WorldWideScience

Sample records for solvent-free oligomer-grafted nanoparticles

  1. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2011-09-01

    Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  2. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.

    2011-01-01

    that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  3. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2012-01-01

    The diffusivity and structural relaxation characteristics of oligomer-grafted nanoparticles have been investigated with simulations of a previously proposed coarse-grained model at atmospheric pressure. Solvent-free, polymer-grafted nanoparticles as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent-free nanoparticles with longer chains have higher relative diffusivities than their short chain counterparts. Solvent-free nanoparticles with short chains undergo a glass transition as indicated by a vanishing diffusivity, diverging structural relaxation time and the formation of body-centered-cubic-like order. Nanoparticles with longer chains exhibit a more gradual increase in the structural relaxation time with decreasing temperature and concomitantly increasing particle volume fraction. The diffusivity of the long chain nanoparticles exhibits a minimum at an intermediate temperature and volume fraction where the polymer brushes of neighboring particles overlap, but must stretch to fill the interparticle space. © 2012 American Institute of Physics.

  4. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles

    KAUST Repository

    Hong, Bingbing

    2012-01-01

    Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different from the state point at which the potential was optimized. Remarkably, coarse graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This stands in sharp contrast to linear polymer systems, for which coarse graining always accelerates the dynamics. Diffusivity data suggest that the grafting topology is one cause of slower motions of the cores for short-chain oligomer-grafted nanoparticles; an estimation based on transition-state theory shows the coarse-grained core-core potential also has a slowing-down effect on the nanoparticle organic hybrid materials motions; both effects diminish as grafted chains become longer. © 2012 American Institute of Physics.

  5. Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory

    KAUST Repository

    Chremos, Alexandros

    2011-01-01

    The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hard-sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American Institute of Physics.

  6. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.; Koch, Donald L.

    2012-01-01

    as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent

  7. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles

    KAUST Repository

    Hong, Bingbing; Chremos, Alexandros; Panagiotopoulos, Athanassios Z.

    2012-01-01

    transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different

  8. Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering.

    Science.gov (United States)

    Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L

    2014-12-07

    We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.

  9. Solvent-Free Synthesis of Silver-Nanoparticles and their Use as Additive in Poly (Dicyclopentadiene)

    International Nuclear Information System (INIS)

    Abbas, M.; Kienberger, J.

    2013-01-01

    A solvent-free environmentally benign synthesis of oleylamine capped silver nanoparticles is presented. Upon heating 10 equivalents of oleylamine and silver nitrate at 165 degree C for 30 min followed by a precipitation step using ethanol as the precipitant particles characterized by an Z-average diameter of 63 nm were obtained. Dried particles can be easily redispersed in unpolar solvents or monomers, which pave the way for using them as an antimicrobial additive in polymeric materials. In particular, newly prepared Ag-particles were dispersed in dicyclopentadiene and the mixture was cured using ring opening metathesis polymerization yielding an antimicrobially equipped duroplastic material. (author)

  10. Diffusivities, viscosities, and conductivities of solvent-free ionically grafted nanoparticles

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    A new class of conductive composite materials, solvent-free ionically grafted nanoparticles, were modeled by coarse-grained molecular dynamics methods. The grafted oligomeric counterions were observed to migrate between different cores, contributing to the unique properties of the materials. We investigated the dynamics by analyzing the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities) and counterion migration kinetics. Temperature dependence of all properties follows the Arrhenius equation, but chain length and grafting density have distinct effects on different properties. In particular, structural effects on the diffusion coefficients are described by the Rouse model and the theory of nanoparticles diffusing in polymer solutions, viscosities are strongly influenced by clustering of cores, and conductivities are dominated by the motions of oligomeric counterions. We analyzed the migration kinetics of oligomeric counterions in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. © 2013 The Royal Society of Chemistry.

  11. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route

    International Nuclear Information System (INIS)

    Okada, Masahiro; Fujii, Syuji; Nishimura, Taiki; Nakamura, Yoshinobu; Takeda, Shoji; Furuzono, Tsutomu

    2012-01-01

    Highlights: ► Hydroxyapatite (HAp) nanoparticles stabilized polymer melt-in-water emulsions without any molecular surfactants. ► Interaction between polymer and HAp played a crucial role. ► HAp-coated polymer particles were obtained from the emulsions without any organic solvents. - Abstract: Hydroxyapatite (HAp) nanoparticle-coated biodegradable polymer particles were fabricated from a nanoparticle-stabilized emulsion in the absence of any molecular surfactants or organic solvents. First, a polymer melt-in-water emulsion was prepared by mixing a water phase containing nanosized HAp particles as a particulate emulsifier and an oil phase consisting of poly(ε-caprolactone) (PCL) or poly(L-lactide-co-ε-caprolactone) (P(LLA-CL)) above its melting point. It was clarified that the interaction between ester/carboxyl groups of the polymers and the HAp nanoparticles at the polymer–water interface played a crucial role to prepare the nanoparticle-stabilized emulsion. The HAp nanoparticle-coated biodegradable polymer particle (a polymer solid-in-water emulsion) was fabricated by cooling the emulsion. The particle morphology and particle size were evaluated using scanning electron microscope.

  12. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar

    2017-08-09

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method for a series of transition-MS nanoparticles using thiourea as a reactive precursor without capping agents. This study also reports the synthesis of MS with single metals (Fe, Co, Ni, Cu, and Zn) and quaternary CuGa2In3S8 using the same synthesis protocol. Thiourea first melts to form a molten-state condition to serve as the reaction medium at a relatively low temperature (<200 °C), followed by its thermal decomposition to induce a reaction with the metal precursor to form different MS. This synthesis protocol, owing to its dynamic characteristics, involves the formation of a variety of organic carbon nitride polymeric complexes around the MS particles. Dynamic nuclear polarization surface-enhanced nuclear magnetic resonance spectroscopy is effective to identify the polymeric compositions and structures as well as their interactions with the MS. These results provided thorough structural descriptions of the MS nanoparticles surrounded by the carbon nitride species derived from thiourea, which may find various applications, including photocatalytic water splitting.

  13. Molecular imaging of banknote and questioned document using solvent-free gold nanoparticle-assisted laser desorption/ionization imaging mass spectrometry.

    Science.gov (United States)

    Tang, Ho-Wai; Wong, Melody Yee-Man; Chan, Sharon Lai-Fung; Che, Chi-Ming; Ng, Kwan-Ming

    2011-01-01

    Direct chemical analysis and molecular imaging of questioned documents in a non/minimal-destructive manner is important in forensic science. Here, we demonstrate that solvent-free gold-nanoparticle-assisted laser desorption/ionization mass spectrometry is a sensitive and minimal destructive method for direct detection and imaging of ink and visible and/or fluorescent dyes printed on banknotes or written on questioned documents. Argon ion sputtering of a gold foil allows homogeneous coating of a thin layer of gold nanoparticles on banknotes and checks in a dry state without delocalizing spatial distributions of the analytes. Upon N(2) laser irradiation of the gold nanoparticle-coated banknotes or checks, abundant ions are desorbed and detected. Recording the spatial distributions of the ions can reveal the molecular images of visible and fluorescent ink printed on banknotes and determine the printing order of different ink which may be useful in differentiating real banknotes from fakes. The method can also be applied to identify forged parts in questioned documents, such as number/writing alteration on a check, by tracing different writing patterns that come from different pens.

  14. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Mobasseri, Rezvan [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Karimi, Mahdi [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tian, Lingling, E-mail: lingling_tian@nus.edu.sg [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ramakrishna, Seeram [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China)

    2017-05-01

    Dextran sulfate-chitosan (DS-CS) nanoparticles, which possesses properties such as nontoxicity, biocompatibility and biodegradability have been employed as drug carriers in cancer therapy. In this study, DS-CS nanoparticles were synthesized and their sizes were controlled by a modification of the divalent cations cross-linkers (Ca{sup 2+}, Zn{sup 2+} or Mg{sup 2+}). Based on the optimized processing parameters, lapatinib encapsulated nanoparticles were developed and characterized by Dynamics Light Scattering (DLS) measurements, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Calcium chloride (CaCl{sub 2}) facilitated the formation of bare (100.3 ± 0.80 nm) and drug-loaded nanoparticles (134.3 ± 1.3 nm) with narrow size distributions being the best cross-linker. The surface potential of drug-loaded nanoparticles was − 16.8 ± 0.47 mV and its entrapment and loading efficiency were 76.74 ± 1.73% and 47.36 ± 1.27%, respectively. Cellular internalization of nanoparticles was observed by fluorescence microscopy and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay was used to determine cytotoxicity of bare and drug-loaded nanoparticles in comparison to the free drug lapatinib. The MTT assay showed that drug-loaded nanoparticles had comparable anticancer activity to free drug within a duration of 48 h. The aforementioned results showed that the DS-CS nanoparticles were able to entrap, protect and release the hydrophobic drug, lapatinib in a controlled pattern and could further serve as a suitable drug carrier for cancer therapy. - Highlights: • The best condition to prepare best size (about 100 nm) dextran-chitosan nanoparticles is proposed. • Divalent cationic cross-linker can act as hardener and compress the particles. • Drug/dextran mixing in a toxic solvent free method provides hydrophobic drug encapsulation within a hydrophilic system. • High entrapment efficiency of Lapatinib in polymeric

  15. Facile and solvent-free routes for the synthesis of size-controllable Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Ngo, Thanh Hieu; Tran, Dai Lam; Do, Hung Manh; Le, Van Hong; Nguyen, Xuan Phuc; Tran, Vinh Hoang

    2010-01-01

    Magnetite nanoparticles are one of the most important materials that are widely used in both medically diagnostic and therapeutic research. In this paper, we present some facile and non-toxic synthetic approaches for size-controllable preparations of magnetite nanoparticles, which are appropriate for biomedical applications, namely (i) co-precipitation; (ii) reduction–precipitation and (iii) oxidation–precipitation. Magnetic characterizations of the obtained nanoparticles have been studied and discussed. The oxidation precipitation route was chosen for investigation of the dependence of kinetic driven activation energy and that of coercive force on particle size (and temperature) during the course of the reaction. The structural–magnetic behavior was also correlated. Being solvent and surfactant-free, these methods are advantageous for synthesis and further functionalization towards biomedical applications

  16. A low-cost, environment-friendly and solvent-free route for synthesis of AgBr nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Shahsavani, E.; Khalaji, A.D.; Feizi, N.; Das, D.; Matalobos, J.S.; Kučeráková, Monika; Dušek, Michal

    2015-01-01

    Roč. 82, Jun (2015), s. 18-25 ISSN 0749-6036 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : AgBr * nanoparticles * thiosemicarbazone * XRD * SEM * TEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.117, year: 2015

  17. On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells

    KAUST Repository

    Lee, Chuan-Pei; Lee, Kun-Mu; Chen, Po-Yen; Ho, Kuo-Chuan

    2009-01-01

    ) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached

  18. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  19. First-Row-Transition Ion Metals(II-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Nuno M. R. Martins

    2017-11-01

    Full Text Available A series of first-row transition-metals combined with ethylenediamine tetraacetic acid (EDTA, as metal-based N,O-chelating ligands, at the surface of ferrite magnetic nanoparticles (MNPs was prepared by a co-precipitation method. Those EDTA functionalized MNPs with general formula Fe3O4@EDTA-M2+ [M = Mn2+ (1, Fe2+ (2, Co2+ (3, Ni2+ (4, Cu2+ (5 or Zn2+ (6] were characterized by FTIR (Fourier Transform Infrared spectroscopy, powder XRD (X-ray Diffraction, SEM (Scanning Electron Microscope, EDS (Energy Dispersive Spectrometer, VSM (Vibrating Sample Magnetometer and TGA (Thermal Gravity Analysis. The application of the magnetic NPs towards the microwave-assisted oxidation of several alcohol substrates in a solvent-free medium was evaluated. The influence of reaction parameters such as temperature, time, type of oxidant, and presence of organic radicals was investigated. This study demonstrates that these MNPs can act as efficient catalysts for the conversion of alcohols to the corresponding ketones or aldehydes with high selectivity and yields up to 99% after 2 h of reaction at 110 °C using t-BuOOH as oxidant. Moreover, they have the advantage of being magnetically recoverable catalysts that can be easily recycled in following runs.

  20. On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells

    KAUST Repository

    Lee, Chuan-Pei

    2009-08-01

    Titanium carbide (TiC) is an extremely hard conducting ceramic material often used as a coating for titanium alloys as well as steel and aluminum components to improve their surface properties. In this study, conducting ceramic nanoparticles (CCNPs) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached 1.68%, which was higher than that without adding TiC (1.18%); however, cell efficiency decreased when the TiC content reached 1.0 wt%. The electrochemical impedance spectroscopy (EIS) technique was employed to analyze the interfacial resistance in DSSCs, and it was found that the resistance of the charge-transfer process at the Pt counter electrode (Rct1) decreased when up to 1.0 wt% TiC was added. Presumably, this was due to the formation of the extended electron transfer surface (EETS) which facilitates electron transfer to the bulk electrolyte, resulting in a decrease of the dark current, whereby the open-circuit potential (VOC) could be improved. Furthermore, a significant increase in the fill factor (FF) for all TiC additions was related to the decrease in the series resistance (RS) of the DSSCs. However, at 1.0 wt% TiC, the largest charge-transfer resistance at the TiO2/dye/electrolyte interface was observed and resulted from the poor penetration of the electrolyte into the porous TiO2. The long-term stability of DSSCs with a binary ionic liquid electrolyte, which is superior to that of an organic solvent-based electrolyte, was also studied. © 2009 Elsevier B.V. All rights reserved.

  1. Structure factor of blends of solvent-free nanoparticle–organic hybrid materials: density-functional theory and small angle X-ray scattering

    KAUST Repository

    Yu, Hsiu-Yu

    2014-09-15

    © the Partner Organisations 2014. We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials. This journal is

  2. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    Science.gov (United States)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  3. Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles as new and green catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones under solvent-free condition

    Directory of Open Access Journals (Sweden)

    Eshagh Rezaee Nezhad

    2013-10-01

    Full Text Available The aim of this research is to study Ni2+ supported on hydroxyapatite-core-shell magnetic γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+ as a green and recyclable catalyst for the Biginelli reaction under solvent-free conditions. One-pot multi-component condensation of 1,3-dicarbonyl compounds, urea and aldehydes at 80 oC affords the corresponding compounds in high yields and in short reaction times using γ-Fe2O3@HAp-Ni2+. The catalyst can be readily isolated using an external magnet and no obvious loss of activity was observed when the catalyst was reused in seven consecutive runs. The mean size and the surface morphology of the nanoparticles were characterized by transmission electron microscopy, scanning electron microscope, vibrating sample magnetometry, X-ray powder diffraction and Fourier transform infrared techniques.

  4. Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Akbar Rostami-Vartooni

    2015-12-01

    Full Text Available In this study, Cu nanoparticles were immobilized on the surface of natural bentonite using Thymus vulgaris extract as a reducing and stabilizing agent. The natural bentonite-supported copper nanoparticles (Cu NPs/bentonite were characterized by FTIR spectroscopy, X-ray diffraction (XRD, X-ray fluorescence (XRF, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, selected area electron diffraction (SAED and Brunauer–Emmett–Teller (BET analysis. Afterward, the catalytic performance of the prepared catalyst was investigated for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol (4-NP in water. It was found that the Cu NPs/bentonite is a highly active and recyclable catalyst for related reactions.

  5. Magnetic Nanoparticle Immobilized N-Propylsulfamic Acid as a Recyclable and Efficient Nanocatalyst for the Synthesis of 2H-indazolo[2,1-b]phthalazine-triones in Solvent-Free Conditions: Comparison with Sulfamic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Amin; Tahmasbi, Bahman; Yari, Ako [Univ. of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-05-15

    N-Propylsulfamic acid supported onto magnetic Fe{sub 3}O{sub 4} nanoparticles (MNPs-PSA) was used as an efficient and magnetically recoverable catalyst for synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives from the three-component, one-pot condensation reaction of phthalhydrazide, aromatic aldehydes and cyclic 1,3-diones, in good to excellent yields at 100 .deg. C under solvent-free conditions. The catalyst was easily separated with the assistance of an external magnetic field from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency. In order to compare, the synthesis of 2H-Indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives in the presence of catalytic amount of sulfamic acid (SA) under same reaction condition was also reported.

  6. Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol.

    Science.gov (United States)

    Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng

    2018-04-17

    Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.

  7. SHORT COMMUNICATION SOLVENT FREE PREPARATION OF N ...

    African Journals Online (AJOL)

    Preferred Customer

    KEYWORDS: Solvent free, Maleanilic acids, Maleic anhydride, Aniline derivatives ... associated with the carboxylic group between 3275-2877 cm-1, the weak –NH .... Chemical shifts (σ/ppm) relative to TMS*. O-H N-H Ha. Hb. Hc. Hd. He. Hf.

  8. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    Science.gov (United States)

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  9. Perlite-SO3H nanoparticles as an efficient and reusable catalyst for one-pot three-component synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives under both microwave-assisted and thermal solvent-free conditions: Single crystal X-ray structure analysis and theoretical study

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2016-01-01

    Full Text Available A general synthetic route for the synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives has been developed using perlite-SO3H nanoparticles as efficient catalyst under both microwave-assisted and thermal solvent-free conditions. The combination of 2-naphthol, aldehyde and urea enabled the synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives in the presence of perlite-SO3H nanoparticles in good to excellent yields. This method provides several advantages like simple work-up, environmentally benign, and shorter reaction times along with high yields. In order to explore the recyclability of the catalyst, the perlite-SO3H nanoparticles in solvent-free conditions were used as catalyst for the same reaction repeatedly and the change in their catalytic activity was studied. It was found that perlite-SO3H nanoparticles could be reused for four cycles with negligible loss of their activity. Single crystal X-ray structure analysis and theoretical studies also were investigated for 4i product. The electronic properties of the compound have been analyzed using DFT calculations (B3LYP/6-311+G*. The FMO analysis suggests that charge transfer takes place within the molecule and the HOMO is localized mainly on naphthalene and oxazinone rings whereas the LUMO resides on the naphthalene ring.

  10. Synthesis, characterization and catalytic application of silica supported tin oxide nanoparticles for synthesis of 2,4,5-tri and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2017-02-01

    Full Text Available Highly efficient and eco-friendly, one pot synthesis of 1,2,4,5-tetra substituted imidazoles and 2,4,5-trisubstituted imidazoles was reported under solvent free conditions using nanocrystalline silica supported tin oxide (SiO2:SnO2 as a catalyst with excellent yield. The present methodology offers several advantages such as mild reaction conditions, short reaction time, good yield, high purity of product, recyclable catalyst without a noticeable decrease in catalytic activity and can be used for large scale synthesis. The synthesized SiO2:SnO2 nanocrystalline catalyst was characterized by XRD, BET surface area and TEM techniques.

  11. Oligoquinolines under Solvent-free Microwave Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwi-Jeon; Kwon, Tae-Woo [Kyungsung University, Busan (Korea, Republic of)

    2015-01-15

    Quinolines are thermally stable and can be used as an excellent n-type semiconducting materials. Since quinolines are also known to be electron acceptor molecules, combination of various electron donor building blocks can be utilized in photonic and electronic organic light-emitting diode (OLED) applications. For example, donor.acceptor systems with phenothiazine (or carbazole) molecules as electron donors and the phenylquinoline group as an electron acceptor provide an efficient approach for the design of new materials exhibiting highly efficient charge-transfer photophysics and electroluminescence in OLEDs. We have described the Friedlander quinoline synthesis between aminobenzophenones and symmetrical diacetyl compounds having phenothiazine, carbazole, biphenyl, and phenyl moieties under solvent-free microwave irradiation in 12.98% isolated yields.

  12. Predicting the Disorder–Order Transition of Solvent-Free Nanoparticle–Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu

    2013-07-02

    The transition from a disordered to a face-centered-cubic phase in solvent-free oligomer-tethered nanoparticles is predicted using a density-functional theory for model hard spheres with tethered bead-spring oligomers. The transition occurs without a difference of volume fraction for the two phases, and the phase boundary is influenced by the loss of oligomer configurational entropy relative to an ideal random system in one phase compared with the other. When the particles are localized in the ordered phase, the cooperation of the oligomers in filling the space is hindered. Therefore, shorter oligomers feel a stronger entropic penalty in the ordered solid and favor the disordered phase. Strikingly, we found that the solvent-free system has a later transition than hard spheres for all investigated ratios of oligomer radius of gyration to particle radius. © 2013 American Chemical Society.

  13. An efficient synthesis of quinolines under solvent-free conditions

    Indian Academy of Sciences (India)

    Unknown

    An efficient synthesis of quinolines under solvent-free conditions. 201 was then irradiated with microwaves in a microwave oven (Samsung model# CE118KF) at 1050W (70% of total power) for 5 minutes (3 + 2 with an inter- mission of 5 minutes). The reaction mixture was cooled at room temperature and rendered basic (pH.

  14. GRINDING SOLVENT-FREE PAAL-KNORR PYRROLE SYNTHESIS ...

    African Journals Online (AJOL)

    Paal-Knorr pyrrole synthesis on smectites as recyclable and green catalysts. Bull. Chem. Soc. .... 1-Propyl-2,5-dimethyl-1H-pyrrole (8a). Oil (reported as oil .... of pyrroles catalyzed by zirconium chloride under solvent-free conditions . Ultrason.

  15. Nanocrystalline copper(II oxide-catalyzed one-pot four- component synthesis of polyhydroquinoline derivativesunder solvent-free conditions

    Directory of Open Access Journals (Sweden)

    J. Safaei-Ghomi

    2011-07-01

    Full Text Available The efficient and environmentally friendly method for the one-pot synthesis of polyhydroquinolines has been developed in the presence of CuO nanoparticles. The multi-component reactions of aldehydes, dimedone, ethyl acetoacetate andammonium acetate were carried out under solvent-free conditions to afford some polyhydroquinoline derivatives. This method provides several advantages including high yields, low reaction times and little catalyst loading.

  16. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    Science.gov (United States)

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  17. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  19. Photo-triggered solvent-free metamorphosis of polymeric materials.

    Science.gov (United States)

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  20. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  1. Solvent-free functionalization of carbon nanotube buckypaper with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Abarca-Morales, Edgar; Pérez-Rey, Luis A.; Re, Marilena; Prete, Paola; Lovergine, Nico

    2015-01-01

    Graphical abstract: - Abstract: We demonstrate the possibility of fast and efficient solvent-free functionalization of buckypaper (BP) mats prefabricated from oxidized multiwalled carbon nanotubes (MWCNTs-ox), by using three representative amines of different structure: one monofunctional aliphatic amine, octadecylamine (ODA), one monofunctional aromatic amine, 1-aminopyrene (AP), and one aromatic diamine, 1,5-diaminonaphthalene (DAN). The functionalization procedure, which relies on the formation of amide bonds with carboxylic groups of MWCNTs-ox, is performed at 150–180 °C under reduced pressure and takes about 4 h including auxiliary degassing. The amine-treated BP samples (BP-ODA, BP-AP and BP-DAN, respectively) were characterized by means of a variety of analytical techniques such as Fourier-transform infrared and Raman spectroscopy, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, scanning helium ion microscopy, and atomic force microscopy. The highest amine content was found for BP-ODA, and the lowest one was observed for BP-DAN, with a possible contribution of non-covalently bonded amine molecules in all three cases. Despite of some differences in spectral and morphological characteristics for amine-functionalized BP samples, they have in common a dramatically increased stability in water as compared to pristine BP and, on the other hand, a relatively invariable electrical conductivity.

  2. Solvent-free covalent functionalization of nanodiamond with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Santamaría-Bonfil, Adriana; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Alvares-Zauco, Edgar; Contreras-Torres, Flavio F.; Rizo, Juan; Zavala, Guadalupe; Basiuk, Vladimir A.

    2013-01-01

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  3. Solvent-free covalent functionalization of nanodiamond with amines

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Santamaría-Bonfil, Adriana; Meza-Laguna, Victor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Gromovoy, Taras Yu. [Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Alvares-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Contreras-Torres, Flavio F.; Rizo, Juan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Zavala, Guadalupe [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos (Mexico); Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. (Mexico)

    2013-06-15

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  4. A Solvent-free Synthesis of Polyhydroquinolines via Hantzsch ...

    African Journals Online (AJOL)

    NICO

    ABSTRACT. A simple and efficient procedure for the synthesis of polyhydroquinolines was developed, involving a one-pot four-component ... inhibition and most importantly as calcium channel blockers.8–15 ..... to magnetic nanoparticles.

  5. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    tetrabromobenzene- 1,3-disulphonamide (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  6. Grinding solvent-free Paal-Knorr pyrrole synthesis on smectites as ...

    African Journals Online (AJOL)

    Journal Home > Vol 32, No 1 (2018) > ... An environmentally benign method for the synthesis of N-substituted pyrroles from one-pot solvent-free ... conditions make this protocol practical, environmentally friendly and economically attractive.

  7. Multicomponent One-Pot Synthesis of Substituted Hantzsch Thiazole Derivatives Under Solvent Free Conditions

    Directory of Open Access Journals (Sweden)

    Bhaskar S. Dawane

    2009-01-01

    Full Text Available Thiazole derivatives were prepared by one-pot procedure by the reaction of α-haloketones, thiourea and substituted o-hydroxybenzaldehyde under environmentally solvent free conditions.

  8. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  9. Microwave-assisted silica-promoted solvent-free synthesis of ...

    Indian Academy of Sciences (India)

    method using microwave irradiation with an excellent yield. The newly ... Table 1. Silica promoted microwave-assisted solvent-free synthesis of quinazolinone ... Time (min). Yield (%)a ..... thanks SC/ST cell of Bangalore University for research.

  10. Solvent Free Preparation of p-Cymene from Limonene Using Vietnamese Montmorillonite

    DEFF Research Database (Denmark)

    Nguyen, Thao-Tran Thi; Duus, Fritz; Le, Thach Ngoc

    2013-01-01

    p-Cymene, an important intermediate in industrial chemistry, has been prepared in good yields by thermally induced dehydrogenation of limonene under solvent-free reaction conditions using Vietnamese montmorillonite as an efficient green catalyst.......p-Cymene, an important intermediate in industrial chemistry, has been prepared in good yields by thermally induced dehydrogenation of limonene under solvent-free reaction conditions using Vietnamese montmorillonite as an efficient green catalyst....

  11. Structure of Solvent-Free Nanoparticle−Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu

    2010-11-16

    We derive the radial distribution function and the static structure factor for the particles in model nanoparticleorganic hybrid materials composed of nanoparticles and attached oligomeric chains in the absence of an intervening solvent. The assumption that the oligomers form an incompressible fluid of bead-chains attached to the particles that is at equilibrium for a given particle configuration allows us to apply a density functional theory for determining the equilibrium configuration of oligomers as well as the distribution function of the particles. A quasi-analytic solution is facilitated by a regular perturbation analysis valid when the oligomer radius of gyration R g is much greater than the particle radius a. The results show that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its neighborhood. © 2010 American Chemical Society.

  12. Surface functionalization of SBA-15 by the solvent-free method

    International Nuclear Information System (INIS)

    Wang Yimeng; Zheng Yingwu; Zhu Jianhua

    2004-01-01

    A solvent-free technique was employed for fast modification of mesoporous materials. Copper, chromium and iron oxide species could be highly dispersed in SBA-15 by manually grinding the corresponding precursor salts and the host, followed by calcinations for the first time. This method is more effective to spontaneously disperse oxide species onto SBA-15 than impregnation, probably forming monolayer or submonolayer dispersion of salts or oxides. Besides, Cr(VI) species dominate in the mixing sample while Cr(III) species dominate in the impregnation one. In the temperature programmed surface reaction of nitrosamines, the sample prepared by solvent-free method showed a higher catalytic activity than the impregnation one

  13. Preparation of Ultra-fine Calcium Carbonate by a Solvent-free ...

    African Journals Online (AJOL)

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  14. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  15. A Highly Efficient Solvent-Free Acetalization of Aldehydes to 1,1 ...

    African Journals Online (AJOL)

    1,1-Diacetates are prepared in excellent yields from aldehydes and acetic anhydride under solvent-free conditions at room temperature in short reaction times using catalytic amount of sulfonic acid functionalized silica (SiO2-Pr-SO3H) which could be easily handled and removed from the mixture of reaction. Keywords: 1 ...

  16. Predicting the Disorder–Order Transition of Solvent-Free Nanoparticle–Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu; Koch, Donald L.

    2013-01-01

    in the ordered phase, the cooperation of the oligomers in filling the space is hindered. Therefore, shorter oligomers feel a stronger entropic penalty in the ordered solid and favor the disordered phase. Strikingly, we found that the solvent-free system has a

  17. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  18. An Expedient Method for the Synthesis of Thiosemicarbazones under Microwave Irradiation in Solvent-free Medium

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping; ZHENG, Peng-Zhi; ZHU, Jun-Ge; LIU, Rui-Jie; QU, Gui-Rong

    2006-01-01

    A simple, efficient and eco-friendly method for the synthesis of thiosemicarbazones from thiosemicarbazides and aldehyde under microwave irradiation has been reported, and no solvent and catalyst were used. And the technique of microwave irradiation coupled with solvent-free condition proved to be a quite valuable method in the organic synthesis.

  19. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  20. Solvent-free microwave extraction of essential oil from Melaleuca leucadendra L.

    Directory of Open Access Journals (Sweden)

    Widya Ismanto Aviarina

    2018-01-01

    Full Text Available Cajuput (Melaleuca leucadendra L. oil is one of potential commodity that provides an important role for the country’s foreign exchange but the extraction of these essential oil is still using conventional method such as hydrodistillation which takes a long time to produce essential oil with good quality. Therefore it is necessary to optimize the extraction process using a more effective and efficient method. So in this study the extraction is done using solvent-free microwave extraction method that are considered more effective and efficient than conventional methods. The optimum yield in the extraction of cajuput oil using solvent-free microwave extraction method is 1.0674%. The optimum yield is obtained on the feed to distiller (F/D ratio of 0.12 g/mL with microwave power of 400 W. In the extraction of cajuput oil using solvent-free microwave extraction method is performed first-order and second-order kinetics modelling. Based on kinetics modelling that has been done, it can be said that the second-order kinetic model (R2 = 0.9901 can be better represent experimental results of extraction of cajuput oil that using solvent-free microwave extraction method when compared with the first-order kinetic model (R2 = 0.9854.

  1. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar; Cairns, Amy J.; Eddaoudi, Mohamed; Vittal, Jagadese J.

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal

  2. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Dario, E-mail: dario.braga@unibo.it [Dipartimento di Chimica ' G.Ciamician' , Universita degli studi di Bologna, Via Selmi 2, 40126 Bologna (Italy); Grepioni, Fabrizia; Maini, Lucia; Mazzeo, Paolo P.; Rubini, Katia [Dipartimento di Chimica ' G.Ciamician' , Universita degli studi di Bologna, Via Selmi 2, 40126 Bologna (Italy)

    2010-08-10

    Co-crystals of phenazine and acridine with vanillin have been obtained by solvent-free reaction or thermal treatment of the solid reactants: their structures, thermal behaviour and eutectic formation have been investigated via single crystal X-ray diffraction, differential scanning calorimetry (DSC), variable temperature X-ray powder diffraction and hot-stage microscopy (HSM). Polymorph screening of the reagents has also been carried out.

