Stepwise Pyrolysis-GCMS: Organics in the Early Solar Nebula

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2014-01-01

    Abiotic generation of complex organic compounds, in the early solar nebula that formed our solar system, is hypothesized by some to occur via Fischer-Tropsch (FT) synthesis. In its simplest form, FT synthesis involves the low temperature (300degC) produces FT products that include lesser amounts of n-alkanes and greater alkene, alcohol, and polycyclic aromatic hydrocarbon (PAH) compounds. We have begun to experimentally investigate FT synthesis in the context of abiotic generation of organic compounds in the early solar nebula. It is generally thought that the early solar nebula included abundant hydrogen and carbon monoxide gases and nano-particulate matter such as iron and metal silicates that could have catalyzed the FT reaction. The effect of FT reaction temperature, catalyst type, and experiment duration on the resulting products is being investigated. These solid organic products are analyzed by thermal-stepwise pyrolysis-GCMS and yield the types and distribution of hydrocarbon compounds released as a function of temperature. We show how the FT products vary by reaction temperature, catalyst type, and experimental duration and compare these products to organic compounds found to be indigenous to ordinary chondrite meteorites. We hypothesize that the origin of organics in some chondritic meteorites, that represent an aggregation of materials from the early solar system, may at least in part be from FT synthesis that occurred in the early solar nebula.

  5. Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinliang [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li, Yanfeng, E-mail: liyf@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Cui; Ma, Yingxia; Yang, Liuqing; Hu, Huaiyuan [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Novel hybrid materials were synthesized and employed in the absorption of heavy metal and organic pollutants. Black-Right-Pointing-Pointer A novel method for amphiphilic adsorbent material synthesis was first reported in this paper. Black-Right-Pointing-Pointer The adsorbent material showed excellent adsorption capacity to Pb(II) and phenol. - Abstract: In this paper, atom transfer radical polymerization (ATRP) and radical grafting polymerization were combined to synthesize a novel amphiphilic hybrid material, meanwhile, the amphiphilic hybrid material was employed in the absorption of heavy metal and organic pollutants. After the formation of attapulgite (ATP) ATRP initiator, ATRP block copolymers of styrene (St) and divinylbenzene (DVB) were grafted from it as ATP-P(S-b-DVB). Then radical polymerization of acrylonitrile (AN) was carried out with pendent double bonds in the DVD units successfully, finally we got the inorganic-organic hybrid materials ATP-P(S-b-DVB-g-AN). A novel amphiphilic hybrid material ATP-P(S-b-DVB-g-AO) (ASDO) was obtained after transforming acrylonitrile (AN) units into acrylamide oxime (AO) as hydrophilic segment. The adsorption capacity of ASDO for Pb(II) could achieve 131.6 mg/g, and the maximum removal capacity of ASDO towards phenol was found to be 18.18 mg/g in the case of monolayer adsorption at 30 Degree-Sign C. The optimum pH was 5 for both lead and phenol adsorption. The adsorption kinetic suited pseudo-second-order equation and the equilibrium fitted the Freundlich model very well under optimal conditions. At the same time FT-IR, TEM and TGA were also used to study its structure and property.

  6. Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors.

    Science.gov (United States)

    de Echegaray, Paula; Mancheño, María J; Arrechea-Marcos, Iratxe; Juárez, Rafael; López-Espejo, Guzmán; López Navarrete, J Teodomiro; Ramos, María Mar; Seoane, Carlos; Ortiz, Rocío Ponce; Segura, José L

    2016-11-18

    There is a great interest in peryleneimide (PI)-containing compounds given their unique combination of good electron accepting ability, high abosorption in the visible region, and outstanding chemical, thermal, and photochemical stabilities. Thus, herein we report the synthesis of perylene imide derivatives endowed with a 1,2-diketone functionality (PIDs) as efficient intermediates to easily access peryleneimide (PI)-containing organic semiconductors with enhanced absorption cross-section for the design of tunable semiconductor organic materials. Three processable organic molecular semiconductors containing thiophene and terthiophene moieties, PITa, PITb, and PITT, have been prepared from the novel PIDs. The tendency of these semiconductors for molecular aggregation have been investigated by NMR spectroscopy and supported by quantum chemical calculations. 2D NMR experiments and theoretical calculations point to an antiparallel π-stacking interaction as the most stable conformation in the aggregates. Investigation of the optical and electrochemical properties of the materials is also reported and analyzed in combination with DFT calculations. Although the derivatives presented here show modest electron mobilities of ∼10 -4 cm 2 V -1 s -1 , these preliminary studies of their performance in organic field effect transistors (OFETs) indicate the potential of these new building blocks as n-type semiconductors.

  7. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    Science.gov (United States)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  8. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  9. Synthesis of organic liquids/geo-polymer composites for the immobilization of nuclear wastes

    International Nuclear Information System (INIS)

    Cantarel, Vincent

    2016-01-01

    This work is included in the management of radioactive organic liquids research field. The process is based on an emulsification of organic liquid in an alkali silicate solution allowing the synthesis of a geo-polymer matrix. The first part of this work consists in carrying out a screening on different organic liquids. A model system representative of the various oils and a geo-polymer reference formulation are then defined. The second part deals with the structuration of the organic liquid/geo-polymer structuration, from the mixture of the reactants to the final material. It aims at determining the phenomena allowing the synthesis of a homogeneous composite. The last two parts aim at characterizing the composite by studying its structure (chemical structure, porosity of the geo-polymer and dispersion of the oil) and its properties with respect to the application to the immobilization of radioactive waste. Unlike calcium silicate-based cementitious matrices, the structure of the geo-polymer is not affected by the chemical nature of the organic liquids. Only acid oils inhibit or slow down the geo-polymerization reaction. In order to obtain a homogeneous material, the presence of surfactant molecules is necessary. The emulsion stabilization mechanism at the base of the process is relying on a synergy between the surfactant molecules and the aluminosilicate particles present in the geo-polymer paste. The kinetics (chemical and mechanical) of the geo-polymerization are not impacted by the presence of oil or surfactants. Only an increase in the viscoelastic moduli and the elastic character of the pastes can be observed. This difference in rheological behavior is mainly due to the presence of surfactant. The structure of the matrix is identical to that of a pure geo-polymer of the same formulation. The organic liquid is dispersed in spherical inclusions whose radius is between 5 and 15 μm. These droplets are separated from each other, and from the environment by the

  10. Soft plasma processing of organic nanowires: a route for the fabrication of 1D organic heterostructures and the template synthesis of inorganic 1D nanostructures.

    Science.gov (United States)

    Alcaire, Maria; Sanchez-Valencia, Juan R; Aparicio, Francisco J; Saghi, Zineb; Gonzalez-Gonzalez, Juan C; Barranco, Angel; Zian, Youssef Oulad; Gonzalez-Elipe, Agustin R; Midgley, Paul; Espinos, Juan P; Groening, Pierangelo; Borras, Ana

    2011-11-01

    Hierarchical (branched) and hybrid metal-NPs/organic supported NWs are fabricated through controlled plasma processing of metalloporphyrin, metallophthalocyanine and perylene nanowires. The procedure is also applied for the development of a general template route for the synthesis of supported metal and metal oxide nanowires.

