WorldWideScience

Sample records for solvent vapor annealing

  1. Solvent vapor annealing of an insoluble molecular semiconductor

    KAUST Repository

    Amassian, Aram

    2010-01-01

    Solvent vapor annealing has been proposed as a low-cost, highly versatile, and room-temperature alternative to thermal annealing of organic semiconductors and devices. In this article, we investigate the solvent vapor annealing process of a model insoluble molecular semiconductor thin film - pentacene on SiO 2 exposed to acetone vapor - using a combination of optical reflectance and two-dimensional grazing incidence X-ray diffraction measurements performed in situ, during processing. These measurements provide valuable and new insight into the solvent vapor annealing process; they demonstrate that solvent molecules interact mainly with the surface of the film to induce a solid-solid transition without noticeable swelling, dissolving or melting of the molecular material. © 2010 The Royal Society of Chemistry.

  2. Effects of solvent evaporation conditions on solvent vapor annealed cylinder-forming block polymer thin films

    Science.gov (United States)

    Grant, Meagan; Jakubowski, William; Nelson, Gunnar; Drapes, Chloe; Baruth, A.

    Solvent vapor annealing is a less time and energy intensive method compared to thermal annealing, to direct the self-assembly of block polymer thin films. Periodic nanostructures have applications in ultrafiltration, magnetic arrays, or other structures with nanometer dimensions, driving its continued interest. Our goal is to create thin films with hexagonally packed, perpendicular aligned cylinders of poly(lactide) in a poly(styrene) matrix that span the thickness of the film with low anneal times and low defect densities, all with high reproducibility, where the latter is paramount. Through the use of our computer-controlled, pneumatically-actuated, purpose-built solvent vapor annealing chamber, we have the ability to monitor and control vapor pressure, solvent concentration within the film, and solvent evaporation rate with unprecedented precision and reliability. Focusing on evaporation, we report on two previously unexplored areas, chamber pressure during solvent evaporation and the flow rate of purging gas aiding the evaporation. We will report our exhaustive results following atomic force microscopy analysis of films exposed to a wide range of pressures and flow rates. Reliably achieving well-ordered films, while occurring within a large section of this parameter space, was correlated with high-flow evaporation rates and low chamber pressures. These results have significant implications on other methods of solvent annealing, including ``jar'' techniques.

  3. Evaluation of the Process of Solvent Vapor Annealing on Organic Thin Films

    KAUST Repository

    Ren, Yi

    2011-01-01

    Solvent vapor annealing has recently emerged as an intriguing, room-temperature, and highly versatile alternative to thermal annealing. The chemically selective interaction between solvents and organic semiconductors opens new opportunities

  4. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  5. Evaluation of the Process of Solvent Vapor Annealing on Organic Thin Films

    KAUST Repository

    Ren, Yi

    2011-07-01

    Solvent vapor annealing has recently emerged as an intriguing, room-temperature, and highly versatile alternative to thermal annealing. The chemically selective interaction between solvents and organic semiconductors opens new opportunities to selectively anneal certain components of the device, while leaving others intact. On the downside, these interactions are complex and rather unpredictable, requiring further investigation. We propose a novel methodology to investigate solvent-film interactions, based on use of an in situ quartz crystal microbalance with dissipation (QCM-D) capability and in situ grazing incidence wide angle X-ray scattering (GIWAXS). These methods make it possible to investigate both qualitatively and quantitatively the solvent vapor uptake, the resulting softening and changes (reversible and/or irreversible) in crystallinity. Using this strategy, we have investigated the solvent vapor annealing of traditional donor and acceptor materials, namely poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM). We find these materials retain their rigid structure during toluene vapor annealing and do not dewet. We also investigated the toluene vapor annealing of several newly proposed acceptor molecules (pentacene-based) modified with various silyl groups and electron withdrawing groups to tune the packing structure of the acceptor domains and energy levels at the donor-acceptor interface. We found a dramatic effect of the electron-withdrawing group on vapor uptake and whether the film remains rigid, softens, or dissolves completely. In the case of trifluoromethyl electron-withdrawing group, we found the film dissolves, resulting in complete and irreversible loss of long range order. By contrast, the cyano group prevented loss of long range order, instead promoting crystallization in some cases. The silyl groups had a secondary effect in comparison to these. In the last part of the thesis, we investigated the

  6. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scat......The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X...

  7. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah

    2013-04-10

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  8. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah; Li, Ruipeng; Ren, Yi; Chen, Long; Payne, Marcia M.; Bhansali, Unnat Sampatraj; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram

    2013-01-01

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  9. Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing

    KAUST Repository

    Verploegen, Eric; Miller, Chad E.; Schmidt, Kristin; Bao, Zhenan; Toney, Michael F.

    2012-01-01

    Using grazing incidence X-ray scattering, we observe the effects of solvent vapors upon the morphology of poly(3-hexylthiophene)-phenyl-C 61-butyric acid methyl ester (P3HT-PCBM) bulk heterojunction thin film blends in real time; allowing us to observe morphological rearrangements that occur during this process as a function of solvent. We detail the swelling of the P3HT crystallites upon the introduction of solvent and the resulting changes in the P3HT crystallite morphology. We also demonstrate the ability for tetrahydrofuran vapor to induce crystallinity in PCBM domains. Additionally, we measure the nanoscale phase segregated domain size as a function of solvent vapor annealing and correlate this to the changes observed in the crystallite morphology of each component. Finally, we discuss the implications of the morphological changes induced by solvent vapor annealing on the device properties of BHJ solar cells. © 2012 American Chemical Society.

  10. Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing

    KAUST Repository

    Verploegen, Eric

    2012-10-23

    Using grazing incidence X-ray scattering, we observe the effects of solvent vapors upon the morphology of poly(3-hexylthiophene)-phenyl-C 61-butyric acid methyl ester (P3HT-PCBM) bulk heterojunction thin film blends in real time; allowing us to observe morphological rearrangements that occur during this process as a function of solvent. We detail the swelling of the P3HT crystallites upon the introduction of solvent and the resulting changes in the P3HT crystallite morphology. We also demonstrate the ability for tetrahydrofuran vapor to induce crystallinity in PCBM domains. Additionally, we measure the nanoscale phase segregated domain size as a function of solvent vapor annealing and correlate this to the changes observed in the crystallite morphology of each component. Finally, we discuss the implications of the morphological changes induced by solvent vapor annealing on the device properties of BHJ solar cells. © 2012 American Chemical Society.

  11. Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films

    Science.gov (United States)

    Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn

    2015-03-01

    Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.

  12. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing : Solvent and Thickness Effects

    NARCIS (Netherlands)

    Yang, Qiuyan; Loos, Katja

    2017-01-01

    Solvent vapor annealing of block copolymer (BCP) thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for

  13. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing: Solvent and Thickness Effects

    Directory of Open Access Journals (Sweden)

    Qiuyan Yang

    2017-10-01

    Full Text Available Solvent vapor annealing of block copolymer (BCP thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for nanolithography and hybrid materials preparation. However, precise control of the arising morphologies is essential, but in most cases difficult to achieve. In this work, we investigated the solvent and thickness effects on the morphology of poly(styrene-b-2 vinyl pyridine (PS-b-P2VP thin films with a film thickness range from 0.4 L0 up to 0.8 L0. Ordered perpendicular structures were achieved. One of the main merits of our work is that the phase behavior of the ultra-high molecular weight BCP thin films, which hold a 100-nm sized domain distance, can be easily monitored via current available techniques, such as scanning electron microscope (SEM, atomic force microscope (AFM, and transmission electron microscope (TEM. Systematic monitoring of the self-assembly behavior during solvent vapor annealing can thus provide an experimental guideline for the optimization of processing conditions of related BCP films systems.

  14. Substrate-induced phase of a [1]benzothieno[3,2-b]benzothiophene derivative and phase evolution by aging and solvent vapor annealing.

    Science.gov (United States)

    Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele

    2015-01-28

    Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.

  15. Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Zhang, Jianqi; Perlich, Jan

    2016-01-01

    Solvent vapor annealing (SVA) is frequently used to improve the ordering in diblock copolymer thin films. An important question is which SVA protocol should be chosen to ensure thermodynamic equilibrium. Here, we investigate two thin films from a low molar-mass, lamellae-forming polystyrene....... SVA cycles were carried out with cyclohexane, and the structural changes were followed in-situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). Before and after SVA, Dlam,par is significantly lower than in the bulk, i.e. the equi-librium value of Dlam,par in thin film...... glassy again, affinely. During the second SVA cycle on the thin film, the scaling behavior of the lamellar thickness is identical to the one during the first drying and to the drying behavior of the thicker film. We conclude that one cycle of solvent vapor treatment with a degree of swelling of ca. 1...

  16. A generalized method for alignment of block copolymer films: solvent vapor annealing with soft shear.

    Science.gov (United States)

    Qiang, Zhe; Zhang, Yuanzhong; Groff, Jesse A; Cavicchi, Kevin A; Vogt, Bryan D

    2014-08-28

    One of the key issues associated with the utilization of block copolymer (BCP) thin films in nanoscience and nanotechnology is control of their alignment and orientation over macroscopic dimensions. We have recently reported a method, solvent vapor annealing with soft shear (SVA-SS), for fabricating unidirectional alignment of cylindrical nanostructures. This method is a simple extension of the common SVA process by adhering a flat, crosslinked poly(dimethylsiloxane) (PDMS) pad to the BCP thin film. The impact of processing parameters, including annealing time, solvent removal rate and the physical properties of the PDMS pad, on the quality of alignment quantified by the Herman's orientational factor (S) is systematically examined for a model system of polystyrene-block-polyisoprene-block-polystyrene (SIS). As annealing time increases, the SIS morphology transitions from isotropic rods to highly aligned cylinders. Decreasing the rate of solvent removal, which impacts the shear rate imposed by the contraction of the PDMS, improves the orientation factor of the cylindrical domains; this suggests the nanostructure alignment is primarily induced by contraction of PDMS during solvent removal. Moreover, the physical properties of the PDMS controlled by the crosslink density impact the orientation factor by tuning its swelling extent during SVA-SS and elastic modulus. Decreasing the PDMS crosslink density increases S; this effect appears to be primarily driven by the changes in the solubility of the SVA-SS solvent in the PDMS. With this understanding of the critical processing parameters, SVA-SS has been successfully applied to align a wide variety of BCPs including polystyrene-block-polybutadiene-block-polystyrene (SBS), polystyrene-block-poly(N,N-dimethyl-n-octadecylammonium p-styrenesulfonate) (PS-b-PSS-DMODA), polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP). These results suggest that SVA-SS is a generalizable

  17. Micron-sized columnar grains of CH3NH3PbI3 grown by solvent-vapor assisted low-temperature (75 °C) solid-state reaction: The role of non-coordinating solvent-vapor

    Science.gov (United States)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2018-04-01

    The preparation of hybrid perovskite films with large columnar grains via low-temperature solid-state reaction remains a big challenge. Conventional solvent annealing using DMF, DMSO and ethanol, etc. fails to work effectively at low temperature (solar cells based on benzyl-alcohol-vapor annealing (75 °C), delivered much higher photovoltaic performance, better stability and smaller hysteresis than those based on conventional thermal annealing. Additionally, a champion power conversion efficiency (PCE) of 15.1% was obtained and the average PCE reached 12.2% with a tiny deviation. Finally, the mechanism of solvent annealing with non-coordinating solvent was discussed. Moreover, we revealed that high polarity and high boiling point of the solvent used for generating vapor, was critical to grow micron-sized columnar grains at such a low temperature (75 °C). This work will contribute to understanding the mechanism of grain growth in solvent annealing and improving its facility and effectiveness.

  18. An in situ grazing incidence x-ray scattering study of block copolymer thin films during solvent vapor annealing

    Science.gov (United States)

    Gu, Xiaodan; Gunkel, Ilja; Hexemer, Alexander; Russell, Thomas

    2014-03-01

    Although solvent vapor annealing (SVA) has been widely applied to block copolymer (BCP) thin films to obtain well-ordered microdomains, the mechanism of enhancing lateral order is not well understood. Here, we used real time in situ grazing-incidence small-angle x-ray scattering (in situGISAXS) to study the self-assembly of PS-b-P2VP BCP BCPs with different molecular weights thin films in THF vapor, a near neutral solvent for both blocks. Both swelling and deswelling behavior of BCP thin films were examined. The extent of swellingand the solvent removal rate not only affect the domain spacing of BCPs but also dictate the extent of lateral ordering of the BCP microdomains. Larger grains were observed at higher values of the swelling ratio (close to disordering). To preserve the maximal lateral ordering of the microdomains in the swollen state, the fastest solvent removal rate is required to freeze in the ordered microdomain structure of the swollen BCP film. We thanks support from U.S. Department of Energy BES under contract BES-DE-FG02-96ER45612 and ALS doctoral fellowship.

  19. Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.

    Science.gov (United States)

    You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin

    2013-06-28

    The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.

  20. A Solvent-Vapor Approach toward the Control of Block Ionomer Morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Mineart, Kenneth P.; Lee, Byeongdu; Spontak, Richard J.

    2016-04-26

    Sulfonated block ionomers possess advantageous properties for a wide range of diverse applications such as desalination membranes, fuel cells, electroactive media, and photovoltaic devices. Unfortunately, their inherently high incompatibilities and glass transition temperatures e ff ectively prevent the use of thermal annealing, routinely employed to re fi ne the morphologies of nonionic block copolymers. An alternative approach is therefore required to promote morphological equilibration in block ionomers. The present study explores the morphological characteristics of midblock- sulfonated pentablock ionomers (SBIs) di ff ering in their degree of sulfonation (DOS) and cast from solution followed by solvent-vapor annealing (SVA). Transmission electron microscopy con fi rms that fi lms deposited from di ff erent solvent systems form nonequilibrium morphologies due to solvent-regulated self-assembly and drying. A series of SVA tests performed with solvents varying in polarity reveals that exposing cast fi lms to tetrahydrofuran (THF) vapor for at least 2 h constitutes the most e ff ective SVA protocol, yielding the anticipated equilibrium morphology. That is, three SBI grades subjected to THF-SVA self-assemble into well-ordered lamellae wherein the increase in DOS is accompanied by an increase in lamellar periodicity, as measured by small-angle X-ray scattering.

  1. Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

    Science.gov (United States)

    Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei

    2016-09-15

    Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Three-dimensional block copolymer nanostructures by the solvent-annealing-induced wetting in anodic aluminum oxide templates.

    Science.gov (United States)

    Chu, Chiang-Jui; Chung, Pei-Yun; Chi, Mu-Huan; Kao, Yi-Huei; Chen, Jiun-Tai

    2014-09-01

    Block copolymers have been extensively studied over the last few decades because they can self-assemble into well-ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three-dimensional polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent-annealing-induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS-b-PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co-solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co-solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three-dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    Science.gov (United States)

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

  4. Self-organized morphological evolution and dewetting in solvent vapor annealing of spin coated polymer blend nanostructures.

    Science.gov (United States)

    Roy, Sudeshna; Sharma, Ashutosh

    2015-07-01

    Dewetting pathways, kinetics and morphologies of thin films of phase separating polymer blends are governed by the relative mobilities of the two components. We characterize the morphological transformations of the nanostructures of a PS/PMMA blend by annealing in toluene and chloroform vapors. Toluene leads to faster reorganization of PS, whereas chloroform engenders the opposite effect. Spin coating produces a very rough PMMA rich layer that completely wets the substrate and forms a plethora of slender columns protruding through the continuous PS rich layer on top. The nanostructures were stable under long thermal annealing but in the vapor annealing, phase separation and dewetting occurred readily to form the equilibrium structures of dewetted droplets of PS on top of PMMA which also climbed around the PS droplets to form rims. Toluene and chloroform annealing required around 50 h and 1 h respectively to attain the equilibrium. Substantial differences are observed in the intermediate morphologies (heights of nanostructures, roughness and size). PMMA columns remained embedded in the dewetted PS droplets, whereas a high mobility of PMMA in chloroform allowed its rapid evacuation during dewetting to produce an intermediate swiss-cheese like morphology of PS domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  6. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  7. Solvent Annealing Induced Perpendicular Orientation of Cylindrical Microdomains in Polystyrene-b-poly(4-hydroxyl styrene)/PEG Oligomer Blend Thin Film Made by Spin-coating from Selective Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Taito; Yamamoto, Katsuhiro, E-mail: yamamoto.katsuhiro@nitech.ac.jp [Department of Materials Science and Technology, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2011-01-01

    The microphase separated structure of PS-b-PHS/PEG blend thin film with thickness of 500 {approx} 600 nm was investigated by grazing incidence small angle X-ray scattering. The thin film was obtained by two different solutions; one was THF which was common good solvent for all components of polymers used here. The other is toluene which was selective solvent for PS and poor-solvent for PHS and PEG. The equilibrium morphology of the block copolymer and blend sample was hexagonally packed cylinder in the bulk and thin film. The structure in the thin film obtained by spin cast from toluene solution was non-equilibrium. After THF vopar annealing of the thin film (cast from toluene), the highly ordered and perpendicular oriented cylindrical structure was obtained. Perpendicular orientation was failure when the thin film sample made by spin cast from THF solution and subsequent THF vapor annealing. The perpendicular nano-holes were fabricated after removing PEG oligomer by washing with water.

  8. Vapor Annealing Controlled Crystal Growth and Photovoltaic Performance of Bismuth Triiodide Embedded in Mesostructured Configurations.

    Science.gov (United States)

    Kulkarni, Ashish; Singh, Trilok; Jena, Ajay K; Pinpithak, Peerathat; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-03-21

    Low stability of organic-inorganic lead halide perovskite and toxicity of lead (Pb) still remain a concern. Therefore, there is a constant quest for alternative nontoxic and stable light-absorbing materials with promising optoelectronic properties. Herein, we report about nontoxic bismuth triiodide (BiI 3 ) photovoltaic device prepared using TiO 2 mesoporous film and spiro-OMeTAD as electron- and hole-transporting materials, respectively. Effect of annealing methods (e.g., thermal annealing (TA), solvent vapor annealing (SVA), and Petri dish covered recycled vapor annealing (PR-VA)) and different annealing temperatures (90, 120, 150, and 180 °C for PR-VA) on BiI 3 film morphology have been investigated. As found in the study, grain size increased and film uniformity improved as temperature was raised from 90 to 150 °C. The photovoltaic devices based on BiI 3 films processed at 150 °C with PR-VA treatment showed power conversion efficiency (PCE) of 0.5% with high reproducibility, which is, so far, the best PCE reported for BiI 3 photovoltaic device employing organic hole-transporting material (HTM), owing to the increase in grain size and uniform morphology of BiI 3 film. These devices showed stable performance even after 30 days of exposure to 50% relative humidity, and after 100 °C heat stress and 20 min light soaking test. More importantly, the study reveals many challenges and room (discussed in the details) for further development of the BiI 3 photovoltaic devices.

  9. Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing.

    Science.gov (United States)

    Deng, Wanyuan; Gao, Ke; Yan, Jun; Liang, Quanbin; Xie, Yuan; He, Zhicai; Wu, Hongbin; Peng, Xiaobin; Cao, Yong

    2018-03-07

    In this study, we demonstrate that remarkably reduced open-circuit voltage in highly efficient organic solar cells (OSCs) from a blend of phenyl-C 61 -butyric acid methyl ester and a recently developed conjugated small molecule (DPPEZnP-THD) upon solvent vapor annealing (SVA) is due to two independent sources: increased radiative recombination and increased nonradiative recombination. Through the measurements of electroluminescence due to the emission of the charge-transfer state and photovoltaic external quantum efficiency measurement, we can quantify that the open-circuit voltage losses in a device with SVA due to the radiative recombination and nonradiative recombination are 0.23 and 0.31 V, respectively, which are 0.04 and 0.07 V higher than those of the as-cast device. Despite of the reduced open-circuit voltage, the device with SVA exhibited enhanced dissociation of charge-transfer excitons, leading to an improved short-circuit current density and a remarkable power conversion efficiency (PCE) of 9.41%, one of the best for solution-processed OSCs based on small-molecule donor materials. Our study also clearly shows that removing the nonradiative recombination pathways and/or suppressing energetic disorder in the active layer would result in more long-lived charge carriers and enhanced open-circuit voltage, which are prerequisites for further improving the PCE.

  10. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells.

    Science.gov (United States)

    Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2017-06-07

    We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.

  11. Interfacial charge trapping in the polymer solar cells and its elimination by solvent annealing

    Directory of Open Access Journals (Sweden)

    A. K. Chauhan

    2016-09-01

    Full Text Available The PCDTBT:PCBM solar cells were fabricated adopting a tandem layer approach to investigate the critical issues of charge trapping, radiation absorption, and efficiency in polymer solar cells. This layered structure was found to be a source of charge trapping which was identified and confirmed by impedance spectroscopy. The low efficiency in multilayered structures was related to trapping of photo-generated carriers and low carrier mobility, and thus an increased recombination. Solvent annealing of the structures in tetrahydrofuran vapors was found beneficial in homogenizing the active layer, dissolving additional interfaces, and elimination of charge traps which improved the carrier mobilities and eventually the device efficiencies.

  12. Highly crystalline films of PCPDTBT with branched side chains by solvent vapor crystallization: influence on opto-electronic properties.

    Science.gov (United States)

    Fischer, Florian S U; Trefz, Daniel; Back, Justus; Kayunkid, Navaphun; Tornow, Benjamin; Albrecht, Steve; Yager, Kevin G; Singh, Gurpreet; Karim, Alamgir; Neher, Dieter; Brinkmann, Martin; Ludwigs, Sabine

    2015-02-18

    PCPDTBT, a marginally crystallizable polymer, is crystallized into a new crystal structure using solvent-vapor annealing. Highly ordered areas with three different polymer-chain orientations are identified using TEM/ED, GIWAXS, and polarized Raman spectroscopy. The optical and structural properties differ significantly from films prepared by standard device preparation protocols. Bilayer solar cells, however, show similar performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime; Liang, Ru-Ze; Wang, Kai; Cruciani, Federico; Kan, Zhipeng; Wohlfahrt, Markus; Tang, Ming-Chun; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  14. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime

    2017-12-19

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  15. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control of dry cleaning solvent vapor... cleaning solvent vapor losses. (a) For the purpose of this section, “dry cleaning operation” means that process by which an organic solvent is used in the commercial cleaning of garments and other fabric...

  16. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  17. The role of ultra-fast solvent evaporation on the directed self-assembly of block polymer thin films

    Science.gov (United States)

    Drapes, Chloe; Nelson, G.; Grant, M.; Wong, J.; Baruth, A.

    The directed self-assembly of nano-structures in block polymer thin films viasolvent vapor annealing is complicated by several factors, including evaporation rate. Solvent vapor annealing exposes a disordered film to solvent(s) in the vapor phase, increasing mobility and tuning surface energy, with the intention of producing an ordered structure. Recent theoretical predictions reveal the solvent evaporation affects the resultant nano-structuring. In a competition between phase separation and kinetic trapping during drying, faster solvent removal can enhance the propagation of a given morphology into the bulk of the thin film down to the substrate. Recent construction of a purpose-built, computer controlled solvent vapor annealing chamber provides control over forced solvent evaporation down to 15 ms. This is accomplished using pneumatically actuated nitrogen flow into and out of the chamber. Furthermore, in situ spectral reflectance, with 10 ms temporal resolution, monitors the swelling and evaporation. Presently, cylinder-forming polystyrene-block-polylactide thin films were swollen with 40% (by volume) tetrahydrofuran, followed by immediate evaporation under a variety of designed conditions. This includes various evaporation times, ranging from 15 ms to several seconds, and four unique rate trajectories, including linear, exponential, and combinations. Atomic force microscopy reveals specific surface, free and substrate, morphologies of the resultant films, dependent on specific evaporation conditions. Funded by the Clare Boothe Luce Foundation and Nebraska EPSCoR.

  18. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  19. Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication via Solvent Annealing.

    Science.gov (United States)

    Xiong, Shisheng; Wan, Lei; Ishida, Yoshihito; Chapuis, Yves-Andre; Craig, Gordon S W; Ruiz, Ricardo; Nealey, Paul F

    2016-08-23

    Directed self-assembly (DSA) of block copolymers (BCPs) is a leading strategy to pattern at sublithographic resolution in the technology roadmap for semiconductors and is the only known solution to fabricate nanoimprint templates for the production of bit pattern media. While great progress has been made to implement block copolymer lithography with features in the range of 10-20 nm, patterning solutions below 10 nm are still not mature. Many BCP systems self-assemble at this length scale, but challenges remain in simultaneously tuning the interfacial energy atop the film to control the orientation of BCP domains, designing materials, templates, and processes for ultra-high-density DSA, and establishing a robust pattern transfer strategy. Among the various solutions to achieve domains that are perpendicular to the substrate, solvent annealing is advantageous because it is a versatile method that can be applied to a diversity of materials. Here we report a DSA process based on chemical contrast templates and solvent annealing to fabricate 8 nm features on a 16 nm pitch. To make this possible, a number of innovations were brought in concert with a common platform: (1) assembling the BCP in the phase-separated, solvated state, (2) identifying a larger process window for solvated triblock vs diblock BCPs as a function of solvent volume fraction, (3) employing templates for sub-10-nm BCP systems accessible by lithography, and (4) integrating a robust pattern transfer strategy by vapor infiltration of organometallic precursors for selective metal oxide synthesis to prepare an inorganic hard mask.

  20. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); An, Tae Kyu [Department of Polymer Science & Engineering, Korea National University of Transportation, 50 Daehak-Ro, Chungju (Korea, Republic of); Nam, Sooji, E-mail: sjnam15@etri.re.kr [Information Control Device Section, Electronics and Telecommunications Research Institute, Daejeon, 305-700 (Korea, Republic of); Kim, Se Hyun, E-mail: shkim97@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 712-749 (Korea, Republic of); Jang, Jaeyoung, E-mail: jyjang15@hanyang.ac.kr [Department of Energy Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Chan Eon, E-mail: cep@postech.ac.kr [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2017-08-31

    Highlights: • Sol-gel-derived aluminum oxide thin films were prepared using ultraviolet (UV) annealing. • UV irradiation dramatically promoted the densification of AlO{sub x} during the annealing stage, thereby forming a close-packed AlO{sub x} film. • The resulting AlO{sub x} films deposited on polymer substrates exhibited good water vapor blocking properties with low water vapor transmission rates (WVTRs). - Abstract: Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlO{sub x}) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (<200 °C) that are compatible with commercial plastic substrates. The density of the UV-annealed AlO{sub x} thin film at 180 °C was comparable to that of AlO{sub x} thin films that have been thermally annealed at 350 °C. Furthermore, the UV-annealed AlO{sub x} thin films exhibited a high optical transparency in the visible region (>99%) and good electrical insulating properties (∼10{sup −7} A/cm{sup 2} at 2 MV/cm). Finally, we confirmed that a dense AlO{sub x} thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlO{sub x} thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m{sup −2} day{sup −1} (25 °C, 50% relative humidity) and 0.26 g m{sup −2} day{sup −1}, respectively.

  1. Modeling vapor pressures of solvent systems with and without a salt effect: An extension of the LSER approach

    International Nuclear Information System (INIS)

    Senol, Aynur

    2015-01-01

    Highlights: • A new polynomial vapor pressure approach for pure solvents is presented. • Solvation models reproduce the vapor pressure data within a 4% mean error. • A concentration-basis vapor pressure model is also implemented on relevant systems. • The reliability of existing models was analyzed using log-ratio objective function. - Abstract: A new polynomial vapor pressure approach for pure solvents is presented. The model is incorporated into the LSER (linear solvation energy relation) based solvation model framework and checked for consistency in reproducing experimental vapor pressures of salt-containing solvent systems. The developed two structural forms of the generalized solvation model (Senol, 2013) provide a relatively accurate description of the salting effect on vapor pressure of (solvent + salt) systems. The equilibrium data spanning vapor pressures of eighteen (solvent + salt) and three (solvent (1) + solvent (2) + salt) systems have been subjected to establish the basis for the model reliability analysis using a log-ratio objective function. The examined vapor pressure relations reproduce the observed performance relatively accurately, yielding the overall design factors of 1.084, 1.091 and 1.052 for the integrated property-basis solvation model (USMIP), reduced property-basis solvation model and concentration-dependent model, respectively. Both the integrated property-basis and reduced property-basis solvation models were able to simulate satisfactorily the vapor pressure data of a binary solvent mixture involving a salt, yielding an overall mean error of 5.2%

  2. Morphology versus Vertical Phase Segregation in Solvent Annealed Small Molecule Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available The deep study of solvent annealed small molecules bulk heterojunction organic solar cells based on DPP(TBFu2 : PC60BM blend is carried out. To reveal the reason of the solvent annealing advantage over the thermal one, capacitance-voltage measurements were applied. It was found that controlling the vertical phase segregation in the solar cells a high fullerene population in the vicinity of the cathode could be achieved. This results in increase of the shunt resistance of the cell, thus improving the light harvesting efficiency.

  3. Detection of organic vapors on sputtered and annealed thin Au films

    Science.gov (United States)

    Kvitek, O.; Kopacek, V.; Reznickova, A.; Svorcik, V.

    2018-03-01

    Unique optical properties of metal nanostructures enable construction of new types of chemical sensors. Nanostructures composed of Au on glass substrate were prepared by annealing of 2-20 nm thick sputtered Au films at 300 °C for 1 h. The annealing leads to transformation of the as sputtered continuous Au layers to a nanoisland structure. The forming nanostructure shows a strong, well defined surface plasmon resonance absorption band in UV-Vis spectrum, which is useful for construction of a chemical sensor. The samples were used to detect vapors of acetone and water in an experimental testing apparatus. The achieved signal-to-noise ratio was 583 and 386 for acetone and water vapors, respectively on the nanostructure prepared from 4 nm thick Au layer. The nanostructured sensitive layers, however, showed poor signal stability; therefore a polymer overlayer was introduced to protect it. The employed polystyrene film prepared by spin-coating improved sensitivity and selectivity of the sensor, while the dynamic properties of the sensing influenced only slightly.

  4. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing

    Science.gov (United States)

    Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769

  5. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  6. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  7. Simulation of Defect Reduction in Block Copolymer Thin Films by Solvent Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Su-Mi; Khaira, Gurdaman S.; Ramírez-Hernández, Abelardo; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-01-20

    Solvent annealing provides an effective means to control the self-assembly of block copolymer (BCP) thin films. Multiple effects, including swelling, shrinkage, and morphological transitions, act in concert to yield ordered or disordered structures. The current understanding of these processes is limited; by relying on a theoretically informed coarse-grained model of block copolymers, a conceptual framework is presented that permits prediction and rationalization of experimentally observed behaviors. Through proper selection of several process conditions, it is shown that a narrow window of solvent pressures exists over which one can direct a BCP material to form well-ordered, defect-free structures.

  8. Solvent-annealing-induced nanowetting in templates: towards tailored polymer nanostructures.

    Science.gov (United States)

    Chen, Jiun-Tai; Lee, Chih-Wei; Chi, Mu-Huan; Yao, I-Chun

    2013-02-25

    We study the solvent-annealing-induced nanowetting in templates using porous anodic aluminum oxide membranes. The morphology of polystyrene and poly(methyl methacrylate) nanostructures can be controlled, depending on whether the swollen polymers are in the partial or complete wetting regimes, which are characterized by the spreading coefficient. When the swollen polymers are in the partial wetting regime, polymers wet the nanopores by capillary action, resulting in the formation of polymer nanorods. When the swollen polymers are in the complete wetting regime, polymers form wetting layers in the nanopores, resulting in the formation of polymer nanotubes. The solubility parameters of polymers and solvents are also used to predict the wetting behavior of swollen polymers in cylindrical geometry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highχ block copolymers for directed self-assembly patterning without the need for topcoat or solvent annealing

    Science.gov (United States)

    Xu, Kui; Hockey, Mary Ann; Calderas, Eric; Guerrero, Douglas; Sweat, Daniel; Fiehler, Jeffrey

    2017-03-01

    High-χ block copolymers for directed self-assembly (DSA) patterning that do not need topcoat or solvent annealing have been developed. A variety of functionalities have been successfully added into the block copolymers, such as balanced surface energy between the polymer blocks, outstandingly high χ, tunable glass transition temperature (Tg), and selective crosslinking. Perpendicular orientation control, as desired for patterning, of the block copolymers can be simply achieved by thermal annealing due to the equal surface energy of the polymer blocks at the annealing temperatures, which allows avoiding solvent annealing or top-coat. The χ value can be tuned up to achieve L0 as low as 8-10 nm for lamellar-structured block copolymers and hole/pillar size as small as 5-6 nm for cylinder-structured block copolymers. The Tg of the block copolymers can be tuned to improve the kinetics of thermal annealing by enhancing the polymer chain mobility. Block-selective crosslinking facilitates the pattern transfer by mitigating pattern collapse during wet etching and improving oxygen plasma etching selectivity between the polymer blocks. This paper provides an introductory review of our high-χ block copolymer materials with various functionalities for achieving improved DSA performance.

  10. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    Science.gov (United States)

    O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  11. Chemical and morphological modifications of single layer graphene submitted to annealing in water vapor

    Science.gov (United States)

    Rolim, Guilherme Koszeniewski; Corrêa, Silma Alberton; Galves, Lauren Aranha; Lopes, João Marcelo J.; Soares, Gabriel Vieira; Radtke, Cláudio

    2018-01-01

    Modifications of single layer graphene transferred to SiO2/Si substrates resulting from annealing in water vapor were investigated. Near edge X-ray absorption fine structure spectroscopy evidenced graphene puckering between 400 and 500 °C. Synchrotron radiation based X-ray photoelectron spectroscopy showed variation of sp2 and sp3C bonding configurations specially in this same temperature range. Moreover, oxygen related functionalities are formed as a result of water vapor annealing. Based on these results and complementary Raman and nuclear reaction analysis, one distinguishes three different regimes of water interaction with graphene concerning modifications of the graphene layer. In the low temperature range (200-400 °C), no prominent modification of graphene itself is observed. At higher temperatures (400-500 °C), to accommodate newly formed oxygen functionalities, the flat and continuous sp2 bonding network of graphene is disrupted, giving rise to a puckered layer. For 600 °C and above, shrinking of graphene domains and a higher doping level take place.

  12. Analysis of potassium nitrate purification with recovery of solvent through single effect mechanical vapor compression

    Directory of Open Access Journals (Sweden)

    Kiprotich E. Kosgey

    2017-12-01

    Full Text Available Analysis of purification of potassium nitrate with incorporation of single effect mechanical vapor compressor for solvent recovery was done. Analysis focused on the effect of concentration and temperature of mother liquor on the energy efficiency of the process and the amount of recovered solvent. Performance coefficient of mechanical vapor compressor ranged between 1.5 and 7.5 depending primarily on the temperature of mother liquor. It was found that with increase in temperature of mother liquor through pre-heating, the power of the compressor, compression ratio and amount of heat supplied to the evaporator decrease. For a 40% concentrated feed solution and mother liquor temperature above 80 °C, performance coefficient is higher than 4. It is therefore concluded that preheating mother liquor and reduction of the effect of concentration of both mother liquor and concentrated waste stream through other methods reduces the power consumption of purification process. Keywords: Performance coefficient, Mother liquor, Concentrated solution, Recovered solvent, Boiling point elevation, Mechanical vapor compressor

  13. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    Science.gov (United States)

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.

  14. Solvent-vapor-assisted dewetting of prepatterned thin polymer films: control of morphology, order, and pattern miniaturization.

    Science.gov (United States)

    Bhandaru, Nandini; Goohpattader, Partho Sarathi; Faruqui, Danish; Mukherjee, Rabibrata; Sharma, Ashutosh

    2015-03-17

    Ultrathin (dewet by the growth of surface instability, the wavelength (λ) of which depends on the film thickness (h(f)). While the dewetting of a flat polymer thin film results in random structures, we show that the dewetting of a prepatterned film results in myriad ordered mesoscale morphologies under specific conditions. Such a film undergoes rupture over the thinnest parts when the initial local thickness of these zones (h(rm)) is lower than a limiting thickness h(lim) ≈ 10 nm. Additionally, the width of the pattern grooves (l(s)) must be wider than λ(s) corresponding to a flat film having a thickness of h(rm) for pattern-directed dewetting to take place over surface-tension-induced flattening. We first present an experimentally obtained morphology phase diagram that captures the conditions where a transition from surface-tension-induced flattening to pattern-directed-rupture takes place. Subsequently, we show the versatility of this technique in achieving a variety of aligned mesopatterns starting from a prepatterned film with simple grating geometry. The morphology of the evolving patterns depends on several parameters such as the initial film thickness (h(f)), prepattern amplitude (h(st)), duration of solvent vapor exposure (SVE), and wettability of the stamp used for patterning. Periodic rupture of the film at regular intervals imposes directionality on the evolving patterns, resulting in isolated long threads/cylindrical ridges of polymers, which subsequently disintegrate into an aligned array of droplets due to Rayleigh-Plateau instability under specific conditions. Other patterns such as a double periodic array of droplets and an array of holes are also possible to obtain. The evolution can be interrupted at any intermediate stage by terminating the solvent vapor annealing, allowing the creation of pattern morphology on demand. The created patterns are significantly miniaturized in size as compared to features obtained from dewetting a flat film with

  15. Effect of water vapor on annealing scale formation on 316 SS

    International Nuclear Information System (INIS)

    Cheng, S.-Y.; Kuan, S.-L.; Tsai, W.-T.

    2006-01-01

    The oxidation behavior of 316 stainless steel (SS) annealed in air containing 0.1 atm water vapor at temperatures ranging from 800 to 1030 deg. C was investigated. A kinetic study of the oxidation was made by employing thermal-gravimetric analysis (TGA). The morphology, composition and structure of the scale were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experimental results showed that significant breakaway oxidation occurred, resulting in substantial weight increase, as the steel was annealed in moist air at temperatures above 950 deg. C. The scaling behavior of 316 SS in wet air at 1030 deg. C could be divided into two stages based on the alteration of the oxidation rate. In each stage, the scale on 316 SS exhibited a different structure and morphology. The complex process of the formation of scale in wet air was discussed and proposed

  16. Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells

    Science.gov (United States)

    Zhu, Leize; Yuh, Brian; Schoen, Stefan; Li, Xinpei; Aldighaithir, Mohammed; Richardson, Beau J.; Alamer, Ahmed; Yu, Qiuming

    2016-03-01

    Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI). Followed by dimethylsulfoxide (DMSO) vapor-assisted thermal annealing, small, faceted perovskite grains grew into large, smooth grains via the possible mechanism involving bond breaking and reforming mediated by DMSO solvent molecules. The absorption onset was extended to 950 and 1010 nm for the CH3NH3SnxPb1-xI3 perovskites with x = 0.1 and 0.25, respectively. The highest PCE of 10.25% was achieved from the planar perovskite solar cell with the CH3NH3Sn0.1Pb0.9I3 layer prepared via the thermal plus DMSO vapor-assisted thermal annealing. This research provides a way to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, which opens an avenue to grow perovskite materials with desired properties to enhance device performance.Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI

  17. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  18. Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Maheshwar Shrestha

    2018-03-01

    Full Text Available Low-temperature growth of microcrystalline silicon (mc-Si is attractive for many optoelectronic device applications. This paper reports a detailed comparison of optical properties, microstructure, and morphology of amorphous silicon (a-Si thin films crystallized by furnace annealing and flash lamp annealing (FLA at temperatures below the softening point of glass substrate. The initial a-Si films were grown by plasma enhanced chemical vapor deposition (PECVD. Reflectance measurement indicated characteristic peak in the UV region ~280 nm for the furnace annealed (>550 °C and flash lamp annealed films, which provided evidence of crystallization. The film surface roughness increased with increasing the annealing temperature as well as after the flash lamp annealing. X-ray diffraction (XRD measurement indicated that the as-deposited samples were purely amorphous and after furnace crystallization, the crystallites tended to align in one single direction (202 with uniform size that increased with the annealing temperature. On the other hand, the flash lamp crystalized films had randomly oriented crystallites with different sizes. Raman spectroscopy showed the crystalline volume fraction of 23.5%, 47.3%, and 61.3% for the samples annealed at 550 °C, 650 °C, and with flash lamp, respectively. The flash lamp annealed film was better crystallized with rougher surface compared to furnace annealed ones.

  19. Morphological control in polymer solar cells using low-boiling-point solvent additives

    Science.gov (United States)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  20. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.

    Science.gov (United States)

    Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin

    2017-11-03

    Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.

  1. Determination of solvent concentration-dependent dispersion in the vapor extraction (VAPEX) process

    Energy Technology Data Exchange (ETDEWEB)

    Abukhalifeh, H.; Lohi, A.; Upreti, S. [Ryerson Polytechnic Univ., Toronto, ON (Canada)

    2008-07-01

    This paper presented the results of a computational algorithm that revealed the optimal conditions required for vapor extraction (VAPEX) for a solvent gas-heavy oil system. VAPEX is a promising recovery process because it requires low energy use and emits fewer greenhouse gases to the atmosphere compared to other enhanced oil recovery methods. The process is governed by the dispersion of solvent gases into heavy oil and bitumen. As such, it is essential to accurately determine solvent dispersion in VAPEX in order to effectively predict the amount and time scale of oil recovery, and to optimize field operations. VAPEX experiments were conducted in this study to determined the dispersion coefficient of a solvent as a function of its concentration in heavy oil and bitumen. The principles of variational calculus were used together with a mass transfer model of the experimental process. It was concluded that the oil production determined by the model should agree with its experimental counterpart, given the optimal gas dispersion versus concentration function.