  3. An Efficient, Mild and Solvent-Free Synthesis of Benzene Ring Acylated Harmalines

    Directory of Open Access Journals (Sweden)

    Sabira Begum

    2009-12-01

    Full Text Available A facile synthesis of a series of benzene ring acylated analogues of harmaline has been achieved by Friedel-Crafts acylation under solvent-free conditions at room temperature using acyl halides/acid anhydrides and AlCl3. The reaction afforded 10- and 12-acyl analogues of harmaline in good yield, along with minor quantities of N-acyl-tryptamines and 8-acyl analogues of N-acyltryptamines.

  4. Fe–Al/clay as an efficient heterogeneous catalyst for solvent-free ...

    Indian Academy of Sciences (India)

    SiO2,27 amberlyst-15,28 etc. ... tometer, using Ni-filtered Cu Ka (0.15418 nm) radia- ... The spectral data of some ... C).29 1H NMR ... 3.99(q, j = 7.1 Hz, 2H), 5.12 (s,1H), 7.23 (d, j = 8.35 .... Recyclability was studied in both solvent-free and.

  5. Acid catalyzed solvent free synthesis of new 1-acyl-4-benzhydryl substituted pyrazoles

    International Nuclear Information System (INIS)

    Sher, M.; Kausar, T.; Riaz, N.; Sharif, A.

    2016-01-01

    A convenient, cost effective and environmentally benign methodology has been developed, which delivered fourteen new 1-acyl-4-benzhyrdyl substituted pyrazole derivatives under solvent free conditions. Target compounds were synthesized in good to excellent yields simply by grinding reactants in a pestle and mortar with catalytic amount of conc. H/sub 2/SO/sub 4/. All the newly formed compounds were fully characterized with the help of detailed spectroscopic techniques including FTIR, NMR and GC-MS. (author)

  6. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst

    Directory of Open Access Journals (Sweden)

    Martin Obst

    2016-11-01

    Full Text Available A method for the solvent-free photocatalytic conversion of solid and liquid substrates was developed, using a novel rod mill apparatus. In this setup, thin liquid films are realized which is crucial for an effective photocatalytic conversion due to the low penetration depth of light in heterogeneous systems. Several benzylic alcohols were oxidized with riboflavin tetraacetate as photocatalyst under blue light irradiation of the reaction mixture. The corresponding carbonyl compounds were obtained in moderate to good yields.

  7. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    Science.gov (United States)

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  8. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin

    International Nuclear Information System (INIS)

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Mazzeo, Paolo P.; Rubini, Katia

    2010-01-01

    Co-crystals of phenazine and acridine with vanillin have been obtained by solvent-free reaction or thermal treatment of the solid reactants: their structures, thermal behaviour and eutectic formation have been investigated via single crystal X-ray diffraction, differential scanning calorimetry (DSC), variable temperature X-ray powder diffraction and hot-stage microscopy (HSM). Polymorph screening of the reagents has also been carried out.

  9. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. SOLVENT-FREE TETRAHYDROPYRANYLATION (THP) OF ALCOHOLS AND PHENOLS AND THEIR REGENERATION BY CATALYTIC ALUMINUM CHLORIDE HEXAHYDRATE

    Science.gov (United States)

    Catalytic amount of aluminum chloride hexahydrate enables solvent-free tetrahydropyranylation (THP) of alcohols and phenols at moderate temperatures. A simple addition of methanol helps to regenerate the corresponding alcohols and phenols thus rendering these protection and depro...

  11. Development of solvent-free ambient mass spectrometry for green chemistry applications.

    Science.gov (United States)

    Liu, Pengyuan; Forni, Amanda; Chen, Hao

    2014-04-15

    Green chemistry minimizes chemical process hazards in many ways, including eliminating traditional solvents or using alternative recyclable solvents such as ionic liquids. This concept is now adopted in this study for monitoring solvent-free reactions and analysis of ionic liquids, solids, and catalysts by mass spectrometry (MS), without using any solvent. In our approach, probe electrospray ionization (PESI), an ambient ionization method, was employed for this purpose. Neat viscous room-temperature ionic liquids (RTILs) in trace amounts (e.g., 25 nL) could be directly analyzed without sample carryover effect, thereby enabling high-throughput analysis. With the probe being heated, it can also ionize ionic solid compounds such as organometallic complexes as well as a variety of neat neutral solid chemicals (e.g., amines). More importantly, moisture-sensitive samples (e.g., [bmim][AlCl4]) can be successfully ionized. Furthermore, detection of organometallic catalysts (including air-sensitive [Rh-MeDuPHOS][OTf]) in ionic liquids, a traditionally challenging task due to strong ion suppression effect from ionic liquids, can be enabled using PESI. In addition, PESI can be an ideal approach for monitoring solvent-free reactions. Using PESI-MS, we successfully examined the alkylation of amines by alcohols, the conversion of pyrylium into pyridinium, and the condensation of aldehydes with indoles as well as air- and moisture-sensitive reactions such as the oxidation of ferrocene and the condensation of pyrazoles with borohydride. Interestingly, besides the expected reaction products, the reaction intermediates such as the monopyrazolylborate ion were also observed, providing insightful information for reaction mechanisms. We believe that the presented solvent-free PESI-MS method would impact the green chemistry field.

  12. Microwave-Assisted Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available A microporous metal-organic framework (MOF, cobalt-based zeolitic imidazolate framework-67 (ZIF-67, was synthesized by the combination of solvent-free hand-mill and microwave irradiation, without any organic solvent and within 30 minutes. The hand-milling process can mix the reactants well by the virtue of high moisture/water absorption capacity of reactants. In addition, the outstanding electromagnetic wave absorption capability of cobalt leads to efficient conversion to MOF structures before carbonization. The obtained ZIF-67 possesses high surface area and micropore volume.

  13. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    DEFF Research Database (Denmark)

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30....... The results from DSC, XRD showed that TEL was molecularly dispersed in the OSF-SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between TEL and its carriers. The OSF-SDs exhibited significantly higher AUC0-24 h and Cmax, but similar Tmax as compared...

  14. Silica Gel-Mediated Organic Reactions under Organic Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Satoaki Onitsuka

    2012-09-01

    Full Text Available Silica gel was found to be an excellent medium for some useful organic transformations under organic solvent-free conditions, such as (1 the Friedel-Crafts-type nitration of arenes using commercial aqueous 69% nitric acid alone at room temperature, (2 one-pot Wittig-type olefination of aldehydes with activated organic halides in the presence of tributyl- or triphenylphosphine and Hunig’s base, and (3 the Morita-Baylis-Hillman reaction of aldehydes with methyl acrylate. After the reactions, the desired products were easily obtained in good to excellent yields through simple manipulation.

  15. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids

    International Nuclear Information System (INIS)

    Gu, Shu-Ying; Gao, Xie-Feng; Zhang, Yi-Han

    2015-01-01

    A development of the novel and stable solvent-free ionic MoS 2 nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS 2 from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, 1 H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS 2 nanofluids show that inorganic MoS 2 cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS 2 nanofluids is presented. • The rheological behaviors can be tailored by

  16. A Solvent-Free Base Liberation of a Tertiary Aminoalkyl Halide by Flow Chemistry

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Skovby, Tommy; Mealy, Michael J.

    2016-01-01

    A flow setup for base liberation of 3-(N,N-dimethylamino)propyl chloride hydrochloride and solvent-free separation of the resulting free base has been developed. Production in flow profits from an on-demand approach, useful for labile aminoalkyl halides. The requirement for obtaining a dry product...... has been fulfilled by the simple use of a saturated NaOH solution, followed by isolation of the liquid phases by gravimetric separation. The flow setup has an E factor reduction of nearly 50%, and a distillation step has been avoided. The method exemplifies how flow chemistry can be exploited...

  17. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS{sub 2}) nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Shu-Ying, E-mail: gushuying@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Gao, Xie-Feng; Zhang, Yi-Han [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)

    2015-01-15

    A development of the novel and stable solvent-free ionic MoS{sub 2} nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS{sub 2} from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, {sup 1}H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS{sub 2} nanofluids show that inorganic MoS{sub 2} cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS{sub 2} nanofluids is presented. • The rheological

  18. Solvent free one pot synthesis of amidoalkyl naphthols over phosphotungstic acid

    Directory of Open Access Journals (Sweden)

    Divya P. Narayanan

    2017-07-01

    Full Text Available Montmorillonite KSF clay was effectively modified by the encapsulation of phosphotungstic acid into the clay layers via sonication followed by incipient wet impregnation method. The prepared catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM techniques. The catalytic activities of the prepared systems were investigated in the solvent free synthesis of amidoalkyl naphthols by the multicomponent one-pot condensation of an aldehyde, β-naphthol and an amide or urea. Excellent yield, shorter reaction time, easy work-up, and reusability of the catalyst are the main attractions of this green procedure.

  19. Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.; Yu, Hsiu-Yu; Koch, Donald L.

    2011-01-01

    with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American Institute

  20. Solvent-Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea

    KAUST Repository

    Bhunia, Manas Kumar; Abou-Hamad, Edy; Anjum, Dalaver H.; Gurinov, Andrei; Takanabe, Kazuhiro

    2017-01-01

    The synthesis of metal sulfide (MS) materials with sizes in the sub-10 nm regime often requires capping agents with long hydrocarbon chains that affect their structures and properties. Herein, this study presents a molten-state synthesis method

  1. A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors.

    Science.gov (United States)

    Gao, Zhaodongfang; Yang, Junwei; Huang, Jing; Xiong, Chuanxi; Yang, Quanling

    2017-11-23

    Conducting polymer based supercapacitors usually suffer from the difficulty of achieving high specific capacitance and good long-term stability simultaneously. In this communication, a long-chain protonic acid doped solvent-free self-suspended polyaniline (S-PANI) fluid and reduced graphene oxide (RGO) were used to fabricate a three-dimensional RGO/S-PANI aerogel via a simple self-assembled hydrothermal method, which was then applied as a supercapacitor electrode. This 3D RGO/S-PANI composite exhibited a high specific capacitance of up to 480 F g -1 at a current density of 1 A g -1 and 334 F g -1 even at a high discharge rate of 40 A g -1 . An outstanding cycling performance, with 96.14% of the initial capacitance remaining after 10 000 charging/discharging cycles at a rate of 10 A g -1 , was also achieved. Compared with the conventional conducting polymer materials, the 3D RGO/S-PANI composite presented more reliable rate capability and cycling stability. Moreover, S-PANI possesses excellent processability, thereby revealing its enormous potential in large scale production. We anticipate that the solvent-free fluid technique is also applicable to the preparation of other 3D graphene/polymer materials for energy storage.

  2. Tuning of Activated Carbon for Solvent-Free Oxidation of Cyclohexane

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2017-01-01

    Full Text Available Activated carbon (AC was prepared from carbonization of phosphoric acid soaked peanut shell at 380°C under inert atmosphere followed by activation with hydrogen peroxide. The AC was characterized by SEM, EDX, FTIR, TGA, and BET surface area and pore size analyzer. The potential of AC as a catalyst for solvent-free oxidation of cyclohexane to cyclohexanol and cyclohexanone (the mixture is known as KA oil in the presence of molecular oxygen at moderate temperature was investigated in a self-designed double-walled three-necked batch reactor. The effect of different reaction parameters/additive was optimized. The maximum productivity value (2.14 mmolg−1 h−1, without base, and 4.85 mmolg−1 h−1, with 0.2 mmol NaOH of the desired product was achieved under optimal reaction parameters: vol 12.5 mL, cat 0.4 g, time 14 h, oxygen flow 40 mL/min (pO2 760 Torr, stirring 1100 rpm, and temp 75°C. The AC shows recyclability for multiple runs without any significant loss in activity. Thus, the AC can be an efficient catalyst, due to low cost, ease of synthesis, easy recovery, nonleaching, and recyclability for multiple uses for the solvent-free oxidation of cyclohexane.

  3. Antimicrobial nanocapsules: from new solvent-free process to in vitro efficiency

    Directory of Open Access Journals (Sweden)

    Steelandt J

    2014-09-01

    Full Text Available Julie Steelandt,1 Damien Salmon,1,2 Elodie Gilbert,1 Eyad Almouazen,3 François NR Renaud,4 Laurène Roussel,1 Marek Haftek,5 Fabrice Pirot1,2 1University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Pharmacie Galénique Industrielle, 2Hospital Pharmacy, FRIPharm, Hospital Edouard Herriot, Hospices Civils de Lyon, 3Laboratoire d’Automatique et de Génie des Procédés, University Claude Bernard Lyon 1, 4University Claude Bernard Lyon 1, UMR CNRS 5510/MATEIS, 5University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Dermatologie, Lyon, France Abstract: Skin and mucosal infections constitute recurrent pathologies resulting from either inappropriate antiseptic procedures or a lack of efficacy of antimicrobial products. In this field, nanomaterials offer interesting antimicrobial properties (eg, long-lasting activity; intracellular and tissular penetration as compared to conventional products. The aim of this work was to produce, by a new solvent-free process, a stable and easily freeze-dryable chlorhexidine-loaded polymeric nanocapsule (CHX-NC suspension, and then to assess the antimicrobial properties of nanomaterials. The relevance of the process and the physicochemical properties of the CHX-NCs were examined by the assessment of encapsulation efficiency, stability of the nanomaterial suspension after 1 month of storage, and by analysis of granulometry and surface electric charge of nanocapsules. In vitro antimicrobial activities of the CHX-NCs and chlorhexidine digluconate solution were compared by measuring the inhibition diameters of two bacterial strains (Escherichia coli and Staphylococcus aureus and one fungal strain (Candida albicans cultured onto appropriate media. Based on the findings of this study, we report a new solvent-free process for the

  4. Solvent-free ZnO dye-sensitised solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, E.; Anta, J.A. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla (Spain); Fernandez-Lorenzo, C.; Alcantara, R.; Martin-Calleja, J. [Departamento de Quimica Fisica, Universidad de Cadiz, Cadiz (Spain)

    2009-10-15

    Dye-sensitised solar cells (DSSC) based on commercial nanostructured zinc oxide combined with imidazolium-based room temperature ionic-liquid electrolytes are characterized. The electrolytes are based on a binary mixture of two ionic liquids, one of them used as source of iodide ions. The composition of this solvent-free electrolyte is optimized with respect to the concentration of iodine and iodide and the effect of additives such as lithium and tert-butylpyridine (TBP) on the photovoltaic performance and the recombination rate is analyzed and discussed. A maximum photoconversion efficiency of 3.4% at 1 sun illumination has been obtained for cells of 0.64 cm{sup 2} active area with the best performing compositions. Diffusion limitations due to slow transport processes are analyzed and discussed. (author)

  5. Development of a new solvent-free flow efficiency coating for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Graham A.; Morse, Jennifer [Bredero Shaw, Houston, TX (United States)

    2005-07-01

    Pipeline design engineers have traditionally considered external anti-corrosion coatings for the protection of gas transmission pipelines, with less consideration given to the benefits of internal flow efficiency coatings. This paper reviews the benefits of using a traditional solvent-based flow efficiency coating, and the relationship between the internal surface roughness of a pipe, the pressure drop across the pipeline, and the maximum flow rate of gas through the pipeline. To improve upon existing solvent-based flow efficiency coatings, a research program was undertaken to develop a solvent-free coating. The stages in the development of this coating are discussed, resulting in the plant application of the coating and final qualification to API RP 5L2. (author)

  6. Solvent-Free Patterning of Colloidal Quantum Dot Films Utilizing Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Hohyun Keum

    2017-01-01

    Full Text Available Colloidal quantum dots (QDs with properties that can be tuned by size, shape, and composition are promising for the next generation of photonic and electronic devices. However, utilization of these materials in such devices is hindered by the limited compatibility of established semiconductor processing techniques. In this context, patterning of QD films formed from colloidal solutions is a critical challenge and alternative methods are currently being developed for the broader adoption of colloidal QDs in functional devices. Here, we present a solvent-free approach to patterning QD films by utilizing a shape memory polymer (SMP. The high pull-off force of the SMP below glass transition temperature (Tg in conjunction with the conformal contact at elevated temperatures (above Tg enables large-area, rate-independent, fine patterning while preserving desired properties of QDs.

  7. Olive oil glycero lysis with the immobilized lipase Candida antarctica in a solvent free system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A. K.; Mukhopadhyay, M.

    2012-11-01

    In the present work, the solvent free lipase glycerolysis of olive oil for the production of monoglyceride (MG) and diglyceride (DG) with an immobilized Lipase B Candida antarctica was studied. The experiments were performed in batch mode by varying different process parameters. The Results showed that the MG and DG yields were dependent on operating conditions such as time, temperature, glycerol/ oil molar ratio, enzyme concentration and the water content in glycerol. The optimum operating time for maximum MG, 26 wt% and DG, 30 wt% production was 3h. The initial reaction rate was studied by varying different process parameters for 1h. The initial reaction rate increased at 30 degree centigrade temperature, 2:1 glycerol/oil molar ratio, 3.5% (w/w) water content in glycerol and 0.015g of enzyme loading. Comparative data for MG and DG yields for different oils and enzyme combinations were presented.

  8. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  9. Solvent-Free Synthesis of Aryl Iodide Using Nano SiO2/HIO4 as a Reusable Acid Catalyst

    Directory of Open Access Journals (Sweden)

    A. Bamoniri

    2014-07-01

    Full Text Available An efficient and environmentally benign   method for the synthesis of aryl iodides have been developed by diazotization of aromatic amines with NaNO2 and nanosilica periodic acid (nano-SPIA as a green catalyst via grinding followed by a sandmeyer iodination by KI under solvent-free conditions at room temperature. The ensuing aryl diazonium salts supported on nano-SPIA were sufficiently stable to be kept at room temperature in the dry state. This method is a novel, efficient, eco-friendly route for solvent-free synthesis of aryl iodides.

  10. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    Energy Technology Data Exchange (ETDEWEB)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dep. de Farmacia y Quimica Medicinal

    2011-07-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  11. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    International Nuclear Information System (INIS)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo

    2011-01-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  12. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    Science.gov (United States)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  13. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Science.gov (United States)

    2010-04-01

    ... conjunction with spices, seasonings, and flavorings. 182.40 Section 182.40 Food and Drugs FOOD AND DRUG... in conjunction with spices, seasonings, and flavorings. Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings that are generally recognized as safe for their intended...

  14. 21 CFR 582.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Science.gov (United States)

    2010-04-01

    ... conjunction with spices, seasonings, and flavorings. 582.40 Section 582.40 Food and Drugs FOOD AND DRUG... in conjunction with spices, seasonings, and flavorings. Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings that are generally recognized as safe for their intended...

  15. Microwave-assisted clean synthesis of amides via aza-wittig reaction under solvent-free condition

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, Murugan; Nagarajan, Sangaraiah; Velan, Poovan Shanmuga; Dinesh, Murugan; Ponnuswamy, Alagusundaram [Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Tamilnadu (India)

    2011-09-15

    A solvent-free microwave-assisted coupling of phosphazenes with acyl chlorides or carboxylic anhydrides in presence of triethylphosphite has been accomplished resulting in a clean synthesis of amides in good yields. Unlike the prevailing time-consuming solution phase methodologies employing chlorinated solvents, benzene (carcinogenic), etc, the present protocol is an eco friendly, rapid and simple approach. (author)

  16. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    Science.gov (United States)

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  17. Three Component Synthesis of Substituted 4H-[1,3]Dioxin Derivatives Under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hosseini-Tabatabaei

    2012-01-01

    Full Text Available Reaction between aryl aldehydes, acetylacetone and alkyl isocyanides in solvent-free conditions provided a simple and efficient one-pot route for the synthesis of 1-(2-alkylamino-6-methyl-4-aryl-4H-[1,3]dioxin-5-ylethanone derivatives in excellent yields.

  18. Preparation of ultra-fine calcium carbonate by a solvent-free reaction using supersonic airflow and low temperatures

    OpenAIRE

    Cai, Yan-Hua; Ma, Dong-Mei; Peng, Ru-Fang; Chu, Shi-Jin

    2008-01-01

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  19. Solvent-free, catalyst-free aza-Michael addition of cyclohexylamine to diethyl maleate: reaction mechanism and kinetics

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Trhlíková, Olga; Podešva, Jiří; Abbrent, Sabina; Steinhart, Miloš; Dybal, Jiří; Dušková-Smrčková, Miroslava

    2018-01-01

    Roč. 74, č. 1 (2018), s. 58-67 ISSN 0040-4020 Institutional support: RVO:61389013 Keywords : Aza-Michael addition * solvent-free * catalyst-free Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.651, year: 2016

  20. An efficient solvent-free synthesis of imidazolines and benzimidazoles using K 4[Fe(CN 6] catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer A. Shaikh

    2012-01-01

    Full Text Available Imidazolines and Benzimidazoles have been efficiently synthesized in high yields by treatment of 1,2-diamine with aldehydes using the metal co-ordinate complex K 4[Fe(CN 6] as a catalysis. The method was carried out under solvent free condition via oxidation of carbon-nitrogen bond. The process is green, mild and inexpensive.

  1. A Diazonium Salt-Based Ionic Liquid for Solvent-FreeModification of Carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu [ORNL; Huang, Jing-Fang [ORNL; Li, Zuojiang [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2006-01-01

    A novel ionic liquid that consists of p-butylbenzenediazonium ions and bis(trifluoromethanesulfonyl)amidates (Tf{sub 2}N{sup -}) has been synthesized as a task-specific ionic liquid for the solvent-free modification of carbon materials. The use of anions Tf{sub 2}N{sup =} is the key to rendering the hydrophobicity, low liquidus temperature, and ionicity to this novel molten salt. This diazonium salt has a melting point of 7.2 C and a moderate electric conductivity of 527 {micro} s/cm at 25 C. The thermal stability of this diazonium ionic liquid has been investigated by high-resolution thermogravimetric analysis (HRTGA). The compound is stable up to about 90 C in nitrogen, which is only 10 C less than its solid tetrafluoroborate counterpart. The modification of carbon materials has been carried out through both thermal and electrochemical activations of diazonium ions to generate free radical intermediates without the use of any solvent. The surface-coverage loadings of 3.38 {micro} mol/m{sup 2} and 6.07 {micro} mol/m{sup 2} for covalently attached organic functionalities have been achieved by the thermally induced functionalization and electrochemically assisted reaction, respectively.

  2. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    Science.gov (United States)

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    Science.gov (United States)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  4. An Efficient, Solvent-Free Process for Synthesizing Anhydrous MgCl2

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Vemuri, Venkata Rama S.; Barpaga, Dushyant; Schaef, Herbert T.; Loring, John S.; Martin, Paul F.; Lao, David; Nune, Satish K.; McGrail, Bernard P.

    2018-01-02

    A new efficient and solvent-free method for the synthesis of anhydrous MgCl2 from its hexahydrate is proposed. Fluidized dehydration of MgCl2·6H2O feedstock at 200 °C in a porous bed reactor yields MgCl2·nH2O (0 < n < 1), which has a similar diffraction pattern as activated MgCl2. The MgCl2·nH2O is then ammoniated directly using liquefied NH3 in the absence of solvent to form MgCl2·6NH3. Calcination of the hexammoniate complex at 300 °C then yields anhydrous MgCl2. Both dehydration and deammoniation were thoroughly studied using in situ as well as ex situ characterization techniques. Specifically, a detailed understanding of the dehydration process was monitored by in situ PXRD and in situ FTIR techniques where formation of salt with nH2O (n = 4, 2, 1, <1) was characterized. Given the reduction in thermal energy required to produce dehydrated feedstock with this method compared with current strategies, significant cost benefits are expected. Overall, the combined effect of activation, macroporosity, and coordinated water depletion allows the formation of hexammoniate without using solvent, thus minimizing waste formation.

  5. Eco-friendly all-carbon paper electronics fabricated by a solvent-free drawing method

    International Nuclear Information System (INIS)

    Kanaparthi, Srinivasulu; Badhulika, Sushmee

    2016-01-01

    Here we report the fabrication of high-performance all-carbon temperature and infrared (IR) sensors with a solvent-free multiwalled carbon nanotube (MWCNT) trace as the sensing element and commercial graphite pencil trace as the electrical contact on recyclable and biodegradable cellulose filter paper without using any toxic materials or complex procedures. The temperature sensor shows a large negative temperature coefficient of resistance (TCR) in the range of −3100 ppm K −1 to −4900 ppm K −1 , which is comparable to available commercial temperature sensors, and an activation energy of 34.85 meV. The IR sensor shows a high responsivity of 58.5 V W −1 , which is greater than reported IR sensors with similar dimensions. A detailed study of the conduction mechanism in MWCNTs with temperature and the photo response with IR illumination was done and it was found that the conduction is due to thermally assisted hopping in band tails and the photo response is bolometric in nature. The successful fabrication of these sensors on cellulose filter paper with a comparable performance to existing components indicates that it is possible to fabricate high-performance electronics using low-cost, eco-friendly materials without the need for expensive clean-room processing techniques or harmful chemicals. (paper)

  6. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    Science.gov (United States)

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solvent-free optical recording of structural colours on pre-imprinted photocrosslinkable nanostructures

    Science.gov (United States)

    Jiang, Hao; Rezaei, Mohamad; Abdolahi, Mahssa; Kaminska, Bozena

    2017-09-01

    Optical digital information storage media, despite their ever-increasing storage capacity and data transfer rate, are vulnerable to the potential risk of turning inaccessible. For this reason, long-term eye-readable full-colour optical archival storage is in high demand for preserving valuable information from cultural, intellectual, and scholarly resources. However, the concurrent requirements in recording colours inexpensively and precisely, and preserving colours for the very long term (for at least 100 years), have not yet been met by existing storage techniques. Structural colours hold the promise to overcome such challenges. However, there is still the lack of an inexpensive, rapid, reliable, and solvent-free optical patterning technique for recording structural colours. In this paper, we introduce an enabling technique based on optical and thermal patterning of nanoimprinted SU-8 nanocone arrays. Using photocrosslinking and thermoplastic flow of SU-8, diffractive structural colours of nanocone arrays are recorded using ultra-violet (UV) exposure followed by the thermal development and reshaping of nanocones. Different thermal treatment procedures in reshaping nanocones are investigated and compared, and two-step progressive baking is found to allow the controllable reshaping of nanocones. The height of the nanocones and brightness of diffractive colours are modulated by varying the UV exposure dose to enable grey-scale patterning. An example of recorded full-colour image through half-tone patterning is also demonstrated. The presented technique requires only low-power continuous-wave UV light and is very promising to be adopted for professional and consumer archival storage applications.

  8. Application of 2k Full Factorial Design in Optimization of Solvent-Free Microwave Extraction of Ginger Essential Oil

    Directory of Open Access Journals (Sweden)

    Mumtaj Shah

    2014-01-01

    Full Text Available The solvent-free microwave extraction of essential oil from ginger was optimized using a 23 full factorial design in terms of oil yield to determine the optimum extraction conditions. Sixteen experiments were carried out with three varying parameters, extraction time, microwave power, and type of sample for two levels of each. A first order regression equation best fits the experimental data. The predicted values calculated by the regression model were in good agreement with the experimental values. The results showed that the extraction time is the most prominent factor followed by microwave power level and sample type for extraction process. An average of 0.25% of ginger oil can be extracted using current setup. The optimum conditions for the ginger oil extraction using SFME were the extraction time 30 minutes, microwave power level 640 watts, and sample type, crushed sample. Solvent-free microwave extraction proves a green and promising technique for essential oil extraction.

  9. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica

    DEFF Research Database (Denmark)

    Genina, Natalja; Hadi, Batol; Löbmann, Korbinian

    2018-01-01

    The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high...... friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus(®) (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed...... into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi...

  10. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    Science.gov (United States)

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Organocatalyzed and Ultrasound Accelerated Expeditious Synthetic Route to 1,5-Benzodiazepines under Solvent-Free Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Pravin V.; Shingate, Bapurao B.; Shingare, Murlidhar S. [Babasaheb Ambedkar Marathwada University, Aurngabad (India)

    2011-04-15

    In the present work, successful implementation of ultrasound irradiations for the rapid synthesis of 1,5- benzodiazepine derivatives under solvent-free conditions is demonstrated. Use of a novel catalyst i.e. camphor sulphonic acid in combination with ultrasound technique is reported for the first time. Comparative study for the synthesis of 1,5-benzodiazepines using conventional as well as ultrasonication method is discussed.

  12. NaHSO4-SiO2-Promoted Solvent-Free Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    K. Ravi Kumar

    2013-01-01

    Full Text Available An efficient protocol has been developed for the preparation of a library of benzoxazole, benzimidazole, and benzothiazole derivatives from reactions of acyl chlorides with o-substituted aminoaromatics in the presence of catalytic amount of silica-supported sodium hydrogen sulphate under solvent-free conditions. Simple workup procedure, high yield, easy availability, reusability, and use of ecofriendly catalyst are some of the striking features of the present protocol.

  13. Nano crystalline ZnO catalyzed one pot three-component synthesis of 7-alkyl-6H,7H- naphtho[1',2':5,6]pyrano[3,2-c] chromen-6-ones under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    M. J. Piltan

    2016-08-01

    Full Text Available In the present paper, an efficient one-pot synthesis of 7-alkyl-6H,7H-naphtho[1',2':5,6]pyrano[3,2-c]chromen-6-ones is described by three-component reaction of β-naphthol, aromatic aldehydes and 4-hydroxycoumarin using ZnO nanoparticles under solvent-free conditions. The present method provides a novel and efficient procedure for the synthesis of chromene derivatives with some advantageous such as short reaction times, easy workup, high yields, wide range of products, reusability of the catalyst, little catalyst loading and green conditions in the presence of ZnO nanoparticles (7 mol% at 110 ºC.

  14. Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

    Directory of Open Access Journals (Sweden)

    Shahnaz Rostamizadeh

    2017-01-01

    Full Text Available The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2 nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES with magnetic graphene oxide (Fe3O4-GO. It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO along with the amine groups post grafted to the surface of Fe3O4-GO led to preparation of an acid-base bifunctional magnetically recyclable nanocatalyst. It proved to be efficient nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives under mild reaction conditions with good to excellent yields. This heterogeneous catalyst also exhibited higher activities than acid or base functionalized mesoporous silica, magnetic GO or basic Al2O3 an even higher than some basic homogeneous catalysts such as triethylamine and piperazine. More importantly, due to the loaded iron oxide nanoparticles, this catalyst could be easily recovered from the reaction mixture using an external magnet and reused without significant decrease in activity even after 7 runs.

  15. Green and solvent-free procedure for microwave-assisted synthesis ...

    Indian Academy of Sciences (India)

    tant tool in organic synthesis and therefore microwave chemistry can provide ... silica nanoparticles for preparation of highly substi- tuted pyridines.42 ..... MgO. 30. 60. 9. BaO. 25. 65. 10. NaOEt. 22. 70. 11. L-Alanine. 25. 65. 12. Montmorillonite.