  11. Room-temperature sol–gel synthesis of organic ligand-capped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zobel, Mirijam, E-mail: mirijam.zobel@fau.de; Chatterjee, Haimantee [Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik (Germany); Matveeva, Galina; Kolb, Ute [Johannes Gutenberg-Universität, Institut für Physikalische Chemie (Germany); Neder, Reinhard B., E-mail: reinhard.neder@fau.de [Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik (Germany)

    2015-05-15

    Powders of zinc oxide nanoparticles with individual particle sizes below 10 nm in diameter are readily produced in base-induced sol–gel processes from ethanolic solutions of zinc acetate dihydrate. These particles are covered with acetate molecules and without further stabilization, they grow when stored as a powder. Here, we present three organic ligands, which reproducibly stabilize individual particle sizes <5 nm within the agglomerated powders for extended periods of time, up to months. Citric acid and 1,5-diphenyl-1,3,5-pentanetrione result in average diameters of 3 nm, whereas dimethyl-L-tartrate stabilizes 2.1 nm. X-ray diffraction and pair distribution function analysis were used to investigate the structural properties of the particles. TEM data confirm the individual particle size and crystallinity and show that the particles are agglomerated without structural coherence. Besides the introduction of these novel ligands for ZnO nanoparticles, we investigated, in particular, the influence of each synthesis step onto the final nanoparticle size in the powder. Previous studies often reported the employed synthesis parameters, but did not motivate the reasoning for their choice based on detailed experimental observations. Herein, we regard separately the steps of (i) the synthesis of the colloids, (ii) their precipitation, and (iii) the drying of the resulting gel to understand the role of the ligands therein. ZnO particles only covered with acetate grow to 5 nm during the drying process, whereas particles with any of the additional ligands retain their colloidal size of 2–3 nm. This clearly shows the efficient binding and effect of the presented ligands.

  12. Indices, multispecies and synthesis descriptors in benthic assessments: Intertidal organic enrichment from oyster farming

    Science.gov (United States)

    Quintino, Victor; Azevedo, Ana; Magalhães, Luísa; Sampaio, Leandro; Freitas, Rosa; Rodrigues, Ana Maria; Elliott, Michael

    2012-09-01

    Intertidal off-bottom oyster culture is shown to cause organic enrichment of the shore and although there are two stressors of interest (the presence of a structure, the trestles, and also the sediment and organic waste from the oysters), these can be separated and their relative impacts determined using an appropriate nested experimental design and data treatments. Although no artificial food sources are involved, the oysters feeding activity and intensity of culture enhances biodeposition and significantly increases the sediment fines content and total organic matter. This in general impoverished the benthic community in culture areas rather than a species succession with the installation of opportunists or a resulting increase in the abundance and biomass of benthic species; the findings can be a direct consequence of the intertidal situation which is less-amenable recruitment of species more common to the subtidal environment. Thus the most appropriate biological descriptors to diagnose the effects associated with the organic enrichment were the multispecies abundance data as well as the primary biological variables species richness and abundance. The effects were however spatially and statistically significantly confined to the area located directly underneath the culture bags compared to the corridors located between the trestles, which do not show such enrichment effects. Synthesis biotic indices were much less effective to diagnose the benthic alterations associated with this organic enrichment. These results show that special attention must be paid when using indices in areas where the organic enrichment induces an impoverishment of the benthic community but not necessarily a species replacement with the installation of opportunists.

  13. Synthesis of NMP, a Fluoxetine (Prozac) Precursor, in the Introductory Organic Laboratory

    Science.gov (United States)

    Perrine, Daniel M.; Sabanayagam, Nathan R.; Reynolds, Kristy J.

    1998-10-01

    A synthesis of the immediate precursor of the widely used antidepressant fluoxetine (Prozac) is described. The procedure is short, safe, and simple enough to serve as a laboratory exercise for undergraduate students in the second semester of introductory organic chemistry and is one which will be particularly interesting to those planning a career in the health sciences. The compound synthesized is (°)-N,N-dimethyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine, or "N-methyl Prozac" (NMP). The synthesis of NMP requires one two-hour period and a second three-hour period. In the first period, a common Mannich base, 3-dimethylaminopropiophenone, is reduced with sodium borohydride to form (°)-3-dimethylamino-1-phenylpropanol. In the second period, potassium t-butoxide is used to couple (°)-3-dimethylamino-1-phenylpropanol with p-chlorotrifluoromethylbenzene to form NMP, which is isolated as its oxalate salt. All processes use equipment and materials that are inexpensive and readily available in most undergraduate laboratories. Detailed physical data are given on NMP, including high-field DEPT 13C NMR.

  14. MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.

    Science.gov (United States)

    Aaltonen, Mari J; Friedman, Jonathan R; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi; Langer, Thomas; Tatsuta, Takashi

    2016-06-06

    Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. © 2016 Aaltonen et al.

  15. Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics.

    Science.gov (United States)

    Xu, Dazhuang; Zou, Hui; Liu, Meiying; Tian, Jianwen; Huang, Hongye; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-15

    Fluorescent organic nanoparticles (FONs) with aggregation-induced emission (AIE) features have recently emerged as promising fluorescent probes for biomedical applications owing to their excellent optical properties, designability and biocompatibility. Significant progress has been made recently for synthesis and biomedical applications of these AIE-active FONs. However, only very limited reports have demonstrated the fabrication of biodegradable AIE-active FONs with red fluorescence emission. In this study, a novel strategy has been developed for the preparation of biodegradable AIE-active polyurethanes (PUs) through a two-step polymerization, in which the diisocyanate-terminated polyethylene glycol (NCO-PEG-NCO) was synthesized and subsequently conjugated with diamine-containing AIE dye (NH 2 -Phe-NH 2 ). The successful synthesis of AIE-active Phe-PEG 2000 PUs is evidenced by a series of characterization techniques. Because of the formation of AIE-active amphiphilic PUs, the final copolymers can self-assemble into spherical nanoparticles, which exhibit strong luminescence and high water dispersion. The biological evaluation results suggest that the AIE-active Phe-PEG 2000 FONs possess low toxicity and desirable cell permeability. Therefore, we anticipate that these AIE-active FONs with biodegradable potential will trigger much research enthusiasm and effort toward the creation of new AIE-active materials with improved properties for various biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Synthesis of metal-organic framework films by pore diffusion method

    Science.gov (United States)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  17. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    Science.gov (United States)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    We have carried out scanning electron microscopic examination of CM carbonaceous chondrites meteorites Migey, Murchison, Staroe Boriskino aged more than 4.56 billion years (about 50 million years from the beginning of the formation of the Solar system). Our study confirmed the conclusion of Rozanov, Hoover and other researchers about the presence of microfossils of bacterial origin in the matrix of all these meteorites. Since the time of the Solar system formation is 60 - 100 million years, the primary biocenosis emerged in the protoplanetary disc of the Solar system before meteorites or simultaneously with them. It means that prebiological processes and RNA world appeared even earlier in the circumsolar protoplanetary disc. Most likely, this appearance of prebiotic chemistry takes place nowday in massive and medium-massive discs of the observed young stellar objects (YSO) class 0 and I. The timescale of the transition from chemical to biological evolution took less than 50 million years for the Solar system. Further evolution of individual biocenosis in a protoplanetary disc associated with varying physico-chemical conditions during the formation of the Solar system bodies. Biocenosis on these bodies could remove or develop under the influence of many cosmic factors and geological processes in the case of Earth. To complete the primary biosphere formation in short evolution time - millions of years - requires highly efficient chemical syntheses. In industrial chemistry for the efficient synthesis of ammonia, hydrogen cyanide, methanol and other organic species, that are the precursors to obtain prebiotic compounds, catalytic reactors of high pressure are used. Thus (1) necessary amount of the proper catalyst in (2) high pressure areas of the disc can trigger these intense syntheses. The disc contains the solids with the size from nanoparticle to pebble. Iron and magnesium is catalytically active ingredient for such solids. The puzzle is a way to provide hydrogen

  18. One-Pot and Efficient Synthesis of Triazolo[1,2-a]indazole-triones via Reaction of Arylaldehydes with Urazole and Dimedone Catalyzed by Silica Nanoparticles Prepared from Rice Husk

    Directory of Open Access Journals (Sweden)

    Asadollah Hassankhani

    2011-10-01

    Full Text Available A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  19. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk.

    Science.gov (United States)

    Hamidian, Hooshang; Fozooni, Samieh; Hassankhani, Asadollah; Mohammadi, Sayed Zia

    2011-10-26

    A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  20. Green methods for preparing highly co2 selective and h2s tolerant metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2015-12-23

    A green route for preparing a metal organic framework include mixing metal precursor with a ligand precursor to form a solvent-free mixture; adding droplets of water to the mixture; heating the mixture at a first temperature after adding the water; and isolating the metal organic framework material including the metal and the ligand.