  2. Excitation intensity dependent photoluminescence of annealed two-dimensional MoS_2 grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Kaplan, D.; Swaminathan, V.; Mills, K.; Lee, J.; Torrel, S.

    2016-01-01

    Here, we present detailed results of Raman and photoluminescence (PL) characterization of monolayers of MoS_2 grown by chemical vapor deposition (CVD) on SiO_2/Si substrates after thermal annealing at 150 °C, 200 °C, and 250 °C in an argon atmosphere. In comparison to the as-grown monolayers, annealing in the temperature range of 150–250 °C brings about significant changes in the band edge luminescence. It is observed that annealing at 150 °C gives rise to a 100-fold increase in the PL intensity and produces a strong band at 1.852 eV attributed to a free-to-bound transition that dominates over the band edge excitonic luminescence. This band disappears for the higher annealing temperatures. The improvement in PL after the 200 °C anneal is reduced in comparison to that obtained after the 150 °C anneal; this is suggested to arise from a decrease in the non-radiative lifetime caused by the creation of sulfur di-vacancies. Annealing at 250 °C degrades the PL in comparison to the as-grown sample because of the onset of disorder/decomposition of the sample. It is clear that the PL features of the CVD-grown MoS_2 monolayer are profoundly affected by thermal annealing in Ar atmosphere. However, further detailed studies are needed to identify, unambiguously, the role of native defects and/or adsorbed species in defining the radiative channels in annealed samples so that the beneficial effect of improvement in the optical efficiency of the MoS_2 monolayers can be leveraged for various device applications.

  3. Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon

    Science.gov (United States)

    Baker, A. A.; Bayu Aji, L. B.; Bae, J. H.; Stavrou, E.; Steich, D. J.; McCall, S. K.; Kucheyev, S. O.

    2018-05-01

    We describe the fabrication and characterization of 25–800 nm thick MgB2 films on glassy carbon substrates by Mg vapor annealing of sputter-deposited amorphous B films. Results demonstrate a critical role of both the initial B film thickness and the temperature–time profile on the microstructure, elemental composition, and superconducting properties of the resultant MgB2 films. Films with thicknesses of 55 nm and below exhibit a smooth surface, with a roughness of 1.1 nm, while thicker films have surface morphology consisting of elongated nano-crystallites. The suppression of the superconducting transition temperature for thin films scales linearly with the oxygen impurity concentration and also correlates with the amount of lattice disorder probed by Raman scattering. The best results are obtained by a rapid (12 min) anneal at 850 °C with large temperature ramp and cooling rates of ∼540 °C min‑1. Such fast processing suppresses the deleterious oxygen uptake.

  4. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    Science.gov (United States)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  5. Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers

    International Nuclear Information System (INIS)

    Simão, Claudia; Khunsin, Worawut; Kehagias, Nikolaos; Sotomayor Torres, Clivia M; Salaun, Mathieu; Zelsmann, Marc; Morris, Michael A

    2014-01-01

    Directed self-assembly of block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO) thin film was achieved by a one-pot methodology of solvent vapor assisted nanoimprint lithography (SAIL). Simultaneous solvent-anneal and imprinting of a PS-b-PEO thin film on silicon without surface pre-treatments yielded a 250 nm line grating decorated with 20 nm diameter nanodots array over a large surface area of up to 4′ wafer scale. The grazing-incidence small-angle x-ray scattering diffraction pattern showed the fidelity of the NIL stamp pattern replication and confirmed the periodicity of the BCP of 40 nm. The order of the hexagonally arranged nanodot lattice was quantified by SEM image analysis using the opposite partner method and compared to conventionally solvent-annealed block copolymer films. The imprint-based SAIL methodology thus demonstrated an improvement in ordering of the nanodot lattice of up to 50%, and allows significant time and cost reduction in the processing of these structures. (papers)

  6. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The performance of simulated annealing in parameter estimation for vapor-liquid equilibrium modeling

    Directory of Open Access Journals (Sweden)

    A. Bonilla-Petriciolet

    2007-03-01

    Full Text Available In this paper we report the application and evaluation of the simulated annealing (SA optimization method in parameter estimation for vapor-liquid equilibrium (VLE modeling. We tested this optimization method using the classical least squares and error-in-variable approaches. The reliability and efficiency of the data-fitting procedure are also considered using different values for algorithm parameters of the SA method. Our results indicate that this method, when properly implemented, is a robust procedure for nonlinear parameter estimation in thermodynamic models. However, in difficult problems it still can converge to local optimums of the objective function.

  8. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    Science.gov (United States)

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  9. Heterojunctions formed by annealing of GaSe and InSe layered crystals in zinc vapor

    Directory of Open Access Journals (Sweden)

    Kudrynskyi Z. R.

    2012-12-01

    Full Text Available The article presents a method of creating heterojunc¬tions based on semiconductors with different lattice types. Substrates manufactured from GaSe and InSe layered crystals were annealed in Zn vapor. This way, n-ZnSe–p-GaSe and n-ZnSe–p-InSe heterojunctions were obtained. The obtained heterojunctions are photo¬sensitive in near and infrared spectral regions. This method opens up greate possibilities of producing heterostructures with a desired sensitivity band.

  10. Excitation intensity dependent photoluminescence of annealed two-dimensional MoS{sub 2} grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Swaminathan, V. [U.S. Army RDECOM-ARDEC, Fuze Precision Armaments and Technology Directorate, Picatinny Arsenal, New Jersey 07806 (United States); Mills, K. [U.S. Army RDECOM-ARDEC, Energetics, Warheads and Manufacturing Technology Directorate, Picatinny Arsenal, New Jersey 07806 (United States); Lee, J. [Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon, 305-600 (Korea, Republic of); Torrel, S. [Department of Materials Science and Engineering, Piscataway, Rutgers, The State University of New Jersey, New Jersey 08854 (United States)

    2016-06-07

    Here, we present detailed results of Raman and photoluminescence (PL) characterization of monolayers of MoS{sub 2} grown by chemical vapor deposition (CVD) on SiO{sub 2}/Si substrates after thermal annealing at 150 °C, 200 °C, and 250 °C in an argon atmosphere. In comparison to the as-grown monolayers, annealing in the temperature range of 150–250 °C brings about significant changes in the band edge luminescence. It is observed that annealing at 150 °C gives rise to a 100-fold increase in the PL intensity and produces a strong band at 1.852 eV attributed to a free-to-bound transition that dominates over the band edge excitonic luminescence. This band disappears for the higher annealing temperatures. The improvement in PL after the 200 °C anneal is reduced in comparison to that obtained after the 150 °C anneal; this is suggested to arise from a decrease in the non-radiative lifetime caused by the creation of sulfur di-vacancies. Annealing at 250 °C degrades the PL in comparison to the as-grown sample because of the onset of disorder/decomposition of the sample. It is clear that the PL features of the CVD-grown MoS{sub 2} monolayer are profoundly affected by thermal annealing in Ar atmosphere. However, further detailed studies are needed to identify, unambiguously, the role of native defects and/or adsorbed species in defining the radiative channels in annealed samples so that the beneficial effect of improvement in the optical efficiency of the MoS{sub 2} monolayers can be leveraged for various device applications.

  11. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  12. Thermal behaviour of agitated gas-liquid reactors with a vaporizing solvent/air oxidation of hydrocarbons

    NARCIS (Netherlands)

    Westerterp, K.R.; Crombeen, P.R.J.J.

    1983-01-01

    Many highly exothermic gas-liquid reactions are carried out with a vaporizing solvent, which after condensation is returned to the reactor. In this way the liberated reaction heat for a large part is absorbed by the cooling water flowing through the condenser. In order to determine the influence of

  13. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    International Nuclear Information System (INIS)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; James, R.B.

    2010-01-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  14. The development of substitute inks and controls for reducing workplace concentrations of organic solvent vapors in a vinyl shower curtain printing plant.

    Science.gov (United States)

    Piltingsrud, Harley V; Zimmer, Anthony T; Rourke, Aaron B

    2003-08-01

    During the summer of 1994, football players at a practice field reported noxious odors in the area. Ohio Environmental Protection Agency (OEPA) investigations of industries surrounding the field included a printing facility producing vinyl shower curtains with screen-printed designs. Though not the source of the odor, they were discharging volatile organic compounds directly to the environs in violation of OEPA regulations. To achieve compliance they installed a catalytic oxidizer for treating discharged air. Due to high equipment costs, the capacity of the installed catalytic oxidizer resulted in a substantial reduction in discharged air flow rates and increased solvent vapor concentrations within the workplace. Vapor levels caused worker discomfort, prompting a request for assistance from the Ohio Bureau of Workers Compensation. The vapor concentrations were found to exceed NIOSH, OSHA, and ACGIH acceptable exposure levels. The workers were then required to wear organic vapor removing respirators full-time while printing as a temporary protective measure. The company requested NIOSH assistance in finding methods to reduce solvent vapor concentrations. NIOSH studies included the identification of the sources and relative magnitude of solvent emissions from the printing process, the design of controls for the emissions, and the development of substitute inks using non-photochemically reactive solvents. The new ink system and controls allowed OEPA removal of the requirement for the treatment of discharged air and substantial increases in dilution ventilation. Increased ventilation would permit reduction in worker exposures to less than 1/3 mixture TLV levels and removal of requirements for respirator usage. This solution was the result of a comprehensive review of all facets of the problem, including OEPA regulations. It also required cooperative work between the company and federal, state, and local governmental agencies.

  15. The detection of organic solvent vapor by using polymer coated chemocapacitor sensor

    Science.gov (United States)

    Rusdiarna Indrapraja, Apik; Rivai, Muhammad; Arifin, Achmad; Purwanto, Djoko

    2017-05-01

    A chemocapacitor consists of planar interdigital electrodes (IDE) made by two comb electrodes on a substrate. A dielectric film was applied on the electrodes in which the absorbed vapor will modify its permittivity. This study has fabricated chemocapacitor with the IDE distance of 0.5 mm, while the dielectric film was a sensitive layer consisting of a polymeric material. The deposition of the polymeric film was accomplished by drop casting. A sensor array consisting of four chemocapacitors coated with different polymers namely PEG-1540, PEG-20M, PEG-6000, and PVP was used to obtain the pattern of shift in the capacitance. The integrated circuit AD7746 was used as the capacitance to-digital converter (CDC). The organic solvents of ethanol, benzene, and aceton were used as the vapor samples in this experiment. The results showed that the change in the capacitance value increases proportionally to the concentration of vapour where sensors coated with PEG-1540 and PVP have higher sensitivity, i.e. 0.0028pF/part per thousand and 0.0027pF/part per thousand, respectively. Based on the capacitance to digital conversion capabilities, the system provides there solution of 0.4084ppm. The sensor array could produce a different pattern for each of the vapor sample. The Neural Network pattern recognition system could identify the type of vapor automatically with the root mean square error of 10-5

  16. Comparative X-ray photoelectron spectroscopy study of plasma enhanced chemical vapor deposition and micro pressure chemical vapor deposition of phosphorus silicate glass layers after rapid thermal annealing

    International Nuclear Information System (INIS)

    Beshkov, G.; Krastev, V.; Gogova, D.; Talik, E.; Adamies, M.

    2008-01-01

    In this paper the bonding state of Phosphorus Silicate Glass (PSG) layers obtained by two different technological approaches, i.e. in two types of reactors: Plasma Enhanced Chemical Vapor Deposition (PECVD) and Micro Pressure Chemical Vapor Deposition (MPCVD) are investigated employing XPS and AES. The PSG layers are deposited at 380 0 C and 420 0 C in corresponding reactors. XPS and AES analyses show that Si2p peak recorded from PECVD layers are not as expected at their position characteristics of silicon dioxide but instead they are at the characteristic of elemental silicon. Plasma enhancement during deposition leads to less oxidized and more inhomogeneous layer. After rapid thermal annealing the Si2p peak is situated at position characteristic of silicon dioxide. (authors)

  17. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  18. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  19. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  20. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    Science.gov (United States)

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  1. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    International Nuclear Information System (INIS)

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-01-01

    A rapid thermal anneal (RTA) in an NH 3 ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 0 C in NH 3 and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (≥1000 0 C) RTA in Ar completely converted W into the low resistivity (31 μΩ cm) tetragonal WSi 2 phase. In contrast, after a prior 900 0 C RTA in NH 3 , N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi 2 formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 0 C NH 3 anneal. The NH 3 -treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 0 C, at which point some increase in contact resistance was measured

  2. Aminosilicone solvent recovery methods and systems

    Science.gov (United States)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  3. High-Pressure Water-Vapor Annealing for Enhancement of a-Si:H Film Passivation of Silicon Surface

    International Nuclear Information System (INIS)

    Guo Chun-Lin; Wang Lei; Zhang Yan-Rong; Zhou Hai-Feng; Liang Feng; Yang Zhen-Hui; Yang De-Ren

    2014-01-01

    We investigate the effect of amorphous hydrogenated silicon (a-Si:H) films passivated on silicon surfaces based on high-pressure water-vapor annealing (HWA). The effective carrier lifetime of samples reaches the maximum value after 210°C, 90min HWA. Capacitance-voltage measurement reveals that the HWA not only greatly reduces the density of interface states (D it ), but also decreases the fixed charges (Q fixed ) mainly caused by bulk defects. The change of hydrogen and oxygen in the film is measured by a spectroscopic ellipsometer and a Fourier-transform infrared (FTIR) spectrometer. All these results show that HWA is a useful method to improve the passivation effect of a-Si:H films deposited on silicon surfaces

  4. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-12-15

    A rapid thermal anneal (RTA) in an NH/sub 3/ ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 /sup 0/C in NH/sub 3/ and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (greater than or equal to1000 /sup 0/C) RTA in Ar completely converted W into the low resistivity (31 ..mu cap omega.. cm) tetragonal WSi/sub 2/ phase. In contrast, after a prior 900 /sup 0/C RTA in NH/sub 3/, N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi/sub 2/ formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 /sup 0/C NH/sub 3/ anneal. The NH/sub 3/-treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 /sup 0/C, at which point some increase in contact resistance was measured.

  5. Comparison of sensor characteristics of three real-time monitors for organic vapors.

    Science.gov (United States)

    Hori, Hajime; Ishimatsu, Sumiyo; Fueta, Yukiko; Hinoue, Mitsuo; Ishidao, Toru

    2015-01-01

    Sensor characteristics and performance of three real-time monitors for volatile organic compounds (VOC monitor) equipped with a photo ionization detector (PID), a sensor using the interference enhanced reflection (IER) method and a semiconductor gas sensor were investigated for 52 organic solvent vapors designated as class 1 and class 2 of organic solvents by the Ordinance of Organic Solvent Poisoning Prevention in Japan. Test vapors were prepared by injecting each liquid solvent into a 50 l Tedlar® bag and perfectly vaporizing it. The vapor concentration was from one-tenth to twice the administrative control level for all solvents. The vapor concentration was measured with the monitors and a gas chromatograph equipped with a flame ionization detector simultaneously, and the values were compared. The monitor with the PID sensor could measure many organic vapors, but it could not detect some vapors with high ionization potential. The IER sensor could also detect many vapors, but a linear response was not obtained for some vapors. A semiconductor sensor could detect methanol that could not be detected by PID and IER sensors. Working environment measurement of organic vapors by real-time monitors may be possible, but sensor characteristics and their limitations should be known.

  6. Solvothermal Vapor Annealing of Lamellar Poly(styrene)-block-poly(d,l-lactide) Block Copolymer Thin Films for Directed Self-Assembly Application.

    Science.gov (United States)

    Cummins, Cian; Mokarian-Tabari, Parvaneh; Andreazza, Pascal; Sinturel, Christophe; Morris, Michael A

    2016-03-01

    Solvothermal vapor annealing (STVA) was employed to induce microphase separation in a lamellar forming block copolymer (BCP) thin film containing a readily degradable block. Directed self-assembly of poly(styrene)-block-poly(d,l-lactide) (PS-b-PLA) BCP films using topographically patterned silicon nitride was demonstrated with alignment over macroscopic areas. Interestingly, we observed lamellar patterns aligned parallel as well as perpendicular (perpendicular microdomains to substrate in both cases) to the topography of the graphoepitaxial guiding patterns. PS-b-PLA BCP microphase separated with a high degree of order in an atmosphere of tetrahydrofuran (THF) at an elevated vapor pressure (at approximately 40-60 °C). Grazing incidence small-angle X-ray scattering (GISAXS) measurements of PS-b-PLA films reveal the through-film uniformity of perpendicular microdomains after STVA. Perpendicular lamellar orientation was observed on both hydrophilic and relatively hydrophobic surfaces with a domain spacing (L0) of ∼32.5 nm. The rapid removal of the PLA microdomains is demonstrated using a mild basic solution for the development of a well-defined PS mask template. GISAXS data reveal the through-film uniformity is retained following wet etching. The experimental results in this article demonstrate highly oriented PS-b-PLA microdomains after a short annealing period and facile PLA removal to form porous on-chip etch masks for nanolithography application.

  7. Morphology and properties of silica/novolac hybrid xerogels synthesized using sol–gel polymerization at solvent vapor-saturated atmosphere

    International Nuclear Information System (INIS)

    Seraji, Mohamad Mehdi; Seifi, Azadeh; Bahramian, Ahmad Reza

    2015-01-01

    Highlights: • Sol–gel polymerization in vapor of solvent saturated atmosphere is developed. • Highly porous novolac–silica hybrid xerogels are successfully synthesized. • Novolac–silica hybrid gel was dried in ambient condition with low shrinkage. • Required time for preparation of gel reduced from 5 days to about 5 h. • By incorporation of silica into the novolac xerogel structure, the pore size decreases. - Abstract: Highly porous novolac–silica hybrid xerogels were successfully synthesized via the novel method of sol–gel polymerization in solvent vapor-saturated atmosphere. This method removes the need for supercritical drying and yields the hybrid xerogels with reduced shrinkage in comparison with conventional sol–gel process. Tetraethoxysilane (TEOS) was used as the precursor of silica-based inorganic phase. The chemical and structural characterization of the prepared hybrid xerogels were performed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis, respectively. Thermal and mechanical properties of the hybrid samples were investigated by differential scanning calorimetry (DSC), and compressive strength analysis. The resultant hybrid xerogels show a nanostructured colloidal hybrid network with high porosity (above 80%) and low density (below 0.25 g cm −3 ). Si mapping images shows the good distribution of silica phase throughout the hybrid structure

  8. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Cheng-Yang; Hong, Shao-Chyang; Hwang, Fu-Tsai; Lai, Li-Wen; Lin, Tan-Wei; Liu, Day-Shan

    2011-01-01

    The effect of a nickel oxide (NiO x ) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO x ) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO x films, with and without a NiO x seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO x film, deposited on a NiO x seed layer, was found to be lower than that of a pure TiO x film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO x film deposited onto the NiO x seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO x /TiO x system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  9. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  10. Performance of thermal solvent process in Athabasca reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan [Marathon Oil (Canada)

    2011-07-01

    In the petroleum industry, due to depletion of conventional resources and high demand operators are looking into heavy oil and bitumen production. Different recovery methods exist, some of them based on heating the reservoir and others on the use of solvent. Thermal solvent process is a combination of both: a small amount of heat is used to maintain a solvent vapor phase in the reservoir. This process has advantages, solvent is mostly recycled which increases bitumen recovery efficiency and reduces the need for fresh solvent, but it also poses challenges, such as maintaining a vapor chamber and the fact that solvent solubility might be affected by heating. The aim of this paper is to discuss these issues. Simulations and field tests were conducted on bitumen in the the Athabasca region. This paper presented a thermal solvent process and its application's results in Athabasca reservoir.

  11. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  12. Effect of annealing on phase transition in poly(vinylidene fluoride)

    Indian Academy of Sciences (India)

    Here we report the crystallization of both and -phase PVDF films by varying preparation temperature using DMSO solvent. The -phase PVDF films were annealed at 70, 90, 110, 130 and 160°C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described.

  13. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  14. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  15. Phenothiazine-based small-molecule organic solar cells with power conversion efficiency over 7% and open circuit voltage of about 1.0 V using solvent vapor annealing.

    Science.gov (United States)

    Rout, Yogajivan; Misra, Rajneesh; Singhal, Rahul; Biswas, Subhayan; Sharma, Ganesh D

    2018-02-28

    We have used two unsymmetrical small molecules, named phenothiazine 1 and 2 with a D-A-D-π-D configuration, where phenothiazine is used as a central unit, triphenylamine is used as a terminal unit and TCBD and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD are used as an acceptor between the phenothiazine and triphenylamine units, as a small molecule donor along with PC 71 BM as an acceptor for solution processed bulk heterojunction solar cells. The variation of acceptors in the phenothiazine derivatives makes an exciting change in the photophysical and electrochemical properties, hole mobility and therefore photovoltaic performance. The optimized device based on phenothiazine 2 exhibited a high power conversion efficiency of 7.35% (J sc = 11.98 mA cm -2 , V oc = 0.99 V and FF = 0.62), while the device based on phenothiazine 1 showed a low PCE of 4.81% (J sc = 8.73 mA cm -2 , V oc = 0.95 V and FF = 0.58) after solvent vapour annealing (SVA) treatment. The higher value of power conversion efficiency of the 2 based devices irrespective of the processing conditions may be related to the broader absorption and lower band gap of 2 as compared to 1. The improvement in the SVA treated active layer may be related to the enhanced crystallinity, molecular ordering and aggregation and shorter π-π stacking distance of the small molecule donors.

  16. A technique to depress desflurane vapor pressure.

    Science.gov (United States)

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  17. Investigation of SiO{sub 2} film growth on 4H-SiC by direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3} and H{sub 2}O vapor at varied process durations

    Energy Technology Data Exchange (ETDEWEB)

    Poobalan, Banu [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia); Moon, Jeong Hyun; Kim, Sang-Cheol; Joo, Sung-Jae; Bahng, Wook; Kang, In Ho; Kim, Nam-Kyun [Power Semiconductor Research Centre, Korea Electrotechnology Research Institute, PO Box 20, Changwon, Gyungnam 641120 (Korea, Republic of); Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2014-11-03

    This study has revealed that HNO{sub 3} and H{sub 2}O vapors can be utilized as direct thermal oxidation or postoxidation annealing agents at a temperature above 1000 °C; as they play a major role in simultaneous oxidation/nitridation/hydrogenation processes at the bulk oxide and SiO{sub 2}/SiC interface. The varied process durations of the above-mentioned techniques contribute to the development of thicker gate oxides for high power device applications with improved electrical properties, lower interface-state density and higher breakdown voltage as compared to oxides grown through a more conventional wet (H{sub 2}O vapor only) oxidation technique. The study highlights the effects of hydrogen and nitrogen species on the passivation of structural defects at the bulk oxide and the SiO{sub 2}/SiC interface, which are revealed through the use of Time-of-Flight Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy. The physical properties of the substrate after oxide removal show that the surface roughness decreases as the process durations increase with longer hours of H{sub 2}O and HNO{sub 3} vapor exposures on the samples, which is mainly due to the significant reduction of carbon content at the SiO{sub 2}/SiC interface. - Highlights: • Direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3}/H{sub 2}O vapor • SiO{sub 2} film growth in H{sub 2}O/HNO{sub 3}vapor at varied process durations • Thicker SiO{sub 2} film growth via annealing than direct growth in HNO{sub 3}/H{sub 2}O vapor • Nitrogen and hydrogen as passivation elements in SiO{sub 2}/SiC interface and SiO{sub 2} bulk • Significant reduction of carbon and Si-dangling bonds at the SiC/SiO{sub 2} interface.

  18. Improvement of photovoltaic performance of the inverted planar perovskite solar cells by using CH3NH3PbI3-xBrx films with solvent annealing

    Science.gov (United States)

    Wang, Shan; Zhang, Weijia; Ma, Denghao; Jiang, Zhaoyi; Fan, Zhiqiang; Ma, Qiang; Xi, Yilian

    2018-01-01

    In this paper, the CH3NH3PbI3-xBrx films with various Br-doping contents were successfully prepared by solution processed deposition and followed by annealing process. This method simultaneously modified the morphology and composition of the CH3NH3PbI3 film. The effects of annealing treatment of CH3NH3PbI3-xBrx films under N2 and DMSO conditions on the microstructure of films and photoelectric properties of the solar cells were systematically investigated. The relationship of the component ratio of RBr/I= CH3NH3PbI3-xBrx/CH3NH3PbI3 in the resulting perovskite versus CH3NH3Br concentration also was explored. The results revealed that the CH3NH3PbI3-xBrx films annealed under DMSO exhibited increased grain sizes, enhanced crystallinity, enlarged bandgap and reduced defect density compared with that of the N2 annealing. It also was found that the RBr/I linearly increased in the resulting perovskite with the increased of CH3NH3Br concentration in the methylammonium halide mixture solutions. Furthermore, the photovoltaic performances of devices fabricated using DMSO precursor solvent were worse than that of DMF under N2 annealing atmosphere. When CH3NH3Br concentration was 7.5 mg ml-1, the planar perovskite solar cell based on CH3NH3PbI3-xBrx annealed under DMSO showed the best efficiency of 13.7%.

  19. Thermal annealing of amorphous Ti-Si-O thin films

    OpenAIRE

    Hodroj , Abbas; Chaix-Pluchery , Odette; Audier , Marc; Gottlieb , Ulrich; Deschanvres , Jean-Luc

    2008-01-01

    International audience; Ti-Si-O thin films were deposited using an aerosol chemical vapor deposition process at atmospheric pressure. The film structure and microstructure were analysed using several techniques before and after thermal annealing. Diffraction results indicate that the films remain X-ray amorphous after annealing whereas Fourier transform infrared spectroscopy gives evidence of a phase segregation between amorphous SiO2 and well crystallized anatase TiO2. Crystallization of ana...

  20. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine,

  1. Deconvoluting the mechanism of microwave annealing of block copolymer thin films.

    Science.gov (United States)

    Jin, Cong; Murphy, Jeffrey N; Harris, Kenneth D; Buriak, Jillian M

    2014-04-22

    The self-assembly of block copolymer (BCP) thin films is a versatile method for producing periodic nanoscale patterns with a variety of shapes. The key to attaining a desired pattern or structure is the annealing step undertaken to facilitate the reorganization of nanoscale phase-segregated domains of the BCP on a surface. Annealing BCPs on silicon substrates using a microwave oven has been shown to be very fast (seconds to minutes), both with and without contributions from solvent vapor. The mechanism of the microwave annealing process remains, however, unclear. This work endeavors to uncover the key steps that take place during microwave annealing, which enable the self-assembly process to proceed. Through the use of in situ temperature monitoring with a fiber optic temperature probe in direct contact with the sample, we have demonstrated that the silicon substrate on which the BCP film is cast is the dominant source of heating if the doping of the silicon wafer is sufficiently low. Surface temperatures as high as 240 °C are reached in under 1 min for lightly doped, high resistivity silicon wafers (n- or p-type). The influence of doping, sample size, and BCP composition was analyzed to rule out other possible mechanisms. In situ temperature monitoring of various polymer samples (PS, P2VP, PMMA, and the BCPs used here) showed that the polymers do not heat to any significant extent on their own with microwave irradiation of this frequency (2.45 GHz) and power (∼600 W). It was demonstrated that BCP annealing can be effectively carried out in 60 s on non-microwave-responsive substrates, such as highly doped silicon, indium tin oxide (ITO)-coated glass, glass, and Kapton, by placing a piece of high resistivity silicon wafer in contact with the sample-in this configuration, the silicon wafer is termed the heating element. Annealing and self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS

  2. Stabilization and operation of porous silicon photonic structures from near-ultraviolet to near-infrared using high-pressure water vapor annealing

    International Nuclear Information System (INIS)

    Gelloz, Bernard; Koshida, Nobuyoshi

    2010-01-01

    The effects of high-pressure water vapor annealing (HWA), electrochemical oxidation, and substrate resistivity on the properties of porous silicon Bragg mirrors and photoluminescent cavities have been investigated. The photonic structures treated by HWA show very good stability upon ageing in air whereas as-formed structures exhibit significant drifts in their optical properties. Using HWA with lightly doped porous silicon, the structure transparency is enhanced sufficiently to enable the possible photonic operation in the near-ultraviolet. However, the index contrast achievable with these structures is very low in the visible and near-infrared. Useful index contrasts in this range can be achieved with either lightly doped porous silicon treated by electrochemical oxidation and HWA or heavily doped porous silicon treated by HWA.

  3. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.D., E-mail: Duy.Nguyen@imec.b [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Rosseel, E. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Takeuchi, S. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Physics and Astronomy, KU Leuven, B-3001 Leuven (Belgium); Everaert, J.-L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Yang, L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Chemistry and INPAC Institute, KU Leuven, B-3001 Leuven (Belgium); Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Zaima, S. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya, 464-8603 (Japan); Sakai, A. [Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Loo, R. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Lin, J.C. [TSMC, R and D, 8, Li-Hsin 6th Rd., Hsinchu Science-Based Park, Hsinchu, Taiwan (China); TSMC assignee at IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Vandervorst, W. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Instituut voor Kern- en Stralingsfysika - IKS, KU Leuven, B-3001 Leuven (Belgium); Caymax, M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 {sup o}C, we measured an active dopant concentration of about 2.1 x 10{sup 20} cm{sup -} {sup 3} and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10{sup 13} cm{sup -} {sup 2}) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  4. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    International Nuclear Information System (INIS)

    Nguyen, N.D.; Rosseel, E.; Takeuchi, S.; Everaert, J.-L.; Yang, L.; Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H.; Zaima, S.; Sakai, A.; Loo, R.; Lin, J.C.; Vandervorst, W.; Caymax, M.

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 o C, we measured an active dopant concentration of about 2.1 x 10 20 cm - 3 and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10 13 cm - 2 ) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  5. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  6. Towards p-type ZnO using post-growth annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K.; Roro, K.T.; Botha, J.R. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2008-01-15

    The optical properties of zinc oxide (ZnO) films grown by metalorganic chemical vapor deposition on GaAs substrate are investigated. Samples were annealed in two different ambients, namely nitrogen and oxygen, and studied by photoluminescence (PL). Samples annealed in oxygen at 600 C show arsenic acceptor-related signatures. The near-band-edge emission is dominated by an excitonic feature at 3.355 eV and compensation broadens the spectra. No such changes are observed when similar samples are annealed in nitrogen. The diffusion of arsenic from the GaAs substrate appears to be a source of acceptors. This effect is enhanced in an oxygen atmosphere. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Controlling Vapor Pressure In Hanging-Drop Crystallization

    Science.gov (United States)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  8. Solvents, Ethanol, Car Crashes and Tolerance: How Risky is Inhalation of Organic Solvents?

    Science.gov (United States)

    A research program in the National Health and Environmental Effects Research Laboratory of the U.S. EPA has led to some surprising considerations regarding the potential hazard of exposure to low concentrations of solvent vapors. This program involved conducting experiments to ch...

  9. Green solvents and technologies for oil extraction from oilseeds

    OpenAIRE

    Kumar, S. P. Jeevan; Prasad, S. Rajendra; Banerjee, Rintu; Agarwal, Dinesh K.; Kulkarni, Kalyani S.; Ramesh, K. V.

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n-hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330?kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to...

  10. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    Science.gov (United States)

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are

  11. Validation of Alternatives to High Volatile Organic Compound Solvents Used in Aeronautical Antifriction Bearing Cleaning

    Science.gov (United States)

    2006-10-17

    982-4832 (fax) tom.torres@navy.mil Quality Assurance Officer Gene Griffin NFESC 1100 23rd Avenue Port Hueneme, CA 93043-4370 (805) 982-2267...solvent replenishment system. The waste solvent shall be captured in a sealed container that is easily acces· sible for periodic disposal. (2) HFE ...Co-Solvent Vapor Degreaser. This method features the use of a hydrocarbon (HC) solvating agent and a Hydrofluoroether ( HFE ) liquid rinse and vapor

  12. Safety limits of half-mask cartridge respirators for organic solvent vapors

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Recent studies of the effective service life (safety limits) for typical half-mask cartridge respirators have shown these devices to be unsuitable for certain organic vapors, e.g., methanol, methylamine, vinyl chloride, and dichloromethane, because the effective service life is too short. For these vapors other forms of protection such as air-supplied respirators are recommended. The experimentally determined service life for many vapors is shorter--sometimes significantly shorter--than predicted by adsorption theory

  13. Implantation activation annealing of Si-implanted gallium nitride at temperatures > 1,100 C

    International Nuclear Information System (INIS)

    Zolper, J.C.; Han, J.; Biefeld, R.M.

    1997-01-01

    The activation annealing of Si-implanted GaN is reported for temperatures from 1,100 to 1,400 C. Although previous work has shown that Si-implanted GaN can be activated by a rapid thermal annealing at ∼1,100 C, it was also shown that significant damage remained in the crystal. Therefore, both AlN-encapsulated and uncapped Si-implanted GaN samples were annealed in a metal organic chemical vapor deposition system in a N 2 /NH 3 ambient to further assess the annealing process. Electrical Hall characterization shows increases in carrier density and mobility for annealing up to 1,300 C before degrading at 1,400 C due to decomposition of the GaN epilayer. Rutherford backscattering spectra show that the high annealing temperatures reduce the implantation induced damage profile but do not completely restore the as-grown crystallinity

  14. Screening for organic solvents in Hanford waste tanks using organic vapor concentrations

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Sklarew, D.S.

    1997-09-01

    The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids

  15. Industrial rag cleaning process for the environmentally safe removal of petroleum-based solvents

    International Nuclear Information System (INIS)

    Fierro, J.V.

    1993-01-01

    A process for the cleaning of industrial rags contaminated with environmentally unsafe petroleum-based solvent is described, comprising the step of: (a) placing a load of the industrial rags in a mechanically driven rotary drum; (b) revolving the drum at a high speed sufficient to physically extract liquid petroleum-based solvent contaminate from the industrial rags; (c) routing the extracted petroleum-based solvent contaminate from the rotary drum to a waste solvent collection line for environmentally safe disposal; (d) revolving the rotary drum to cause a tumbling of the industrial rags while maintaining the temperature within the drum at below the flash point of the petroleum-based solvent; (e) intermittently forcing cold air and hot air through the rotary drum to vaporize solvent from the industrial rags; (f) routing the vaporized petroleum-based solvent contaminant from the rotary drum to a condenser wherein the petroleum-based solvent contaminate is condensed and thereafter further routing said condensed solvent to a waste collection line for environmentally safe disposal; and (g) cleaning the industrial rags in the presence of a dry cleaning solvent to remove residual petroleum-based solvents and soil

  16. Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing.

    Science.gov (United States)

    Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K

    2017-09-20

    Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.

  17. Theoretical and experimental study of mixed solvent electrolytes

    International Nuclear Information System (INIS)

    Cummings, P.T.; O'Connell, J.P.

    1990-01-01

    In the original proposal to study mixed solvent electrolyte solutions, four major goals were formulated: fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories; evaluation of intermolecular pair potential models by computer simulation of selected systems for comparison with experiment and the numerical integral equation studies; development of fundamentally based correlations for the thermodynamic properties of mixed solvent electrolyte solutions using analytically solvable statistical mechanical models; and extension of experimental database on mixed solvent electrolytes by performing vapor-liquid equilibrium measurements on selected systems. This paper discusses the progress on these goals

  18. Optimization of band-pass filtering parameters of a Raman lidar detecting atmospheric water vapor

    International Nuclear Information System (INIS)

    Cao, Kai-Fa; Hu, Shun-Xing; Wang, Ying-jian

    2012-01-01

    It is very important for daytime Raman lidar measurement of water vapor to determine the parameters of a band-pass filter, which are pertinent to the lidar signal to noise ratio (SNR). The simulated annealing (SA) algorithm method has an advantage in finding the extremum of a certain cost function. In this paper, the Raman spectrum of water vapor is simulated and then a first realization of a simulated annealing algorithm in the optimization of a band-pass filter of a Raman lidar system designed to detect daytime water vapor is presented. The simulated results indicate that the narrow band-pass filter has higher SNR than the wide filter does but there would be an increase in the temperature sensitivity of a narrowband Raman water vapor lidar in the upper troposphere. The numerical simulation indicates that the magnitude of the temperature dependent effect can reach 3.5% or more for narrow band-pass Raman water vapor measurements so it is necessary to consider a new water vapor Raman lidar equation that permits the temperature sensitivity of these equations to be confined to a single term. (paper)

  19. Fast assembly of ordered block copolymer nanostructures through microwave annealing.

    Science.gov (United States)

    Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M

    2010-11-23

    Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy.

  20. Investigation of the effects of substrate annealing on the properties of polymer blends

    CSIR Research Space (South Africa)

    Motaung, DE

    2010-06-01

    Full Text Available by the controlled evaporation rate of the solvent. It is proposed that pre-substrate annealing controls the crystallization of P3HT, the phase separation and diffusion of the acceptor material (C60 or PCBM)...

  1. Deep eutectic solvents for highly efficient separations in oil and gas industries

    NARCIS (Netherlands)

    Warrag, S.E.E.; Peters, C.J.; Kroon, M.C.

    2017-01-01

    Deep eutectic solvents (DESs) have captured a great scientific attention as a new, ‘green’ and sustainable class of tailor-made solvents. DESs share many properties with ionic liquids (ILs) including low vapor pressure, wide liquid range, thermal stability, low flammability, and high solvation

  2. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  3. Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Leistiko, Otto

    1997-01-01

    In this paper the influence of RF power, ammonia flow, annealing temperature, and annealing time on the optical and mechanical properties of plasma-enhanced chemically vapor deposited silicon oxynitride films, is presented. A low refractive index (1.47 to 1.48) film having tensile stress has been...

  4. Optical investigations of the effect of solvent and thermal annealing on the optoelectronic properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    Energy Technology Data Exchange (ETDEWEB)

    Laskarakis, A., E-mail: alask@physics.auth.gr; Karagiannidis, P.G.; Georgiou, D.; Nikolaidou, D.M.; Logothetidis, S.

    2013-08-31

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible–far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. - Highlights: • Optical study of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • The Drude model provides information for PEDOT:PSS conductivity. • The addition of dimethylsulfoxide increases the electrical conductivity of PEDOT:PSS. • The increase in conductivity is correlated to increase of PEDOT grain size. • The thermal treatment has a smaller effect on PEDOT:PSS properties.

  5. Optical investigations of the effect of solvent and thermal annealing on the optoelectronic properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    International Nuclear Information System (INIS)

    Laskarakis, A.; Karagiannidis, P.G.; Georgiou, D.; Nikolaidou, D.M.; Logothetidis, S.

    2013-01-01

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible–far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. - Highlights: • Optical study of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • The Drude model provides information for PEDOT:PSS conductivity. • The addition of dimethylsulfoxide increases the electrical conductivity of PEDOT:PSS. • The increase in conductivity is correlated to increase of PEDOT grain size. • The thermal treatment has a smaller effect on PEDOT:PSS properties

  6. Polarization memory of blue and red luminescence from nanocrystalline porous silicon treated by high-pressure water vapor annealing

    International Nuclear Information System (INIS)

    Gelloz, B.; Koyama, H.; Koshida, N.

    2008-01-01

    The polarization memory (PM) effect in the blue and red photoluminescence (PL) of p-type porous Si (PS) treated by high-pressure water vapor annealing (HWA) has been investigated. HWA induces a significant blue PL emission at about 450 nm, together with a drastic enhancement of the red PL intensity. The polarization memory of the red emission band is anisotropic and is in agreement with emission from quantum sized Si nanocrystals, whereas that of the blue band is high and isotropic, indicating an emission mechanism related to localized states in the amorphous Si oxide surrounding the Si skeleton of the PS layer after HWA. HWA does not induce any blue emission in PS that was electrochemically oxidized (ECO) beforehand because the electrochemically grown oxide tends to prevent the formation of blue-emitting amorphous oxide upon HWA. The PM of ECO-PS at low emission energies is anisotropic, but in a direction 45 deg. rotated compared to that of PS treated by HWA. This unique behavior may be related to the electrical nature of electrochemical oxidation. HWA increases the PM of ECO-PS. This could be attributed to the enhanced passivation induced by HWA

  7. Analysis of a gas absorption system with soluble carrier gas and volatile solvent

    International Nuclear Information System (INIS)

    Kanak, B.E.