  16. YCl3-Catalyzed Highly Selective Ring Opening of Epoxides by Amines at Room Temperature and under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Wuttichai Natongchai

    2017-11-01

    Full Text Available A simple, efficient, and environmentally benign approach for the synthesis of β-amino alcohols is herein described. YCl3 efficiently carried out the ring opening of epoxides by amines to produce β-amino alcohols under solvent-free conditions at room temperature. This catalytic approach is very effective, with several aromatic and aliphatic oxiranes and amines. A mere 1 mol % concentration of YCl3 is enough to deliver β-amino alcohols in good to excellent yields with high regioselectivity.

  17. Synthesis of β-phenylchalcogeno-α, β-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions

    International Nuclear Information System (INIS)

    Lenardao, Eder J.; Silva, Marcio S.; Mendes, Samuel R.; Azambuja, Francisco de; Jacob, Raquel G.; Perin, Gelson; Santos, Paulo Cesar Silva dos

    2007-01-01

    A simple, clean and efficient solvent-free protocol was developed for hydrochalcogenation of alkynes containing a Michael acceptor (ester, ketone and nitrile) with phenylchalcogenolate anions generated in situ from the respective diphenyl dichalcogenide (Se, Te, S), using alumina supported sodium borohydride. This efficient and improved method is general and furnishes the respective (Z)-β-phenylchalcogeno-α,β-unsaturated esters, ketones and nitriles, in good yield and higher selectivity, compared with those that use organic solvent and inert atmosphere. The use of microwave (MW) irradiation facilitates the procedure and accelerates the reaction. (author)

  18. An Efficient Solvent-Free Protocol for the Synthesis of 1-Amidoalkyl-2-naphthols using Silica-Supported Molybdatophosphoric Acid

    Directory of Open Access Journals (Sweden)

    Abdolkarim Zare

    2010-01-01

    Full Text Available A highly efficient, green and simple solvent-free method for the synthesis of 1-amidoalkyl-2-naphthols via one-pot multi-components condensation of 2-naphthol, aromatic aldehydes and amides in the presence of catalytic amount of silica-supported molybdatophosphoric acid (H3PMo12O40.xH2O/SiO2, 3.17 mol% is described. The reactions proceed rapidly and the title compounds are produced in high to excellent yields.

  19. Chemoselective Synthesis of Dithioacetals from Bio-aldehydes with Zeolites under Ambient and Solvent-free Conditions

    DEFF Research Database (Denmark)

    Li, Hu; Yang, Tingting; Riisager, Anders

    2017-01-01

    of commercial and modified zeolites are excellent catalysts for thioacetalization of different thiols with carbonyl compounds, including biomass-derived aldehydes, at room temperature under solvent-free conditions. A near quantitative yield of dithioacetal was obtained over H-beta(19) at room temperature......Dithioacetals are an important class of versatile compounds extensively applied in pharmaceuticals, separations, electrochemistry, and organic synthesis, but few heterogeneous catalytic systems are reported to be generally applicable for their synthesis from a wide range of substrates. A series...

  20. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as ...

    Indian Academy of Sciences (India)

    as recyclable catalyst for synthesis of imidazoles under microwave irradiation ... functionalized magnetic Fe3O4 nanoparticles (SA–MNPs) as a novel solid acid catalyst under solvent-free classical heating ..... green chemistry approach.

  1. New Trend for Acceleration Solid Phase Extraction Process Based on Using Magnetic Nano-adsorbents along with Surface Functionalization through Microwave Assisted Solvent-free Technique.

    Science.gov (United States)

    Ahmed, Salwa A; Soliman, Ezzat M

    2015-01-01

    The use of a microwave assisted solvent-free technique for silica coating of iron magnetic nanoparticles (Fe3O4-MNPs) and their functionalization with three aliphatic diamines: 1,2-ethylenediamine (1,2EDA), 1,5-pentanediamine (1,5PDA) and 1.8-octanediamine (1,8-ODA), were successfully achieved in a very short time. Only 60 min were needed for the nano-adsorbent modification as compared with more than 1000 min using conventional methods under reflux conditions. Their surface characteristics (observed by TEM, XRD and FT-IR), in addition to Cu(II) adsorption capacities (1.805, 1.928 and 2.116 mmol g(-1)) and time of equilibration (5 s) were almost the same. Thus, the time required to accomplish the solid phase extraction process is greatly reduced. On the other hand, the phenomenon of the fast equilibration kinetics was successfully extended on using the functionalized aliphatic diamines magnetic nano-adsorbents as precursors for further microwave treatment. Three selective magnetic nano-adsorbents (Fe3O4-MNPs-SiO2-1,2EDA-3FSA, Fe3O4-MNPs-SiO2-1,5PDA-3FSA and Fe3O4-MNPs-SiO2-1,8ODA-3FSA) were obtained via the reaction with 3-formayl salicylic acid (3FSA) as a selective reagent for Fe(III). At 5 s contact time, they exhibited maximum Fe(III) uptake equal to 4.512, 4.987 and 5.367 mmol g(-1), respectively. Furthermore, modeling of values of metal uptake capacity obtained at different shaking time intervals supports pseudo-second order kinetics.

  2. Solvent-free synthesis of azomethines, spectral correlations and antimicrobial activities of some E-benzylidene-4-chlorobenzenamines

    Directory of Open Access Journals (Sweden)

    R. Suresh

    2015-07-01

    Full Text Available Some azomethines including substituted benzylidene-4-chlorobenzenamines (E-imines have been synthesized by fly-ash: PTS catalyzed microwave assisted condensation of 4-chloroaniline and substituted benzaldehydes under solvent-free conditions. The yield of the imines has been found to be more than 85%. The purity of all imines has been checked using their physical constants and UV, IR and NMR spectral data. These spectral data have been correlated with Hammett substituent constants and F and R parameters using single and multi-linear regression analysis. From the results of statistical analysis, the effect of substituents on the above spectral data has been studied. The antimicrobial activities of all imines have been studied using standard methods.

  3. Solvent free hydroxylation of the methyl esters of Blighia unijugata seed oil in the presence of cetyltrimethylammonium permanganate

    Directory of Open Access Journals (Sweden)

    Adewuyi Adewale

    2011-12-01

    Full Text Available Abstract Extraction of oil from the seed of Blighia unijugata gave a yield of 50.82 ± 1.20% using hexane in a soxhlet extractor. The iodine and saponification values were 67.60 ± 0.80 g iodine/100 g and 239.20 ± 1.00 mg KOH/g respectively with C18:1 being the dominant fatty acid. Unsaturated methyl esters of Blighia unijugata which had been previously subjected to urea adduct complexation was used to synthesize methyl 9, 10-dihydroxyoctadecanoate via hydroxylation in the presence of cetyltrimethylammonium permanganate (CTAP. The reaction was monitored and confirmed using FTIR and GC-MS. This study has revealed that oxidation reaction of mono unsaturated bonds using CTAP could be achieved under solvent free condition.

  4. Solvent-Free Biginelli Condensation using Tungstate Sulfuric Acid: a Powerful and Reusable Catalyst for Selective Synthesis

    Directory of Open Access Journals (Sweden)

    Rezvan Rezaee Nasab

    2014-07-01

    Full Text Available Tungstate sulfuric acid (TSA has been prepared and used as a recyclable catalyst for the Biginelli syn-thesis of some biologically active quinazolinones/thiones under solvent-free conditions. This method has advantages such as the avoidance of organic solvents, high yield of pure products, short reaction times, and operational simplicity.  © 2014 BCREC UNDIP. All rightsReceived: 28th April 2014; Revised: 15th May 2014; Accepted: 26th May 2014[ How to Cite: Nasab, R.R., Karami, B., Khodabakhshi, S. (2014. Selective Solvent‐free Biginelli Condensation using Tungstate Sulfuric Acid as Powerful and Reusable Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-154. (doi:10.9767/bcrec.9.2.6794.148-154][ Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6794.148-154

  5. Facile synthesis of 1-naphthol azo dyes with nano SiO2/HIO4 under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    A.R. Pourali

    2013-09-01

    Full Text Available Nano-silica supported periodic acid (nano-SPIA has been utilized as a heterogeneous reagent for a highly efficient and one pot synthesis of azo dyes based on 1-naphthol under solvent-free conditions at room temperature. This method has some advantages, the reaction workup is very easy and the catalyst can be easily separated from the reaction mixture and one-pot procedure. The related products have been obtained in good to excellent yields, high purity and short reaction times. The structures of the products have been characterized by several techniques using UV-Vis, FT-IR, 1H NMR, 13C NMR and mass spectra.DOI: http://dx.doi.org/10.4314/bcse.v27i3.13

  6. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil.

    Science.gov (United States)

    Sun, Shangde; Zhu, Sha; Bi, Yanlan

    2014-09-01

    A novel enzymatic route of feruloylated structured lipids synthesis by the transesterification of ethyl ferulate (EF) with castor oil, in solvent-free system, was investigated. The transesterification reactions were catalysed by Novozym 435, Lipozyme RMIM, and Lipozyme TLIM, among which Novozym 435 showed the best catalysis performance. Effects of feruloyl donors, reaction variables, and ethanol removal on the transesterification were also studied. High EF conversion (∼100%) was obtained under the following conditions: enzyme load 20% (w/w, relative to the weight of substrates), reaction temperature 90 °C, substrate molar ratio 1:1 (EF/castor oil), 72 h, vacuum pressure 10 mmHg, and 200 rpm. Under these conditions, the transesterification product consisted of 62.6% lipophilic feruloylated structured lipids and 37.3% hydrophilic feruloylated lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Trecha, Danusia O.; Ferreira, Patricia da C.; Jacob, Raquel G.; Perin, Gelson [Universidade Federal de Pelotas (UFPEL), Pelotas, RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)]. E-mail: lenardao@ufpel.edu.br

    2009-07-01

    A general, clean and easy method for the conjugated addition of thiols to citral promoted by KF/Al{sub 2}O{sub 3} under solvent-free or using glycerin as recyclable solvent at room temperature is described. It was found that the solvent-free protocol is applicable to the direct reaction of thiophenol with the essential oil of lemon grass (Cymbopogon citratus) to afford directly 3,7-dimethyl-3-(phenylthio)oct-6-enal, a potential bactericide agent. The method was extended to other electron-poor alkenes with excellent results. For the solvent-free protocol, the use of microwave irradiation facilitated the procedure and accelerates the reaction. The catalytic system and glycerin can be reused up to three times without previous treatment with comparable activity. (author)

  8. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  9. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    International Nuclear Information System (INIS)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo; Monge, Antonio

    2011-01-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  11. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dept. de Farmacia y Quimica Medicinal; Monge, Antonio [Universidad de Navarra, Pamplona (Spain). Centro de Investigacion en Farmacobiologia Aplicada. Unidad de Investigacion y Desarrollo de Medicamentos

    2011-07-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  12. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion

    NARCIS (Netherlands)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J.; Busscher, Henk J.; van der Mei, Henny C.

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the

  13. A Facile Solvent Free Microwave Induced Synthesis and Antibacterial Activity of Some 3-(2’-Hydroxyphenyl-5-(Substituted Aryl-2-Pyrazoline-N1-Caboxaldehydes

    Directory of Open Access Journals (Sweden)

    Birbal Bajia

    2007-01-01

    Full Text Available A novel one pot formylation of 3-(2’-hydroxyphenyl-5-(substituted 2-pyrazolines has been carried out using microwave irradiation with formic acid. solvent free reaction afforded title compounds in 80-90% yield with high purity.synthesized compounds were tested for their antibacterial activity using standard drug.

  14. Using Pd-salen complex as an efficient catalyst for the copper- and solvent-free coupling of acyl chlorides with terminal alkynes under aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    Mohammad

    2010-01-01

    The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-l,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine as base, giving excellent ynones under aerobic conditions.

  15. Microwave-Enhanced Sulphated Zirconia and SZ/MCM-41 Catalyzed Regioselective Synthesis of β-Amino Alcohols Under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Eduardo González-Zamora

    2008-04-01

    Full Text Available A solvent-free approach for the regioselective synthesis of β-amino alcohols inshorter reaction times and higher yields, compared to conventional heating is described. Itinvolves microwave (MW exposure of undiluted reactants in the presence of sulphatedzirconia (SZ or sulphated zirconia over MCM-41 (SZM as catalyst. Both acid materialscan be easily recovered and reused.

  16. Catalyst-free and solvent-free Michael addition of 1,3-dicarbonyl compounds to nitroalkenes by a grinding method

    Science.gov (United States)

    Xie, Zong-Bo; Wu, Ming-Yu; He, Ting; Le, Zhang-Gao

    2012-01-01

    Summary An environmentally benign, fast and convenient protocol has been developed for the Michael addition of 1,3-dicarbonyl compounds to β-nitroalkenes in good to excellent yields by a grinding method under catalyst- and solvent-free conditions. PMID:22563352

  17. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    Science.gov (United States)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  18. Synthesis of 1-amidoalkyl-2-naphthols based on a three-component reaction catalyzed by boric acid as a solid heterogeneous catalyst under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Zahed Karimi-Jaberi

    2012-12-01

    Full Text Available An efficient method for the preparation of 1-amidoalkyl-2-naphthols has been described using a multi-component, one-pot condensation reaction of 2-naphthol, aldehydes and amides in the presence of boric acid under solvent-free conditions.DOI: http://dx.doi.org/10.4314/bcse.v26i3.18

  19. Chemoselective Preparation of 1,1-Diacetates from Aldehydes, Mediated by a Keggin Heteropolyacid Under Solvent Free Conditions at Room Temperature

    Directory of Open Access Journals (Sweden)

    G. Romanelli

    2007-01-01

    Full Text Available A simple, general and efficient method has been developed for the conversion of aldehydes to 1,1-diacetates using acetic anhydride, a catalytic amount of non commercial Keggin heteropolyacid (H6 PalMo11O40 (1% mol in solvent free conditions at room temperature. Aromatic and aliphatic, simple and conjugated aldehydes were protected with excellent yields.

  20. Natrolite zeolite: A natural and reusable catalyst for one-pot synthesis of α-aminophosphonates under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Siavash Bahari

    2017-02-01

    Full Text Available α-Aminophosphonates are synthesized efficiently by one-pot reaction of aldehydes or ketones, amines, trialkyl phosphites in the presence of Natrolite zeolite as a natural catalyst under solvent-free conditions. Furthermore, the catalyst can be reused several times without any significant loss of catalytic activity.

  1. An efficient solvent-free synthesis of meso-substituted dipyrromethanes using SnCl2•2H2O catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer Ahmed Shaikh

    2012-07-01

    Full Text Available Highly rapid and simple methodology has been developed for the quantitative synthesis of meso-substituted dipyrromethanes from lowest pyrrole/aldehyde ratio. The method was carried out by using SnCl2•2H2O as a catalyst under solvent free condition. The method is environmentally friendly, easy to workup, and gives excellent yield of the products.

  2. Optimization of 2-ethylhexyl palmitate production using lipozyme RM IM as catalyst in a solvent-free system.

    Science.gov (United States)

    Richetti, Aline; Leite, Selma G F; Antunes, Octávio A C; de Souza, Andrea L F; Lerin, Lindomar A; Dallago, Rogério M; Paroul, Natalia; Di Luccio, Marco; Oliveira, J Vladimir; Treichel, Helen; de Oliveira, Débora

    2010-04-01

    This work reports the application of a lipase in the 2-ethylhexyl palmitate esterification in a solvent-free system with an immobilized lipase (Lipozyme RM IM). A sequential strategy was used applying two experimental designs to optimize the 2-ethylhexyl palmitate production. An empirical model was then built so as to assess the effects of process variables on the reaction conversion. Afterwards, the operating conditions that optimized 2-ethylhexyl palmitate production were established as being acid/alcohol molar ratio 1:3, temperature of 70 degrees C, stirring rate of 150 rpm, 10 wt.% of enzyme, leading to a reaction conversion as high as 95%. From this point, a kinetic study was carried out evaluating the effect of acid:alcohol molar ratio, the enzyme concentration and the temperature on product conversion. The results obtained in this step permit to verify that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt.%) and temperature of 70 degrees C, led to conversions next to 100%.

  3. A Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-03-01

    Full Text Available In tissue engineering, there is limited availability of a simple, fast and solvent-free process for fabricating micro-porous thin membrane scaffolds. This paper presents the first report of a novel surface suspension melt technique to fabricate a micro-porous thin membrane scaffolds without using any organic solvent. Briefly, a layer of polycaprolactone (PCL particles is directly spread on top of water in the form of a suspension. After that, with the use of heat, the powder layer is transformed into a melted layer, and following cooling, a thin membrane is obtained. Two different sizes of PCL powder particles (100 µm and 500 µm are used. Results show that membranes made from 100 µm powders have lower thickness, smaller pore size, smoother surface, higher value of stiffness but lower ultimate tensile load compared to membranes made from 500 µm powder. C2C12 cell culture results indicate that the membrane supports cell growth and differentiation. Thus, this novel membrane generation method holds great promise for tissue engineering.

  4. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    Science.gov (United States)

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  5. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties.

    Science.gov (United States)

    Şahin, Selin; Samli, Ruya; Tan, Ayşe Seher Birteksöz; Barba, Francisco J; Chemat, Farid; Cravotto, Giancarlo; Lorenzo, José M

    2017-06-24

    Response surface methodology (RSM) and artificial neural networks (ANN) were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC) and oleuropein yields in olive tree leaf ( Olea europaea ) extracts, obtained after solvent-free microwave-assisted extraction (SFMAE). The SFMAE processing conditions were: microwave irradiation power 250-350 W, extraction time 2-3 min, and the amount of sample 5-10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm) was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis , with a minimum inhibitory concentration (MIC) value of 1.25 mg/mL.

  6. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang; He, Shuqing; An, Feng

    2013-01-01

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  7. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang, E-mail: chunxl@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); He, Shuqing [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Feng [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2013-08-15

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  8. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Selin Şahin

    2017-06-01

    Full Text Available Response surface methodology (RSM and artificial neural networks (ANN were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC and oleuropein yields in olive tree leaf (Olea europaea extracts, obtained after solvent-free microwave-assisted extraction (SFMAE. The SFMAE processing conditions were: microwave irradiation power 250–350 W, extraction time 2–3 min, and the amount of sample 5–10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis, with a minimum inhibitory concentration (MIC value of 1.25 mg/mL.

  9. Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process

    Science.gov (United States)

    Ayoub, Muhammad; Sufian, Suriati; Mekuria Hailegiorgis, Sintayehu; Ullah, Sami; Uemura, Yoshimitsu

    2017-08-01

    The alkaline catalyst derived from the duck-bones was used for conversion of glycerol to polyglycerol via solvent free etherification process. The physicochemical properties of prepared materials were duck-bones were systematically investigated as a catalyst by latest techniques of Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface properties. TGA showed different trends of duck-bones decomposition from room temperature to 1000C. XRD pattern showed a clear and sharp peaks of a crystalline phase of CaO. The activity of the catalysts was in line with the basic amount of the strong base sites, surface area, and crystalline phase in the catalysts. The prepared catalyst derived from duck-bones provided high activity (99 %) for glycerol conversion and around 68 % yield for polyglycerol production. These ample wastes of duck-bones have good potential to be used as polyglycerol production catalysts due to have high quantity of Ca compare to other types of bones like cow, chicken and fish bones.

  10. Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations

    Directory of Open Access Journals (Sweden)

    Serena Traboni

    2016-12-01

    Full Text Available tert-Butyldimethylsilyl (TBDMS and tert-butyldiphenylsilyl (TBDPS are alcohol protecting groups widely employed in organic synthesis in view of their compatibility with a wide range of conditions. Their regioselective installation on polyols generally requires lengthy reactions and the use of high boiling solvents. In the first part of this paper we demonstrate that regioselective silylation of sugar polyols can be conducted in short times with the requisite silyl chloride and a very limited excess of pyridine (2–3 equivalents. Under these conditions, that can be regarded as solvent-free conditions in view of the insolubility of the polyol substrates, the reactions are faster than in most examples reported in the literature, and can even be further accelerated with a catalytic amount of tetrabutylammonium bromide (TBAB. The strategy proved also useful for either the selective TBDMS protection of secondary alcohols or the fast per-O-trimethylsilylation of saccharide polyols. In the second part of the paper the scope of the silylation approach was significantly extended with the development of unprecedented “one-pot” and “solvent-free” sequences allowing the regioselective silylation/alkylation (or the reverse sequence of saccharide polyols in short times. The developed methodologies represent a very useful and experimentally simple tool for the straightforward access to saccharide building-blocks useful in organic synthesis.

  11. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.

    Science.gov (United States)

    Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L

    2018-02-01

    Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.

  12. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  13. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    Science.gov (United States)

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A facile solvent-free Synthesis Route for the Assembly of Highly CO2 Selective and H2S tolerant NiSIFSIX Metal-Organic Framework

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama; Belmabkhout, Youssef; Adil, Karim; Cairns, Amy J.; Bhatt, Prashant

    2015-01-01

    The development of materials for CO2 capture with high selectivity and high tolerance to H2S is of prime importance for various industrially relevant gas streams (e.g. natural gas and biogas upgrading as well as pre-combustion capture). Here, we report the successful fabrication of a MOF with combined exceptional CO2 capture properties and H2S tolerance, namely Ni SIFSIX based-MOF using both solvothermal and solvent-free methodologies.

  15. One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenes using grindstone chemistry

    Directory of Open Access Journals (Sweden)

    Devji S. Patel

    2016-09-01

    Full Text Available An easy solvent-free method is described for the synthesis of 3,4-dihydropyrano[c]chromenes by a one pot three component coupling reaction of aromatic aldehydes, malononitrile, and 4-hydroxycoumarin using basic ionic liquid as the catalyst by grindstone chemistry. The salient features of this one pot protocol are short reaction times, cleaner reaction profiles and simple workup.

  16. A facile solvent-free Synthesis Route for the Assembly of Highly CO2 Selective and H2S tolerant NiSIFSIX Metal-Organic Framework

    KAUST Repository

    Eddaoudi, Mohamed

    2015-07-06

    The development of materials for CO2 capture with high selectivity and high tolerance to H2S is of prime importance for various industrially relevant gas streams (e.g. natural gas and biogas upgrading as well as pre-combustion capture). Here, we report the successful fabrication of a MOF with combined exceptional CO2 capture properties and H2S tolerance, namely Ni SIFSIX based-MOF using both solvothermal and solvent-free methodologies.

  17. Fast and efficient method for reduction of carbonyl compounds with NaBH{sub 4} /wet SiO{sub 2} under solvent free condition

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Bahyar, Tarifeh [Urmia University, Urmia (Iran, Islamic Republic of). Faculty of Sciences. Dept. of Chemistry]. E-mail: b.zeynizadeh@mail.urmia.ac.ir

    2005-11-15

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, {alpha},{beta}-unsaturated enals and enones, {alpha}-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO{sub 2} (30% m/m) under solvent free condition. The reactions were performed at room tempere or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  18. Fast and efficient method for reduction of carbonyl compounds with NaBH4 /wet SiO2 under solvent free condition

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Bahyar, Tarifeh

    2005-01-01

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO 2 (30% m/m) under solvent free condition. The reactions were performed at room temperature or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  19. Nano Fe{sub 2}O{sub 3,} clinoptilolite and H{sub 3}PW{sub 12}O{sub 40} as efficient catalysts for solvent-free synthesis of 5(4H)-isoxazolone under microwave irradiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fozooni, Samieh, E-mail: samieh.fozooni@uk.ac.ir, E-mail: s_fozooni@yahoo.com [Shahid Bahonar University, Kerman (Iran, Islamic Republic of). Mining Engineering Department. Zarand High Education Center; Hosseinzadeh, Nasrin Gholam; Akhgar, Mohammad Reza [Islamic Azad University, Kerman (Iran, Islamic Republic of). Department of Chemistry; Hamidian, Hooshang [Payame Noor University (PNU), Tehran (Iran, Islamic Republic of). Department of Chemistry

    2013-10-15

    A quick and solvent-free approach involving the exposure of neat reactants to microwave irradiation in conjunction with the use of clinoptilolite, H{sub 3}PW{sub 12}O{sub 40} and Fe{sub 2}O{sub 3} nanoparticle catalysts is described. In this work, condensation of hydroxylamine hydrochloride, sodium acetate, acetoacetic or benzoyl acetic ethyl ester and appropriate aldehydes by employing catalysts gave 5(4H)-isoxazolone only in one step. Catalyst amount, temperature effects and catalysts reusability were monitored. Among the catalysts, Fe{sub 2}O{sub 3} nanoparticles had better performance than other catalysts from viewpoint of yield and reaction time. The present protocol offers several advantages, such as short reaction time, reasonable yield, mild reaction condition and recycling catalysts with a very easy workup. (author)

  20. Solvent-Free Lipase-Catalyzed Synthesis of Technical-Grade Sugar Esters and Evaluation of Their Physicochemical and Bioactive Properties

    Directory of Open Access Journals (Sweden)

    Ran Ye

    2016-05-01

    Full Text Available Technical-grade oleic acid esters of sucrose and fructose were prepared using solvent-free biocatalysis at 65 °C, without any downstream purification applied, and their physicochemical and bioactivity-related properties were evaluated and compared to a commercially available sucrose laurate emulsifier. To increase the conversion of sucrose and fructose oleate, prepared previously using solvent-free lipase-catalyzed esterification catalyzed by Rhizomucor miehei lipase (81% and 83% ester, respectively, the enzymatic reaction conditions was continued using CaSO4 to control the reactor’s air headspace and a lipase (from Candida antarctica B with a hydrophobic immobilization matrix to provide an ultralow water activity, and high-pressure homogenation, to form metastable suspensions of 2.0–3.3 micron sized saccharide particles in liquid-phase reaction media. These measures led to increased ester content of 89% and 96% for reactions involving sucrose and fructose, respectively. The monoester content among the esters decreased from 90% to <70% due to differences in regioselectivity between the lipases. The resultant technical-grade sucrose and fructose lowered the surface tension to <30 mN/m, and possessed excellent emulsification capability and stability over 36 h using hexadecane and dodecane as oils, comparable to that of sucrose laurate and Tween® 80. The technical-grade sugar esters, particularly fructose oleate, more effectively inhibited gram-positive foodborne pathogens (Lactobacillus plantarum, Pediococcus pentosaceus and Bacillus subtilis. Furthermore, all three sugar esters displayed antitumor activity, particularly the two sucrose esters. This study demonstrates the importance of controlling the biocatalysts’ water activity to achieve high conversion, the impact of a lipase’s regioselectivity in dictating product distribution, and the use of solvent-free biocatalysis to important biobased surfactants useful in foods, cosmetics

  1. FeF(3) catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition.

    Science.gov (United States)

    Atar, Amol B; Jeong, Yeon Tae

    2014-05-01

    A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.

  2. Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent free system

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    By-product formation is a serious problem in the lipase-catalyzed acyl exchange of phospholipids (PL). By-products are formed due to parallel hydrolysis reactions and acyl migration in the reaction system. A clear elucidation of these side reactions is important for practical operation in order...... to minimize by-products during reaction. In the present study we examined the Lipozyme RM IM-catalyzed acidolysis for the production of structured phospholipids between phosphatidylcholine (PC) and caprylic acid in the solvent free system. A five-factor response surface design was used to evaluate...

  3. Benign and efficient preparation of thioethers by solvent-free S-alkylation of thiols with alkyl halides catalyzed by potassium fluoride on alumina

    DEFF Research Database (Denmark)

    Nguyen, Kha Ngoc; Duus, Fritz; Luu, Thi Xuan Thi

    2016-01-01

    The preparation of thioethers by S-alkylation of various thiols with alkyl halides under solvent-free reaction conditions using potassium fluoride on alumina (KF/Al2O3) as a solid catalyst has been investigated in detail with respect to three different modes of reaction activation (ultrasound...... irradiation, microwave irradiation, and conventional heating) for obtaining maximum yield of the thioether. The importance of KF/Al2O3 as a particularly efficient catalyst was corroborated for all three modes of reaction activation, although the reaction time was found to be strongly dependent on the mode...

  4. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, GM; Paterno, GM; Tregnago, G; Treat, N; Stingelin, N; Yacoot, A; Cacialli, F

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8???nm), was used to measure the cr...

  5. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C-61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, G. M.; Paterno, G. M.; Tregnago, G.; Treat, N.; Stingelin, N.; Yacoot, A.; Cacialli, F.

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crys...

  6. “Flash” Solvent-free Synthesis of Triazoles Using a Supported Catalyst

    Directory of Open Access Journals (Sweden)

    Ibtissem Jlalia

    2009-01-01

    Full Text Available A solvent-free synthesis of 1,4-disubstituted-1,2,3-triazoles using neat azides and alkynes and a copper(I polymer supported catalyst (Amberlyst® A21•CuI is presented herein. As it provides the products in high yields and purities within minutes, this method thus being characterized as a "flash" synthesis, and was exemplified through the synthesis of a 24-compound library on a small scale.

  7. Tetrabutylammonium Bromide Media Aza-Michael Addition of 1,2,3,6-Tetrahydrophthalimide to Symmetrical Fumaric Esters and Acrylic Esters under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Mohammadreza Zamanloo

    2010-10-01

    Full Text Available The aza-Michael addition of 1,2,3,6-tetrahydrophthalimide with symmetrical fumaric esters has been performed efficiently in a solvent-free system at 100 °C and using 1,4-diazabicyclo[2.2.2]octane (DABCO as a base in the presence of tetrabutylammonium bromide (TBAB. The products were obtained in good to high yields within 2.5-7.0 h. This reaction worked well on linear alkyl fumarates and was not effective with nonlinear alkyl fumarates. Although the reaction was also applicable to acrylates such as n-butyl acrylate, methacrylates and crotonates were not suitable Michael acceptors for this reaction.

  8. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Bina S. Siddiqui

    2008-08-01

    Full Text Available A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total were in the 6-34% range and all compounds were fully characterized.