  1. Microwave assisted highly efficient one-pot multi-component synthesis of novel 2-(tetrasubstituted-1H-pyrrol-3-yl-4H-chroman-4-ones catalyzed by heterogeneous reusable silica gel supported polyphosphoric acid (PPA/SiO2

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2018-02-01

    Full Text Available A solvent-free, eco-friendly and facile approach for the synthesis of highly functionalized tetrasubstituted pyrroles has been reported through one-pot four-component reaction of aldehyde, amine, nitroalkane and 1,3-diketone using silica gel supported polyphosphoric acid (PPA–SiO2 under microwave condition. The reaction occured through the in situ formation of β-keto enamine and nitrostyrene analog following Michael addition and finally intramolecular annulation affording the products in good yields. The key features of the present method include clean reaction, mild conditions, low catalyst loading, straightforward, high to excellent yields, short reaction time, avoiding use of harmful metal catalyst and organic solvent, environmentally friendly compared to the existing methods, recovery and reusability of catalyst and easy workup procedure.

  2. Single step synthesis and organization of gold colloids assisted by copolymer templates

    International Nuclear Information System (INIS)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-01-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future. (papers)

  3. Single step synthesis and organization of gold colloids assisted by copolymer templates

    Science.gov (United States)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-06-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.

  4. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  5. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo [Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso universitario di Monserrato, SS 554, bivio per Sestu, Monserrato (Canada) (Italy); Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo [Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso universitario di Monserrato, SS 554, bivio per Sestu, Monserrato (Canada) (Italy); Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Universitá degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Canada) (Italy)

    2014-10-21

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.

  6. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.

    Science.gov (United States)

    Chen, Wei; Wu, Chunsheng

    2018-02-13

    Metal-organic frameworks (MOFs), also known as coordination polymers, have attracted extensive research interest in the past few decades due to their unique physical structures and potentially vast applications. In this review, we outline the recent progress in the synthesis, functionalization and applications of MOFs in biomedicine, mainly focusing on two promising, yet challenging areas, i.e., drug delivery and biosensing applications. A major challenge is the proper functionalization of MOFs with demanding properties suitable for biomedical applications. Extensive studies on MOFs in biomedicine have led to substantial progress in the control of key properties of MOFs such as toxicity, size and shape, and biological stability. Due to their flexible composition, pore size and easy functionalization properties, MOFs can be utilized as key components for the development of various functional systems, and their applications in drug delivery and biosensing are reviewed. Future trends and perspectives in these research areas are also outlined.

  7. Synthesis and physical properties of asymmetrical quaterthiophene derivatives as organic thin-film transistor materials

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Baji; Noh, Young Ri; Choi, Ho June; Yoon, Soon Byung; Lee, Sang Gyeong [Research Institute of Natura l Science, Gyeongsang National University, Jinju (Korea, Republic of); Yun, Myoung Hee; Kim, Jin Young [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-04-15

    We report here, synthesis, physical, thermal, and optoelectronic properties of compounds containing anthracene, anthraquinone, and 11,11,12,12-tetracyano-9,10-anthraquinodimethane units connected to quaterthiophene units. Three compounds, TQAO (6), TQAN (7), and TQAM (8) are synthesized by using Stille coupling, reduction, and Knoevenagel condensation reactions. These compounds were thermally stable and exhibited organic thin-film transistor (OTFT) properties. Among them, TQAM (8)-based OTFT has shown ambipolar mobility, both hole and electron mobility of 2.0 × 10{sup −6} and 2.43 × 10{sup −7} cm{sup 2}/Vs, respectively. TQAO (6) and TQAN (7) has shown low electron mobility of 5.58 × 10{sup −6} and 1.22 × 10{sup −5} cm{sup 2}/Vs, respectively.

  8. Sonochemical Synthesis of Photoluminescent Nanoscale Eu(III-Containing Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Cheng-an TAO

    2015-11-01

    Full Text Available Nanoscale lanthanide-containing metal-organic frameworks (MOFs have more and more interest due to their great properties and potential applications, but how to construct them easily is still challenging. Here, we present a facile and rapid synthesis of Eu(III-containing Nanoscale MOF (denoted as NMOF under ultrasonic irradiation. The effect of the ratio and the addition order of metal ions and linkers on the morphology and size of MOFs was investigated. It is found that both of the ratio and the addition order can affect the morphology and size of 1.4-benzenedicarboxylic acid(H2BDC -based MOFs, but they show no evident influence on that of H2aBDC-based MOFs. The former exhibit typical emission bands of Eu(III ions, while the latter only show the photoluminescent properties of ligands.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9695

  9. Materials for n-type organic electronics: synthesis and properties of fluoroarene-thiophene semiconductors

    Science.gov (United States)

    Facchetti, Antonio; Yoon, Myung-Han; Katz, Howard E.; Marks, Tobin J.

    2003-11-01

    Recent progress in the field of organic electronics is due to a fruitful combination of both innovative molecular design and promising low-cost material/device assembly. Targeting the first strategy, we present here the general synthesis of fluoroarene-containing thiophene-based semiconductors and the study of their properties with respect to the corresponding fluorine-free hole-transporting analogues. The new compounds have been characterized by elemental analysis, mass spectrometry, and 1H- and 19F NMR. The dramatic influence of fluorine substitution and molecular architecture has been investigated by solution/film optical absorption, fluorescence emission, and cyclic voltammetry. Single crystal data for all of the oligomers have been obtained and will be presented. Film microstructure and morphology of this new class of materials have been studied by XRD and SEM. Particular emphasis will be posed on the solution-processable oligomers and polymers.

  10. Toward Developing Made-to-Order Metal-Organic Frameworks: Design, Synthesis and Applications

    KAUST Repository

    Ashri, Lubna Y.

    2016-05-26

    Synthesis of materials with certain properties for targeted applications is an ongoing challenge in materials science. One of the most interesting classes of solid-state materials that have been recently introduced with the potential to address this is metal-organic frameworks (MOFs). MOFs chemistry offers a higher degree of control over materials to be synthesized utilizing various new design strategies, such as the molecular building blocks (MBBs) and the supermolecular building layers (SBLs) approaches. Depending on using predetermined building blocks, these strategies permit the synthesis of MOFs with targeted topologies and enable fine tuning of their properties. This study examines a number of aspects of the design and synthesis of MOFs while exploring their possible utilization in two diverse fields related to energy and pharmaceutical applications. Concerning MOFs design and synthesis, the work presented here explores the rational design of various MOFs with predicted topologies and tunable cavities constructed by pillaring pre-targeted 2-periodic SBLs using the ligand-to-axial and six-connected axial-to-axial pillaring strategies. The effect of expanding the confined spaces in prepared MOFs or modifying their functionalities, while preserving the underlying network topology, was investigated. Additionally, The MBBs approach was employed to discover new modular polynuclear rare earth (RE)-MBBs in the presence of different angular polytopic ligands containing carboxylate and nitrogen moieties with the aid of a modulator. The goal was to assess the diverse possible coordination modes and construct highly-connected nets for utility in the design of new MOFs and enhance the predictability of structural outcomes. The effect of adjusting ligands’ length-to-width ratio on the prepared MOFs was also evaluated. As a result, the reaction conditions amenable for reliable formation of the unprecedented octadecanuclear, octanuclear and double tetranuclear RE-MBBs were

  11. Shape selectivity in organic synthesis; Selectividad de forma en sintesis organica

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Luenga, M.A.; Yates, M. [Instituto de Quimica-Fisica Rocasolano CSIC, Madrid (Spain)

    1995-12-31

    Heterogeneous catalysis is the most convenient method for many organic syntheses due mainly to the ease of experimental handling and the savings in costs, since finely divided catalysts suspended in the reaction medium (liquid in a high percentage of cases, due to the need for working at low temperatures to avoid undesired side reactions) can be easily recovered at the end of the reaction. Zeotypes are amongst the most important solid catalysts to be used in organic synthesis (1-5), due to their porous nature with controllable properties such as acidity,and molecular sized cavities where reactions take place in quasi-enzymatic conditions, since molecules of greater size than the pore opening are not able to enter react. This steric hindrance gives rise to the property defined as shape selectivity (2). Between the 1960`s and 1980`s catalysis with zeotypes was dedicated to petrochemical processes (refining and hydrotreating), due to the petroleum crises during that period. More recently their uses have been broadened to incorporate all types of organic syntheses, with appreciable advantages over more conventional catalysts in a number of processes. (Author)