    1980-01-01

    The effects of column diameter, carrier gas coabsorption, and solvent vaporization on the performance of a packed gas absorption column are examined. The system investigated employs dichlorodifluoromethane as a solvent to remove krypton from a nitrogen stream and is characterized by substantial nitrogen coabsorption. Three columns with diameters of 2, 3, and 4 inches were constructed and packed with 34.5 inches of Goodloe packing. In addition to the more conventional data, the experimental evaluation of these columns included the use of a radioisotope and a gamma scanning technique which provided direct measurement of the columns' molar krypton profiles. A multicomponent gas absorption model was developed, based on the two-film mass transfer theory, that allows the fluxes of all species to interact. Verification of this model was achieved through comparison of the calculated results with experimental data. With the feed gas flow rate between 6 and 36 lb moles/hr-ft 2 and the solvent feed rate between 40 and 400 lb moles/hr-ft 2 , column diameter was found to have no significant impact on the mass transfer efficiency of this system when carried out in columns with diameters of 2 inches or greater. The absorption of krypton was found to be enhanced and inhibited, respectively, by carrier gas coabsorption and solvent vaporization. An injector system to add gaseous solvent to the feed gas stream prior to its introduction into the packed bed was proposed to eliminate the detrimental effects of solvent vaporization.Using this injector to supersaturate the feed gas stream with solvent enhanced absorber performance in the same manner as carrier gas coabsorption

  8. Solvent Annealing Effects in Dithieno[3,2-b:2',3'-d]pyrrole–5,6-Difluorobenzo[c][1,2,5]thiadiazole Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai; Azouz, Mehdi; Babics, Maxime; Cruciani, Federico; Marszalek, Tomasz; Saleem, Qasim; Pisula, Wojciech; Beaujuge, Pierre

    2016-01-01

    Low-bandgap small molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g. PC61/71BM) are proving particularly promising in bulk-heterojunction (BHJ) solar cells. Compared to their π-conjugated polymer counterparts, SM donors are well defined (monodispersed) and more synthetically modular –with relatively wide ranges of bandgaps achievable in stepwise couplings of various donor and acceptor motifs. However, the optimization of SM-fullerene morphologies and BHJ device efficiencies relies more specifically on the use of processing additives, post-processing thermal or solvent vapor annealing (SVA) approaches, and achieving adequate interpenetrating networks and structural order in BHJ thin films can be challenging. In this report, we examine the correlated effects of molecular structure and post-processing SVA on the BHJ solar cell performance of a set of π-extended SM donors composed of dithieno[3,2-b:2',3'-d]pyrrole (DTP) and 5,6-difluorobenzo[c][1,2,5]thiadiazole ([2F]BT) units. In these systems (SM1-3), the introduction of additional alkyl substituents and unsubstituted thiophene rings on the peripheral unit groups critically impacts the effects of SVA steps on BHJ solar cell efficiency. We show that the more π-extended and alkyl-substituted analogue SM3 stands out –with BHJ device efficiencies of ca. 6% obtained from SVA with CS2– while SVA-treated SM3-based active layers also show the most favorable ordering and carrier mobility patterns. However, unlike numbers of SM donors reported in recent years, DTP–[2F]BT SM analogues are in general not prone to dramatic performance variations in BHJ thin films cast with processing additives. Our results indicate that the role of SVA steps is not independent of the molecular structure of the SM donors used in the BHJ solar cells.

  9. Solvent Annealing Effects in Dithieno[3,2-b:2',3'-d]pyrrole–5,6-Difluorobenzo[c][1,2,5]thiadiazole Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai

    2016-06-17

    Low-bandgap small molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g. PC61/71BM) are proving particularly promising in bulk-heterojunction (BHJ) solar cells. Compared to their π-conjugated polymer counterparts, SM donors are well defined (monodispersed) and more synthetically modular –with relatively wide ranges of bandgaps achievable in stepwise couplings of various donor and acceptor motifs. However, the optimization of SM-fullerene morphologies and BHJ device efficiencies relies more specifically on the use of processing additives, post-processing thermal or solvent vapor annealing (SVA) approaches, and achieving adequate interpenetrating networks and structural order in BHJ thin films can be challenging. In this report, we examine the correlated effects of molecular structure and post-processing SVA on the BHJ solar cell performance of a set of π-extended SM donors composed of dithieno[3,2-b:2\\',3\\'-d]pyrrole (DTP) and 5,6-difluorobenzo[c][1,2,5]thiadiazole ([2F]BT) units. In these systems (SM1-3), the introduction of additional alkyl substituents and unsubstituted thiophene rings on the peripheral unit groups critically impacts the effects of SVA steps on BHJ solar cell efficiency. We show that the more π-extended and alkyl-substituted analogue SM3 stands out –with BHJ device efficiencies of ca. 6% obtained from SVA with CS2– while SVA-treated SM3-based active layers also show the most favorable ordering and carrier mobility patterns. However, unlike numbers of SM donors reported in recent years, DTP–[2F]BT SM analogues are in general not prone to dramatic performance variations in BHJ thin films cast with processing additives. Our results indicate that the role of SVA steps is not independent of the molecular structure of the SM donors used in the BHJ solar cells.

  10. Annealing free, clean graphene transfer using alternative polymer scaffolds.

    Science.gov (United States)

    Wood, Joshua D; Doidge, Gregory P; Carrion, Enrique A; Koepke, Justin C; Kaitz, Joshua A; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Dong, Hefei; Haasch, Richard T; Lyding, Joseph W; Pop, Eric

    2015-02-06

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications.

  11. Annealing free, clean graphene transfer using alternative polymer scaffolds

    International Nuclear Information System (INIS)

    Wood, Joshua D; Doidge, Gregory P; Carrion, Enrique A; Koepke, Justin C; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Lyding, Joseph W; Kaitz, Joshua A; Dong, Hefei; Haasch, Richard T; Pop, Eric

    2015-01-01

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications. (paper)

  12. Collection methodology evaluation and solvents analysis/mixtures solvents in the air in work ambient: methanol in MEG mixture (methanol 33%, ethanol 60% and gasoline 7%); Avaliacao de metodologia de coleta e analise de solventes/misturas de solventes no ar em ambiente de trabalho: metanol em mistura MEG (metanol 33%, etanol 60% e gasolina 7%)

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Luiza Maria Nunes

    1995-07-01

    This thesis presents a proposal for evaluation of collection and solvent/solvent mixtures analysis methodology for the air in the work environment by studying the following issues of present solvents: historical aspects; methanol - properties and toxicity; collection methodology evaluation, and gases and vapors analysis in the air; experimental data. The denominated mixture MEG - methanol, ethanol and gasoline is analyzed in terms of its chemical characteristics. The author concludes the work detaching that the methodology presented can only be used for short duration measurements in concentrations peaks studies.

  13. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    Science.gov (United States)

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  14. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  15. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect

    International Nuclear Information System (INIS)

    Salunkhe, R.R.; Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H 2 O vapors from as-deposited Cd(O 2 ) 0.88 (OH) 0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10 -2 to 10 -3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing

  16. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong; Whited, Matthew T.; Steiner, Andrew; Tassone, Christopher J.; Toney, Michael F.; Thompson, Mark E.

    2012-01-01

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz

  17. Progress Toward Meeting NIF Specifications for Vapor Deposited Polyimide Ablator Coatings

    International Nuclear Information System (INIS)

    Letts, Stephan A.; Anthamatten, Mitchell; Buckley, Steven R.; Fearon, Evelyn; Nissen, April E.H.; Cook, Robert C.

    2004-01-01

    We are developing an evaporative coating technique for deposition of thick polyimide (PI) ablator layers on ICF targets. The PI coating technique utilizes stoichiometrically controlled fluxes from two Knudsen cell evaporators containing a dianhydride and a diamine to deposit a polyamic acid (PAA) coating. Heating the PAA coating to 300 deg. C converts the PAA coating to a polyimide. Coated shells are rough due to particles on the substrate mandrels and from damage to the coating caused by the agitation used to achieve a uniform coating. We have developed a smoothing process that exposes an initially rough PAA coated shell to solvent vapor using gas levitation. We found that after smoothing the coatings developed a number of wide (low-mode) defects. We have identified two major contributors to low-mode roughness: surface hydrolysis, and deformation during drying/curing. By minimizing air exposure prior to vapor smoothing, avoiding excess solvent sorption during vapor smoothing, and using slow drying we are able to deposit and vapor smooth coatings 160 μm thick with a surface roughness less than 20 nm RMS

  18. Production of graphene by exfoliation of graphite in a volatile organic solvent

    International Nuclear Information System (INIS)

    Choi, Eun-Young; Choi, Won San; Lee, Young Boo; Noh, Yong-Young

    2011-01-01

    The production of unfunctionalized and nonoxidized graphene by exfoliation of graphite in a volatile solvent, 1-propanol, is reported. A stable homogeneous dispersion of graphene was obtained by mild sonication of graphite powder and subsequent centrifugation. The presence of a graphene monolayer was observed by atomic force microscopy and transmission electron microscopy. The solvent, 1-propanol, from the deposited dispersion was simply and quickly removed by air drying at room temperature, without the help of high temperature annealing or vacuum drying, which shortens production time and does not leave any residue of the solvent in the graphene sheets.

  19. Effect of Thermal Annealing on Carbon in In-situ Phosphorous-Doped Si1-xCx films

    International Nuclear Information System (INIS)

    Adam, Thomas; Loubet, Nicolas; Reznicek, Alexander; Paruchuri, Vamsi; Sampson, Ron; Sadana, Devendra

    2012-01-01

    The effect of thermal heat treatment on carbon in in-situ phosphorous-doped silicon-carbon is studied as a function of annealing temperature and type. Films of 0 to 2% carbon were deposited using cyclic chemical vapor deposition at reduced pressures. Secondary ion-mass spectroscopy and high-resolution X-ray diffraction were employed to extract the total and substitutional carbon concentration in samples with phosphorous levels of mid-10 20 cm -3 . It was found that millisecond laser annealing drastically improves substitutionality while high thermal budget treatments (furnace, rapid-thermal, or spike annealing) resulted in an almost complete loss of substitutional carbon, independent of preceding or subsequent laser heat treatments.

  20. Macromolecular 'size' and 'hardness' drives structure in solvent-swollen blends of linear, cyclic, and star polymers.

    Science.gov (United States)

    Gartner, Thomas E; Jayaraman, Arthi

    2018-01-17

    In this paper, we apply molecular simulation and liquid state theory to uncover the structure and thermodynamics of homopolymer blends of the same chemistry and varying chain architecture in the presence of explicit solvent species. We use hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations in the Gibbs ensemble to study the swelling of ∼12 000 g mol -1 linear, cyclic, and 4-arm star polystyrene chains in toluene. Our simulations show that the macroscopic swelling response is indistinguishable between the various architectures and matches published experimental data for the solvent annealing of linear polystyrene by toluene vapor. We then use standard MD simulations in the NPT ensemble along with polymer reference interaction site model (PRISM) theory to calculate effective polymer-solvent and polymer-polymer Flory-Huggins interaction parameters (χ eff ) in these systems. As seen in the macroscopic swelling results, there are no significant differences in the polymer-solvent and polymer-polymer χ eff between the various architectures. Despite similar macroscopic swelling and effective interaction parameters between various architectures, the pair correlation function between chain centers-of-mass indicates stronger correlations between cyclic or star chains in the linear-cyclic blends and linear-star blends, compared to linear chain-linear chain correlations. Furthermore, we note striking similarities in the chain-level correlations and the radius of gyration of cyclic and 4-arm star architectures of identical molecular weight. Our results indicate that the cyclic and star chains are 'smaller' and 'harder' than their linear counterparts, and through comparison with MD simulations of blends of soft spheres with varying hardness and size we suggest that these macromolecular characteristics are the source of the stronger cyclic-cyclic and star-star correlations.

  1. [Chemical hazards when working with solvent glues].

    Science.gov (United States)

    Domański, Wojciech; Makles, Zbigniew

    2012-01-01

    Solvent glues are used in a wide variety of industries, e.g., textile, footwear and rubber. The problem of workers' exposure to solvent vapors is rarely tackled within the area of occupational safety and health in small and medium-sized enterprises. In order to assess exposure to solvents, organic solvents emitted by glues were identified in the samples of workplace air. The concentration of acetone, benzene, cyclohexane, ethylbenzene, n-hexane, methylcyclohexane, butyl acetate and toluene were determined. The obtained results evidenced the presence of cyclohexane, ethylbenzene, ethylcyclohexane, heptane, n-hexane, o-xylene, methylcyclohexane, methylcyclopentane, butyl acetate and toluene in workplace air. The concentration of those compounds in workplace air was low, usually below 0.15 of MAC. At some workstations the presence of benzene was also observed. Occupational risk was assessed at workstations where gluing took place. It showed that the risk at those workstations was medium or low.

  2. Increasing Mn substitution in magnetic semiconductors through controlled ambient annealing processes

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J. [Materials Science Program, Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093-0411 (United States); Bandaru, P.R. [Materials Science Program, Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093-0411 (United States)], E-mail: pbandaru@ucsd.edu

    2008-06-25

    We report on a controlled ambient annealing technique aimed at increasing the amount of Mn incorporation in III-V semiconductors. The aim is to reduce the number of hole carrier and magnetic element compensating entities, such as Mn interstitials and anti-site defects, to increase the magnetic Curie temperature. The idea is (a) to increase the number of Group III vacancies through annealing in Group V vapor rich conditions and (b) judicious use of crystal field theory to reduce/stabilize Mn interstitials. Our experimental results constitute the highest reportedT{sub c} ({approx}130 K) in Mn doped InSb and Mn doped InP. The possibility of ferrimagnetism in Mn and Cr incorporated GaAs, was noted.

  3. High-resistive layers obtained through periodic growth and in situ annealing of InGaN by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuo; Ma, Ping, E-mail: maping@semi.ac.cn; Liu, Boting; Wu, Dongxue; Li, Jinmin [Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Huang, Yuliang [Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083 (China); Wang, Junxi [State Key Laboratory of Solid State Lighting, Beijing 100083 (China)

    2016-06-15

    High-resistive layers were obtained by periodic growth and in situ annealing of InGaN. The effect of the annealing temperature of InGaN on the indium content and the material sheet resistive was investigated. The indium content decreased as the increase of in situ annealing temperature. Additionally, the material sheet resistance increased with the increase of the in situ annealing temperature for the annealed samples and reached 2 × 10{sup 10}Ω/sq in the light and 2 × 10{sup 11}Ω/sq in the dark when the in situ annealing temperature reached 970{sup ∘}C. The acquirement of high-resistive layers is attributed to the generation of indium vacancy-related defects. Introducing indium vacancy-related defects to compensate background carriers can be an effective method to grow high-resistance material.

  4. High-resistive layers obtained through periodic growth and in situ annealing of InGaN by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang, Shuo; Ma, Ping; Liu, Boting; Wu, Dongxue; Li, Jinmin; Huang, Yuliang; Wang, Junxi

    2016-01-01

    High-resistive layers were obtained by periodic growth and in situ annealing of InGaN. The effect of the annealing temperature of InGaN on the indium content and the material sheet resistive was investigated. The indium content decreased as the increase of in situ annealing temperature. Additionally, the material sheet resistance increased with the increase of the in situ annealing temperature for the annealed samples and reached 2 × 10"1"0Ω/sq in the light and 2 × 10"1"1Ω/sq in the dark when the in situ annealing temperature reached 970"∘C. The acquirement of high-resistive layers is attributed to the generation of indium vacancy-related defects. Introducing indium vacancy-related defects to compensate background carriers can be an effective method to grow high-resistance material.

  5. The application of neutral network integrated with genetic algorithm and simulated annealing for the simulation of rare earths separation processes by the solvent extraction technique using EHEHPA agent

    International Nuclear Information System (INIS)

    Tran Ngoc Ha; Pham Thi Hong Ha

    2003-01-01

    In the present work, neutral network has been used for mathematically modeling equilibrium data of the mixture of two rare earth elements, namely Nd and Pr with PC88A agent. Thermo-genetic algorithm based on the idea of the genetic algorithm and the simulated annealing algorithm have been used in the training procedure of the neutral networks, giving better result in comparison with the traditional modeling approach. The obtained neutral network modeling the experimental data is further used in the computer program to simulate the solvent extraction process of two elements Nd and Pr. Based on this computer program, various optional schemes for the separation of Nd and Pr have been investigated and proposed. (author)

  6. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    Labidi, A.; Bejaoui, A.; Ouali, H.; Akkari, F. Chaffar; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessais, B.; Maaref, M.

    2011-01-01

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  7. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  8. Dependence of wet etch rate on deposition, annealing conditions and etchants for PECVD silicon nitride film

    International Nuclear Information System (INIS)

    Tang Longjuan; Zhu Yinfang; Yang Jinling; Li Yan; Zhou Wei; Xie Jing; Liu Yunfei; Yang Fuhua

    2009-01-01

    The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN x :H by HF solution. A low etch rate was achieved by increasing the SiH 4 gas flow rate or annealing temperature, or decreasing the NH 3 and N2 gas flow rate. Concentrated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO 2 and SiN x :H. A high etching selectivity of SiO 2 over SiN x :H was obtained using highly concentrated buffered HF.

  9. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    International Nuclear Information System (INIS)

    Rani, Sumita; Kumar, Mukesh; Kumar, Dinesh; Sharma, Sumit

    2015-01-01

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO 2 /Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents

  10. Techniques for the generation and monitoring of vapors

    International Nuclear Information System (INIS)

    Nelson, G.O.

    1981-01-01

    Controlled test atmospheres can be produced using a variety of techniques. Gases are usually generated by using flow dilution methods while vapors are produced by using solvent injection and vaporization, saturation, permeation and diffusion techniques. The resulting gas mixtures can be monitored and measured using flame ionization, photoionization, electrochemical and infrared analytical systems. An ideal system for the production of controlled test atmospheres would not only be able to generate controlled test atmospheres, but also monitor all pertinent environmental parameters, such as temperature, humidity, and air flow

  11. Latent fingermark development using low-vacuum vaporization of ninhydrin.

    Science.gov (United States)

    Chen, Chun-Chieh; Yang, Chao-Kai; Liao, Jeh-Shane; Wang, Sheng-Meng

    2015-12-01

    The vacuum technique is a method of vaporizing a solid material to its gas phase, helping deposit reagents gently on target surfaces to develop latent fingermarks. However, this application is rarely reported in the literature. In this study, a homemade fume hood with a built-in vacuum control system and programmable heating system designed by the Taiwan Criminal Investigation Bureau is introduced. Factors that affect the instrument's performance in developing fingermarks are discussed, including the quantity of chemicals for vaporization, heating program arrangement, and paper of different materials. The results show that fingermarks are effectively developed by vaporizing solid ninhydrin. This would be an alternative application in selecting a solvent-free method for protecting the environment and reducing health hazards in the lab. In terms of the heating program, the result indicates that under a low-vacuum condition (50 mTorr), 80-90 °C is a suitable temperature range for ninhydrin vaporization, allowing ninhydrin to be vaporized without bumping and waste. In terms of the performance on different material papers, this instrument demonstrates its capacity by developing latent fingermarks on thermal paper without discoloration or damaging the original writing, and the same results are also observed on Taiwan and United States banknotes. However, a coherent result could be hardly obtained using the same vaporization setting because different banknotes have their own surface features and water absorption ability or other unique factors may influence the effect of ninhydrin deposition. This study provides a reliable application for developing latent fingermarks without using solvents, and it is also expected to contribute to environmental protection along with the trend of green chemistry technology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Annealing effects on photoluminescence of SiNx films grown by PECVD

    International Nuclear Information System (INIS)

    Komarov, F.F.; Parkhomenko, I.N.; Vlasukova, L.A.; Milchanin, O.V.; Togambayeva, A.K.; Kovalchuk, N.S.

    2013-01-01

    Si-rich and N-rich silicon nitride films were deposited at low temperature 300 °C by using plasma-enhanced chemical vapor deposition (PECVD). The optical and structural properties of these films have been investigated by ellipsometry, Rutherford backscattering (RBS), transmission electron microscopy (TEM), Raman spectroscopy (RS) and photoluminescence (PL). The formation of silicon clusters in both Si-rich and N-rich silicon nitride films after annealing at 900 °C and 1000 °C for hour in N 2 ambient has been revealed by TEM. Dependency of PL spectra on stoichiometry and post-annealing temperature was analyzed. The contribution of Si and N-related defects in emitting properties of Si-rich and N-rich SiN x has been discussed. (authors)

  13. Green solvents and technologies for oil extraction from oilseeds.

    Science.gov (United States)

    Kumar, S P Jeevan; Prasad, S Rajendra; Banerjee, Rintu; Agarwal, Dinesh K; Kulkarni, Kalyani S; Ramesh, K V

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n -hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330 kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to look for alternative options. To circumvent the problem, green solvents could be a promising approach to replace solvent extraction. In this review, green solvents and technology like aqueous assisted enzyme extraction are better solution for oil extraction from oilseeds. Enzyme mediated extraction is eco-friendly, can obtain higher yields, cost-effective and aids in obtaining co-products without any damage. Enzyme technology has great potential for oil extraction in oilseed industry. Similarly, green solvents such as terpenes and ionic liquids have tremendous solvent properties that enable to extract the oil in eco-friendly manner. These green solvents and technologies are considered green owing to the attributes of energy reduction, eco-friendliness, non-toxicity and non-harmfulness. Hence, the review is mainly focussed on the prospects and challenges of green solvents and technology as the best option to replace the conventional methods without compromising the quality of the extracted products.

  14. Influence of annealing conditions on the optical and structural properties of spin-coated As(2)S(3) chalcogenide glass thin films.

    Science.gov (United States)

    Song, Shanshan; Dua, Janesha; Arnold, Craig B

    2010-03-15

    Spin-coating of chalcogenide glass is a low-cost, scalable method to create optical grade thin films, which are ideal for visible and infrared applications. In this paper, we study the influence of annealing on optical parameters of As(2)S(3) films by examining UV-visible and infrared spectroscopy and correlating the results to changes in the physical properties associated with solvent removal. Evaporation of excess solvent results in a more highly coordinated, denser glass network with higher index and lower absorption. Depending on the annealing temperature and time, index values ranging from n = 2.1 to the bulk value (n = 2.4) can be obtained, enabling a pathway to materials optimization.

  15. Tuning by means of laser annealing of electronic and structural properties of nc-Si/a-Si:H

    International Nuclear Information System (INIS)

    Poliani, E.; Somaschini, C.; Sanguinetti, S.; Grilli, E.; Guzzi, M.; Le Donne, A.; Binetti, S.; Pizzini, S.; Chrastina, D.; Isella, G.

    2009-01-01

    We report the effect of laser annealing on the structural and electronic properties of nc-Si/a-Si:H samples grown close to the amorphous to nanocrystalline transition. The nc-Si/a-Si:H thin films were produced by low-energy plasma-enhanced chemical vapor deposition through a gas discharge containing SiH 4 . The samples were subjected to different laser fluencies and were characterized for changes in their structural and electronic properties via Raman spectroscopy and photoluminescence measurements. The laser annealing effects are twofold: i) the nanocrystalline phase grows, during the laser treatment, respect to the amorphous phase; ii) the photoluminescence spectra show the suppression, after laser annealing, of the frequencies above the crystalline Si band-gap.

  16. Effect of annealing atmosphere on optic-electric properties of Zn O thin films

    International Nuclear Information System (INIS)

    Bueno, C.; Pacio, M.; Juarez, H.; Osorio, E.; Perez, R.

    2017-01-01

    In this work the study of structural, morphologic characteristics, optical and electrical properties of the thin films of Zn O in temperatures and annealing atmospheres different was realized. The films were obtained by the sol-gel method, utilizing zinc acetate dihydrate as the precursor, monoethanolamine (Mea) as a stabilizing agent and 2-methoxyethanol as a solvent and deposited by spin-coating. The films were crystallized at 600, 800 and 1000 degrees Celsius in oxygen and nitrogen atmospheres. The results obtained by XRD, Sem, photoluminescence and Hall effects of the Zn O films were related and depend strongly on the temperature and atmosphere annealing. (Author)

  17. Effect of annealing atmosphere on optic-electric properties of Zn O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, C. [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria, Blvd. Valsequillo y Av. San Claudio s/n, 72570 Puebla (Mexico); Pacio, M.; Juarez, H. [Benemerita Universidad Autonoma de Puebla, Posgrado en Dispositivos Semiconductores, Av. San Claudio y 14 Sur, 72450 Puebla (Mexico); Osorio, E. [Universidad de Quinta Roo, Blvd. Bahia s/n, esquina Ignacio Comonfort, El Bosque, 77019 Chetumal, Quintana Roo (Mexico); Perez, R., E-mail: cba3009@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria Quimica, Av. San Claudio y 18 Sur, 72570 Puebla (Mexico)

    2017-11-01

    In this work the study of structural, morphologic characteristics, optical and electrical properties of the thin films of Zn O in temperatures and annealing atmospheres different was realized. The films were obtained by the sol-gel method, utilizing zinc acetate dihydrate as the precursor, monoethanolamine (Mea) as a stabilizing agent and 2-methoxyethanol as a solvent and deposited by spin-coating. The films were crystallized at 600, 800 and 1000 degrees Celsius in oxygen and nitrogen atmospheres. The results obtained by XRD, Sem, photoluminescence and Hall effects of the Zn O films were related and depend strongly on the temperature and atmosphere annealing. (Author)

  18. High temperature annealing of minority carrier traps in irradiated MOCVD n(+)p InP solar cell junctions

    Science.gov (United States)

    Messenger, S. R.; Walters, R. J.; Summers, G. P.

    1993-01-01

    Deep level transient spectroscopy was used to monitor thermal annealing of trapping centers in electron irradiated n(+)p InP junctions grown by metalorganic chemical vapor deposition, at temperatures ranging from 500 up to 650K. Special emphasis is given to the behavior of the minority carrier (electron) traps EA (0.24 eV), EC (0.12 eV), and ED (0.31 eV) which have received considerably less attention than the majority carrier (hole) traps H3, H4, and H5, although this work does extend the annealing behavior of the hole traps to higher temperatures than previously reported. It is found that H5 begins to anneal above 500K and is completely removed by 630K. The electron traps begin to anneal above 540K and are reduced to about half intensity by 630K. Although they each have slightly different annealing temperatures, EA, EC, and ED are all removed by 650K. A new hole trap called H3'(0.33 eV) grows as the other traps anneal and is the only trap remaining at 650K. This annealing behavior is much different than that reported for diffused junctions.

  19. Solvent influence upon structure & throughput of poly vinyledene fluoride thin film nano-patterns by imprint lithography

    Science.gov (United States)

    Sankar, M. S. Ravi; Gangineni, R. B.

    2018-04-01

    This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.

  20. Influence of growth flux solvent on anneal-tuning of ground states in CaFe2As2

    Science.gov (United States)

    Roncaioli, Connor; Drye, Tyler; Saha, Shanta R.; Paglione, Johnpierre

    2018-04-01

    The effects of anneal-tuning of single-crystalline samples of CaFe2As2 synthesized via a molten Sn-flux method are investigated using x-ray diffraction, chemical composition, electrical transport, and magnetic susceptibility measurements in order to understand the role of growth conditions on the resultant phase diagram. Previous studies of CaFe2As2 crystals synthesized using a self-flux (FeAs) method revealed an ability to tune the structural and magnetic properties of this system by control of post-synthesis annealing conditions, resulting in an ambient pressure phase diagram that spans from tetragonal/orthorhombic antiferromagnetism to the collapsed tetragonal phase of this system. In this work, we compare previous results to those obtained on crystals synthesized via Sn flux, finding similar tunability in both self- and Sn-flux cases, but less sensitivity to annealing temperatures in the latter case, resulting in a temperature-shifted phase diagram.

  1. The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,GaSe2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors

    Directory of Open Access Journals (Sweden)

    Chia-Ho Huang

    2014-01-01

    Full Text Available CIGS films are prepared by single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor. The annealing processes were performed using various Ar pressures, heating rates, and soaking times. A higher Ar pressure is needed to fabricate highly crystalline CIGS films, as no extra Se-vapor source is supplied. As the heating rate increases, the surface morphologies of the CIGS films become looser and some cracks are observed. However, the influence of soaking time is insignificant and the selenization process only requires a short time when the precursors are selenized at a higher temperature with a lower heating rate and a higher Ar pressure. In this study, a dense chalcopyrite CIGS film with a thickness of about 1.5-1.6 μm, with large grains (~1.2 μm and no cracking or peeling is obtained after selenizing at a temperature of 550°C, an Ar pressure of 300 Torr, a heating rate of 60°C/min, and a soaking time of 20 min. By adequate design of the stacked precursor and controlling the annealing parameters, single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor is simplified for the fabrication of a fully crystallized chalcopyrite CIGS absorber layers with good crystallization and large grains.

  2. Ultrasonic aqueous cleaning as a replacement for chlorinated solvent cleaning

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1992-01-01

    The Oak Ridge Y-12 Plant has been involved in the replacement of chlorinated solvents since 1982. One of the most successful replacement efforts has been the substitution of vapor degreasers or soak tanks using chlorinated solvents with ultrasonic cleaning using aqueous detergents. Recently, funding was obtained from the Department of Energy Office (DOE) of Technology Development to demonstrate this technology. A unit has been procured and installed in the vacuum pump shop area to replace the use of a solvent soak tank. Initially, the solvents used in the shop were CFC-113 and a commercial brand cleaner which contained both perchloroethylene and methylene chloride. While the ultrasonic unit was being procured, a terpene-based solvent was used. Generally, parts were soaked overnight in order to soften baked-on vanish. Many times, wire brushing was used to help remove remaining contamination. Initial testing with the ultrasonic cleaner indicated cleaning times of 20 min were as effective as the overnight solvent soaks in removing contamination. Wire brushing was also not required following the ultrasonic cleaning as was sometimes required with the solvent soak

  3. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 1. Process Simulations

    Science.gov (United States)

    BACKGROUND: Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor-liquid equilibrium and parti...

  4. Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing

    Science.gov (United States)

    Kim, Honghyuk; Guan, Yingxin; Babcock, Susan E.; Kuech, Thomas F.; Mawst, Luke J.

    2018-03-01

    Laser diodes employing a strain-compensated GaAs1-xBix/GaAs1-yPy single quantum well (SQW) active region were grown by organometallic vapor phase epitaxy (OMVPE). High resolution x-ray diffraction, room temperature photoluminescence, and real-time optical reflectance measurements during the OMVPE growth were used to find the optimum process window for the growth of the active region material. Systematic post-growth in situ thermal anneals of various lengths were carried out in order to investigate the impacts of thermal annealing on the laser device performance characteristics. While the lowest threshold current density was achieved after the thermal annealing for 30 min at 630 °C, a gradual decrease in the external differential quantum efficiency was observed as the annealing time increases. It was observed that the temperature sensitivities of the threshold current density increase while those of lasing wavelength and slope efficiency remain nearly constant with increasing annealing time. Z-contrast scanning transmission electron microscopic) analysis revealed inhomogeneous Bi distribution within the QW active region.

  5. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors

    International Nuclear Information System (INIS)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander A.; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-01-01

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 10 2 . During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10 −5 mbar, we observed the diffusion of Te from the sample, so causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10 −5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on the conditions in local regions, such as composition and structure, as well as on the annealing conditions

  6. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  7. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yanling [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)]. E-mail: luoyl0401@yahoo.com.cn; Li Zhanqing [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Lan Wenxiang [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2007-04-25

    A novel polymer based sensitive film was prepared from thermosetting epoxy resins (EP) filled with carbon blacks. The curing reaction of amine curing agents with epoxy resins and the response of the curing resultants to solvent vapors were dealt with. The influence of the types and content of carbon blacks and curing agents, and curing temperatures and time on curing reactions and response selectivity of the conductive films were investigated. The structural characterization was conducted on a Fourier transform infrared spectrophotometer (FTIR). The results indicated that the conductive films showed high response selectivity to polar solvent vapors, especially to chloroform vapor, while no response was observed in non-polar solvent vapors. The responsivity of the film increased with the decreased carbon black contents. The film filled with acetylene carbon black gave an optimal response, with responsivity of about 700 times. The response performances were improved with the amount of curing agents increased, and an optimal response appeared at the amount of the curing agent of 8%. The film's responsivity was remarkably enhanced, the reversibility property, however, rapidly declined in the order of diethyleneltriamine < triethylenetetramine < ethylenediamine. The curing reaction tended to complete with the curing temperature elevated and the curing time prolonged. But the response performance dropped because of over cross-linking as the temperature was too high or the time was too long.

  8. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents

    International Nuclear Information System (INIS)

    Luo Yanling; Li Zhanqing; Lan Wenxiang

    2007-01-01

    A novel polymer based sensitive film was prepared from thermosetting epoxy resins (EP) filled with carbon blacks. The curing reaction of amine curing agents with epoxy resins and the response of the curing resultants to solvent vapors were dealt with. The influence of the types and content of carbon blacks and curing agents, and curing temperatures and time on curing reactions and response selectivity of the conductive films were investigated. The structural characterization was conducted on a Fourier transform infrared spectrophotometer (FTIR). The results indicated that the conductive films showed high response selectivity to polar solvent vapors, especially to chloroform vapor, while no response was observed in non-polar solvent vapors. The responsivity of the film increased with the decreased carbon black contents. The film filled with acetylene carbon black gave an optimal response, with responsivity of about 700 times. The response performances were improved with the amount of curing agents increased, and an optimal response appeared at the amount of the curing agent of 8%. The film's responsivity was remarkably enhanced, the reversibility property, however, rapidly declined in the order of diethyleneltriamine < triethylenetetramine < ethylenediamine. The curing reaction tended to complete with the curing temperature elevated and the curing time prolonged. But the response performance dropped because of over cross-linking as the temperature was too high or the time was too long

  9. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  10. Effect of annealing on metastable shallow acceptors in Mg-doped GaN layers grown on GaN substrates

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Paskov, Plamen P.; Bergman, Peder; Monemar, Bo; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.

    2008-01-01

    Mg-doped GaN layers grown by metal-organic vapor phase epitaxy on GaN substrates produced by the halide vapor phase technique demonstrate metastability of the near-band-gap photoluminescence (PL). The acceptor bound exciton (ABE) line possibly related to the C acceptor vanishes in as-grown samples within a few minutes under UV laser illumination. Annealing activates the more stable Mg acceptors and passivates C acceptors. Consequently, only the ABE line related to Mg is dominant in PL spectra...

  11. Influence of Rapid Thermal Annealing on the Characteristics of InGaN/GaN MQWs

    Directory of Open Access Journals (Sweden)

    Tian Yuan

    2016-01-01

    Full Text Available N-type InGaN/GaN multiple-quantum-wells (MQWs were grown on sapphire substrates by metal organic chemical vapor deposition (MOCVD. The crystal quality and optical properties of samples after rapid thermal annealing (RTA at different temperatures in a range from 400 to 800°C are investigated by X-ray diffraction (XRD and photoluminescence (PL spectrum. The experimental results show that the peaks of InGaN, InN and In can be observed in all samples. And the results are induced by the phase separation and In-clusters. The luminescence peak of the samples annealed showed a red shift. It is caused by strain stress relaxation during the RTA process. Furthermore, some defects can be eliminated and the best annealing temperature is from 500°C to 700°C.

  12. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  13. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  14. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    Science.gov (United States)

    Naito, K.; Matsuishi, K.

    2009-04-01

    Well-uniformed C60 nanotubes were grown at -20 °C with irradiation of red light using C60-saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 °C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  15. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    International Nuclear Information System (INIS)

    Naito, K; Matsuishi, K

    2009-01-01

    Well-uniformed C 60 nanotubes were grown at -20 deg. C with irradiation of red light using C 60 -saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C 60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 deg. C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C 60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  16. THE DEVELOPMENT OF THE CALCULATION MODEL FOR THE ESTIMATION OF THE BOILING POINT OF THE ­POLYMER-SOLVENT MIXTURES

    Directory of Open Access Journals (Sweden)

    Matseevich Andrey Vyacheslavovich

    2018-03-01

    Full Text Available Subject of the study: one of the most promising areas in the field of polymer physics is the development of the calculation models allowing to quantify the properties of polymers. This work provides the calculation model for the quantitative assessment of the boiling point of solutions of polymer in the organic solvent. The model is based on the chemical structure of polymer and solvent. For the components the Hildebrand solubility parameter, the latent heat of vaporization and the boiling point of the solvent are calculated. Objectives: to generate the equation connecting the boiling point of polymer solution in the chosen solvent with the boiling point of the pure solvent, the molecular weights of the repeating unit of polymer and the molecule of solvent, the weight fraction of polymer in solution, the Hildebrand solubility parameter and the molar volume of the repeating unit of polymer. Materials and methods: the Hildebrand solubility parameter of solutions and polymers and also the van der Waals volume were calculated using the method of A.A. Askadsky; the enthalpy of vaporization of the solvent at the boiling point was expressed through the Hildebrand solubility parameter. The dependence of the enthalpy of vaporization from the temperature was taken into consideration. The computerization of the method was implemented, according to which all calculations are performed automatically after entering the information on the chemical structure of polymer and solvent into the computer. Results: the equation connecting the ebulliometric constant of the low concentration polymer solution with the boiling point of the solvent, the molar volume of the solvent and the Hildebrand parameter was generated. The results of the analysis were checked with regard to the system of polystyrene/toluene; the possibility of practical application of the offered method was shown. Conclusions: the method presented in this article allows to predict the ebulliometric

  17. 19F NMR spectroscopy in monitoring fluorinated-solvent regeneration

    International Nuclear Information System (INIS)

    Ogorodnikov, V.D.; Bordunov, V.V.

    1987-01-01

    Extensive use is made of solvents such as trichloroethylene, freon-133, and perchloroethylene because they are good solvents for inorganic, plant, and animal greases, while the solvents can be recovered and there is no fire hazard. In this paper, the authors examined methods to monitor spent solution regeneration rapidly and with high accuracy. The authors tested perfluorinated telomeric alcohols as solvents for cleaning engineering components which have melting points of 60-120 degrees celsius. The higher working temperatures and the increased energy consumption are disadvantages of these solvents, but these are compensated for by the scope for using them virtually in the solid, liquid, and vapor states. The authors' proposed technology is based on solvents with melting points over 40 degrees celsius which produce virtually no wastes. The telomeric alcohols are recovered after cooling to normal conditions by separation from the oil by filtration and centrifugation, and they can be used in the next purification cycle. When the solvents have been regenerated, the petroleum products such as industrial oils can be reused for their original purpose. However, quantitative data are required on the solvent contents in the oil and the oil contents in the solvent in order to determine the degree of regeneration and the modes to be used. The authors have also proposed a quantitative method of determining traces of these alcohols in oils and residual oils in the solvent by fluorine NMR. All measurements were made with a BS497 NMR spectrometer

  18. Chemical vapour deposition at atmospheric pressure of graphene on molybdenum foil: Effect of annealing time on characteristics and corrosion stability of graphene coatings

    International Nuclear Information System (INIS)

    Naghdi, Samira; Jevremović, Ivana; Mišković-Stanković, Vesna; Rhee, Kyong Yop

    2016-01-01

    Highlights: • Atmospheric pressure chemical vapor deposition of graphene on molybdenum foils. • Quality and domain size of graphene layers increased with longer annealing times. • The number of graphene layers decreased with longer annealing times. • Graphene coatings on molybdenum foils exhibited corrosion inhibitive properties. - Abstract: In this work, the effect of pre-annealing of Mo substrate on the quality of graphene layers grown by chemical vapour deposition was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Moreover, different electrochemical techniques were employed to investigate the corrosion stability of the graphene coated Mo in 0.1 M NaCl. Longer annealing time resulted in less defective graphene coatings with fewer layers. Graphene coating on the annealed Mo provided better protection against corrosion during the initial exposure times, while after prolonged exposure times, both graphene coatings on annealed and non-annealed Mo exhibited nearly the same corrosion inhibitive properties.

  19. The effect of solvent on the morphology of an inkjet printed active layer of bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahaya, Muhammad

    2011-01-01

    Bulk heterojunction organic solar cells were fabricated by sandwiching the active layer between indium tin oxide (ITO) and Al electrodes. The active layer used was a blend of poly(3-octylthiophene-2,5-diyl) (P3OT) as the electron donor and (6,6)-phenyl C 71 butyric acid methyl ester (PC 71 BM) as the electron acceptor. The active layer thin films were deposited by an inkjet printing technique. Prior to deposition of the thin films, the active materials were blended in three different solvents. The printed films were annealed at three different temperatures. It was found that the selection of the appropriate solvent and annealing treatment significantly influences the printing process, the morphology of the printed film and subsequently the performance of the solar cell devices

  20. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings.

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-08-07

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr₂N, (CrAl)₂N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr₂N and (CrAl)₂N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  1. Influence of solvent addition on the physicochemical properties of Brazilian gasoline

    Energy Technology Data Exchange (ETDEWEB)

    E.V. Takeshita; R.V.P. Rezende; S.M.A. Guelli; U. de Souza; A.A. Ulson de Souza [Federal University of Santa Catarina, Florianopolis (Brazil). Chemical Engineering Department

    2008-08-15

    The influence of several solvents (anhydrous ethanol, white spirit, alkylbenzene AB9, diesel) on the physicochemical parameters of gasoline was studied according to ASTM international standard methods. The parameters investigated (distillation curves, density, Reid vapor pressure) showed differentiated behavior, depending on the class of the solvent (oxygenated, light and heavy aliphatic, aromatic) and the quantity added to the gasoline. The azeotropic mixtures formed by ethanol and hydrocarbons showed a strong influence on the behavior of the distillation curves and the location of the point of a sudden change in temperature was shown to be a possible way to detect adulterations and determine the quantity of solvent added to the gasoline. 28 refs., 9 figs., 5 tabs.

  2. An Asymmetric Furan/Thieno[3,2-b]Thiophene Diketopyrrolopyrrole Building Block for Annealing-Free Green-Solvent Processable Organic Thin-Film Transistors.