  9. Solvent-free oxidation of secondary alcohols to carbonyl compounds by 1, 3-Dibromo-5, 5-Dimethylhydantoin (DBDMH) and 1, 3-Dichloro-5, 5-Dimethylhydantoin (DCDMH)

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: fatemehabbasi807@gmail.com [Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kianiborazjani, Maryam [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of); Saednia, Shahnaz [Young Researchers Club, Toyserkan Branch, Islamic Azad University, Toyserkan (Iran, Islamic Republic of)

    2014-02-15

    Aldehydes and ketones are important intermediates, especially for the construction of carbon-skeletons. The oxidation of alcohols is so important that a large number of methods and reagents have been reported for this purpose. N-halo reagents are widely used in organic synthesis and as a continuation of our interest in the application of N-halo compounds in organic synthesis, dibromo dimethylhydantoin (DBDMH) and dichloro dimethylhydantoin (DCDMH) were used for the oxidation of alcohols and our ongoing work on development of highly efficient oxidation protocols. We observed the oxidation of secondary alcohols with stoichiometric amounts of DBDMH and DCDMH under solvent-free conditions in the range of temperature 70-80 deg C. (author)

  10. Highly Regio- and Stereoselective Diels-Alder Cycloadditions via Two-Step and Multicomponent Reactions Promoted by Infrared Irradiation under Solvent-Free Conditions

    Science.gov (United States)

    Flores-Conde, Maria Ines; Reyes, Leonor; Herrera, Rafael; Rios, Hulme; Vazquez, Miguel A.; Miranda, Rene; Tamariz, Joaquin; Delgado, Francisco

    2012-01-01

    Infrared irradiation promoted the Diels-Alder cycloadditions of exo-2-oxazolidinone dienes 1–3 with the Knoevenagel adducts 4–6, as dienophiles, leading to the synthesis of new 3,5-diphenyltetrahydrobenzo[d]oxazol-2-one derivatives (7, 9, 11 and 13–17), under solvent-free conditions. These cycloadditions were performed with good regio- and stereoselectivity, favoring the para-endo cycloadducts. We also evaluated the one-pot three-component reaction of active methylene compounds 20, benzaldehydes 21 and exo-2-oxazolidinone diene 2 under the same reaction conditions. A cascade Knoevenagel condensation/Diels-Alder cycloaddition reaction was observed, resulting in the final adducts 13–16 in similar yields. These procedures are environmentally benign, because no solvent and no catalyst were employed in these processes. The regioselectivity of these reactions was rationalized by Frontier Molecular Orbital (FMO) calculations. PMID:22489113

  11. Highly Regio- and Stereoselective Diels-Alder Cycloadditions via Two-Step and Multicomponent Reactions Promoted by Infrared Irradiation under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Francisco Delgado

    2012-02-01

    Full Text Available Infrared irradiation promoted the Diels-Alder cycloadditions of exo-2-oxazolidinone dienes 1–3 with the Knoevenagel adducts 4–6, as dienophiles, leading to the synthesis of new 3,5-diphenyltetrahydrobenzo[d]oxazol-2-one derivatives (7, 9, 11 and 13–17, under solvent-free conditions. These cycloadditions were performed with good regio- and stereoselectivity, favoring the para-endo cycloadducts. We also evaluated the one-pot three-component reaction of active methylene compounds 20, benzaldehydes 21 and exo-2-oxazolidinone diene 2 under the same reaction conditions. A cascade Knoevenagel condensation/Diels-Alder cycloaddition reaction was observed, resulting in the final adducts 13–16 in similar yields. These procedures are environmentally benign, because no solvent and no catalyst were employed in these processes. The regioselectivity of these reactions was rationalized by Frontier Molecular Orbital (FMO calculations.

  12. Sequential Dy(OTf)3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates.

    Science.gov (United States)

    Yan, Yi-Ling; Guo, Jiun-Rung; Liang, Chien-Fu

    2017-09-19

    Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf) 3 -catalyzed glycosylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  14. Vanadium Hydrogen Sulfate Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Bis-(indolyl) methanes

    Energy Technology Data Exchange (ETDEWEB)

    Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D. Imani [Univ. of Guilan, Rasht (Iran, Islamic Republic of)

    2010-06-15

    We have developed a mild, simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and bis-(indolyl) methanes catalyzed by V(HSO{sub 4}){sub 3}. Based on our studies, this method offers several adavantages including mild reaction conditions, good to high yields of the products, short reaction times, solvent-free reaction conditions and simple experimental procedure. 3,4-Dihydropyrimidin-2(1H)-ones and their derivatives have attracted increasing interest due to their wide range of therapeutical and pharmacological properties, such as antiviral, antitumor, antibacterial, and antiinflammatory properties. Some of them have been successfully used as calcium channel blockers, antihypertensive agents, and α1a-antagonists. Moreover, several marine alkaloids whose molecular structures contain the dihydropyrimidinone core also exhibit interesting biological activities. Therefore, synthesis of these type of compounds is still of great importance.

  15. Vanadium Hydrogen Sulfate Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Bis-(indolyl) methanes

    International Nuclear Information System (INIS)

    Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D. Imani

    2010-01-01

    We have developed a mild, simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and bis-(indolyl) methanes catalyzed by V(HSO 4 ) 3 . Based on our studies, this method offers several adavantages including mild reaction conditions, good to high yields of the products, short reaction times, solvent-free reaction conditions and simple experimental procedure. 3,4-Dihydropyrimidin-2(1H)-ones and their derivatives have attracted increasing interest due to their wide range of therapeutical and pharmacological properties, such as antiviral, antitumor, antibacterial, and antiinflammatory properties. Some of them have been successfully used as calcium channel blockers, antihypertensive agents, and α1a-antagonists. Moreover, several marine alkaloids whose molecular structures contain the dihydropyrimidinone core also exhibit interesting biological activities. Therefore, synthesis of these type of compounds is still of great importance

  16. Chemical composition and antibacterial activity of Origanum saccatum P.H. Davis essential oil obtained by solvent-free microwave extraction: comparison with hydrodistillation.

    Science.gov (United States)

    Sozmen, Fazli; Uysal, Burcu; Oksal, Birsen S; Kose, Elif Odabas; Deniz, I Gokhan

    2011-01-01

    The components of the essential oils (EOs) obtained by solvent-free microwave extraction (SFME) and hydrodistillation (HD) from endemic Origanum saccatum P.H. Davis were identified by using GC/MS. The main constituents of both EOs obtained by SFME and HD, respectively, from O. saccatum were p-cymene (72.5 and 70.6%), thymol (9.32 and 8.11%), and carvacrol (7.18 and 6.36%). The EO obtained by SFME contained substantially higher amounts of oxygenated compounds and lower amounts of monoterpenes than did the EO obtained by HD. The antibacterial activities of the EOs obtained by SFME and HD were evaluated with the disc diffusion method by comparison with 10 different bacterial strains. The antibacterial activity of the EO extracted by SFME was found to be more effective than that of the EO extracted by HD against seven of the tested bacteria.

  17. One Pot Synthesis of α-Aminophosphonates Containing Bromo and 3,4,5-Trimethoxybenzyl Groups under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2007-02-01

    Full Text Available New α-aminophosphonates were synthesized by the Kabachnik-Fields reactionof 3,4,5-trimethoxybenzaldehyde (TMB with p- or m-bromoaniline and a dialkylphosphite under solvent-free conditions. TMB was prepared from gallic acid via a fourstep synthetic sequence involving etherification, esterification, hydrazidation andpotassium ferricyanide oxidation. The structures of all synthesized compounds wereconfirmed by elemental analysis, IR, 1H-, 13C- and 31P-NMR spectral data. Compound 7gwas also characterized by X-ray crystallography. A half-leaf method was used todetermine the in vivo curative efficacy of the eight title products against tobacco mosaicvirus (TMV. It was found that compounds 7g and 7h possess good in vivo curativeeffects against TMV.

  18. Dipyridine cobalt chloride as an efficient and chemoselective catalyst for the synthesis of 1,1-diacetates under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sobhan Rezayati

    2014-02-01

    Full Text Available 1,1-Diacetates(acylals were prepared by direct condensation of various aldehydes with acetic anhydride using dipyridine cobalt chloride (CoPy2Cl2 as an efficient and green catalyst under solvent-free conditions at room temperature. The important features of this catalyst method are that the catalyst is solid, stable at high temperatures, soluble in water, stable in air, immiscible in common organic solvents, and low toxic and, above all, it is reusable. CoPy2Cl2 can be recycled after a simple work-up and reused at least five runs without appreciable loss of its catalytic activity. High chemo-selectivity toward aldehyde in the presence of ketones is another advantage of the present method which provides selective protection of aldehydes in their mixtures with ketones.

  19. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs

    DEFF Research Database (Denmark)

    Potta, Sriharsha Gupta; Minemi, Sriharsha; Nukala, Ravi Kumar

    2010-01-01

    Cyclosporine (CyA) solid lipid nanoparticles were prepared by using a solvent free high pressure homogenization process. CyA was incorporated into SLNs that consisted of stearic acid, trilaurin or tripalmitin lipid solid cores in order to enhance drug solubility. The process was conducted...

  20. Silica nanoparticles as a highly efficient catalyst for the one-pot ...

    African Journals Online (AJOL)

    Silica nanoparticles as a highly efficient catalyst for the one-pot synthesis of sterically congested ... Bulletin of the Chemical Society of Ethiopia ... 42 nm) as a catalyst under solvent free conditions at room temperature is described. The ease of ...

  1. xanthen-11-ones by ZnO Nanoparticles Catalyzed Three Co

    African Journals Online (AJOL)

    NICO

    Highly effective zinc oxide nanoparticles catalyzed solvent-free synthesis of some tetrahydrobenzo[a]xanthen-11-one derivatives ... efficient, green and simple method for the preparation of ... Characterization of ZnO NPs structure was continued by SEM ... catalysts may be related to higher surface area available for.

  2. Solvent-free and room temperature synthesis of 3-arylquinolines from different anilines and styrene oxide in the presence of Al2O3/MeSO3H

    Directory of Open Access Journals (Sweden)

    Hashem Sharghi

    2017-09-01

    Full Text Available A highly efficient, simple and environmentally friendly synthesis of 3-arylquinolines has been developed in the presence of Al2O3/MeSO3H via one-pot reaction of anilines and styrene oxide. This methodology provides very rapid access to 3-arylquinolines in good to excellent yields under solvent-free conditions at room temperature in air.

  3. Mechanochemical Solvent-Free and Catalyst-Free One-Pot Synthesis of Pyrano[2,3-d]Pyrimidine-2,4(1H,3H-Diones with Quantitative Yields

    Directory of Open Access Journals (Sweden)

    M. Reza Naimi-Jamal

    2009-01-01

    Full Text Available Solvent-free synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H-diones by ball-milling and without any catalyst is described. This method provides several advantages such as being environmentally friendly, using a simple workup procedure, and affording high yields.

  4. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Science.gov (United States)

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  5. ZnAl2O4@SiO2 nanocomposite catalyst for the acetylation of alcohols, phenols and amines with acetic anhydride under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Saeed Farhadi; Kosar Jahanara

    2014-01-01

    A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process, and characterized by X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and N2 adsorption-desorption measurements. The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Under optimized conditions, efficient acetylation of these substrates with acetic anhy-dride over the ZnAl2O4@SiO2 nanocomposite was obtained. Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature, while the reaction time was longer for the acetylation of alcohols and phenols, showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups. The catalyst can be reused without obvious loss of catalytic activity. The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4. The method gives high yields, and is clean, cost effective, compatible with sub-strates having other functional groups and it is suitable for practical organic synthesis.

  6. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion.

    Science.gov (United States)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J; Busscher, Henk J; van der Mei, Henny C

    2010-11-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the amino groups of the amino-PPX layer were used to introduce the initiator from a vapor phase for atom transfer radical polymerization of acrylamide to form polyacrylamide (PAAm) brushes. The modification steps were verified by means of X-ray photoelectron spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy. Adhesion of Staphylococcus aureus ATCC 12600 and Escherichia coli 3.14 to an amino-PPX-PAAm brush coating in a parallel plate flow chamber was strongly reduced with respect to non-coated silicone rubber - by 93% and 99%, respectively. For E. coli 3.14, this reduction is larger than that obtained for solvent functionalization of γ-aminopropyltriethoxysilane-PAAm brushes due to the higher density of amino groups introduced by the CVD of amino-PPX. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction.

    Science.gov (United States)

    Chenni, Mohammed; El Abed, Douniazad; Rakotomanomana, Njara; Fernandez, Xavier; Chemat, Farid

    2016-01-19

    Solvent-free microwave extraction (SFME) and conventional hydro-distillation (HD) were used for the extraction of essential oils (EOs) from Egyptian sweet basil (Ocimum basilicum L.) leaves. The two resulting EOs were compared with regards to their chemical composition, antioxidant, and antimicrobial activities. The EO analyzed by GC and GC-MS, presented 65 compounds constituting 99.3% and 99.0% of the total oils obtained by SFME and HD, respectively. The main components of both oils were linalool (43.5% SFME; 48.4% HD), followed by methyl chavicol (13.3% SFME; 14.3% HD) and 1,8-cineole (6.8% SFME; 7.3% HD). Their antioxidant activity were studied with the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging method. The heating conditions effect was evaluated by the determination of the Total Polar Materials (TPM) content. The antimicrobial activity was investigated against five microorganisms: two Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and one yeast, Candida albicans. Both EOs showed high antimicrobial, but weak antioxidant, activities. The results indicated that the SFME method may be a better alternative for the extraction of EO from O. basilicum since it could be considered as providing a richer source of natural antioxidants, as well as strong antimicrobial agents for food preservation.

  8. Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE in a solvent-free system

    Directory of Open Access Journals (Sweden)

    Aline Simões

    2015-06-01

    Full Text Available The transesterification reaction of babassu oil with ethanol mediated by Burkholderia cepacia lipase immobilized on SiO2-PVA composite was assessed in a packed bed reactor running in the continuous mode. Experiments were performed in a solvent-free system at 50 °C. The performance of the reactor (14 mm ×210 mm was evaluated using babassu oil and ethanol at two molar ratios of 1:7 and 1:12, respectively, and operational limits in terms of substrate flow rate were determined. The system’s performance was quantified for different flow rates corresponding to space times between 7 and 13 h. Under each condition, the impact of the space time on the ethyl esters formation, the transesterification yield and productivity were determined. The oil to ethanol molar ratio was found as a critical parameter in the conversion of babassu oil into the correspondent ethyl esters. The highest transesterification yield of 96.0 ± 0.9% and productivity of 41.1 ± 1.6 mgester gcatalyst-1h-1 were achieved at the oil to ethanol molar ratio of 1:12 and for space times equal or higher than 11 h. Moreover, the immobilized lipase was found stable with respect to its catalytic characteristics, exhibiting a half-life of 32 d.

  9. Molecular interactions and redox effects of carvacrol and thymol on myofibrillar proteins using a non-destructive and solvent-free methodological approach.

    Science.gov (United States)

    Lahmar, Aida; Akcan, Tolga; Chekir-Ghedira, Leila; Estévez, Mario

    2018-04-01

    The present study provides molecular insight into the effect of thymol and carvacrol on the oxidative damage caused to myofibrillar proteins by a hydroxyl-radical generating system (HRGS). An innovative model system was designed, in which gels, prepared with increasing levels of myofibrillar proteins, were oxidized by a HRGS (Fe 3+ /H 2 O 2 , 60 °C and 7 days) in the presence of lipids. The molecular affinity between myofibrillar proteins and both terpenes, as well as their effect on the oxidative stability of the gel systems, were studied using a non-destructive and solvent-free procedure based on fluorescence spectroscopy. Carvacrol displayed more affinity than thymol for establishing chemical interactions with protein residues. Both terpenes exhibited a significant antioxidant potential against the generation of lipid-derived volatile carbonyls and against the formation of protein crosslinking. This procedure may be applied to meat products to assess the effectiveness of a given antioxidant additive without size reduction or sample processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Optimization of the production of biodiesel by a commercial immobilized lipase in a solvent-free system using a response surface methodology

    Directory of Open Access Journals (Sweden)

    ZORICA KNEZEVIC

    2008-02-01

    Full Text Available Response surface methodology was used for the evaluation of the effects of various factors on the synthesis of biodiesel catalyzed with immobilized lipase from Rhizomucor miehei in a solvent-free system. The production of biodiesel was optimized and model response equations were obtained, enabling the prediction of biodiesel production from the values of the four main factors. It would seem that the reaction temperature and the amount of water predominantly determined the conversion process while the methanol/oil molar ratio had no significant influence on the reaction rate. The temperature and amount of water showed negative interactive effects on the observed reaction rate per amount of enzyme. However, there were no significant interactions among the other variables according to the test of statistical significance. The highest yield of 10.15 mol kg-1 enzyme was observed at 45 °C with a 6:1 methanol to oil molar ratio and with no added water in the system.

  11. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    International Nuclear Information System (INIS)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco; Treat, Neil; Stingelin, Natalie

    2016-01-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction

  12. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    Science.gov (United States)

    Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  13. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Treat, Neil; Stingelin, Natalie [Department of Materials Science, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  14. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Basiuk, Vladimir A.; Meza-Laguna, Víctor; Contreras-Torres, Flavio F.; Martínez, Melchor; Rojas-Aguilar, Aarón; Salerno, Marco

    2012-01-01

    Highlights: ► Diamines were used for one-step functionalization of nanotubes and nanodiamond. ► We found experimental evidences of cross-linking effects in these nanomaterials. ► We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  15. Solvent-free sample preparation by headspace solid-phase microextraction applied to the tracing of n-butyl nitrite abuse.

    Science.gov (United States)

    Tytgat, J; Daenens, P

    1996-01-01

    The most common alkyl nitrites encountered in forensic toxicology are iso-butyl, n-butyl and iso-pentyl(amyl) nitrites. All have become popular as an aphrodisiac, especially among the homosexual population. Alkyl nitrites are a volatile and unstable group of compounds, which hydrolyse in aqueous matrices to the alcohol and nitrite ion. Here we describe a fast, clean and sensitive procedure for the detection of hydrolysed n-butyl nitrite in whole human blood using a new, solvent-free sampling technique, the headspace solid-phase micro-extraction (HSPME), combined with GC/FID analysis. Sample preparation was investigated using two different stationary phases (100 microns polydimethylsiloxane and 85 microns polyacrylate), coating a fused silica fibre. The effect of different sampling times at fixed temperatures was also studied. Our results demonstrate that the HSPME/GC/FID procedure allows tracing of n-butyl nitrite abuse and detects hydrolysed n-butyl nitrite, i.e., released n-butanol, in whole blood at the 1 ng/mL level.

  16. Solvent-free microwave-assisted synthesis of novel pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines with potential antifungal activity

    Directory of Open Access Journals (Sweden)

    Paola Acosta

    2016-05-01

    Full Text Available Novel fused pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines 5 were prepared by a solvent-free microwave assisted reaction of heterocyclic o-aminonitriles 3 and cyanopyridines 4 in the presence of tBuOK as catalyst. This protocol provides a versatile procedure for the synthesis of the title compounds with the advantages of easy work-up, mild reaction conditions and good yields. All compounds were also tested for antifungal properties against two clinically important fungi; Candida albicans and Cryptococcus neoformans. Several compounds showed moderate activity against both fungi, being 5a the most active compound. Analysis of the antifungal behavior of properly grouped compounds allowed to determine that the position of the N in the pyrimidyl moiety per se does not play a role in the activity. In turn, the type of 4-R substituent appears to influence the activity. In addition to the above considerations, the lipophilicity of compounds measured as logP showed to be not related to the activity and regarding the dipole moment (D, no net correlation was observed, although it is the most active compounds (% inhibition >50% that have a D ⩾ 7.5, mainly against C. albicans.

  17. Sustained Release of Lidocaine from Solvent-Free Biodegradable Poly[(d,l)-Lactide-co-Glycolide] (PLGA): In Vitro and In Vivo Study.

    Science.gov (United States)

    Kau, Yi-Chuan; Liao, Chia-Chih; Chen, Ying-Chi; Liu, Shih-Jung

    2014-09-16

    Local anesthetics are commonly used for pain relief by regional nerve blocking. In this study, we fabricated solvent-free biodegradable pellets to extend the duration of lidocaine release without any significant local or systemic toxicity levels. To manufacture the pellets, poly[(d,l)-lactide-co-glycolide] (PLGA) was first pre-mixed with lidocaine powder into different ratios. The powder mixture was then compressed with a mold (diameter of 1, 5, 8 or 10 mm) and sintered at 65 °C to form pellets. The in vitro release study showed that the lidocaine/PLGA pellets exhibited a tri-phase release behavior (a burst, a diffusion-controlled release and a degradation-dominated release) and reached completion around day 28. Scanning electron microscope (SEM) photos show that small channels could be found on the surfaces of the pellets on day 2. Furthermore, the polymer matrix swelled and fell apart on day 7, while the pellets became viscous after 10 days of in vitro elution. Perineural administration of the lidocaine/PLGA pellets produced anti-hypersensitivity effects lasting for at least 24 h in rats, significant when compared to the control group (a pure PLGA was pellet administered). In addition, no inflammation was detected within the nerve and in the neighboring muscle by histopathology.

  18. Sustained Release of Lidocaine from Solvent-Free Biodegradable Poly[(d,l-Lactide-co-Glycolide] (PLGA: In Vitro and In Vivo Study

    Directory of Open Access Journals (Sweden)

    Yi-Chuan Kau

    2014-09-01

    Full Text Available Local anesthetics are commonly used for pain relief by regional nerve blocking. In this study, we fabricated solvent-free biodegradable pellets to extend the duration of lidocaine release without any significant local or systemic toxicity levels. To manufacture the pellets, poly[(d,l-lactide-co-glycolide] (PLGA was first pre-mixed with lidocaine powder into different ratios. The powder mixture was then compressed with a mold (diameter of 1, 5, 8 or 10 mm and sintered at 65 °C to form pellets. The in vitro release study showed that the lidocaine/PLGA pellets exhibited a tri-phase release behavior (a burst, a diffusion-controlled release and a degradation-dominated release and reached completion around day 28. Scanning electron microscope (SEM photos show that small channels could be found on the surfaces of the pellets on day 2. Furthermore, the polymer matrix swelled and fell apart on day 7, while the pellets became viscous after 10 days of in vitro elution. Perineural administration of the lidocaine/PLGA pellets produced anti-hypersensitivity effects lasting for at least 24 h in rats, significant when compared to the control group (a pure PLGA was pellet administered. In addition, no inflammation was detected within the nerve and in the neighboring muscle by histopathology.

  19. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity

    Directory of Open Access Journals (Sweden)

    Flávia L. M. Jesus

    2017-01-01

    Full Text Available Andiroba (Carapa guianensis seeds are the source of an oil with a wide range of biological activities and ethnopharmacological uses. However, few studies have devoted attention to innovative formulations, including nanoemulsions. The present study aimed to obtain a colloidal system with the andiroba oil using a low-energy and organic-solvent-free method. Moreover, the preliminary residual larvicidal activity of the nanoemulsion against Aedes aegypti was evaluated. Oleic and palmitic acids were the major fatty acids, in addition to the phytosterol β-sitosterol and limonoids (tetranortriterpenoids. The required hydrophile-lipophile was around 11.0 and the optimal nanoemulsion was obtained using polysorbate 85. The particle size distribution suggested the presence of small droplets (mean diameter around 150 nm and low polydispersity index (around 0.150. The effect of temperature on particle size distribution revealed that no major droplet size increase occurred. The preliminary residual larvicidal assay suggested that the mortality increased as a function of time. The present study allowed achievement of a potential bioactive oil in water nanoemulsion that may be a promising controlled release system. Moreover, the ecofriendly approach involved in the preparation associated with the great bioactive potential of C. guianensis makes this nanoemulsion very promising for valorization of this Amazon raw material.

  20. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Basiuk, Vladimir A. [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos (Mexico); Meza-Laguna, Victor; Contreras-Torres, Flavio F.; Martinez, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Salerno, Marco [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Diamines were used for one-step functionalization of nanotubes and nanodiamond. Black-Right-Pointing-Pointer We found experimental evidences of cross-linking effects in these nanomaterials. Black-Right-Pointing-Pointer We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  1. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems.

    Science.gov (United States)

    Lima, Lionete N; Oliveira, Gladson C; Rojas, Mayerlenis J; Castro, Heizir F; Da Rós, Patrícia C M; Mendes, Adriano A; Giordano, Raquel L C; Tardioli, Paulo W

    2015-04-01

    This work describes the preparation of biocatalysts for ethanolysis of soybean and babassu oils in solvent-free systems. Polystyrene, Amberlite (XAD-7HP), and octyl-silica were tested as supports for the immobilization of Pseudomonas fluorescens lipase (PFL). The use of octyl-silica resulted in a biocatalyst with high values of hydrolytic activity (650.0 ± 15.5 IU/g), immobilization yield (91.3 ± 0.3 %), and recovered activity (82.1 ± 1.5 %). PFL immobilized on octyl-silica was around 12-fold more stable than soluble PFL, at 45 °C and pH 8.0, in the presence of ethanol at 36 % (v/v). The biocatalyst provided high vegetable oil transesterification yields of around 97.5 % after 24 h of reaction using babassu oil and around 80 % after 48 h of reaction using soybean oil. The PFL-octyl-silica biocatalyst retained around 90 % of its initial activity after five cycles of transesterification of soybean oil. Octyl-silica is a promising support that can be used to immobilize PFL for subsequent application in biodiesel synthesis.

  2. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology.

    Directory of Open Access Journals (Sweden)

    Khairulazhar Jumbri

    Full Text Available Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM based on central composite rotatable design (CCRD was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435 as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield. The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.

  3. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    Science.gov (United States)

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology.

    Science.gov (United States)

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.

  5. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    Science.gov (United States)

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  6. Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products

    Directory of Open Access Journals (Sweden)

    Vahid Vahabi

    2014-08-01

    Full Text Available A rapid and efficient solvent-free one-pot synthesis of coumarin derivatives by Pechmann condensation reactions of phenols with ethyl acetoacetate using FeF3 as a catalyst under microwave irradiation is described. This one-pot synthesis on a solid inorganic support provides the products in good yields. The newly synthesized compounds were systematically characterized by IR, 1H-NMR, 13C-NMR, MS and elemental CHN analyses. The proposed solvent-free microwave irradiation method using the environmentally friendly catalyst FeF3 offers the unique advantages of high yields, shorter reaction times, easy and quick isolation of the products, excellent chemoselectivity, and a one-pot, green synthesis. The products were screened for antimicrobial activity, and the results showed that the compounds reacted against all the tested bacteria.

  7. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  8. Potassium Hydroxide Impregnated Alumina (KOH-Alumina) as a Recyclable Catalyst for the Solvent-Free Multicomponent Synthesis of Highly Functionalized Substituted Pyridazines and/or Substituted Pyridazin-3(2H)-ones under Microwave Irradiation.

    Science.gov (United States)

    Mecadon, Hormi; Myrboh, Bekington

    2011-01-01

    The work described herein employs potassium hydroxide impregnated alumina (KOH-alumina) as a mild, efficient, and recyclable catalyst for a one-pot solvent-free and environmentally safer synthesis of 3,4,6-triarylpyridazines and some substituted pyridazines from active methylene carbonyl species, 1,2-dicarbonyls, and hydrazine hydrate by microwave (MW) irradiation. The method offers highly convergent, inexpensive, and functionality-tolerable procedure for rapid access to important pyridazine compounds in good yields.

  9. Two New 1,1,3,3-Tetramethylguanidinium Halochromates (C5H14N3CrO3X (X: Cl, F: Efficient Reagents for Oxidation of Organic Substrates under Solvent-Free Conditions and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Kıvılcım Şendıl

    2016-01-01

    Full Text Available Two new mild oxidizing agents 1,1,3,3-tetramethylguanidinium fluorochromate (TMGFC and 1,1,3,3-tetramethylguanidinium chlorochromate (TMGCC were prepared in high yields by reacting tetramethylguanidine with CrO3 and related acid. These reagents are suitable to oxidize various primary and secondary alcohols and oximes to the corresponding carbonyl compounds under solvent-free conditions and microwave irradiation.

  10. An Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H-Ones and Thiones Catalyzed by a Novel Brønsted Acidic Ionic Liquid under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2015-02-01

    Full Text Available We report here an efficient and green method for Biginelli condensation reaction of aldehydes, β-ketoesters and urea or thiourea catalyzed by Brønsted acidic ionic liquid [Btto][p-TSA] under solvent-free conditions. Compared to the classical Biginelli reaction conditions, the present method has the advantages of giving good yields, short reaction times, near room temperature conditions and the avoidance of the use of organic solvents and metal catalyst.

  11. An efficient and high-yielding one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones catalyzed by sodium hydrogen carbonate under solvent-free conditions

    OpenAIRE

    Asieh Vafaee; Abolghasem Davoodnia; Mehdi Pordel; Mohammad Reza Bozorgmehr

    2015-01-01

    Sodium hydrogen carbonate, NaHCO3, efficiently catalyzes the one-pot, three-component reaction of phthalhydrazide, an aromatic aldehyde, and malononitrile or ethyl cyanoacetate under solvent-free conditions, to afford the corresponding 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in high yields. Easy work‐up, inexpensive and readily available catalyst and avoiding the use of harmful organic solvents are other advantages of this simple procedure.

  12. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    Science.gov (United States)

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  13. B2O3/Al2O3 as a new, highly efficient and reusable heterogeneous catalyst for the selective synthesis of β-enamino ketones and esters under solvent-free conditions

    International Nuclear Information System (INIS)

    Chen, Jiu-Xi; Gao, Wen-Xia; Jin, Hui-Le; Ding, Jin-Chang; Wu, Hua-Yue

    2010-01-01

    Boron oxide adsorbed on alumina (B 2 O 3 /Al 2 O 3 ) has been found to be a new and highly efficient heterogeneous catalyst for the synthesis of β-enamino ketones and esters by the enamination of various primary and secondary amines with β-dicarbonyl compounds under solvent-free conditions. The important features of this methodology are broad substrate scope, high yield, no requirement of metal catalysts, high regio- and chemoselectivity and environmental friendliness. In addition, the catalyst could be recovered easily after the reactions and reused without evident loss of reactivity. (author)

  14. Wet SiO2 As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH3CN under Solvent-Free and Acid-Free Conditions

    International Nuclear Information System (INIS)

    Kouhkan, Mehri; Zeynizadeh, Behzad

    2010-01-01

    Reduction of carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins was carried out readily with NaBH 3 CN in the presence of wet SiO 2 as a neutral media. The reactions were performed at solvent-free conditions in oil bath (70 - 80 .deg. C) or under microwave irradiation (240 W) to give the product alcohols in high to excellent yields. Regioselective 1,2-reduction of conjugated carbonyl compounds took place in a perfect selectivity without any side product formation

  15. Wet SiO{sub 2} As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH{sub 3}CN under Solvent-Free and Acid-Free Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kouhkan, Mehri; Zeynizadeh, Behzad [Urmia University, Urmia (Iran, Islamic Republic of)

    2010-10-15

    Reduction of carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins was carried out readily with NaBH{sub 3}CN in the presence of wet SiO{sub 2} as a neutral media. The reactions were performed at solvent-free conditions in oil bath (70 - 80 .deg. C) or under microwave irradiation (240 W) to give the product alcohols in high to excellent yields. Regioselective 1,2-reduction of conjugated carbonyl compounds took place in a perfect selectivity without any side product formation.

  16. One-Pot and Efficient Synthesis of Triazolo[1,2-a]indazole-triones via Reaction of Arylaldehydes with Urazole and Dimedone Catalyzed by Silica Nanoparticles Prepared from Rice Husk

    Directory of Open Access Journals (Sweden)

    Asadollah Hassankhani

    2011-10-01

    Full Text Available A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  17. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk.

    Science.gov (United States)

    Hamidian, Hooshang; Fozooni, Samieh; Hassankhani, Asadollah; Mohammadi, Sayed Zia

    2011-10-26

    A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  18. Molybdenum oxide supported on silica (MoO{sub 3}/SiO{sub 2}): an efficient and reusable catalyst for the synthesis of 1,8-dioxodecahydroacridines under solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khojastehnezhad, A.; Vafaei, M. [Islamic Azad University, Mashhad Branch, Department of Chemistry, Mashhad (Iran, Islamic Republic of); Moeinpour, F., E-mail: akhojastehnezhad@yahoo.com [Islamic Azad University, Bandar Abbas Branch, Department of Chemistry, Bandar Abbas (Iran, Islamic Republic of)

    2014-07-01

    Silica supported molybdenum oxide (MoO{sub 3}/SiO{sub 2}) was found to be and efficient, eco-friendly and heterogeneous catalyst for the multicomponent reaction of aromatic aldehydes, dimedone and ammonium acetate or aromatic amines under solvent-free conditions to afford the corresponding 1,8-dioxodecahydroacridines in high yields. The catalyst can be easily recovered and reused for several times without considerable loss of activity. Furthermore, the present method offers several advantages, such as an easy experimental and work-up procedures, short reaction times and good to excellent yields. For the characterization were used: Fourier transform infrared spectroscopy (Ft-IR), X-ray diffraction and scanning electron microscopy analyses. (Author)

  19. Molybdenum oxide supported on silica (MoO3/SiO2): an efficient and reusable catalyst for the synthesis of 1,8-dioxodecahydroacridines under solvent-free conditions

    International Nuclear Information System (INIS)

    Khojastehnezhad, A.; Vafaei, M.; Moeinpour, F.