  12. Synthesis of N,N-Bis(nonaflyl) Squaric Acid Diamide and its Application to Organic Reactions

    International Nuclear Information System (INIS)

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-01-01

    We have developed a new strong Brφnsted acid bearing two nonaflyl groups based on the squaric acid scaffold. The Brφnsted acid 2 showed the almost same reactivity as bistriflyl squaramide 1 in Mukaiyama aldol and Michael reactions of benzaldehyde with silyl enol ether. Moreover, the utility of Brφnsted acid 2 could be expanded to carbonyl ene reaction of rac-citronellal. Further application of this new Brφnsted acid to organic reactions and to flow system reactors is currently underway in our laboratory. Brφnsted acid catalysis is one of the growing fields in modern organic synthesis.1 Although several Brφnsted acids, such as urea/thiourea, TADDOL, and phosphoric acid, have been applied to a variety of organic reactions, other Brφnsted acid scaffolds have been much less explored. Recently, Rawal et al have developed a Brφnsted acid catalyst based on squaric acid moiety and successfully applied it as a catalyst for conjugate addition of 1,3-dicarbonyl compounds to nitroolefins. More recently, we have developed a strong Brφnsted acid derived from squaric acid by introducing a strong electron withdrawing trifluoromethanesulfonyl (Tf) group and applied it to Mukaiyama aldol and Michael reaction of a variety of aldehydes, ketones, and α,β-unsaturated ketones. As a continuing effort to develop strong Brφnsted acids based on the squaric acid scaffold, it was expected that replacement of Tf group with a longer perfluoro-alkanesulfonyl group would be able to tune the physical properties, such as solubilities in organic solvents and fluoro-philicity, without loss of reactivity. Herein, we report the development of a new Brφnsted acid based on the squaric acid scaffold carrying two nonafluorobutanesulfonyl (Nf) groups and the preliminary results of its reactivity to various organic reactions

  13. Microwave- assisted solvent-free Diels-Alder reaction – a fast and simple route to various 5,6-substituted norbornenes and polychlorinated norbornenes

    Czech Academy of Sciences Publication Activity Database

    Dejmek, Milan; Hřebabecký, Hubert; Šála, Michal; Dračínský, Martin; Nencka, Radim

    -, č. 24 (2011), s. 4077-4083 ISSN 0039-7881 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : Diels - Alder reaction * polychlorinated norbornanes * norbornene Subject RIV: CC - Organic Chemistry Impact factor: 2.466, year: 2011

  14. Encaging palladium(0 in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2017-08-01

    Full Text Available In this paper, the synthesis of a cheap, reusable and ligand-free Pd catalyst supported on MgAl layered double hydroxides (Pd/MgAl-LDHs by co-precipitation and reduction methods is described. The catalyst was used in Heck reactions under high-speed ball milling (HSBM conditions at room temperature. The effects of milling-ball size, milling-ball filling degree, reaction time, rotation speed and grinding auxiliary category, which would influence the yields of mechanochemical Heck reactions, were investigated in detail. The characterization results of XRD, ICP–MS and XPS suggest that Pd/MgAl-LDHs have excellent textural properties with zero-valence Pd on its layers. The reaction results indicate that the catalyst could be utilized in HSBM systems to afford a wide range of Heck coupling products in satisfactory yields. Furthermore, this catalyst could be easily recovered and reused for at least five times without significant loss of catalytic activity.

  15. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    Science.gov (United States)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  16. Synthesis of a Parkinson's Disease Treatment Drug, the "R,R"-Tartrate Salt "of R"-Rasagiline: A Three Week Introductory Organic Chemistry Lab Sequence

    Science.gov (United States)

    Aguilar, Noberto; Garcia, Billy; Cunningham, Mark; David, Samuel

    2016-01-01

    A synthesis of the "R,R"-tartrate salt of the popular anti-Parkinson's drug "R"-rasagiline (Azilect) was adapted to introduce the organic laboratory student to a medically relevant synthesis. It makes use of concepts found in the undergraduate organic chemistry curriculum, appropriately fits into three approximately 4 h lab…

  17. Graphic organizers and their effects on the reading comprehension of students with LD: a synthesis of research.

    Science.gov (United States)

    Kim, Ae-Hwa; Vaughn, Sharon; Wanzek, Jeanne; Wei, Shangjin

    2004-01-01

    Previous research studies examining the effects of graphic organizers on reading comprehension for students with learning disabilities (LD) are reviewed. An extensive search of the professional literature between 1963 and June 2001 yielded a total of 21 group design intervention studies that met the criteria for inclusion in the synthesis. Using graphic organizers (i.e., semantic organizers, framed outlines, cognitive maps with and without a mnemonic) was associated with improved reading comprehension overall for students with LD. Compared to standardized reading measures, researcher-developed comprehension measures were associated with higher effect sizes. Initial gains demonstrated when using graphic organizers were not revealed during later comprehension tasks or on new comprehension tasks.

  18. Microwave-Enhanced Organic Syntheses for the Undergraduate Laboratory: Diels-Alder Cycloaddition, Wittig Reaction, and Williamson Ether Synthesis

    Science.gov (United States)

    Baar, Marsha R.; Falcone, Danielle; Gordon, Christopher

    2010-01-01

    Microwave heating enhanced the rate of three reactions typically performed in our undergraduate organic chemistry laboratory: a Diels-Alder cycloaddition, a Wittig salt formation, and a Williamson ether synthesis. Ninety-minute refluxes were shortened to 10 min using a laboratory-grade microwave oven. In addition, yields improved for the Wittig…

  19. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory

    Science.gov (United States)

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.

    2012-01-01

    A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…

  20. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity.

    Science.gov (United States)

    Lammert, Martin; Wharmby, Michael T; Smolders, Simon; Bueken, Bart; Lieb, Alexandra; Lomachenko, Kirill A; Vos, Dirk De; Stock, Norbert

    2015-08-14

    A series of nine Ce(iv)-based metal organic frameworks with the UiO-66 structure containing linker molecules of different sizes and functionalities were obtained under mild synthesis conditions and short reaction times. Thermal and chemical stabilities were determined and a Ce-UiO-66-BDC/TEMPO system was successfully employed for the aerobic oxidation of benzyl alcohol.

  1. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    Science.gov (United States)

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  2. Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration

    KAUST Repository

    Gadwal, Ikhlas; Sheng, Guan; Thankamony, Roshni Lilly; Liu, Yang; Li, Huifang; Lai, Zhiping

    2018-01-01

    We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building

  3. Disentangled solid state and metastable polymer melt; a solvent free route to high-modulus high-strength tapes and films of UHMWPE

    Science.gov (United States)

    Rastogi, Sanjay

    2013-03-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) having average molar mass greater than a million g/mol is an engineering polymer. Due to its light-weight, high abrasion resistance and biocompatibility it is used for demanding applications such as body armour, prostheses etc. At present, because of its high melt viscosity to achieve the uniaxial/biaxial properties in the form of fibers/films the polymer is processed via solution route where nearly 95wt% of the solvent is used to process 5wt% of the polymer. In past several attempts have been made to process the polymer without using any solvent. However, compared to the solvent processing route the achieved mechanical properties were rather poor. Here we show that by controlled synthesis it is feasible to obtain UHMWPE that could be processed free of solvent to make uniaxial tapes and biaxial films, having unprecedented mechanical properties, exceeding that of the solution spun fibers. We address some of the fundamental aspects of chemistry, physics, rheology and processing for the development of desired morphological features to achieve the ultimate mechanical properties in tapes and films. The paper will also address the metastable melt state obtained on melting of the disentangled crystals and its implication on rheology in linear and nonlinear viscoelastic region. Solid state NMR studies will be applied to establish disentangled state in solid state to the polymerisation conditions. References: Macromolecules 2011, 44(14), 5558-5568; Nature Materials 2005, 4, 635-641; Phys Rev Lett 2006, 96(21), 218303-218205. The authors acknowledge financial support by the Dutch Polymer Institute.