    Science.gov (United States)

    Ding, Shang; Ni, Zhenjie; Hu, Mengxiao; Qiu, Gege; Li, Jie; Ye, Jun; Zhang, Xiaotao; Liu, Feng; Dong, Huanli; Hu, Wenping

    2018-06-21

    A new asymmetric furan and thieno[3,2-b]thiophene flanked diketopyrrolopyrrole (TTFDPP) building block for conjugated polymers is designed and used to generate a donor-acceptor semiconducting polymer, poly[3-(furan-2-yl)-2,5-bis(2-octyldodecyl)-6-(thieno[3,2-b]thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-thieno[3,2-b]thiophene] (abbreviated to PTTFDPP-TT), consisting of TTFDPP unit copolymerized with thieno[3,2-b]thiophene comonomer (TT), which is further synthesized. Results demonstrate that PTTFDPP-TT-based thin-film transistors in a bottom-gate bottom-contact device configuration exhibit typical hole-transporting property, with weak temperature dependence for charge carrier mobility from room temperature to 200 °C. In addition, the good solubility of PTTFDPP-TT due to the incorporation of a polar furan unit and an asymmetric conjugated structure makes it able to be solution processed with a less toxic nonchlorinated solvent such as toluene, demonstrating comparable performance with that prepared from chlorinated solution. These results suggest PTTFDPP-TT as a promising organic semiconductor candidate for annealing-free, environmentally benign, and less energy-consuming applications in large-area flexible organic electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Alison [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  4. Raman Spectroscopy Study of Annealing-Induced Effects on Graphene Prepared by Micromechanical Exfoliation

    International Nuclear Information System (INIS)

    Song, Ji Eun; Ko, Taeg Yeoung; Ryu, Sun Min

    2010-01-01

    Raman spectroscopy was combined with AFM to investigate the effects of thermal annealing on the graphene samples prepared by the widely used micromechanical exfoliation method. Following annealing cycles, adhesive residues were shown to contaminate graphene sheets with thin molecular layers in their close vicinity causing several new intense Raman bands. Detailed investigation shows that the Raman scattering is very strong and may be enhanced by the interaction with graphene. Although the current study does not pinpoint detailed origins for the new Raman bands, the presented results stress that graphene prepared by the above method may require extra cautions when treated with heat or possibly solvents. Since its isolation from graphite, graphene has drawn a lot of experimental and theoretical research. These efforts have been mostly in pursuit of various applications such as electronics, sensors, stretchable transparent electrodes, and various composite materials. To accomplish such graphene-based applications, understanding chemical interactions of this new material with environments during various processing treatments will become more important. Since thermal annealing is widely used in various research of graphene for varying purposes such as cleaning, nanostructuring, reactions, etc., understanding annealing-induced effects is prerequisite to many fundamental studies of graphene. In this regard, it is to be noted that there has been a controversy on the cause of the annealing-induced hole doping in graphene

  5. Direct Vapor-Phase Bromination of Multiwall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Mazov

    2012-01-01

    Full Text Available We present the simple procedure of the vapor-phase bromination of multiwall carbon nanotubes (MWNTs at moderate temperatures. MWNTs with average diameter 9±3 nm were treated with Br2 vapors at 250°C to produce Br-functionalized product. Transmission electron microscopy analysis was used to prove low damage of MWNT walls during bromination. X-ray photoelectron spectroscopy (XPS and differential thermal analysis (DTA were used to investigate chemical composition of the surface of initial and brominated nanotubes. The experimental results show that the structure of MWNTs is not affected by the bromination process and the total amount of Br-containing surface functions reaches 2.5 wt. %. Electrophysical properties of initial and brominated MWNTs were investigated showing decrease of conductivity for functionalized sample. Possible mechanism of the vapor-phase bromination via surface defects and oxygen-containing functional groups was proposed according to data obtained. Additional experiments with bromination of annealed low-defected MWNTs were performed giving Br content a low as 0.75 wt. % proving this hypothesis.

  6. A novel technique to determine concentration-dependent solvent dispersion in Vapex

    Energy Technology Data Exchange (ETDEWEB)

    Abukhalifeh, H.; Lohi, A.; Upreti, S. R. [Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada)

    2009-07-01

    Vapex (vapor extraction of heavy oil and bitumen) is a promising recovery technology because it consumes low energy, and is very environmentally-friendly. The dispersion of solvents into heavy oil and bitumen is a crucial transport property governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to effectively predict the amount and time scale of oil recovery as well to optimize the field operations. In this work, a novel technique is developed to experimentally determine the concentration-dependent dispersion coefficient of a solvent in Vapex process. The principles of variational calculus are utilized in conjunction with a mass transfer model of the experimental Vapex process. A computational algorithm is developed to optimally compute solvent dispersion as a function of its concentration in heavy oil. The developed technique is applied to Vapex utilizing propane as a solvent. The results show that dispersion of propane is a unimodal function of its concentration in bitumen. (author)

  7. A Novel Technique to Determine Concentration-Dependent Solvent Dispersion in Vapex

    Directory of Open Access Journals (Sweden)

    Hadil Abukhalifeh

    2009-10-01

    Full Text Available Vapex (vapor extraction of heavy oil and bitumen is a promising recovery technology because it consumes low energy, and is very environmentally-friendly. The dispersion of solvents into heavy oil and bitumen is a crucial transport property governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to effectively predict the amount and time scale of oil recovery as well to optimize the field operations. In this work, a novel technique is developed to experimentally determine the concentration-dependent dispersion coefficient of a solvent in Vapex process. The principles of variational calculus are utilized in conjunction with a mass transfer model of the experimental Vapex process. A computational algorithm is developed to optimally compute solvent dispersion as a function of its concentration in heavy oil. The developed technique is applied to Vapex utilizing propane as a solvent. The results show that dispersion of propane is a unimodal function of its concentration in bitumen.

  8. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong

    2012-07-10

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz), forming a film composed of the metal-ligand complex. Fast and quantitative formation of the complex leads to marked changes in the morphology and optical properties of the film. X-ray diffraction studies show that the chemical annealing process converts amorphous ZnTPP films to crystalline ZnTPP•ligand films, whose porphryin planes lie nearly parallel to the substrate (average deviation is 8° for the ZnTPP•pz film). Organic solar cells were prepared with ZnTPP donor and C 60 acceptor layers. Devices were prepared with and without chemical annealing of the ZnTPP layer with a pyrazine ligand. The devices with chemically annealed ZnTPP donor layer show an increase in short-circuit current (J SC) and fill factor (FF) relative to analogous unannealed devices, presumably because of enhanced exciton diffusion length and improved charge conductivity. The open circuit voltages (V OC) of the chemically annealed devices are lower than their unannealed counterpart because of enhanced polaron pair recombination at the donor/acceptor heterojunction. A net improvement of 5-20% in efficiency has been achieved, after chemical annealing of ZnTPP films with pyrazine. © 2012 American Chemical Society.

  9. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene

    Science.gov (United States)

    Sun, Jianbo; Finklea, Harry O.; Liu, Yuxin

    2017-03-01

    Poly(methyl methacrylate) (PMMA) residue has long been a critical challenge for practical applications of the transferred chemical vapor deposited (CVD) graphene. Thermal annealing is empirically used for the removal of the PMMA residue; however experiments imply that there are still small amounts of residues left after thermal annealing which are hard to remove with conventional methods. In this paper, the thermal degradation of the PMMA residue upon annealing was studied by Raman spectroscopy. The study reveals that post-annealing residues are generated by the elimination of methoxycarbonyl side chains in PMMA and are believed to be absorbed on graphene via the π-π interaction between the conjugated unsaturated carbon segments and graphene. The post-annealing residues are difficult to remove by further annealing in a non-oxidative atmosphere due to their thermal and chemical stability. An electrolytic cleaning method was shown to be effective in removing these post-annealing residues while preserving the underlying graphene lattice based on Raman spectroscopy and atomic force microscopy studies. Additionally, a solution-gated field effect transistor was used to study the transport properties of the transferred CVD graphene before thermal annealing, after thermal annealing, and after electrolytic cleaning, respectively. The results show that the carrier mobility was significantly improved, and that the p-doping was reduced by removing PMMA residues and post-annealing residues. These studies provide a more in-depth understanding on the thermal annealing process for the removal of the PMMA residues from transferred CVD graphene and a new approach to remove the post-annealing residues, resulting in a residue-free graphene.

  10. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating

  11. Annealing in sulfur of CZTS nanoparticles deposited through doctor blading

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Crovetto, Andrea

    of the main limitations for this approach, and (2) grain boundaries and defects are believed to be a site for recombination that limit the efficiency. Annealing in vacuum and/or nitrogen atmosphere facilitates grain growth and improves the electronic properties. Conventionally selenization shows the best...... results, however sulfurization has the advantage of being less toxic. In this work, nanocrystals of CZTS with a targeted Cu-poor/Zn-rich composition are synthesized through a hot-injection method with oleylamine as the solvent. The nanocrystal inks are deposited through doctor blading in octanethiol...

  12. The effect of thermal and vapor annealing treatments on the self-assembly of TiO2 /PS-b-PMMA nanocomposites generated via the sol-gel process

    International Nuclear Information System (INIS)

    Gutierrez, J; Tercjak, A; Garcia, I; Mondragon, I

    2009-01-01

    Polystyrene-block-poly(methyl methacrylate) (SMMA) block copolymer has been used as a structure-directing agent for generating TiO 2 /SMMA nanocomposites via the sol-gel process using a hydrophobic surfactant. The aim of the work has been focused on the preparation of well-defined nanostructured composites based on the self-assembling capability of the block copolymer using two different annealing methods: thermal- and solvent-induced microphase separation. The addition of different amounts of nanoparticles caused strong variations in the self-assembled morphology of the TiO 2 /SMMA nanocomposites with respect to the block copolymer, as observed by atomic force microscopy (AFM). To verify the confinement of the nanoparticles in the PMMA block 3D AFM images and corresponding AFM profiles have also been reported. UV light irradiation of the nanocomposite films provoked the removal of the organic matrix and consequently led to an array of TiO 2 nanoparticles on the substrate surface.

  13. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    International Nuclear Information System (INIS)

    Dangbegnon, J.K.; Talla, K.; Roro, K.T.; Botha, J.R.

    2009-01-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  14. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K., E-mail: JulienKouadio.Dangbegnon@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Talla, K.; Roro, K.T.; Botha, J.R. [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  15. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-01-01

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr2N, (CrAl)2N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl)2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness. PMID:28811440

  16. Tunable and rapid self-assembly of block copolymers using mixed solvent vapors.

    Science.gov (United States)

    Park, Woon Ik; Tong, Sheng; Liu, Yuzi; Jung, Il Woong; Roelofs, Andreas; Hong, Seungbum

    2014-12-21

    Pattern generation of well-controlled block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) is important for applications in sub-20 nm nanolithography. We used mixed solvents of dimethylformamide (DMF) and toluene to control the morphology as well as the time to achieve the targeted morphology via self-assembly of BCPs. By precisely controlling the volume ratio of DMF and toluene, well-ordered line, honeycomb, circular hole, and lamellar nanostructures were obtained from a cylinder-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) BCP with high χ. Furthermore, a well-aligned 12 nm line pattern was successfully achieved in the guiding template within one minute using the mixed solvents. This practical method may also be applicable to self-assembly of other BCPs, providing more opportunities for the next-generation sub-10 nm lithography applications.

  17. Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Janting, Jakob

    2017-01-01

    In this letter, we investigate the response of poly(methylmethacrylate) (PMMA) microstructured polymer optical fiber Bragg gratings (POFBGs) after immersion inmethanol/water solutions at room temperature. As the glass transition temperature of solution-equilibrated PMMA differs from the one...... of solvent-free PMMA, different concentrations of methanol and water lead to various degrees of frozen-in stress relaxation in the fiber. After solvent evaporation, we observe a permanent blue-shift in the grating resonance wavelength. The main contribution in the resonance wavelength shift arises from...... a permanent change in the size of the fiber. The results are compared with conventional annealing. The proposed methodology is cost-effective as it does not require a climate chamber. Furthermore, it enables an easy-to-control tuning of the resonance wavelength of POFBGs....

  18. Rapid thermal pulse annealing

    International Nuclear Information System (INIS)

    Miller, M.G.; Koehn, B.W.; Chaplin, R.L.

    1976-01-01

    Characteristics of recovery processes have been investigated for cases of heating a sample to successively higher temperatures by means of isochronal annealing or by using a rapid pulse annealing. A recovery spectra shows the same features independent of which annealing procedure is used. In order to determine which technique provides the best resolution, a study was made of how two independent first-order processes are separated for different heating rates and time increments of the annealing pulses. It is shown that the pulse anneal method offers definite advantages over isochronal annealing when annealing for short time increments. Experimental data by means of the pulse anneal techniques are given for the various substages of stage I of aluminium. (author)

  19. Solvent Chemistry in the Electronic Cigarette Reaction Vessel

    Science.gov (United States)

    Jensen, R. Paul; Strongin, Robert M.; Peyton, David H.

    2017-02-01

    Knowledge of the mechanism of formation, levels and toxicological profiles of the chemical products in the aerosols (i.e., vapor plus particulate phases) of e-cigarettes is needed in order to better inform basic research as well as the general public, regulators, and industry. To date, studies of e-cigarette emissions have mainly focused on chromatographic techniques for quantifying and comparing the levels of selected e-cigarette aerosol components to those found in traditional cigarettes. E-cigarettes heat and aerosolize the solvents propylene glycol (PG) and glycerol (GLY), thereby affording unique product profiles as compared to traditional cigarettes. The chemical literature strongly suggests that there should be more compounds produced by PG and GLY than have been reported in e-cigarette aerosols to date. Herein we report an extensive investigation of the products derived from vaporizing PG and GLY under mild, single puff conditions. This has led to the discovery of several new compounds produced under vaping conditions. Prior reports on e-cigarette toxin production have emphasized temperature as the primary variable in solvent degradation. In the current study, the molecular pathways leading to enhanced PG/GLY reactivity are described, along with the most impactful chemical conditions promoting byproduct production.

  20. Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.; Kamarajugadda, Mallika; Bozeman, Steven P.; Stearns, Laura C.

    2004-02-01

    A comprehensive survey is described of the responses of three plasma-enhanced chemical vapor deposited dielectric film systems to thermal cycling and indentation contact. All three films—silicon oxide, silicon nitride, and silicon oxy-nitride—exhibited significant nonequilibrium permanent changes in film stress on thermal cycling or annealing. The linear relationship between stress and temperature changed after the films were annealed at 300 °C, representing a structural alteration in the film reflecting a change in coefficient of thermal expansion or biaxial modulus. A double-substrate method was used to deduce both thermoelastic properties before and after the anneal of selected films and the results were compared with the modulus deconvoluted from small-scale depth-sensing indentation experiments (nanoindentation). Rutherford backscattering spectrometry and hydrogen forward scattering were used to deduce the composition of the films and it was found that all the films contained significant amounts of hydrogen.

  1. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias; Choi, Joshua J.; Smilgies, Detlef-M.

    2009-01-01

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  2. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias

    2009-10-27

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  3. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  4. Synergic solventing-out crystallization with subsequent time-delay thermal annealing of PbI2 precursor in mesostructured perovskite solar cells

    Science.gov (United States)

    Jia, Fujin; Guo, Yanqun; Che, Lijia; Liu, Zhiyong; Zeng, Zhigang; Cai, Chuanbing

    2018-06-01

    Although the two-step sequential deposition method provides an efficient route to fabricate high performance perovskite solar cells (PSSCs) with increasing reproducibility, the inefficient and incomplete conversion of PbI2 to perovskite is still quite a challenge. Following pioneering works, we found that the conversion process from PbI2 to perovskite mainly involves diffusion, infiltration, contact and reaction. In order to facilitate the conversion from PbI2 to perovskite, we demonstrate an effective method to regulate supersaturation level (the driving force to crystallization) of PbI2 by solventing-out crystallization combining with subsequent time-delay thermal annealing of PbI2 wet film. Enough voids and spaces in resulting porous PbI2 layer will be in favor of efficient diffusion, infiltration of CH3NH3I solution, and further enhance the contact and reaction between PbI2 and CH3NH3I in the whole film, leading to rapid, efficient and complete perovskite conversion with a conversion level of about 99.9%. Enhancement of light harvesting ranging from visible to near-IR region was achieved for the resultant high-quality perovskite. Upon this combined method, the fabricated mesostructured solar cells show tremendous power conversion efficiency (PCE) improvement from 3.2% to about 12.3% with less hysteresis owing to the simultaneous enhancement of short-circuit photocurrent density (J sc), open-circuit voltage (V oc) and fill factor (FF).

  5. Third-order optical susceptibility in polythiophene thin films prepared by spin-coating from high-boiling-point solvents

    International Nuclear Information System (INIS)

    Kobayashi, Takashi; Shinke, Wataru; Nagase, Takashi; Murakami, Shuichi; Naito, Hiroyoshi

    2014-01-01

    We examined the enhancements in the third-order optical susceptibility (χ (3) ) of spin-coated thin films of poly(3-hexylthiophene) using an anhydrous solvent with a high boiling point. The χ (3) value was found to be enhanced as the boiling point of the solvent increased. In this study, the largest value of χ (3) was obtained for thin films that were spin-coated in an inert atmosphere using anhydrous dichlorobenzene and then was subsequently exposed to its vapor for 1 h. The maximum value of the imaginary part of χ (3) was determined to be 1.8 × 10 -9 esu, which is more than three times greater than that of thin films spin-coated in an ambient atmosphere using a solvent with a low boiling point, such as chloroform. - Highlights: • Enhancements in nonlinear optical properties of a conjugated polymer were examined. • Thin films were fabricated by spin-coating using a solvent with a high boiling point. • The third-order optical susceptibility increased with increasing boiling point. • An additional enhancement was obtained by the vapor-treatment technique. • These thin films were sufficiently homogeneous for use in nonlinear optical devices

  6. A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S J; Timmons, A; Pitz, W J

    2008-11-13

    Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

  7. Using mixed solvent and changing spin-coating parameters to increase the efficiency and lifetime of organic solar cells.

    Science.gov (United States)

    Tsai, Yu Sheng; Chu, Wei-Ping; Tang, Rong-Ming; Juang, Fuh-Shyang; Chang, Ming-Hua; Liu, Mark O; Hsieh, Tsung-Eong

    2008-10-01

    The derivative of C60, i.e., PCBM, and P3HT (3-hexylthiophene) were dissolved in chloroform:dichlorobenzene mixed solvent, then spin-coated as the active layer for organic solar cells (OSC). The experimental parameters were studied carefully to obtain the optimum power conversion efficiency (PCE), including the solvent mixing ratio, spin-coating speed, annealing conditions for the active layer, etc. The OSC devices were packaged with glass and a newly developed UV-glue to improve the lifetime and PCE. Dichlorobenzene solvent has great effect upon the PCE. Changing the spin-coating speed and increasing the number of steps increased the PCE apparently to 1.4%.

  8. Hydrogenation of Isophthalonitrile with 1-Methylimidazole as an Effective Solvent for m-Xylenediamine Production

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Tae Young; Row, Sung Wook; Yoo, Kye Sang; Lee, Sang Duek [Environment and Process Technology Division, Seoul (Korea, Republic of); Lee, Do Weon [University of Seoul, Seoul (Korea, Republic of)

    2006-03-15

    1-methylimidazole was shown to outperform the other organic solvents in this reaction. Moreover, amount of ammonia with using 1-methylimidazole as a solvent was lower than other processes. Thus, 1-methylimidazole is an attractive solvent in IPN hydrogenation for the production of MXDA. The correct choice of a solvent is a critical factor to govern the catalytic activity with desirable hydrogenation. Conventionally, organic materials such as aromatic hydrocarbons, aliphatic alcohols, aliphatic hydrocarbons, dimethylformamide and dioxane were employed in this reaction. Several MXDA producing processes with the organic solvent including m-xylene, pseudocumene, mesitylene, ethylbenzene, methylpyridine, benzonitrile, m-tolunitrile, MXDA and cyanopyridine were disclosed. However, the solvents and ammonia were vaporized under the operation conditions leading to amine cleavage with the resulting formation of methylbenzyl amines or the consumption of ammonia was still significant. Recently, some researchers reported that a high yield of MXDA was achieved using isopropanol under relatively low pressure condition; however, the consumption of ammonia was very significant.

  9. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Alison J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  10. Inkjet Printing With In Situ Fast Annealing For Patterned Multilayer Deposition

    KAUST Repository

    Boulfrad, Samir; Alarousu, Erkki; Da'as, Eman Husni; Jabbour, Ghassan

    2013-01-01

    Patterned multilayer films, such as those used in electronic devices, solar cells, solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs) may be deposited and annealed in a single tool. The tool includes an inkjet printer head, a heater, and a laser. The inkjet printer head deposits on a substrate either suspended particles of a functional material or solvated precursors of a functional material. The head is mounted on a support that allows the head to scan the substrate by moving along the support in a first direction and moving the support along a second direction. After the head deposits the material the heater evaporates solvent from substrate, and the depositing and heating may be repeated one or more times to form a patterned multilayer material. Then, a laser, microwave, and/or Joule effect heating device may be used to anneal the multilayer material to a desired pattern and crystalline state.

  11. Inkjet Printing With In Situ Fast Annealing For Patterned Multilayer Deposition

    KAUST Repository

    Boulfrad, Samir

    2013-12-05

    Patterned multilayer films, such as those used in electronic devices, solar cells, solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs) may be deposited and annealed in a single tool. The tool includes an inkjet printer head, a heater, and a laser. The inkjet printer head deposits on a substrate either suspended particles of a functional material or solvated precursors of a functional material. The head is mounted on a support that allows the head to scan the substrate by moving along the support in a first direction and moving the support along a second direction. After the head deposits the material the heater evaporates solvent from substrate, and the depositing and heating may be repeated one or more times to form a patterned multilayer material. Then, a laser, microwave, and/or Joule effect heating device may be used to anneal the multilayer material to a desired pattern and crystalline state.

  12. NEXAFS Study of the Annealing Effect on the Local Structure of FIB-CVD DLC

    International Nuclear Information System (INIS)

    Saikubo, Akihiko; Kato, Yuri; Igaki, Jun-ya; Kanda, Kazuhiro; Matsui, Shinji; Kometani, Reo

    2007-01-01

    Annealing effect on the local structure of diamond like carbon (DLC) formed by focused ion beam-chemical vapor deposition (FIB-CVD) was investigated by the measurement of near edge x-ray absorption fine structure (NEXAFS) and energy dispersive x-ray (EDX) spectra. Carbon K edge absorption NEXAFS spectrum of FIB-CVD DLC was measured in the energy range of 275-320 eV. In order to obtain the information on the location of the gallium in the depth direction, incidence angle dependence of NEXAFS spectrum was measured in the incident angle range from 0 deg. to 60 deg. . The peak intensity corresponding to the resonance transition of 1s→σ* originating from carbon-gallium increased from the FIB-CVD DLC annealed at 200 deg. C to the FIB-CVD DLC annealed at 400 deg. C and decreased from that at 400 deg. C to that at 600 deg. C. Especially, the intensity of this peak remarkably enhanced in the NEXAFS spectrum of the FIB-CVD DLC annealed at 400 deg. C at the incident angle of 60 deg. . On the contrary, the peak intensity corresponding to the resonance transition of 1s→π* originating from carbon double bonding of emission spectrum decreased from the FIB-CVD DLC annealed at 200 deg. C to that at 400 deg. C and increased from that at 400 deg. C to that at 600 deg. C. Gallium concentration in the FIB-CVD DLC decreased from ≅2.2% of the as-deposited FIB-CVD DLC to ≅1.5% of the FIB-CVD DLC annealed at 600 deg. C from the elementary analysis using EDX. Both experimental results indicated that gallium atom departed from FIB-CVD DLC by annealing at the temperature of 600 deg. C

  13. Tuning crystalline ordering by annealing and additives to study its effect on exciton diffusion in a polyalkylthiophene copolymer.

    Science.gov (United States)

    Chowdhury, Mithun; Sajjad, Muhammad T; Savikhin, Victoria; Hergué, Noémie; Sutija, Karina B; Oosterhout, Stefan D; Toney, Michael F; Dubois, Philippe; Ruseckas, Arvydas; Samuel, Ifor D W

    2017-05-17

    The influence of various processing conditions on the singlet exciton diffusion is explored in films of a conjugated random copolymer poly-(3-hexylthiophene-co-3-dodecylthiophene) (P3HT-co-P3DDT) and correlated with the degree of crystallinity probed by grazing incidence X-ray scattering and with exciton bandwidth determined from absorption spectra. The exciton diffusion coefficient is deduced from exciton-exciton annihilation measurements and is found to increase by more than a factor of three when thin films are annealed using CS 2 solvent vapour. A doubling of exciton diffusion coefficient is observed upon melt annealing at 200 °C and the corresponding films show about 50% enhancement in the degree of crystallinity. In contrast, films fabricated from polymer solutions containing a small amount of either solvent additive or nucleating agent show a decrease in exciton diffusion coefficient possibly due to formation of traps for excitons. Our results suggest that the enhancement of exciton diffusivity occurs because of increased crystallinity of alkyl-stacking and longer conjugation of aggregated chains which reduces the exciton bandwidth.

  14. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  15. Electrical properties and annealing kinetics study of laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wang, K.L.; Liu, Y.S.; Kirkpatrick, C.G.; Possin, G.E.

    1979-01-01

    This paper describes measurements of electrical properties and the regrowth behavior of ion-implanted silicon annealed with an 80-ns (FWHM) laser pulse at 1.06 μm. The experimental results include: (1) a determination of threshold energy density required for melting using a transient optical reflectivity technique, (2) measurements of dopant distribution using Rutherford backscattering spectroscopy, (3) characterization of electrical properties by measuring reverse leakage current densities of laser-annealed and thermal-annealed mesa diodes, (4) determination of annealed junction depth using an electron-beam-induced-current technique, and (5) a deep-level-transient spectroscopic study of residual defects. In particular, by measuring these properties of a diode annealed at a condition near the threshold energy density for liquid phase epitaxial regrowth, we have found certain correlations among these various annealing behaviors and electrical properties of laser-annealed ion-implanted silicon diodes

  16. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness.

    Science.gov (United States)

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-05-20

    In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.

  17. Measuring solvent barrier properties of paper

    International Nuclear Information System (INIS)

    Bollström, Roger; Saarinen, Jarkko J; Toivakka, Martti; Räty, Jukka

    2012-01-01

    New methods for measuring barrier properties against solvents, acids and bases on dispersion coated paper were developed and investigated. Usability, reliability and repeatability were compared both between the new methods and with the standardized method for measuring barrier properties against water vapor. Barrier properties could be measured with all methods and the results obtained by the different methods were in correlation with each other. A qualitative method based on a trace color provided an indicative result, whereas further developed methods also took into account the durability. The effective barrier lifetime could be measured by measuring the conductivity through the substrate as a function of time, or by utilizing a glass prism where the change in refractive index caused by penetrated liquid was monitored, also as a function of time. Barrier properties against water and humidity were also measured and were found not to be predictors for barrier properties against either solvents, or acids or bases, which supports the need to develop new methods

  18. PHASE BEHAVIOR OF LIGHT GASES IN HYDROCARBON AND AQUEOUS SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

    1998-08-31

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present period, the Park-Gasem-Robinson (PGR) equation of state (EOS) has been modified to improve its volumetric and equilibrium predictions. Specifically, the attractive term of the PGR equation was modified to enhance the flexibility of the model, and a new expression was developed for the temperature dependence of the attractive term in this segment-segment interaction model. The predictive capability of the modified PGR EOS for vapor pressure, and saturated liquid and

  19. Comparative Study on Electronic, Emission, Spontaneous Property of Porous Silicon in Different Solvents

    Directory of Open Access Journals (Sweden)

    M. Naziruddin Khan

    2014-01-01

    Full Text Available Luminescent porous silicon (Psi fabricated by simple chemical etching technique in different organic solvents was studied. By quantifying the silicon wafer piece, optical properties of the Psi in solutions were investigated. Observation shows that no photoluminescence light of Psi in all solvents is emitted. Morphology of Psi in different solvents indicates that the structure and distribution of Psi are differently observed. Particles are uniformly dispersive with the sizes around more or less 5–8 nm. The crystallographic plane and high crystalline nature of Psi is observed by selected area diffraction (SED and XRD. Electronic properties of Psi in solutions are influenced due to the variation of quantity of wafer and nature of solvent. Influence in band gaps of Psi calculated by Tauc’s method is obtained due to change of absorption edge of Psi in solvents. PL intensities are observed to be depending on quantity of silicon wafer, etched cross-section area on wafer surface. Effects on emission peaks and bands of Psi under temperature annealing are observed. The spontaneous signals of Psi measured under high power Pico second laser 355 nm source are significant, influenced by the nature of solvent, pumped energy, and quantity of Si wafer piece used in etching process.

  20. Thermodynamic modeling of liquid–liquid phase change solvents for CO2 capture

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; von Solms, Nicolas; Thomsen, Kaj

    2016-01-01

    A thermodynamic model based on Extended UNIQUAC framework has been developed in this work for the de-mixing liquid–liquid phase change solvents, DEEA (2-(diethylamino)ethanol) and MAPA (3-(methylamino)propylamine). Parameter estimation was performed for two ternary systems, H2O-DEEA-CO2 and H2O......-MAPA-CO2, and a quaternary system, H2O-DEEA-MAPA-CO2 (phase change system), by using different types of experimental data (equilibrium and thermal) consisting of pure amine vapor pressure, vapor-liquid equilibrium, solid-liquid equilibrium, liquid–liquid equilibrium, excess enthalpy, and heat of absorption...

  1. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  2. Interaction enthalpies of solid human serum albumin with water-dioxane mixtures: comparison with water and organic solvent vapor sorption

    International Nuclear Information System (INIS)

    Sirotkin, Vladimir A.; Faizullin, Djihanguir A.

    2004-01-01

    Enthalpy changes (ΔH tot ) on the immersion of dehydrated human serum albumin (HSA) into water-dioxane mixtures have been measured using a Setaram BT-2.15 calorimeter at 298 K. Thermodynamic activity of water was varied from 0 to 1. Calorimetric results are discussed together with the FTIR-spectroscopic data on water and organic solvent vapor adsorption/desorption isotherms on solid HSA. Dioxane sorption exhibits a pronounced hysteresis. Calorimetric and dioxane desorption dependencies consist of two parts. No dioxane sorption was observed in low water activity region (a w tot values are close to zero. At water activity about 0.5 the sharp exothermic drop of the interaction enthalpy values was observed. This exothermic drop is accompanied by the sharp increase in the amount of sorbed dioxane and additional water sorption (compared with that for pure water). Dioxane adsorption branch resembles a smooth curve. In this case, solid HSA binds more than 300 mol dioxane/mol HSA at low water activities. By using a water activity-based comparison we distinguished between dioxane-assisted and dioxane-competitive effect on water sorption. The obtained results demonstrate that the hydration 'history' of solid protein is an important factor that controls as the state of protein macromolecule as well as the sorption of low-molecular organic molecules

  3. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    Science.gov (United States)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  4. Solvent extraction of gold using ionic liquid based process

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  5. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2017-06-01

    Full Text Available SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries.

  6. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    Science.gov (United States)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging

  7. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.

    2018-05-18

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent‐induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant‐derived polyphenol, and terephthaloyl chloride. Alpha‐pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X‐ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut‐off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.

  8. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  9. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    OpenAIRE

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable ?wet pulse annealing? technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150??C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1?s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics rev...

  10. An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-12

    This study reports on the design and synthesis of an unsymmetrical π-conjugated organic molecule composed of perylene diimide, thienyl diketopyrrolopyrrole, and indoloquinoxaline pieced together using direct heteroarylation. This material demonstrates unprecedented response in the thin-film upon post-deposition solvent vapor annealing, resulting in dramatic red-shifts in optical absorption. Such changes were utilized to enhance photocurrent generation in P3HT based organic solar cells.

  11. High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds

    Science.gov (United States)

    Zhang, Shao-Lin; Zhang, Zhijun; Yang, Woo-Chul

    2016-01-01

    Despite the great progress in the theory and experimental verification we made in past decade, the practical application of graphene is still hindered by the lack of efficient, economical, scalable, ease-processing exfoliation method. Herein, we propose a facile, low-cost, and efficient liquid-phase exfoliation process using low boiling-temperature solvent mixture to fabricate few-layer graphene in large scale. The Hansen solubility parameter theory was applied to help optimize the composition of solvent mixture. Aqueous-based ternary-solvent mixture, for the first time, was adapted to exfoliate graphene. We demonstrate that the exfoliation efficiency using ternary-solvent mixture surpasses that from binary-solvent approach. The final product concentration after optimization was over 260 μg/ml. The concentrated graphene dispersion was used to fabricate gas sensor for detecting volatile organic gases. Taking advantage of large surface area, large number of adsorption sites, and well-preserved basal plane, the mass-produced graphene nanosheets exhibited promising sensing potential toward ethanol and methanol vapors.

  12. Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2018-02-01

    Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.

  13. A study of the evaporation of a solvent from a solution--application to writing ink aging.

    Science.gov (United States)

    Cantú, Antonio A

    2012-06-10

    When writing ink is placed on a substrate, a drying process begins. This process is dependent on the composition of the ink and of the substrate. Lociciro et al. provide an equation that describes the drying process based on models developed by earlier investigators. The work given here develops an equation for the drying process that is based on a different and rather simple model. This model considers the evaporation of a solution in an opened vertical container (e.g., a beaker) and consists of a volatile, non-hygroscopic solvent with a non-volatile solute dissolved in it. Three assumptions are made: (a) the rate of evaporation is proportional to the vapor pressure of the solution and to the solution's exposed surface area, (b) this solution vapor pressure is proportional to the solvent vapor pressure with the proportionality constant being the solvent mole fraction (Raoult's law), and (c) a small fraction of the solvent remains trapped in the solute after evaporation ceases. What results is a differential equation, which, when solved, gives the solvent weight W(t) as an implicit function. What emerges naturally from this treatment is the fact that the function W(t) can have a point of maximum acceleration. Prior to this point the drying process is fast and after this point, the drying process is slow. An approximation to W(t) is taken to be the sum of two exponential functions, one describing the fast drying region and the second describing the subsequent slow drying region. Upon including an additive constant, this approximation turns out to be similar to, but not the same as that provided by Lociciro et al. However, their equivalence is shown and then tested using the two inks examined by Lociciro et al. (the drying of a Bic and a Staedtler blue ballpoint ink). The examples of (solvent+solute) systems ("inks") given here consist of the solvent (2-phenoxyethanol) and a solute such as a dye (crystal violet) or a polymer resin such as synthetic resin SK or

  14. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  15. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rubing, E-mail: zrb86411680@126.com [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Deming [Beijing General Research Institute of Mining and Metallurgy, Beijing 100044 (China); Chen, Guiqing [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yuesheng [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  16. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  17. Structure, Surface Morphology, and Optical and Electronic Properties of Annealed SnS Thin Films Obtained by CBD

    Science.gov (United States)

    Reghima, Meriem; Akkari, Anis; Guasch, Cathy; Turki-Kamoun, Najoua

    2014-09-01

    SnS thin films were initially coated onto Pyrex substrates by the chemical bath deposition (CBD) method and annealed at various temperatures ranging from 200°C to 600°C for 30 min in nitrogen gas. X-ray diffraction (XRD) analysis revealed that a structural transition from face-centered cubic to orthorhombic occurs when the annealing temperature is over 500°C. The surface morphology of all thin layers was investigated by means of scanning electron microscopy and atomic force microscopy. The elemental composition of Sn and S, as measured by energy dispersive spectroscopy, is near the stoichiometric ratio. Optical properties studied by means of transmission and reflection measurements show an increase in the absorption coefficient with increasing annealing temperatures. The band gap energy is close to 1.5 eV, which corresponds to the optimum for photovoltaic applications. Last, the thermally stimulated current measurements show that the electrically active traps located in the band gap disappear after annealing at 500°C. These results suggest that, once again, annealing as a post-deposition treatment may be useful for improving the physical properties of the SnS layers included in photovoltaic applications. Moreover, the thermo-stimulated current method may be of practical relevance to explore the electronic properties of more conventional industrial methods, such as sputtering and chemical vapor deposition.

  18. Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Bing-Rui; Lo, Shih-Yung; Wuu, Dong-Sing; Ou, Sin-Liang; Mao, Hsin-Yuan; Wang, Jui-Hao; Horng, Ray-Hua

    2012-01-01

    Large grain polycrystalline silicon (poly-Si) films on glass substrates have been deposited on an aluminum-induced crystallization (AIC) seed layer using hot-wire chemical vapor deposition (HWCVD). A poly-Si seed layer was first formed by the AIC process and a thicker poly-Si film was subsequently deposited upon the seed layer using HWCVD. The effects of AIC annealing parameters on the structural and electrical properties of the poly-Si seed layers were characterized by Raman scattering spectroscopy, field-emission scanning electron microscopy, and Hall measurements. It was found that the crystallinity of seed layer was enhanced with increasing the annealing duration and temperature. The poly-Si seed layer formed at optimum annealing parameters can reach a grain size of 700 nm, hole concentration of 3.5 × 10 18 cm −3 , and Hall mobility of 22 cm 2 /Vs. After forming the seed layer, poly-Si films with good crystalline quality and high growth rate (> 1 nm/s) can be obtained using HWCVD. These results indicated that the HWCVD-deposited poly-Si film on an AIC seed layer could be a promising candidate for thin-film Si photovoltaic applications. - Highlights: ►Poly-Si seed layers are formed by aluminum-induced crystallization (AIC) process. ►Poly-Si on AIC seed layers are prepared by hot-wire chemical vapor deposition. ►AIC process parameters affect structural properties of poly-Si films. ►Increasing the annealing duration and temperature increases the film crystallinity.

  19. In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS-b-P4VP Block Copolymer Thin Films

    International Nuclear Information System (INIS)

    Gowd, E Bhoje; Boehme, Marcus; Stamm, Manfred

    2010-01-01

    We investigated the orientation changes of cylindrical P4VP microdomains in PS-b-P4VP thin films upon annealing in different solvent vapours using the time-resolved in situ grazing-incidence small-angle X-ray scattering (GISAXS) for the first time. Swelling of perpendicular cylinders (C perpendicular) in a non-selective solvent vapours (chloroform) leads to the orientation change to in-plane cylinders (C//) and it occurs through a disordered state. On the other hand, swelling of perpendicular cylinders (C perpendicular) in a selective solvent vapours (1,4-dioxane) leads the morphological change from cylindrical to BCC spherical morphology. Solvent evaporation results in shrinkage of the matrix in the vertical direction and subsequently merges the spheres into the perpendicularly aligned cylinders. The selectivity of the solvent to constituting blocks and the solvent evaporation rate may be mainly responsible for such orientation change of cylindrical P4VP microdomains in PS-b-P4VP thin films.

  20. In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS-b-P4VP Block Copolymer Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Gowd, E Bhoje; Boehme, Marcus; Stamm, Manfred, E-mail: gowd@ipfdd.de, E-mail: bhojegowd@yahoo.com [Department of Nanostructured Materials Leibniz Institute of Polymer Research Dresden Hohe Strasse 6, 01069, Dresden (Germany)

    2010-11-15

    We investigated the orientation changes of cylindrical P4VP microdomains in PS-b-P4VP thin films upon annealing in different solvent vapours using the time-resolved in situ grazing-incidence small-angle X-ray scattering (GISAXS) for the first time. Swelling of perpendicular cylinders (C perpendicular) in a non-selective solvent vapours (chloroform) leads to the orientation change to in-plane cylinders (C//) and it occurs through a disordered state. On the other hand, swelling of perpendicular cylinders (C perpendicular) in a selective solvent vapours (1,4-dioxane) leads the morphological change from cylindrical to BCC spherical morphology. Solvent evaporation results in shrinkage of the matrix in the vertical direction and subsequently merges the spheres into the perpendicularly aligned cylinders. The selectivity of the solvent to constituting blocks and the solvent evaporation rate may be mainly responsible for such orientation change of cylindrical P4VP microdomains in PS-b-P4VP thin films.

  1. Measurement of infinite dilution activity coefficient and application of modified ASOG model for solvent-polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.; Choi, J. [Kwangwoon University, Seoul (Korea, Republic of); Tochigi, K.; Kojima, K. [Nihon University, Tokyo (Japan)

    1996-04-20

    A gas chromatographic method was used in order to measure vapor-liquid equilibria for solvent (1)-polymer (2) systems in which the polymers were polystyrene, poly(a-methyl) styrene and the advents were benzene toluene cyclohexane methylisobutylketone, ethylacetate, and vinylacetate. The activity coefficients of solvents for solvent (1)-polymer (2) systems were measured at infinite dilution and the modified ASOG (Analytical Solution of Group) model was suggested to describe vapor-liquid equilibria of those systems within a range of temperatures 423.15K through 498.15K. The model consists of the original ASOG and the free volume term. An external degree of freedom in the free volume term empirically became to a C1={alpha}+{beta}/T as a function of temperature. Each tern in the modified ASOG model is based on the weight fraction. The external degree of freedom in the model was estimated by experimental data within a range of temperatures. As a result of doing it the infinite dilution activity coefficients calculated were agreed with the experimental data within an error of 0.1%. 27 refs., 3 figs., 7 tabs.

  2. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys. SVETLANA NESTOROVIC. Technical Faculty Bor, University of Belgrade, Bor, Yugoslavia. MS received 11 February 2004; revised 29 October 2004. Abstract. This paper reports results of investigation carried out on sintered ...