    2014-01-01

    Silica supported molybdenum oxide (MoO 3 /SiO 2 ) was found to be and efficient, eco-friendly and heterogeneous catalyst for the multicomponent reaction of aromatic aldehydes, dimedone and ammonium acetate or aromatic amines under solvent-free conditions to afford the corresponding 1,8-dioxodecahydroacridines in high yields. The catalyst can be easily recovered and reused for several times without considerable loss of activity. Furthermore, the present method offers several advantages, such as an easy experimental and work-up procedures, short reaction times and good to excellent yields. For the characterization were used: Fourier transform infrared spectroscopy (Ft-IR), X-ray diffraction and scanning electron microscopy analyses. (Author)

  20. Solvent-free nanofluid with three structure models based on the composition of MWCNTs/SiO2 core and its adsorption capacity of CO2.

    Science.gov (United States)

    Yang, Ruilu; Zheng, Yaping; Wang, Tianyu; Li, Peipei; Wang, Yudeng; Yao, Dongdong; Chen, Lixin

    2017-11-26

    A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO2) as the core had been synthesized. The NOHMs displays a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in core, named power strip model, critical model and collapse model. The capture capacities of these NOHMs for CO2 were investigated at 298 K and CO2 pressures ranging from 0 to 5 MPa. Compared with NOHM having neat MWCNTs core, it had been revealed that NOHMs with power strip model show better adsorption capacity toward CO2, due to its lower viscosity and more reactive groups that can react with CO2. In addition, the capture capacities of NOHMs with critical model were relatively worse than neat MWCNTs-based NOHM. The result is attributed to the aggregation of SiO2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHM with collapse model was the worst in all NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. Besides, it presented non-interference of MWCNTs and SiO2 without aggregation state. © 2017 IOP Publishing Ltd.

  1. Solvent-free nanofluid with three structure models based on the composition of a MWCNT/SiO2 core and its adsorption capacity of CO2.

    Science.gov (United States)

    Yang, R L; Zheng, Y P; Wang, T Y; Li, P P; Wang, Y D; Yao, D D; Chen, L X

    2017-12-15

    A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO 2 ) as the core were synthesized. The NOHMs display a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in the core, named the power strip model, the critical model and the collapse model. The capture capacities of these NOHMs for CO 2 were investigated at 298 K and CO 2 pressures ranging from 0 to 5 MPa. Compared with NOHMs having a neat MWCNT core, it was revealed that NOHMs with the power strip model show better adsorption capacity toward CO 2 due to its lower viscosity and more reactive groups that can react with CO 2 . In addition, the capture capacities of NOHMs with the critical model were relatively worse than the neat MWCNT-based NOHM. The result is attributed to the aggregation of SiO 2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHMs with the collapse model was the worst of all the NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. In addition, they presented non-interference of MWCNTs and SiO 2 without aggregation state.

  2. A new magnetically recoverable catalyst promoting the synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via the Hantzsch condensation under solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Narges; Heidarizadeh, Fariba; Kiasat, Alireza

    2017-04-15

    In the current study, 1,4-dihydropyridine and polyhydroquinoline derivatives were efficiently synthesized under solvent-less conditions with a magnetic catalyst containing novel acidic ionic liquid functionalized silica modified Fe{sub 3}O{sub 4} nanoparticles through a four component combination of β-ketoester, aldehydes and ammonium acetate (1, 2, 2). Several approaches have been reported for synthesizing these derivatives, while each of these approaches have some weaknesses including long time of reaction, excess of volatile organic solvent, low efficiency, costly reagents, complex operation, high temperatures, production of a number of side products, and difficult catalyst recovery. The simple operation, short time of reaction (5–30 min) and the high efficiency (80–94%) are the special advantages of this technique. The immobilized catalyst exhibited an appropriate thermal stability and excellent recyclability. Different methods such as FT-IR, SEM, EDX, TGA-DTA, and VSM were used to confirm and characterize the catalyst. - Highlights: • A new acidic ionic liquid were first synthesized and applied in both symmetric and asymmetric hantzsch reactions for preparing 1, 4-dihydropyridine and polyhydroquinoline derivatives with high efficiencies under solvent-less conditions. • The immobilized catalyst exhibited an appropriate thermal stability and excellent recyclability. • The nanomagnetic catalyst could be recovered from solution with an external magnet at once, allowing undemanding recovery and reuse. • The catalyst was reused for five times with no considerable decrease in catalytic activity.

  3. Semiconducting, Magnetic or Superconducting Nanoparticles encapsulated in Carbon Shells by RAPET method.

    Directory of Open Access Journals (Sweden)

    Aharon Gedanken

    2008-06-01

    Full Text Available An efficient, solvent-free, environmentally friendly, RAPET (Reactions under Autogenic Pressure at Elevated Temperaturesynthetic approach is discussed for the fabrication of core-shell nanostructures. The semiconducting, magnetic orsuperconducting nanoparticles are encapsulated in a carbon shell. RAPET is a one-step, thermal decomposition reaction ofchemical compound (s followed by the formation of core-shell nanoparticles in a closed stainless steel reactor. Therepresentative examples are discussed, where a variety of nanomaterials are trapped in situ in a carbon shell that offersfascinating properties.

  4. Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

    Directory of Open Access Journals (Sweden)

    Harshita Sachdeva

    2012-01-01

    Full Text Available Various Biginelli compounds (dihydropyrimidinones have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7.

  5. SHORT COMMUNICATION A SOLVENT FREE AND SELECTIVE ...

    African Journals Online (AJOL)

    Preferred Customer

    Selective protection of 1,2-propanediol (1n) with dimethoxytrityl chloride and triethylamine under microwave irradiation. In a beaker, a mixture of dimethoxytrityl chloride (4.06 g, 12 mmol) and triethylamine (3.5 mL, 25 mmol) was taken and 1,2-propanediol 1n (0.76 g, 10 mmol) was added to this mixture and was irradiated ...

  6. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    Unknown

    solvents to effect an asymmetric synthesis is an important step forward towards ... In continuation of our preliminary communication 2, we wish to ..... formation of chiral enamine 74 from the reaction of S-proline with pro-R carbonyl group.

  7. SHORT COMMUNICATION A SOLVENT FREE AND SELECTIVE ...

    African Journals Online (AJOL)

    Preferred Customer

    1Department of Chemistry and Chemical Engineering, Faculty of Material ... A very simple and efficient method is described for protection of alcohols and ... Hydroxyl group protection is important in the synthesis of some organic molecules. ..... applied this method for the protection of hydroxyl groups in these compounds.

  8. Use of the co-grinding method to enhance the dissolution behavior of a poorly water-soluble drug: generation of solvent-free drug-polymer solid dispersions.

    Science.gov (United States)

    Yang, Caiqin; Xu, Xiujuan; Wang, Jing; An, Zhiqian

    2012-01-01

    The solid dispersion (SD) technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs. In the present work, SDs of the Ca2+ channel blocker dipfluzine (DF) with polyvinylpyrrolidone K30 (PVP) and poloxamer 188 (PLXM) were prepared by the powder solid co-grinding method under a solvent-free condition. The properties of all SDs and physical mixtures were investigated by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry, scanning electron microscopy, dissolution test, and particles size determination. Eutectic compounds were produced between the DF and PLXM matrix during the co-grinding process, whereas glass suspension formed in the SDs with PVP carrier. Hydrogen bond formation was not observed between DF and carriers and DF was microcrystalline state in the PVP and PLXM matrices. The solubility of DF in different concentration of carriers at 25, 31, and 37°C was investigated; the values obtained were used to calculate the thermodynamic parameters of interaction between DF and carriers. The Gibbs free energy (ΔrGθ) values were negative, indicating the spontaneous nature of dispersing DF into the carriers. Moreover, entropy is the drive force when DF disperses into the matrix of PVP, while, enthalpy-driven dispersing encounters in the PLXM carrier. All the SDs of DF/carriers showed a considerably higher dissolution rate than pure DF and the corresponding physical mixtures. The cumulative dissolution rate at 10 min of the SD with a 1 : 3 DF/carrier ratio increased 5.1-fold for PVP and 5.5-fold for PLXM.

  9. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    Science.gov (United States)

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yoshinobu Fukumori

    2013-07-01

    Full Text Available We have previously developed water-based microwave (MW-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

  11. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: Characterization and application

    International Nuclear Information System (INIS)

    Khoobi, Mehdi; Motevalizadeh, Seyed Farshad; Asadgol, Zahra; Forootanfar, Hamid; Shafiee, Abbas; Faramarzi, Mohammad Ali

    2015-01-01

    Magnetically separable nanospheres consisting of polyethyleneimine (PEI) and succinated PEI grafted on silica coated magnetite (Fe 3 O 4 ) were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy and transmission electron microscopy. The prepared magnetic nanoparticles were then applied for physical adsorption or covalent attachment of Thermomyces lanuginosa lipase (TLL) via glutaraldehyde or hexamethylene diisocyanate. The reusability, storage, pH and thermal stabilities of the immobilized enzymes compared to that of free lipase were examined. The obtained results showed that the immobilized lipase on MNPs@PEI-GLU was the best biocatalyst which retained 80% of its initial activity after 12 cycles of application. The immobilized lipase on the selected support (MNPs@PEI-GLU) was also applied for the synthesis of ethyl valerate. Following 24 h incubation of the immobilized lipase on the selected support in n-hexane and solvent free media, the esterification percentages were 72.9% and 28.9%, respectively. - Graphical abstract: A schematic of the preparation of PEI- and succinated PEI-grafted Fe 3 O 4 MNPs (MNPs@PEI) and the immobilization of lipase by covalent bonding and adsorption. - Highlights: • Functionalized polyethylenimine-grafted magnetic nanoparticles were synthesized. • The prepared supports were fully characterized by various analysis methods. • Lipase was immobilized on the nanostructures by adsorption and covalent attachment. • Immobilized lipase produced ethyl valerate in solvent free medium

  12. Study of aerosol jet printing with dry nanoparticles synthesized by spark discharge

    Science.gov (United States)

    Efimov, A. A.; Arsenov, P. V.; Volkov, I. A.; Urazov, M. N.; Ivanov, V. V.

    2017-11-01

    A new method of aerosol jet printing utilizing dry (solvent-free) airborne nanoparticles generated by spark discharge is proposed. This method was applied to fabricate thin conducting lines (60-160 μm) composed of silver nanoparticles on the surface of glass substrates. It has been demonstrated that the line width is determined by a sheath flow rate, while its thickness and cross-sectional area can be scaled up by a number of printing runs. The resistivity of printed lines after the annealing was found to be five times higher than that of bulk silver that is attributed to the porosity and the interparticle contact resistance. The proposed method holds promise for the application in technologies of printed electronics.

  13. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Erah

    Available online at http://www.tjpr.org. Research Article ... Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using .... Characterization of BDMCA nanoparticles. The nanoparticle ...

  14. Polyethyleneimine-modified superparamagnetic Fe{sub 3}O{sub 4} nanoparticles for lipase immobilization: Characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Khoobi, Mehdi; Motevalizadeh, Seyed Farshad [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); Asadgol, Zahra [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411 (Iran, Islamic Republic of); Forootanfar, Hamid [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Shafiee, Abbas, E-mail: ashafiee@ams.ac.ir [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); Faramarzi, Mohammad Ali, E-mail: faramarz@tums.ac.ir [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411 (Iran, Islamic Republic of)

    2015-01-15

    Magnetically separable nanospheres consisting of polyethyleneimine (PEI) and succinated PEI grafted on silica coated magnetite (Fe{sub 3}O{sub 4}) were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy and transmission electron microscopy. The prepared magnetic nanoparticles were then applied for physical adsorption or covalent attachment of Thermomyces lanuginosa lipase (TLL) via glutaraldehyde or hexamethylene diisocyanate. The reusability, storage, pH and thermal stabilities of the immobilized enzymes compared to that of free lipase were examined. The obtained results showed that the immobilized lipase on MNPs@PEI-GLU was the best biocatalyst which retained 80% of its initial activity after 12 cycles of application. The immobilized lipase on the selected support (MNPs@PEI-GLU) was also applied for the synthesis of ethyl valerate. Following 24 h incubation of the immobilized lipase on the selected support in n-hexane and solvent free media, the esterification percentages were 72.9% and 28.9%, respectively. - Graphical abstract: A schematic of the preparation of PEI- and succinated PEI-grafted Fe{sub 3}O{sub 4} MNPs (MNPs@PEI) and the immobilization of lipase by covalent bonding and adsorption. - Highlights: • Functionalized polyethylenimine-grafted magnetic nanoparticles were synthesized. • The prepared supports were fully characterized by various analysis methods. • Lipase was immobilized on the nanostructures by adsorption and covalent attachment. • Immobilized lipase produced ethyl valerate in solvent free medium.

  15. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique.

    Science.gov (United States)

    Ishak, K A; Annuar, M Suffian M; Ahmad, N

    2017-12-01

    Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.

  16. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Villarraga, Fernando, E-mail: ferchogomezv@gmail.com; Radnik, Jörg; Martin, Andreas; Köckritz, Angela [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (Germany)

    2016-06-15

    Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.Graphical Abstract.

  17. One step paired electrochemical synthesis of iron and iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ordoukhanian Juliet

    2016-09-01

    Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.

  18. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    Science.gov (United States)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  19. Solvent-free one-pot cyclization and acetylation of chalcones: Synthesis of some 1-acetyl pyrazoles and spectral correlations of 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones

    Directory of Open Access Journals (Sweden)

    G. Thirunarayanan

    2016-11-01

    Full Text Available One-pot synthesis of some 1N-acetyl pyrazoles including 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones has been achieved via solvent-free microwave irradiation using substituted chalcones, hydrazine hydrate and acetic anhydride in the presence of catalytic amount of fly-ash: PTS catalyst. The yield of these 1N-acetyl pyrazole derivatives is more than 75%. The synthesized 1N-acetyl pyrazoline derivatives were characterized by their physical constants and spectral data. The infrared spectral νCN and CO (cm−1 frequencies, NMR chemical shifts (δ, ppm of Ha, Hb, Hc, CH3 protons, CN, CO and CH3 carbons of 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones have been assigned and correlated with Hammett substituent constants and Swain-Lupton’s parameters using single and multi-regression analysis. From the results of statistical analyses, the effect of substituents on the above group frequencies and chemical shifts of the acetylated pyrazoles were discussed.

  20. Preparation and Optimization OF Palm-Based Lipid Nanoparticles Loaded with Griseofulvin.

    Science.gov (United States)

    Huei Lim, Wen; Jean Tan, Yann; Sin Lee, Choy; Meng Er, Hui; Fung Wong, Shew

    2017-01-01

    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 ° C) and 45 ° C with consistent drug loading capacity.

  1. Structure of Solvent-Free Nanoparticle−Organic Hybrid Materials

    KAUST Repository

    Yu, Hsiu-Yu; Koch, Donald L.

    2010-01-01

    that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its

  2. dichlorodiazene dioxides using levulinic acid under solvent-free

    Indian Academy of Sciences (India)

    Administrator

    43 599; (b) Tchou- bar B and Sackur O ... Bremeyer N, Smith S C, Ley S V and Gaunt M J. 2004 Angew. ... Bellesia F, Ghelfi F, Pagnoni U M and Pinetti A 1990. J. Chem. Res. ... Kronenthal D, Huang M H and Nugent W A 2004 J. Org. Chem.

  3. Highly Efficient Method for Solvent-Free Synthesis of Diarylmethane ...

    African Journals Online (AJOL)

    NICO

    2011-02-25

    Feb 25, 2011 ... aFaculty of Chemistry, Bu-Ali Sina University, P.O. Box 651783868, Hamedan, Iran. ... Arylmethanes are useful compounds in organic synthesis and industry1 ... ketones,9,10 catalytic condensation of the Grignard reagent with.

  4. Solvent-free microwave-assisted synthesis of oxadiazoles ...

    Indian Academy of Sciences (India)

    TECS

    tion mixture was refluxed for 4–5 h on an oil bath, the contents were cooled to room temperature and poured onto crushed ice. It was then neutralized by. 5% sodium bicarbonate solution. The solid that separated was collected by filtration through a. Büchner funnel and dried. Further purification was done by recrystallization ...

  5. Synthesis of Halide- and Solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Jensen, Torben René

    chloride or LiBH4 is present in the sample. The synthesis pathway has been shown to work for most of the already known metal borohydrides, M = Na, Ca, Sr, Ba, Y, La, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, but also new borohydrides are formed, M = Pr, Nd and Lu. Besides new compounds, new polymorphs...

  6. INVESTIGATION OF THE SOLVENT FREE ISOMERISATION OF cis ...

    African Journals Online (AJOL)

    Preferred Customer

    The rate of the solid state isomerisation of cis-Mo(CO)4(PPh3)2 was .... R = reflectance, k = absorption coefficient, s = scattering coefficient, c = concentration of the .... total loss of 75 % mass, which is assumed to be due to loss of the two PPh3 ...

  7. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    Science.gov (United States)

    2008-01-20

    liquid oligomeric analogue PEODME (ε = 8, dioxane:CH3CN mass ratio 48:7). The choice of the solvent mixture was a compromise between the...trifluoride – a derivative of Lewis acid properties. An increase in the degree of dissociation, decrease in the share of ionic associates and increase in...diphenylphosphinate this product is a solid, and in reaction with lithium diphenylphosphate the second fraction is a viscous, light-brown liquid , and

  8. Complex phase behavior in solvent-free nonionic surfactants

    DEFF Research Database (Denmark)

    Hillmyer, M.A.; Bates, F.S.; Almdal, K.

    1996-01-01

    Unsolvated block copolymers and surfactant solutions are ''soft materials'' that share a common set of ordered microstructures, A set of polyethyleneoxide-polyethylethylene (PEG-PEE) block copolymers that are chemically similar to the well-known alkane-oxyethylene (C(n)EO(m)) nonionic surfactants...... was synthesized here. The general phase behavior in these materials resembles that of both higher molecular weight block copolymers and lower molecular weight nonionic surfactant solutions. Two of the block copolymers exhibited thermally induced order-order transitions and were studied in detail by small...

  9. Organic Synthesis under Solvent-free Condition. An Environmentally ...

    Indian Academy of Sciences (India)

    Though it is a common practice to run the organic reactions in solvent media, the ... this concept is simple. That is, the ... to vigorous research activity and reinvestigation of known reac- tions to achieve ... experimental procedure, work up technique and saving in labour. These would be ... This is true not only of the crystals of ...

  10. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  11. Solvent-free microwave-mediated Michael addition reactions

    Indian Academy of Sciences (India)

    Unknown

    obviously difficult to scale up. In this context ... eco-friendly features such as, (i) no solvent is required to conduct the ... water soluble, addition of reaction mixture after com- ..... Yield: 855 mg (89%; viscous liquid). 3.4 Ethyl .... Jung M E 1993 Comprehensive organic synthesis ... Leshcheva I F and Bundel Y G 1997 Mendeleev.

  12. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    Science.gov (United States)

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  13. Highly efficient solvent-free synthesis of pyranopyrazoles by a ...

    Indian Academy of Sciences (India)

    bDepartment of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775, ... key advantages of this process are high yields, shorter reaction times, easy work-up, ... ing pyran derivatives and hydrazine hydrate,9 use of.

  14. Solvent free amorphisation for pediatric formulations (minitablets) using mesoporous silica

    DEFF Research Database (Denmark)

    Monsuur, Fred; Choudhari, Yogesh; Reddy, Upendra

    2016-01-01

    Introduction: Most silica based amorphisation strategies are using organic solvent loading methods. Towards pediatric formulations this is creating concerns. With this in mind the development of a dry amorphisation strategy was the focus of this study. The high internal surface area of mesoporous...... silica gel is densely crowded with silanol groups, which can provide hydrogen-bonding possibilities with a drug, potentially resulting in amorphisation. Purpose: Amorphous drugs provide an advantage in solubility; however, their low physical stability always remained concern. Additional there was a need...... to understand the mechanism and variables of dry amorphisation. Method: Ibuprofen (IBU) and Syloid® silica at different ratios were co-milled at variable milling times between 1 and 90 min. The interaction with; and amorphisation of IBU; on Syloid® silica was analyzed using SEM, FTIR, DSC and XRD. The co...

  15. Solvent free lipase catalyzed synthesis of butyl caprylate

    Indian Academy of Sciences (India)

    MEERA T SOSE

    2017-11-10

    Nov 10, 2017 ... Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), ... study for the synthesis of butyl caprylate in presence of bio-catalyst. ..... −1 with Thermomyces lanuginosus lipase.26 The relation.

  16. solvent-free synthesis of azomethines, spectral correlations

    African Journals Online (AJOL)

    B. S. Chandravanshi

    attention of organic and medicinal chemists [2, 3]. ... Spectroscopic data is very useful for studying the ground state equilibrium of ... determines the structure of unsaturated systems, such as E- or Z, s-cis and .... The IR and NMR spectra of selective ... The proposed mechanism for the synthesis of E- imines in presence of ...

  17. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using polycaprolactone as the polymer. The nanoparticles were characterised for drug content, particles size, in vitro drug release and the drug-polymer interaction. The in vivo properties of the formulations in male ...

  18. Aerobic methylcyclohexane-promoted epoxidation of stilbene over gold nanoparticles supported on Gd-doped titania

    KAUST Repository

    Mendez, Violaine; Guillois, Kevin; Daniè le, Sté phane; Tuel, Alain; Caps, Valerie

    2010-01-01

    Aerobic partial oxidations of alkanes and alkenes are important processes of the petrochemical industry. The radical mechanisms involved can be catalyzed by soluble salts of transition metals (Co, Cu, Mn...). We show here that the model methylcyclohexane/stilbene co-oxidation reaction can be efficiently catalyzed at lower temperature by supported gold nanoparticles. The support has little influence on gold intrinsic activity but more on the apparent reaction rates which are a combination of catalytic activity and diffusion limitations. These are here minimized by using gadolinium-doped titania nanocrystallites as support for gold nanoparticles. This material is obtained by mild hydrolysis of a new Gd4TiO(OiPr)14 bimetallic oxoalkoxide. It leads to enhanced wettability of the < 3 nm gold particles in the tert-butyl hydroperoxide (TBHP)-initiated epoxidation of stilbene in methylcyclohexane; Au/TiO2:Gd3+ is in turn as active as the state-of-the-art hydrophobic Au/SiO2 catalyst. The rate-determining step of this reaction is identified as the gold-catalyzed homolytic decomposition of TBHP generating radicals and initiating the methylcyclohexane-mediated epoxidation of stilbene, yielding a methylcyclohexan-1-ol/trans-stilbene oxide mixture. Methylcyclohexan-1-ol can also be obtained in the absence of the alkene in the gold-catalyzed solvent-free autoxidation of methylcyclohexane, evidencing the catalytic potential of gold nanoparticles for low temperature C-H activation. © 2010 The Royal Society of Chemistry.

  19. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  20. (shell) nanoparticles

    Indian Academy of Sciences (India)

    the quasistatic approximation shows good agreement with the Mie theory results. .... medium, respectively, and f = (rcore/rshell)1/3 is the fraction of the total particle ..... [27] Michael Quinten, Optical properties of nanoparticle systems: Mie and ...

  1. Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles.

    Science.gov (United States)

    Francesko, Antonio; Blandón, Lucas; Vázquez, Mario; Petkova, Petya; Morató, Jordi; Pfeifer, Annett; Heinze, Thomas; Mendoza, Ernest; Tzanov, Tzanko

    2015-05-13

    Laccase-assisted assembling of hybrid biopolymer-silver nanoparticles and cork matrices into an antimicrobial material with potential for water remediation is herein described. Amino-functional biopolymers were first used as doping agents to stabilize concentrated colloidal dispersions of silver nanoparticles (AgNP), additionally providing the particles with functionalities for covalent immobilization onto cork to impart a durable antibacterial effect. The solvent-free AgNP synthesis by chemical reduction was carried out in the presence of chitosan (CS) or 6-deoxy-6-(ω-aminoethyl) aminocellulose (AC), leading to simultaneous AgNP biofunctionalization. This approach resulted in concentrated hybrid NP dispersion stable to aggregation and with hydrodynamic radius of particles of about 250 nm. Moreover, laccase enabled coupling between the phenolic groups in cork and amino moieties in the biopolymer-doped AgNP for permanent modification of the material. The antibacterial efficiency of the functionalized cork matrices, aimed as adsorbents for wastewater treatment, was evaluated against Escherichia coli and Staphylococcus aureus during 5 days in conditions mimicking those in constructed wetlands. Both intrinsically antimicrobial CS and AC contributed to the bactericidal effect of the enzymatically grafted on cork AgNP. In contrast, unmodified AgNP were easily washed off from the material, confirming that the biopolymers potentiated a durable antibacterial functionalization of the cork matrices.

  2. Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL-free formulation of paclitaxel.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2007-08-01

    Standard formulation paclitaxel requires the use of solvents, such as Cremphor-EL, which contribute to some of the toxicities commonly associated with paclitaxel-based therapy. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a novel solvent-free formulation of paclitaxel. The formulation is prepared by high-pressure homogenization of paclitaxel in the presence of serum albumin into a nanoparticle colloidal suspension. The human albumin-stabilized paclitaxel particles have an average size of 130 nm. Nab-paclitaxel has several practical advantages over Cremphor-EL-paclitaxel, including a shorter infusion time (30 min) and no need for premedications for hypersensitivity reactions. The nab-paclitaxel formulation eliminates the impact of Cremphor-EL on paclitaxel pharmacokinetics and utilizes the endogenous albumin transport mechanisms to concentrate nab-paclitaxel within the tumor. A recent Phase III trial compared nab- and Cremphor-EL-paclitaxel in patients with metastatic breast cancer. Patients treated with nab-paclitaxel experienced a higher response, longer time to tumor progression and, in patients receiving second-line or greater therapy, a longer median survival. Patients treated with nab-paclitaxel had a significantly lower rate of severe neutropenia and a higher rate of sensory neuropathy. The preclinical and clinical data indicate that the nab-paclitaxel formulation has significant advantages over Cremphor-EL-paclitaxel.

  3. Biopolymeric nanoparticles

    International Nuclear Information System (INIS)

    Sundar, Sushmitha; Kundu, Joydip; Kundu, Subhas C

    2010-01-01

    This review on nanoparticles highlights the various biopolymers (proteins and polysaccharides) which have recently revolutionized the world of biocompatible and degradable natural biological materials. The methods of their fabrication, including emulsification, desolvation, coacervation and electrospray drying are described. The characterization of different parameters for a given nanoparticle, such as particle size, surface charge, morphology, stability, structure, cellular uptake, cytotoxicity, drug loading and drug release, is outlined together with the relevant measurement techniques. Applications in the fields of medicine and biotechnology are discussed along with a promising future scope. (topical review)

  4. Development and Modeling of a Novel Self-Assembly Process for Polymer and Polymeric Composite Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G. [ORNL; Carrillo, Jan-Michael Y. [ORNL; Ahn, Suk-Kyun [ORNL; Barnes, Mike D. [University of Massachusetts, Amherst; Shelton, William A. [Pacific Northwest National Laboratory (PNNL); Harrison, Robert J. [Stony Brook University (SUNY); W. Noid, Donald [Retired

    2017-10-01

    Extensive computational simulations and experiments have been used to investigate the structure, dynamics and resulting photophysical properties of a number para-phenylenevinylene (PPV) based polymers and oligomers. These studies have shown how the morphology and structure are controlled to a large extent by the nature of the solute-solvent interactions in the initial solution phase preparation. A good solvent such as dichloromethane generates non-compact structures with more of a defect-extended chain like morphology while a bad solvent such as toluene leads to compact organized and folded structures with rod-like morphologies. Secondary structural organization is induced by using the solution phase structures to generate solvent-free single molecule nanoparticles. These nanoparticles are very compact and rod shaped, consisting of near-cofacial ordering of the conjugated PPV chain backbones between folds located at tetrahedral defects (sp3 C-C bonds). The resulting photophysical properties exhibit a significant enhancement in the photoluminescence quantum yield, lifetime, and stability. In addition, the single molecule nanoparticles have Gaussian-like emission spectra with discrete center frequencies that are correlated to a conjugation length, allowing the design of nanoparticles which luminesces at a particular frequency. We followed a similar approach and applied a comparable methodology in our recent work on polythiophenes in order to study the effect of polymer architecture on nanoscale assembly. Unlike linear chains of comparable size, we observed aggregation of the bottlebrush architecture of poly(norbornene)-g-poly(3-hexylthiophene) (PNB-g-P3HT) after the freeze-drying and dissolution processes. The behavior can be attributed to a significant enhancement in the number of π-π interactions between grafted P3HT side chains.

  5. Robust Nanoparticles

    Science.gov (United States)

    2015-01-21

    avenues for creating flexible conducting and semiconducting materials in a variety of simple or complex geometries. B. Conducting nanoparticle...coated with poly(MPC-co-DHLA) proved stable against challenging conditions, and resisted cyanide ion digestion. Au NRs coated with poly(MPC-co-DHLA

  6. Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic

    International Nuclear Information System (INIS)

    Byun, Jeehye; Patel, Hasmukh A.; Yavuz, Cafer T.

    2014-01-01

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g −1 ) barium hexaferrite (BaFe 12 O 19 , BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe 3 O 4 ) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 μg L −1 As-contaminated water can be purified rapidly at a material cost of less than 2 US cents

  7. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    Karen Leus

    2016-03-01

    Full Text Available We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier by means of atomic layer deposition (ALD. The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF and transmission electron microscopy (TEM analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.

  8. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    Science.gov (United States)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  9. O3 Nanoparticles

    KAUST Repository

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tao

    2016-01-01

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal

  10. O3 Nanoparticles

    KAUST Repository

    Wang, Juan

    2016-11-16

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal solar–thermal conversion efficiency. Furthermore, Ti2O3 nanoparticle-based thin film shows potential use in seawater desalination and purification.

  11. Magnetic BaFe{sub 12}O{sub 19} nanofiber filter for effective separation of Fe{sub 3}O{sub 4} nanoparticles and removal of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jeehye; Patel, Hasmukh A.; Yavuz, Cafer T., E-mail: yavuz@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of EEWS (Korea, Republic of)

    2014-12-15

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g{sup −1}) barium hexaferrite (BaFe{sub 12}O{sub 19}, BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe{sub 3}O{sub 4}) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 μg L{sup −1} As-contaminated water can be purified rapidly at a material cost of less than 2 US cents.

  12. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  13. Nanoparticle mediated micromotor motion

    Science.gov (United States)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  14. A nanoparticle in plasma

    International Nuclear Information System (INIS)

    Martynenko, Yu. V.; Nagel', M. Yu.; Orlov, M. A.