  4. Enhanced Enzymatic Synthesis of a Cephalosporin, Cefadroclor, in the Presence of Organic Co-solvents.

    Science.gov (United States)

    Liu, Kun; Li, Sha; Pang, Xiao; Xu, Zheng; Li, Dengchao; Xu, Hong

    2017-05-01

    In this study, we investigated the enzymatic synthesis of a semi-synthetic cephalosporin, cefadroclor, from 7-aminodesacetoxymethyl-3-chlorocephalosporanic acid (7-ACCA) and p-OH-phenylglycine methyl ester (D-HPGM) using immobilized penicillin G acylase (IPA) in organic co-solvents. Ethylene glycol (EG) was employed as a component of the reaction mixture to improve the yield of cefadroclor. EG was found to increase the yield of cefadroclor by 15-45%. An investigation of altered reaction parameters including type and concentration of organic solvents, pH of reaction media, reaction temperature, molar ratio of substrates, enzyme loading, and IPA recycling was carried out in the buffer mixture. The best result was a 76.5% conversion of 7-ACCA, which was obtained from the reaction containing 20% EG (v/v), D-HPGM to 7-ACCA molar ratio of 4:1 and pH 6.2, catalyzed by 16 IU mL -1 IPA at 20 °C for 10 h. Under the optimum conditions, no significant loss of IPA activity was found after seven repeated reaction cycles. In addition, cefadroclor exhibited strong inhibitory activity against yeast, Bacillus subtilis NX-2, and Escherichia coli and weaker activity against Staphylococcus aureus and Pseudomonas aeruginosa. Cefadroclor is a potential antibiotic with activity against common pathogenic microorganisms.

  5. Synthesis and studies of novel high metal content organic aerogels obtained from a polymerizable titanium complex

    International Nuclear Information System (INIS)

    Cadra, S.

    2010-01-01

    Inertial Confinement Fusion (ICF) is a technique widely studied by the French atomic commission (CEA). Experiments will be performed within the Laser Megajoule (LMJ). They require innovative materials like organic aerogels that constitute laser targets. Such polymeric material must provide both a high porosity and a significant titanium percentage (1 atom %). Moreover, the monomers developed must be compatible with the synthesis procedure already in use. According to these specifications, a new polymerizable titanium complex was synthesized and fully characterized. This air and moisture-stable monomer provides a high metal percentage. Its free-radical cross-linked copolymerization affords several titanium-containing polymers. These gels were dried under supercritical conditions and organic aerogels were obtained. The chemical compositions of these materials were investigated by NMR, IR and elemental analysis while their structure was characterized by MEB-EDS, MET, N 2 adsorption/desorption isotherms measurements and SAXS. The data collected fit the specification requirements. Moreover, the mechanisms responsible of the foam nano-structure formation were discussed. (author) [fr

  6. Microwave Assisted Organic Synthesis of Heterocycles in Aqueous Media: Recent Advances in Medicinal Chemistry.

    Science.gov (United States)

    Frecentese, Francesco; Saccone, Irene; Caliendo, Giuseppe; Corvino, Angela; Fiorino, Ferdinando; Magli, Elisa; Perissutti, Elisa; Severino, Beatrice; Santagada, Vincenzo

    2016-01-01

    Green chemistry is a discipline of great interest in medicinal chemistry. It involves all fields of chemistry and it is based on the principle to conduct chemical reactions protecting the environment at the same time, through the use of chemical procedures able to avoid pollution. In this context, water as solvent is a good choice because it is abundant, nontoxic, non-caustic, and non-combustible. Even if microwave assisted organic reactions in conventional solvents have quickly progressed, in the recent years medicinal chemists have focused their attention to processes deemed not dangerous for the environment, using nanotechnology and greener solvents as water. Several reports of reaction optimizations and selectivities, demonstrating the capability of microwave to allow the obtaining of increased yields have been recently published using water as solvent. In this review, we selected the available knowledge related to microwave assisted organic synthesis in aqueous medium, furnishing examples of the newest strategies to obtain useful scaffolds and novel derivatives for medicinal chemistry purposes. The intention of this review is to demonstrate the exclusive ability of MAOS in water as solvent or as co-solvent. For this purpose we report here the most representative applications of MAOS using water as solvent, focusing on medicinal chemistry processes leading to interesting nitrogen containing heterocycles with potential pharmaceutical applications.

  7. Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Zuolun; Zhang, Shoufeng; Wei, Jinbei; Ye, Kaiqi; Liu, Yu; Marder, Todd B; Wang, Yue

    2017-08-03

    Noncovalent synthesis of one-dimensional (1D) organic nano-/micro-materials with controllable geometric shapes or morphologies and special luminescent and electronic properties is one of the greatest challenges in modern chemistry and material science. Control of noncovalent interactions is fundamental for realizing desired 1D structures and crucial for understanding the functions of these interactions. Here, a series of thiophene-fused phenazines composed of a halogen-substituted π-conjugated plate and a pair of flexible side chains is presented, which displays halogen-dependent 1D self-assemblies. Luminescent 1D twisted wires, straight rods, and zigzag wires, respectively, can be generated in sequence when the halogen atoms are varied from the lightest F to the heaviest I. It was demonstrated that halogen-dependent anisotropic noncovalent interactions and mirror-symmetrical crystallization dominated the 1D-assembly behaviors of this class of molecules. The methodology developed in this study provides a potential strategy for constructing 1D organic materials with unique optoelectronic functions.

  8. A New Energy Source for Organic Synthesis in Europa's Surface Ice

    Science.gov (United States)

    Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

  9. Organic luminescent materials. First results on synthesis and characterization of Alq{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Gagliardi, S.; Montereali, R.M.; Pace, A. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Balaji Pode, R. [Nagpur University, Nagpur (India). Dept. of Physics

    2000-07-01

    Inorganic semiconductor diodes brought a technological revolution in the field of efficient light and laser sources in the last 20 years. New development in this field are expected from organic compounds, thanks to their low cost of synthesis and the relative easiness of growth as thin films. In particular, electrically pumped luminescent devices based on organic thin layers are among the most promising systems for next generation flat panel displays and semiconductor lasers. The tris - (8-hydroxy quinoline)-aluminium complex-Alq{sub 3} - is one of the most studied electro luminescent materials. In this paper, after a short introduction regarding historical development in the field, are reported preliminary results on the growth of Alq{sub 3} films and on their optical and spectroscopic characterization. [Italian] Negli ultimi 20 anni i diodi semiconduttori hanno portato una rivoluzione tecnologica nel campo delle sorgenti luminose e laser. Un nuovo sviluppo possibile in questo campo sono i composti organici, grazie al basso costo di sintesi e la relativa facilita' di crescerli in forma di film sottile. In particolare, dispositivi luminescenti pompati elettricamente basati su film sottili di materiali organici sono promettenti per una nuova generazione di display per schermi piatti e laser a Alq{sub 3} e' uno dei materiali elettroluminescenti piu' studiati. In questo rapporto, dopo una breve introduzione sullo sviluppo storico in questo campo, presentiamo i nostri primi risultati sulla crescita e caratterizzazione ottica di film di Alq{sub 3}.

  10. An Efficient Catalyst for the Synthesis of Schiff Bases

    International Nuclear Information System (INIS)

    Fareed, G.; Afza, N.; Kalhoro, M.A.

    2013-01-01

    An efficient high yielding synthesis of Schiff bases (1-17) is derived from condensation of 2-fluorenamine and 4-amino phenol with a variety of aldehydes catalyzed by dodecatungstosilicic acid P/sub 2/O/sub 5/ under solvent free conditions at room temperature. The catayst is found to be more efficient in terms of ease of reaction workup and high yields. This methodology contributes to an energy efficient, facile and environamental friendly synthesis for the preparation of Schiff bases. The structures of afforded Schiff bases were characterized by spectroscopic data and elemental analysis. (author)

  11. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  12. Selective synthesis of thioethers in the presence of a transition-metal-free solid Lewis acid

    Directory of Open Access Journals (Sweden)

    Federica Santoro

    2016-12-01

    Full Text Available The synthesis of thioethers starting from alcohols and thiols in the presence of amorphous solid acid catalysts is reported. A silica alumina catalyst with a very low content in alumina gave excellent results in terms of both activity and selectivity also under solvent-free conditions. The reaction rate follows the electron density of the carbinol atom in the substrate alcohol and yields up to 99% and can be obtained for a wide range of substrates under mild reaction conditions.