  3. Cooperative effect of radiation and vapor environments on the deterioration of insulator materials

    International Nuclear Information System (INIS)

    Kusama, Yasuo; Okada, Sohei; Yagi, Toshiaki; Ito, Masayuki; Yoshida, Kenzo; Tamura, Naoyuki

    1985-01-01

    Experimental results and speculations are described on the cooperative effect of radiation and vapor environments for the deterioration of insulator cable cladding materials such as polyethylene chlorosulphonate, ethylene propylene rubber, cross-linked polyethylene, chloroprene and silicone rubber, by the separate, simultaneous or subsequent exposure of the above-mentioned two kinds of exposure factors. These experiment was carried out by considering main environmental factors in the LOCA (loss of coolant accident) conditions. Radiation experiment was made by employing 60 Co source of 9.7 kGy/h at a room-temperature air condition. Vapor environment exposure was conducted by the conditions of 120 to 160 deg C steam-saturated air conditions and others. With the experimental results described on the characteristics of the five kinds of the above-mentioned insulator materials in radiation and saturated vapor conditions, the following conclusions were obtained. Acceleration of deterioration by the cooperative action of radiation and saturated vapor was found for the examined materials except the cross-linked polyethylene. In the subsequent exposure of radiation and saturated vapor, deterioration behavior was dependent on insulator materials and component ratios of the insulator materials. For the cross-linked polyethylene, annealing effect by heat was found, and the effect was less significent in the simultaneous exposure. Restoration phenomenon was found in the cross-linked polyethylene even in the saturated vapor exposure stage of the subsequent exposure conditions of radiation exposure followed by saturated vapor. (Takagi, S.)

  4. Vapor solvent decontamination of PCB [polychlorinated biphenyls] transformer components

    International Nuclear Information System (INIS)

    Green, G.R.; Green, G.R.

    1992-01-01

    A process is provided to recover reclaimable material from discarded transformers containing PCB (polychlorinated biphenyl) insulating oils and to minimize the volume of materials which are subject to environmental regulation upon disposal. According to the invention, the transformer is drained and given an initial cleaning. The internal parts are removed and cleaned a second time as is the empty transformer casing. Recoverable materials such as aluminum and copper are cleaned to less than 10 μg of PCB per 100 cm 2 , allowing these materials to be recycled rather than buried. Almost all of the remaining nonmetallic materials are combustible solids or liquids which can be destroyed by incineration. The cleaning is accomplished using trichloroethylene solvent, chosen for its low boiling point which makes it easy to recycle using an isothermal separator. The removed transformer parts are cleaned in a secondary cleaning station consisting of 3 separate sections including tumbling baskets. 2 figs

  5. Steam and solvent injection as an advanced recovering method for heavy oil reservoirs; Injecao de vapor e solvente como um metodo de recuperacao avancada em reservatorios de oleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Edney Rafael V.P.; Rodrigues, Marcos Allyson F.; Barbosa, Janaina Medeiros D.; Barillas, Jennys Lourdes M.; Dutra Junior, Tarcilio V.; Mata, Wilson da [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Currently a resource more and more used by the petroleum industry to increase the efficiency of steam flood mechanism is the addition of solvents. The process can be understood as a combination of a thermal method (steam injection) with a miscible method (solvent injection), promoting, thus, the reduction of interfacial tensions and oil viscosity. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method, a numerical study of the process was driven contemplating the effects of some operational parameters (distance between wells, injection fluids rate, kind of solvent and injected solvent volume) on the accumulated production of oil and recovery factor. Semisynthetic models were used in this study but reservoir data can be extrapolated for practical applications situations on Potiguar Basin. Simulations were performed in STARS (CMG, 2007.11). It was found that injected solvent volumes increased oil recovery and oil rates. Further the majority of the injected solvent was produced and can be recycled. (author)

  6. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng

    2012-01-28

    Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.

  7. Friction force microscopy study of annealed diamond-like carbon film

    International Nuclear Information System (INIS)

    Choi, Won Seok; Joung, Yeun-Ho; Heo, Jinhee; Hong, Byungyou

    2012-01-01

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH 4 ) and hydrogen (H 2 ) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp 3 content is decreased from 75.2% to 24.1% while the sp 2 content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  8. Friction force microscopy study of annealed diamond-like carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Seok; Joung, Yeun-Ho [School of Electrical Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Heo, Jinhee [Materials Safety Evaluation Group, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Hong, Byungyou, E-mail: byhong@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2012-10-15

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH{sub 4}) and hydrogen (H{sub 2}) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp{sup 3} content is decreased from 75.2% to 24.1% while the sp{sup 2} content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  9. The Effect of Annealing on the Structural and Optical Properties of Titanium Dioxide Films Deposited by Electron Beam Assisted PVD

    Directory of Open Access Journals (Sweden)

    Yaser M. Abdulraheem

    2013-01-01

    Full Text Available Titanium dioxide thin films were deposited on crystalline silicon substrates by electron beam physical vapor deposition. The deposition was performed under vacuum ranging from 10−5 to 10−6 Torr without process gases, resulting in homogeneous TiO2-x layers with a thickness of around 100 nm. Samples were then annealed at high temperatures ranging from 500°C to 800°C for 4 hours under nitrogen, and their structural and optical properties along with their chemical structure were characterized before and after annealing. The chemical and structural characterization revealed a substoichiometric TiO2-x film with oxygen vacancies, voids, and an interface oxide layer. It was found from X-ray diffraction that the deposited films were amorphous and crystallization to anatase phase occurred for annealed samples and was more pronounced for annealing temperatures above 700°C. The refractive index obtained through spectroscopic ellipsometry ranged between 2.09 and 2.37 in the wavelength range, 900 nm to 400 nm for the as-deposited sample, and jumped to the range between 2.23 and 2.65 for samples annealed at 800°C. The minimum surface reflectance changed from around 0.6% for the as-deposited samples to 2.5% for the samples annealed at 800°C.

  10. Spontaneous Evolution of Nanostructure in Composite Films Consisting of Mixtures of Two Different Block Copolymer Micelles

    Science.gov (United States)

    Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok

    2010-03-01

    Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.

  11. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  12. Doping characteristics of iodine on as-grown chemical vapor deposited graphene on Pt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, HoKwon, E-mail: hknano@gmail.com [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, F-38054 Grenoble (France); Renault, Olivier [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, F-38054 Grenoble (France); Tyurnina, Anastasia; Guillet, Jean-François; Simonato, Jean-Pierre [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LITEN/DTMN, F-38054 Grenoble (France); Rouchon, Denis; Mariolle, Denis; Chevalier, Nicolas [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, F-38054 Grenoble (France); Dijon, Jean [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LITEN/DTMN, F-38054 Grenoble (France)

    2015-12-15

    Using laboratory X-ray photoelectron emission microscopy (XPEEM), we investigated the doping efficiency and thermal stability of iodine on as-grown graphene on Pt. After iodine adsorption of graphene in saturated vapor of I{sub 2,} monolayer and bilayer graphene exhibited work function of 4.93 eV and 4.87 eV, respectively. Annealing of the doped monolayer graphene at 100 °C led to desorption of hydrocarbons, which increased the work function of monolayer graphene by ~0.2 eV. The composition of the polyiodide complexes evolved upon a step-by-step annealing at temperatures from 100 °C to 300 °C while the work-function non-monotonically changed with decreasing iodine content. The iodine dopant was stable at relatively high temperature as a significant amount of iodine remained up to the annealing temperature of 350 °C. - Highlights: • Laboratory XPEEM demonstrates that iodine can effectively p-dope as-grown graphene on Pt with a work-function value up to 5.1 eV. • On the other hand, residual hydrocarbon contamination decreases the work function by up to ~0.2 eV. • The spontaneous intercalation of as-grown few-layered graphene is not easily feasible. • The iodine dopant was not completely removed up to the annealing temperature of 350 °C. • The I{sub 3}{sup −} and I{sub 5}{sup −} polyiodide content ratio of I-doped Gr/Pt decreases with annealing temperature.

  13. The lateral In2O3 nanowires and pyramid networks manipulation by controlled substrate surface energy in annealing evolution

    Science.gov (United States)

    Shariati, Mohsen; Darjani, Mojtaba

    2016-02-01

    The continuous laterally aligned growth of In2O3 nanocrystal networks extended with nanowire and pyramid connections under annealing influence has been reported. These nanostructures have been grown on Si substrate by using oxygen-assisted annealing process through PVD growth technique. The formation of In2O3 nanocrystals has been achieved by the successive growth of critical self-nucleated condensation in three orientations. The preferred direction was the route between two pyramids especially in the smallest surface energy. The effects of substrate temperature in annealing process on the morphological properties of the as-grown nanostructures were investigated. The annealing technique showed that by controlling the surface energy, the morphology of structures was changed from unregulated array to defined nanostructures; especially nanowires 50 nm in width. The obtained nanostructures also were investigated by the (transmission electron microscopy) TEM, Raman spectrum and the (X-ray diffraction) XRD patterns. They indicated that the self-assembled In2O3 nanocrystal networks have been fabricated by the vapor-solid (VS) growth mechanism. The growth mechanism process was prompted to attribute the relationship among the kinetics parameters, surface diffusion and morphology of nanostructures.

  14. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  15. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  16. Determination of solvents permeating through chemical protective clothing with a microsensor array.

    Science.gov (United States)

    Park, J; Zellers, E T

    2000-08-01

    The performance of a novel prototype instrument in determining solvents and solvent mixtures permeating through samples of chemical protective clothing (CPC) materials was evaluated. The instrument contains a mini-preconcentrator and an array of three polymer-coated surface-acoustic-wave (SAW) microsensors whose collective response patterns are used to discriminate among multiple permeants. Permeation tests were performed with a 2.54 cm diameter test cell in an open-loop configuration on samples of common glove materials challenged with four individual solvents, three binary mixtures, and two ternary mixtures. Breakthrough times, defined as the times required for the permeation rate to reach a value of 1 microg cm(-2) min(-1), determined by the instrument were within 3 min of those determined in parallel by manual sampling and gas chromatographic analysis. Permeating solvents were recognized (identified) from their response patterns in 59 out of 64 measurements (92%) and their vapor concentrations were quantified to an accuracy of +/- 31% (typically +/- 10%). These results demonstrate the potential for such instrumentation to provide semi-automated field or bench-top screening of CPC permeation resistance.

  17. Very fast simulated re-annealing

    OpenAIRE

    L. Ingber

    1989-01-01

    Draft An algorithm is developed to statistically find the best global fit of a nonlinear non-convex cost-function over a D-dimensional space. It is argued that this algorithm permits an annealing schedule for ‘‘temperature’’ T decreasing exponentially in annealing-time k, T = T0 exp(−ck1/D). The introduction of re-annealing also permits adaptation to changing sensitivities in the multidimensional parameter-space. This annealing schedule is faster than fast Cauchy annealing, ...

  18. Sustainable and Low Viscous 1-Allyl-3-methylimidazolium Acetate + PEG Solvent for Cellulose Processing

    Directory of Open Access Journals (Sweden)

    Airong Xu

    2017-02-01

    Full Text Available Developing sustainable, low viscous and efficient solvents are always advantageous to the processing/fabricating of cellulose materials in practical applications. To this end, in this work novel solvents were developed; ([Amim][CH3COO]/PEG by dissolving polyethylene glycol 200 (PEG-200 in 1-allyl-3-methylimidazolium acetate ([Amim][CH3COO]. The solubilities of cellulose in [Amim][CH3COO]/PEG solvents were determined as a function of temperature, and the possible dissolution mechanism of cellulose in [Amim][CH3COO]/PEG solvent was investigated. The novel solvent exhibits outstanding advantages for good dissolution capacity of cellulose, such as low viscosity, negligible vapor pressure, and recycling capability. The [CH3COO]− anion and the [Amim]+ cation of [Amim][CH3COO] in [Amim][CH3COO]/PEG-10 are the driving force for cellulose dissolution verified by the 13C NMR spectra. In addition, the regenerated cellulose films from [Amim][CH3COO]/PEG solvent were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, and thermogravimetric analysis (TGA to estimate their morphologies and structures.

  19. Tribological behavior of diamond-like carbon: effects of preparation conditions and annealing

    International Nuclear Information System (INIS)

    Grill, A.; Patel, V.; Meyerson, B.

    1991-01-01

    Diamond-like carbon (DLC) films are characterized by, among other properties, very low friction coefficients, high wear resistance, and high corrosion resistance. Depending upon the testing environment, the coefficient of friction can be as low as 0.01. As-deposited films are wear resistant in vacuum as well as in atmospheric ambient. This paper will discuss the general tribological behavior, in different environments, of DLC films deposited under a variety of conditions, and proposed mechanisms explaining the very low friction coefficients observed. The specific properties of DLC films deposited from acetylene by r.f. plasma-enhanced chemical vapor deposition will then be presented. The films were deposited at substrate temperatures between 100degC and 250degC, at various substrate biases. The films were annealed in vacuum at temperatures up to 590degC. The tribological properties of the as-deposited as well as annealed DLC films will be presented as a function of the deposition parameters. The observed behavior will be discussed and related to other physical properties of the films. (orig.)

  20. Facile synthesis and an effective doping method for ZnO:In{sup 3+} nanorods with improved optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Giwoong; Kim, Byunggu; Leem, Jae-Young, E-mail: jyleem@inje.ac.kr

    2015-12-05

    The sol–gel spin-coating method is usually used for thin-film deposition rather than to grow one-dimensional nanostructures. In this study, a novel regrowth method for spin-coated ZnO:In{sup 3+} films is demonstrated, using vapor-confined face-to-face annealing (VC-FTFA) in which a mica sheet is inserted between the two films prior to FTFA. ZnO:In{sup 3+} nanorods are regrown when indium chloride is used as the solvent because ZnCl{sub 2} and InCl{sub 3} vapors are generated and confined between the films. The near-band-edge emission intensity of the ZnO:In{sup 3+} nanorods resulting from VC-FTFA at 700 °C is enhanced by a factor of 17 compared with that of ZnO:In{sup 3+} films annealed in open air at the same temperature. Our method offers a simple and low-cost route for the fabrication of ZnO nanorods. - Highlights: • A novel regrowth method for spin-coated ZnO:In{sup 3+} films is demonstrated. • There have been no previous reports of ZnO:In{sup 3+} nanorods grown by the spin-coating method. • ZnO:In{sup 3+} nanorods are regrown by vapor-confined face-to-face annealing. • The ZnO:In{sup 3+} nanorods evolve via a vapor-solid mechanism. • Regrowth method offers a low-coat fabrication route for optoelectronic devices.

  1. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  2. Zirconium and hafnium tetrachloride separation by extractive distillation with molten zinc chloride lead chloride solvent

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1988-01-01

    In an extractive distillation method for separating hafniuim tetrachloride from zirconium tetrachloride of the type wherein a mixture of zirconium and hafnium tetrachlorides is introduced into an extractive distillation column, which extractive distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a molten salt solvent is circulated into the reflux condenser and through the column to provide a liquid phase, and wherein molten salt solvent containing zirconium tetrachloride is taken from the reboiler and run through a stripper to remove zirconium tetrachloride product from the molten salt solvent and the stripped molten salt solvent is returned to the reflux condenser and hafnium tetrachloride enriched vapor is taken as product from the reflux condenser, the improvement is described comprising: the molten salt having a composition of at least 30 mole percent zinc chloride and at least 10 mole percent of lead chloride

  3. Significant mobility improvement of amorphous In-Ga-Zn-O thin-film transistors annealed in a low temperature wet ambient environment

    Science.gov (United States)

    Jallorina, Michael Paul A.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-05-01

    Transparent amorphous oxide semiconducting materials such as amorphous InGaZnO used in thin film transistors (TFTs) are typically annealed at temperatures higher than 250 °C to remove any defects present and improve the electrical characteristics of the device. Previous research has shown that low cost and low temperature methods improve the electrical characteristics of the TFT. With the aid of surface and bulk characterization techniques in comparison to the device characteristics, this work aims to elucidate further on the improvement mechanisms of wet and dry annealing ambients that affect the electrical characteristics of the device. Secondary Ion Mass Spectrometry results show that despite outward diffusion of -H and -OH species, humid annealing ambients counteract outward diffusion of these species, leading to defect sites which can be passivated by the wet ambient. X-ray Photoelectron Spectroscopy results show that for devices annealed for only 30 min in a wet annealing environment, the concentration of metal-oxide bonds increased by as much as 21.8% and defects such as oxygen vacancies were reduced by as much as 18.2% compared to an unannealed device. Our work shows that due to the oxidizing power of water vapor, defects are reduced, and overall electrical characteristics are improved as evidenced with the 150 °C wet O2, 30 min annealed sample which exhibited the highest mobility of 5.00 cm2/V s, compared to 2.36 cm2/V s for a sample that was annealed at 150 °C in a dry ambient atmospheric environment for 2 h.

  4. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    Science.gov (United States)

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  5. Morphological transformations of diblock copolymers in binary solvents: A simulation study

    Science.gov (United States)

    Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui

    2017-12-01

    Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer-solvent interactions ɛ ij ( i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ɛ AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ɛ BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ɛ AS2.

  6. Strong white photoluminescence from annealed zeolites

    International Nuclear Information System (INIS)

    Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji

    2014-01-01

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies

  7. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  8. Effect of the annealing environment on the optical properties of ZnO/GaAs grown by MOCVD

    International Nuclear Information System (INIS)

    Dangbegnon, J.K.; Talla, K.; Botha, J.R.

    2011-01-01

    The optical properties of ZnO grown on (1 0 0) GaAs substrate using metalorganic chemical vapor deposition are investigated by photoluminescence (PL) spectroscopy. Postgrowth annealing in nitrogen and oxygen was performed for different times and temperatures in order to incorporate As from the substrate into the ZnO thin films. The PL spectra of the samples annealed in different ambients reveal that the effect of As diffusion into the ZnO thin films is more pronounced when the annealing is performed in oxygen at 550 o C. The 11 K PL spectra show the appearance of a transition at ∼3.35 eV after annealing in oxygen at 550 deg. C for 1 h. A further increase in the annealing temperature leads to the disappearance of this line, while for annealing times longer than 2 h at 550 o C, it is no longer prominent. The increase in intensity of this new transition is also accompanied by the enhancement of radiative centers related to structural defects, such as the stacking fault-related transition at 3.31 eV and the Y-line. Temperature dependent PL illustrates the excitonic nature of the new transition at ∼3.35 eV, which is therefore assigned to (A 0 , X) transition, where the acceptor is possibly the 2V Zn -As Zn complex, with an activation energy E A in the range of 160-240 meV. Furthermore, the enhancement of the radiative centers related to structural defects is regarded as evidence that As atoms tend to segregate in the vicinity of structural defects to relieve local strain. - Highlights: → (A 0 , X) and DAP transitions at 3.35 and 3.26 eV related to arsenic acceptor. → Oxygen annealing ambient promotes arsenic acceptor into ZnO films. → Increase in structural defect lines is related to arsenic incorporation. → Annealing at optimal temperature of around 550 deg. C is necessary for arsenic incorporation.

  9. Relation of average and highest solvent vapor concentrations in workplaces in small to medium enterprises and large enterprises.

    Science.gov (United States)

    Ukai, Hirohiko; Ohashi, Fumiko; Samoto, Hajime; Fukui, Yoshinari; Okamoto, Satoru; Moriguchi, Jiro; Ezaki, Takafumi; Takada, Shiro; Ikeda, Masayuki

    2006-04-01

    The present study was initiated to examine the relationship between the workplace concentrations and the estimated highest concentrations in solvent workplaces (SWPs), with special references to enterprise size and types of solvent work. Results of survey conducted in 1010 SWPs in 156 enterprises were taken as a database. Workplace air was sampled at > or = 5 crosses in each SWP following a grid sampling strategy. An additional air was grab-sampled at the site where the worker's exposure was estimated to be highest (estimated highest concentration or EHC). The samples were analyzed for 47 solvents designated by regulation, and solvent concentrations in each sample were summed up by use of additiveness formula. From the workplace concentrations at > or = 5 points, geometric mean and geometric standard deviations were calculated as the representative workplace concentration (RWC) and the indicator of variation in workplace concentration (VWC). Comparison between RWC and EHC in the total of 1010 SWPs showed that EHC was 1.2 (in large enterprises with>300 employees) to 1.7 times [in small to medium (SM) enterprises with enterprises and large enterprises, both RWC and EHC were significantly higher in SM enterprises than in large enterprises. Further comparison by types of solvent work showed that the difference was more marked in printing, surface coating and degreasing/cleaning/wiping SWPs, whereas it was less remarkable in painting SWPs and essentially nil in testing/research laboratories. In conclusion, the present observation as discussed in reference to previous publications suggests that RWC, EHC and the ratio of EHC/WRC varies substantially among different types of solvent work as well as enterprise size, and are typically higher in printing SWPs in SM enterprises.

  10. Nanoparticles for dewetting suppression of thin polymer films used in chemical sensors

    International Nuclear Information System (INIS)

    Holmes, Melissa A.; Mackay, Michael E.; Giunta, Rachel K.

    2007-01-01

    Addition of fullerenes (C 60 or buckyballs) to a linear polymer has been found to eliminate dewetting when a thin (∼50 nm) film is exposed to solvent vapor. Based on neutron reflectivity measurements, it is found that the fullerenes form a coherent layer approximately 2 nm thick at the substrate - polymer film interface during the spin-coating process. The thickness and relative fullerene concentration (∼29 vol%) is not altered during solvent vapor annealing and it is thought this layer forms a solid-like buffer shielding the adverse van der Waals forces promoted by the underlying substrate. Several polymer films produced by spin- or spray-coating were tested on both silicon wafers and live surface acoustic wave sensors demonstrating fullerenes stabilize many different polymer types, prepared by different procedures and on various surfaces. Further, the fullerenes drastically improve sensor performance since dewetted films produce a sensor that is effectively inoperable

  11. Effect of annealing temperature on a single step processed Cu{sub 2}ZnSnS{sub 4} thin film via solution method

    Energy Technology Data Exchange (ETDEWEB)

    Prabeesh, P.; Selvam, I. Packia; Potty, S.N.

    2016-05-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) is a promising material for thin film solar cell applications because of its excellent photovoltaic properties, high abundance and non-toxicity. Thin films of CZTS are generally fabricated by vacuum based techniques or by using toxic solvents and these routes reduce its attention as a low cost and environmental friendly material. In this study, we have prepared CZTS through a solution based single step approach using non-toxic chemicals by spin coating and studied the effect of annealing temperature in the range 350–550 °C in nitrogen atmosphere on structural, optical and electrical properties. XRD results revealed the formation of kesterite phase at all annealing temperatures, while the Raman studies indicated Cu{sub 2}SnS{sub 2} impurity phase in the film annealed at 550 °C. Band gap of the films annealed in nitrogen varies from 1.46 eV to 1.56 eV, depending on the annealing temperature. Optimum properties, such as, good crystallinity, dense structure, ideal band gap (1.49 eV) and good absorption coefficient (10{sup 4} cm{sup −1}), were obtained for the film annealed at 500 °C for 30 min in nitrogen. - Highlights: • Prepared CZTS film through one-step liquid based approach using non-toxic chemicals. • Studied the effect of N{sub 2} annealing on structural, optical and electrical properties. • The phase pure CZTS absorber film exhibited excellent photovoltaic properties • The film annealed at 500 °C for 30 min in nitrogen exhibited optimum properties.

  12. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    Science.gov (United States)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  13. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  14. Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O2-H2O-Ar atmospheres

    International Nuclear Information System (INIS)

    Li Siwei; Feng Zude; Mei Hui; Zhang Litong

    2008-01-01

    Hi-Nicalon fibers were exposed in 8% O 2 /78% Ar/14% H 2 O atmosphere for 1 h at 1300, 1400, 1500, 1600 deg. C, respectively. Residual tensile strength was evaluated by tensile test, phases in the fibers were identified using an X-ray diffractometer (XRD), morphology of the fracture surfaces and microstructure was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. Results indicated that residual tensile strength increased with increasing temperature from 1300 to 1500 deg. C, then decreased after annealing in 1600 deg. C. The grain size of β-SiC and the amount of the stacking faults increased under the elevated temperature as well. After annealing, a passive film with a structure of α-cristobalite crystals dispersed in amorphous SiO 2 phase formed on the fiber surface, the thickness of the film increased with the annealing temperature from 1300 to 1500 deg. C, after annealing in 1600 deg. C, fractional silica film spalled. Finally, relationship between the structural changes and the mechanical properties, the control effect of water vapor on formation and structural evolution of the passive film were discussed

  15. Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature

    Directory of Open Access Journals (Sweden)

    Fang XS

    2009-01-01

    Full Text Available Abstract The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm.

  16. Simple Apparatus for the Measurement of Total Pressure of Polymer + Solvent Mixtures.

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Jan; Bogdanić, Grozdana; Wichterle, Ivan

    2017-01-01

    Roč. 40, č. 5 (2017), s. 991-996 ISSN 0930-7516. [International Congress of Chemical and Process Engineering CHISA 2016 /22./ and the 19th Conference PRES 2016. Prague, 27.08.2016-31.08.2016] R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : vapor-liquid equilibrium * polymer-solvent systems * static cells Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.051, year: 2016

  17. Unraveling the role of SiC or Si substrates in water vapor incorporation in SiO 2 films thermally grown using ion beam analyses

    Science.gov (United States)

    Corrêa, S. A.; Soares, G. V.; Radtke, C.; Stedile, F. C.

    2012-02-01

    The incorporation of water vapor in SiO 2 films thermally grown on 6H-SiC(0 0 0 1) and on Si (0 0 1) was investigated using nuclear reaction analyses. Water isotopically enriched in deuterium ( 2H or D) and in 18O was used. The dependence of incorporated D with the water annealing temperature and initial oxide thickness were inspected. The D amount in SiO 2/SiC structures increases continuously with temperature and with initial oxide thickness, being incorporated in the surface, bulk, and interface regions of SiO 2 films. However, in SiO 2/Si, D is observed mostly in near-surface regions of the oxide and no remarkable dependence with temperature or initial oxide thickness was observed. At any annealing temperature, oxygen from water vapor was incorporated in all depths of the oxide films grown on SiC, in contrast with the SiO 2/Si.

  18. Use of water vapor for suppressing the growth of unstable low-κ interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness

    International Nuclear Information System (INIS)

    Xu, J.P.; Zou, X.; Lai, P.T.; Li, C.X.; Chan, C.L.

    2009-01-01

    Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N 2 , NH 3 , NO and N 2 O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeO x interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N 2 anneal, the wet NH 3 , NO and N 2 O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeO x N y interlayer. Among the eight anneals, the wet N 2 anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 x 10 11 eV -1 cm -2 and gate leakage current of 2.7 x 10 -4 A/cm 2 at V g = 1 V

  19. Effect of post-deposition implantation and annealing on the properties of PECVD deposited silicon nitride films

    International Nuclear Information System (INIS)

    Shams, Q.A.

    1988-01-01

    Recently it has been shown that memory-quality silicon nitride can be deposited using plasma enhanced chemical vapor deposition (PECVD). Nitrogen implantation and post-deposition annealing resulted in improved memory properties of MNOS devices. The primary objective of the work described here is the continuation of the above work. Silicon nitride films were deposited using argon as the carrier gas and evaluated in terms of memory performance as the charge-trapping layer in the metal-nitride-oxide-silicon (MNOS) capacitor structure. The bonding structure of PECVD silicon nitride was modified by annealing in different ambients at temperatures higher than the deposition temperature. Post-deposition ion implantation was used to introduce argon into the films in an attempt to influence the transfer, trapping, and emission of charge during write/erase exercising of the MNOS devices. Results show that the memory performance of PECVD silicon nitride is sensitive to the deposition parameters and post-deposition processing

  20. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    Science.gov (United States)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  1. Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces

    Science.gov (United States)

    Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas

    2015-03-01

    Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.

  2. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents.

    Science.gov (United States)

    Gethard, Ken; Mitra, Somenath

    2011-06-21

    Carbon nanotube enhanced membrane distillation (MD) is presented as a novel, online analytical preconcentration method for removing polar solvents thereby concentrating the analytes, making this technique an alternate to conventional thermal evaporation. In a carbon nanotube immobilized membrane (CNIM), the CNTs serve as sorbent sites and provide additional pathways for enhanced solvent vapor transport, thus enhancing preconcentration. Enrichment using CNIM doubled compared to membranes without CNTs, while the methanol flux and mass transfer coefficients increased by 61% and 519% respectively. The carbon nanotube enhanced MD process showed excellent precision (RSD of 3-5%), linearity, and the detection limits were in the range of 0.001 to 0.009 mg L(-1) by HPLC analysis.

  3. Computational algorithm for molybdenite concentrate annealing

    International Nuclear Information System (INIS)

    Alkatseva, V.M.

    1995-01-01

    Computational algorithm is presented for annealing of molybdenite concentrate with granulated return dust and that of granulated molybdenite concentrate. The algorithm differs from the known analogies for sulphide raw material annealing by including the calculation of return dust mass in stationary annealing; the latter quantity varies form the return dust mass value obtained in the first iteration step. Masses of solid products are determined by distribution of concentrate annealing products, including return dust and benthonite. The algorithm is applied to computations for annealing of other sulphide materials. 3 refs

  4. Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films

    KAUST Repository

    Chafin, Raymond; Lee, Jong Suk; Koros, William J.

    2010-01-01

    Procedures for Torlon® 4000T membrane formation were developed to provide attractive and repeatable xylene separation properties. Torlon® 4000T membrane films cast by our method were investigated in terms of thermally induced imidization, molecular weight enhancement, and solvent removal. After development of the Torlon® 4000T casting procedure, pervaporation of a xylene mixture (i.e. 30% para-xylene, 30% meta-xylene, 30% ortho-xylene, and 10% ethylbenzene) was performed in both Torlon® 4000T and post casting annealed Torlon® 4000T films. The xylene pervaporation in annealed Torlon® 4000T film at 200°C gave a permeability of 0.25 Barrer and a selectivity of 3.1 (para/ortho) and 2.1 (para/meta) respectively. A so-called " permeability collapse" reflecting an accelerated reduction in the free volume is consistent with significant temperature-induced changes in the films observed after thermal annealing at 300°C. This conditioning effect is induced by a combination of heat treatment and the presence of the interacting aromatic penetrants. Optical methods were used to verify that the density of annealed samples exposed to xylene for 5 days eventually increased, suggesting that the membrane is originally swollen upon initial xylene exposure, and then relaxes to a more densified, and more discriminating state. © 2010 Elsevier Ltd.

  5. Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films

    KAUST Repository

    Chafin, Raymond

    2010-07-01

    Procedures for Torlon® 4000T membrane formation were developed to provide attractive and repeatable xylene separation properties. Torlon® 4000T membrane films cast by our method were investigated in terms of thermally induced imidization, molecular weight enhancement, and solvent removal. After development of the Torlon® 4000T casting procedure, pervaporation of a xylene mixture (i.e. 30% para-xylene, 30% meta-xylene, 30% ortho-xylene, and 10% ethylbenzene) was performed in both Torlon® 4000T and post casting annealed Torlon® 4000T films. The xylene pervaporation in annealed Torlon® 4000T film at 200°C gave a permeability of 0.25 Barrer and a selectivity of 3.1 (para/ortho) and 2.1 (para/meta) respectively. A so-called " permeability collapse" reflecting an accelerated reduction in the free volume is consistent with significant temperature-induced changes in the films observed after thermal annealing at 300°C. This conditioning effect is induced by a combination of heat treatment and the presence of the interacting aromatic penetrants. Optical methods were used to verify that the density of annealed samples exposed to xylene for 5 days eventually increased, suggesting that the membrane is originally swollen upon initial xylene exposure, and then relaxes to a more densified, and more discriminating state. © 2010 Elsevier Ltd.

  6. Electrical characteristics and preparation of (Ba0.5Sr0.5)TiO3 films by spray pyrolysis and rapid thermal annealing

    International Nuclear Information System (INIS)

    Koo, Horngshow; Ku, Hongkou; Kawai, Tomoji; Chen Mi

    2007-01-01

    Functional films of (Ba 0.5 Sr 0.5 )TiO 3 on Pt (1000 A)/Ti (100 A)/SiO 2 (2000 A)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba 0.5 Sr 0.5 )TiO 3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400degC and 57.7% weight loss up to 1000degC. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750degC for 5 min while leakage current density is 1.5x10 -6 A/cm 2 in the film annealed at 550degC for 5 min. (author)

  7. Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers

    KAUST Repository

    Kim, Hyeongjun

    2012-01-10

    Conjugated polymers, in general, are unstable when exposed to air, solvent, or thermal treatment, and these challenges limit their practical applications. Therefore, it is of great importance to develop new materials or methodologies that can enable organic electronics with air stability, solvent resistance, and thermal stability. Herein, we have developed a simple but powerful approach to achieve solvent-resistant and thermally stable organic electronic devices with a remarkably improved air stability, by introducing an azide cross-linkable group into a conjugated polymer. To demonstrate this concept, we have synthesized polythiophene with azide groups attached to end of the alkyl chain (P3HT-azide). Photo-cross-linking of P3HT-azide copolymers dramatically improves the solvent resistance of the active layer without disrupting the molecular ordering and charge transport. This is the first demonstration of solvent-resistant organic transistors. Furthermore, the bulk-heterojunction organic photovoltaics (BHJ OPVs) containing P3HT-azide copolymers show an average efficiency higher than 3.3% after 40 h annealing at an elevated temperature of 150 °C, which represents one of the most thermally stable OPV devices reported to date. This enhanced stability is due to an in situ compatibilizer that forms at the P3HT/PCBM interface and suppresses macrophase separation. Our approach paves a way toward organic electronics with robust and stable operations. © 2011 American Chemical Society.

  8. A modified free-volume-based model for predicting vapor-liquid and solid-liquid equilibria for size asymmetric systems

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.

    2005-01-01

    The main purpose of this work is to present a free-volume combinatorial term in predicting vapor-liquid equilibrium (VLE) and solid-liquid equilibrium (SLE) of polymer/solvent and light and heavy hydrocarbon/hydrocarbon mixtures. The proposed term is based on a modification of the original Freed ...

  9. Formation of zinc-peptide spherical microparticles during lyophilization from tert-butyl alcohol/water co-solvent system.

    Science.gov (United States)

    Qian, Feng; Ni, Nina; Chen, Jia-Wen; Desikan, Sridhar; Naringrekar, Vijay; Hussain, Munir A; Barbour, Nancy P; Smith, Ronald L

    2008-12-01

    To understand the mechanism of spherical microparticle formation during lyophilizing a tert-Butyl alcohol (TBA)/water solution of a zinc peptide adduct. A small peptide, PC-1, as well as zinc PC-1 at (3:2) and (3:1) ratios, were dissolved in 44% (wt.%) of TBA/water, gradually frozen to -50 degrees C over 2 h ("typical freezing step"), annealed at -20 degrees C for 6 h ("annealing step"), and subsequently lyophilized with primary and secondary drying. Zinc peptide (3:1) lyophile was also prepared with quench cooling instead of the typical freezing step, or without the annealing step. Other TBA concentrations, i.e., 25%, 35%, 54% and 65%, were used to make the zinc peptide (3:1) adduct lyophile with the typical freezing and annealing steps. The obtained lyophile was analyzed by Scanning Electron Microscopy (SEM). The zinc peptide solutions in TBA/water were analyzed by Differential Scanning Calorimeter (DSC). The surface tension of the TBA/water co-solvent system was measured by a pendant drop shape method. With typical freezing and annealing steps, the free peptide lyophile showed porous network-like structure that is commonly seen in lyophilized products. However, with increasing the zinc to peptide ratio, uniform particles were gradually evolved. Zinc peptide (3:1) adduct lyophiles obtained from 25%, 35% and 44% TBA exhibit a distinctive morphology of uniform and spherical microparticles with diameters of approximately 3-4 microm, and the spherical zinc peptide particles are more predominant when the TBA level approaches 20%. Adopting quench cooling in the lyophilization cycle leads to irregular shape fine powders, and eliminating the annealing step causes rough particles surface. When TBA concentration increases above 54%, the lyophiles demonstrate primarily irregular shape particles. A proposed mechanism of spherical particle formation of the 3:1 zinc peptide encompasses the freezing of a TBA/water solution (20-70% TBA) causing the formation of a TBA hydrate

  10. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  11. Roles of fluorine and annealing on optical and structural properties of Nd:YF{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Santos, H.D.A.; Novais, S.M.V.; Jacinto, C., E-mail: cjacinto@fis.ufal.br

    2016-07-15

    The optical and structural properties of Nd:YF{sub 3} phosphors, synthesized by precipitation reaction using ethylene glycol solvent, were investigated. The Y:F molar ratio of precursors, where NH{sub 4}F was employed as the fluorine source, was varied to prevent oxygen contamination during nucleation of the particles and to improve the photoluminescence efficiency. Structural investigations were carried out by means of X-ray diffraction, Fourier transform infrared spectroscopy and energy dispersive X-ray techniques. Samples prepared using precursors in stoichiometric proportion presented orthorhombic YF{sub 3} structure. The use of fluorine source in excess promoted formation of NH{sub 4}Y{sub 2}F{sub 7} crystalline phase, which was decomposed into YF{sub 3} after annealing at 400 °C for 1 h. Emission spectra of samples thermally treated enhanced by over 50 times compared with the as prepared. The results obtained show the role of fluorine excess associated with thermal annealing to obtain YF{sub 3} with improved features.

  12. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    Science.gov (United States)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Hatami, F.; Masselink, W. T.; Zhang, H.; Casalboni, M.

    2016-03-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N2) and in solvent vapours of methanol, clorophorm, acetone and water were measured. The presence of vapors of clorophorm, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed.

  13. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    International Nuclear Information System (INIS)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Casalboni, M.; Hatami, F.; Masselink, W.T.; Zhang, H.

    2016-01-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N 2 ) and in solvent vapours of methanol, chloroform, acetone and water were measured. The presence of vapors of chloroform, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed. (paper)

  14. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  15. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Stephen J.; Timmons, Adam [General Motors R and D Center, MC 480-102-000, Warren, MI 48090-9055 (United States); Pitz, William J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2009-09-05

    Under abusive conditions Li-ion cells can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical and combustion properties of these gases that determine whether they ignite and how energetically they burn. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. We also show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this contrast is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak heat release rate of an analogous propane flame. Interestingly, peak temperatures differ by only 25%. We argue that heat release rate is a more useful parameter than temperature when evaluating the likelihood that a flame in one cell will ignite a neighboring cell. Our results suggest that thermochemical and combustion property factors might well be considered when choosing solvent mixtures when flammability is a concern. (author)

  16. Management of the Bohunice RPVs annealing procedures

    International Nuclear Information System (INIS)

    Repka, M.

    1994-01-01

    The program of annealing regeneration procedure of RPVs units 1 and 2 of NPP V-1 (EBO) realization in the year 1993, is the topic of this paper. In the paper the following steps are described in detail: the preparation works, the annealing procedure realization schedule and safety management: starting with zero conditions, assembling of annealing apparatus, annealing procedure, cooling down and disassembling procedure of annealing apparatus. At the end the programs of annealing of both RPVs including the dosimetry measurements are discussed and evaluated. (author). 3 figs

  17. The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray- deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Thin-film zinc oxide (ZnO) has many applications in solar cell technology and is considered to be a candidate for the substitution of indium tin oxide and tin oxide. ZnO thin films can be prepared by thermal evaporation, rf-sputtering, atomic layer deposition, chemical vapor deposition, sol-gel, laser ablation and spray pyrolysis technique. Spray pyrolysis has received much attention because of its simplicity and low cost. In this study, large area and highly uniform polycrystalline ZnO thin films were produced by spray pyrolysis using a home-made spraying system on glass substrates at 450 degrees C. The electrical, optical and structural properties of the ZnO films were enhanced by annealing the thin films in nitrogen atmosphere. X-ray diffraction revealed that the films are polycrystalline with a hexagonal wurtzite structure. The preferential orientation did not change with annealing, but XRD patterns revealed that some very weak lines had grown. There was no noticeable increase in the grain size. The transmittance of the films increased as a result of annealing. It was concluded that post-deposition annealing is essential to improve the quality of the ZnO thin films. The electrical properties improved due to a decrease in resistivity. 13 refs., 5 figs.