    2009-01-01

    Charge and energy fluxes onto a nanoparticle under conditions typical of laboratory plasmas are investigated theoretically. Here, by a nanoparticle is meant a grain the size of which is much smaller than both the electron Larmor radius and Debye length and the thermionic emission from which is not limited by the space charge. Under conditions at which thermionic emission plays an important role, the electric potential and temperature T p of a nanoparticle are determined by solving a self-consistent set of equations describing the balance of energy and charge fluxes onto the nanoparticle. It is shown that, when the degree of plasma ionization exceeds a critical level, the potential of the nanoparticle and the energy flux onto it increase with increasing nanoparticle temperature, so that, starting from a certain temperature, the nanoparticle potential becomes positive. The critical degree of ionization starting from which the potential of a nanoparticle is always positive is determined as a function of the plasma density and electron temperature. The nanoparticle temperature T p corresponding to the equilibrium state of a positively charged nanoparticle is found as a function of the electron density for different electron temperatures.

  15. Multifunctional nanoparticles: Analytical prospects

    International Nuclear Information System (INIS)

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  16. Nanoparticles and direct immunosuppression

    Science.gov (United States)

    Ngobili, Terrika A

    2016-01-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  17. [How safe are nanoparticles?].

    Science.gov (United States)

    Lademann, J; Meinke, M; Sterry, W; Patzelt, A

    2009-04-01

    Nanoparticles are experiencing an increasing application in dermatology and cosmetics. In both application areas, the requirements of nanoparticles are in most cases widely different. As a component of sunscreens, the nanoparticles are supposed to remain on the skin surface or in the upper most layers of the stratum corneum to protect the skin against UV-radiation of the sun. Whereas, on the other hand, when particulate substances are used as carrier systems for drugs, they have to cross the skin barrier to reach the target sites within the living tissue. We discuss the perspectives and risks of the topical application of nanoparticles.

  18. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  19. Biosynthesis of silver nanoparticles

    African Journals Online (AJOL)

    SIMBU

    2013-05-22

    May 22, 2013 ... accomplish a better control over the size and shape distributions of the nanoparticles, product harvesting, and recovery are ... stabilization of various nanoparticles by physical and che- .... colonies on Luria Bertani (LB) medium at 37°C up to 108- ..... Crude latex was obtained by cutting the green stems of J.

  20. Optical properties of nanoparticles

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  1. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  2. Energy breathing of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dynich, Raman A., E-mail: dynich@solo.by [Institute of Social Educational Technologies (Belarus)

    2015-06-15

    The paper considers the energy exchange process of the electromagnetic wave with a spherical metal nanoparticle. Based on the account of the temporal dependencies of electric and magnetic fields, the author presents an analytical dependence of the energy flow passing through the spherical surface. It is shown that the electromagnetic energy, localized in metal nanoparticles, is not a stationary value and periodically varies with time. A consequence of the energy nonstationarity is a nonradiating exit of the electromagnetic energy out of the nanoparticle. During the time equal to the period of wave oscillations, the electromagnetic energy is penetrating twice into the particle and quits it twice. The particle warms up because of the difference in the incoming and outgoing energies. Such “energy breathing” is presented for spherical Ag and Au nanoparticles with radii of 10 and 33 nm, respectively. Calculations were conducted for these nanoparticles embedded into the cell cytoplasm near the frequencies of their surface plasmon resonances.

  3. Magnetic interactions between nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  4. Functional Magnetic Nanoparticles

    Science.gov (United States)

    Gass, James

    Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

  5. Microemulsion Synthesis of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gotić, M.

    2013-11-01

    Full Text Available Nanoparticles and nanomaterials have wide applications in electronics, physics, material design, being also utilized as sensors, catalysts, and more and more in biomedicine. Microemulsions are an exceptionally suitable medium for the synthesis of nanoparticles due to their thermodynamical stability, great solubility of both polar and nonpolar components, as well as their ability to control the size, dispersity and shape of the particles. This review presents microemulsion techniques for the synthesis of inorganic nanoparticles. It takes place in water-in-oil microemulsions by mixing one microemulsion with a cationic precursor, and the other with a precipitating or reducing agent, or by direct addition of reducing agents or gas (O2, NH3 ili CO2 into microemul sion (Fig. 1. Metal nanoparticles are used as catalysts, sensors, ferrofluids etc. They are produced by reducing the metal cation with a suitable reducing agent. In a similar way, one can prepare nanoparticles of alloys from the metal salts, provided that the metals are mutually soluble. The microemulsion technique is also suitable for depositing nanoparticles onto various surfaces. Highly active catalysts made from nanoparticles of Pt, Pd, Rh and other noble metals may be obtained in this way. Metal oxides and hydroxides may be prepared by hydrolysis or precipitation in the water core of microemulsion. Precipitation can be initiated by adding the base or precipitating agent into the microemulsion with water solution of metal ions. Similarly, nanoparticles may be prepared of sulphides, halogenides, cyanides, carbonates, sulphates and other insoluble metal salts. To prevent oxidation of nanoparticles, especially Fe, the particles are coated with inert metals, oxides, various polymers etc. Coating may provide additional functionality; e.g. coating with gold allows subsequent functionalization with organic compounds containing sulphur, due to the strong Au–S bond. Polymer coatings decrease

  6. α-Tocopherol/chitosan-based nanoparticles: characterization and preliminary investigations for emulsion systems application

    Science.gov (United States)

    Aresta, Antonella; Calvano, Cosima Damiana; Trapani, Adriana; Zambonin, Carlo Giorgio; De Giglio, Elvira

    2014-02-01

    The processes of lipids oxidation represent a great concern for the consumer health because they are one of the major causes of quality deterioration in fat-containing products. One of the most effective methods of delaying lipid oxidation consists in incorporating antioxidants. The present investigation describes the formulation of chitosan and novel glycol chitosan nanoparticles (NPs) loaded with α-Tocopherol (αToc-NPs). The obtained NPs were characterized by various techniques, such as particle size (showing mean diameters in the range 335-503 nm) and zeta potential measurements, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The NPs were, then, added in the preparation of oil-in-water simple emulsion both to make the lipophilic αToc available in an aqueous medium and to prevent emulsion oxidation. For this purpose, a new highly sensitive, simple and solvent-free method based on a solid phase microextraction (SPME) coupled to gas chromatography mass spectrometry was developed for the determination of αToc in aqueous medium. All the parameters influencing SPME, including fiber coating, time and temperature extraction, pH, ionic strength and desorption conditions, have been carefully screened. The method was successfully applied to the determination of vitamin in the αToc-NPs and its release from NPs-enriched simple emulsion formulations. SPME provided high recovery yields and the limits of detection and of quantification in emulsion were 0.1 and 0.5 μg/mg, respectively. The precision of the method has been also estimated. The delay of the lipid oxidation by the proposed formulations has been evaluated exploiting the Kreis test on αToc-NPs-enriched emulsions.

  7. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  8. Molecular Simulation Studies of Covalently and Ionically Grafted Nanoparticles

    Science.gov (United States)

    Hong, Bingbing

    Solvent-free covalently- or ionically-grafted nanoparticles (CGNs and IGNs) are a new class of organic-inorganic hybrid composite materials exhibiting fluid-like behaviors around room temperature. With similar structures to prior systems, e.g. nanocomposites, neutral or charged colloids, ionic liquids, etc, CGNs and IGNs inherit the functionality of inorganic nanopariticles, the facile processibility of polymers, as well as conductivity and nonvolatility from their constituent materials. In spite of the extensive prior experimental research having covered synthesis and measurements of thermal and dynamic properties, little progress in understanding of these new materials at the molecular level has been achieved, because of the lack of simulation work in this new area. Atomistic and coarse-grained molecular dynamics simulations have been performed in this thesis to investigate the thermodynamics, structure, and dynamics of these systems and to seek predictive methods predictable for their properties. Starting from poly(ethylene oxide) oligomers (PEO) melts, we established atomistic models based on united-atom representations of methylene. The Green-Kubo and Einstein-Helfand formulas were used to calculate the transport properties. The simulations generate densities, viscosities, diffusivities, in good agreement with experimental data. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. Coupled with thermodynamic integration methods, the models give good predictions of pressure-composition-density relations for CO 2 + PEO oligomers. Water effects on the Henry's constant of CO 2 in PEO have also been investigated. The dependence of the calculated Henry's constants on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. CGNs are modeled by the inclusion of solid-sphere nanoparticles into the atomistic

  9. Electronically cloaked nanoparticles

    Science.gov (United States)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  10. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  11. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  12. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  13. Assembling RNA Nanoparticles.

    Science.gov (United States)

    Xiao, Shou-Jun

    2017-01-01

    RNA nanoparticles are designed and self-assembled according to noncanonical interactions of naturally conserved RNA motifs and/or canonical Watson-Crick base-pairing interactions, which have potential applications in gene therapy and nanomedicine. These artificially engineered nanoparticles are mainly synthesized from in vitro transcribed RNAs, purified by denaturing and native polyacrylamide gel electrophoresis (PAGE), and characterized with native PAGE, AFM, and TEM technologies. The protocols of in vitro transcription, denaturing and native PAGE, and RNA nanoparticle self-assembly are described in detail.

  14. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N.; Han, Jin Wook; Han, Sung-Hwan

    2010-01-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs (∼80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm 2 under 80 mW/cm 2 irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  15. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Jin Wook, E-mail: jwhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of)

    2010-09-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs ({approx}80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm{sup 2} under 80 mW/cm{sup 2} irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  16. Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-04-01

    Full Text Available Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer (g-C3N4, was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C3N4 matrix and the characteristic structure of polymeric g-C3N4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet–visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C3N4 matrix as the form of Co(IIN bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C3N4 catalyst due to the synergistic effect of Co species and g-C3N4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C3N4 catalysts, among which the catalyst with 9.0 wt% Co content exhibited the highest yield (9.0% of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C3N4 catalysts was elaborated. Keywords: Selective oxidation of cyclohexane, Oxygen oxidant, Carbon nitride, Co-doping

  17. 21 CFR 182.20 - Essential oils, oleoresins (solvent-free), and natural extractives (including distillates).

    Science.gov (United States)

    2010-04-01

    ... (clary sage) Salvia sclarea L. Clover Trifolium spp. Coca (decocainized) Erythroxylum coca Lam. and other spp. of Erythroxylum. Coffee Coffea spp. Cola nut Cola acuminata Schott and Endl., and other spp. of Cola. Coriander Coriandrum sativum L. Cumin (cummin) Cuminum cyminum L. Curacao orange peel (orange...

  18. 21 CFR 582.20 - Essential oils, oleoresins (solvent-free), and natural extractives (including distillates).

    Science.gov (United States)

    2010-04-01

    .... Clover Trifolium spp. Coca (decocainized) Erythroxylum coca Lam. and other spp. of Erythroxylum. Coffee Coffea spp. Cola nut Cola acuminata Schott and Endl., and other spp. of Cola. Coriander Coriandrum... Cola acuminata Schott and Endl., and other spp. of Cola. Laurel berries Laurus nobilis L. Laurel leaves...

  19. Enzymatic preparation of "functional oil" rich in feruloylated structured lipids with solvent-free ultrasound pretreatment.

    Science.gov (United States)

    Zhang, Haiping; Zheng, Mingming; Shi, Jie; Tang, Hu; Deng, Qianchun; Huang, Fenghong; Luo, Dan

    2018-05-15

    In this study, a series of functional oils rich in feruloylated structured lipids (FSLs) was prepared by enzymatic transesterification of ethyl ferulate (EF) with triglycerides under ultrasound pretreatment. A conversion of more than 92.7% and controllable FSLs (3.1%-26.3%) can be obtained under the following conditions: 16% enzyme, substrate ratio 1:5 (oil/EF, mol/mol), 85 °C, ultrasound 1 h, pulse mode 3 s/3s (working/waiting), and 17.0 W/mL. Compared to conventional mechanical stirring, the activation energy decreased from 50.0 kJ/mol to 40.7 kJ/mol. The apparent kinetic constant increased by more than 13 times, and the time required for the maximum conversion reduced sharply from 20-60 h to 4-6h, which was the fastest rate for enzymatic synthesis of FSLs. The antioxidant activities of the functional oil significantly increased 1.0- to 8.1-fold more than that of the raw oil. The functional oil could be widely applied in various fields of functional foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones

    Directory of Open Access Journals (Sweden)

    Loredana Maiuolo

    2016-01-01

    Full Text Available A library of C-alkyl and C-aryl nitrones has been obtained by direct condensation of primary N-substituted hydroxylamine hydrochlorides with various aldehydes and ketones without catalysts or base. The synthetic procedure, performed under MW irradiation in the absence of solvent, does not require the presence of a base, is fast, clean, high-yielding and characterized by simple work-up.

  1. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  2. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    Science.gov (United States)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-09-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10-2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost.

  3. The development of a solvent-free approach for the determination of petroleum hydrocarbons in water

    International Nuclear Information System (INIS)

    Ehntholt, D.J.; Bodek, I.; Miseo, E.V.

    1995-01-01

    Current analytical methods for analysis of total petroleum hydrocarbons or oil and grease in water use extraction of 1.5 liters of the aqueous sample with three aliquots of Freon 113, drying with silica gel and subsequent analysis by infrared spectroscopy at 2,930 cm -1 . The use of chlorofluorocarbons is unacceptable based on environmental concerns regarding the degradation of the ozone layer by photochemical reactions of halocarbons. Due to these environmental concerns, various international agreements have resulted in a plan to eliminate CFCs by the year 2000. A new approach relies on a solid/liquid extraction with thermal desorption of the analytes into a gas stream. The gas stream is analyzed by infrared spectroscopy and the analytes quantified. The steps in the analysis are presented. A known volume of aqueous sample (typically between 10 and 50 ml) is passed through a selectively absorbent resin such as XAD-16. The analytes are absorbed onto the resin, while the water passes through. The analytes are thermally desorbed using a stream of IR transparent gas such as N 2 , At or He which flushes the analytes into a suitable gas cell. The spectrum of the sample is either collected using a Fourier transform spectrometer and commercially available GC/IR or kinetic data collection software or a single wavelength measurement is made using a filter or prism instrument. By integrating the area under the curve for the infrared response versus desorption time, the concentration of the analytes can be calculated

  4. SOLVENT FREE ONE POT SYNTHESIS OF NOVEL NAPHTHO[1,8 ...

    African Journals Online (AJOL)

    KEY WORDS: Synthesis, Naphtho[1,8-gh]quinazoline-7,10-diones, One pot, ... In this regard, development of novel compounds and especially diverse small ..... catalysed by lithium bromide: An improved procedure for the Biginelli reaction.

  5. Cycloadditions of ketene acetals under microwave irradiation in solvent-free conditions

    International Nuclear Information System (INIS)

    Diaz-Ortiz, A.; Diez-Barra, E.; La Hoz, A. De; Prieto, P.; Moreno, A.

    1994-01-01

    When subjected to microwave irradiation ketene acetals undergo 1.3-dipolar and hetero-Diels-Alder cycloadditions within 5-12 min to give excellent yields of easily purified heterocyclic products. This efficient and rapid synthesis has the advantage of employing milder reaction conditions than those of classical thermal heating. (author)

  6. Solvent-free and catalyst-free chemistry: A benign pathway to sustainability

    Science.gov (United States)

    In the past decade, alternative benign organic methodologies have become an imperative part of organic syntheses and novel chemical reactions. The various new and innovative sustainable organic reactions and methodologies using no solvents or catalysts and employing alternative ...

  7. Green production of cocrystals using a new solvent-free approach by spray congealing.

    Science.gov (United States)

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-06-15

    Pharmaceutical cocrystals are used as a strategy to overcome poor physicochemical properties of drugs. The use of cocrystals in the pharmaceutical industry remains to be fully exploited due, in part, to the scarcity of suitable large-scale production methods and lack of robust and cost-effective processes. To overcome these challenges, spray congealing was used for the first time in the preparation of cocrystals. The work considered a feasibility study, followed by a design of experiments to assess the impact of varying atomization and cooling-related process parameters on cocrystal formation, purity, particle size, shape and bulk powder flow properties. It was demonstrated that spray congealing could be used to produce cocrystals. The thermal analysis and X-ray results of the spray-congealed products were different from the pure components or physical mixtures and were aligned with those reported for the same cocrystals systems produced by other techniques. Cocrystal particles were compact and spherical consisting of aggregates of individual cocrystals entangled or adhered with each other. From the design of experiments, the results demonstrated that varying the process parameters did not influence cocrystal formation, but had an impact on cocrystal purity. Moreover, it was demonstrated that cocrystal particle properties can be adjusted, in situ, by varying atomization and cooling efficiency, in order to produce particles more suited for incorporation in final dosage forms such as tablets. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. New thermo-sensitive chelating surfactants for selective solvent-free extraction of uranyl nitrate

    International Nuclear Information System (INIS)

    Prevost, S.; Larpent, C.; Testard, F.; Coulombeau, H.; Baczko, K.; Berthon, L.; Desvaux, H.; Madic, C.; Zemb, T.

    2004-01-01

    Functional surfactants were synthesised by grafting a chelating group (amino-acid residue) to the tip of a poly-ethoxylated nonionic surfactant chain (C i E j : C i H 2i +1(OCH 2 CH 2 ) j OH)) or in a branched position. C i E j nonionic surfactants are known to be thermo-reversible and to exhibit a clouding phenomenon associated to phase separation of micelles. The functional surfactants retain both surface-active properties, characteristic thermo-reversible behaviour and have efficient complexing properties toward uranyl. In the presence of uranyl nitrate, small micelles are formed at ambient temperature and the de-mixing leads to a separation of the target ion trapped by the functional surfactant (cloud point extraction). Those surfactants are more efficient than mixture of classical C i E j and complexing agent solubilized in the micelles. This reveals a synergistic effect of the covalent bond between the chelating group and the nonionic surfactant C i E j . This paper presents a systematic study of the extraction and aggregation properties and the influence of the nature of the ions. (authors)

  9. Solvent-free one-pot 1,3-dipolar cycloaddition reactions of ...

    Indian Academy of Sciences (India)

    The synthetic utility of microwave irradiation in organic ..... ized by using frontier molecular orbital theory and 1H ... Expected broad signals for N–H proton around δ 3.40 and alco- holic OH groups around δ 5.20 ppm are also obtained.

  10. Acid, silver, and solvent-free gold-catalyzed hydrophenoxylation of internal alkynes

    Directory of Open Access Journals (Sweden)

    Marcia E. Richard

    2013-10-01

    Full Text Available A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers.

  11. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  12. Solvent-free production of 1,3-diglyceride of CLA: Strategy consideration and protocol design

    DEFF Research Database (Denmark)

    Guo, Zheng; Sun, Yan

    2007-01-01

    of eliminating mass transfer resistance, creating effective interaction for a multiple-phase reaction system and yielding an efficient water removal and a faster reaction rate. Hence, vacuum-driven N2 stirring was considered as the best choice among the tested strategies for the production of pure 1......Enzymatic production of a homogeneous 1,3-diglyceride of polyunsaturated fatty acids (PUFAs) was carried out using Novozym 435 as biocatalyst and conjugated linoleic acid (CLA) as a model fatty acid. Three different operation modes, namely, magnetic stirring under vacuum, vacuum-driven N2 bubbling...... incubated with 10–12 mmol CLA for about 3 h at 45–55 °C and a pressure less than 10 mbar, with enzyme loading of 40–70 g l−1. Among the operational parameters, temperature and reaction time were found to have profound effects on the acylmigration and yield of 1,3-diglyceride. Moreover, the enzyme showed...

  13. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    Science.gov (United States)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-01-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10–2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost. PMID:26416434

  14. Solvent-free lipase catalysed synthesis of diacylgycerols as low-calorie food ingredients

    Directory of Open Access Journals (Sweden)

    Luis eVazquez

    2016-02-01

    Full Text Available Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short and medium chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its re-synthesis in the enterocyte and its metabolism and absorption by the enterocyte are limited in comparison with the TAG, reducing chylomicron formation. In this work these two effects were combined to synthesize short and medium chain 1,3 diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase catalysed transesterification reactions were performed between short and medium chain fatty acid ethyl esters and glycerol. Different variables were investigated such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel or the addition of lecithin. Best reaction conditions were evaluated considering the conversion intopercentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica, other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei with 52% and 60.7% of DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs 1,2-DAG were Lipozyme RM IM (39.8% and 20.9%, respectively and Lipase PLG (Alcaligenes sp. (35.9% and 19.3%, respectively. By adding 1% (w/w of lecithin to the reaction with Novozym 435 and raw glycerol the reaction rate was considerably increased from 41.7% to 52.8% DAG at 24 h.

  15. Solvent-free lipase-catalyzed synthesis of diacylgycerols as low-calorie food ingredients

    OpenAIRE

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos F.

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in th...

  16. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients.

    Science.gov (United States)

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h.

  17. Solvent-free lipase catalysed synthesis of diacylgycerols as low-calorie food ingredients

    OpenAIRE

    Luis eVazquez

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short and medium chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its re-synthesis in th...

  18. A Green and Solvent-Free Process for Preparation of High- Purity ...

    African Journals Online (AJOL)

    http://dx.doi.org/10.4314/tjpr.v13i1.6 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers ...

  19. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method

    Science.gov (United States)

    Siregar, S. S.; Awaluddin, A.

    2018-04-01

    Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.

  20. Clean synthesis of biolubricant range esters using novel liquid lipase enzyme in solvent free medium.

    Science.gov (United States)

    Trivedi, Jayati; Aila, Mounika; Sharma, Chandra Dutt; Gupta, Piyush; Kaul, Savita

    2015-01-01

    In view of the rising global problems of environment pollution and degradation, the present process provides a 'green solution' to the synthesis of higher esters of lubricant range, more specifically in the range C12-C36, using different combinations of acids and alcohols, in a single step reaction. The esters produced are biodegradable in nature and have a plethora of uses, such as in additives, as lubricating oils and other hydraulic fluids. The enzymatic esterification was performed using liquid (non-immobilized or free) lipase enzyme, without any additional organic solvent. Soluble lipase proves to be superior to immobilized enzymes as it is more cost effective and provides a faster process for the production of higher esters of lubricant range. An interesting finding was, that the lipase enzyme showed higher conversion rates with increasing carbon number of straight chain alcohols and acids. Reactions were carried out for the optimization of initial water concentration, temperature, pH of the substrate mixture and the chain length of the substrates. Under optimized conditions, the method was suitable to achieve ~ 99% conversion. Thus, the process provides an environment friendly, enzymatic alternative to the chemical route which is currently used in the industrial synthesis of lubricant components.

  1. A transparent, solvent-free laminated top electrode for perovskite solar cells.

    Science.gov (United States)

    Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C; Hany, Roland

    2016-01-01

    A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.

  2. A transparent, solvent-free laminated top electrode for perovskite solar cells

    OpenAIRE

    Makha, Mohammed; Fernandes, Silvia Let?cia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, J?rg; Tisserant, Jean-Nicolas; V?ron, Anna C.; Hany, Roland

    2016-01-01

    Abstract A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per mil...

  3. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    NJD

    and ketones. Although the yields of aldehyde and ketone were high using this method, disadvantages included the need to use dimethyl sulphide, a volatile organic .... 1d. DABCO, CH2Cl2,. 5 h. 97. 1h water. TBBDA. 10 min. 85. –. PBBS. 10 min. 80. TEMPO, CuCl, O2,. 15 h. 72. 1j. (bmim)(PF6), 65°C. (NO3)3CeBrO3, 90°C.

  4. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    Science.gov (United States)

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-03-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

  5. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.; El Tall, Omar; Raja, Inam U.

    2014-01-01

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  6. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  7. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    Cholesteryl nonanoate (CN), myristate (CM), palmitate (CP) and oleate (CO) alone or in combination were evaluated as matrix lipids for the preparation of supercooled smectic nanoparticles with a high stability against recrystallization during storage. The phase behavior of the cholesterol esters......, laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... at room temperature. Nanoparticles with a pure CN and mixed CM/CN matrix with a high fraction of CN (60% of the whole lipid matrix) could even be stored at 4 degrees C for at least 18 months without any recrystallization. As smectic nanoparticles are studied especially with regard to parenteral...

  8. Repairing Nanoparticle Surface Defects

    NARCIS (Netherlands)

    Marino, Emanuele; Kodger, Thomas E.; Crisp, R.W.; Timmerman, Dolf; MacArthur, Katherine E.; Heggen, Marc; Schall, Peter

    2017-01-01

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We

  9. Metallic Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  10. Cryochemistry of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Sergeev, Gleb B.

    2003-01-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia

  11. Cryochemistry of Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, Gleb B. [Moscow State University, Laboratory of Low Temperature Chemistry, Chemistry Department (Russian Federation)], E-mail: gbs@kinet.chem.msu.ru

    2003-12-15

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  12. Cryochemistry of Metal Nanoparticles

    Science.gov (United States)

    Sergeev, Gleb B.

    2003-12-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  13. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Young, Mark; Douglas, Trevor

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  14. Nanolubricant: magnetic nanoparticle based

    Science.gov (United States)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  15. Protein trapping of nanoparticles

    International Nuclear Information System (INIS)

    Ang, Joo C.; Lin, Jack M.; Yaron, Peter N.; White, John W.

    2009-01-01

    Full text: We have observed the formation of protein-nanoparticle complexes at the air-water interfaces from three different methods of presenting the nanoparticles to proteins. The structures formed resemble the 'protein-nanoparticle corona' proposed by Lynch et al. [1-3) in relation to a possible route for nanoparticle entry into living cells. To do this, the methods of x-ray and neutron reflectivity (with isotopic contrast variation between the protein and nanoparticles) have been used to study the structures formed at the air-water interface of l 3 - casein presented to silica nanoparticle dispersions. Whilst the silica dispersions showed no observable reflectivity, strong signals appear in the reflectivity when protein is present. Drop-wise spreading of a small amount of protein at the air-silica sol interface and presentation of the silica sol to an isolated monomolecular protein film (made by the 'flow-trough' method [4]) gave an immediate signal. Mixing the components in solution only produces a slow response but in all cases a similar structure is formed. The different responses are interpreted in structural and stoichiometric ways.

  16. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  17. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  18. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  19. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  20. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  1. Magnetic nanoparticle assemblies

    CERN Document Server

    Trohidou, Kalliopi N

    2014-01-01

    Magnetic nanoparticles with diameters in the range of a few nanometers are today at the cutting edge of modern technology and innovation because of their use in numerous applications ranging from engineering to biomedicine. A great deal of scientific interest has been focused on the functionalization of magnetic nanoparticle assemblies. The understanding of interparticle interactions is necessary to clarify the physics of these assemblies and their use in the development of high-performance magnetic materials. This book reviews prominent research studies on the static and dynamic magnetic properties of nanoparticle assemblies, gathering together experimental and computational techniques in an effort to reveal their optimized magnetic properties for biomedical use and as ultra-high magnetic recording media.

  2. Nanostructures from nanoparticles

    International Nuclear Information System (INIS)

    Mendes, Paula M; Chen Yu; Palmer, Richard E; Nikitin, Kirill; Fitzmaurice, Donald; Preece, Jon A

    2003-01-01

    This paper reviews recent experimental approaches to the development of surface nanostructures from nanoparticles. The formation of nanowires by electron beam writing in films of gold nanoparticles passivated with a specially designed class of ligand molecules (dialkyl sulfides) is presented, together with illustrations of practical nanostructures. Potential applications of this methodology are discussed. Another alternative to the controlled fabrication of arrays of nanoparticles, based on nanocrystals which contain molecular recognition elements in the ligand shell, is also surveyed. These particles aggregate in the presence of specifically designed molecular dications which act as a molecular binder. Finally, recent work on the formation of nanoscale surface architectures using x-ray patterning of self-assembled monolayers is introduced. Current and potential future applications of these surface nanostructures are discussed

  3. Potencial risks of nanoparticles

    Directory of Open Access Journals (Sweden)

    Tamara Forbe

    2011-12-01

    Full Text Available Nanotoxicology is an emergent important subdiscipline of Nanosciences, which refers to the study of the interactions of nanostructures with biological systems giving emphasis to the elucidation of the relationship between the physical and chemical properties of nanostructures with induction of toxic biological responses. Although potential beneficial effects of nanotechnologies are generally well described, the potential (eco toxicological effects and impacts of nanoparticles have so far received little attention. This is the reason why some routes of expousure, distribution, metabolism, and excretion, as well as toxicological effects of nanoparticles are discussed in this review.

  4. Nanoparticle shuttle memory

    Science.gov (United States)

    Zettl, Alex Karlwalter [Kensington, CA

    2012-03-06

    A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

  5. NANOPARTICLES IN NUCLEAR IMAGING

    Directory of Open Access Journals (Sweden)

    Dr. Vicky V Mody PhD

    2011-01-01

    Full Text Available The present review article summarizes the current state radiolabeled nanoparticles for molecular imaging applications mainly targeting cancer. Due to their enormous flexibility, and versatility the radiolabeled nanoparticles have shown their potential in the diagnosis and therapy. As the matter of fact, these radiolabeled imaging agents enable the visualization of the cellular function and the follow-up of the molecular process in living organisms. Moreover, the rapidly advancing field of nanotechnology has provided various innovative radionuclides and delivery systems, such as liposomes, magnetic agents, polymers, dendrimers, quantum dots, and carbon nanotubes to cope up with the hurdles which have been posed by various disease states.

  6. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  7. Nanoparticles of nickel hexacyanoferrate

    International Nuclear Information System (INIS)

    Bicalho, U.O.; Santos, D.C.; Silvestrini, D.R.; Trama, B.; Carmo, D.R. do

    2014-01-01

    Nanoparticles of nickel hexacyanoferrate (NHNi) were prepared in three medium (aqueous, formamide and aqueous/formamide). The materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), electronica spectroscopy in the ultraviolet-visible (UV-Vis) region and also by cyclic voltammetry (CV). By spectroscopic analysis of X-ray diffraction was possible to estimate the size of the particles obtained by the Scherrer equation. The graphite paste electrodes containing nanoparticles of nickel hexacyanoferrate means formamide was sensitive to different concentrations of Dipyrone. (author)

  8. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  9. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  10. Thermally stable nanoparticles on supports

    Science.gov (United States)

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  11. Stresses in hollow nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří

    2010-01-01

    Roč. 47, č. 20 (2010), s. 2799-2805 ISSN 0020-7683 R&D Projects: GA ČR GAP108/10/1781 Institutional research plan: CEZ:AV0Z20410507 Keywords : Spherical nanoparticles * Micromechanics * Interface Subject RIV: BJ - Thermodynamics Impact factor: 1.677, year: 2010

  12. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  13. Nanoparticles in forensic science

    Science.gov (United States)

    Cantu, Antonio A.

    2008-10-01

    Nanoparticles appear in several areas of forensic science including security documents, paints, inks, and reagents that develop latent prints. One reagent (known as the silver physical developer) that visualizes the water insoluble components of latent print residue is based on the formation of highly charged silver nanoparticles. These attach to and grow on the residue and generate a silver image. Another such reagent involves highly charged gold nanoparticles. These attach to the residue forming a weak gold image which can be amplified with a silver physical developer. Nanoparaticles are also used in items such as paints, printing inks, and writing inks. Paints and most printing inks consist of nano-sized pigments in a vehicle. However, certain modern ink jet printing inks now contain nano-sized pigments to improve their light fastness and most gel inks are also based on nano scale pigments. These nanoparticlecontaining materials often appear as evidence and are thus subject to forensic characterization. Both luminescent (quantum dots), up-converting nano scale phosphors, and non luminescent nanoparticles are used as security tags to label product, add security to documents, and as anti counterfeiting measures. These assist in determining if an item is fraudulently made.