  13. One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives

    Science.gov (United States)

    Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.

    2017-05-01

    In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.

  14. Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles

    Science.gov (United States)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2016-03-01

    Efficient synthesis of various benzimidazoles and benzothiazoles under mild conditions catalyzed by Cu(II) anchored onto UiO-66-NH2 metal organic framework is reported. In this manner, first, the aminated UiO-66 was modified with thiophene-2-carbaldehyde and then the prepared Schiff base was reacted with CuCl2. The prepared catalyst was characterized by FT-IR, UV-vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). The UiO-66-NH2-TC-Cu was applied as a highly efficient catalyst for synthesis of benzimidazole and benzothiazole derivatives by the reaction of aldehydes with 1,2-diaminobenzene or 2-aminothiophenol. The Cu(II)-containing MOF was reused several times without any appreciable loss of its efficiency.

  15. Solvent-free nanofluid with three structure models based on the composition of MWCNTs/SiO2 core and its adsorption capacity of CO2.

    Science.gov (United States)

    Yang, Ruilu; Zheng, Yaping; Wang, Tianyu; Li, Peipei; Wang, Yudeng; Yao, Dongdong; Chen, Lixin

    2017-11-26

    A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO2) as the core had been synthesized. The NOHMs displays a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in core, named power strip model, critical model and collapse model. The capture capacities of these NOHMs for CO2 were investigated at 298 K and CO2 pressures ranging from 0 to 5 MPa. Compared with NOHM having neat MWCNTs core, it had been revealed that NOHMs with power strip model show better adsorption capacity toward CO2, due to its lower viscosity and more reactive groups that can react with CO2. In addition, the capture capacities of NOHMs with critical model were relatively worse than neat MWCNTs-based NOHM. The result is attributed to the aggregation of SiO2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHM with collapse model was the worst in all NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. Besides, it presented non-interference of MWCNTs and SiO2 without aggregation state. © 2017 IOP Publishing Ltd.

  16. Solvent-free nanofluid with three structure models based on the composition of a MWCNT/SiO2 core and its adsorption capacity of CO2.

    Science.gov (United States)

    Yang, R L; Zheng, Y P; Wang, T Y; Li, P P; Wang, Y D; Yao, D D; Chen, L X

    2017-12-15

    A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO 2 ) as the core were synthesized. The NOHMs display a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in the core, named the power strip model, the critical model and the collapse model. The capture capacities of these NOHMs for CO 2 were investigated at 298 K and CO 2 pressures ranging from 0 to 5 MPa. Compared with NOHMs having a neat MWCNT core, it was revealed that NOHMs with the power strip model show better adsorption capacity toward CO 2 due to its lower viscosity and more reactive groups that can react with CO 2 . In addition, the capture capacities of NOHMs with the critical model were relatively worse than the neat MWCNT-based NOHM. The result is attributed to the aggregation of SiO 2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHMs with the collapse model was the worst of all the NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. In addition, they presented non-interference of MWCNTs and SiO 2 without aggregation state.

  17. Study of the Performance of the Organic Extracts of Chenopodium ambrosioides for Ag Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Luis M. Carrillo-López

    2016-01-01

    Full Text Available There are many ways to obtain metal nanoparticles: biological, physical, and chemical ways and combinations of these approaches. Synthesis assisted with plant extracts has been widely documented. However, one issue that is under discussion refers to the metabolites responsible for reduction and stabilization that confine nanoparticle growth and prevent coalescence between nanoparticles in order to avoid agglomeration/precipitation. In this study, Ag nanoparticles were synthesized using organic extracts of Chenopodium ambrosioides with different polarities (hexane, dichloromethane, and methanol. Each extract was phytochemically characterized to identify the nature of the metabolites responsible for nanoparticle formation. With methanol extract, the compounds responsible for reducing and stabilizing silver nanoparticle were associated with the presence of phenolic compounds (flavonoids and tannins, while, with dichloromethane and hexane extracts, the responsible compounds were mainly terpenoids. Large part of the reducing activity of secondary metabolites in C. ambrosioides is closely related to compounds with antioxidant capacity, such as phenolic compounds (flavone glycoside and isorhamnetin, which are the main constituents of the methanol extracts. Otherwise, terpenoids (trans-diol, α-terpineol, monoterpene hydroperoxides, and apiole are the central metabolites present in dichloromethane and hexane extracts.

  18. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2018-03-01

    Full Text Available Magnetic nanoparticles are a highly worthy reactant for the correlation of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nano catalytic systems by the immobilization of homogeneous catalysts onto magnetic nanoparticles. Catalytic fields include the use of mainly cobalt, nickel, copper, and zinc ferrites, as well as their mixed-metal combinations with Cr, Cd, Mn and sometimes some lanthanides. The ferrite nanomaterials are obtained mainly by co-precipitation and hydrothermal methods, sometimes by the sonochemical technique, micro emulsion and flame spray synthesis route. Catalytic processes with application of ferrite nanoparticles include degradation (in particular photocatalytic, reactions of dehydrogenation, oxidation, alkylation, C–C coupling, among other processes. Ferrite nano catalysts can be easily recovered from reaction systems and reused up to several runs almost without loss of catalytic activity. Finally, we draw conclusions and present a futurity outlook for the further development of new catalytic systems which are immobilized onto magnetic nanoparticles.

  19. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing

    Science.gov (United States)

    Giorgi, Leonardo; Dikonimos, Theodoros; Giorgi, Rossella; Buonocore, Francesco; Faggio, Giuliana; Messina, Giacomo; Lisi, Nicola

    2018-03-01

    This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

  20. Engymatic synthesis of aspartame precursor in organic solvent; Yuki yobaichu deno asuparutemu zenkutai no koso gosei

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, K. [Okayama Univ., Okayama (Japan). Faculty of Engineering

    1996-11-05

    Taking up the synthetic reaction of the precursor of artificial sweetener aspartame for which thermolysin is used as the catalyst, the features and problems of enzymatic reaction in organic solvent are discussed. It is found that immobilized enzyme which has high activity and stability can be prepared by adsorbing high concentration thermolysin in Amberlite XAD7 followed by bridge immobilization. The initial rate of the synthesis and the stability of immobilized enzyme depend on the types of solvents. Continuous reaction is attempted using a columnar ferment reactor (PFR) in ethyl acetate at the beginning, but the yield decreases in a short period because the immobilized enzyme lose its activity gradually from the upper area of the column where Z-Asp concentration is high. When CSTR (complete mixed type reactor) is used, deactivation of immobilized enzyme can be restricted because low Z-Asp concentration in the reactor can be maintained. It is demonstrated that continuous reaction of longer than 200 hours is possible although the reaction rate is as low as 90%. 4 refs., 3 figs., 1 tab.

  1. A study on metal organic framework (MOF-177) synthesis, characterization and hydrogen adsorption -desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viditha, V.; Venkateswer Rao, M.; Srilatha, K.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P. (India); Yerramilli, Anjaneyulu [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2013-07-01

    Hydrogen has long been considered to be an ideal alternative to fossil-fuel systems and much work has now been done on its storage. There are four main methods of hydrogen storage: as a liquid; as compressed hydrogen; in the form of metal hydrides; and by physisorption. Among all the materials metal organic frameworks (MOFs) are considered to have desirable properties like high porosity, pore volume and high thermal stability. MOF-177 is considered to be an ideal storage material. In this paper we study about its synthesis and hydrogen storage capacities of MOF-177 at different pressures ranging from 25, 50, 75 and 100 bar respectively. The obtained samples are characterized by XRD, BET and SEM. The recorded results show that the obtained hydrogen capacity is 1.1, 2.20, 2.4 and 2.80 wt%. The desorption capacity is 0.9, 2.1, 2.37 and 2.7 wt% at certain temperatures like 373 K.