  18. Mathematical foundation of quantum annealing

    International Nuclear Information System (INIS)

    Morita, Satoshi; Nishimori, Hidetoshi

    2008-01-01

    Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping

  19. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  20. Placement by thermodynamic simulated annealing

    International Nuclear Information System (INIS)

    Vicente, Juan de; Lanchares, Juan; Hermida, Roman

    2003-01-01

    Combinatorial optimization problems arise in different fields of science and engineering. There exist some general techniques coping with these problems such as simulated annealing (SA). In spite of SA success, it usually requires costly experimental studies in fine tuning the most suitable annealing schedule. In this Letter, the classical integrated circuit placement problem is faced by Thermodynamic Simulated Annealing (TSA). TSA provides a new annealing schedule derived from thermodynamic laws. Unlike SA, temperature in TSA is free to evolve and its value is continuously updated from the variation of state functions as the internal energy and entropy. Thereby, TSA achieves the high quality results of SA while providing interesting adaptive features

  1. Modernizing quantum annealing using local searches

    International Nuclear Information System (INIS)

    Chancellor, Nicholas

    2017-01-01

    I describe how real quantum annealers may be used to perform local (in state space) searches around specified states, rather than the global searches traditionally implemented in the quantum annealing algorithm (QAA). Such protocols will have numerous advantages over simple quantum annealing. By using such searches the effect of problem mis-specification can be reduced, as only energy differences between the searched states will be relevant. The QAA is an analogue of simulated annealing, a classical numerical technique which has now been superseded. Hence, I explore two strategies to use an annealer in a way which takes advantage of modern classical optimization algorithms. Specifically, I show how sequential calls to quantum annealers can be used to construct analogues of population annealing and parallel tempering which use quantum searches as subroutines. The techniques given here can be applied not only to optimization, but also to sampling. I examine the feasibility of these protocols on real devices and note that implementing such protocols should require minimal if any change to the current design of the flux qubit-based annealers by D-Wave Systems Inc. I further provide proof-of-principle numerical experiments based on quantum Monte Carlo that demonstrate simple examples of the discussed techniques. (paper)

  2. Annealing temperature dependence of photoluminescent characteristics of silicon nanocrystals embedded in silicon-rich silicon nitride films grown by PECVD

    International Nuclear Information System (INIS)

    Chao, D.S.; Liang, J.H.

    2013-01-01

    Recently, light emission from silicon nanostructures has gained great interest due to its promising potential of realizing silicon-based optoelectronic applications. In this study, luminescent silicon nanocrystals (Si–NCs) were in situ synthesized in silicon-rich silicon nitride (SRSN) films grown by plasma-enhanced chemical vapor deposition (PECVD). SRSN films with various excess silicon contents were deposited by adjusting SiH 4 flow rate to 100 and 200 sccm and keeping NH 3 one at 40 sccm, and followed by furnace annealing (FA) treatments at 600, 850 and 1100 °C for 1 h. The effects of excess silicon content and post-annealing temperature on optical properties of Si–NCs were investigated by photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The origins of two groups of PL peaks found in this study can be attributed to defect-related interface states and quantum confinement effects (QCE). Defect-related interface states lead to the photon energy levels almost kept constant at about 3.4 eV, while QCE results in visible and tunable PL emission in the spectral range of yellow and blue light which depends on excess silicon content and post-annealing temperature. In addition, PL intensity was also demonstrated to be highly correlative to the excess silicon content and post-annealing temperature due to its corresponding effects on size, density, crystallinity, and surface passivation of Si–NCs. Considering the trade-off between surface passivation and structural properties of Si–NCs, an optimal post-annealing temperature of 600 °C was suggested to maximize the PL intensity of the SRSN films

  3. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

    International Nuclear Information System (INIS)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang

    2017-01-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5 vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  4. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shih-Feng [Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX 75799 (United States); Luo, Li-Jyuan [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Ma, David Hui-Kang [Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China)

    2017-02-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5 vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  5. Ensemble annealing of complex physical systems

    OpenAIRE

    Habeck, Michael

    2015-01-01

    Algorithms for simulating complex physical systems or solving difficult optimization problems often resort to an annealing process. Rather than simulating the system at the temperature of interest, an annealing algorithm starts at a temperature that is high enough to ensure ergodicity and gradually decreases it until the destination temperature is reached. This idea is used in popular algorithms such as parallel tempering and simulated annealing. A general problem with annealing methods is th...

  6. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  7. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures.

    Science.gov (United States)

    Wang, Yaxian; Ma, Ruilong; Hu, Kesong; Kim, Sunghan; Fang, Guangqiang; Shao, Zhengzhong; Tsukruk, Vladimir V

    2016-09-21

    We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.

  8. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion

    NARCIS (Netherlands)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J.; Busscher, Henk J.; van der Mei, Henny C.

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the

  9. Annealing effects in solid-state track recorders

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.

    1981-01-01

    Current analyses of the annealing process in Solid State Track Recorders (SSTR) reveal fundamental misconceptions. The use of the Arrhenius equation to describe the decrease in track density resulting from annealing is shown to be incorrect. To overcome these deficiencies, generalized reaction rate theory is used to describe the annealing process in SSTR. Results of annealing experiments are used to guide this theoretical formulation. Within this framework, the concept of energy per etchable defect for SSTR is introduced. A general correlation between sensitivity and annealing susceptibility in SSTR is deduced. In terms of this general theory, the apparent correlation between fission track size and fission track density observed under annealing is readily explained. Based on this theoretical treatment of annealing phenomena, qualitative explanations are advanced for current enigmas in SSTR cosmic ray work

  10. Annealing-induced near-surface ordering in disordered Ga0.5In0.5P

    International Nuclear Information System (INIS)

    Luo, J.S.; Olson, J.M.; Wu, M.

    1995-01-01

    Most samples of Ga 0.5 In 0.5 P grown by metalorganic chemical vapor deposition (MOCVD) on (001)-like surfaces are partially ordered and exhibit distinctive reflectance difference spectral (RDS) features associated with the anisotropic properties of the ordered bulk structure. It is known that the ordering is not a ground-state property of the bulk but is surface-induced during growth. On the other hand, Ga 0.5 In 0.5 P grown by liquid-phase epitaxy (LPE) is completely disordered, and it has been shown that its RD spectrum is essentially featureless. In this article, we present a study of the effects of annealing (in a PH 3 /H 2 atmosphere) on LPE-grown Ga 0.5 In 0.5 P using ex situ and in situ RDS. The annealing temperatures and times used in this study (650 degree C and tens of minutes) have virtually no effect on the bulk optical or structural properties of MOCVD-grown Ga 0.5 In 0.5 P. For LPE-grown Ga 0.5 In 0.5 P, we find that annealing induces bulk-like RDS features at both E 0 and E 1 with line shapes similar to those observed for MOCVD-grown ordered Ga 0.5 In 0.5 P. These bulk-like spectral features are, however, due to near-surface reconstruction of Ga and In because they are effectively quenched by exposure to air. Also, the E 0 feature becomes sharper and both the E 0 and the E 1 features red-shift as the annealing process is prolonged. This indicates that this reconstruction is kinetically limited, presumably by the slow interdiffusion of Ga and In necessary to achieve the ordered bulk-like structure. copyright 1995 American Vacuum SocietyGa 0.5 In 0.5 P

  11. Solvent selection methodology for pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Gani, Rafiqul

    2016-01-01

    A method for the selection of appropriate solvents for the solvent swap task in pharmaceutical processes has been developed. This solvent swap method is based on the solvent selection method of Gani et al. (2006) and considers additional selection criteria such as boiling point difference...... in pharmaceutical processes as well as new solvent swap alternatives. The method takes into account process considerations such as batch distillation and crystallization to achieve the swap task. Rigorous model based simulations of the swap operation are performed to evaluate and compare the performance...

  12. Infrared spectroscopy of water clusters isolated in methane matrices: Effects of isotope substitution and annealing

    International Nuclear Information System (INIS)

    Yamakawa, Koichiro; Ehara, Namika; Ozawa, Nozomi; Arakawa, Ichiro

    2016-01-01

    Using infrared-active solvents of CH_4 and CD_4 for matrix isolation, we measured infrared spectra of H_2O and D_2O clusters at 7 K. The solute-concentration dependence of the spectrum of H_2O clusters in a CH_4 matrix was investigated and was used for the peak assignment. Annealing procedures were found to promote the size growth of water clusters in methane matrices for all the combinations of (H_2O, CH_4), (H_2O, CD_4), (D_2O, CH_4), and (D_2O, CD_4). We also monitored the ν_3 absorption due to methane to find the annealing-induced structural change only of solid CH_4. The matrix effects on the vibrations of the clusters are discussed on the basis of “T_c plots”, where their frequencies are plotted as a function of the square root of the matrix critical temperature, T_c. The obtained plots assure the validity of the assignment of the cluster peaks.

  13. Use of water vapor for suppressing the growth of unstable low-{kappa} interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.P. [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 (China); Zou, X. [School of Electromachine and Architecture Engineering, Jianghan University, Wuhan, 430056 (China); Lai, P.T. [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)], E-mail: laip@eee.hku.hk; Li, C.X.; Chan, C.L. [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-03-02

    Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N{sub 2}, NH{sub 3}, NO and N{sub 2}O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeO{sub x} interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N{sub 2} anneal, the wet NH{sub 3}, NO and N{sub 2}O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeO{sub x}N{sub y} interlayer. Among the eight anneals, the wet N{sub 2} anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 x 10{sup 11} eV{sup -1} cm{sup -2} and gate leakage current of 2.7 x 10{sup -4} A/cm{sup 2} at V{sub g} = 1 V.

  14. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    Science.gov (United States)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  15. Effects of thermal annealing on electrical characteristics of Cd/CdS/n-Si/Au-Sb sandwich structure

    International Nuclear Information System (INIS)

    Saglam, M.; Ates, A.; Guezeldir, B.; Astam, A.; Yildirim, M.A.

    2009-01-01

    In general, at the metal-semiconductor contacts, interfacial layers have been fabricated by different methods such as molecular beam epitaxy, metal organic chemical vapor deposition, sputtering and vacuum evaporation. However, all of these techniques have encountered various difficulties in the deposited films. Instead of these methods, since Successive Ionic Layer Adsorption and Reaction (SILAR) method is simple, fast, sensitive, and less costly to prepare interfacial layer, we have first employed this method in order to prepare Cd/CdS/n-Si/Au-Sb sandwich structure. For this reason, the CdS thin film has been directly formed on n-type Si substrate by means of SILAR method. The Cd/CdS/n-Si/Au-Sb sandwich structure has demonstrated clearly rectifying behaviour by the current-voltage (I-V) curves studied at room temperature. In order to observe the effect of the thermal annealing, this structure has been annealed at temperatures from 50 to 300 deg. C for 3 min in N 2 atmosphere. The characteristic parameters such as barrier height, ideality factor and series resistance of this structure have been calculated from the forward bias I-V characteristics as a function of annealing temperature with different methods. The values of n, Φ b and mean R s of the initial Cd/CdS/n-Si/Au-Sb sandwich structure were found to be 2.31, 0.790 eV and 1.86 kΩ respectively. After annealing at 300 deg. C, these values were changed to 1.89, 0.765 eV and 0.48 kΩ. It has been seen that the barrier height, ideality factor and series resistance have slightly changed with increasing annealing temperature up to 300 deg. C.

  16. Understanding the microwave annealing of silicon

    Directory of Open Access Journals (Sweden)

    Chaochao Fu

    2017-03-01

    Full Text Available Though microwave annealing appears to be very appealing due to its unique features, lacking an in-depth understanding and accurate model hinder its application in semiconductor processing. In this paper, the physics-based model and accurate calculation for the microwave annealing of silicon are presented. Both thermal effects, including ohmic conduction loss and dielectric polarization loss, and non-thermal effects are thoroughly analyzed. We designed unique experiments to verify the mechanism and extract relevant parameters. We also explicitly illustrate the dynamic interaction processes of the microwave annealing of silicon. This work provides an in-depth understanding that can expedite the application of microwave annealing in semiconductor processing and open the door to implementing microwave annealing for future research and applications.

  17. Structural characterization of epitaxial LiFe_5O_8 thin films grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Loukya, B.; Negi, D.S.; Sahu, R.; Pachauri, N.; Gupta, A.; Datta, R.

    2016-01-01

    We report on detailed microstructural and atomic ordering characterization by transmission electron microscopy in epitaxial LiFe_5O_8 (LFO) thin films grown by chemical vapor deposition (CVD) on MgO (001) substrates. The experimental results of LFO thin films are compared with those for bulk LFO single crystal. Electron diffraction studies indicate weak long-range ordering in LFO (α-phase) thin films in comparison to bulk crystal where strong ordering is observed in optimally annealed samples. The degree of long-range ordering depends on the growth conditions and the thickness of the film. Annealing experiment along with diffraction study confirms the formation of α-Fe_2O_3 phase in some regions of the films. This suggests that under certain growth conditions γ-Fe_2O_3-like phase forms in some pockets in the as-grown LFO thin films that then convert to α-Fe_2O_3 on annealing. - Highlights: • Atomic ordering in LiFe_5O_8 bulk single crystal and epitaxial thin films. • Electron diffraction studies reveal different level of ordering in the system. • Formation of γ-Fe_2O_3 like phase has been observed.

  18. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged

  19. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  20. Improved performance of mesostructured perovskite solar cells via an anti-solvent method

    Science.gov (United States)

    Hao, Jiabin; Hao, Huiying; Cheng, Feiyu; Li, Jianfeng; Zhang, Haiyu; Dong, Jingjing; Xing, Jie; Liu, Hao; Wu, Jian

    2018-06-01

    One-step solution process is a facile and widely used procedure to prepare organic-inorganic perovskite materials. However, the poor surface morphology of the films attributed to the uncontrollable nucleation and crystal growth in the process is unfavorable to solar cells. In this study, an anti-solvent treatment during the one-step solution process, in which ethyl acetate (EA) was dropped on the sample during spinning the precursor solution containing CH3NH3Cl, was adopted to fabricate perovskite materials and solar cells. It was found that the morphology of the perovskite film was significantly improved due to the rapid nucleation and slow crystal growth process. The modified process enabled us to fabricate the mesoporous solar cell with power conversion efficiency of 14%, showing an improvement of 40% over the efficiency of 9.7% of the device prepared by conventional one-step method. The controlling effect of annealing time on the morphology, crystal structure and transport properties of perovskite layer as well as the performance of device fabricated by the anti-solvent method were investigated and the possible mechanism was discussed.

  1. Vaporization of low-volatile fission products under severe CANDU reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Corse, B.J.; Thompson, W.T.; Kaye, M.H.; Iglesias, F.C.; Elder, P.; Dickson, R.; Liu, Z.

    1997-01-01

    An analytical model has been developed to describe the release behaviour of low-volatile fission products from uranium dioxide fuel under severe reactor accident conditions. The effect of the oxygen potential on the chemical form and volatility of fission products is determined by Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix or fission product vaporization from the fuel surface. The effect of fuel volatilization (i.e., matrix stripping) on the release behaviour is also considered. The model has been compared to data from an out-of-pile annealing experiment performed in steam at the Chalk River Laboratories. (author)

  2. The influence of annealing atmosphere on the material properties of sol-gel derived SnO2:Sb films before and after annealing

    International Nuclear Information System (INIS)

    Jeng, Jiann-Shing

    2012-01-01

    SnO 2 films with and without Sb doping were prepared by the sol-gel spin-coating method. Material properties of the SnO 2 films with different Sb contents were investigated before and after annealing under O 2 or N 2 . When SnO 2 films are annealed under N 2 or O 2 , the resistivity decreases with increasing annealing temperature, which may be related to the increased crystallinity and reduced film defects. The intensity of SnO 2 peaks for both O 2 - and N 2 -annealed films increases as the annealing temperature increases. Small nodules are revealed on the surface of SnO 2 films after annealing in N 2 or O 2 atmospheres, and some voids are present on the surface of N 2 -annealed SnO 2 films. After doping with Sb, the resistivity of SnO 2 films after annealing in O 2 is greater than that of N 2 -annealed SnO 2 films. The surface morphology of SnO 2 films incorporating different molar ratios of Sb after annealing are similar to that of as-spun SnO 2 films with adding Sb. There were no voids found on the surfaces of N 2 -annealed SnO 2 :Sb films. In addition, the peak intensity of SnO 2 :Sb films after O 2 -annealing is higher than those films after N 2 -annealing. The chemical binding states and Hall mobility of the high-temperature annealed SnO 2 films without and with adding Sb are also related to the annealing atmospheres. This study discusses the connection among the material properties of the SnO 2 films with different Sb contents and how these properties are influenced by the Sb-doping concentration and the annealing atmospheres of SnO 2 films.

  3. Physico-chemical characterization antituberculosis thioacetazone: Vapor pressure, solubility and lipophilicity

    International Nuclear Information System (INIS)

    Sharapova, Angelica; Ol'khovich, Marina; Blokhina, Svetlana; Perlovich, German

    2017-01-01

    Highlights: • Vapor pressures of antituberculosis thioacetazone were determined by transpiration method. • Solubilities of the TAZ in four modeling solvents were measured at different temperatures. • Temperature dependence of octanol/buffer pH 7.4 partition coefficients was obtained. • Thermodynamics parameters of solubility, sublimation, solvation and transfer were calculated. - Abstract: Vapor pressure of thioacetazone (TAZ) has been determined in the temperature range of 404.15–429.15 K by the transpiration method. The obtained data were used to calculate the standard molar enthalpy of sublimation that was found to be 164.1 kJ/mol at T = 298.15 K. The drug solubility was measured at seven temperatures from 288.15 to 318.15 K in modeling solvents: octanol, hexane and aqueous buffers pH 2.0 and 7.4 by the saturation shake-flask method by using spectrophotometric analysis. It has been found that TAZ has poor solubility in hexane and buffer solutions and limited solubility in octanol. The experimental data were well correlated by van’t Hoff and modified Apelblat equations. A temperature dependence of TAZ partition coefficient in the octanol/buffer pH 7.4 system has been derived. The partition coefficient value in this system (logP = 1.82) refers to the optimal interval for oral absorption drugs. The thermodynamic parameters of sublimation, solubility, solvation and transfer have been determined based on experimental data. The dominant effect of enthalpy and entropy contributions to the Gibbs energy of the investigated processes has been revealed.

  4. Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Li, Yahui; Fang, Fei; Cui, Xian; Yao, Youwei; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2017-09-27

    High-quality perovskite films can be fabricated from Lewis acid-base adducts through molecule exchange. Substantial work is needed to fully understand the formation mechanism of the perovskite films, which helps to further improve their quality. Here, we study the formation of CH 3 NH 3 PbI 3 perovskite films by introducing some dimethylacetamide into the PbI 2 /N,N-dimethylformamide solution. We reveal that there are three key processes during the formation of perovskite films through the Lewis acid-base adduct approach: molecule intercalation of solvent into the PbI 2 lattice, molecule exchange between the solvent and CH 3 NH 3 I, and dissolution-recrystallization of the perovskite grains during annealing. The Lewis base solvents play multiple functions in the above processes. The properties of the solvent, including Lewis basicity and boiling point, play key roles in forming smooth perovskite films with large grains. We also provide some rules for choosing Lewis base additives to prepare high-quality perovskite films through the Lewis adduct approach.

  5. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    Science.gov (United States)

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable “wet pulse annealing” technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm2 V−1 s−1; Ion/Ioff ratio ≈ 108; reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances. PMID:27198067

  6. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    Science.gov (United States)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  7. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    OpenAIRE

    Aceves-Mijares, M.; González-Fernández, A. A.; López-Estopier, R.; Luna-López, A.; Berman-Mendoza, D.; Morales, A.; Falcony, C.; Domínguez, C.; Murphy-Arteaga, R.

    2012-01-01

    Silicon Rich Oxide (SRO) has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD). In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept th...

  8. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    Science.gov (United States)

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  9. Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on silicon heterojunction solar cells using textured aluminum doped zinc oxide (ZnO:Al as a transparent conductive oxide (TCO instead of flat indium tin oxide. Double side silicon heterojunction solar cell were fabricated by radio frequency plasma enhanced chemical vapor deposition on high life time N-type float zone crystalline silicon wafers. On both sides of these cells we have deposited by radio frequency magnetron sputtering ZnO:Al layers of thickness ranging from 800 nm to 1400 nm. These TCO layers were then textured by dipping the samples in a 0.5% hydrochloric acid. External quantum efficiency as well as I-V under 1 sun illumination measurements showed an increase of the current for the cells using textured ZnO:Al. The cells were then annealed at 150 °C, 175 °C and 200 °C during 30 min in ambient atmosphere and characterized at each annealing step. The results show that annealing has no impact on the open circuit voltage of the devices but that up to a 175 °C it enhances their short circuit current, consistent with an overall enhancement of their spectral response. Our results suggest that ZnO:Al is a promising material to increase the short circuit current (Jsc while avoiding texturing the c-Si substrate.

  10. Influence of initial annealing on structure evolution and magnetic properties of 3.4% Si non-oriented steel during final annealing

    Energy Technology Data Exchange (ETDEWEB)

    Simões Mendanha Pedrosa, Josiane [Department of Physics, Federal University of Ouro Preto, Ouro Preto MG-3540000 (Brazil); Costa Paolinelli, Sebastião da [Research Department Aperam South America, Praça Primeiro de Maio, 9, Timóteo MG-35180018 (Brazil); Barros Cota, André, E-mail: abcota@ufop.br [Department of Physics, Federal University of Ouro Preto, Ouro Preto MG-3540000 (Brazil)

    2015-11-01

    The effect of the initial annealing on structure evolution and magnetic properties during the final annealing of a 3.4% Si non-oriented grain steel was evaluated. Half of the samples were submitted to initial annealing at 1030 °C before cold rolling and all samples were subjected to final annealing process at temperatures from 540 °C to 1100 °C. The magnetic induction and core loss in the final samples, the microstructure by optical microscopy and the crystallographic texture by X-ray diffraction and EBSD were evaluated. The results show that the samples without initial annealing presented better magnetic properties than the samples with initial annealing, due to the higher ratio between Eta fiber and Gamma fiber volume fractions (Eta/Gamma ratio) in their structure after final annealing. - Highlights: • Texture and magnetic properties of 3.4% Si non-oriented electrical steel were measured. • Without initial annealing, better texture and magnetic properties were obtained. • Good texture and magnetic properties are obtained with Steckel hot band structure.

  11. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2008-03-01

    Full Text Available The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

  12. Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert

    2002-11-20

    Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.

  13. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  14. Improving Liquid Entry Pressure of Polyvinylidene Fluoride (PVDF Membranes by Exploiting the Role of Fabrication Parameters in Vapor-Induced Phase Separation VIPS and Non-Solvent-Induced Phase Separation (NIPS Processes

    Directory of Open Access Journals (Sweden)

    Faisal Abdulla AlMarzooqi

    2017-02-01

    Full Text Available Polyvinylidene fluoride (PVDF is a popular polymer material for making membranes for several applications, including membrane distillation (MD, via the phase inversion process. Non-solvent-induced phase separation (NIPS and vapor-induced phase separation (VIPS are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity. In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH and exposure time increased the contact angle and bubble-point pore size (BP. Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min, contact angle (CA increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP increase with thickness.

  15. Challenges in the Structure Determination of Self-Assembled Metallacages: What Do Cage Cavities Contain, Internal Vapor Bubbles or Solvent and/or Counterions?

    Science.gov (United States)

    Givelet, Cecile C; Dron, Paul I; Wen, Jin; Magnera, Thomas F; Zamadar, Matibur; Čépe, Klára; Fujiwara, Hiroki; Shi, Yue; Tuchband, Michael R; Clark, Noel; Zbořil, Radek; Michl, Josef

    2016-05-25

    Proving the structures of charged metallacages obtained by metal ion coordination-driven solution self-assembly is challenging, and the common use of routine NMR spectroscopy and mass spectrometry is unreliable. Carefully determined diffusion coefficients from diffusion-ordered proton magnetic resonance (DOSY NMR) for six cages of widely differing sizes lead us to propose a structural reassignment of two molecular cages from a previously favored trimer to a pentamer or hexamer, and another from a trimer to a much higher oligomer, possibly an intriguing tetradecamer. In the former case, strong support for the reassignment to a larger cage is provided by an observation of a slow reversible transformation of the initially formed cage into a smaller but spectrally very similar one upon dilution. In the latter case, freeze-fracture transmission electron micrographs demonstrate that at least some of the solutions are colloidal, and high-resolution electron transmission and atomic force microscopy images are compatible with a tetradecamer but not a trimer. Comparison of solute partial molar volumes deduced from measurement of solution density with volumes anticipated from molecular models argues strongly against the presence of large voids (solvent vapor bubbles) in cages dissolved in nitromethane. The presence of bubbles was previously proposed in an attempt to account for the bilinear nature of the Eyring plot of the rate constant for pyridine ligand edge exchange reaction in one of the cages and for the unusual activation parameters in the high-temperature regime. An alternative interpretation is proposed now.

  16. Simulated annealing and circuit layout

    NARCIS (Netherlands)

    Aarts, E.H.L.; Laarhoven, van P.J.M.

    1991-01-01

    We discuss the problem of approximately sotvlng circuit layout problems by simulated annealing. For this we first summarize the theoretical concepts of the simulated annealing algorithm using Ihe theory of homogeneous and inhomogeneous Markov chains. Next we briefly review general aspects of the

  17. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square...

  18. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Marilyn Emily [Los Alamos National Laboratory; Kim, Yu S [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  19. Pattern Laser Annealing by a Pulsed Laser

    Science.gov (United States)

    Komiya, Yoshio; Hoh, Koichiro; Murakami, Koichi; Takahashi, Tetsuo; Tarui, Yasuo

    1981-10-01

    Preliminary experiments with contact-type pattern laser annealing were made for local polycrystallization of a-Si, local evaporation of a-Si and local formation of Ni-Si alloy. These experiments showed that the mask patterns can be replicated as annealed regions with a resolution of a few microns on substrates. To overcome shortcomings due to the contact type pattern annealing, a projection type reduction pattern laser annealing system is proposed for resistless low temperature pattern forming processes.

  20. Annealing-induced Ge/Si(100) island evolution

    International Nuclear Information System (INIS)

    Zhang Yangting; Drucker, Jeff

    2003-01-01

    Ge/Si(100) islands were found to coarsen during in situ annealing at growth temperature. Islands were grown by molecular-beam epitaxy of pure Ge and annealed at substrate temperatures of T=450, 550, 600, and 650 deg. C, with Ge coverages of 6.5, 8.0, and 9.5 monolayers. Three coarsening mechanisms operate in this temperature range: wetting-layer consumption, conventional Ostwald ripening, and Si interdiffusion. For samples grown and annealed at T=450 deg. C, consumption of a metastably thick wetting layer causes rapid initial coarsening. Slower coarsening at longer annealing times occurs by conventional Ostwald ripening. Coarsening of samples grown and annealed at T=550 deg. C occurs via a combination of Si interdiffusion and conventional Ostwald ripening. For samples grown and annealed at T≥600 deg. C, Ostwald ripening of SiGe alloy clusters appears to be the dominant coarsening mechanism

  1. Annealing behavior of alpha recoil tracks in phlogopite

    International Nuclear Information System (INIS)

    Gao Shaokai; Yuan Wanming; Dong Jinquan; Bao Zengkuan

    2005-01-01

    Alpha recoil tracks (ARTs) formed during the a-decay of U, Th as well as their daughter nuclei are used as a new dating method which is to some extent a complementarity of fission track dating due to its ability to determine the age of young mineral. ARTs can be observable under phase-contrast interference microscope through chemical etching. In order to study the annealing behavior of ARTs in phlogopite, two methods of annealing experiments were executed. Samples were annealed in the electronic tube furnace at different temperatures ranging from 250 degree C to 450 degree C in steps of 50 degree C. For any given annealing temperature, different annealing times were used until total track fading were achieved. It is found that ARTs anneal much more easily than fission tracks, the annealing ratio increase non-linearly with annealing time and temperature. Using the Arrhenius plot, an activation energy of 0.68ev is finally found for 100% removal of ARTs, which is less than the corresponding value for fission tracks (FTs). Through extending the annealing time to geological time, a much lower temperature range of the sample's cooling history can be got.

  2. Reducing the layer number of AB stacked multilayer graphene grown on nickel by annealing at low temperature.

    Science.gov (United States)

    Velasco, J Marquez; Giamini, S A; Kelaidis, N; Tsipas, P; Tsoutsou, D; Kordas, G; Raptis, Y S; Boukos, N; Dimoulas, A

    2015-10-09

    Controlling the number of layers of graphene grown by chemical vapor deposition is crucial for large scale graphene application. We propose here an etching process of graphene which can be applied immediately after growth to control the number of layers. We use nickel (Ni) foil at high temperature (T = 900 °C) to produce multilayer-AB-stacked-graphene (MLG). The etching process is based on annealing the samples in a hydrogen/argon atmosphere at a relatively low temperature (T = 450 °C) inside the growth chamber. The extent of etching is mainly controlled by the annealing process duration. Using Raman spectroscopy we demonstrate that the number of layers was reduced, changing from MLG to few-layer-AB-stacked-graphene and in some cases to randomly oriented few layer graphene near the substrate. Furthermore, our method offers the significant advantage that it does not introduce defects in the samples, maintaining their original high quality. This fact and the low temperature our method uses make it a good candidate for controlling the layer number of already grown graphene in processes with a low thermal budget.

  3. Reduced annealing temperatures in silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.

    1981-01-01

    Cells irradiated to a fluence of 5x10,000,000,000,000/square cm showed short circuit current on annealing at 200 C, with complete annealing occurring at 275 C. Cells irradiated to 100,000,000,000,000/square cm showed a reduction in annealing temperature from the usual 500 to 300 C. Annealing kinetic studies yield an activation energy of (1.5 + or - 2) eV for the low fluence, low temperature anneal. Comparison with activation energies previously obtained indicate that the presently obtained activation energy is consistent with the presence of either the divacancy or the carbon interstitial carbon substitutional pair, a result which agrees with the conclusion based on defect behavior in boron-doped silicon.

  4. Cleanup of 7.5% tributyl phosphate/n-paraffin solvent-extraction solvent

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-02-01

    The HM process at the Savannah River Plant uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials which influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands which hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM process first cycle solvent is discussed

  5. Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Siwei; Zeng Bin; Feng Zude; Liu Yongsheng; Yang Wenbin; Cheng Laifei; Zhang Litong

    2010-01-01

    A two-layer boron carbide coating is deposited on a graphite substrate by chemical vapor deposition from a CH 4 /BCl 3 /H 2 precursor mixture at a low temperature of 950 o C and a reduced pressure of 10 KPa. Coated substrates are annealed at 1600 o C, 1700 o C, 1800 o C, 1900 o C and 2000 o C in high purity argon for 2 h, respectively. Structural evolution of the coatings is explored by electron microscopy and spectroscopy. Results demonstrate that the as-deposited coating is composed of pyrolytic carbon and amorphous boron carbide. A composition gradient of B and C is induced in each deposition. After annealing, B 4 C crystallites precipitate out of the amorphous boron carbide and grow to several hundreds nanometers by receiving B and C from boron-doped pyrolytic carbon. Energy-dispersive spectroscopy proves that the crystallization is controlled by element diffusion activated by high temperature annealing, after that a larger concentration gradient of B and C is induced in the coating. Quantified Raman spectrum identifies a graphitization enhancement of pyrolytic carbon. Transmission electron microscopy exhibits an epitaxial growth of B 4 C at layer/layer interface of the annealed coatings. Mechanism concerning the structural evolution on the basis of the experimental results is proposed.

  6. Simulated annealing with constant thermodynamic speed

    International Nuclear Information System (INIS)

    Salamon, P.; Ruppeiner, G.; Liao, L.; Pedersen, J.

    1987-01-01

    Arguments are presented to the effect that the optimal annealing schedule for simulated annealing proceeds with constant thermodynamic speed, i.e., with dT/dt = -(v T)/(ε-√C), where T is the temperature, ε- is the relaxation time, C ist the heat capacity, t is the time, and v is the thermodynamic speed. Experimental results consistent with this conjecture are presented from simulated annealing on graph partitioning problems. (orig.)

  7. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion.

    Science.gov (United States)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J; Busscher, Henk J; van der Mei, Henny C

    2010-11-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the amino groups of the amino-PPX layer were used to introduce the initiator from a vapor phase for atom transfer radical polymerization of acrylamide to form polyacrylamide (PAAm) brushes. The modification steps were verified by means of X-ray photoelectron spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy. Adhesion of Staphylococcus aureus ATCC 12600 and Escherichia coli 3.14 to an amino-PPX-PAAm brush coating in a parallel plate flow chamber was strongly reduced with respect to non-coated silicone rubber - by 93% and 99%, respectively. For E. coli 3.14, this reduction is larger than that obtained for solvent functionalization of γ-aminopropyltriethoxysilane-PAAm brushes due to the higher density of amino groups introduced by the CVD of amino-PPX. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  9. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  10. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  11. Studies of thermal annealing and dope composition on the enhancement of separation performance cellulose acetate membrane for brackish water treatment from Jepara

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-08-01

    Full Text Available Membrane is an alternative technology of water treatment with filtration principle that is being widely developed and used for water treatment. The main objective of this study was to make an asymmetric membrane using cellulose acetate polymer and study the effect of additive and annealing treatment on the morphology structure and performance of cellulose acetate membranes in brackish water treatment. Asymmetric membranes for brackish water treatment were casted using a casting machine process from dope solutions containing cellulose acetates and acetone as a solvent. Membranes was prepared by phase inversion method  with variation of polyethylene glycol (PEG concentration of 1 and 5 wt% and with thermal annealing at 60 oC in 10 seconds and without thermal annealing behavior. Membrane characterization consists of calculation of membrane flux and rejection with brackish water as a feed from Jepara. The research concluded that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion method. The more added concentration of PEG will be resulted the larger pore of membrane. Meanwhile the higher temperature and the longer time of annealing treatment, the skin layer of membrane become denser. Membrane with the composition of 18 wt% cellulose acetate, 5 wt% PEG, 1 wt% distilled water, with heat treatment at temperature of 60 oC for 10 seconds is obtained optimal performance.

  12. Improved procedure for high purity gaseous peroxyacyl nitrate production: use of heavy lipid solvents

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J S; Fajer, R; Senum, G I

    1984-01-01

    An improved procedure is described for the production of peroxyacyl nitrates (PAN's) in the gas phase. The method of Nielsen et al. (1982) has been modified to yield PAN's of high purity with no further chromatographic purification required. Extraction of PAN's from the nitration of the peracids is accomplished by use of a heavy lipid solvent (n-tridecane). This solvent's low vapor pressure allows the simple separation and preparation of high purity gaseous PAN's (>98%) as determined by Fourier transform infrared spectroscopy (FTIR). Using this method infrared integrated band strengths are reported for peroxyacetyl nitrate (PAN) perdeutero-peroxyacetyl nitrate (PAN-D/sub 3/) and peroxyproprionyl nitrate (PPN). The method allows facile production of large amounts of gaseous PAN's for smog chamber and laboratory studies, toxicological and health effects research, as well as for calibration of PAN analyses.

  13. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  14. Temperature Scaling Law for Quantum Annealing Optimizers.

    Science.gov (United States)

    Albash, Tameem; Martin-Mayor, Victor; Hen, Itay

    2017-09-15

    Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

  15. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  16. Infrared thermal annealing device

    International Nuclear Information System (INIS)

    Gladys, M.J.; Clarke, I.; O'Connor, D.J.

    2003-01-01

    A device for annealing samples within an ultrahigh vacuum (UHV) scanning tunneling microscopy system was designed, constructed, and tested. The device is based on illuminating the sample with infrared radiation from outside the UHV chamber with a tungsten projector bulb. The apparatus uses an elliptical mirror to focus the beam through a sapphire viewport for low absorption. Experiments were conducted on clean Pd(100) and annealing temperatures in excess of 1000 K were easily reached

  17. Boosting quantum annealer performance via sample persistence

    Science.gov (United States)

    Karimi, Hamed; Rosenberg, Gili

    2017-07-01

    We propose a novel method for reducing the number of variables in quadratic unconstrained binary optimization problems, using a quantum annealer (or any sampler) to fix the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are usually much easier for the quantum annealer to solve, due to their being smaller and consisting of disconnected components. This approach significantly increases the success rate and number of observations of the best known energy value in samples obtained from the quantum annealer, when compared with calling the quantum annealer without using it, even when using fewer annealing cycles. Use of the method results in a considerable improvement in success metrics even for problems with high-precision couplers and biases, which are more challenging for the quantum annealer to solve. The results are further enhanced by applying the method iteratively and combining it with classical pre-processing. We present results for both Chimera graph-structured problems and embedded problems from a real-world application.

  18. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  19. Rapid thermal annealing of phosphorus implanted silicon

    International Nuclear Information System (INIS)

    Lee, Y.H.; Pogany, A.; Harrison, H.B.; Williams, J.S.

    1985-01-01

    Rapid thermal annealing (RTA) of phosphorus-implanted silicon has been investigated by four point probe, Van der Pauw methods and transmission electron microscopy. The results have been compared to furnace annealing. Experiments show that RTA, even at temperatures as low as 605 deg C, results in good electrical properties with little remnant damage and compares favourably with furnace annealing

  20. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  1. Computational Multiqubit Tunnelling in Programmable Quantum Annealers

    Science.gov (United States)

    2016-08-25

    ARTICLE Received 3 Jun 2015 | Accepted 26 Nov 2015 | Published 7 Jan 2016 Computational multiqubit tunnelling in programmable quantum annealers...state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational ...qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational

  2. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  3. Stored energy and annealing behavior of heavily deformed aluminium

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Kondo, Yuka

    2012-01-01

    It has been demonstrated in previous work that a two-step annealing treatment, including a low-temperature, long-time annealing and a subsequent high-temperature annealing, is a promising route to control the microstructure of a heavily deformed metal. In the present study, structural parameters...... are quantified such as boundary spacing, misorientation angle and dislocation density for 99.99% aluminium deformed by accumulative roll-bonding to a strain of 4.8. Two different annealing processes have been applied; (i) one-step annealing for 0.5 h at 100-400°C and (ii) two-step annealing for 6 h at 175°C...... followed by 0.5 h annealing at 200-600°C, where the former treatment leads to discontinuous recrystallization and the latter to uniform structural coarsening. This behavior has been analyzed in terms of the relative change during annealing of energy stored as elastic energy in the dislocation structure...

  4. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    Science.gov (United States)

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-07

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  5. Effect of the composition of a solution on the enthalpies of solvation of piperidine in methanol-acetonitrile and dimethylsulfoxide-acetonitrile mixed solvents

    Science.gov (United States)

    Kuz'mina, I. A.; Volkova, M. A.; Sitnikova, K. A.; Sharnin, V. A.

    2014-01-01

    Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H ○(ppd)AN-MeOH values obtained using the literature data on Δsol H ○ (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.

  6. Global warming: Temperature estimation in annealers

    Directory of Open Access Journals (Sweden)

    Jack Raymond

    2016-11-01

    Full Text Available Sampling from a Boltzmann distribution is NP-hard and so requires heuristic approaches. Quantum annealing is one promising candidate. The failure of annealing dynamics to equilibrate on practical time scales is a well understood limitation, but does not always prevent a heuristically useful distribution from being generated. In this paper we evaluate several methods for determining a useful operational temperature range for annealers. We show that, even where distributions deviate from the Boltzmann distribution due to ergodicity breaking, these estimates can be useful. We introduce the concepts of local and global temperatures that are captured by different estimation methods. We argue that for practical application it often makes sense to analyze annealers that are subject to post-processing in order to isolate the macroscopic distribution deviations that are a practical barrier to their application.

  7. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  8. Origin of reverse annealing effect in hydrogen-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Di, Zengfeng [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  9. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    Science.gov (United States)

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  10. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    International Nuclear Information System (INIS)

    Safarov, Javid T.

    2005-01-01

    Vapor pressure p of LiNO 3 + CH 3 OH solutions at T = (298.15 to 323.15) K was reported, osmotic φ and activity coefficients γ; and activity of solvent a s have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg -1 . The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients

  11. Low-Temperature Cu-Cu Bonding Using Silver Nanoparticles Fabricated by Physical Vapor Deposition

    Science.gov (United States)

    Wu, Zijian; Cai, Jian; Wang, Junqiang; Geng, Zhiting; Wang, Qian

    2018-02-01

    Silver nanoparticles (Ag NPs) fabricated by physical vapor deposition (PVD) were introduced in Cu-Cu bonding as surface modification layer. The bonding structure consisted of a Ti adhesive/barrier layer and a Cu substrate layer was fabricated on the silicon wafer. Ag NPs were deposited on the Cu surface by magnetron sputtering in a high-pressure environment and a loose structure with NPs was obtained. Shear tests were performed after bonding, and the influences of PVD pressure, bonding pressure, bonding temperature and annealing time on shear strength were assessed. Cu-Cu bonding with Ag NPs was accomplished at 200°C for 3 min under the pressure of 30 MPa without a post-annealing process, and the average bonding strength of 13.99 MPa was reached. According to cross-sectional observations, a void-free bonding interface with an Ag film thickness of around 20 nm was achieved. These results demonstrated that a reliable low-temperature short-time Cu-Cu bonding was realized by the sintering process of Ag NPs between the bonding pairs, which indicated that this bonding method could be a potential candidate for future ultra-fine pitch 3D integration.

  12. Solvent extraction of Zn and metals in Zn ores by nonphosphorous solvents

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Tostain, Jacqueline.

    1975-07-01

    This bibliography follows a first work on Zn solvent extraction by organo-phosphorous compounds. The other solvents used in Zn extraction, are studied: oxygenated nonphosphorous solvents (ketones, alcohols, carboxylic acids, sulfonates), nitrogenous solvents and hydrocarbons [fr

  13. Extrapolation of zircon fission-track annealing models

    International Nuclear Information System (INIS)

    Palissari, R.; Guedes, S.; Curvo, E.A.C.; Moreira, P.A.F.P.; Tello, C.A.; Hadler, J.C.