  14. Nanoparticle-Assisted Metabolomics

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-03-01

    Full Text Available Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.

  15. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  16. Progress toward clonable inorganic nanoparticles

    Science.gov (United States)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  17. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  18. Nanobiotechnology today: focus on nanoparticles

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2007-12-01

    Full Text Available Abstract In the recent years the nanobiotechnology field and the Journal of Nanobiotechnology readership have witnessed an increase in interest towards the nanoparticles and their biological effects and applications. These include bottom-up and molecular self-assembly, biological effects of naked nanoparticles and nano-safety, drug encapsulation and nanotherapeutics, and novel nanoparticles for use in microscopy, imaging and diagnostics. This review highlights recent Journal of Nanobiotechnology publications in some of these areas http://www.jnanobiotechnology.com.

  19. Vacancy clusters at nanoparticle surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W. [Oak Ridge National Lab., TN (United States); Mills, A.P. Jr. [Bell Labs., Lucent Technologies, Murray Hill, NJ (United States); Suzuki, R.; Ishibashi, S. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Ueda, A.; Henderson, D. [Physics Dept., Fisk Univ., Nashville, TN (United States)

    2001-07-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v{sub 4}) are attached to the gold nanoparticle surfaces within the projected range (R{sub p}). (orig.)

  20. Vacancy clusters at nanoparticle surfaces

    International Nuclear Information System (INIS)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W.; Mills, A.P. Jr.; Suzuki, R.; Ishibashi, S.; Ueda, A.; Henderson, D.

    2001-01-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ). (orig.)

  1. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  2. Surface chemistry of "unprotected" nanoparticles

    DEFF Research Database (Denmark)

    Schrader, Imke; Warneke, Jonas; Neumann, Sarah

    2015-01-01

    The preparation of colloidal nanoparticles in alkaline ethylene glycol is a powerful approach for the preparation of model catalysts and ligand-functionalized nanoparticles. For these systems the term "unprotected" nanoparticles has been established because no strongly binding stabilizers...... study. "Unprotected" Pt and Ru nanoparticles were characterized by NMR spectroscopy, which does not evidence the presence of any C-H containing species bound to the particle surface. Instead, the colloids were found to be covered by CO, as demonstrated by IR spectroscopy. However, analysis...

  3. Biomimetic nanoparticles for inflammation targeting

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.

  4. Hydrogel nanoparticle based immunoassay

    Science.gov (United States)

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  5. Genotoxicity of metal nanoparticles.

    Science.gov (United States)

    Xie, Hong; Mason, Michael M; Wise, John Pierce

    2011-01-01

    Nanotechnology is currently used in industry, medicine, and military applications, as well as in more than 300 commercial products. Yet, the same properties that make these particles exciting for technology also make them daunting public health concerns because their toxicity is unknown and relatively unexplored. Increased attention is being placed on the study of metal particle genotoxicity; however, a lot of unknowns remain about their effects and the mechanisms. In this article, we highlight some metal and metal oxide nanoparticles of interest and discuss the current in vivo and in vitro studies of genotoxic effects. Many metal nanoparticles were found to cause chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. Inconsistencies are found in the literature, however, thus drawing conclusions is difficult due to a variety of factors. Therefore, the areas requiring further attention are highlighted and recommendations to improve our understanding of the genotoxic potential are addressed.

  6. Evaluation of nanoparticle immunotoxicity

    Science.gov (United States)

    Dobrovolskaia, Marina A.; Germolec, Dori R.; Weaver, James L.

    2009-07-01

    The pharmaceutical industry is developing increasing numbers of drugs and diagnostics based on nanoparticles, and evaluating the immune response to these diverse formulations has become a challenge for scientists and regulatory agencies alike. An international panel of scientists and representatives from various agencies and companies reviewed the imitations of current tests at a workshop held at the National Cancer Institute in Frederick, Maryland. This article outlines practical strategies for identifying and controlling interferences in common evaluation methods and the implications for regulation.

  7. Chiromagnetic nanoparticles and gels

    Science.gov (United States)

    Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.

    2018-01-01

    Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

  8. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  9. Targeted nanoparticles for colorectal cancer

    DEFF Research Database (Denmark)

    Cisterna, Bruno A.; Kamaly, Nazila; Choi, Won Il

    2016-01-01

    Colorectal cancer (CRC) is highly prevalent worldwide, and despite notable progress in treatment still leads to significant morbidity and mortality. The use of nanoparticles as a drug delivery system has become one of the most promising strategies for cancer therapy. Targeted nanoparticles could...

  10. Engineered Nanoparticles and Their Applications

    International Nuclear Information System (INIS)

    Matsoukas, T.; Desai, T.; Lee, K.

    2015-01-01

    Nanoparticles engineered for shape, size, and surface properties impart special functionalities including catalytic behavior, improved strength, enhanced thermal and electrical conductivity, and controlled release of host molecules. These advances have opened up applications in biomedicine, nano energetic materials, and functional nano composites. This special issue highlights successes in developing nanoparticles for a number of diverse applications.

  11. Synthesizing nanoparticles by mimicking nature

    Science.gov (United States)

    As particulate matter with at least one dimension that is less than 100 nm, nanoparticles are the minuscule building blocks of new commercial products and consumer materials in the emerging field of nanotechnology. Nanoparticles are being discovered and introduced in the marketpl...

  12. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  13. Uniform magnetic excitations in nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Britt Rosendahl

    2005-01-01

    We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...... materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation...

  14. Topotactic interconversion of nanoparticle superlattices.

    Science.gov (United States)

    Macfarlane, Robert J; Jones, Matthew R; Lee, Byeongdu; Auyeung, Evelyn; Mirkin, Chad A

    2013-09-13

    The directed assembly of nanoparticle building blocks is a promising method for generating sophisticated three-dimensional materials by design. In this work, we have used DNA linkers to synthesize nanoparticle superlattices that have greater complexity than simple binary systems using the process of topotactic intercalation-the insertion of a third nanoparticle component at predetermined sites within a preformed binary lattice. Five distinct crystals were synthesized with this methodology, three of which have no equivalent in atomic or molecular crystals, demonstrating a general approach for assembling highly ordered ternary nanoparticle superlattices whose structures can be predicted before their synthesis. Additionally, the intercalation process was demonstrated to be completely reversible; the inserted nanoparticles could be expelled into solution by raising the temperature, and the ternary superlattice could be recovered by cooling.

  15. Nanotoxicology of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amedea B. Seabra

    2015-06-01

    Full Text Available This review discusses recent advances in the synthesis, characterization and toxicity of metal oxide nanoparticles obtained mainly through biogenic (green processes. The in vitro and in vivo toxicities of these oxides are discussed including a consideration of the factors important for safe use of these nanomaterials. The toxicities of different metal oxide nanoparticles are compared. The importance of biogenic synthesized metal oxide nanoparticles has been increasing in recent years; however, more studies aimed at better characterizing the potent toxicity of these nanoparticles are still necessary for nanosafely considerations and environmental perspectives. In this context, this review aims to inspire new research in the design of green approaches to obtain metal oxide nanoparticles for biomedical and technological applications and to highlight the critical need to fully investigate the nanotoxicity of these particles.

  16. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    OpenAIRE

    Adlim, Adlim

    2010-01-01

    Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  17. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Adlim Adlim

    2010-06-01

    Full Text Available Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  18. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  19. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi

    2017-01-01

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  20. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  1. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    Science.gov (United States)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  2. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  3. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  4. Solventless synthesis of ruthenium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    García-Peña, Nidia G. [Departmento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A.P. 70-186, C.P. 04510 Coyoacán, México D.F. (Mexico); Redón, Rocío, E-mail: rredon@unam.mx [Departmento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A.P. 70-186, C.P. 04510 Coyoacán, México D.F. (Mexico); Herrera-Gomez, Alberto [Estudios Avanzados del Instituto Politécnico Nacional, Campus Juriquilla, Querétaro (Mexico); Fernández-Osorio, Ana Leticia [FES-Cuautitlán, Universidad Nacional Autónoma de México, Edo. de Mexico (Mexico); Bravo-Sanchez, Mariela; Gomez-Sosa, Gustavo [Estudios Avanzados del Instituto Politécnico Nacional, Campus Juriquilla, Querétaro (Mexico)

    2015-06-15

    Graphical abstract: - Highlights: • Successful synthesis of Ru nanoparticles by a cheap, fast and solventless approach was achieved. • The zero-valent state as well as the by-product/impurity free of the mechanochemical obtained Ru nanoparticles was proven by XPS, TEM and XRD. • Compared to two other synthesis strategies, the above-mentioned synthesis was more suitable to obtain smaller particles with fewer impurities in shorter time. - Abstract: This paper presents a novel solventless method for the synthesis of zero-valent ruthenium nanoparticles Ru(0). The proposed method, although not entirely new in the nanomaterials world, was used for the first time to synthesize zero-valent ruthenium nanoparticles. This new approach has proved to be an environmentally friendly, clean, cheap, fast, and reproducible technique which employs low amounts of solvent. It was optimized through varying amounts of reducing salt on a determined quantity of precursor and measuring the effect of this variation on the average particle size obtained. The resulting products were fully characterized by powder XRD, TEM, HR-TEM, and XPS studies, all of which corroborated the purity of the nanoparticles achieved. In order to verify the advantages of our method over other techniques, we compared our nanoparticles with two common colloidal-synthesized ruthenium nanoparticles.

  5. Interaction of neutrons with nanoparticles

    International Nuclear Information System (INIS)

    Nesvizhevsky, V.V.

    2002-01-01

    Two hypotheses concerning the interaction of neutrons with nanoparticles and having applications in the physics of ultracold neutrons (UCN) are considered. In 1997, it was found that, upon reflection from the sample surface or spectrometer walls, UCN change their energy by about 10 -7 eV with a probability of 10 -7 -10 -5 per collision. The nature of this phenomenon is not clear at present. Probably, it is due to the inelastic coherent scattering of UCN on nanoparticles or nanostructures weakly attached at the surface, in a state of Brownian thermal motion. An analysis of experimental data on the basis of this model allows one to estimate the mass of such nanoparticles and nanostructures at 10 7 a.u. The proposed hypothesis indicates a method for studying the dynamics of nanoparticles and nanostructures and, accordingly, their interactions with the surface or with one another, this method being selective in their sizes. In all experiments with UCN, the trap-wall temperature was much higher than a temperature of about 1 mK, which corresponds to the UCN energy. Therefore, UCN increased their energy. The surface density of weakly attached nanoparticles was low. If, however, the nanoparticle temperature is lower than the neutron temperature and if the nanoparticle density is high, the problem of interaction of neutrons with nanoparticles is inverted. In this case, the neutrons of initial velocity below 10 2 m/s can cool down, under certain conditions, owing to their scattering on ultracold heavy-water, deuterium, and oxygen nanoparticles to their temperature of about 1 mK, with the result that the UCN density increases by many orders of magnitude

  6. Amphiphilic cyclodextrin nanoparticles.

    Science.gov (United States)

    Varan, Gamze; Varan, Cem; Erdoğar, Nazlı; Hıncal, A Atilla; Bilensoy, Erem

    2017-10-15

    Cyclodextrins are cyclic oligosaccharides obtained by enzymatic digestion of starch. The α-, β- and γ- cyclodextrins contain respectively 6, 7 and 8 glucopyranose units, with primary and secondary hydroxyl groups located on the narrow and wider rims of a truncated cone shape structure. Such structure is that of a hydrophobic inner cavity with a hydrophilic outer surface allowing to interact with a wide range of molecules like ions, protein and oligonucleotides to form inclusion complexes. Many cyclodextrin applications in the pharmaceutical area have been widely described in the literature due to their low toxicity and low immunogenicity. The most important is to increase the solubility of hydrophobic drugs in water. Chemically modified cyclodextrin derivatives have been synthesized to enhance their properties and more specifically their pharmacological activity. Among these, amphiphilic derivatives were designed to build organized molecular structures, through selfassembling systems or by incorporation in lipid membranes, expected to improve the vectorization in the organism of the drug-containing cyclodextrin cavities. These derivatives can form a variety of supramolecular structures such as micelles, vesicles and nanoparticles. The purpose of this review is to summarize applications of amphiphilic cyclodextrins in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important amphiphilic cyclodextrin applications in the design of novel delivery systems like nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Magnetic nanoparticles for theragnostics

    Science.gov (United States)

    Shubayev, Veronica I.; Pisanic, Thomas R.; Jin, Sungho

    2009-01-01

    Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a pro-inflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). In vivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use. PMID:19389434

  8. Taylor dispersion of nanoparticles

    Science.gov (United States)

    Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2017-08-01

    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.

  9. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  10. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  11. Uniform excitations in magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Steen Mørup

    2010-11-01

    Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.

  12. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  13. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....

  14. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  15. Nanoparticles for cells proliferation enhancement

    International Nuclear Information System (INIS)

    Popa, V.; Braniste, F.; Tiginyanu, I.M.; Lisii, C.; Nacu, V.

    2013-01-01

    The potential of semiconductor nanoparticles as stimulator for avian mesenchyme stem cells proliferation enhancement is demonstrated. The effect is related to nanoparticles polarization due to external ultrasound field resulting in local electrical stimulation. Our preliminary results demonstrates that the number of cells have been increased by 23 % ±2%) in cell cultures under the action of external ultrasound stimulation. Morphological analysis and viability shows no differences between the control group and the group studied. These results suggest the possibility for tissue regeneration enhancement by remote stimulation of implanted semiconductor nanoparticles. (authors)

  16. Nanoparticles Doped, Photorefractive Liquid Crystals

    National Research Council Canada - National Science Library

    Kaczmarek, Malgosia

    2005-01-01

    ...: The main objectives of this exploratory, short project will concern the study of the quality of liquid crystal cells with diluted suspensions of ferroelectric nanoparticles and their photorefractive properties...

  17. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  18. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  19. Polymeric nanoparticles for optical sensing.

    Science.gov (United States)

    Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey A

    2013-12-01

    Nanotechnology is a powerful tool for use in diagnostic applications. For these purposes a variety of functional nanoparticles containing fluorescent labels, gold and quantum dots at their cores have been produced, with the aim of enhanced sensitivity and multiplexing capabilities. This work will review progress in the application of polymeric nanoparticles in optical diagnostics, both for in vitro and in vivo detection, together with a discussion of their biodistribution and biocompatibility. © 2013.

  20. Diamond Synthesis Employing Nanoparticle Seeds

    Science.gov (United States)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  1. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  2. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  3. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  4. Repairing Nanoparticle Surface Defects.

    Science.gov (United States)

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Study of ferritin nanoparticles

    International Nuclear Information System (INIS)

    Lancok, A.; Kohout, J.; Volfova, L.; Miglierini, M.

    2015-01-01

    Moessbauer spectrometry confirms the presence of hematite, ferrihydrite and maghemite/magnetite in ferritin derived from human spleen tissues. The minerals are present in a form of small (about 4-5 nm in size) grains with highly disordered structure. Consequently, at room temperature all agglomerates of ferritin nanoparticles show non-magnetic behaviour. Magnetic states are revealed at low enough temperatures below the so-called blocking temperature. Employing Moessbauer effect measurements, the latter was determined to be of 16 K for the human spleen. Structural features of these tissues were studied by TEM technique. Employing 57 Fe nuclei as local probes both structural and magnetic features of the biological materials were investigated by Moessbauer spectrometry. It was possible to identify iron atoms and their neighbours. (authors)

  6. Magentite nanoparticle for arsenic remotion

    International Nuclear Information System (INIS)

    Viltres, H; Reguera, E; Odio, O F; Borja, R; Aguilera, Y

    2017-01-01

    Inorganic As (V) and As (III) species are commonly found in groundwater in many countries around the world. It is known that arsenic is highly toxic and carcinogenic, at present exist reports of diverse countries with arsenic concentrations in drinking water higher than those proposed by the World Health Organization (10 μg/L). It has been reported that adsorption strategies using magnetic nanoparticles as magnetite (<20 nm) proved to be very efficient for the removal of arsenic in drinking water. Magnetic nanoparticles (magnetite) were prepared using a co-precipitation method with FeCl 3 and FeCl 2 as metal source and NaOH aqueous solution as precipitating agent. Magnetite nanoparticles synthesized were put in contact with As 2 O 3 and As 2 O 5 solutions at room temperature to pH 4 and 7. The nanoparticles were characterized by FT-IR, DRX, UV-vis, and XRF. The results showed that synthesized magnetite had an average diameter of 11 nm and a narrow size distribution. The presence of arsenic on magnetite nanoparticles surface was confirmed, which is more remarkable when As (V) is employed. Besides, it is possible to observe that no significant changes in the band gap values after adsorption of arsenic in the nanoparticles. (paper)

  7. [Nanoparticles: properties and application prospects].

    Science.gov (United States)

    Chekman, I S

    2009-01-01

    A new trend of scientific-technical and medical researches has been formed which unites nanoscience, nanotechnology, nanomedicine, nanopharmacology. Nanoparticles are the main product of nanotechnologies. Nanoparticles are organic and inorganic structures, their size being less than one hundred nanometers (nano from Greece nanos--a dwarf; particle is a separate unit which is separated from the whole). Prefix nano means 10(-9) m. Nanosizes are values from 1 to 100 nanometers, micro-sizes--from 100 to 1000 nanometers, and above 1000 nanometers--are macrosizes. By the data of Internet for 1.08.20.2008 there are 18512 papers in the world scientific literature (8663 of them were published during the last 2.5 years), where properties of nanoparticles which are obtained by different nanotechnological methods are described. Actually, quantity of works concerning nanoparticles is much more because not all publications are cited in Internet. The first publication concerning a characteristic of nanoparticles was published in 1978. The survey generalized the data of scientific literature and author's investigations which concern sizes of nanoparticles of biologic molecules and their properties.

  8. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  10. Green synthesis of silver nanoparticles and biopolymer ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... Keywords. Biogenic silver nanoparticles; biopolymer nanocomposites; nanoparticles stability; ... Production of nanomaterials by using living organisms of plant-based ... 2.1b Microorganisms and cell culture: The evaluation of.

  11. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  12. Glycine functionalized alumina nanoparticles stabilize collagen in ...

    Indian Academy of Sciences (India)

    Al2O3 nanoparticles thereby suggesting ... 1. Introduction. Collagen is a naturally occurring skin protein in animal tis- ... easily adsorb on the surface of the nanoparticles and amino .... [19,23], agglomeration is prevented by the electrostatic.

  13. Radiation Synthesis of Nanoparticles

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan; Jamaliah Sharif; Nik Ghazali Nik Salleh; Dahlan Mohd; Kamaruddin Hashim

    2011-01-01

    Radiation processing of nano materials is one of the many applications of ionising radiation. It has the advantages of cold process, fast, homogeneous and clean processing without using chemicals, heat and no release of any volatile organic compounds. Hence, radiation processing can be categorised as a green process. The applications of ionising radiation for materials processing are well established and commercialized by way of crosslinking, grafting, curing and degradation. However, the materials use, condition of processing and the end products varies and radiation processing is continue to be developed for various applications in industry, agriculture, health care and environment. The new and emerging development of nano materials has also being incorporated in radiation processing whereby we can see the convergence of radiation and nano technology, to take advantages of the inherent properties of nano size particles. Nowadays many works are being carried out on radiation processing of nano materials. The incorporation of such nanoparticles in polymeric materials will render specific properties that find several advantages compare to conventional composites such as increase heat resistant, improve abrasion and scratch resistant and enhance mechanical properties. In recent years, polymer/clay nano composites has attracted the interest of industry because of its major improvements in physical and mechanical properties, heat stability, reduce flammability and provide enhanced barrier properties at low clay contents. In many applications, crosslinking of polymer matrix is necessary that can further improved the mechanical and physical properties of the composites. Similar research has been extended to electron beam crosslinking of electromagnetic nano composites which comprise of high volume fraction of inorganic fillers in elastomeric matrix. The effect of radiation on inorganic fillers is believed to has influence on the overall radiation crosslinking of the

  14. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek; Basset, Jean-Marie

    2014-01-01

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  15. Nanotoxicity of gold and iron nanoparticles.

    Science.gov (United States)

    Maiti, Souvik

    2011-02-01

    The extensive use of potentially hazardous nanoparticles in industrial applications suggest that their biological effects need to be evaluated following clinical testing practices as applicable for any new pharmaceutical. It was rationalized that a non hypothesis-driven approach is best suited for discovering the biological effects of nanoparticles. Gold nanoparticles (approximately 18 nm), showed no drastic effect on gene expression in cells but iron nanoparticles showed perturbations in the expression of a set of functional genes.

  16. Photoacoustic signal amplification through plasmonic nanoparticle aggregation

    OpenAIRE

    Bayer, Carolyn L.; Nam, Seung Yun; Chen, Yun-Sheng; Emelianov, Stanislav Y.

    2013-01-01

    Photoacoustic imaging, using targeted plasmonic metallic nanoparticles, is a promising noninvasive molecular imaging method. Analysis of the photoacoustic signal generated by plasmonic metallic nanoparticles is complex because of the dependence upon physical properties of both the nanoparticle and the surrounding environment. We studied the effect of the aggregation of gold nanoparticles on the photoacoustic signal amplitude. We found that the photoacoustic signal from aggregated silica-coate...

  17. Bi-metallic nanoparticles as cathode electrocatalysts

    Science.gov (United States)

    Lu, Jun; Amine, Khalil; Wang, Xiaoping; Luo, Xiangyi; Myers, Deborah J.

    2018-03-27

    A lithium-air battery cathode catalyst includes core-shell nanoparticles on a carbon support, wherein: a core of the core-shell nanoparticles is platinum metal; and a shell of the core-shell nanoparticles is copper metal; wherein: the core-shell nanoparticles have a weight ratio of the copper metal to the platinum metal from about 4% to about 6% copper to from about 2% to about 12% platinum, with a remaining percentage being the carbon support.

  18. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  19. Biosynthesis of silver nanoparticles using Stevia extracts

    International Nuclear Information System (INIS)

    Laguta, I.V.; Fesenko, T.V.; Stavinskaya, O.N.; Shpak, L.M.; Dzyuba, O.I.

    2015-01-01

    Silver nanoparticles are synthesized using Stevia rebaudiana extracts. It is shown that the rate of nanoparticles formation is affected by plant cultivation conditions. It is found that, in the presence of the extract from callus, the formation of nanoparticles occurs faster than in the presence of extracts from plants grown under conditions of ex situ and in vitro. The synthesized silver nanoparticles were studied by UV and IR spectroscopies

  20. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  1. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  2. Glyco-gold nanoparticles: synthesis and applications

    Directory of Open Access Journals (Sweden)

    Federica Compostella

    2017-05-01

    Full Text Available Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.

  3. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  4. Nanoparticle-mediated treatment for inflammatory

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention provides nanoparticles for treatment of inflammatory diseases. The nanoparticles preferably comprise chitosan and a siRNA targeting a mRNA encoding a pro-inflammatory cytokine, such as e.g. tnf-alfa. A preferred route of administration of the nanoparticles is by injection...

  5. Cytotoxicity and ion release of alloy nanoparticles

    International Nuclear Information System (INIS)

    Hahn, Anne; Fuhlrott, Jutta; Loos, Anneke; Barcikowski, Stephan

    2012-01-01

    It is well-known that nanoparticles could cause toxic effects in cells. Alloy nanoparticles with yet unknown health risk may be released from cardiovascular implants made of Nickel–Titanium or Cobalt–Chromium due to abrasion or production failure. We show the bio-response of human primary endothelial and smooth muscle cells exposed to different concentrations of metal and alloy nanoparticles. Nanoparticles having primary particle sizes in the range of 5–250 nm were generated using laser ablation in three different solutions avoiding artificial chemical additives, and giving access to formulations containing nanoparticles only stabilized by biological ligands. Endothelial cells are found to be more sensitive to nanoparticle exposure than smooth muscle cells. Cobalt and Nickel nanoparticles caused the highest cytotoxicity. In contrast, Titanium, Nickel–Iron, and Nickel–Titanium nanoparticles had almost no influence on cells below a nanoparticle concentration of 10 μM. Nanoparticles in cysteine dissolved almost completely, whereas less ions are released when nanoparticles were stabilized in water or citrate solution. Nanoparticles stabilized by cysteine caused less inhibitory effects on cells suggesting cysteine to form metal complexes with bioactive ions in media.

  6. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  7. Gold nanoparticles for tumour detection and treatment

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; Petersen, W.; Petersen, Wilhelmina; Jose, J.; Jose, J.; van Es, P.; van Es, Peter; Lenferink, Aufrid T.M.; Poot, Andreas A.; Terstappen, Leonardus Wendelinus Mathias Marie; van Leeuwen, Ton; Manohar, Srirang; Otto, Cornelis

    2011-01-01

    The use of nanoparticles in biomedical applications is emerging rapidly. Recent developments have led to numerous studies of noble metal nanoparticles, down to the level of single molecule detection in living cells. The application of noble metal nanoparticles in diagnostics and treatment of early

  8. Solid lipid nanoparticles for parenteral drug delivery

    NARCIS (Netherlands)

    Wissing, S.A.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC)

  9. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  10. Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing.

    Science.gov (United States)

    Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K

    2017-09-20

    Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.

  11. Solvent-free biodegradable scleral plugs providing sustained release of vancomycin, amikacin, and dexamethasone--an in vivo study.

    Science.gov (United States)

    Peng, Yi-Jie; Kau, Yi-Chuan; Wen, Chin-Wei; Liu, Kuo-Sheng; Liu, Shih-Jung

    2010-08-01

    Delivering effective drugs at sufficiently high concentrations to the area of infection is a standard treatment for infectious disease, such as endophthalmitis. This is currently done by empirical trans pars plana intravitreal injection of both antibiotics directed against gram-positive and gram-negative microorganisms and steroids. However, injections by needles repeatedly may increase the risks of intraocular infection and hemorrhage, as well as retinal detachment. This article explores the alternative of using biodegradable polymers as scleral plugs for a long-term drug release in vivo. To manufacture plugs, poly(lactide-glycolide) copolymers were first mixed with vancomycin, amikacin, and dexamethasone. The mixture was compressed and sintered at 55 degrees C to form scleral plugs 1.4 mm in diameter. Biodegradable scleral plugs released high concentrations of antibiotics (well above the minimum inhibitory concentrations, MIC) and steroids in vivo for the period of time needed to treat intraocular infection. In addition, no major complications such as infectious or sterile endophthalmitis, retinal detachment, ocular phthisis, or uvea protrusion at sclerotomy site were observed throughout the experiment. The sclerotomy wound healed after total degradation of the scleral implants without leakage or local necrosis. Antibiotic/steroid-impregnated biodegradable scleral plugs may have a potential role in the treatment of various intraocular infections. (c) 2010 Wiley Periodicals, Inc.

  12. A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts.

    Science.gov (United States)

    Mao, Wei; Ma, Hongzhu; Wang, Bo

    2009-08-15

    A mild simple method for nitration of aromatic compounds, various solid acids as catalysts, the air treated with the corona discharge generator as nitrating agent, the liquid-phase nitration of toluene, at ambient temperature and atmospheric pressure without solvent has been investigated. The results show that SO(4)(2-)/TiO(2) (ST) and SO(4)(2-)/TiO(2) doped with CeO(2) (STC) catalysts displayed good nitration activity in the experiments. It is an attractive method for the environmentally friendly synthesis of nitroaromatic compounds. Moreover, only mononitrotoluenes were detected in the products, and the ratio of para-nitrotoluene and ortho-nitrotoluene was approximately 1:1 with various catalysts. A maximum yield of about 11.4% was achieved for mononitrotoluenes in STC reaction system in 3h.

  13. Ultrasound-assisted catalytic synthesis of acyclic imides in the presence of p-toluenesulfonic acid under solvent free conditions

    Directory of Open Access Journals (Sweden)

    Nasr-Esfahani Masoud

    2012-01-01

    Full Text Available A rapid and convenient preparation of acyclic imides by the reaction of aliphatic and aromatic nitriles with acyclic carboxylic anhydride in the presence of catalytic amounts of p-toluenesulfonic acid under thermal or ultrasonic conditions is reported. The advantages of this procedure are moderate reaction times, good to excellent yields, use of inexpensive and ecofriendly catalyst. The reaction of nitriles with aliphatic anhydrides proceeds in thermal conditions, while by the use of ultrasound irradiations these reactions get accelerated.

  14. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites.

    Science.gov (United States)

    Kluge, Johannes; Mazzotti, Marco

    2012-10-15

    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process

    Directory of Open Access Journals (Sweden)

    Ameen Shahid

    2017-03-01

    Full Text Available A sustainable, green one-pot process for the synthesis of dihydropyrimidinones (DHPMs derivatives by a three-component reaction of β-ketoester derivatives, aldehyde and urea or thiourea over the alkali-treated H-ZSM-5 zeolite under ball-milling was developed. Isolation of the product with ethyl acetate shadowed by vanishing of solvent was applied. The hierachical zeolite catalyst (MFI27_6 showed high yield (86%–96% of DHPMs in a very short time (10–30 min. The recyclability of the catalyst for the subsequent reactions was examined in four subsequent runs. The catalyst was shown to be robust without a detectable reduction in catalytic activity, and high yields of products showed the efficient protocol of the Biginelli reactions.

  16. Complexation of c6-ceramide with cholesteryl phosphocholine - a potent solvent-free ceramide delivery formulation for cells in culture.

    Directory of Open Access Journals (Sweden)

    Pramod Sukumaran

    Full Text Available Ceramides are potent bioactive molecules in cells. However, they are very hydrophobic molecules, and difficult to deliver efficiently to cells. We have made fluid bilayers from a short-chain D-erythro-ceramide (C6-Cer and cholesteryl phosphocholine (CholPC, and have used this as a formulation to deliver ceramide to cells. C6-Cer complexed with CholPC led to much larger biological effects in cultured cells (rat thyroid FRTL-5 and human HeLa cells in culture compared to C6-Cer dissolved in dimethyl sulfoxide (DMSO. Inhibition of cell proliferation and induction of apoptosis was significantly more efficient by C6-Cer/CholPC compared to C6-Cer dissolved in DMSO. C6-Cer/CholPC also permeated cell membranes and caused mitochondrial Ca(2+ influx more efficiently than C6-Cer in DMSO. Even though CholPC was taken up by cells to some extent (from C6-Cer/CholPC bilayers, and was partially hydrolyzed to free cholesterol (about 9%, none of the antiproliferative effects were due to CholPC or excess cholesterol. The ceramide effect was not limited to D-erythro-C6-Cer, since L-erythro-C6-Cer and D-erythro-C6-dihydroCer also inhibited cell priolifereation and affected Ca(2+ homeostasis. We conclude that C6-Cer complexed to CholPC increased the bioavailability of the short-chain ceramide for cells, and potentiated its effects in comparison to solvent-dissolved C6-Cer. This new ceramide formulation appears to be superior to previous solvent delivery approaches, and may even be useful with longer-chain ceramides.