  2. Synthesis, characterization and application of metal organic frameworks in the adsorption of dimethylamine

    International Nuclear Information System (INIS)

    Sun-Kou, Maria del Rosario; Bravo Hualpa, Fabiola; Beltran Suito, Rodrigo; Samanamu, Christian; Picasso Escobar, Gino

    2014-01-01

    This study investigated the removal of dimethylamine (DMA) by an adsorption mechanism using metal-organic frameworks (MOFs). The synthesis of the MOFs was performed by solvothermal methods. The characterization of the MOF obtained was made by attenuated total reflectance spectroscopy (ATR), proton nuclear magnetic resonance spectroscopy ("1H-NMR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The XRD diffractograms allowed to identify the structure of MOF as Dashkovaite, which has the molecular formula Mg(HCOO)_2.2H_2O; while the ATR studies revealed the presence of carbonyl group as most important functional group in the MOF structure. The morphological analysis showed that the MOF crystalline particles had a hexagonal shape, formed from filaments of around 7,5-8 microns in length. Adsorption experiments showed that the MOF had a high adsorption capacity of DMA (q_e= 307,96 mg.g"-"1). The kinetic data were fitted to the pseudo second order equation and the Elovich equation, while the adsorption isotherm was fitted to the Temkin equation and the Dubinin - Radushkevich equation, processes related to chemisorptions preferably on a heterogeneous surface. (author)

  3. Synthesis, characterization, and applications of electroactive polymeric nanostructures for organic coatings

    Science.gov (United States)

    Suryawanshi, Abhijit Jagnnath

    Electroactive polymers (EAP) such as polypyrrole (PPy) and polyaniline (PANI) are being explored intensively in the scientific community. Nanostructures of EAPs have low dimensions and high surface area enabling them to be considered for various useful applications. These applications are in several fields including corrosion inhibition, capacitors, artificial muscles, solar cells, polymer light emitting diodes, and energy storage devices. Nanostructures of EAPs have been synthesized in different morphologies such as nanowires, nanorods, nanotubes, nanospheres, and nanocapsules. This variety in morphology is traditionally achieved using soft templates, such as surfactant micelles, or hard templates, such as anodized aluminum oxide (AAO). Templates provide stability and groundwork from which the polymer can grow, but the templates add undesirable expense to the process and can change the properties of the nanoparticles by integrating its own properties. In this study a template free method is introduced to synthesize EAP nanostructures of PPy and PANI utilizing ozone oxidation. The simple techniques involve ozone exposure to the monomer solution to produce aqueous dispersions of EAP nanostructures. The synthesized nanostructures exhibit uniform morphology, low particle size distribution, and stability against agglomeration. Ozone oxidation is further explored for the synthesis of silver-PPy (Ag-PPy) core-shell nanospheres (CSNs). Coatings containing PPy nanospheres were formulated to study the corrosion inhibition efficiency of PPy nanospheres. Investigation of the coatings using electrochemical techniques revealed that the PPy nanospheres may provide corrosion inhibition against filiform corrosion by oxygen scavenging mechanism. Finally, organic corrosion inhibitors were incorporated in PPy to develop efficient corrosion inhibiting systems, by using the synergistic effects from PPy and organic corrosion inhibitors.

  4. Enzymatic synthesis of tasty oligopeptide in organic solvent. Yuki yobaichu deno teimisei origo pepuchido no koso gosei

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Tomita, K.; Nakanishi, K. (Okayama Univ., Okayama (Japan). Faculty of Engineering)

    1991-10-01

    An introduction is made to examples of the latest researches on methods to manufacture oligopeptides by enzymatic synthesizing methods in regards to to various processes using reactions in organic solvents as a means to increase the yield, particularly on synthesis of one that have taste effects. To raise the yield of peptides that are produced by condensing amino acid and amino acid derivatives, it is necessary that an equilibrium control reaction is operated in such a way that the product concentration and product moisture concentration are reduced, and the concentration of substrates of non-dissociation type is raised. In the case ofamino acid reacting with amino acid ester or amide, a velocity control is carried out, in which the velocity to produce the peptides from the acyl intermediates is raised and the velocity of the ester hydrolysis is slowed down. Examples of synthesis of tasty oligopeptides include, for example, the precursor in manufacturing artificial sweetener, aspartyl-phenylalanine methyl, as well as synthesis in an aqueous solution using special enzymes or in an organic solvent, and synthesis of other acidic amino acid oligomers. 24 refs., 2 figs.

  5. Green methods for preparing highly co2 selective and h2s tolerant metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama; Belmabkhout, Youssef

    2015-01-01

    A green route for preparing a metal organic framework include mixing metal precursor with a ligand precursor to form a solvent-free mixture; adding droplets of water to the mixture; heating the mixture at a first temperature after adding the water

  6. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises.

    Science.gov (United States)

    Gong, Jin-Song; Shi, Jin-Song; Lu, Zhen-Ming; Li, Heng; Zhou, Zhe-Min; Xu, Zheng-Hong

    2017-02-01

    Nitrile-converting enzymes, including nitrilase and nitrile hydratase (NHase), have received increasing attention from researchers of industrial biocatalysis because of their critical role as a tool in organic synthesis of carboxylic acids and amides from nitriles. To date, these bioconversion approaches are considered as one of the most potential industrial processes using resting cells or purified enzymes as catalysts for production of food additives, pharmaceutical, and agrochemical precursors. This review focuses on the distribution and catalytic mechanism research of nitrile-converting enzymes in recent years. Molecular biology aspects to improve the biocatalytic performance of microbial nitrilase and NHase are demonstrated. The process developments of microbial nitrilase and NHase for organic synthesis are also discussed.

  7. Synthesis and characterization of bimetallic metal-organic framework Cu-Ru-BTC with HKUST-1 structure.

    Science.gov (United States)

    Gotthardt, Meike A; Schoch, Roland; Wolf, Silke; Bauer, Matthias; Kleist, Wolfgang

    2015-02-07

    The bimetallic metal-organic framework Cu-Ru-BTC with the stoichiometric formula Cu2.75Ru0.25(BTC)2·xH2O, which is isoreticular to HKUST-1, was successfully prepared in a direct synthesis using mild reaction conditions. The partial substitution of Cu(2+) by Ru(3+) centers in the paddlewheel structure and the absence of other Ru-containing phases was proven using X-ray absorption spectroscopy.

  8. A Safer and Convenient Synthesis of Sulfathiazole for Undergraduate Organic and Medicinal Chemistry Classes

    Science.gov (United States)

    Boyle, Jeff; Otty, Sandra; Sarojini, Vijayalekshmi

    2012-01-01

    A safer method for the synthesis of the sulfonamide drug sulfathiazole, for undergraduate classes, is described. This method improves upon procedures currently followed in several undergraduate teaching laboratories for the synthesis of sulfathiazole. Key features of this procedure include the total exclusion of pyridine, which has potential…

  9. GREEN CHEMISTRY APPLICATION FOR THE SYNTHESIS OF (1-N-4’-METHOXYBENZYL-1,10-PHENANTHROLINIUM BROMIDE

    Directory of Open Access Journals (Sweden)

    Maulidan Firdaus

    2010-06-01

    Full Text Available A simple, energy-efficient, and relatively quick synthetic procedure for the synthesis of (1-N-4'-methoxybenzyl-1,10-phenanthrolinium bromide, based on green chemistry principles has been carried out. The synthesis was started by solvent-free reduction of p-anisaldehyde with NaBH4 to give 4-methoxybenzyl alcohol in 98% yield to be followed by solvent-free treatment of the resulted alcohol with PBr3 to yield 4-methoxybenzyl bromide (86%. Furthermore, the obtained bromide was reacted with 1,10-phenanthroline in acetone at reflux for 12 h to give the phenanthrolinium salt target in 68% yield.   Keywords: green chemistry, p-anisaldehyde, (1-N-4'-methoxybenzyl-1,10-phenanthrolinium bromide

  10. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    Science.gov (United States)

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  11. Organic titanates: a model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives.

    Science.gov (United States)

    Fang, Shaofan; Li, Guangshe; Li, Huixia; Lu, Yantong; Li, Liping

    2018-04-12

    The application of lead halide perovskite nanocrystals is challenged by the lack of strategies in rapid room-temperature synthesis with controlled morphologies. Here, we report on an initial study of adopting organic titanates as a model activator that promotes rapid room-temperature synthesis of shape-controlled, highly luminescent CsPbBr3 nanocrystals and their derivatives.

  12. Reactions of homolytic addition of polyhalogenoalkanes to unsafurated tin-organic compounds and their application in organic synthesis

    International Nuclear Information System (INIS)

    Rakhlin, V.I.; Mirskov, R.G.; Voronkov, M.G.

    1996-01-01

    Reactions of homolytic addition of polyhalogenoalkanes; including iodine compounds, to tin trialkylalkenyl derivatives are considered. They may be used as convenient method for synthesis of various polyhalogenoalkylsubstituted alicycles and heterocycles: cyclopropane, 1.3-dioxocycloalkanes, thiacycloalkanes, various nitrogen-containing heterocycles. 27 refs

  13. Synthesis of liquid crystals derived from nitroazobenzene: a proposed multistep synthesis applied to organic chemistry laboratory classes

    International Nuclear Information System (INIS)

    Cristiano, Rodrigo; Cabral, Marilia Gabriela B.; Aquino, Rafael B. de; Cristiano, Claudia M.Z.

    2014-01-01

    We describe a synthetic route consisting of five steps from aniline to obtain liquid crystal compounds derived from nitroazobenzene. Syntheses were performed during the second half of the semester in organic chemistry laboratory classes. Students characterized the liquid crystal phase by the standard melting point techniques, differential scanning calorimetry and polarized optical microscopy. These experiments allow undergraduate students to explore fundamentally important reactions in Organic Chemistry, as well as modern concepts in Chemistry such as self-assembly and self-organization, nanostructured materials and molecular electronics. (author)

  14. SHORT COMMUNICATION A SOLVENT FREE AND SELECTIVE ...

    African Journals Online (AJOL)

    Preferred Customer

    Selective protection of 1,2-propanediol (1n) with dimethoxytrityl chloride and triethylamine under microwave irradiation. In a beaker, a mixture of dimethoxytrityl chloride (4.06 g, 12 mmol) and triethylamine (3.5 mL, 25 mmol) was taken and 1,2-propanediol 1n (0.76 g, 10 mmol) was added to this mixture and was irradiated ...

  15. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.; Koch, Donald L.

    2012-01-01

    as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent

  16. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  17. Amberlyst-15: An Efficient and reusable heterogeneous catalyst for the synthesis of β-amino carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Pathakota Venkata Ramana

    2015-12-01

    Full Text Available A simple and efficient method has been developed for the synthesis of β-amino carbonyl compounds from aromatic ketones, aldehydes and amines by Mannich reaction in the presence of amberlyst-15 as a reusable heterogeneous catalyst at room temperature under solvent-free conditions. The noteworthy advantages of the present method are short reaction times, good product yields, simple procedures and use of non-toxic catalyst.

  18. Metal-Organic Frameworks: Building Block Design Strategies for the Synthesis of MOFs.

    KAUST Repository

    Luebke, Ryan

    2014-09-01

    A significant and ongoing challenge in materials chemistry and furthermore solid state chemistry is to design materials with the desired properties and characteristics. The field of Metal-Organic Frameworks (MOFs) offers several strategies to address this challenge and has proven fruitful at allowing some degree of control over the resultant materials synthesized. Several methodologies for synthesis of MOFs have been developed which rely on use of predetermined building blocks. The work presented herein is focused on the utilization of two of these design principles, namely the use of molecular building blocks (MBBs) and supermolecular building blocks (SBBs) to target MOF materials having desired connectivities (topologies). These design strategies also permit the introduction of specific chemical moieties, allowing for modification of the MOFs properties. This research is predominantly focused on two platforms (rht-MOFs and ftw-MOFs) which topologically speaking are edge transitive binodal nets; ftw being a (4,12)-connected net and rht being a (3,24)-connected net. These highly connected nets (at least one node having connectivity greater than eight) have been purposefully targeted to increase the predictability of structural outcome. A general trend in topology is that there is an inverse relationship between the connectivity of the node(s) and the number of topological outcomes. Therefore the key to this research (and to effective use of the SBB and MBB approaches) is identification of conditions which allow for reliable formation of the targeted MBBs and SBBs. In the case of the research presented herein: a 12-connected Group IV or Rare Earth based hexanuclear MBB and a 24-connected transition metal based SBB were successfully targeted and synthesized. These two synthetic platforms will be presented and used as examples of how these design methods have been (and can be further) utilized to modify existing materials or develop new materials for gas storage and

  19. Post-Synthesis Functionalization of Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Al Otaibi, Mona S.

    2014-07-01

    Solid porous materials are network materials that contain space void. Porous Organic Polymers (POPs) are porous materials, which are constructed from organic building blocks and exhibit large surface area with low densities. Due to these characteristics, POPs have attracted attentions because of their potential use in application such as gas storage and chemical separation. This thesis presents a study of the synthesis of novel POP being a network based on 2,5- dibromobenzaldehyde and 1,3,5-triethynylbenzene linked together via Sonogashira- Hagihara (SH) coupling. This network showed a relatively good surface area of 770 m2/g and total pore volume of 0.59 cc/g. In addition, it proved to be chemically and thermally stable, maintaining the thermal stability up to 350oC. In addition to synthesize novel aldehyde-POP network, it was also possible to post synthetically modify a network via one-step post synthetic functionalization by amine. Ethelynediamine (EDA), Diethylenetriamine (DETA), and Tris(2-aminoethyl)amine (Tris-amine) are three different amines used for aldehyde-POP functionalization. The produced networks were aminated via different amine species substitution the aldehyde group present within the network. Modification to these networks resulted in a decrease in surface area from 770 m2.g-1 to 333 m2.g-1, 162 m2.g-1, and 211 m2.g-1 in respective to EDA, DETA, and Tris-amine. Although the surface areas were decreased, the CO2 adsorption was enhanced as evidenced by the increase of Qst (i.e., from 25 to 45 kJ.mol-1 for DETA at low coverage). Our findings are expected to strengthen existing research areas of the influence of different type of amines (e.g aromatic amine) on CO2 adsorption. Although amine grafting has been studied in other systems (e.g., PAFs and MOFs), we are the first to reported amine functionalized POPs using a novel one-step amine grafting PSM procedure. Future research might extend to study the interaction between CO2 and amine species under

  20. In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal-Organic Framework HKUST-1: Effect of Liquid Additives on the Milling Reactivity.

    Science.gov (United States)

    Stolar, Tomislav; Batzdorf, Lisa; Lukin, Stipe; Žilić, Dijana; Motillo, Cristina; Friščić, Tomislav; Emmerling, Franziska; Halasz, Ivan; Užarević, Krunoslav

    2017-06-05

    We have applied in situ monitoring of mechanochemical reactions by high-energy synchrotron powder X-ray diffraction to study the role of liquid additives on the mechanochemical synthesis of the archetypal metal-organic framework (MOF) HKUST-1, which was one of the first and is still among the most widely investigated MOF materials to be synthesized by solvent-free procedures. It is shown here how the kinetics and mechanisms of the mechanochemical synthesis of HKUST-1 can be influenced by milling conditions and additives, yielding on occasion two new and previously undetected intermediate phases containing a mononuclear copper core, and that finally rearrange to form the HKUST-1 architecture. On the basis of in situ data, we were able to tune and direct the milling reactions toward the formation of these intermediates, which were isolated and characterized by spectroscopic and structural means and their magnetic properties compared to those of HKUST-1. The results have shown that despite the relatively large breadth of analysis available for such widely investigated materials as HKUST-1, in situ monitoring of milling reactions can help in the detection and isolation of new materials and to establish efficient reaction conditions for the mechanochemical synthesis of porous MOFs.