    2013-01-01

    One of the purposes of this study is to give further constraints on the temperature range of the zircon partial annealing zone over a geological time scale using data from borehole zircon samples, which have experienced stable temperatures for ∼1 Ma. In this way, the extrapolation problem is explicitly addressed by fitting the zircon annealing models with geological timescale data. Several empirical model formulations have been proposed to perform these calibrations and have been compared in this work. The basic form proposed for annealing models is the Arrhenius-type model. There are other annealing models, that are based on the same general formulation. These empirical model equations have been preferred due to the great number of phenomena from track formation to chemical etching that are not well understood. However, there are two other models, which try to establish a direct correlation between their parameters and the related phenomena. To compare the response of the different annealing models, thermal indexes, such as closure temperature, total annealing temperature and the partial annealing zone, have been calculated and compared with field evidence. After comparing the different models, it was concluded that the fanning curvilinear models yield the best agreement between predicted index temperatures and field evidence. - Highlights: ► Geological data were used along with lab data for improving model extrapolation. ► Index temperatures were simulated for testing model extrapolation. ► Curvilinear Arrhenius models produced better geological temperature predictions

  14. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    Science.gov (United States)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  15. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  16. Study of the efectiveness of the mixed solvents for radically removing thiophenes from benzene and toluene by extractive rectification

    Energy Technology Data Exchange (ETDEWEB)

    Miroshnicenko, A.A.; Fedosyuk, A.A.

    1981-01-01

    A study has been made of the selectivity of solvents under the conditions of liquid-liquid equilibrium in the systems which include thiophene, benzene, toluene, the polar solvent and n-decane. The presence of the latter has maintained the heterogeneity of the mixtures being studied. The systems under consideration were drawn up in volumetric ratios. Equilibrium was studied in thermostat units. The equilibrium phases were analyzed by a special method, while the coefficient of the relative distribution of the components with respect to selectivity was calculated by the known relations. The investigations of the systems with different solvents have shown that there are functionally selective classes of extractants in which selectivity is determined by free unsubstituted functional groups of a solvent. The growth of the selectivity of solvents according to the following classes has been observed: aprotic ones with a keto group < protic ones with a hydroxyl < < unsubstituted amides of acids < sulphones < sulphoxides. To study the liquid-vapor equilibrium, use was made of the most selective extractants (including DMSO, Pyrrolidone-2, carbamide, ethylene carbamide, and NMP) which were revealed earlier in extraction investigations. Since the most selective representative of acid amides, namely, ethylene carbamide and carbamide, are solids, they were studied in mixtures with the less selective liquid solvents of NMP and pyrrolidone-2. NMP-ethylene-carbamide-water and pyrrolidone-2-ethylene carbamida-water are the most selective mixed solvents, and preference is given to the latter one.

  17. Mechanical properties and annealing texture of zirconium sheets

    International Nuclear Information System (INIS)

    Hanif-ur-Rehman; Khawaja, F.A.

    1996-01-01

    Mechanical properties like yield strength (YS), ultimate tensile strength(UTS), percentage elongation and annealing texture has been studied in sheets of commercially pure zirconium. The YS and UTS decrease as a function of annealing temperature up to 600 V, but both quantities have maximum value in sample annealed at 800 deg. C. The percentage elongation decreased with increase in annealing temperature up to 600 deg. C. A slight decrease and minimum value of percentage elongation was observed at 650 and 800 C respectively. The texture development in the annealed samples has been studied by the X-ray diffraction method. The sampled annealed at 800 deg. C showed a texture component (0001) [01 bar 10] with orientation density of about 8 times random, while the samples annealed at 600,650 and 700 deg. C showed a texture component (0001)[2 bar 110] with orientation density of about 5 times random. Thus it is concluded, that the texture component (0001)[2 bar 110] and (0001)[01 bar 10] at 650 and 800 geg. C respectively, may be the responsible for the increase in YS and UTS and decrease in percentage elongation at these temperatures. (author)

  18. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  19. Annealing of KDP crystals in vacuum and under pressure

    International Nuclear Information System (INIS)

    Pritula, I.M.; Kolybayeva, M.I.; Salo, V.I.

    1997-01-01

    The effect of the high temperature annealing (T an > 230 degrees C) on the absorption spectra and laser damage threshold of KDP crystals was studied in the present paper. The experiments on isotermal annealing were performed under pressure in the atmosphere with specific properties. The composition of the atmosphere was selected to be chose to that of the desorbing gas component determined during annealing in vacuum. The mentioned conditions allowed to conduct annealing in the temperature range of 230 - 280 degrees C without degradation of the sample. The variations in the absorption spectra showed that the effect of the annealing is most strongly revealed in the short - wave region of the spectrum (λ -1 before and k=0.12 cm -1 after annealing) demonstrate that at temperatures ∼ 230 - 280 degrees C the processes ensuring the improvement of the structure quality are stimulated in the volume of the crystals: (a) before the annealing laser damage threshold was 1.5 10 11 W/cm 2 ; (b) after the annealing (t = 280 degrees C) it became 4 10 11 W/cm 2

  20. Identification of Flavonoids (Quercetin, Gallic acid and Rutin from Catharanthus roseus Plant Parts using Deep Eutectic Solvent

    Directory of Open Access Journals (Sweden)

    Asma Nisar

    2017-02-01

    Full Text Available Green technology is the most important topic in the pharmaceutical field because it reduces the cost of medicines and minimizes the environmental impact of the field and is better for human health and safety. Green chemistry emphasizes that the solvent should be nontoxic, safe, cheap, green, readily available, recyclable, and biodegradable. Deep eutectic solvents, a new type of green solvent, have some renowned properties—for instance, high thermal stability, low vapor pressure, low cost, biodegradability, and high viscosity. In this study, deep eutectic solvents made up of choline chloride-glycerol (1:2 were used for the extraction and isolation of flavonoid (rutin, gallic acid, and quercetin from Catharanthus roseus plant parts, flower petal, leaves, stem, and root. The amounts of rutin and quercetin in flower petal are 29.46 and 6.51%, respectively, whereas, rutin, gallic acid, and quercetin amounts in leaves are 25.16, 8.57, and 10.47%, respectively. In stem the amounts of rutin, gallic acid, and quercetin are 13.02, 5.89, and 7.47%, respectively. In root, only quercetin has been obtained that is 13.49%. The HPLC is an analytical method, which was found to be an excellent technique for determination of rutin, gallic acid, and quercetin using deep eutectic solvent extraction from plant parts of Catharanthus roseus.

  1. Selective molecular annealing: in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers.

    Science.gov (United States)

    Toolan, Daniel T W; Adlington, Kevin; Isakova, Anna; Kalamiotis, Alexis; Mokarian-Tabari, Parvaneh; Dimitrakis, Georgios; Dodds, Christopher; Arnold, Thomas; Terrill, Nick J; Bras, Wim; Hermida Merino, Daniel; Topham, Paul D; Irvine, Derek J; Howse, Jonathan R

    2017-08-09

    Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.

  2. Evaluation of the performance and response of the bacharach TLV sniffer and H-Nu photoionization gas analyzer to common hydrocarbon solvents.

    Science.gov (United States)

    Chelton, C F; Zakraysek, N; Lautner, G M; Confer, R G

    1983-10-01

    Two direct reading instruments, the H-Nu PI 101 photoionization analyzer and the J.W. Bacharach TLV Sniffer, were evaluated under laboratory conditions to determine their performance characteristics when challenged by vapors of common hydrocarbon solvent mixtures. Each instrument was evaluated against the manufacturer's recommended test solvent for rise time, fall time, noise, span drift, zero drift, position sensitivity, battery life, and recharge time. The precision, accuracy, and operating linear range were also determined for the test solvents and some petroleum solvent mixtures which are common refinery products. For these latter mixtures, correction factors are presented which allow for an improved estimate of ambient concentrations when monitoring with each of these instruments. All tests except operating humidity range were performed by challenging each instrument with a known concentration of hydrocarbon generated by evaporating calculated liquid volumes into a static chamber. Humidity tests were performed using a dynamic dilution apparatus generating a fixed concentration of hydrocarbon while relative humidity was varied. Concentrations in both systems were verified by gas injection into gas chromatograph. Each instrument performed well when challenged by manufacturers' recommended test solvents. Humidity was shown to influence each instrument's readings. Also, the instruments were shown to have application as monitors of airborne concentrations of common hydrocarbon solvent mixtures.

  3. Annealed star-branched polyelectrolytes in solution

    NARCIS (Netherlands)

    Klein Wolterink, J.; Male, van J.; Cohen Stuart, M.A.; Koopal, L.K.; Zhulina, E.B.; Borisov, O.V.

    2002-01-01

    Equilibrium conformations of annealed star-branched polyelectrolytes (polyacids) are calculated with a numerical self-consistent-field (SCF) model. From the calculations we obtain also the size and charge of annealed polyelectrolyte stars as a function of the number of arms, pH, and the ionic

  4. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  5. Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    Deep level transient spectroscopy and the Shockley-Read-Hall recombination theory are used to identify the defect responsible for reverse annealing in 2 ohm-cm n+/p silicon solar cells. This defect, with energy level at Ev + 0.30 eV, has been tentatively identified as a boron-oxygen-vacancy complex. It has been also determined by calculation that the removal of this defect could result in significant annealing at temperatures as low as 200 C for 2 ohm-cm and lower resistivity cells.

  6. Using KrF ELA to Improve Gate-Stacked LaAlO₃/ZrO₂ Indium Gallium Zinc Oxide Thin-Film Transistors with Novel Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition Technique.

    Science.gov (United States)

    Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn

    2018-03-01

    Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique and KrF excimer laser annealing (ELA) were employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO-TFTs). Device with a 150 mJ/cm2 laser annealing densities demonstrated excellent electrical characteristics with improved on/off current ratio of 4.7×107, high channel mobility of 10 cm2/V-s, and low subthreshold swing of 0.15 V/dec. The improvements are attributed to the adjustment of oxygen vacancies in the IGZO channel to an appropriate range of around 28.3% and the reduction of traps at the high-k/IGZO interface.

  7. Crystallization of perovskite film using ambient moisture and water as co-solvent for efficient planar perovskite solar cell (Conference Presentation)

    Science.gov (United States)

    Dubey, Ashish; Reza, Khan M.; Gaml, Eman; Adhikari, Nirmal; Qiao, Qiquan

    2016-09-01

    Smooth, compact and defect free morphology of perovskite is highly desired for enhanced device performance. Several routes such as thermal annealing, use of solvent mixtures, growth under controlled humidity has been adopted to obtain crystalline, smooth and defect free perovskite film. Herein we showed direct use of water (H2O) as co-solvent in precursor solution and have optimized the water content required to obtain smooth and dense film. Varying concentration of water was used in precursor solution of CH3NH3I and PbI2 mixed in γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO). Perovskite films were crystallized using toluene assisted solvent engineering method using GBL:DMSO:H2O as solvent mixture. The amount of water was varied from 1% to 25%, which resulted in change in film morphology and perovskite crystallinity. It was concluded that an appropriate amount of water is required to assist the crystallization process to obtain smooth pin-hole free morphology. The change in morphology led to improved fill factor in the device, with highest efficiency 14%, which was significantly higher than devices made from perovskite film without adding water. We also showed that addition of up to 25% by volume of water does not significantly change the device performance.

  8. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  9. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  10. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  11. Temperature distribution study in flash-annealed amorphous ribbons

    International Nuclear Information System (INIS)

    Moron, C.; Garcia, A.; Carracedo, M.T.

    2003-01-01

    Negative magnetrostrictive amorphous ribbons have been locally current annealed with currents from 1 to 8 A and annealing times from 14 ms to 200 s. In order to obtain information about the sample temperature during flash or current annealing, a study of the temperature dispersion during annealing in amorphous ribbons was made. The local temperature variation was obtained by measuring the local intensity of the infrared emission of the sample with a CCD liquid nitrogen cooled camera. A distribution of local temperature has been found in spite of the small dimension of the sample

  12. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    International Nuclear Information System (INIS)

    Shin Jinhong; Waheed, Abdul; Winkenwerder, Wyatt A.; Kim, Hyun-Woo; Agapiou, Kyriacos; Jones, Richard A.; Hwang, Gyeong S.; Ekerdt, John G.

    2007-01-01

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO 2 containing ∼ 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH 2 (PMe 3 ) 4 (Me = CH 3 ) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase

  13. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  14. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-10-08

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  15. Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices

    International Nuclear Information System (INIS)

    Lee, Seung Moo; Won, Jaihyung; Yim, Soyoung; Park, Se Jun; Choi, Jongsik; Kim, Jeongtae; Lee, Hyeondeok; Byun, Dongjin

    2012-01-01

    thermal annealing of the high density, as-deposited a-C:H films. Furthermore, not only the density itself but also the variation of density with thermal annealing need to be elucidated in order to understand the dry etch properties of annealed a-C:H films. - Highlights: ► A-C:H(amorphous carbon) films are grown for using hard mask in dry etch process by plasma-enhanced chemical vapor deposition and annealed. ► Physical, chemical and mechanical properties of grown amorphous carbon films are changed by hydrogen and hydrocarbon contents, be determined by deposition and annealing temperature. ► Dry etch rate of a-C:H films is decreased and the film density increased through thermal annealing with high density, low hydrogen content, as-deposited film.

  16. Interfacial Behavior of Polymers: Using Interfaces to Manipulate Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering

    2015-02-26

    The self-assembly of block copolymers into arrays of nanoscopic domains with areal densities approaching 10 terbit/in2 offer tremendous promise for the fabrication of ultrahigh density storage devices, batteries and other energy relevant devices. Interfacial interactions play a key role in dictating the orientation and ordering of these self-assembling materials. We have investigated the use of preferential and neutral solvents to overcome interfacial interactions and to rapid accelerate the dynamics of these materials, since the high molecular weight of the polymers significantly slows diffusion processes. Using a tailor-made chamber, we have introduced solvent vapor annealing (SVA) where solvent with a well-defined vapor pressures sells the copolymer film, enabling control over the solvent content in the film and, therefore, the thermodynamics governing the microphase separation of the copolymer, the interactions with the substrate and air interfaces and the dynamics. This tailor-made chamber also allows us to perform in situ grazing incidence x-ray scattering studies where the copolymer films can be characterized on the nanoscopic level over macroscopic distances. The methodologies developed in our laboratories are now used in numerous laboratories world-wide. We have found that arrays of block copolymer microdomains with perfect orientational order can be achieved over macroscopic areas using the SVA processes but the translational order is perturbed during the film drying process. As the copolymer film is swollen, the confinement of the film to the substrate introduces a frustration to the ordering of the microdomains. After equilibrium is achieved, when the swollen films are brought very close to the ordering transition, near perfect ordering is achieved. However, upon removal of the solvent, the confinement of the film to the substrate introduces translational disorder. We have investigated the influence of the rate of solvent removal and have found that

  17. Room temperature molten salts: neoteric "green" solvents for chemical reactions and processes

    OpenAIRE

    Dupont, Jaírton; Consorti, Crestina S.; Spencer, John

    2000-01-01

    Líquidos iônicos, em particular aqueles derivados do cátion 1,3-dialquilimidazólio, que possuem uma ampla faixa de temperatura em suas fases líquidas, pressões de vapores muito pequenas, baixas viscosidades e elevada estabilidade térmica e química vêm emergindo como uma nova classe de solventes “verdes” para processos de extração e separação, síntese orgânica e catálise. Os principais resultados obtidos com estes líquidos em Química Limpa nos últimos dois anos são objeto deste artigo de revis...

  18. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  19. Plasticity margin recovery during annealing after cold deformation

    International Nuclear Information System (INIS)

    Bogatov, A.A.; Smirnov, S.V.; Kolmogorov, V.L.

    1978-01-01

    Restoration of the plasticity margin in steel 20 after cold deformation and annealing at 550 - 750 C and soaking for 5 - 300 min was investigated. The conditions of cold deformation under which the metal acquires microdefects unhealed by subsequent annealing were determined. It was established that if the degree of utilization of the plasticity margin is psi < 0.5, the plasticity margin in steel 20 can be completely restored by annealing. A mathematical model of restoration of the plasticity margin by annealing after cold deformation was constructed. A statistical analysis showed good agreement between model and experiment

  20. Quantum Annealing and Quantum Fluctuation Effect in Frustrated Ising Systems

    OpenAIRE

    Tanaka, Shu; Tamura, Ryo

    2012-01-01

    Quantum annealing method has been widely attracted attention in statistical physics and information science since it is expected to be a powerful method to obtain the best solution of optimization problem as well as simulated annealing. The quantum annealing method was incubated in quantum statistical physics. This is an alternative method of the simulated annealing which is well-adopted for many optimization problems. In the simulated annealing, we obtain a solution of optimization problem b...

  1. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  2. The influence of annealing on manganese implanted GaAs films

    International Nuclear Information System (INIS)

    Buerger, Danilo; Zhou, Shengqiang; Grenzer, Joerg; Reuther, Helfried; Anwand, Wolfgang; Gottschalch, Volker; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Besides low-temperature molecular beam epitaxy, ion implantation provides an alternative route to incorporate Mn into GaAs above the equilibrium solubility limit. Recently, Mn implanted GaAs diluted magnetic semiconductor was obtained by pulsed laser annealing. However, post-implantation annealing can lead to the formation of secondary phases. In order to compare the post-annealing effect, we investigate GaMnAs by implanting up to 6 at% Mn followed by rapid thermal and flashlamp annealing. The structural properties were probed by high resolution X-ray diffraction. The magnetic properties were determined by SQUID measurements. Auger electron spectroscopy has been used to profile the depth distribution of Mn in GaAs after implantation and annealing. We elucidate after implantation a loss of As and that during rapid thermal annealing most of the Mn diffuses towards the surface. Flash lamp annealing prevents out-diffusion, but the recrystallisation efficiency is low. Only the flash lamp annealed samples reveal weak ferromagnetism.

  3. Application of annealing for extension of WWER vessel lives

    International Nuclear Information System (INIS)

    Badanin, V.; Dragunow, Yu.G.; Fedorov, V.; Gorynin, I.; Nickolaev, V.

    1992-01-01

    The safe operation of nuclear power plants (NPP) is dependent upon the assurance that the reactor pressure vessel will not fail in a brittle manner when the effects of radiation embrittlement are taken into account. The recovery of the properties of the irradiated materials is an important way of extending the operating life of a reactor vessel. The intent of this paper is to demonstrate the efficiency of thermal annealing for the recovery of reactor vessel material properties and to present the implications for extended service life. In order to substantiate the application of annealing to the extensior of the service life of vessels, detailed investigations were conducted which involved thermal annealing temperature and time, fast neutron fluence, and metallurgical factors (i.e. impurity contents) on the recovery of properties after the annealing of irradiated materials. Similar studies were continued to determine predictive methods for radiation embrittlement after repeated annealings. In May 1987 the first pilot annealing of a commercial reactor vessel (Novo-Voronezhskaya, III, NPP) was performed. The development of the annealing equipment and investigations performed to test the annealing process proved successful, and an improved safe operation for the reactor vessel was thus atttained providing for an extended service life. (orig.)

  4. Susceptor and proximity rapid thermal annealing of InP

    International Nuclear Information System (INIS)

    Katz, A.; Pearton, S.J.; Geva, M.

    1990-01-01

    This paper presents a comparison between the efficiency of InP rapid thermal annealing within two types of SiC-coated graphite susceptors and by using the more conventional proximity approach, in providing degradation-free substrate surface morphology. The superiority of annealing within a susceptor was clearly demonstrated through the evaluation of AuGe contact performance to carbon-implanted InP substrates, which were annealed to activate the implants prior to the metallization. The susceptor annealing provided better protection against edge degradation, slip formation and better surface morphology, due to the elimination of P outdiffusion and pit formation. The two SiC-coated susceptors that were evaluated differ from each other in their geometry. The first type must be charged with the group V species prior to any annealing cycle. Under the optimum charging conditions, effective surface protection was provided only to one anneal (750 degrees C, 10s) of InP before charging was necessary. The second contained reservoirs for provision of the group V element partial pressure, enabled high temperature annealing at the InP without the need for continual recharging of the susceptor. Thus, one has the ability to subsequentially anneal a lot of InP wafers at high temperatures without inducing any surface deterioration

  5. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    Energy Technology Data Exchange (ETDEWEB)

    Safarov, Javid T. [Heat and Refrigeration Techniques, Azerbaijan Technical University, Huseyn Javid Avn. 25, AZ1073 Baku (Azerbaijan)]. E-mail: javids@azdata.net

    2005-12-15

    Vapor pressure p of LiNO{sub 3} + CH{sub 3}OH solutions at T = (298.15 to 323.15) K was reported, osmotic {phi} and activity coefficients {gamma}; and activity of solvent a {sub s} have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg{sup -1}. The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients.

  6. Optical scattering characteristic of annealed niobium oxide films

    International Nuclear Information System (INIS)

    Lai Fachun; Li Ming; Wang Haiqian; Hu Hailong; Wang Xiaoping; Hou, J.G.; Song Yizhou; Jiang Yousong

    2005-01-01

    Niobium oxide (Nb 2 O 5 ) films with thicknesses ranging from 200 to 1600 nm were deposited on fused silica at room temperature by low frequency reactive magnetron sputtering system. In order to study the optical losses resulting from the microstructures, the films with 500 nm thickness were annealed at temperatures between 600 and 1100 deg. C, and films with thicknesses from 200 to 1600 nm were annealed at 800 deg. C. Scanning electron microscopy and atomic force microscopy images show that the root mean square of surface roughness, the grain size, voids, microcracks, and grain boundaries increase with increasing both the annealing temperature and the thickness. Correspondingly, the optical transmittance and reflectance decrease, and the optical loss increases. The mechanisms of the optical losses are discussed. The results suggest that defects in the volume and the surface roughness should be the major source for the optical losses of the annealed films by causing pronounced scattering. For samples with a determined thickness, there is a critical annealing temperature, above which the surface scattering contributes to the major optical losses. In the experimental scope, for the films annealed at temperatures below 900 deg. C, the major optical losses resulted from volume scattering. However, surface roughness was the major source for the optical losses when the 500-nm films were annealed at temperatures above 900 deg. C

  7. Improvement on the electrical characteristics of Pd/HfO2/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Science.gov (United States)

    Esakky, Papanasam; Kailath, Binsu J.

    2017-08-01

    HfO2 as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO2/SiC capacitors offer higher sensitivity than SiO2/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO2/SiC interface. Effect of post deposition annealing in N2O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO2/SiC MIS capacitors are reported in this work. N2O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N2 result in formation of Hf silicate at the HfO2/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N2O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO2/SiC capacitors.

  8. Effects of the annealing duration of the ZnO buffer layer on structural and optical properties of ZnO rods grown by a hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C.M.; Lee, J.Y.; Heo, J.H.; Park, J.H.; Kim, C.R. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Chang, J.H. [Major of Nano Semiconductor, Korea Maritime University, 1 Dongsam-dong, Yeongdo-Ku, Busan 606-791 (Korea, Republic of); Son, C.S. [Department of Electronic Materials Engineering, Silla University, Gwaebeop-dong, Sasang-gu, Busan 617-736 (Korea, Republic of); Lee, W.J. [Department of Nano Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Tan, S.T. [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); Zhao, J.L. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Sun, X.W. [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2009-07-30

    In this study, the effects of the annealing duration of a zinc oxide (ZnO) buffer layer on structural and optical properties of ZnO rods grown by a hydrothermal process are discussed. A ZnO buffer layer was deposited on p-type Si (1 1 1) substrates by the metal organic chemical vapor deposition (MOCVD) method. After that, ZnO rods were grown on the ZnO-buffer/Si (1 1 1) substrate by a hydrothermal process. In order to determine the optimum annealing duration of the buffer layer for the growth of ZnO rods, durations ranging from 0.5 to 30 min were tried. The morphology and crystal structure of the ZnO/ZnO-buffer/Si (1 1 1) were measured by field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). The optical properties were investigated by photoluminescence (PL) measurement.

  9. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits—A comparative study

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing......Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver...... kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted...

  10. HIGH PRESSURE VAPOR-LIQUID EQUILIBRIA OF PALM FATTY ACIDS DISTILLATES-CARBON DIOXIDE SYSTEM

    Directory of Open Access Journals (Sweden)

    Nélio T. MACHADO

    1997-12-01

    Full Text Available Vapor-Liquid equilibria of palm fatty acids distillates/carbon dioxide system has been investigated experimentally at temperatures of 333, 353, and 373 K and pressures of 20, 23, 26, and 29 MPa using the static method. Experimental data for the quasi-binary system palm fatty acids distillates/carbon dioxide has been correlated with Redlich-Kwong-Aspen equation of state. Modeling shows good agreement with experimental data. Selectivity obtained indicates that supercritical carbon dioxide is a reasonable solvent for separating saturated (palmitic acid and unsaturated (oleic+linoleic acids fatty acids from palm fatty acids distillates in a continuous multistage countercurrent column.Foi investigado experimentalmente o equilíbrio líquido-vapor para o sistema Destilado Ácido de Óleo de Palma (PFAD/Dióxido de Carbono, nas temperaturas de 333, 353 e 373 K e pressões de 20, 23, 26 e 29 MPa, usando-se o método estático. Os dados experimentais do sistema pseudo-binário PFAD/CO2 foram correlacionados com a equação de estado de Redlich-Kwong do pacote computacional ASPEN. O modelo reproduz bem os resultados experimentais. A seletividade obtida indica que o CO2 supercrítico é um solvente razoável para a separação em coluna multi-estágio e contínua, do ácido graxo saturado (ácido palmítico daqueles insaturados (ácido oleico e ácido linoleico contidos no PFAD.

  11. Implantation annealing in GaAs by incoherent light

    International Nuclear Information System (INIS)

    Davies, D.E.; Ryan, T.G.; Soda, K.J.; Comer, J.J.

    1983-01-01

    Implanted GaAs has been successfully activated through concentrating the output of quartz halogen lamps to anneal in times of the order of 1 sec. The resulting layers are not restricted by the reduced mobilities and thermal instabilities of laser annealed GaAs. Better activation can be obtained than with furnace annealing but this generally requires maximum temperatures >= 1050degC. (author)

  12. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    Science.gov (United States)

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Improvement on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Esakky, Papanasam, E-mail: papanasamte@gmail.com; Kailath, Binsu J

    2017-08-15

    Highlights: • Post deposition annealing (PDA) and post metallization annealing (PMA) on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors. • Post deposition N{sub 2}O plasma annealing inhibits crystallization of HfO{sub 2} during high temperature annealing. • Plasma annealing followed by RTA in N{sub 2} results in formation of hafnium silicate at the HfO{sub 2}-SiC interface. • PDA reduces interface state density (D{sub it}) and gate leakage current density (J{sub g}) by order. • PMA in forming gas for 40 min results in better passivation and reduces D{sub it} by two orders and J{sub g} by thrice. - Abstract: HfO{sub 2} as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO{sub 2}/SiC capacitors offer higher sensitivity than SiO{sub 2}/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO{sub 2}/SiC interface. Effect of post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO{sub 2}/SiC MIS capacitors are reported in this work. N{sub 2}O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N{sub 2} result in formation of Hf silicate at the HfO{sub 2}/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO{sub 2}/SiC capacitors.

  15. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Narayan, J.; Young, R.T.

    1978-11-01

    The physical and electrical properties of ion implanted silicon annealed with high powered ruby laser radiation are summarized. Results show that pulsed laser annealing can lead to a complete removal of extended defects in the implanted region accompanied by incorporation of dopants into lattice sites even when their concentration far exceeds the solid solubility limit

  16. Study of annealing effects in Al–Sb bilayer thin films

    Indian Academy of Sciences (India)

    There are three methods to prepare compound semiconductor systems: bilayer annealing (Singh and Vijay 2004a), rapid thermal annealing (Singh and Vijay 2004b) and ion beam mixing (Dhar et al 2003). The annealing and ion beam mixing were found to show inferior mixing effects compared to rapid thermal annealing.

  17. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  18. Finite-time thermodynamics and simulated annealing

    International Nuclear Information System (INIS)

    Andresen, B.

    1989-01-01

    When the general, global optimization technique simulated annealing was introduced by Kirkpatrick et al. (1983), this mathematical algorithm was based on an analogy to the statistical mechanical behavior of real physical systems like spin glasses, hence the name. In the intervening span of years the method has proven exceptionally useful for a great variety of extremely complicated problems, notably NP-problems like the travelling salesman, DNA sequencing, and graph partitioning. Only a few highly optimized heuristic algorithms (e.g. Lin, Kernighan 1973) have outperformed simulated annealing on their respective problems (Johnson et al. 1989). Simulated annealing in its current form relies only on the static quantity 'energy' to describe the system, whereas questions of rate, as in the temperature path (annealing schedule, see below), are left to intuition. We extent the connection to physical systems and take over further components from thermodynamics like ensemble, heat capacity, and relaxation time. Finally we refer to finite-time thermodynamics (Andresen, Salomon, Berry 1984) for a dynamical estimate of the optimal temperature path. (orig.)

  19. Annealing of Al implanted 4H silicon carbide

    International Nuclear Information System (INIS)

    Hallen, A; Suchodolskis, A; Oesterman, J; Abtin, L; Linnarsson, M

    2006-01-01

    Al ions were implanted with multiple energies up to 250 keV at elevated temperatures in n-type 4H SiC epitaxial layers to reach a surface concentration of 1x10 20 cm -3 . These samples were then annealed at temperatures between 1500 and 1950 deg. C. A similar 4H SiC epitaxial sample was implanted by MeV Al ions to lower doses and annealed only at 200 and 400 deg. C. After annealing, cross-sections of the samples were characterized by scanning spreading resistance microscopy (SSRM). The results show that the resistivity of high-dose Al implanted samples has not reached a saturated value, even after annealing at the highest temperature. For the MeV Al implanted sample, the activation of Al has not yet started, but a substantial annealing of the implantation induced damage can be seen from the SSRM depth profiles

  20. Comprehension of Postmetallization Annealed MOCVD-TiO2 on (NH42S Treated III-V Semiconductors

    Directory of Open Access Journals (Sweden)

    Ming-Kwei Lee

    2012-01-01

    Full Text Available The electrical characteristics of TiO2 films grown on III-V semiconductors (e.g., p-type InP and GaAs by metal-organic chemical vapor deposition were studied. With (NH42S treatment, the electrical characteristics of MOS capacitors are improved due to the reduction of native oxides. The electrical characteristics can be further improved by the postmetallization annealing, which causes hydrogen atomic ion to passivate defects and the grain boundary of polycrystalline TiO2 films. For postmetallization annealed TiO2 on (NH42S treated InP MOS, the leakage current densities can reach 2.7 × 10−7 and 2.3 × 10−7 A/cm2 at ±1 MV/cm, respectively. The dielectric constant and effective oxide charges are 46 and 1.96 × 1012 C/cm2, respectively. The interface state density is 7.13×1011 cm−2 eV−1 at the energy of 0.67 eV from the edge of valence band. For postmetallization annealed TiO2 on (NH42S treated GaAs MOS, The leakage current densities can reach 9.7×10−8 and 1.4×10−7 at ±1 MV/cm, respectively. The dielectric constant and effective oxide charges are 66 and 1.86×1012 C/cm2, respectively. The interface state density is 5.96×1011 cm−2 eV−1 at the energy of 0.7 eV from the edge of valence band.

  1. Burst annealing of high temperature GaAs solar cells

    Science.gov (United States)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  2. Burst annealing of high temperature GaAs solar cells

    International Nuclear Information System (INIS)

    Brothers, P.R.; Horne, W.E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 degree C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles

  3. Formation of oxygen related donors in step-annealed CZ–silicon

    Indian Academy of Sciences (India)

    The effect of step-annealing necessitated by the difficulties being faced in the long duration annealing treatments to be given to CZ–silicon has been studied. One pre-anneal of 10 h followed by annealing of 10 h causes a decrease in the absorption coefficient for carbon (c). Oxygen and carbon both accelerate thermal ...

  4. A note on simulated annealing to computer laboratory scheduling ...

    African Journals Online (AJOL)

    The concepts, principles and implementation of simulated Annealing as a modem heuristic technique is presented. Simulated Annealing algorithm is used in solving real life problem of Computer Laboratory scheduling in order to maximize the use of scarce and insufficient resources. KEY WORDS: Simulated Annealing ...

  5. Improved perovskite phototransistor prepared using multi-step annealing method

    Science.gov (United States)

    Cao, Mingxuan; Zhang, Yating; Yu, Yu; Yao, Jianquan

    2018-02-01

    Organic-inorganic hybrid perovskites with good intrinsic physical properties have received substantial interest for solar cell and optoelectronic applications. However, perovskite film always suffers from a low carrier mobility due to its structural imperfection including sharp grain boundaries and pinholes, restricting their device performance and application potential. Here we demonstrate a straightforward strategy based on multi-step annealing process to improve the performance of perovskite photodetector. Annealing temperature and duration greatly affects the surface morphology and optoelectrical properties of perovskites which determines the device property of phototransistor. The perovskite films treated with multi-step annealing method tend to form highly uniform, well-crystallized and high surface coverage perovskite film, which exhibit stronger ultraviolet-visible absorption and photoluminescence spectrum compare to the perovskites prepared by conventional one-step annealing process. The field-effect mobilities of perovskite photodetector treated by one-step direct annealing method shows mobility as 0.121 (0.062) cm2V-1s-1 for holes (electrons), which increases to 1.01 (0.54) cm2V-1s-1 for that treated with muti-step slow annealing method. Moreover, the perovskite phototransistors exhibit a fast photoresponse speed of 78 μs. In general, this work focuses on the influence of annealing methods on perovskite phototransistor, instead of obtains best parameters of it. These findings prove that Multi-step annealing methods is feasible to prepared high performance based photodetector.

  6. Printing of small molecular medicines from the vapor phase.

    Science.gov (United States)

    Shalev, Olga; Raghavan, Shreya; Mazzara, J Maxwell; Senabulya, Nancy; Sinko, Patrick D; Fleck, Elyse; Rockwell, Christopher; Simopoulos, Nicholas; Jones, Christina M; Schwendeman, Anna; Mehta, Geeta; Clarke, Roy; Amidon, Gregory E; Shtein, Max

    2017-09-27

    There is growing need to develop efficient methods for early-stage drug discovery, continuous manufacturing of drug delivery vehicles, and ultra-precise dosing of high potency drugs. Here we demonstrate the use of solvent-free organic vapor jet printing to deposit nanostructured films of small molecular pharmaceutical ingredients, including caffeine, paracetamol, ibuprofen, tamoxifen, BAY 11-7082 and fluorescein, with accuracy on the scale of micrograms per square centimeter, onto glass, Tegaderm, Listerine tabs, and stainless steel microneedles. The printed films exhibit similar crystallographic order and chemistry as the original powders; controlled, order-of-magnitude enhancements of dissolution rate are observed relative to powder-form particles. In vitro treatment of breast and ovarian cancer cell cultures in aqueous media by tamoxifen and BAY 11-7082 films shows similar behavior to drugs pre-dissolved in dimethyl sulfoxide. The demonstrated precise printing of medicines as films, without the use of solvents, can accelerate drug screening and enable continuous manufacturing, while enhancing dosage accuracy.Traditional approaches used in the pharmaceutical industry are not precise or versatile enough for customized medicine formulation and manufacture. Here the authors produce a method to form coatings, with accurate dosages, as well as a means of closely controlling dissolution kinetics.

  7. High-temperature annealing of graphite: A molecular dynamics study

    Science.gov (United States)

    Petersen, Andrew; Gillette, Victor

    2018-05-01

    A modified AIREBO potential was developed to simulate the effects of thermal annealing on the structure and physical properties of damaged graphite. AIREBO parameter modifications were made to reproduce Density Functional Theory interstitial results. These changes to the potential resulted in high-temperature annealing of the model, as measured by stored-energy reduction. These results show some resemblance to experimental high-temperature annealing results, and show promise that annealing effects in graphite are accessible with molecular dynamics and reactive potentials.

  8. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  9. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits-A comparative study

    International Nuclear Information System (INIS)

    Pantleon, Karen; Somers, Marcel A.J.

    2010-01-01

    Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted to be interpreted in terms of recovery, recrystallization and grain growth.

  10. Optimization using quantum mechanics: quantum annealing through adiabatic evolution

    International Nuclear Information System (INIS)

    Santoro, Giuseppe E; Tosatti, Erio

    2006-01-01

    We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'ℎ' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models-double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schroedinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized. (topical review)

  11. Electron beam physical vapor deposition of thin ruby films for remote temperature sensing

    International Nuclear Information System (INIS)

    Li Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.

    2013-01-01

    Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al 2 O 3 , ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al 2 O 3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

  12. High pressure annealing of Europium implanted GaN

    KAUST Repository

    Lorenz, K.; Miranda, S. M. C.; Alves, E.; Roqan, Iman S.; O'Donnell, K. P.; Bokowski, M.

    2012-01-01

    GaN epilayers were implanted with Eu to fluences of 1×10^13 Eu/cm2 and 1×10^15 Eu/cm2. Post-implant thermal annealing was performed in ultra-high nitrogen pressures at temperatures up to 1450 ºC. For the lower fluence effective structural recovery of the crystal was observed for annealing at 1000 ºC while optical activation could be further improved at higher annealing temperatures. The higher fluence samples also reveal good optical activation; however, some residual implantation damage remains even for annealing at 1450 ºC which leads to a reduced incorporation of Eu on substitutional sites, a broadening of the Eu luminescence lines and to a strongly reduced fraction of optically active Eu ions. Possibilities for further optimization of implantation and annealing conditions are discussed.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  13. High pressure annealing of Europium implanted GaN

    KAUST Repository

    Lorenz, K.

    2012-02-09

    GaN epilayers were implanted with Eu to fluences of 1×10^13 Eu/cm2 and 1×10^15 Eu/cm2. Post-implant thermal annealing was performed in ultra-high nitrogen pressures at temperatures up to 1450 ºC. For the lower fluence effective structural recovery of the crystal was observed for annealing at 1000 ºC while optical activation could be further improved at higher annealing temperatures. The higher fluence samples also reveal good optical activation; however, some residual implantation damage remains even for annealing at 1450 ºC which leads to a reduced incorporation of Eu on substitutional sites, a broadening of the Eu luminescence lines and to a strongly reduced fraction of optically active Eu ions. Possibilities for further optimization of implantation and annealing conditions are discussed.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  14. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum

    DEFF Research Database (Denmark)

    Zeng, Wei; Shen, Yao; Zhang, Ning

    2012-01-01

    Nanostructured pure aluminum was fabricated by heavy cold-rolling and then subjected to recovery annealing either by applying electric pulse annealing or by traditional air furnace annealing. Both annealing treatments resulted in an increase in yield strength due to the occurrence of a “dislocation...... source-limited hardening” mechanism. However, the hardening kinetics was substantially faster for the electric pulse annealed material. Detailed microstructural characterization suggested that the rapid hardening during electric pulse annealing is related to an enhanced rate of recovery of dislocation...

  15. Analysis of solvent extracts from coal liquefaction in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Ying; Feng, Jie; Xie, Ke-Chang [Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024 (China); Kandiyoti, R. [Department of Chemical Engineering and Chemical Technology, Imperial College, University of London, London SW7 2BY (United Kingdom)

    2004-10-15

    Point of Ayr coal has been extracted using three solvents, tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP) at two temperatures 350 and 450 C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. The three solvents differ in solvent power and the ability to donate hydrogen atoms to stabilise free radicals produced by pyrolysis of the coal. The extracts were prepared in a flowing solvent reactor to minimise secondary thermal degradation of the primary extracts. Analysis of the pentane-insoluble fractions of the extracts was achieved by size exclusion chromatography, UV-fluorescence spectroscopy in NMP solvent and probe mass. With increasing extraction temperature, the ratio of the amount having big molecular weight to that having small molecular weight in tetralin extracts was increased; the tetralin extract yield increased from 12.8% to 75.9%; in quinoline, increasing extraction temperature did not have an effect on the molecular weight of products but there was a big increase in extract yield. The extracts in NMP showed the enhanced solvent extraction power at both temperatures, with a shift in the ratio of larger molecules to smaller molecules with increasing extraction temperature and with the highest conversion of Point of Ayr coal among these three solvents at both temperatures. Solvent adducts were detected in the tetralin and quinoline extracts by probe mass spectrometry; solvent products were formed from NMP at both temperatures.

  16. Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.

    1997-02-01

    The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank

  17. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  18. Influence of solvents on the changes in structure, purity, and in vitro characteristics of green-synthesized ZnO nanoparticles from Costus igneus

    Science.gov (United States)

    Nandhini, G.; Suriyaprabha, R.; Maria Sheela Pauline, W.; Rajendran, V.; Aicher, Wilhelm Karl; Awitor, Oscar Komla

    2018-05-01

    The present study is intended to produce high-purity zinc oxide nanoparticles from the leaves of Costus igneus and zinc acetate precursor via sustainable methods by the tribulation with three different solvents (hot water, methanol, and acetone) for the extraction of plant compounds. While examining the physico-chemical characteristics of ZnO nanoparticles incurred by the catalysis of plant bioactive compounds extracted from different solvents, the hot water extract-based green synthesis process yields higher purity (99.89%) and smaller particle size (94 nm) than other solvents. The optimization of the solvents used for the green synthesis of nanoparticles renders key identification in appropriate extraction of bioactive compounds suitable for the nucleation/production of nanoparticles in addition to annealing temperature. The impregnable usage of ZnO nanoparticles in clinical applications is further confirmed based on the treatment of particles (1-10 mg ml-1) against Gram-positive (S. aureus and S. epidermis) and Gram-negative bacteria (E. coli and K. pneumoniae) with respect to their growth inhibition. An in-force growth inhibition against particular S. aureus and S. epidermis imparted by the low concentration of ZnO nanoparticles signifies the utilization and consumption of green-synthesized high-purity nanoparticles for therapeutic and cosmetic applications.

  19. The effect of annealing atmosphere on the thermoluminescence of synthetic calcite

    International Nuclear Information System (INIS)

    Pagonis, Vasilis

    1998-01-01

    Samples of high purity calcite powder were annealed in air, nitrogen and carbon dioxide atmospheres in the temperature range 300-700 deg. C and in atmospheric pressure. The samples were subsequently irradiated and the effect of the annealing atmosphere and temperature on the thermoluminescence (TL) of the samples was studied. Our results show that both carbonate and oxygen ions play an important part in the TL of calcite annealed in this temperature range. The intensities of the TL signal in the nitrogen and carbon dioxide anneals rise continuously with the annealing temperature. For all annealing temperatures it was found that the carbon dioxide atmosphere caused an increase in the observed TL signal as compared with anneals in an inert nitrogen atmosphere, while the shape of the TL glow curves remained the same. This increase in the observed TL signal is explained via the surface adsorption of carbonate ions. The shape and location of the TL peaks suggest that samples annealed in air exhibit a different type of TL center than samples annealed in nitrogen and carbon dioxide atmospheres. A possible mechanism for the role of oxygen ions involves a surface adsorption process and a subsequent diffusion of oxygen ions in the bulk of the crystal. Annealing of the samples in air at temperatures T>600 deg. C causes a collapse of the TL signal, in agreement with previous studies of calcite powders. No such collapse of the TL signal is observed for the nitrogen and carbon dioxide anneals, suggesting that a different type of TL center and/or recombination center is involved in air anneals. Arrhenius plots for the air anneals yield an activation energy E=0.45±0.05 eV, while the carbon dioxide and nitrogen anneals yield a lower activation energy E=0.28±0.04 eV

  20. Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells

    KAUST Repository

    McDowell, Caitlin

    2015-07-14

    The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution-deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p-DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS-containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization. In situ measurement shows that polystyrene (PS) and diiodooctane (DIO) additives promote donor crystallite formation synergistically, on different time scales, and through different mechanisms. PS-rich films retain solvent, promoting phase separation early in the casting process. Meanwhile, the low vapor pressure of DIO extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase after casting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal annealing studies in muscovite and in quartz

    International Nuclear Information System (INIS)

    Roberts, J.H.; Gold, R.; Ruddy, F.H.

    1979-06-01

    In order to use Solid State Track Recorders (SSTR) in environments at elevated temperatures, it is necessary to know the thermal annealing characteristics of various types of SSTR. For applications in the nuclear energy program, the principal interest is focused upon the annealing of fission tracks in muscovite mica and in quartz. Data showing correlations between changes in track diameters and track densities as a function of annealing time and temperature will be presented for Amersil quartz glass. Similar data showing changes in track lengths and in track densities will be presented for mica. Time-temperature regions will be defined where muscovite mica can be accurately applied with negligible correction for thermal annealing

  2. Annealing behavior of high permeability amorphous alloys

    International Nuclear Information System (INIS)

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co 71 4 Fe 4 6 Si 9 6 B 14 4 were investigated. Annealing this alloy below 400 0 C results in magnetic hardening; annealing above 400 0 C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation

  3. Dosimetric characteristics of muscovite mineral studied under different annealing conditions

    International Nuclear Information System (INIS)

    Kalita, J M; Wary, G

    2015-01-01

    The annealing effect on the thermoluminescence (TL) characteristics of x-ray irradiated muscovite mineral relevant to dosimetry has been studied. For un-annealed and 473 K annealed samples an isolated TL peak has been observed at around 347 K; however, annealing at 573, 673 and 773 K two composite peaks have been recorded at around 347 and 408 K. Kinetic analysis reveals that there is a trap level at a depth of 0.71 eV, and due to annealing at 573 K (or above), a new trap level generates at 1.23 eV. The dosimetric characteristics, such as dose response, fading and reproducibility, have been studied in detail for all types of samples. The highest linear dose response has been observed from 10 to 2000 mGy in the 773 K annealed sample. Due to generation of the deep trap level, fading is found to reduce significantly just after annealing above 573 K. Reproducibility analysis shows that after 10 cycles of reuse the coefficient of variations in the results for 60, 180 and 1000 mGy dose irradiated 773 K annealed samples are found to be 1.78%, 1.37% and 1.58%, respectively. These analyses demand that after proper annealing muscovite shows important dosimetric features that are essentially required for a thermoluminescence dosimeter (TLD). (paper)

  4. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  5. Modeling of irradiation embrittlement and annealing/recovery in pressure vessel steels

    International Nuclear Information System (INIS)

    Lott, R.G.; Freyer, P.D.

    1996-01-01

    The results of reactor pressure vessel (RPV) annealing studies are interpreted in light of the current understanding of radiation embrittlement phenomena in RPV steels. An extensive RPV irradiation embrittlement and annealing database has been compiled and the data reveal that the majority of annealing studies completed to date have employed test reactor irradiated weldments. Although test reactor and power reactor irradiations result in similar embrittlement trends, subtle differences between these two damage states can become important in the interpretation of annealing results. Microstructural studies of irradiated steels suggest that there are several different irradiation-induced microstructural features that contribute to embrittlement. The amount of annealing recovery and the post-anneal re-embrittlement behavior of a steel are determined by the annealing response of these microstructural defects. The active embrittlement mechanisms are determined largely by the irradiation temperature and the material composition. Interpretation and thorough understanding of annealing results require a model that considers the underlying physical mechanisms of embrittlement. This paper presents a framework for the construction of a physically based mechanistic model of irradiation embrittlement and annealing behavior

  6. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection pr...

  7. Solvent effects in the synergistic solvent extraction of Co2+

    International Nuclear Information System (INIS)

    Kandil, A.T.; Ramadan, A.

    1979-01-01

    The extraction of Co 2+ from a 0.1M ionic strength aqueous phase (Na + , CH 3 COOH) of pH = 5.1 was studied using thenoyltrifluoroacetone, HTTA, in eight different solvents and HTTA + trioctylphosphine oxide, TOPO, in the same solvents. A comparison of the effect of solvent dielectric constant on the equilibrium constant shows a synergism as a result of the increased hydrophobic character imparted to the metal complex due to the formation of the TOPO adduct. (author)

  8. Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Scholten, K; Bohrer, F I; Dattoli, E; Lu, W; Zellers, E T, E-mail: ezellers@umich.edu [Center for Wireless Integrated Microsystems, University of Michigan, Ann Arbor, MI 48109-2122 (United States)

    2011-03-25

    This paper explores the discrimination of organic vapors with arrays of chemiresistors (CRs) employing interface layers of tin-oxide nanowires (NWs) and thiolate-monolayer-protected gold nanoparticles (MPNs). The former devices use contact-printed mats of NWs on micro-hotplate membranes to bridge a pair of metal electrodes. Oxidation at the NW surface causes changes in charge transport, the temperature dependence of which differs among different vapors, permitting vapor discrimination. The latter devices use solvent cast films of MPNs on interdigital electrodes operated at room temperature. Sorption into the organic monolayers causes changes in film tunneling resistance that differ among different vapors and MPN structures, permitting vapor discrimination. Here, we compare the performance and assess the 'complementarity' of these two types of sensors. Calibrated responses from an NW CR operated at two different temperatures and from a set of four different MPN CRs were generated for three test vapors: n-hexane, toluene, and nitromethane. This pooled data set was then analyzed using principal components regression classification models with varying degrees of random error superimposed on the responses via Monte Carlo simulation in order to estimate the rates of recognition/discrimination for arrays comprising different combinations of sensors. Results indicate that the diversity of most of the dual MPN-CR arrays exceeds that of the dual NW-CR array. Additionally, in assessing all possible arrays of 4-6 CR sensors, the recognition rates of the hybrid arrays (i.e. MPN + NW) were no better than that of the 4-sensor array containing only MPN CRs.

  9. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  10. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  11. SOLVENT FIRE BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D; Samuel Fink, S

    2006-05-22

    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  12. An overview of industrial solvent use or is there life after chlorinated solvents?

    International Nuclear Information System (INIS)

    Green, B.

    1991-01-01

    Everyone using industrial chemicals has been affected by the fire- storm of new regulations governing solvent use. How will companies currently using hazardous solvents prepare for the changes ahead? What will the impact be on commonly used industrial solvents? What effect are environmental pressures having on solvent use and disposal? Are the responsible individuals in your company up-to-date on phase-out schedules? This paper is written for an audience of compliance coordinators, consultants, production engineers and corporate management. In it, the either addresses the above questions and discusses the specific products affected. The author reviews currently available alternatives to chlorinated and hazardous solvents and introduces a simple system for rating alternatives. The program also includes a discussion of solvent minimization programs and worker reeducation

  13. Thermal annealing of an embrittled reactor pressure vessel

    International Nuclear Information System (INIS)

    Mager, T.R.; Dragunov, Y.G.; Leitz, C.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 11 deals with thermal annealing of an embrittled reactor pressure vessel. Anneal procedures for vessels from both the US and the former USSR are mentioned schematically, wet anneals at lower temperature and dry anneals above RPV design temperatures are investigated. It is shown that heat treatment is a means of recovering mechanical properties which were degraded by neutron radiation exposure, thus assuring reactor pressure vessel compliance with regulatory requirements

  14. Annealing-induced Fe oxide nanostructures on GaAs

    OpenAIRE

    Lu, Y X; Ahmad, E; Xu, Y B; Thompson, S M

    2005-01-01

    We report the evolution of Fe oxide nanostructures on GaAs(100) upon pre- and post-growth annealing conditions. GaAs nanoscale pyramids were formed on the GaAs surface due to wet etching and thermal annealing. An 8.0-nm epitaxial Fe film was grown, oxidized, and annealed using a gradient temperature method. During the process the nanostripes were formed, and the evolution has been demonstrated using transmission and reflection high energy electron diffraction, and scanning electron microscopy...

  15. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  16. MgO magnetic tunnel junctions of enduring F-type upon annealing

    International Nuclear Information System (INIS)

    Schleicher, F; Halisdemir, U; Urbain, E; Gallart, M; Boukari, S; Beaurepaire, E; Gilliot, P; Bowen, M; Lacour, D; Montaigne, F; Hehn, M

    2015-01-01

    The authors performed magnetotransport experiments to determine whether annealing alters the oxygen vacancy-mediated tunnelling potential landscape of the central portion of a MgO ultrathin film within sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Using the Î rel method reveals a temperature-dependent tunnelling barrier height for a non-annealed barrier that arises from single oxygen vacancies (F centres) and is qualitatively identical to that found for its partly and fully annealed counterparts. Thus these MTJs with F centres remain of F-type upon annealing. This explicitly confirms that the large tunnel-magnetoresistance (TMR) increase upon annealing results mainly from structural modifications of MgO and CoFeB and not from vacancy pairing within the barrier. Photoluminescence spectra performed on both annealed and non-annealed thin MgO films grown on CoFeB electrodes support this conclusion. This work should promote renewed scrutiny over the precise impact of annealing on tunnelling magnetotransport across MgO. (paper)

  17. Vessel annealing. Will it become a routine procedure?

    International Nuclear Information System (INIS)

    Davies, M.

    1995-01-01

    The effect of neutron radiation on the reactor pressure vessel and the influence of annealing performed to eliminate this effect are explained. Some practical examples are given. A simple heat treatment at 450 degC for 168 h is sufficient to eliminate a major fraction of the radiation effect in the displacement of the transition temperature from the brittle state to the tough state. Some observations indicate that at this temperature, excessive energy recovery takes place at the upper toughness limit in the Charpy diagram. The annealing furnace manufactured by the SKODA company is described. The furnace consists of heating elements in 13 zones and 5 heating sections. The maximum power of each element is 75 kW, the total power of the furnace is 975 kW. The annealing procedure and its results are briefly outlined for the reactor pressure vessel at unit 2 of the Jaslovske Bohunice NPP. Reactor pressure vessel annealing is proposed for the Marble Hill NPP which has been shut down. Preparatory activities for annealing are also under way at the Loviisa NPP. (J.B.)

  18. Influence of annealing temperature on optical properties of Al doped ZnO nanoparticles via sol-gel methods

    Science.gov (United States)

    Rashid, Affa Rozana Abd; Hazwani, Tuan Nur; Mukhtar, Wan Maisarah; Taib, Nur Athirah Mohd

    2018-06-01

    Zinc oxide (ZnO) thin films have become technologically important materials due to their wide range of electrical and optical properties. The characteristics can be further adjusted by adequate doping processes. The effect of dopant concentration of Al, heating treatment and annealing in reducing atmosphere on the optical properties of the thin films is discussed. Undoped and aluminum-doped zinc oxide (AZO) thin films are prepared by the sol-gel method. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine are used as precursor, solvent and stabilizer. In the case of AZO, aluminum nitrate nanohydrate is added to the precursor solution with an atomic percentage equal to 0 %, 1 %, 2 % and 3 % of Al. The multi thin layers are transformed into ZnO upon annealing at 450 °C and 500 °C. The optical properties such as transmittance, absorbance, band gap and refractive index of the thin films have been investigated by using UV-Visible Spectroscopy (UV-Vis). The results show that the effect of aluminium dopant concentration on the optical properties is depend on the post-heat treatment of the films. By doping with Al, the transmittance spectra in visible range increased and widen the band gap of ZnO which might due to Burstein-moss effects.

  19. Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition

    International Nuclear Information System (INIS)

    Lin, Meng-Yu; Lee, Si-Chen; Lin, Shih-Yen; Wang, Cheng-Hung; Chang, Shu-Wei

    2015-01-01

    In this work, we first investigate the effects of partial pressures and flow rates of precursors on the single-crystal graphene growth using chemical vapor depositions on copper foils. These factors are shown to be critical to the growth rate, seeding density and size of graphene single crystals. The prepared graphene films in millimeter sizes are then bubbling transferred to silicon-dioxide/silicon substrates for high-mobility graphene transistor fabrications. After high-temperature annealing and hexamethyldisilazane passivation, the water attachment is removed from the graphene channel. The elimination of uncontrolled doping and enhancement of carrier mobility accompanied by these procedures indicate that they are promising for fabrications of graphene transistors. (paper)

  20. Solvent - solute interaction

    International Nuclear Information System (INIS)

    Urbanczyk, A.; Kalinowski, M.K.

    1983-01-01

    The electronic absorption spectrum of vanadyl acetylacetonate has been studied in 15 organic solvents. It has been found that wavenumbers and molar absorptivities of the long-wavelength bands (d-d transitions) can be well described by a complementary Lewis acid-base model including Gutmann's donor number [Gutmann V., Wychera E., Inorg. Nucl. Chem. Letters 2, 257 (1966)] and acceptor number [Mayer U., Gutmann V., Gerger W., Monatsh. Chem. 106, 1235 (1975)] of a solvent. This model describes also the solvent effect of the hyperfine splitting constant, Asub(iso)( 51 V), from e.s.r. spectra of VOacac 2 . These observations are discussed in terms of the donor-acceptor concept for solvent-solute interactions. (Author)

  1. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    Science.gov (United States)

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  2. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  3. Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers

    Science.gov (United States)

    Li, Xiao; Li, Xinming; Zang, Xiaobei; Zhu, Miao; He, Yijia; Wang, Kunlin; Xie, Dan; Zhu, Hongwei

    2015-04-01

    Hydrogen plays a crucial role in the chemical vapor deposition (CVD) growth of graphene. Here, we have revealed the roles of hydrogen in the two-step CVD growth of MoS2. Our study demonstrates that hydrogen acts as the following: (i) an inhibitor of the thermal-induced etching effect in the continuous film growth process; and (ii) a promoter of the desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 < x < 2) films. A high hydrogen content of more than 100% in argon forms nano-sized circle-like defects and damages the continuity and uniformity of the film. Continuous MoS2 films with a high crystallinity and a nearly perfect S/Mo atomic ratio were finally obtained after sulfurization annealing with a hydrogen content in the range of 20%-80%. This insightful understanding reveals the crucial roles of hydrogen in the CVD growth of MoS2 and paves the way for the controllable synthesis of two-dimensional materials. Electronic supplementary information (ESI) available: Low-magnification optical images; Raman spectra of 0% and 5% H2 samples; AFM characterization; Schematic of the film before and after sulfurization annealing; Schematic illustrations of two typical Raman-active phonon modes (E12g, A1g); Raman (mapping) spectra for 40% and 80% H2 samples before and after sulfurization annealing; PL spectra. See DOI: 10.1039/c5nr00904a

  4. Irradiation embrittlement and optimisation of annealing

    International Nuclear Information System (INIS)

    1993-01-01

    This conference is composed of 30 papers grouped in 6 sessions related to the following themes: neutron irradiation effects in pressure vessel steels and weldments used in PWR, WWER and BWR nuclear plants; results from surveillance programmes (irradiation induced damage and annealing processes); studies on the influence of variations in irradiation conditions and mechanisms, and modelling; mitigation of irradiation effects, especially through thermal annealing; mechanical test procedures and specimen size effects

  5. Irradiation embrittlement and optimisation of annealing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This conference is composed of 30 papers grouped in 6 sessions related to the following themes: neutron irradiation effects in pressure vessel steels and weldments used in PWR, WWER and BWR nuclear plants; results from surveillance programmes (irradiation induced damage and annealing processes); studies on the influence of variations in irradiation conditions and mechanisms, and modelling; mitigation of irradiation effects, especially through thermal annealing; mechanical test procedures and specimen size effects.

  6. Unraveling Quantum Annealers using Classical Hardness

    Science.gov (United States)

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  7. Mechanical behavior of multipass welded joint during stress relief annealing

    International Nuclear Information System (INIS)

    Ueda, Yukio; Fukuda, Keiji; Nakacho, Keiji; Takahashi, Eiji; Sakamoto, Koichi.

    1978-01-01

    An investigation into mechanical behavior of a multipass welded joint of a pressure vessel during stress relief annealing was conducted. The study was performed theoretically and experimentally on idealized research models. In the theoretical analysis, the thermal elastic-plastic creep theory developed by the authors was applied. The behavior of multipass welded joints during the entire thermal cycle, from welding to stress relief annealing, was consistently analyzed by this theory. The results of the analysis show a good, fundamentally coincidence with the experimental findings. The outline of the results and conclusions is as follows. (1) In the case of the material (2 1/4Cr-1Mo steel) furnished in this study, the creep strain rate during stress relief annealing below 575 0 C obeys the strain-hardening creep law using the transient creep and the one above 575 0 C obeys the power creep law using the stational creep. (2) In the transverse residual stress (σsub(x)) distribution after annealing, the location of the largest tensile stress on the top surface is about 15 mm away from the toe of weld, and the largest at the cross section is just below the finishing bead. These features are similar to those of welding residual stresses. But the stress distribution after annealing is smoother than one from welding. (3) The effectiveness of stress relief annealing depends greatly on the annealing temperature. For example, most of residual stresses are relieved at the heating stage with a heating rate of 30 0 C/hr. to 100 0 C/hr. if the annealing temperature is 650 0 C, but if the annealing temperature is 550 0 C, the annealing is not effective even with a longer holding time. (4) In the case of multipass welding residual stresses studied in this paper, the behaviors of high stresses during annealing are approximated by ones during anisothermal relaxation. (auth.)

  8. Tunable metal-insulator transitions in bilayer graphene by thermal annealing

    OpenAIRE

    Kalon, Gopinadhan; Shin, Young Jun; Yang, Hyunsoo

    2012-01-01

    Tunable and highly reproducible metal-insulator transitions have been observed in bilayer graphene upon thermal annealing at 400 K under high vacuum conditions. Before annealing, the sample is metallic in the whole temperature regime of study. Upon annealing, the conductivity changes from metallic to that of an insulator and the transition temperature is a function of annealing time. The pristine metallic state can be reinstated by exposing to air thereby inducing changes in the electronic pr...

  9. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  10. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  11. Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2015-04-01

    Full Text Available A comparison of structural and magnetic properties of as-prepared and annealed (900 °C Mg doped Zn ferrite nanoparticles (Zn1−xMgxFe2O4, with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 is presented. X-ray diffraction (XRD studies confirmed the cubic spinel structure for both the as-prepared and annealed nanoparticles. The average crystallite size and lattice parameter were increased by annealing. Scanning electron microscopy (SEM images also showed that the average particle size increased after annealing. Fourier transform infrared spectroscopy (FTIR also confirmed the spinel structure for both series of nanoparticles. For both annealed and as-prepared nanoparticles, the O–Mtet.–O vibrational band shifts towards higher wave numbers with increased Mg concentration due to cationic rearrangement on the lattice sites. Magnetization studies revealed an anomalous decreasing magnetization for the annealed nanoparticles which is also ascribed to cationic rearrangement on the lattice sites after annealing. The measurement of coercivity showed a decreasing trend by annealing due to the increased nanoparticle size and better crystallinity.

  12. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1996-01-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes

  13. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  14. Annealing effect on restoration of irradiation steel properties

    International Nuclear Information System (INIS)

    Vishkarev, O.M.; Kolesova, T.N.; Myasnikova, K.P.; Pecherin, A.M.; Shamardin, V.K.

    1986-01-01

    The effect of temperature and annealing time on the restoration of properties of the 15Kh2NMFAA and 15Kh2MFA steels after irradiation at 285 deg with the fluence of 6x10 23 neutr/m 2 (E>0.5 MeV) is studied. Microhardness (H μ ) restoration in the irradiated 15Kh2NMFAA steel is shown to start from 350 deg C annealing temperature. The complete microhardness restoration is observed at the annealing temperature of 500 deg C for 10 hours

  15. Annealing of the BR3 reactor pressure vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Motte, F.; Stiennon, G.; Debrue, J.; Gubel, P.; Van de Velde, J.; Minsart, G.; Van Asbroeck, P.

    1985-01-01

    The pressure vessel of the Belgian BR-3 plant, a small (11 MWe) PWR presently used for fuel testing programs and operated since 1962, was annealed during March, 1984. The anneal was performed under wet conditions for 168 hours at 650 0 F with core removal and within plant design margins justification for the anneal, summary of plant characteristics, description of materials sampling, summary of reactor physics and dosimetry, development of embrittlement trend curves, hypothesized pressurized and overcooling thermal shock accidents, and conclusions are provided in detail

  16. Influence of oxygen on the annealing of radioactive defects in germanium

    International Nuclear Information System (INIS)

    Gasimov, G.M.; Mustafayev, Yn.M.; Gasimova, V.G.

    2002-01-01

    The isochronal annealing were carried out in the wide temperature range, for the establishment of oxygen influence on the annealing of radioactive defects (Rd) in any radiated germanium samples, concentrated with oxygen up to concentration of 9.7·10 16 cm -3 . It is shown that the curves of isochronal annealing of one of the such samples 1, with primary current charge concentration of 9.0·10 cm 14 , radiated by integral electron flow of φ= 8.0·10 16 cm -3 , at 293 K and also the non-oxygen samples 2, with primary concentration of 1.7·10 cm -3 , radiated at above mentioned conditions. The sample 1 is converted by radiation to p-type, but the conversion not occur in samples 2. It is illustrated, that that there is two annealing stage at 340-430 K, for the samples 2, which in results takes place the complete annealing of the RD. At 300 K the annealing takes place in samples of 1, but at 340 K - the reverse annealing of RD. The sample was at compensated state in the temperature range of 360-400 K. An annealing of RD takes place again at 440 K and the sample re-converted its conductivity type. The reverse annealing at 480 K, and at about 510 K, the substantial annealing of the defects has been observed, which in results a sample restores it's primary parameters. The carried out experiments show that as in converted, and also in n-type be samples, Is observed the reverse annealing of RD, but the reverse annealing of current charge carriers in n-type samples is observed only at such conditions, of the integral flow of accelerated elections exceeds the primary concentration of current charge carriers about 4 time of magnitude (φ≥4n 0 ). Besides, the complete annealing of RD in germanium samples concentrated with oxygen, takes place at more high temperatures in comparison with the non-oxygen samples

  17. Manipulation of magnetic properties of glass-coated microwires by annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A., E-mail: arkadi.joukov@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Chichay, K. [Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Talaat, A. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain); Rodionova, V. [Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); National University of Science and Technology (MISIS), 119049 Moscow (Russian Federation); Blanco, J.M. [Dpto. Física Aplicada, EUPDS Basque Country University UPV/EHU (Spain); Ipatov, M.; Zhukova, V. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian (Spain)

    2015-06-01

    We demonstrated that magnetic properties (hysteresis loops, domain wall propagation and giant magnetoimpedance effect) of Fe and Co-rich amorphous microwires can be tailored by stress and conventional annealing. Observed dependences discussed considering stress relaxation, back stresses and change of the magnetostriction after samples annealing. These considerations have been proved by experimental observation of the change of the magnetostriction coefficient sign induced by annealing. - Highlights: • Manipulation of hysteresis loop of amorphous Co–Fe- rich microwires by annealing. • Coexistence of Giant magnetoimpedance effect and fast domain wall propagation in the same sample. • Evidence of annealing dependence of the magnetostriction coefficient. • Effect of stress induced anisotropy on magnetic properties and GMI effect.

  18. Manipulation of magnetic properties of glass-coated microwires by annealing

    International Nuclear Information System (INIS)

    Zhukov, A.; Chichay, K.; Talaat, A.; Rodionova, V.; Blanco, J.M.; Ipatov, M.; Zhukova, V.

    2015-01-01

    We demonstrated that magnetic properties (hysteresis loops, domain wall propagation and giant magnetoimpedance effect) of Fe and Co-rich amorphous microwires can be tailored by stress and conventional annealing. Observed dependences discussed considering stress relaxation, back stresses and change of the magnetostriction after samples annealing. These considerations have been proved by experimental observation of the change of the magnetostriction coefficient sign induced by annealing. - Highlights: • Manipulation of hysteresis loop of amorphous Co–Fe- rich microwires by annealing. • Coexistence of Giant magnetoimpedance effect and fast domain wall propagation in the same sample. • Evidence of annealing dependence of the magnetostriction coefficient. • Effect of stress induced anisotropy on magnetic properties and GMI effect

  19. Propagating self-sustained annealing of radiation-induced interstitial complexes

    International Nuclear Information System (INIS)

    Bokov, P M; Selyshchev, P A

    2016-01-01

    A propagating self-sustained annealing of radiation induced defects as a result of thermal-concentration instability is studied. The defects that are considered in the model are complexes. Each of them consists of one atom of impunity and of one interstitial atom. Crystal with defects has extra energy which is transformed into heat during defect annealing. Simulation of the auto-wave of annealing has been performed. The front and the speed of the auto-wave have been obtained. It is shown that annealing occurs in a narrow region of time and space. There are two kinds of such annealing behaviour. In the first case the speed of the auto-wave oscillates near its constant mean value and the front of temperature oscillates in a complex way. In the second case the speed of propagation is constant and fronts of temperature and concentration look like sigmoid functions. (paper)

  20. Investigation of the vapor pressure p of zinc bromide or zinc chloride solutions with methanol by static method

    International Nuclear Information System (INIS)

    Safarov, Javid T.

    2006-01-01

    Vapor pressures p of ZnBr 2 + CH 3 OH and ZnCl 2 + CH 3 OH solutions at T (298.15 to 323.15) K were measured, activity of solvent a s and osmotic φ coefficients have been evaluated. The experiments were carried out for the ZnBr 2 + CH 3 OH solutions in the molality range m = (0.19972 to 11.05142) mol . kg -1 and for the ZnCl 2 + CH 3 OH solutions in the molality range m (0.42094 to 8.25534) mol . kg -1 . The Antoine equation for the empirical description of the experimental vapor pressure results and the Pitzer-Mayorga model with inclusion of ionic strength dependence of the third virial coefficient for the description of calculated osmotic coefficients were used. The parameters of Pitzer-Mayorga model were used for evaluation of activity coefficients

  1. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  2. In situ annealing of hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Johnson, Shevon; Haluska, Michael; Narayan, Roger J.; Snyder, Robert L.

    2006-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Unfortunately, problems with adhesion, poor mechanical integrity, and incomplete bone ingrowth limit the use of many conventional hydroxyapatite surfaces. In this work, we have developed a novel technique to produce crystalline hydroxyapatite thin films involving pulsed laser deposition and postdeposition annealing. Hydroxyapatite films were deposited on Ti-6Al-4V alloy and Si (100) using pulsed laser deposition, and annealed within a high temperature X-ray diffraction system. The transformation from amorphous to crystalline hydroxyapatite was observed at 340 deg. C. Mechanical and adhesive properties were examined using nanoindentation and scratch adhesion testing, respectively. Nanohardness and Young's modulus values of 3.48 and 91.24 GPa were realized in unannealed hydroxyapatite films. Unannealed and 350 deg. C annealed hydroxyapatite films exhibited excellent adhesion to Ti-6Al-4V alloy substrates. We anticipate that the adhesion and biological properties of crystalline hydroxyapatite thin films may be enhanced by further consideration of deposition and annealing parameters

  3. 2,1,3-benzothiadiazole-5,6-dicarboxylic imide - A versatile building block for additive- and annealing-free processing of organic solar cells with effi ciencies exceeding 8%

    KAUST Repository

    Nielsen, Christian Bergenstof

    2014-12-15

    A new photoactive polymer comprising benzo[1,2-b:3,4-b′:5,6-d′]trithiophene and 2,1,3-benzothiadiazole-5,6-dicarboxylic imide is reported. The synthetic design allows for alkyl chains to be introduced on both electron-rich and electron-deficient components, which in turn allows for rapid optimization of the alkyl chain substitution pattern. Consequently, the optimized polymer shows a maximum efficiency of 8.3% in organic photovoltaic devices processed in commercially viable fashion without solvent additives, annealing, or device engineering.

  4. 2,1,3-benzothiadiazole-5,6-dicarboxylic imide - A versatile building block for additive- and annealing-free processing of organic solar cells with effi ciencies exceeding 8%

    KAUST Repository

    Nielsen, Christian Bergenstof; Ashraf, Raja Shahid; Treat, Neil D.; Schroeder, Bob C.; Donaghey, Jenny E.; White, Andrew J P; Stingelin, Natalie; McCulloch, Iain

    2014-01-01

    A new photoactive polymer comprising benzo[1,2-b:3,4-b′:5,6-d′]trithiophene and 2,1,3-benzothiadiazole-5,6-dicarboxylic imide is reported. The synthetic design allows for alkyl chains to be introduced on both electron-rich and electron-deficient components, which in turn allows for rapid optimization of the alkyl chain substitution pattern. Consequently, the optimized polymer shows a maximum efficiency of 8.3% in organic photovoltaic devices processed in commercially viable fashion without solvent additives, annealing, or device engineering.

  5. Defect evolution and dopant activation in laser annealed Si and Ge

    DEFF Research Database (Denmark)

    Cristiano, F.; Shayesteh, M.; Duffy, R.

    2016-01-01

    Defect evolution and dopant activation are intimately related to the use of ion implantation and annealing, traditionally used to dope semiconductors during device fabrication. Ultra-fast laser thermal annealing (LTA) is one of the most promising solutions for the achievement of abrupt and highly...... doped junctions. In this paper, we report some recent investigations focused on this annealing method, with particular emphasis on the investigation of the formation and evolution of implant/anneal induced defects and their impact on dopant activation. In the case of laser annealed Silicon, we show...

  6. Isothermal annealing of silicon implanted with 50 keV 10B ions

    International Nuclear Information System (INIS)

    Weidner, B.; Zaschke, G.

    1974-01-01

    Isothermal annealing characteristics of silicon implanted with boron were measured and compared with calculated results. Implantation was performed with 50 keV 10 B ions in the dose range of 7.5 x 10 12 cm -2 to 2.0 x 10 15 cm -2 . Annealing temperatures ranged from 700 to 900 0 C. Maximum annealing time was 10 4 minutes. Annealing time strongly increases with increasing dose and decreasing temperature. Assuming that there is only one activation energy the isothermal annealing curves of constant dose and different temperatures were combined to a reduced annealing curve and the reduced isothermal annealing curve calculated. Starting from first order kinetics, considering the doping profile of boron in silicon and assuming a depth-dependent decay constant the experimentally determined annealing curves could be easily described over the total dose and time range

  7. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  8. Chemical vapor deposition of ZrO{sub 2} thin films using Zr(NEt{sub 2}){sub 4} as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Bastianini, A. [CNR, Padova (Italy). Ist. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati; Battiston, G.A. [CNR, Padova (Italy). Ist. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati; Gerbasi, R. [CNR, Padova (Italy). Ist. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati; Porchia, M. [CNR, Padova (Italy). Ist. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati; Daolio, S. [CNR, Padova (Italy). Ist. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati]|[CNR, Ist. di Polarografia ed Elettrochimica Preparativa, Padova (Italy)

    1995-06-01

    By using tetrakis(diethylamido) zirconium [Zr(NEt{sub 2}){sub 4}], excellent quality ZrO{sub 2} thin films were deposited with high growth rates on alumina and glass substrates by chemical vapor deposition. The depositions were carried out in a hot wall reactor at reduced pressure (200 Pa) in the temperature range 500-580 C and in the presence of oxygen. The as-grown films are colourless, smooth and well-adherent to the substrates. SIMS analysis evidenced pure ZrO{sub 2} with a slight superficial contamination of hydrocarbons and nitrogen. The films have a tapered polycrystalline columnar structure well visible in SEM micrographs. From X-ray diffraction analysis, the monoclinic phase resulted as the major phase together with a small variable amount of tetragonal zirconia. Under 550 C the as-grown films resulted highly textured and were dominated by the (020) orientation. The films were annealed in the range 600-1000 C and the effect of annealing on the texture and on the phase and dimensions of the crystallites have been studied. (orig.).

  9. Annealing behavior of solution grown polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2006-01-01

    The morphology evolution of solution grown polyethylene single crystals has been studied upon annealing below their melting temperature by using atomic force microscopy (AFM). AFM investigations have been performed ex situ, which means AFM investigations at room temperature after the annealing

  10. Annealing temperature effect on self-assembled Au droplets on Si (111).

    Science.gov (United States)

    Sui, Mao; Li, Ming-Yu; Kim, Eun-Soo; Lee, Jihoon

    2013-12-13

    We investigate the effect of annealing temperature on self-assembled Au droplets on Si (111). The annealing temperature is systematically varied while fixing other growth parameters such as deposition amount and annealing duration clearly to observe the annealing temperature effect. Self-assembled Au droplets are fabricated by annealing from 50°C to 850°C with 2-nm Au deposition for 30 s. With increased annealing temperatures, Au droplets show gradually increased height and diameter while the density of droplets progressively decreases. Self-assembled Au droplets with fine uniformity can be fabricated between 550°C and 800°C. While Au droplets become much larger with increased deposition amount, the extended annealing duration only mildly affects droplet size and density. The results are systematically analyzed with cross-sectional line profiles, Fourier filter transform power spectra, height histogram, surface area ratio, and size and density plots. This study can provide an aid point for the fabrication of nanowires on Si (111).

  11. Annealing effects on electron-beam evaporated Al2O3 films

    International Nuclear Information System (INIS)

    Shang Shuzhen; Chen Lei; Hou Haihong; Yi Kui; Fan Zhengxiu; Shao Jianda

    2005-01-01

    The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2 O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 deg. C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 deg. C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given

  12. Annealing effects on electron-beam evaporated Al 2O 3 films

    Science.gov (United States)

    Shuzhen, Shang; Lei, Chen; Haihong, Hou; Kui, Yi; Zhengxiu, Fan; Jianda, Shao

    2005-04-01

    The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 °C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 °C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given.

  13. Hydration-annealing of chemical radiation damage in calcium nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; James, C.

    1984-01-01

    The effect of hydration on the annealing of chemical radiation damage in anhydrous calcium nitrate has been investigated. Rehydration of the anhydrous irradiated nitrate induces direct recovery of the damage. The rehydrated salt is susceptible to thermal annealing but the extent of annealing is small compared to that in the anhydrous salt. The direct recovery of damage on rehydration is due to enhanced lattice mobility. The recovery process is unimolecular. (author)

  14. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    Science.gov (United States)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  15. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    International Nuclear Information System (INIS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-01-01

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient

  16. Principal and secondary luminescence lifetime components in annealed natural quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Ogundare, F.O.; Feathers, J.

    2008-01-01

    Time-resolved luminescence spectra from quartz can be separated into components with distinct principal and secondary lifetimes depending on certain combinations of annealing and measurement temperature. The influence of annealing on properties of the lifetimes related to irradiation dose and temperature of measurement has been investigated in sedimentary quartz annealed at various temperatures up to 900 deg. C. Time-resolved luminescence for use in the analysis was pulse stimulated from samples at 470 nm between 20 and 200 deg. C. Luminescence lifetimes decrease with measurement temperature due to increasing thermal effect on the associated luminescence with an activation energy of thermal quenching equal to 0.68±0.01eV for the secondary lifetime but only qualitatively so for the principal lifetime component. Concerning the influence of annealing temperature, luminescence lifetimes measured at 20 deg. C are constant at about 33μs for annealing temperatures up to 600 0 C but decrease to about 29μs when the annealing temperature is increased to 900 deg. C. In addition, it was found that lifetime components in samples annealed at 800 deg. C are independent of radiation dose in the range 85-1340 Gy investigated. The dependence of lifetimes on both the annealing temperature and magnitude of radiation dose is described as being due to the increasing importance of a particular recombination centre in the luminescence emission process as a result of dynamic hole transfer between non-radiative and radiative luminescence centres

  17. Reduction of thermal quenching of biotite mineral due to annealing

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2014-01-01

    Graphical abstract: - Highlights: • Thermoluminescence of X-ray irradiate biotite was studied at various heating rates. • Thermal quenching was found to decrease with increase in annealing temperature. • Due to annealing one trap level was vanished and a new shallow trap level generated. • The new trap level contributes low thermally quenched thermoluminescence signal. - Abstract: Thermoluminescence (TL) of X-ray irradiated natural biotite annealed at 473, 573, 673 and 773 K were studied within 290–480 K at various linear heating rates (2, 4, 6, 8 and 10 K/s). A Computerized Glow Curve Deconvolution technique was used to study various TL parameters. Thermal quenching was found to be very high for un-annealed sample, however it decreased significantly with increase in annealing temperature. For un-annealed sample thermal quenching activation energy (W) and pre-exponential frequency factor (C) were found to be W = (2.71 ± 0.05) eV and C = (2.38 ± 0.05) × 10 12 s −1 respectively. However for 773 K annealed sample, these parameters were found to be W = (0.63 ± 0.03) eV, C = (1.75 ± 0.27) × 10 14 s −1 . Due to annealing, the initially present trap level at depth 1.04 eV was vanished and a new shallow trap state was generated at depth of 0.78 eV which contributes very low thermally quenched TL signal

  18. Effect of Annealing on the Thermoluminescence Properties of ZnO Nanophosphor

    Science.gov (United States)

    Kalita, J. M.; Wary, G.

    2017-07-01

    We report the effect of annealing on the thermoluminescence (TL) properties of zinc oxide (ZnO) nanophosphor. The sample was synthesised by a wet chemical process. The characterisation report shows that the size of the grains is within 123.0 nm-160.5 nm. TL measured at 2 K/s from a fresh un-annealed sample irradiated to 60 mGy shows a composite glow curve containing three peaks at 353.2 K, 429.1 K, and 455.3 K. On the other hand, samples annealed at 473 K and 573 K followed by irradiation to 60 mGy do not give TL. However, annealing at 673 K and 773 K followed by irradiation to the same dose produces a glow curve comprising two overlapping peaks at 352.3 K and 370.6 K. In the TL emission spectrum of un-annealed sample, two emission peaks were found in green ( 523 nm) and orange ( 620 nm) regions whereas in annealed samples, only a peak was found in the orange region ( 618 nm). Kinetic analysis shows that the activation energy corresponding to TL peaks at 353.2 K, 429.1 K, and 455.3 K of the un-annealed sample are 0.64 eV, 0.80 eV, and 1.20 eV whereas that of the peaks at 352.3 K and 370.6 K of 673 K and 773 K annealed samples are 0.64 eV and 0.70 eV, respectively. All peaks of un-annealed and annealed samples, except the one at 429.1 K of the un-annealed sample, follow first-order kinetics whereas the peak at 429.1 K follows second-order kinetics. Considering the kinetic and spectral features, an energy band model for ZnO nanophosphor has been proposed.

  19. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    International Nuclear Information System (INIS)

    Zhao, W.; Steidl, M.; Paszuk, A.; Brückner, S.; Dobrich, A.; Supplie, O.; Kleinschmidt, P.; Hannappel, T.

    2017-01-01

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H_2. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H_2-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H_2 ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  20. In-place thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-04-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. The Amry SM-1A test reactor vessel was wet annealed in 1967 at less than 343 0 C (650 0 F), and wet annealing of the Belgian BR-3 reactor vessel at 343 0 C (650 0 F) has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place at temperatures as high as 454 0 C (850 0 F) is feasible, but solvable engineering problems do exist. Economic considerations have not been totally evaluated in assessing the cost-effectiveness of in-place annealing of commercial nuclear vessels. An American Society for Testing and Materials (ASTM) task group is upgrading and revising guide ASTM E 509-74 with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (e.g., the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)