  17. MICROWAVE-ASSISTED CU (I) CATALYZED SOLVENT-FREE THREE COMPONENT COUPLING OF ALDEHYDE, ALKYNE AND AMINE

    Science.gov (United States)

    Direct Grignard type addition of terminal alkynes to in situ generated imines, from aldehydes and amines, occurs under microwave irradiation using CuBr alone in a one-pot operation. This solventless approach provides ready access to propargylamines and is applicable both...

  18. Microwave-assisted one-pot synthesis of ring-fused aminals under catalyst- and solvent-free conditions

    Science.gov (United States)

    Heterocyclic compounds hold a special place in drug discovery and variety of techniques such as combinatorial synthesis, parallel synthesis, and automated library production to increase the output of these entities has been developed. Although most of these techniques are rapid a...

  19. Preparation of Second Generation Ionic Liquids by Efficient Solvent-Free Alkylation of N-Heterocycles with Chloroalkanes

    Directory of Open Access Journals (Sweden)

    Werner Bonrath

    2008-01-01

    Full Text Available Non-conventional techniques, such as microwave (MW and power ultrasound(US as well as combined MW/US irradiation, have been used to promote one-potsynthesis of second-generation ionic liquids (ILs, cutting down reaction times andimproving yields. However, the use of chloroalkanes in the alkylation of N-heterocyclesrequires more drastic conditions if results are to match those obtained with more reactivealkyl halides. The present paper describes a series of MW- or MW/US-promoted ILpreparations starting from chloroalkanes and classic heterocycles (1-methylimidazole,pyridine and 1-methylpyrrolidine. When reactions were carried out under conventionalheating in an oil bath they required longer reaction times and gave poorer yields. 1H-NMRanalysis and ion-exchange chromatography showed that the present solventless procedureafforded ILs of satisfactory purity. The observed high yields (usually 70-98% isolated,and short reaction times showed that a straightforward access to ILs can be also achievedwith the use of alkyl chlorides, resulting in a considerable reduction of costs.

  20. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  1. Solvent-Free Synthesis of 2,20'-Dinitrobiphenyl: An Ullmann Coupling in the Introductory Organic Laboratory

    Science.gov (United States)

    Gregor, Richard W.; Goj, Laurel A.

    2011-01-01

    The formation of carbon-carbon bonds is an essential theme throughout organic chemistry. The use of transition-metal catalysts to form carbon-carbon bonds, once relegated to more advanced texts, is now commonly found in introductory organic textbooks. However, commensurate laboratory experiments for first-year organic students are more limited.…

  2. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  3. Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining

    Directory of Open Access Journals (Sweden)

    Tangkam, Kamol

    2008-09-01

    Full Text Available Co-products of vegetable oil refining such as a mixed deodorizer distillate resulting from the refining of various vegetable oils, a crude distillate resulting from the physical refining of coconut oil and commercial mixtures of distilled sunflower and coconut fatty acids were used as starting materials for the enzymatic preparation of diglycerides. Reaction conditions (temperature, pressure, molar ratio for the formation of diglycerides by lipase-catalyzed esterification/transesterification were studied using the mixed deodorizer distillate and glycerol as starting materials. The best results were obtained with the immobilized lipase B from Candida antarctica (Novozym 435 in vacuo at 60 °C leading to moderate proportions (~52% of diglycerides. The proportion of diglycerides increased when residual acylglycerides of the co-products of vegetable oil refining were hydrolyzed prior to esterification. Thus, the esterification of hydrolyzed co-products of vegetable oil refining with glycerol led to high formation (62-72% of diglycerides. Short-path vacuum distillation of the esterification products yielded distillation residues containing from 70% to 94% diglycerides. The proportions of fatty acids and monoglycerides in the distilled residues were quite low (Subproductos del refinado de los aceites vegetales tales como el destilado obtenido en el desodorizador al refinar distintos aceites vegetales, el destilado crudo resultante de la refinación física del aceite de coco, y mezclas comerciales de los ácidos grasos obtenidos en la destilación de aceites de girasol y coco fueron utilizados como materiales de partida para la preparación enzimática de diglicéridos. Se estudiaron las condiciones de reacción (temperatura, presión, relación molar para la formación de diglicéridos mediante esterificación/ transesterificación catalizada por lipasas usando la mezcla obtenida del desodorizador y glicerol como materiales de partida. Los mejores resultados se obtuvieron con lipasa B inmovilizada de Candida antarctica (Novozym 435 a vacío y 60 °C obteniéndose una concentración moderada (~52% de diglicéridos. La proporción de diglicéridos aumentó cuando los aciglicéridos residuales de los subproductos de la refinación de los aceites vegetales fueron hidrolizados como paso previo a la esterificación. Así, la esterificación de subproductos hidrolizados del refinado de aceites vegetales con glicerol produjo una alta (62-72% formación de diglicéridos. La posterior destilación a vacío de los productos de esta esterificación produjo destilados conteniendo del 70 al 94% de diglicéridos. Las proporciones de ácidos grasos y monoglicéridos en estos destilados fueron bastante bajas (Rhizomucor miehei y Thermomyces lanuginosus fueron menos activas como biocatalizadores de esterificación.

  4. Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks.

    Science.gov (United States)

    Baidya, Avijit; Ganayee, Mohd Azhardin; Jakka Ravindran, Swathy; Tam, Kam Chiu; Das, Sarit Kumar; Ras, Robin H A; Pradeep, Thalappil

    2017-11-28

    In view of a great demand for paper-based technologies, nonwettable fibrous substrates with excellent durability have drawn much attention in recent years. In this context, the use of cellulose nanofibers (CNFs), the smallest unit of cellulosic substrates (5-20 nm wide and 500 nm to several microns in length), to design waterproof paper can be an economical and smart approach. In this study, an eco-friendly and facile methodology to develop a multifunctional waterproof paper via the fabrication of fluoroalkyl functionalized CNFs in the aqueous medium is presented. This strategy avoids the need for organic solvents, thereby minimizing cost as well as reducing safety and environmental concerns. Besides, it widens the applicability of such materials as nanocellulose-based aqueous coatings on hard and soft substrates including paper, in large areas. Water droplets showed a contact angle of 160° (±2°) over these surfaces and rolled off easily. While native CNFs are extremely hydrophilic and can be dispersed in water easily, these waterborne fluorinated CNFs allow the fabrication of a superhydrophobic film that does not redisperse upon submersion in water. Incorporated chemical functionalities provide excellent durability toward mechanochemical damages of relevance to daily use such as knife scratch, sand abrasion, spillage of organic solvents, etc. Mechanical flexibility of the chemically modified CNF composed paper remains intact despite its enhanced mechanical strength, without additives. Superhydrophobicity induced excellent microbial resistance of the waterproof paper which expands its utility in various paper-based technologies. This includes waterproof electronics, currency, books, etc., where the integrity of the fibers, as demonstrated here, is a much-needed criterion.

  5. H2 O2 –HBr: A metal-free and organic solvent-free reagent system ...

    Indian Academy of Sciences (India)

    Administrator

    Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, ... A novel, practical and environmentally benign approach has been developed for .... pure products was applied; A Fisons instruments gas.

  6. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  7. Analysis of nanoparticle biomolecule complexes.

    Science.gov (United States)

    Gunnarsson, Stefán B; Bernfur, Katja; Mikkelsen, Anders; Cedervall, Tommy

    2018-03-01

    Nanoparticles exposed to biological fluids adsorb biomolecules on their surface forming a biomolecular corona. This corona determines, on a molecular level, the interactions and impact the newly formed complex has on cells and organisms. The corona formation as well as the physiological and toxicological relevance are commonly investigated. However, an acknowledged but rarely addressed problem in many fields of nanobiotechnology is aggregation and broadened size distribution of nanoparticles following their interactions with the molecules of biological fluids. In blood serum, TiO 2 nanoparticles form complexes with a size distribution from 30 nm to more than 500 nm. In this study we have separated these complexes, with good resolution, using preparative centrifugation in a sucrose gradient. Two main apparent size populations were obtained, a fast sedimenting population of complexes that formed a pellet in the preparative centrifugation tube, and a slow sedimenting complex population still suspended in the gradient after centrifugation. Concentration and surface area dependent differences are found in the biomolecular corona between the slow and fast sedimenting fractions. There are more immunoglobulins, lipid binding proteins, and lipid-rich complexes at higher serum concentrations. Sedimentation rate and the biomolecular corona are important factors for evaluating any experiment including nanoparticle exposure. Our results show that traditional description of nanoparticles in biological fluids is an oversimplification and that more thorough characterisations are needed.

  8. APPLICATION OF NANOPARTICLES IN BIOMEDICINE

    Directory of Open Access Journals (Sweden)

    P. G. Telegeeva

    2013-04-01

    Full Text Available The advances in nanotechnology, particularly, application in biomedicine are described in the review. The characteristic of the new drug delivery systems is given including lipid, protein and polymer nanoparticles which provide stable delivery of drugs to the target of distribution in the body and prevent their rapid degradation. The advantages of nanometer scale vectors were analyzed. Due to their small size, structure and large surface area, nanoscale materials acquire necessary physico-chemical properties. These properties allow the nanoparticles, containing specific agents, to overcome the limitations existing for the forms of large sizes. This significantly facilitates the intracellular transport to specific cellular targets. Controlled deli very to the place of action and reduction of exposure time on non-target tissues increases efficacy and reduces toxicity and other side effects, which improves the patient's overall health. Use of different ways to deliver nanoparticles allows to deliver low-molecular drugs, proteins, peptides or nucleic acids to specific tissues. Various ways of nanodrugs delivery to a cell and the possibility of modifying their surface by target ligands are discussed in the review. Types of drug delivery systems: microsponges, viruses, imunoconjugates, liposomes, metal nanoparticles and quantum dots, dendrimers, natural and synthetic polymeric nanoparticles, etc are discussed. A large variety of nanovectors, as well as their modification, and loading of various drugs (the methods of inclusion and adsorption are examined, control of their release into the cell, opens prospects for their wide application for visualization of biological processes, diagnosis and therapy of wide range of diseases.

  9. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  10. Nanoparticles: nanotoxicity aspects

    Science.gov (United States)

    Vlastou, Elena; Gazouli, Maria; Ploussi, Agapi; Platoni, Kalliopi; Efstathopoulos, Efstathios P.

    2017-11-01

    The giant steps towards Nanosciences dictate the need to gain a broad knowledge about not only beneficial but also noxious properties of Nanomaterials. Apart from the remarkable advantages of Nanoparticles (NPs) in medicine and industry, there have been raised plenty of concerns about their potential adverse effects in living organisms and ecosystems as well. Without a doubt, it is of critical importance to ensure that NPs medical and industrial applications are accompanied by the essential safety so that the balance will be tilted in favor of the profits that society will earn. However, the evaluation of NPs toxic effects remains a great challenge for the scientific community due to the wealth of factors that Nanotoxicity depends on. Size, surface area, dosing, shape, surface coating and charge and bulk material are the basic parameters under investigation to assess the risk involved in NPs usage. Our purpose is to highlight NPs physical and chemical properties responsible for induced toxicity, describe the mechanisms that take place in their interaction with cells and organs and finally report the potential harmful consequences that may result from the innovative applications of Nanomaterials.

  11. Laser assisted embedding of nanoparticles into metallic materials

    International Nuclear Information System (INIS)

    Lin Dong; Suslov, Sergey; Ye Chang; Liao Yiliang; Liu, C. Richard; Cheng, Gary J.

    2012-01-01

    This paper reports a methodology of half-embedding nanoparticles into metallic materials. Transparent and opaque nanoparticles are chosen to demonstrate the process of laser assisted nanoparticle embedding. Dip coating method is used to coat transparent or opaque nanoparticle on the surface of metallic material. Nanoparticles are embedded into substrate by laser irradiation. In this study, the mechanism and process of nanoparticle embedding are investigated. It is found both transparent and opaque nanoparticles embedding are with high densities and good uniformities.

  12. Nanoparticle composites for printed electronics

    International Nuclear Information System (INIS)

    Männl, U; Van den Berg, C; Magunje, B; Härting, M; Britton, D T; Jones, S; Van Staden, M J; Scriba, M R

    2014-01-01

    Printed Electronics is a rapidly developing sector in the electronics industry, in which nanostructured materials are playing an increasingly important role. In particular, inks containing dispersions of semiconducting nanoparticles, can form nanocomposite materials with unique electronic properties when cured. In this study we have extended on our previous studies of functional nanoparticle electronic inks, with the development of a solvent-based silicon ink for printed electronics which is compatible with existing silver inks, and with the investigation of other metal nanoparticle based inks. It is shown that both solvent-based and water-based inks can be used for both silver conductors and semiconducting silicon, and that qualitatively there is no difference in the electronic properties of the materials printed with a soluble polymer binder to when an acrylic binder is used. (paper)

  13. Gold nanoparticles: generation and characterization

    International Nuclear Information System (INIS)

    Dey, G.R.

    2013-07-01

    In this presentation we report the reduction of Au 3+ through chemical and free radical (e solv - ) reactions both in non-aqueous and aqueous media. In chemical reduction, the spectral nature in ascorbic acid (AA) and citric acid (CA) systems was different. The band intensity of gold nanoparticles was lower in AA system. While in free radical reaction, the yield of nanoparticles was pure i.e. free from excess reactants. Under the study 60-200 nm size nanoparticles were generated, which are inert to oxygen. Using pulse radiolysis technique, the initial rate for e solv - reaction with Au 3+ was determined to be 7.6 x 10 9 M -1 s -1 . (author)

  14. Magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Sora, Sergiu; Ion, Rodica Mariana

    2010-01-01

    This work aims to establish and to optimize the conditions for chemical synthesis of nanosized magnetic core-shell iron oxide. The core is magnetite and for the shell we used gold in order to obtain different nanoparticles. Iron oxides was synthesized by sonochemical process using ferrous salts, favoring the synthesis at low-temperature, low costs, high material purity and nanostructure control. After synthesis, some investigation techniques as: X-ray diffraction (XRD), atomic force microscopy (AFM), Thermogravimetric analysis (TGA), Fourier-Transform Infrared Spectroscopy (FTIR) and UVVis absorbance spectroscopy, have been used to see the characteristics of the nanoparticles. For in vitro applications, it is important to prevent any aggregation of the nanoparticles, and may also enable efficient excretion and protection of the cells from toxicity. For biomedical applications like magnetic biofunctional material vectors to target tissues, the particles obtained have to be spherical with 10 nm average diameter. Key words: magnetite, nanocomposite, core-shell, sonochemical method

  15. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  16. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  17. Magnetic nanoparticles in medical nanorobotics

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Sylvain, E-mail: sylvain.martel@polymtl.ca [Polytechnique Montréal, NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering (Canada)

    2015-02-15

    Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

  18. Percolation Magnetism in Ferroelectric Nanoparticles

    Science.gov (United States)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  19. Magnetic properties of iron nanoparticle

    International Nuclear Information System (INIS)

    Carvell, J.; Ayieta, E.; Gavrin, A.; Cheng, Ruihua; Shah, V. R.; Sokol, P.

    2010-01-01

    Magnetic properties of Fe nanoparticles with different sizes synthesized by a physical deposition technique have been investigated experimentally. We have used a high pressure sputtering technique to deposit iron nanoparticles on a silicon substrate. The nanoparticles are then analyzed using atomic force microscopy (AFM), transmission electron microscopy (TEM), and superconducting quantum interference device techniques. TEM and AFM data show that the particle size could be tuned by adjusting the deposition conditions. The magnetic properties have been investigated from temperature dependent magnetization M(T) and field dependent magnetization M(H) measurements. The results show that two phases including both ferromagnetic and superparamagnetic particles are present in our system. From these data we extracted the superparamagnetic critical size to be 9 nm for our samples. Ferromagnetic particles are single magnetic domain particles and the magnetic properties can be explained by the Stoner and Wohlfarth model. For the superparamagnetic phase, the effective anisotropy constant, K eff , decreases as the particle size increases.

  20. Green chemistry for nanoparticle synthesis.

    Science.gov (United States)

    Duan, Haohong; Wang, Dingsheng; Li, Yadong

    2015-08-21

    The application of the twelve principles of green chemistry in nanoparticle synthesis is a relatively new emerging issue concerning the sustainability. This field has received great attention in recent years due to its capability to design alternative, safer, energy efficient, and less toxic routes towards synthesis. These routes have been associated with the rational utilization of various substances in the nanoparticle preparations and synthetic methods, which have been broadly discussed in this tutorial review. This article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present several pivotal aspects of synthesis with environmental concerns, involving the selection and evaluation of nontoxic capping and reducing agents, the choice of innocuous solvents and the development of energy-efficient synthetic methods.

  1. Percolation Magnetism in Ferroelectric Nanoparticles.

    Science.gov (United States)

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO 3 ) and potassium niobate (KNbO 3 ) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe 3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  2. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  3. From silicon to organic nanoparticle memory devices.

    Science.gov (United States)

    Tsoukalas, D

    2009-10-28

    After introducing the operational principle of nanoparticle memory devices, their current status in silicon technology is briefly presented in this work. The discussion then focuses on hybrid technologies, where silicon and organic materials have been combined together in a nanoparticle memory device, and finally concludes with the recent development of organic nanoparticle memories. The review is focused on the nanoparticle memory concept as an extension of the current flash memory device. Organic nanoparticle memories are at a very early stage of research and have not yet found applications. When this happens, it is expected that they will not directly compete with mature silicon technology but will find their own areas of application.

  4. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  5. Synthesis of amorphous acid iron phosphate nanoparticles

    International Nuclear Information System (INIS)

    Palacios, E.; Leret, P.; Fernández, J. F.; Aza, A. H. De; Rodríguez, M. A.

    2012-01-01

    A simple method to precipitate nanoparticles of iron phosphate with acid character has been developed in which the control of pH allows to obtain amorphous nanoparticles. The acid aging of the precipitated amorphous nanoparticles favored the P–O bond strength that contributes to the surface reordering, the surface roughness and the increase of the phosphate acid character. The thermal behavior of the acid iron phosphate nanoparticles has been also studied and the phosphate polymerization at 400 °C produces strong compacts of amorphous nanoparticles with interconnected porosity.

  6. Few-layer black phosphorus nanoparticles.

    Science.gov (United States)

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  7. DNA-guided nanoparticle assemblies

    Science.gov (United States)

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  8. Antituberculous effect of silver nanoparticles

    International Nuclear Information System (INIS)

    Kreytsberg, G N; Gracheva, I E; Kibrik, B S; Golikov, I V

    2011-01-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  9. Antituberculous effect of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kreytsberg, G N; Gracheva, I E [Limited Liability Company ' Scientific and Production Association (NPO)' Likom' , 150049, Yaroslavl, Magistralnaya str., 32 (Russian Federation); Kibrik, B S [Yaroslavl State Medical Academy Russia, 150000, Yaroslavl, Revolutsionnaya str., 5 (Russian Federation); Golikov, I V, E-mail: likomm@yaroslavl.ru [Yaroslavl State Technical University Russia, 150023, Yaroslavl, Moskovskiy avenue, 88 (Russian Federation)

    2011-04-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  10. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  11. Spin structures in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik

    dependence of the magnetisation in certain nanoparticle systems, as welll bulk systems with spin canting due to defects. In accordance with this model magnetisation measurements on goethtie (a-FeOOH) nanoparticles are presented, showing a low temperature increase in the magnetisation. The spin orientation...... experimental data from unpolarised neutron diffraction. The spin orientation is found to be close to the particle plane, which is the (111) plane of the FCC structure of NiO for particles with thickness ranging from 2.2 nm to bulk (= 200 nm) particles. In the smallest particles, with a thickness of 2.0 nm, we...

  12. Multiscale study of metal nanoparticles

    Science.gov (United States)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum

  13. Advances in developing TiNi nanoparticles

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2006-01-01

    The elaboration of nanoparticles has become a field of great interest for many scientists. Nanoparticles possess different properties than those ones shown in bulk materials. Shape memory alloys have the exceptional ability to recuperate its original shape by simple heating after being 'plastically' deformed. When this process is originated, important changes in properties, as mechanical and electrical, are developed in bulk material. If there is possible to obtain nanoparticles with shape memory effects, these nanoparticles could be used in the elaboration of nanofluids with the ability to change their electrical and thermal conductivity with temperature changes, i.e., smart nanofluids. In this work, some recent results and discussion of TiNi nanoparticles obtained by ion beam milling directly from a TiNi wire with shape memory are presented. The nanoparticles obtained by this process are about 2 nm of diameter with a composition of Ti-41.0 at.% Ni. Synthesized nanoparticles elaborated by this method have an ordered structure

  14. Biosynthesis of Metal Nanoparticles: A Review

    International Nuclear Information System (INIS)

    Kulkarni, N.; Muddapur, U.

    2014-01-01

    The synthesis of nano structured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap, and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The bio mineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology.

  15. Size-controlled synthesis of nickel nanoparticles

    International Nuclear Information System (INIS)

    Hou, Y.; Kondoh, H.; Ohta, T.; Gao, S.

    2005-01-01

    A facile reduction approach with nickel acetylacetonate, Ni(acac) 2 , and sodium borohydride or superhydride leads to monodisperse nickel nanoparticles in the presence of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO). The combination of HDA and TOPO used in the conventional synthesis of semiconductor nanocrystals also provides better control over particle growth in the metal nanoparticle synthesis. The size of Ni nanoparticles can be readily tuned from 3 to 11 nm, depending on the ratio of HDA to TOPO in the reaction system. As-synthesized Ni nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), selected-area electron diffraction (SAED). Transmission electron microscopy (TEM) images show that Ni nanoparticles have narrow size distribution. SQUID magnetometry was also used in the characterization of Ni nanoparticles. The synthetic procedure can be extended to the preparation of high quality metal or alloy nanoparticles

  16. Biosynthesis of Metal Nanoparticles: A Review

    Directory of Open Access Journals (Sweden)

    Narendra Kulkarni

    2014-01-01

    Full Text Available The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap, and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The biomineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology.

  17. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    International Nuclear Information System (INIS)

    Nedyalkov, N.N.; Imamova, S.E.; Atanasov, P.A.; Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T.; Obara, M.

    2011-01-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  18. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Science.gov (United States)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  19. Synthesis metal nanoparticle

    Science.gov (United States)

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  20. Preparation methods of alginate nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2014-01-01

    This article reviews available methods for the formation of alginate nano-aggregates, nanocapsules and nanospheres. Primarily, alginate nanoparticles are being prepared by two methods. In the “complexation method”, complex formation on the interface of an oil droplet is used to form alginate

  1. Green Nanoparticles for Mosquito Control

    Directory of Open Access Journals (Sweden)

    Namita Soni

    2014-01-01

    Full Text Available Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag and gold (Au nanoparticles (NPs were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum (C. zyelanicum or C. verum J. Presl. Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs. The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.

  2. Method of tracing engineered nanoparticles

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a population of non-aggregated polymer-coated nanoparticles having a mean particle size (diameter) in the range of 1-100 nm, said population comprising (i) a first subpopulation of (re)active particles coated with a first polymer, and (ii) a second subpopulation ...

  3. Biocompatibility of crystalline opal nanoparticles.

    Science.gov (United States)

    Hernández-Ortiz, Marlen; Acosta-Torres, Laura S; Hernández-Padrón, Genoveva; Mendieta, Alicia I; Bernal, Rodolfo; Cruz-Vázquez, Catalina; Castaño, Victor M

    2012-10-22

    Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU). 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  4. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  5. DNA-scaffolded nanoparticle structures

    International Nuclear Information System (INIS)

    Hoegberg, Bjoern; Olin, Haakan

    2007-01-01

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications

  6. doped ZnS nanoparticles

    Indian Academy of Sciences (India)

    Mn2+-doped ZnS nanoparticles were prepared by chemical arrested precipitation method. The samples were heated at 300, 500, 700 and 900°C. The average particle size was determined from the X-ray line broadening. Samples were characterized by XRD, FTIR and UV. The composition was verified by EDAX spectrum.

  7. Interaction of Nanoparticles with Biofilms

    Science.gov (United States)

    In this work we have studied the interaction and adsorption of engineered nanoparticles such as TiO2, ZnO, CeO2 , and carbon nanotubes with biofilms. Biofilm is an extracellular polymeric substance coating comprised of living material and it is an aggregation of bacteria, algae, ...

  8. Bioinspired synthesis of magnetite nanoparticles

    NARCIS (Netherlands)

    Mirabello, G.; Lenders, J.J.M.; Sommerdijk, N.A.J.M.

    2016-01-01

    Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles

  9. Computer Simulations of Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier F. Fernandez-Luengo

    2017-12-01

    Full Text Available Lipid nanoparticles (LNP are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications, the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant.

  10. Characterization of nanoparticles released during construction of photocatalytic pavements using engineered nanoparticles

    International Nuclear Information System (INIS)

    Dylla, Heather; Hassan, Marwa M.

    2012-01-01

    With the increasing use of titanium dioxide (TiO 2 ) nanoparticles in self-cleaning materials such as photocatalytic concrete pavements, the release of nanoparticles into the environment is inevitable. Nanoparticle concentration, particle size, surface area, elemental composition, and surface morphology are pertinent to determine the associated risks. In this study, the potential of exposure to synthetic nanoparticles released during construction activities for application of photocatalytic pavements was measured during laboratory-simulated construction activities of photocatalytic mortar overlays and in an actual field application of photocatalytic spray coat. A scanning mobility particle sizer system measured the size distribution of nanoparticles released during laboratory and field activities. Since incidental nanoparticles are released during construction activities, nanoparticle emissions were compared to those from similar activities without nano-TiO 2 . Nanoparticle counts and size distribution suggest that synthetic nanoparticles are released during application of photocatalytic pavements. In order to identify the nanoparticle source, nanoparticles were also collected for offline characterization using transmission electron microscopy. However, positive identification of synthetic nanoparticles was not possible due to difficulties in obtaining high-resolution images. As a result, further research is recommended to identify nanoparticle composition and sources.

  11. Nanoparticle shape, thermodynamics and kinetics

    International Nuclear Information System (INIS)

    Marks, L D; Peng, L

    2016-01-01

    Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review. (topical review)

  12. Effective pair potentials for spherical nanoparticles

    International Nuclear Information System (INIS)

    Van Zon, Ramses

    2009-01-01

    An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London–van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure

  13. Gyrospun antimicrobial nanoparticle loaded fibrous polymeric filters

    Energy Technology Data Exchange (ETDEWEB)

    Eranka Illangakoon, U.; Mahalingam, S.; Wang, K. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Cheong, Y.-K. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Canales, E. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom); Ren, G.G. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Cloutman-Green, E. [Department of Microbiology, Virology, and Infection Prevention Control, Great Ormond Street Hospital NHS Foundation Trust, London WCIN 3JH (United Kingdom); Edirisinghe, M., E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Ciric, L. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom)

    2017-05-01

    A one step approach to prepare hybrid nanoparticle embedded polymer fibres using pressurised gyration is presented. Two types of novel antimicrobial nanoparticles and poly(methylmethacrylate) polymer were used in this work. X-ray diffraction analysis of the nanoparticles revealed Ag, Cu and W are the main elements present in them. The concentration of the polymer solution and the nanoparticle concentration had a significant influence on the fibre diameter, pore size and morphology. Fibres with a diameter in the range of 6–20 μm were spun using 20 wt% polymer solutions containing 0.1, 0.25 and 0.5 wt% nanoparticles under 0.3 MPa working pressure and a rotational speed of 36,000 rpm. Continuous, bead-free fibre morphologies were obtained for each case. The pore size in the fibres varied between 36 and 300 nm. Successful incorporation of the nanoparticles in polymer fibres was confirmed by energy dispersive x-ray analysis. The fibres were also gyrospun on to metallic discs to prepare filters which were tested for their antibacterial activity on a suspension of Pseudomonas aeruginosa. Nanoparticle loaded fibres showed higher antibacterial efficacy than pure poly(methylmethacrylate) fibres. - Highlights: • Nanoparticles containing Ag, Cu and W were studied for antimicrobial activity. • Hybrid nanoparticle-polymeric fibres were prepared using pressurised gyration. • Fibre characteristics were tailored using material and forming process variables. • Nanoparticle loaded fibre mats show higher antibacterial efficacy.

  14. Targeting therapeutics to the glomerulus with nanoparticles.

    Science.gov (United States)

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Silicalite nanoparticles that promote transgene expression

    International Nuclear Information System (INIS)

    Pearce, Megan E; Mai, Hoang Q; Salem, Aliasger K; Lee, Namhoon; Larsen, Sarah C

    2008-01-01

    Here, we report on a new zeolite-based silicalite nanoparticle that can enhance the transfection efficiencies generated by poly ethylene imine-plasmid DNA (PEI-pDNA) complexes via a sedimentation mechanism and can enhance the transfection efficiencies of pDNA alone when surface functionalized with amine groups. The silicalite nanoparticles have a mean size of 55 nm. Functionalizing the silicalite nanoparticles with amine groups results in a clear transition in zeta potential from -25.9 ± 2.3 mV (pH 7.4) for unfunctionalized silicalite nanoparticles to 4.9 ± 0.7 mV (pH 7.4) for amine functionalized silicalite nanoparticles. We identify that silicalite nanoparticles used to promote non-viral vector acceleration to the cell surface are found in acidic vesicles or the cytoplasm but not the nucleus. An MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay showed that the silicalite nanoparticles were non-toxic at the concentrations tested for transfection. We show that surface functionalization of silicalite nanoparticles with amine groups results in a significant (230%) increase in transfection efficiency of pDNA when compared to unfunctionalized silicalite nanoparticles. Silicalite nanoparticles enhanced pDNA-PEI induced transfection of human embryonic kidney (HEK-293) cells by over 150%

  16. Polymer coated gold nanoparticles for tracing the mobility of engineered nanoparticles in the subsurface

    DEFF Research Database (Denmark)

    Uthuppu, Basil; Fjordbøge, Annika Sidelmann; Caspersen, Eva

    2014-01-01

    Nanoparticles (NPs) are manufactured for their specific properties providing possibilities for new and improved products and applications. The use of engineered nanoparticles (ENPs) has therefore brought significant innovation and advances to society, including benefits for human health and the e...

  17. Biosynthesis of silver nanoparticles by Aspergillus niger , Fusarium ...

    African Journals Online (AJOL)

    ... scanning electron microscope (SEM). Results indicate the synthesis of silver nanoparticles in the reaction mixture. The synthesis of nanoparticles would be suitable for developing a microbial nanotechnology biosynthesis process for mass scale production. Keywords: Silver nanoparticles, biosynthesis, fungi, Aspergillus.

  18. Simulation of atomic layer deposition on nanoparticle agglomerates

    NARCIS (Netherlands)

    Jin, W.; van Ommen, J.R.; Kleijn, C.R.

    2016-01-01

    Coated nanoparticles have many potential applications; production of large quantities is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the cohesive interparticle forces, nanoparticles form large agglomerates, which influences the coating

  19. Self-assembling nanoparticles at surfaces and interfaces

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2008-01-01

    Nanoparticles are the focus of much attention due to their astonishing properties and numerous possibilities for applications in nanotechnology. For realising versatile functions, assembly of nanoparticles in regular patterns on surfaces and at interfaces is required. Assembling nanoparticles

  20. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold