WorldWideScience

Sample records for solvent systems generated

  1. Third generation capture system: precipitating amino acid solvent systems

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Misiak, K.; Ham, L. van der; Goetheer, E.L.V.

    2013-01-01

    This work summarises the results of the design of novel separation processes for CO2 removal from flue gas based on precipitating amino acid solvents. The processes here described (DECAB, DECAB Plus and pH-swing) use a combination of enhanced CO2 absorption (based on the Le Chatelier’s principle)

  2. Advanced integrated solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A. [Argonne National Lab., IL (United States)

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  3. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  4. Results of Analyses of the Next Generation Solvent for Parsons

    International Nuclear Information System (INIS)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-01

    Savannah River National Laboratory (SRNL) prepared a nominal 150 gallon batch of Next Generation Solvent (NGS) for Parsons. This material was then analyzed and tested for cesium mass transfer efficiency. The bulk of the results indicate that the solvent is qualified as acceptable for use in the upcoming pilot-scale testing at Parsons Technology Center. This report describes the analysis and testing of a batch of Next Generation Solvent (NGS) prepared in support of pilot-scale testing in the Parsons Technology Center. A total of ∼150 gallons of NGS solvent was prepared in late November of 2011. Details for the work are contained in a controlled laboratory notebook. Analysis of the Parsons NGS solvent indicates that the material is acceptable for use. SRNL is continuing to improve the analytical method for the guanidine.

  5. Aminosilicone solvent recovery methods and systems

    Science.gov (United States)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  6. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scherman, Carl [Savannah River Remediation, LLC., Aiken, SC (United States); Martin, David [Savannah River Remediation, LLC., Aiken, SC (United States); Suggs, Patricia [Savannah River Site (SRS), Aiken, SC (United States)

    2015-01-14

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

  7. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  8. Solvent Handbook Database System user's manual

    International Nuclear Information System (INIS)

    1993-03-01

    Industrial solvents and cleaners are used in maintenance facilities to remove wax, grease, oil, carbon, machining fluids, solder fluxes, mold release, and various other contaminants from parts, and to prepare the surface of various metals. However, because of growing environmental and worker-safety concerns, government regulations have already excluded the use of some chemicals and have restricted the use of halogenated hydrocarbons because they affect the ozone layer and may cause cancer. The Solvent Handbook Database System lets you view information on solvents and cleaners, including test results on cleaning performance, air emissions, recycling and recovery, corrosion, and non-metals compatibility. Company and product safety information is also available

  9. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Birdwell, Joseph F. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  10. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birdwell, Jr, Joseph F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duncan, Nathan C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ensor, Dale [Tennessee Technological Univ., Cookeville, TN (United States); Hill, Talon G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Denise L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rajbanshi, Arbin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roach, Benjamin D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Szczygiel, Patricia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sloop, Jr., Frederick V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stoner, Erica L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Neil J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  11. Hazardous Solvent Substitution Data System reference manual

    International Nuclear Information System (INIS)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC reg-sign, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC reg-sign produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC reg-sign user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC reg-sign so the user may begin accessing the data contained in the HSSDS

  12. Hazardous Solvent Substitution Data System tutorial

    International Nuclear Information System (INIS)

    Twitchell, K.E.; Skinner, N.L.

    1993-07-01

    This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC reg-sign to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications

  13. Update-processing steam generator cleaning solvent at Palo Verde

    International Nuclear Information System (INIS)

    Peters, G.

    1996-01-01

    Framatome Technologies Inc.(FTI) recently completed the steam generator chemical cleanings at the Palo Verde Nuclear Generating Station Units 1, 2 and 3. Over 500,000 gallons of low-level radioactive solvents were generated during these cleanings and were processed on-site. Chemical cleaning solutions containing high concentrations of organic chelating wastes are difficult to reduce in volume using standard technologies. The process that was ultimately used at Palo Verde involved three distinct processing steps: The evaporation step was conducted using FTI's submerged combustion evaporator (SCE) that has also been successfully used at Arkansas Nuclear One - Unit 1, Three Mile Island - Unit 1, and Oconee on similar waste. The polishing step of the distillate used ultrafiltration (UF) and reverse osmosis (RO) technology that was also used extensively by Ontario Hydro to assist in their processing of chemical cleaning solvent. This technology, equipment, and operations personnel were provided by Zenon Environmental, Inc. The concentrate from the evaporator was absorbed with a special open-quotes peat mossclose quotes based media that allowed it to be shipped and buried at the Environcare of Utah facility. This is the first time that this absorption media or burial site has been used for chemical cleaning solvent

  14. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    International Nuclear Information System (INIS)

    Clark, Sue B.

    2016-01-01

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  15. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Sue B. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2016-10-31

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  16. Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ...

    Indian Academy of Sciences (India)

    lar solvents as an effective single component dipo- lar liquid that is characterized ... and time (t) dependent solvation energy of mobile dipo- lar solute with density ..... Even though this way for modification of C is purely ad- hoc, the observation ...

  17. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  18. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  19. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    Science.gov (United States)

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The development of Gallstone solvent temperature adaptive PID control system

    Institute of Scientific and Technical Information of China (English)

    MA; BING; QIAO; BO; YAN

    2012-01-01

    The paper expatiated the work principle,general project,and the control part of the corresponding program of the temperature system in the gallstone dissolving instrument.Gallstone dissolving instrument adopts automatic control solvent cycle of direct solution stone treatment,replacing the traditional external shock wave rock row stone and gallblad-der surgery method.PID control system to realize the gall stone solvent temperature intelligent control,the basic principle of work is as solvent temperature below the set temperature,the relay control heater to solvent to be heated,conversely,no heating,achieve better able to dissolve the the rapeutic effect of gallstones.

  1. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  2. Next Generation Solvent - Materials Compatibility With Polymer Components Within Modular Caustic-Side Solvent Extraction Unit (Final Report)

    International Nuclear Information System (INIS)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-01

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX(reg s ign)79 and MaxCalix was varied systematically) showed that LIX(reg s ign)79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX(reg s ign)79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX(reg s ign)79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX(reg s ign)79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  3. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  4. Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Taylor-Pashow, K. M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-04-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating

  5. DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING SUPPRESSOR CONCENTRATION IN THE MCU NEXT GENERATION SOLVENT (NGS)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Fondeur, F.; White, T.; Diprete, D.; Milliken, C.

    2013-07-31

    Savannah River National Laboratory (SRNL) was tasked with identifying and developing at least one, but preferably two methods for quantifying the suppressor in the Next Generation Solvent (NGS) system. The suppressor is a guanidine derivative, N,N',N"-tris(3,7-dimethyloctyl)guanidine (TiDG). A list of 10 possible methods was generated, and screening experiments were performed for 8 of the 10 methods. After completion of the screening experiments, the non-aqueous acid-base titration was determined to be the most promising, and was selected for further development as the primary method. {sup 1}H NMR also showed promising results from the screening experiments, and this method was selected for further development as the secondary method. Other methods, including {sup 36}Cl radiocounting and ion chromatography, also showed promise; however, due to the similarity to the primary method (titration) and the inability to differentiate between TiDG and TOA (tri-n-ocytlamine) in the blended solvent, {sup 1}H NMR was selected over these methods. Analysis of radioactive samples obtained from real waste ESS (extraction, scrub, strip) testing using the titration method showed good results. Based on these results, the titration method was selected as the method of choice for TiDG measurement. {sup 1}H NMR has been selected as the secondary (back-up) method, and additional work is planned to further develop this method and to verify the method using radioactive samples. Procedures for analyzing radioactive samples of both pure NGS and blended solvent were developed and issued for the both methods.

  6. Results Of Analytical Sample Crosschecks For Next Generation Solvent Extraction Samples Isopar L Concentration And pH

    International Nuclear Information System (INIS)

    Peters, T.; Fink, S.

    2011-01-01

    As part of the implementation process for the Next Generation Cesium Extraction Solvent (NGCS), SRNL and F/H Lab performed a series of analytical cross-checks to ensure that the components in the NGCS solvent system do not constitute an undue analytical challenge. For measurement of entrained Isopar(reg s ign) L in aqueous solutions, both labs performed similarly with results more reliable at higher concentrations (near 50 mg/L). Low bias occurred in both labs, as seen previously for comparable blind studies for the baseline solvent system. SRNL recommends consideration to use of Teflon(trademark) caps on all sample containers used for this purpose. For pH measurements, the labs showed reasonable agreement but considerable positive bias for dilute boric acid solutions. SRNL recommends consideration of using an alternate analytical method for qualification of boric acid concentrations.

  7. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  8. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  9. Separation of rare earth metal using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2005-01-01

    A micro solvent extraction system for the separation of rare earth metals has been investigated. The micro flow channel was fabricated on a PMMA plate. Extraction equilibrium was quickly achieved, without any mechanical mixing. The solvent extraction results obtained for the Pr/Sm binary solutions revealed that both rare earth metals are firstly extracted together. Following, the Pr is extracted in the organic solution and Sm remains in the aqueous phase. The phase separation can be successively achieved by contriving the cross section of the flow channel

  10. Separation of lanthanides using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2006-01-01

    A micro solvent extraction system for the separation of lanthanides has been investigated. The micro flow channel is fabricated on a poly(methyl methacrylate) (PMMA) plate, and solvent extraction progresses by feeding aqueous and organic solutions into the channel simultaneously. The extraction equilibrium is quickly achieved, without any mechanical mixing, when a narrow channel (100 μm width and 100 μm depth) is used. The results of solvent extraction from the Pr/Nd and Pr/Sm binary solutions revealed that both lanthanides are firstly extracted together, and then, the lighter lanthanide extracted in the organic solution alternatively exchanges to the heavier one in the aqueous solution to achieve the extraction equilibrium. The phase separation of the aqueous and organic phases after extraction can also be successively achieved by contriving the cross section of the flow channel, and the extractive separation of Pr/Sm is demonstrated. (authors)

  11. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  13. Simulation of equilibrium distribution data in a solvent extraction system

    International Nuclear Information System (INIS)

    Mondal, S.; Giriyalkar, A.B.; Singh, A.K.; Singh, D.K.; Hubli, R.C.

    2014-01-01

    In hydrometallurgy, solvent extraction has been proved to be the purification method to recover metal in high-pure form from impure solution. Any solvent extraction process is complex and based on some operating parameters which always lure the scientists to model them. Operating parameters like aqueous to organic volume ratio and concentration of feed are related to required number of stages for a product with specific recovery. So to determine final feed concentration or aqueous to organic volume ratio for a specific extractant concentration, one needs to carry out a number of extraction experiments tediously supported by analysis. Here an attempt is being made to model the distribution of solute between organic and aqueous phases with minimum analytical and experimental support for any system. The model can predict the effect on solvent extraction for a change in the aqueous to organic volume ratio i.e. slope of operating line, percentage loading of solvent, feed concentration, solvent concentration, number of stages and in the process it can help in optimizing conditions for the best result from a solvent extraction system. Uranium-7% TBP in dodecane system was taken up to validate the model. The predicted values of the model was tallied against uranium distribution between aqueous and organic phases in a running mixer settler. The equation for operating line i.e. straight line is derived from O/A=1.5 and considering barren organic contains 2 ppm uranium: y 1 = 0.667x 0 - .002. The extraction isotherm i.e. parabola equation came as : x 1 = 0.003y 0 2 + 0.723y 0 considering three points i.e. (0,0), (13,16.7) (uranium analysis for first stage of mixer-settler) and (25, 30.69) (feed concentration, loading capacity of solvent). Using these two equations the results that were obtained, predicted the solute distribution across different stages exactly as it is in the running mixer settler. Individual isotherms could also be drawn with the predicted results from the

  14. Microfluidic process monitor for industrial solvent extraction system

    Science.gov (United States)

    Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood

    2016-01-12

    The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.

  15. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    This article is an overview of efforts at INEL to reduce the generation of hazardous wastes through the elimination of hazardous solvents. To aid in their efforts, a number of databases have been developed and will become a part of an Integrated Solvent Substitution Data System. This latter data system will be accessible through Internet

  16. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.

    2013-04-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case

  17. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Kochly

    2016-01-01

    Full Text Available A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement, and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. 1H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet–Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion.

  18. Solubility of cefoxitin acid in different solvent systems

    International Nuclear Information System (INIS)

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  19. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  20. Automated drawing generation system

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Kawahata, Junichi; Yoshida, Naoto; Ono, Satoru

    1991-01-01

    Since automated CAD drawing generation systems still require human intervention, improvements were focussed on an interactive processing section (data input and correcting operation) which necessitates a vast amount of work. As a result, human intervention was eliminated, the original objective of a computerized system. This is the first step taken towards complete automation. The effects of development and commercialization of the system are as described below. (1) The interactive processing time required for generating drawings was improved. It was determined that introduction of the CAD system has reduced the time required for generating drawings. (2) The difference in skills between workers preparing drawings has been eliminated and the quality of drawings has been made uniform. (3) The extent of knowledge and experience demanded of workers has been reduced. (author)

  1. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  2. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    Science.gov (United States)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  3. Non-Aqueous Titration Method for Determining Suppressor Concentration in the MCU Next Generation Solvent (NGS)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, Daniel H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-23

    A non-aqueous titration method has been used for quantifying the suppressor concentration in the MCU solvent hold tank (SHT) monthly samples since the Next Generation Solvent (NGS) was implemented in 2013. The titration method measures the concentration of the NGS suppressor (TiDG) as well as the residual tri-n-octylamine (TOA) that is a carryover from the previous solvent. As the TOA concentration has decreased over time, it has become difficult to resolve the TiDG equivalence point as the TOA equivalence point has moved closer. In recent samples, the TiDG equivalence point could not be resolved, and therefore, the TiDG concentration was determined by subtracting the TOA concentration as measured by semi-volatile organic analysis (SVOA) from the total base concentration as measured by titration. In order to improve the titration method so that the TiDG concentration can be measured directly, without the need for the SVOA data, a new method has been developed that involves spiking of the sample with additional TOA to further separate the two equivalence points in the titration. This method has been demonstrated on four recent SHT samples and comparison to results obtained using the SVOA TOA subtraction method shows good agreement. Therefore, it is recommended that the titration procedure be revised to include the TOA spike addition, and this to become the primary method for quantifying the TiDG.

  4. Non-Aqueous Titration Method for Determining Suppressor Concentration in the MCU Next Generation Solvent (NGS)

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.; Jones, Daniel H.

    2017-01-01

    A non-aqueous titration method has been used for quantifying the suppressor concentration in the MCU solvent hold tank (SHT) monthly samples since the Next Generation Solvent (NGS) was implemented in 2013. The titration method measures the concentration of the NGS suppressor (TiDG) as well as the residual tri-n-octylamine (TOA) that is a carryover from the previous solvent. As the TOA concentration has decreased over time, it has become difficult to resolve the TiDG equivalence point as the TOA equivalence point has moved closer. In recent samples, the TiDG equivalence point could not be resolved, and therefore, the TiDG concentration was determined by subtracting the TOA concentration as measured by semi-volatile organic analysis (SVOA) from the total base concentration as measured by titration. In order to improve the titration method so that the TiDG concentration can be measured directly, without the need for the SVOA data, a new method has been developed that involves spiking of the sample with additional TOA to further separate the two equivalence points in the titration. This method has been demonstrated on four recent SHT samples and comparison to results obtained using the SVOA TOA subtraction method shows good agreement. Therefore, it is recommended that the titration procedure be revised to include the TOA spike addition, and this to become the primary method for quantifying the TiDG.

  5. Solvent oriented hobbies and the risk of systemic sclerosis.

    Science.gov (United States)

    Nietert, P J; Sutherland, S E; Silver, R M; Pandey, J P; Dosemeci, M

    1999-11-01

    To examine whether those participating in solvent oriented hobbies (SOH) are at greater risk of developing systemic sclerosis (SSc), and if the association is modified by the presence of the anti-Scl70 antibody. Patients with SSc and controls were recruited from a university hospital rheumatology clinic. Recreational hobby and occupational histories were obtained along with blood samples. Cumulative scores were created for participation in SOH. Logistic regression was used to calculate odds ratios associated with SOH exposure after adjustment for sex, age at diagnosis, and occupational solvent exposure, and to examine the association between SOH exposure and the presence of anti-Scl70. Solvent exposure based on hobbies and occupations was determined for 178 cases (141 women, 37 men) and 200 controls (138 women, 62 men). Overall participation in SOH was not associated with SSc. However, odds of high cumulative SOH exposure was 3 times greater in those patients with SSc testing positive for the anti-Scl70 antibody compared to patients testing negative (OR 2.9, 95% CI 1.1, 7.9), and twice as great as controls (OR 2.5, 95% CI 1.1, 5.9). While patients with SSc did not participate more often in SOH than controls over all, odds of high cumulative SOH exposure was greater among patients with SSc testing positive for anti-Scl70 compared to those testing negative and compared to controls. These results provide further evidence that environmental agents may play a role in the development of Ssc.

  6. Exposure to fingers while handling a solvent extraction-type technetium-99m generator

    International Nuclear Information System (INIS)

    Kini, K.S.; Venkateswaran, T.V.

    1985-01-01

    Technetium-99m-labeled compounds are routinely used for various diagnostic procedures in nuclear medicine. In India, most of the nuclear medicine centers use /sup 99m/Tc obtained from a solvent extraction-type generator. As a result of the long procedure involved in the separation of /sup 99m/Tc from /sup 99m/Mo in this type of generator compared to the elution of /sup 99m/Tc from a column-type generator, like likelihood of exposure to fingers of technicians is high. The measurement of radiation exposure was done on 16 workers at seven major nuclear medicine centers in India. With the existing work load, the exposures to the fingers were found to be within the permissible limits

  7. Advanced integrated solvent extraction and ion exchange systems

    International Nuclear Information System (INIS)

    Horwitz, P.

    1996-01-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products 90 Sr, 99 Tc, and 137 Cs from acidic high-level liquid waste and that sorb and recover 90 Sr, 99 Tc, and 137 Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste

  8. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-07-31

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the “first stage” D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet

  9. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    International Nuclear Information System (INIS)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-01-01

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7 dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the ''first stage'' D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet

  10. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    Science.gov (United States)

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

  11. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    Energy Technology Data Exchange (ETDEWEB)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  12. Density Changes in the Optimized CSSX Solvent System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.

    2002-11-25

    Density increases in caustic-side solvent extraction (CSSX) solvent have been observed in separate experimental programs performed by different groups of researchers. Such changes indicate a change in chemical composition. Increased density adversely affects separation of solvent from denser aqueous solutions present in the CSSX process. Identification and control of factors affecting solvent density are essential for design and operation of the centrifugal contactors. The goals of this research were to identify the factors affecting solvent density (composition) and to develop correlations between easily measured solvent properties (density and viscosity) and the chemical composition of the solvent, which will permit real-time determination and adjustment of the solvent composition. In evaporation experiments, virgin solvent was subjected to evaporation under quiescent conditions at 25, 35, and 45 C with continuously flowing dry air passing over the surface of the solvent. Density and viscosity were measured periodically, and chemical analysis was performed on the solvent samples. Chemical interaction tests were completed to determine if any chemical reaction takes place over extended contact time that changes the composition and/or physical properties. Solvent and simulant, solvent and strip solution, and solvent and wash solution were contacted continuously in agitated flasks. They were periodically sampled and the density measured (viscosity was also measured on some samples) and then submitted to the Chemical Sciences Division of Oak Ridge National Laboratory for analysis by nuclear magnetic resonance (NMR) spectrometry and high-performance liquid chromatography (HPLC) using the virgin solvent as the baseline. Chemical interaction tests showed that solvent densities and viscosities did not change appreciably during contact with simulant, strip, or wash solution. No effects on density and viscosity and no chemical changes in the solvent were noted within

  13. Physicochemical studies of the carbamate-CO2-solvent system

    International Nuclear Information System (INIS)

    Prencipe, M.; Ishida, T.

    1977-08-01

    The formation of carbamate from CO 2 and the various amine solutions has been investigated for the purpose of elucidating the structure of the species generated in the reaction. The amine solutions used were 1 and 2 molar solutions of di-n-butylamine (DNBA) in triethylamine (TEA), pure DNBA and pure TEA. It has been found that the nonaqueous solvent participates in the formation of carbamate in 1 and 2M-DNBA/TEA solutions as a proton acceptor in DNBA-carbamate formation. However, due to the high concentration of the solutions and the basicities of the amines, a significant amount of DNBA which does not form the DNBA-carbamate anion is also found to be participating as a proton acceptor. Pure TEA absorbs only 1 / 60 of the absorption by pure DNBA. The extent of TEA participation in the CO 2 -absorption process other than as a proton acceptor in DNBA-carbamate is negligible. The formation of carbamic acid and zwitterion have been found unlikely. 7 tables, 15 figs

  14. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    Science.gov (United States)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  15. Next generation information systems

    Energy Technology Data Exchange (ETDEWEB)

    Limback, Nathan P [Los Alamos National Laboratory; Medina, Melanie A [Los Alamos National Laboratory; Silva, Michelle E [Los Alamos National Laboratory

    2010-01-01

    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive

  16. Reloadable radioactive generator system

    International Nuclear Information System (INIS)

    Colombetti, L.G.

    1977-01-01

    A generator system that can be reloaded with an elutable radioactive material, such as 99 molybdenum, a multiple number of times is described. The system basically comprises a column filled with alumina, a loading vial containing a predetermined amount of the elutable radioactive material, and a rinsing vial containing a sterile solution. The two vials are connected by a conduit so that when communication is achieved between the column and loading vial and an evacuated vial is placed in communication with the bottom of the column, the predetermined amount of the radioactive material in the loading vial will be transferred to the column. The procedure can be repeated as the elutable material in the column is dissipated

  17. Thermodynamic equilibrium of hydroxyacetic acid in pure and binary solvent systems

    International Nuclear Information System (INIS)

    Huang, Qiaoyin; Xie, Chuang; Li, Yang; Su, Nannan; Lou, Yajing; Hu, Xiaoxue; Wang, Yongli; Bao, Ying; Hou, Baohong

    2017-01-01

    Highlights: • Solubility of hydroxyacetic acid in mono-solvents and binary solvent mixtures was measured. • Modified Apelblat, NRTL and Wilson model were used to correlate the solubility data in pure solvents. • CNIBS/R-K and Jouyban-Acree model were used to correlate the solubility in binary solvent mixtures. • The mixing properties were calculated based on the NRTL model. - Abstract: The solubility of hydroxyacetic acid in five pure organic solvents and two binary solvent mixtures were experimentally measured from 273.15 K to 313.15 K at atmospheric pressure (p = 0.1 MPa) by using a dynamic method. The order of solubility in pure organic solvents is ethanol > isopropanol > n-butanol > acetonitrile > ethyl acetate within the investigated temperature range, except for temperature lower than 278 K where the solubility of HA in ethyl acetate is slightly larger than that in acetonitrile. Furthermore, the solubility data in pure solvents were correlated with the modified Apelblat model, NRTL model, and Wilson model and that in the binary solvents mixtures were fitted to the CNIBS/R-K model and Jouyban-Acree model. Finally, the mixing thermodynamic properties of hydroxyacetic acid in pure and binary solvent systems were calculated and discussed.

  18. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime; Liang, Ru-Ze; Wang, Kai; Cruciani, Federico; Kan, Zhipeng; Wohlfahrt, Markus; Tang, Ming-Chun; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  19. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime

    2017-12-19

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  20. Multiple Solvent Extraction System with Flow Injection Technology.

    Science.gov (United States)

    1981-09-30

    encounters a back extraction step where the direction of the extraction is from organic to aqueous solvent. Thus it is advantageous to incorporate both...stainless steel ( Alltech Associates, Arlington Heights, IQ) and prepared from a single section of 180 cmn in length. The Section 2 mixing and extraction

  1. Dynamic materials accounting for solvent-extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, D.D.; Ostenak, C.A.

    1979-01-01

    Methods for estimating nuclear materials inventories in solvent-extraction contactors are being developed. These methods employ chemical models and available process measurements. Comparisons of model calculations and experimental data for mixer-settlers and pulsed columns indicate that this approach should be adequate for effective near-real-time materials accounting in nuclear fuels reprocessing plants.

  2. Dynamic materials accounting for solvent-extraction systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Ostenak, C.A.

    1979-01-01

    Methods for estimating nuclear materials inventories in solvent-extraction contactors are being developed. These methods employ chemical models and available process measurements. Comparisons of model calculations and experimental data for mixer-settlers and pulsed columns indicate that this approach should be adequate for effective near-real-time materials accounting in nuclear fuels reprocessing plants

  3. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  4. MHD Generating system

    Science.gov (United States)

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  5. Preparation of chromatographic and solid-solvent extraction 99mTc generators using gel-type targets

    International Nuclear Information System (INIS)

    Le Van So

    2000-01-01

    We have studied two types of targets zirconium-molybdate (ZrMo) and titanium-molybdate (TiMo) prepared by precipitating reaction between ammonium-molybdate and zirconium-chloride or titanium-chloride solutions, respectively. Other types of targets were also prepared by co-precipitating ZrMo or TiMo with hydrous manganese-dioxide, hydrous silica, and hydrous titanium-dioxide or by impregnated ZrMo or TiMo with Iodate anions. The results on extraction of Tc-99m from neutron irradiated TiMo solid phase using solvents such as MEK, aceton, ethylic ether, chloroform, etc showed that separation yield (SY) of Tc-99m in case of aceton extraction was from 70% to 80% and in other cases non higher than 40%. The Tc-99m elution curves and column kinetic in case of aceton extraction (after evaporation of aceton and recovery of Tc-99m in 0,9% NaCl solution) was superior than in case chromatographic generator using saline eluant. As result obtained, two types of generators were successfully prepared and put into use: Chromatographic generator using titanium-molybdate target as packing material and saline as eluant. Solid-solvent extraction 99m Tc generator using titanium-molybdate target (as solid phase) and aceton as extracting solvent. (author)

  6. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.; Peters, T.; Crowder, M.; Caldwell, T.; Pak, D; Fink, S.; Blessing, R.; Washington, A.

    2011-09-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic

  7. Steam generator auxiliary systems

    International Nuclear Information System (INIS)

    Heinz, A.

    1982-01-01

    The author deals with damage and defect types obtaining in auxiliary systems of power plants. These concern water/steam auxiliary systems (feed-water tank, injection-control valves, slide valves) and air/fluegas auxiliary systems (blowers, air preheaters, etc.). Operating errors and associated damage are not dealt with; by contrast, weak spots are pointed out which result from planning and design. Damage types and events are collected in statistics in order to facilitate damage evaluation for arriving at improved design solutions. (HAG) [de

  8. Design and construction of an interceptor system for radioactively contaminated solvent

    International Nuclear Information System (INIS)

    Weiss, T.G. Jr.; Blickwedehl, R.R.

    1991-01-01

    During the conduct of fuel reprocessing operations at the Western New York Nuclear Service Center from 1966 to 1972, the site operator disposed of spent solvent by shallow land burial in the area used for disposal of solid radioactive waste. The spent solvent was placed in twenty-two 3785 liter (1000-gallon) steel tanks which were then placed in eight 6-meter-deep burial holes. With the passage of time groundwater entered the tanks displacing the solvent (a mixture of tributyl phosphate and n-dodecane) and allowing it to enter the surrounding groundwater system. The solvent, which is lighter than water, floated to the surface of the groundwater within the burial holes and began to migrate laterally through cracks caused by weathering. In 1983, after the US Department of Energy (DOE) initiated efforts for the West Valley Demonstration Project (WVDP), trace amounts of solvent were encountered in a monitoring well near the perimeter of the burial area. Since the initial discovery, extensive studies and continued monitoring have been conducted of the solvent migration. In the fall of 1989, this monitoring showed evidence of further on-site migration of the solvent within the disposal area. In response, the DOE authorized West Valley Nuclear Services Company, Inc. (WVNS) to proceed with the design and construction of a trench system to intercept the flow of solvent and prevent it from discharging to nearby streams. Since the solvent and the contaminated groundwater samples taken in the area exhibited high levels of Iodine-129 in an organic complex, it was necessary to construct a pretreatment facility. An important aspect of the trench construction was the management of contaminated soil and construction water. Contaminated soils were placed into storage containers and held for future treatment and disposal. All water pumped from the trench during construction was stored in large bladder tanks, analyzed for hazardous constituents, and upon finding none, was discharged

  9. Effects of solvation on partition and dimerization of benzoic acid in mixed solvent systems.

    Science.gov (United States)

    Yamada, H; Yajima, K; Wada, H; Nakagawa, G

    1995-06-01

    The partition of benzoic acid between 0.1M perchloric acid solution and two kinds of mixed solvents has been carried out at 25 degrees C. The partition and dimerization constants of benzoic acid have been determined in the 1-octanol-benzene and 2-octanone-benzene systems. In both the mixed solvent systems, with increasing content of 1-octanol and 2-octanone in each mixed solvent, the partition constant of benzoic acid has been found to increase, and the dimerization constant of benzoic acid in each organic phase to decrease. These phenomena are attributable to solvation of monomeric benzoic acid by 1-octanol and 2-octanone molecules in each mixed solvent.

  10. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  11. Fermilab timeline generation system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Knopf, W.R.; Thomas, A.D.

    1985-06-01

    In this paper the technique used to control the relative timing and synchronization of the major accelerator systems at Fermilab is described. The various operating modes of the injector accelerators include fixed target and colliding beam operation in conjunction with simultaneous machine studies. For example, in a 60 second interval the conventional main Ring may be called upon to: (a) load the Tevatron with 12 high intensity Booster batches each containing 82 rf bunches at 150 GeV, (b) transfer a Booster batch at 8 GeV with 8 rf bunches to the Debuncher or Accumulator, (c) accelerate high intensity beam several times to 120 GeV for antiproton production, and (d) accelerate beam to 150 GeV for Main Ring studies. In the case of colliding beam operation, the different tasks can be even more varied. All this requires a simple, flexible means of coordination

  12. Reverse Schreinemakers Method for Experimental Analysis of Mixed-Solvent Electrolyte Systems

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    the reverse Schreinemakers (RS) method. The method is based on simple mass balance principles similar to the wet residues method. It allows for accurate determination of the mixed-solvent phase composition even though part of the solvent may precipitate as complexes between solvent and salt. Discrepancies......A method based on Schreinemakers's tie-line theory of 1893 is derived for determining the composition and phase amounts in solubility experiments for multi-solvent electrolyte systems. The method uses the lever rule in reverse compared to Schreinemakers's wet residue method, and is therefore called...... from determining the composition of salt mixtures by pH titration are discussed, and the derived method significantly improves the obtained result from titration. Furthermore, the method reduces the required experimental work needed for analysis of phase composition. The method is applicable to multi...

  13. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Vulcan pulse generating system

    International Nuclear Information System (INIS)

    Danson, C.N.; Edwards, C.B.; Wyatt, R.W.W.

    1985-01-01

    During the past two years several changes have been made to the front end system on the VULCAN pulse generating system. These changes give greater flexibility and a wider choice of operating conditions. This note gives an updated description of the system capabilities, and gives users of the facility an idea of the various pulse combinations that are available. (author)

  15. Relation between the interfacial tension in an organic solvent-water system and the parameters of the solvating capacity of the solvent

    International Nuclear Information System (INIS)

    Nikitin, S.D.; Shmidt, V.S.

    1987-01-01

    It was shown that there is a linear relation between the empirical DE (diluent effect) and E/sub T/ parameters, which characterize the solvating capacity of the solvent, and the interfacial tension in an organic solvent-water two-phase system. Analysis of the sample correlation coefficients shows that the relation between the interfacial tension and the DE parameters of the solvents is closer to linear than the corresponding relation for the E/sub T/ parameters. During analysis of the data for 31 solvents it was established that the largest inverse correlation coefficient r = -0.98 is obtained with an equation of the DE = a + bσ/rho 1/3, type, were a and b are constants, and rho is the density of the solvent. The regression equation has the following form: DE = 7.586 - 0.147 σ/rho 1/3. Since the interfacial activity of hydrophobic surfactants decreases linearly with increase in the DE values, it follows from the obtained equation that decrease of the interfacial tension at the water-organic solvent interface must lead to a decrease in the interfacial activity of hydrophobic surfactants present in the system

  16. Optimization of a flow injection analysis system for multiple solvent extraction

    International Nuclear Information System (INIS)

    Rossi, T.M.; Shelly, D.C.; Warner, I.M.

    1982-01-01

    The performance of a multistage flow injection analysis solvent extraction system has been optimized. The effect of solvent segmentation devices, extraction coils, and phase separators on performance characteristics is discussed. Theoretical consideration is given to the effects and determination of dispersion and the extraction dynamics within both glass and Teflon extraction coils. The optimized system has a sample recovery similar to an identical manual procedure and a 1.5% relative standard deviation between injections. Sample throughput time is under 5 min. These characteristics represent significant improvements over the performance of the same system before optimization. 6 figures, 2 tables

  17. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  18. Generative electronic background music system

    International Nuclear Information System (INIS)

    Mazurowski, Lukasz

    2015-01-01

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions

  19. Characterization and antioxidant activity of bovine serum albumin and sulforaphane complex in different solvent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xueyan; Zhou, Rui; Jing, Hao, E-mail: h200521@cau.edu.cn

    2014-02-15

    Modes and influencing factors of bovine serum albumin (BSA) and sulforaphane (SFN) interaction will help us understand the interaction mechanisms and functional changes of bioactive small molecule and biomacromolecule. This study investigated interaction mechanisms of BSA and SFN and associated antioxidant activity in three solvent systems of deionized water (dH{sub 2}O), dimethyl sulfoxide (DMSO) and ethanol (EtOH), using Fourier transform infrared spectroscopy (FT-IR), fluorescence spectroscopy, synchronous fluorescence spectroscopy, DPPH and ABTS radical scavenging assays. The results revealed that SFN had ability to quench BSA's fluorescence in static modes, and to interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues, while the Trp residues were highly sensitive, which was demonstrated by fluorescence at 340 nm. Hydrophobic forces, hydrogen bonds and van der Waals interactions were all involved in BSA and SFN interaction, which were not significantly changed by three solvents. The binding constant values and binding site numbers were in a descending order of dH{sub 2}O>DMSO>EtOH. The values of free energy change were in a descending order of dH{sub 2}O>DMSO>EtOH, which indicated that the binding forces were in a descending order of dH{sub 2}O>DMSO>EtOH. There was no significant difference in antioxidant activity between SFN and BSA–SFN. Moreover, three solvents had not significant influence on antioxidant activity of SFN and BSA–SFN. -- Highlights: • We report interaction mechanisms of BSA and sulforaphane in three solvent systems. • We report antioxidant activity of BSA–sulforaphane complex in three solvent systems. • Decreasing the solvent polarity will decrease the binding of BSA and sulforaphane. • Three solvents had not influence on antioxidant activity of BSA–sulforaphane.

  20. Analysis of a gas absorption system with soluble carrier gas and volatile solvent

    International Nuclear Information System (INIS)

    Kanak, B.E.

    1980-01-01

    The effects of column diameter, carrier gas coabsorption, and solvent vaporization on the performance of a packed gas absorption column are examined. The system investigated employs dichlorodifluoromethane as a solvent to remove krypton from a nitrogen stream and is characterized by substantial nitrogen coabsorption. Three columns with diameters of 2, 3, and 4 inches were constructed and packed with 34.5 inches of Goodloe packing. In addition to the more conventional data, the experimental evaluation of these columns included the use of a radioisotope and a gamma scanning technique which provided direct measurement of the columns' molar krypton profiles. A multicomponent gas absorption model was developed, based on the two-film mass transfer theory, that allows the fluxes of all species to interact. Verification of this model was achieved through comparison of the calculated results with experimental data. With the feed gas flow rate between 6 and 36 lb moles/hr-ft 2 and the solvent feed rate between 40 and 400 lb moles/hr-ft 2 , column diameter was found to have no significant impact on the mass transfer efficiency of this system when carried out in columns with diameters of 2 inches or greater. The absorption of krypton was found to be enhanced and inhibited, respectively, by carrier gas coabsorption and solvent vaporization. An injector system to add gaseous solvent to the feed gas stream prior to its introduction into the packed bed was proposed to eliminate the detrimental effects of solvent vaporization.Using this injector to supersaturate the feed gas stream with solvent enhanced absorber performance in the same manner as carrier gas coabsorption

  1. Magnetohydrodynamic generator and pump system

    International Nuclear Information System (INIS)

    Birzvalk, Yu.A.; Karasev, B.G.; Lavrentyev, I.V.; Semikov, G.T.

    1983-01-01

    The MHD generator-pump system, or MHD coupling, is designed to pump liquid-metal coolant in the primary circuit of a fast reactor. It contains a number of generator and pump channels placed one after another and forming a single electrical circuit, but hydraulically connected parallel to the second and first circuits of the reactor. All the generator and pump channels are located in a magnetic field created by the magnetic system with an excitation winding that is fed by a regulated direct current. In 500 to 2000 MW reactors, the flow rate of the coolant in each loop of the primary circuit is 3 to 6 m 3 /s and the hydraulic power is 2 to 4 MW. This paper examines the primary characteristics of an MHD generator-pump system with various dimensions and number of channels, wall thicknesses, coolant flow rates, and magnetic fields. It is shown that its efficiency may reach 60 to 70%. The operating principle of the MHD generator-pump system is explained in the referenced patent and involves the transfer of hydraulic power from generator channels to pump channels using a magnetic field and electrical circuit common to both channels. Variations of this system may be analyzed using an equivalent circuit. 7 refs., 5 figs

  2. Design of MHD generator systems

    International Nuclear Information System (INIS)

    Buende, R.; Raeder, J.

    1975-01-01

    By assessment of the influence of the combustion efficiency on the electric output of the MHD generator, it can be shown that the construction and efficiency of the generator strongly depend on these parameters. The solutions of this system of equations are discussed. Following a derivation of criteria and boundary conditions of the design and a determination of the specific construction costs of individual system components, it is shown how the single design parameters influence the operational characteristics of such a system, especially the output, efficiency and energy production costs. (GG/LH) [de

  3. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    Science.gov (United States)

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  4. Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation

    International Nuclear Information System (INIS)

    Senol, Aynur

    2013-01-01

    Highlights: • Vapour pressures of (solvent + salt) systems have been estimated through a solvation-based model. • Two structural forms of the generalized solvation model using the Antoine equation have been performed. • A simplified concentration-dependent vapour pressure model has been also processed. • The model reliability analysis has been performed in terms of a log-ratio objective function. • The reliability of the models has been interpreted in terms of the statistical design factors. -- Abstract: This study deals with modelling the vapour pressure of a (solvent + salt) system on the basis of the principles of LSER. The solvation model framework clarifies the simultaneous impact of several physical variables such as the vapour pressure of a pure solvent estimated by the Antoine equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been analyzed independently the performance of two structural forms of the generalized model, i.e., a relation depending on an integration of the properties of the solvent and the ionic salt and a relation on a reduced property-basis. A simplified concentration-dependent vapour pressure model has been also explored and implemented on the relevant systems. The vapour pressure data of sixteen (solvent + salt) systems have been processed to analyze statistically the reliability of existing models in terms of a log–ratio objective function. The proposed vapour pressure models match relatively well the observed performance, yielding the overall design factors of 1.066 and 1.073 for the solvation-based models with the integrated and reduced properties, and 1.008 for the concentration-based model, respectively

  5. Power generation systems and methods

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  6. Dual Alkali Solvent System for CO2 Capture from Flue Gas.

    Science.gov (United States)

    Li, Yang; Wang, H Paul; Liao, Chang-Yu; Zhao, Xinglei; Hsiung, Tung-Li; Liu, Shou-Heng; Chang, Shih-Ger

    2017-08-01

    A novel two-aqueous-phase CO 2 capture system, namely the dual alkali solvent (DAS) system, has been developed. Unlike traditional solvent-based CO 2 capture systems in which the same solvent is used for both CO 2 absorption and stripping, the solvent of the DAS system consists of two aqueous phases. The upper phase, which contains an organic alkali 1-(2-hydroxyethyl) piperazine (HEP), is used for CO 2 absorption. The lower phase, which consists of a mixture of K 2 CO 3 /KHCO 3 aqueous solution and KHCO 3 precipitate, is used for CO 2 stripping. Only a certain kind of amine (such as HEP) is able to ensure the phase separation, satisfactory absorption efficiency, effective CO 2 transfer from the upper phase to the lower phase, and regeneration of the upper phase. In the meantime, due to the presence of K 2 CO 3 /KHCO 3 in the lower phase, HEP in the upper phase is capable of being regenerated from its sulfite/sulfate heat stable salt, which enables the simultaneous absorption of CO 2 and SO 2 /SO 3 from the flue gas. Preliminary experiments and simulations indicate that the implementation of the DAS system can lead to 24.0% stripping energy savings compared to the Econamine process, without significantly lowering the CO 2 absorption efficiency (∼90%).

  7. Solvent substitutes

    International Nuclear Information System (INIS)

    Evanoff, S.P.

    1995-01-01

    The environmental and industrial hygiene regulations promulgated since 1980, most notably the Superfund Amendments and Reauthorization Act (SARA), the Hazardous and Solid Waste Amendments to the Resources Conservation and Recovery Act (RCRA), and the Clean Air Act Amendments of 1990, have brought about an increased emphasis on user exposure, hazardous waste generation, and air emissions. As a result, industry is performing a fundamental reassessment of cleaning solvents, processes, and procedures. The more progressive organizations have made their goal the elimination of solvents that may pose significant potential human health and environmental hazards. This chapter discusses solvent cleaning in metal-finishing, metal-manufacturing, and industrial maintenance applications; precision cleaning; and electronics manufacturing. Nonmetallic cleaning, adhesives, coatings, inks, and aerosols also will be addressed, but in a more cursory manner

  8. Solubility of Meloxicam in Mixed Solvent Systems | Babu | Ethiopian ...

    African Journals Online (AJOL)

    The solubility of meloxicam is higher in phosphate buffer (pH 7.4) compared to water, probably due to ionization of the drug. The solubility of meloxicam is marginally enhanced in surfactant systems (Tween 80 and Brij 35) at concentrations higher than cmc, proving the micellar solubilization. Meloxicam solubility studies in ...

  9. Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation

    International Nuclear Information System (INIS)

    Kim, Won Suk; Park, Young Hun; Lee, Dai Woon; Moon, Myeong Hee; Yu, Euy Kyung

    1998-01-01

    An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ration of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted ΔT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value

  10. In vitro dissolution of curium oxide using a phagolysosomal simulant solvent system

    International Nuclear Information System (INIS)

    Helfinstine, S.Y.; Guilmette, R.A.; Schlapper, G.A.

    1992-01-01

    Detailed study of actinide oxide behavior in alveolar macrophages (AM) in vitro is limited because of the short life span of these cells in culture. We created an in vitro dissolution system that could mimic the acidic phagolysosomal environment for the actinide and be maintained for an indefinite period so that dissolution of more insoluble materials could be measured. The dissolution system for this investigation, consisting of nine different solutions of HCl and the chelating agent diethylenetriamine pentaacetate (DTPA) in distilled water, is called the phagolysosomal simulant solvent (PSS). In this system, both the pH and the amount of DTPA were varied. We could observe the effect of altering pH within a range of 4.0-6.0 (similar to that of the phagolysosome) and the effect of the molar ratio of DTPA to curium at 1000: 1, 100;1, or 10:1. We chose curium sesquioxide ( 244 Cm 2 O 3 ) to validate the PSS for actinide dissolution versus that occurring in AM in vitro because it dissolves significantly in less than 1 week. The polydisperse 244 Cm 2 O 3 aerosol was generated, collected on filters, resuspended, and added to the PSS solutions and to cultured canine AM. By comparing dissolution in the two systems directly, we hoped to arrive at an optimum PSS for future dissolution studies. PSS and cell culture samples were taken daily for 7 days after exposure and tested for the solubilized curium. The amount of soluble material was determined by ultracentrifugation to separate the insoluble CM 2 O 3 from the soluble curium in the PSS solutions and filtration for the cell-containing material. After separating the soluble and insoluble fractions, the samples were analyzed using alpha liquid scintillation counting. Time-dependent dissolution measurements from the PSS/AM showed that the CM 2 O 3 dissolution was similar for both the PSS solutions and the cultured AM. 13 refs., 4 tabs

  11. Studies on sup(99m)Tc-pertechnetate from the MEK solvent extraction generator

    International Nuclear Information System (INIS)

    Mohammad, R.; Moore, D.E.; Maddalena, D.J.; Boyd, R.E.

    1984-12-01

    Analysis by gas chromatography-mass spectrometry and high performance liquid chromatography has revealed organic residues in sup(99m)Tc-pertechnetate obtained from 99 Mo-molybdate by extraction, using the organic solvent methylethylketone (MEK). The organic residues have been identified as either (i) low molecular weight carbonyl compounds such as formaldehyde, acetaldehyde and acetone, presumably caused by the effects of γ-radiation on MEK, or (ii) condensation products resulting from the action of strong alkali on MEK during the extraction process. The quantities of organic residues varied from batch to batch of extracted pertechnetate; up to 40 μ mL -1 was found. When these compounds were tested, in rats, by addition to a pyrophosphate bone-seeking radiopharmaceutical, the tissue distribution was not significantly different from that in the control, which contained no added compound. Assay for 99 Tc in MEK-derived pertechnetate indicated up to 10 μg mL -1 of 99 Tc carrier. An assessment of the biological effect of 99 Tc carrier was obtained by (i) red blood cell labelling, where 6 ng mL -1 of 99 Tc was sufficient to reduce labelling efficiency; and (ii) pyrophosphate tissue distribution, where a significant effect was obtained in the presence of 10 μ mL -1 of 99 Tc carrier

  12. Next generation surveillance system (NGSS)

    International Nuclear Information System (INIS)

    Aparo, Massimo

    2006-01-01

    Development of 'functional requirements' for transparency systems may offer a near-term mode of regional cooperation. New requirements under development at the IAEA may provide a foundation for this potential activity. The Next Generation Surveillance System (NGSS) will become the new IAEA remote monitoring system Under new requirements the NGSS would attempt to use more commercial components to reduce cost, increase radiation survivability and further increase reliability. The NGSS must be available in two years due to rapidly approaching obsolescence in the existing DCM family. (author)

  13. Cochlear condition and olivocochlear system of gas station attendants exposed to organic solvents

    Directory of Open Access Journals (Sweden)

    Tochetto, Tania Maria

    2012-01-01

    Full Text Available Introduction: Organic solvents have been increasingly studied due to its ototoxic action. Objective: Evaluate the conditions of outer hair cells and olivocochlear system in individuals exposed to organic solvents. Method: This is a prospective study. 78 gas station attendants exposed to organic solvents had been evaluated from three gas stations from Santa Maria city, Rio Grande do Sul (RS. After applying the inclusion criteria, the sample was constituted by 24 individuals. The procedures used on the evaluation were audiological anamnesis, Transient otoacoustic emissions (TEOAES and research for the suppressive effect of TEOAES. A group control (GC compounded by 23 individuals was compared to individuals exposed and non-exposed individuals. The data collection has been done in the room of Speech Therapy of Workers Health Reference Center of Santa Maria. Results: The TEOAES presence was major in the left ear in both groups; the average relation of TEOAES signal/noise in both ears was greater in GE; the TEOAES suppressive effect in the right ear was higher in the individual of GE (62,5% and in the left ear was superior in GC (86,96%, with statistically significant difference. The median sign/noise ratio of TEOAES, according to the frequency range, it was higher in GC in three frequencies ranges in the right ear and one in the left ear. Conclusion: It was not found signs of alteration on the outer hair cells neither on the olivocochlear medial system in the individuals exposed to organic solvents.

  14. Morphological classification of mesoporous silicas synthesized in a binary water-ether solvent system

    NARCIS (Netherlands)

    Cai, Qiang; Geng, Yi; Zhao, Xiang; Cui, Kai; Sun, Qianyao; Chen, Xihua; Feng, Qingling; Li, Hengde; Vrieling, Engel G.

    2008-01-01

    Using diethyl ether as a co-solvent, a non-stable interface of biphasic oil-water system (the so-called oil-water two-phase (OWTP) system) was employed in the preparation of mesostructured silicas with diversified particle morphologies. By adjusting the molar ratios of H2O:C2H5OC2H5:NH3 center dot

  15. Liquid metal MHD generator systems

    International Nuclear Information System (INIS)

    Satyamurthy, P.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.

    1985-01-01

    Liquid Metal MHD (LMMHD) Generator Systems are becoming increasingly important in space and terrestrial applications due to their compactness and versatility. This report gives the current status and economic viability of LMMHD generators coupled to solar collectors, fast breeder reactors, low grade heat sources and conventional high grade heat sources. The various thermodynamic cycles in the temperatures range of 100degC-2000degC have been examined. The report also discusses the present understanding of various loss mechanisms inherent in LMMHD systems and the techniques for overcoming these losses. A small mercury-air LMMHD experimental facility being set up in Plasma Physics Division along with proposals for future development of this new technology is also presented in this report. (author)

  16. Towards Next Generation BI Systems

    DEFF Research Database (Denmark)

    Varga, Jovan; Romero, Oscar; Pedersen, Torben Bach

    2014-01-01

    Next generation Business Intelligence (BI) systems require integration of heterogeneous data sources and a strong user-centric orientation. Both needs entail machine-processable metadata to enable automation and allow end users to gain access to relevant data for their decision making processes....... This framework is based on the findings of a survey of current user-centric approaches mainly focusing on query recommendation assistance. Finally, we discuss the benefits of the framework and present the plans for future work....

  17. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    International Nuclear Information System (INIS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-01-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism

  18. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  19. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  20. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-01-01

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins

  1. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.

    Science.gov (United States)

    Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel

    2014-01-01

    To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (padhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  2. The early indicators of financial failure: a study of bankrupt and solvent health systems.

    Science.gov (United States)

    Coyne, Joseph S; Singh, Sher G

    2008-01-01

    This article presents a series of pertinent predictors of financial failure based on analysis of solvent and bankrupt health systems to identify which financial measures show the clearest distinction between success and failure. Early warning signals are evident from the longitudinal analysis as early as five years before bankruptcy. The data source includes seven years of annual statements filed with the Securities and Exchange Commission by 13 health systems before they filed bankruptcy. Comparative data were compiled from five solvent health systems for the same seven-year period. Seven financial solvency ratios are included in this study, including four cash liquidity measures, two leverage measures, and one efficiency measure. The results show distinct financial trends between solvent and bankrupt health systems, in particular for the operating-cash-flow-related measures, namely Ratio 1: Operating Cash Flow Percentage Change, from prior to current period; Ratio 2: Operating Cash Flow to Net Revenues; and Ratio 4: Cash Flow to Total Liabilities, indicating sensitivity in the hospital industry to cash flow management. The high dependence on credit from third-party payers is cited as a reason for this; thus, there is a great need for cash to fund operations. Five managerial policy implications are provided to help health system managers avoid financial solvency problems in the future.

  3. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Czech Academy of Sciences Publication Activity Database

    Karadjova, I.B.; Lampugnani, L.; Dědina, Jiří; D'Ulivo, A.; Onor, M.; Tsalev, D.L.

    2006-01-01

    Roč. 61, č. 5 (2006), s. 525-531 ISSN 0584-8547 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * atomic absorption spectrometry * interferences Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.092, year: 2006

  4. Studies on the partial specific volume of a poly(ethylene glycol) derivative in different solvent systems

    NARCIS (Netherlands)

    Tziatzios, C.; Precup, A.A.; Weidl, C.H.; Schubert, U.S.; Schuck, P.; Durchschlag, H.; Mächtle, W.; Broek, van den J.A.; Schubert, D.

    2002-01-01

    The specific volume of charged supramolecular compounds dissolved in organic solvents varies considerably with the solvent system applied; in addition, it is influenced by the presence of salt. In this study we determined the specific volume of an uncharged molecule from the same molar mass range in

  5. Modeling vapor pressures of solvent systems with and without a salt effect: An extension of the LSER approach

    International Nuclear Information System (INIS)

    Senol, Aynur

    2015-01-01

    Highlights: • A new polynomial vapor pressure approach for pure solvents is presented. • Solvation models reproduce the vapor pressure data within a 4% mean error. • A concentration-basis vapor pressure model is also implemented on relevant systems. • The reliability of existing models was analyzed using log-ratio objective function. - Abstract: A new polynomial vapor pressure approach for pure solvents is presented. The model is incorporated into the LSER (linear solvation energy relation) based solvation model framework and checked for consistency in reproducing experimental vapor pressures of salt-containing solvent systems. The developed two structural forms of the generalized solvation model (Senol, 2013) provide a relatively accurate description of the salting effect on vapor pressure of (solvent + salt) systems. The equilibrium data spanning vapor pressures of eighteen (solvent + salt) and three (solvent (1) + solvent (2) + salt) systems have been subjected to establish the basis for the model reliability analysis using a log-ratio objective function. The examined vapor pressure relations reproduce the observed performance relatively accurately, yielding the overall design factors of 1.084, 1.091 and 1.052 for the integrated property-basis solvation model (USMIP), reduced property-basis solvation model and concentration-dependent model, respectively. Both the integrated property-basis and reduced property-basis solvation models were able to simulate satisfactorily the vapor pressure data of a binary solvent mixture involving a salt, yielding an overall mean error of 5.2%

  6. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  7. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  8. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography.

    Science.gov (United States)

    Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues

    2014-04-11

    Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  10. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    Directory of Open Access Journals (Sweden)

    Talita Baumgratz Cachapuz CHIMELI

    2014-07-01

    Full Text Available Objective: To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake and nanoleakage of adhesive systems. Material and Methods: Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness were produced (N=48 using the adhesives: Clearfil S3 Bond (CS3/Kuraray, Clearfil SE Bond - control group (CSE/Kuraray, Optibond Solo Plus (OS/Kerr and Scotchbond Universal Adhesive (SBU/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group, and then photoactivated for 80 s (550 mW/cm2. After desiccation, the specimens were weighed and stored in distilled water (N=12 or mineral oil (N=12 to evaluate the water diffusion over a 7-day period. Net water uptake (% was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%. The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results: Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05. Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control presented significantly lower net uptake (5.4%. The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions: Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  11. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water)

    International Nuclear Information System (INIS)

    Chung, P.-Y.; Soriano, Allan N.; Leron, Rhoda B.; Li, M.-H.

    2010-01-01

    In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol . m -3 and those of PZ's were (0.5, 1.0, and 1.5) kmol . m -3 . The solubility data (CO 2 loading in the amine solution) obtained were correlated as a function of CO 2 partial pressure, system temperature, and amine composition via the modified Kent-Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO 2 absorption into mixed aqueous solutions of TEA and PZ.

  12. A chromatographic determination of water in non-aqueous phases of solvent extraction systems

    International Nuclear Information System (INIS)

    Lyle, S.J.; Smith, D.B.

    1975-01-01

    The disadvantages of the Karl Fischer method for the determination of water in the non-aqueous phases of solvent extraction systems are pointed out, and a gas chromatographic method is described which is claimed to be potentially capable of overcoming these disadvantages. The method, as described, was developed to satisfy conditions relevant to measurement of the transfer rate of water from an aqueous phase into tri-n-butylphosphate in toluene, but it can be used for water determination in other solvent extraction systems. The apparatus used is described in detail. The concentration of water in water-saturated TBP was found to be 3.56 mol/litre, compared with a value of 3.55 obtained by Karl Fischer titration and previous literature values of 3.59 and 3.57. Measurements of water content in benzene solutions of long chain alkylamines were also sucessfully carried out. (U.K.)

  13. Estimation of phase separation temperatures for polyethersulfone/solvent/non-solvent systems in RTIPS and membrane properties

    DEFF Research Database (Denmark)

    Liu, Min; Liu, Sheng-Hui; Skov, Anne Ladegaard

    2018-01-01

    was observed. When the membrane-forming temperature was higher than the cloud point, membranes with a bi-continuous structure were acquired and showed a higher pure water permeation flux than that of membranes prepared with the non-solvent induced phase separation (NIPS) process. The pure water permeation flux...... and the mean pore size of membranes prepared with the RTIPS process decreased in line with an increase of PES molecular weight. When the membrane formation mechanism was the RTIPS process, the mechanical properties were better than those of the corresponding membranes prepared with the NIPS process....

  14. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    Science.gov (United States)

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    Many dentin bonding systems of different compositions, and in particular containing different solvents, have been introduced to the market. Their effect on the quality of the interface requires clarification by means of comparative trials. This study investigated micromorphological differences in hybrid layer formation with a variety of commercially available water- or solvent-based dentin bonding products and their recommended compomers. Five bonding systems were used on groups of 10 teeth each as follows: group I, acetone-based system used with 36% phosphoric acid; group II, a different acetone-based system containing nano-sized particles for filler loading and used with a non-rinsing conditioner containing maleic acid; group III, the acetone-based system of group II used with 36% phosphoric acid (the only difference in the treatment for groups II and III was the acid etching system); group IV, a mixed-solvent-based system (water/ethanol) used with 37% phosphoric acid; and group V, a water-based system used with 37% phosphoric acid. Each bonding system was covered with the recommended compomer. Class I occlusal preparations were made in extracted teeth and restored with one of the above systems. Five specimens of each group were studied with optical microscopy after staining. Scanning electron microscopy was used to examine the interface of the bonding system/dentin of the other 5 teeth in each group. The optical microscopy measurements were made with a 10 x 10 reticle. A micron mark with scale was used for the scanning electron microscope. All measurements were made in microm. The following criteria were used to define a good interface: absence of voids between the different parts of the interface, uniformity of the hybrid layer, good opening of the tubuli orifices, and tag adherence to the tubuli walls. Morphological differences were found at the interface depending on dentin treatment and adhesive composition. The acetone-containing systems were associated

  15. NEXT GENERATION TURBINE SYSTEM STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  16. Next generation sensors and systems

    CERN Document Server

    2016-01-01

    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  17. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  18. Is occupational exposure to solvents associated with an increased risk for developing systemic scleroderma?

    Directory of Open Access Journals (Sweden)

    Drexler Hans

    2006-07-01

    Full Text Available Abstract Background Our study was aimed to investigate in a German collective if there are any hints for an increased occupational or environmental risk to develop systemic sclerosis, especially, focussing on work-related exposure to solvents. Moreover, we tried to evaluate the feasibility of a sampling method addressing support groups. Methods A standardised questionnaire was published in two journals subscribed by members of two different support groups and all members were asked to complete the questionnaire and to return it anonymously. The subjects were not informed on the scientific hypotheses, nor did they know who of them belonged to the case group (scleroderma or to the control group (multiple sclerosis. Results 175 questionnaires could be included in the statistical analysis. As expected, a female predominance was in our collective. In the male subpopulation, the occupational exposure to solvents was higher in the case group than in the control-group (70% versus 45.8%. Based only on the male subgroup, a tendency for an association between occupational exposure to solvents and the risk to develop systemic sclerosis was found. Conclusion According to our experience in this case-control-study exposure misclassification, qualitative or quantitative, was an eminent problem. Within such a setting, it is generally very difficult to establish an exact dose-response relationship due to incomplete, imprecise or missing data concerning duration of exposure, frequency of use and kind of solvent. Additionally, a well-known problem in studies based on self-reported questionnaires is the so-called volunteer bias. Unfortunately, but similar to other studies assessing epidemiologic factors in such a rare disease, our study was of limited power, especially in the subgroups defined by gender.

  19. Catalytic thermometric titrations in non-aqueous solvents by coulometrically generated titrant.

    Science.gov (United States)

    Vajgand, V J; Gaál, F F; Brusin, S S

    1970-05-01

    Catalytic thermometric titrations have been developed for tertiary amines and salts of organic acids in acetic and propionic anhydride with titrant coulometrically generated at a mercury and/or platinum anode, hydroquinone being added to the solution titrated if the platinum anode is used. The results obtained are compared with those obtained by coulometric titration with the end-point detected either photometrically or potentiometrically. On a élaboré des titrages thermométriques catalytiques pour les amines tertiaires et les sels d'acides organiques en anhydrides aétique et propionique avec l'agent de titrage engendré coulométriquement sur une anode de mercure et/ou platine, de l'hydroquinone étant ajoutée à la solution titrée si l'on emploie l'anode de platine. Les résultats obtenus sont comparés avec ceux obtenus par titrage coulométrique avec le point de fin de réaction détecté soit photométriquement soit potentioétriquement.

  20. Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems

    International Nuclear Information System (INIS)

    Gupta, A.R.

    1979-01-01

    Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables

  1. Solvent-Dependent Dual Fluorescence of the Push-Pull System 2-Diethylamino-7-Nitrofluorene

    KAUST Repository

    Larsen, Martin A. B.; Stephansen, Anne B.; Alarousu, Erkki; Pittelkow, Michael; Mohammed, Omar F.; Sø lling, Theis I

    2018-01-01

    The solvent-dependent excited state behavior of the molecular push-pull system 2-diethylamino-7-nitrofluorene has been explored using femtosecond transient absorption spectroscopy in combination with density functional theory calculations. Several excited state minima have been identified computationally, all possessing significant intramolecular charge transfer character. The experimentally observed dual fluorescence is suggested to arise from a planar excited state minimum and another minimum reached by twisting of the aryl-nitrogen bond of the amino group. The majority of the excited state population, however, undergo non-radiative transitions and potential excited deactivation pathways are assessed in the computational investigation. A third excited state conformer, characterized by twisting around the aryl-nitrogen bond of the nitro group, is reasoned to be responsible for the majority of the non-radiative decays and a crossing between the excited state and ground state is localized. Additionally, ultrafast intersystem crossing is observed in the apolar solvent cyclohexane and rationalized to occur via an El-Sayed assisted transition from one of the identified excited state minima. The solvent thus determines more than just the fluorescence lifetime and shapes the potential energy landscape, thereby dictating the available excited state pathways.

  2. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  3. Solvent-Dependent Dual Fluorescence of the Push-Pull System 2-Diethylamino-7-Nitrofluorene

    KAUST Repository

    Larsen, Martin A. B.

    2018-01-31

    The solvent-dependent excited state behavior of the molecular push-pull system 2-diethylamino-7-nitrofluorene has been explored using femtosecond transient absorption spectroscopy in combination with density functional theory calculations. Several excited state minima have been identified computationally, all possessing significant intramolecular charge transfer character. The experimentally observed dual fluorescence is suggested to arise from a planar excited state minimum and another minimum reached by twisting of the aryl-nitrogen bond of the amino group. The majority of the excited state population, however, undergo non-radiative transitions and potential excited deactivation pathways are assessed in the computational investigation. A third excited state conformer, characterized by twisting around the aryl-nitrogen bond of the nitro group, is reasoned to be responsible for the majority of the non-radiative decays and a crossing between the excited state and ground state is localized. Additionally, ultrafast intersystem crossing is observed in the apolar solvent cyclohexane and rationalized to occur via an El-Sayed assisted transition from one of the identified excited state minima. The solvent thus determines more than just the fluorescence lifetime and shapes the potential energy landscape, thereby dictating the available excited state pathways.

  4. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...... induction generator (DFIG), with gearbox and fully rated converter, and direct drive (DD). Then, possible future generator systems are reviewed. Hydraulic transmissions are significantly lighter than gearboxes and enable continuously variable transmission, but their efficiency is lower. A brushless DFIG...

  5. Interfacial chemistry in solvent extraction systems: Progress report for period April 1, 1986-March 31, 1987

    International Nuclear Information System (INIS)

    Neuman, R.D.

    1986-11-01

    Proton magnetic resonance spectroscopic, vapor pressure osmometric and Karl Fischer titrimetric measurements have provided support for our earlier findings obtained from interfacial tension and mass transfer experiments that reversed micelles are formed, under certain conditions, in the system HDEHP/n-hexane/CaCl 2 solution. These studies were further extended to include different organophosphorus acid (PC 88A), diluent (benzene), and metal ions (Co 2+ , Ni 2+ , and Zn 2+ ) to determine whether reversed micellization is a general phenomenon occurring in solvent extraction systems which employ organophosphorus acids. The data obtained so far, suggest that reversed micellization indeed is a general phenomenon operative in organophosphorus acid extractant systems. A new mass transfer cell has been constructed in order to investigate the metal distribution equilibria and extraction kinetics of Co, Ni and Zn using atomic absorption spectrophotometric technique. A quasi-elastic light-scattering apparatus has been installed to investigate aggregation phenomena in solvent extraction systems. Preliminary drop-interface coalescence studies were performed, and the results were correlated with those obtained from interfacial tension measurements. The laser heterodyne light-scattering apparatus for measurement of interfacial viscoelastic properties also has been set-up and is being optimized for high resolution measurements. 21 refs., 16 figs

  6. Abiotic systems for the catalytic treatment of solvent-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N. [Univ. of Arizona, Tucson, AZ (United States)] [and others

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  7. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    Science.gov (United States)

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  8. Lignin Structure and Aggregation Behavior in a Two-Component Ionic Liquid Solvent System

    Directory of Open Access Journals (Sweden)

    Susanne Bylin

    2014-08-01

    Full Text Available Ionic liquids are of potential interest in the processing of lignocellulosic biomass. In this study, the ionic liquid co-solvent system of 1-methylimidazole (MIM and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc was used to solvate LignoBoost lignin fractionated from black liquor obtained from a kraft paper mill. Lignin ethanol-precipitated (LEP and ethanol-soluble (LES fractions were characterized via gel permeation chromatography (GPC and 13C- and 31P-nuclear magnetic resonance spectroscopy (NMR to determine structural characteristics and their relationship to polymer solubility in the system. Polymer integrity and solubility were optimal at ~20% lignin loading (w/w. Results showed that LEPs were generally of higher apparent molecular weight (Mw and enriched with condensed/aliphatic ether linkages and aliphatic hydroxyls. The LESs had a lower apparent Mw and were enriched with carboxylic and phenolic groups. This newly gained knowledge on lignin fractionation and aggregation in the present solvent system provides future opportunities for tuning fractionation/extraction to suit a specific biomass-derived product, e.g., carbon fibers.

  9. "Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research.

    Science.gov (United States)

    Azov, Vladimir A; Egorova, Ksenia S; Seitkalieva, Marina M; Kashin, Alexey S; Ananikov, Valentine P

    2018-02-21

    Inorganic and organic "solvent-in-salt" (SIS) systems have been known for decades but have attracted significant attention only recently. Molten salt hydrates/solvates have been successfully employed as non-flammable, benign electrolytes in rechargeable lithium-ion batteries leading to a revolution in battery development and design. SIS with organic components (for example, ionic liquids containing small amounts of water) demonstrate remarkable thermal stability and tunability, and present a class of admittedly safer electrolytes, in comparison with traditional organic solvents. Water molecules tend to form nano- and microstructures (droplets and channel networks) in ionic media impacting their heterogeneity. Such microscale domains can be employed as microreactors for chemical and enzymatic synthesis. In this review, we address known SIS systems and discuss their composition, structure, properties and dynamics. Special attention is paid to the current and potential applications of inorganic and organic SIS systems in energy research, chemistry and biochemistry. A separate section of this review is dedicated to experimental methods of SIS investigation, which is crucial for the development of this field.

  10. Evaluation of a novel and efficient solvent system containing chlorinated cobalt dicarbollide for radio-cesium recovery from acidic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kandwal, Pankaj; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.

    2014-11-01

    A novel solvent system containing chlorinated cobalt dicarbollide (CCD) in a diluent mixture containing 2-nitrophenyloctyl ether (NPOE) and n-dodecane was found to be highly efficient for the extraction of radio-cesium from acidic feed conditions. When PEG-400 (polyethylene glycol with average molecular weight of 400) was added to the solvent system, it was found to extract radio-strontium as well similar to that reported with the UNEX (Universal Extractant) solvent. The solvent system was found to be superior as compared to analogous solvent systems reported previously using CCD in either nitrobenzene or PTMS (phenyltrifluoromethyl sulphone, a fluorinated diluent). The present work deals with less toxic solvent formulation which can be used as an alternative to these hazardous/toxic chemicals for simultaneous recovery of Cs(I) and Sr(II) from acidic solutions. Batch co-current extraction data are also presented for the simultaneous recovery of Cs and Sr which indicated near quantitative extraction (>99.5%) of the metal ions in 4 and 3 stages, respectively. The reusability and radiolytic stability studies were also carried out which suggested highly encouraging results.

  11. A development and an application of Mixset-X computer code for simulating the Purex solvent extraction system

    International Nuclear Information System (INIS)

    Shida, M.; Naito, M.; Suto, T.; Omori, E.; Nojiri, T.

    2001-01-01

    MIXSET is a FORTRAN code developed to simulate the Purex solvent extraction system using mixer-settler extractors. Japan Nuclear Cycle Development Institute (JNC) has been developing the MIXSET code since the years 1970 to analyze the behavior of nuclides in the solvent extraction processes in Tokai Reprocessing Plant (TRP). This paper describes the history of MIXSET code development, the features of the latest version, called MIXSET-X and the application of the code for safety evaluation work. (author)

  12. A knowledge based advisory system for acid/base titrations in non-aqueous solvents

    NARCIS (Netherlands)

    Bos, M.; van der Linden, W.E.

    1996-01-01

    A computer program was developed that could advice on the choice of solvent and titrant for acid/base titrations in nonaqueous media. It is shown that the feasibility of a titration in a given solvent can be calculated from solvent properties and intrinsic acid/base properties of the sample

  13. Analytical Methods Development in Support of the Caustic Side Solvent Extraction System

    International Nuclear Information System (INIS)

    Maskarinec, M.P.

    2001-01-01

    The goal of the project reported herein was to develop and apply methods for the analysis of the major components of the solvent system used in the Caustic-Side Solvent Extraction Process (CSSX). These include the calix(4)arene, the modifier, 1-(2,2,3,3- tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol and tri-n-octylamine. In addition, it was an objective to develop methods that would allow visualization of other components under process conditions. These analyses would include quantitative laboratory methods for each of the components, quantitative analysis of expected breakdown products (4-see-butylphenol and di-n-octylamine), and qualitative investigations of possible additional breakdown products under a variety of process extremes. These methods would also provide a framework for process analysis should a pilot facility be developed. Two methods were implemented for sample preparation of aqueous phases. The first involves solid-phase extraction and produces quantitative recovery of the solvent components and degradation products from the various aqueous streams. This method can be automated and is suitable for use in radiation shielded facilities. The second is a variation of an established EPA liquid-liquid extraction procedure. This method is also quantitative and results in a final extract amenable to virtually any instrumental analysis. Two HPLC methods were developed for quantitative analysis. The first is a reverse-phase system with variable wavelength W detection. This method is excellent from a quantitative point of view. The second method is a size-exclusion method coupled with dual UV and evaporative light scattering detectors. This method is much faster than the reverse-phase method and allows for qualitative analysis of other components of the waste. For tri-n-octylamine and other degradation products, a GC method was developed and subsequently extended to GUMS. All methods have precision better than 5%. The combination of these methods

  14. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  15. Assessment of Purex solvent cleanup methods using a mixer-settler system

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-11-01

    A test system consisting of three mixer-settlers in series has been used to determine the usefulness of several possible aqueous scrub solutions for cleanup of TBP solvent in fuel reprocessing plants. The simulated solvent that was treated was nominally 0.1 mM zirconium, 0.2 mM uranium, 0.4 mM dibutyl phosphate, and 0.3 mM HNO 3 . Five aqueous scrub solutions - sodium carbonate/tartrate, hydroxylamine/tartaric acid, hydroxylamine/citric acid, hydrazine/oxalic acid, and LiOH/sucrose - were evaluated. The order of effectiveness of these solutions for removal of contaminants was: sodium carbonate/tartrate, hydrazine/oxalic acid, LiOH/sucrose, and the two hydroxylamine solutions. Interfacial crud, which was related to the presence of zirconium and DBP, was observed in all cases except the LiOH/sucrose solution. The recommended system would use sodium carbonate/tartrate. If sodium usage must be minimized, a hydroxylamine-containing scrub followed by a sodium carbonate/tartrate scrub is recommended. 13 references, 11 figures, 21 tables

  16. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    International Nuclear Information System (INIS)

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  17. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  19. Radioisotope Thermoelectric Generator Transport Trailer System

    International Nuclear Information System (INIS)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System system 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the US Department of Energy to be in accordance with Title 10, Code of federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware

  20. Mutual diffusion coefficient models for polymer-solvent systems based on the Chapman-Enskog theory

    Directory of Open Access Journals (Sweden)

    R. A. Reis

    2004-12-01

    Full Text Available There are numerous examples of the importance of small molecule migration in polymeric materials, such as in drying polymeric packing, controlled drug delivery, formation of films, and membrane separation, etc. The Chapman-Enskog kinetic theory of hard-sphere fluids with the Weeks-Chandler-Andersen effective hard-sphere diameter (Enskog-WCA has been the most fruitful in diffusion studies of simple fluids and mixtures. In this work, the ability of the Enskog-WCA model to describe the temperature and concentration dependence of the mutual diffusion coefficient, D, for a polystyrene-toluene system was evaluated. Using experimental diffusion data, two polymer model approaches and three mixing rules for the effective hard-sphere diameter were tested. Some procedures tested resulted in models that are capable of correlating the experimental data with the refereed system well for a solvent mass fraction greater than 0.3.

  1. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Wook; Tian, Chao; Martini, Rainer, E-mail: rmartini@stevens.edu [Department of Physics and Engineering Physics, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030 (United States); Chen, Gang [School of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China); Chen, I-chun Anderson [Newport Corporation/Oriel Instruments, 150 Long Beach Boulevard, Stratford, Connecticut 06615 (United States)

    2014-11-03

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.

  2. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    International Nuclear Information System (INIS)

    Park, Seong-Wook; Tian, Chao; Martini, Rainer; Chen, Gang; Chen, I-chun Anderson

    2014-01-01

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N 2 O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX

  3. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  4. Caustic-Side Solvent-Extraction Modeling for Hanford Interim Pretreatment System

    International Nuclear Information System (INIS)

    Moyer, B.A.; Birdwell, J.F.; Delmau, L. H.; McFarlane, J.

    2008-01-01

    The purpose of this work is to examine the applicability of the Caustic-Side Solvent Extraction (CSSX) process for the removal of cesium from Hanford tank-waste supernatant solutions in support of the Hanford Interim Pretreatment System (IPS). The Hanford waste types are more challenging than those at the Savannah River Site (SRS) in that they contain significantly higher levels of potassium, the chief competing ion in the extraction of cesium. It was confirmed by use of the CSSX model that the higher levels of potassium depress the cesium distribution ratio (DCs), as validated by measurement of DCs values for four of eight specified Hanford waste-simulant compositions. The model predictions were good to an apparent standard error of ±11%. It is concluded from batch distribution experiments, physical-property measurements, equilibrium modeling, flowsheet calculations, and contactor sizing that the CSSX process as currently employed for cesium removal from alkaline salt waste at the SRS is capable of treating similar Hanford tank feeds. For the most challenging waste composition, 41 stages would be required to provide a cesium decontamination factor (DF) of 5000 and a concentration factor (CF) of 5. Commercial contacting equipment with rotor diameters of 10 in. for extraction and 5 in. for stripping should have the capacity to meet throughput requirements, but testing will be required to confirm that the needed efficiency and hydraulic performance are actually obtainable. Markedly improved flowsheet performance was calculated for a new solvent formulation employing the more soluble cesium extractant BEHBCalixC6 used with alternative scrub and strip solutions, respectively 0.1 M NaOH and 10 mM boric acid. The improved system can meet minimum requirements (DF = 5000 and CF = 5) with 17 stages or more ambitious goals (DF = 40,000 and CF = 15) with 19 stages. Potential benefits of further research and development are identified that would lead to reduced costs, greater

  5. Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system.

    Science.gov (United States)

    Fei, Tao; Cazeneuve, Stacy; Wen, Zhiyou; Wu, Lei; Wang, Tong

    2016-05-01

    This work demonstrates a significant advance in bioprocessing for a high-melting lipid polymer. A novel and environmental friendly solvent mixture, acetone/ethanol/propylene carbonate (A/E/P, 1:1:1 v/v/v) was identified for extracting poly-hydroxybutyrate (PHB), a high-value biopolymer, from Cupriavidus necator. A set of solubility curves of PHB in various solvents was established. PHB recovery of 85% and purity of 92% were obtained from defatted dry biomass (DDB) using A/E/P. This solvent mixture is compatible with water, and from non-defatted wet biomass, PHB recovery of 83% and purity of 90% were achieved. Water and hexane were evaluated as anti-solvents to assist PHB precipitation, and hexane improved recovery of PHB from biomass to 92% and the purity to 93%. A scale-up extraction and separation reactor was designed, built and successfully tested. Properties of PHB recovered were not significantly affected by the extraction solvent and conditions, as shown by average molecular weight (1.4 × 10(6) ) and melting point (175.2°C) not being different from PHB extracted using chloroform. Therefore, this biorenewable solvent system was effective and versatile for extracting PHB biopolymers. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:678-685, 2016. © 2016 American Institute of Chemical Engineers.

  6. Steam Generator Inspection Planning Expert System

    International Nuclear Information System (INIS)

    Rzasa, P.

    1987-01-01

    Applying Artificial Intelligence technology to steam generator non-destructive examination (NDE) can help identify high risk locations in steam generators and can aid in preparing technical specification compliant eddy current test (ECT) programs. A steam Generator Inspection Planning Expert System has been developed which can assist NDE or utility personnel in planning ECT programs. This system represents and processes its information using an object oriented declarative knowledge base, heuristic rules, and symbolic information processing, three artificial intelligence based techniques incorporated in the design. The output of the system is an automated generation of ECT programs. Used in an outage inspection, this system significantly reduced planning time

  7. A novel method for determining the solubility of small molecules in aqueous media and polymer solvent systems using solution calorimetry.

    Science.gov (United States)

    Fadda, Hala M; Chen, Xin; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo

    2014-07-01

    To explore the application of solution calorimetry for measuring drug solubility in experimentally challenging situations while providing additional information on the physical properties of the solute material. A semi-adiabatic solution calorimeter was used to measure the heat of dissolution of prednisolone and chlorpropamide in aqueous solvents and of griseofulvin and ritonavir in viscous solutions containing polyvinylpyrrolidone and N-ethylpyrrolidone. Dissolution end point was clearly ascertained when heat generation stopped. The heat of solution was a linear function of dissolved mass for all drugs (solution of 9.8 ± 0.8, 28.8 ± 0.6, 45.7 ± 1.6 and 159.8 ± 20.1 J/g were obtained for griseofulvin, ritonavir, prednisolone and chlorpropamide, respectively. Saturation was identifiable by a plateau in the heat signal and the crossing of the two linear segments corresponds to the solubility limit. The solubilities of prednisolone and chlopropamide in water by the calorimetric method were 0.23 and 0.158 mg/mL, respectively, in agreement with the shake-flask/HPLC-UV determined values of 0.212 ± 0.013 and 0.169 ± 0.015 mg/mL, respectively. For the higher solubility and high viscosity systems of griseofulvin and ritonavir in NEP/PVP mixtures, respectively, solubility values of 65 and 594 mg/g, respectively, were obtained. Solution calorimetry offers a reliable method for measuring drug solubility in organic and aqueous solvents. The approach is complementary to the traditional shake-flask method, providing information on the solid properties of the solute. For highly viscous solutions, the calorimetric approach is advantageous.

  8. Solvent Composition-Dependent Signal-Reduction of Molecular Ions Generated from Aromatic Compounds in (+) Atmospheric Pressure Photo Ionization Mass Spectrometry.

    Science.gov (United States)

    Lee, Seulgidaun; Ahmed, Arif; Kim, Sunghwan

    2018-03-30

    The ionization process is essential for successful mass spectrometry (MS) analysis because of its influence on selectivity and sensitivity. In particular, certain solvents reduce the ionization of the analyte, thereby reducing the overall sensitivity in APPI. Since the sensitivity varies greatly depending on the solvents, a fundamental understanding of the mechanism is required. Standard solutions were analyzed by (+) Atmospheric pressure photo ionization (APPI) QExactive ion trap mass spectrometer (Thermo Scientific). Each solution was infused directly to the APPI source at a flow rate 100 μl/min and the APPI source temperature was 300 °C. Other operating mass spectrometric parameters were maintained under the same conditions. Quantum mechanical calculations were carried out using the Gaussian 09 suite program. Density functional theory was used to calculate the reaction enthalpies (∆H) of reaction between toluene and other solvents. The experimental and theoretical results showed good agreement. The abundances of analyte ions were well correlated with the calculated ∆H values. Therefore, the results strongly support the suggested signal reduction mechanism. In addition, linear correlations between the abundance of toluene and analyte molecular ions were observed, which also supports the suggested mechanism. A solvent composition-dependent signal reduction mechanism was suggested and evaluated for the (+) atmospheric pressure photo ionization (APPI) mass spectrometry analysis of poly-aromatic hydrocarbons (PAHs) generating mainly molecular ions. Overall, the evidence provided in this work suggests that reactions between solvent cluster(s) and toluene molecular ions are responsible for the observed signal reductions. This article is protected by copyright. All rights reserved.

  9. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  10. Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator

    International Nuclear Information System (INIS)

    Aardaneh, K.; Walt, T.N. van der

    2006-01-01

    The target for the production of 68 Ge consists of a disc of gallium suboxide, Ga 2 O, with a 19 mm diameter. The suboxide was primarily prepared by repeatedly mixing metallic Ga and Ga 2 O 3 at 700 deg C. The target (2.4 g) was quite stable under a long-time irradiation with a 34 MeV proton beam at a current of ∼80 μA. The dissolution of the target was performed using 12M sulphuric acid solution, assisted with the dropwise addition of 30% H 2 O 2 solution, and took less than 4 hours. A solvent extraction method, using a 9M H 2 SO 4 - 0.3M HCl/CCl 4 system, was employed for the radiochemical separation of 68 Ge from Ga and Zn radionuclides, while 0.05M HCl was used for the back extraction of 68 Ge from the organic phase. The 68 Ge obtained in the dilute HCl was directly loaded onto a column containing either a hydrous tin dioxide or a crystalline tin dioxide, obtained by calcinations of the hydrous oxide at 450, 700, and 900 deg C. The calcinated hydrous tin dioxide at 900 deg C showed the highest crystallinity and highest 68 Ga elution yield and was selected for use in the generator. The 68 Ga elution from the column generator packed with 2 g of tin dioxide, using 3 ml of 1M HCl, and yielded an average of 65%. The breakthrough of 68 Ge was 6.1 x 10 -4 %. (author)

  11. Firewall systems: the next generation

    Science.gov (United States)

    McGhie, Lynda L.

    1996-01-01

    To be competitive in today's globally connected marketplace, a company must ensure that their internal network security methodologies and supporting policies are current and reflect an overall understanding of today's technology and its resultant threats. Further, an integrated approach to information security should ensure that new ways of sharing information and doing business are accommodated; such as electronic commerce, high speed public broadband network services, and the federally sponsored National Information Infrastructure. There are many challenges, and success is determined by the establishment of a solid and firm baseline security architecture that accommodate today's external connectivity requirements, provides transitional solutions that integrate with evolving and dynamic technologies, and ultimately acknowledges both the strategic and tactical goals of an evolving network security architecture and firewall system. This paper explores the evolution of external network connectivity requirements, the associated challenges and the subsequent development and evolution of firewall security systems. It makes the assumption that a firewall is a set of integrated and interoperable components, coming together to form a `SYSTEM' and must be designed, implement and managed as such. A progressive firewall model will be utilized to illustrates the evolution of firewall systems from earlier models utilizing separate physical networks, to today's multi-component firewall systems enabling secure heterogeneous and multi-protocol interfaces.

  12. Systems Prototyping with Fourth Generation Tools.

    Science.gov (United States)

    Sholtys, Phyllis

    1983-01-01

    The development of information systems using an engineering approach that uses both traditional programing techniques and fourth generation software tools is described. Fourth generation applications tools are used to quickly develop a prototype system that is revised as the user clarifies requirements. (MLW)

  13. Modifications of the SEPHIS computer code for calculating the Purex solvent extraction system

    International Nuclear Information System (INIS)

    Watson, S.B.; Rainey, R.H.

    1975-12-01

    The SEPHIS computer program was developed to simulate the countercurrent solvent extraction. This report gives modifications in the program which result in improved fit to experimental data, a decrease in computer storage requirements, and a decrease in execution time. Methods for applying the computer program to practical solvent extraction problems are explained

  14. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Casella, V

    2005-12-15

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified

  15. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    International Nuclear Information System (INIS)

    Casella, V

    2005-01-01

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified interface for controlling

  16. Performance diagnostic system for emergency diesel generators

    International Nuclear Information System (INIS)

    Logan, K.P.

    1991-01-01

    Diesel generators are commonly used for emergency backup power at nuclear stations. Emergency diesel generators (EDGs) are subject to both start-up and operating failures, due to infrequent and fast-start use. EDG reliability can be critical to plant safety, particularly when station blackout occurs. This paper describes an expert diagnostic system designed to consistently evaluate the operating performance of diesel generators. The prototype system is comprised of a suite of sensor monitoring, cylinder combustion analyzing, and diagnostic workstation computers. On-demand assessments of generator and auxiliary equipment performance are provided along with color trend displays comparing measured performance to reference-normal conditions

  17. Method for Selection of Solvents for Promotion of Organic Reactions

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Jiménez-González, Concepción; Constable, David J.C.

    2005-01-01

    is to produce, for a given reaction, a short list of chemicals that could be considered as potential solvents, to evaluate their performance in the reacting system, and, based on this, to rank them according to a scoring system. Several examples of application are given to illustrate the main features and steps......A method to select appropriate green solvents for the promotion of a class of organic reactions has been developed. The method combines knowledge from industrial practice and physical insights with computer-aided property estimation tools for selection/design of solvents. In particular, it employs...... estimates of thermodynamic properties to generate a knowledge base of reaction, solvent and environment related properties that directly or indirectly influence the rate and/or conversion of a given reaction. Solvents are selected using a rules-based procedure where the estimated reaction-solvent properties...

  18. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  19. A system for long pulse REB generation

    International Nuclear Information System (INIS)

    Tsuzuki, Tetsuya; Hasegawa, Mitsuru; Narihara, Kazumichi; Tomita, Yukihiro; Kubo, Shin; Kobata, Tadasuke; Mohri, Akihiro.

    1987-02-01

    A high voltage pulse generator system producing intense relativistic electron beams (REB) (1.5 μs pulse width, 30 kA peak current, 1 MeV energy) was developed to the use of REB ring formation. The system consists of a Marx generator, a transmission line with plastics-water hybrid insulators and a magnetically insulated transmission line connected with a cathode. The system has been well operated more than twenty thousands shots without troubles. (author)

  20. Fuel cell using a hydrogen generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  1. Ternary diagram of extract proteins / solvent systems: Sesame, soybean and lupine proteins

    Directory of Open Access Journals (Sweden)

    Mohamed, S. S.

    2004-09-01

    Full Text Available Solvent extraction as a method of extracting protein from oilseed meals offers the advantage of higher efficiency. Unfortunately, the published literature points to the gap in the work concerned with the necessary equilibrium diagram to design due process equipment for such extracts. Initiated by this lack of basic knowledge, the present study has been undertaken to provide the equilibrium data for three different ternary systems, namely: sesame protein / sodium hydroxide solution system, soybean protein / sodium hydroxide solution system and lupine protein / sodium hydroxide solution system. These oilseed meals were selected because of their high protein content (53.4 %, 46.2 % and 42.3 % protein, respectively. The study also concentrated on the evaluation of the major parameters affecting the extraction process, i.e. the normality of the sodium hydroxide solution used as extracting solvent and the initial oilseed solvent to meal feeding ratio. The results obtained indicate that the best normality of sodium hydroxide solution used for extracting soybean and lupine protein is 0.02N, while 0.04N solution is required for extracting sesame protein. Also, operating at a liquid to solid feed ratio of 30:1 and 50:1 for soybean, sesame and lupine, respectively, is enough to reach a high protein extract. Correlations were presented for each locus of under flow compositions, graphically acquired, and the data are compared with those calculated by analytical solutions.La extracción con disolventes es un método de extracción de proteínas de las harinas de semillas oleaginosas que ofrece la ventaja de su elevada eficacia. Desafortunadamente, la bibliografía coincide en el vacío existente con respecto a los diagramas de equilibrio necesarios para el diseño de los equipos adecuados. Debido a esta falta de conocimientos, el presente estudio se ha llevado a cabo para obtener datos de tres sistemas ternarios: sistema proteína de sésamo / disolución de

  2. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  3. The use of Nile Red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems

    NARCIS (Netherlands)

    Stuart, MCA; van de Pas, JC; Engberts, JBFN; Pas, John C. van de

    Ternary systems of surfactants, water and organic solvents were studied by monitoring the steady-state fluorescence of the versatile solvatochromic probe Nile Red. We found not only that Nile Red can be used throughout the whole isotropic regions in the phase diagram, but also that subtle changes in

  4. Vapour–Liquid Equilibria in the Polymer + Solvent System Containing Lower Concentrations of Solute at Normal or Reduced Pressures

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Jan; Bogdanić, Grozdana; Wichterle, Ivan

    2013-01-01

    Roč. 358, 25 NOV (2013), s. 301-303 ISSN 0378-3812 Institutional support: RVO:67985858 Keywords : vapour–liquid equilibrium * experimental data * polymer-solvent system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.241, year: 2013

  5. New generation nuclear microprobe systems

    International Nuclear Information System (INIS)

    Jamieson, David N.

    2001-01-01

    Over the past 20 years, the minimum probe size for nuclear microscopy has stayed around 1 μm with only a few groups reporting a sub-micron probe size around 0.5 μm. No breakthroughs in nuclear microprobe design have been forthcoming to produce dramatic improvements in spatial resolution. The difficulties of breaking the constraints that are preventing reduction of the probe size have been well recognised in the past. Over the past 5 years it has become clear that some of these constraints may not be as limiting as first thought. For example, chromatic aberration clearly is not as significant as implied from first-order ion optics calculations. This paper reviews the constraints in view of the increased understanding of the past 5 years and looks at several new approaches, presently being evaluated in Melbourne and elsewhere, on how to make progress. These approaches include modified RF ion sources for improved beam brightness and exploitation of relaxed constraints on some lens aberrations allowing the use of high demagnification probe forming lens systems

  6. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  7. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  8. Ionization and thermodynamic constants of 6-methylquinoline by potentiometry in aqueous and mixed organic-water solvent systems

    International Nuclear Information System (INIS)

    Hafiz, A; Indhar, B.; Khanzada, A.W.K.

    2000-01-01

    The ionization constant pKa and Gibbs's free energy DG of 6-methylquinoline are determined in aqueous solution at different temperatures and in three mixed organic-water solvent systems at 25 deg. C. It is observed that dissociation constant of 6-methylquinoline in aqueous system decreases with the increase of temperature. The curve is a parabolic. It is noted that pKa values of this compound are higher than those of quinoline and 8-methylquinoline. In case of mixed organic-water solvent systems, the influence of these solvents on the ionization equilibria of NH/sub 2/ group has been observed. The pK M/A and pK T/A values versus percent composition decrease gradually with increase in percent of organic solvents The curve of the pK/sub a/ versus percent composition is a distorted parabola. The data have been obtained potentiometrically by titrating 6-methylquinoline solutions with HCl. The values of dissociation constant were obtained from these data by a computer program written in GW-BASIC. From pKa values Gibbs's free energies DG for the respective pKa values have also been calculated. (author)

  9. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    Science.gov (United States)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  10. Enhanced Furfural Yields from Xylose Dehydration in the gamma-Valerolactone/Water Solvent System at Elevated Temperatures.

    Science.gov (United States)

    Sener, Canan; Motagamwala, Ali Hussain; Alonso, David Martin; Dumesic, James

    2018-05-18

    High yields of furfural (>90%) were achieved from xylose dehydration in a sustainable solvent system composed of -valerolactone (GVL), a biomass derived solvent, and water. It is identified that high reaction temperatures (e.g., 498 K) are required to achieve high furfural yield. Additionally, it is shown that the furfural yield at these temperatures is independent of the initial xylose concentration, and high furfural yield is obtained for industrially relevant xylose concentrations (10 wt%). A reaction kinetics model is developed to describe the experimental data obtained with solvent system composed of 80 wt% GVL and 20 wt% water across the range of reaction conditions studied (473 - 523 K, 1-10 mM acid catalyst, 66 - 660 mM xylose concentration). The kinetic model demonstrates that furfural loss due to bimolecular condensation of xylose and furfural is minimized at elevated temperature, whereas carbon loss due to xylose degradation increases with increasing temperature. Accordingly, the optimal temperature range for xylose dehydration to furfural in the GVL/H2O solvent system is identified to be from 480 to 500 K. Under these reaction conditions, furfural yield of 93% is achieved at 97% xylan conversion from lignocellulosic biomass (maple wood). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems

    OpenAIRE

    Fatima Zohra Ibn Majdoub Hassani; Ivan Lavandera; Joseph Kreit

    2016-01-01

    This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was fou...

  12. Nigel: A Systemic Grammar for Text Generation.

    Science.gov (United States)

    1983-02-01

    presumed. Basic references on the systemic framework include [Berry 75, Berry 77, Halliday 76a, Halliday 76b, Hudson 76, Halliday 81, de Joia 80...Edinburgh, 1979. [do Joia 80] de Joia , A., and A. Stanton, Terms in Systemic Linguistics, Batsford Academic and Educational, Ltd., London, 1980. -’C...1 A Grammar for Text Generation- -The Challenge ................................. 1 *1.2 A Grammar for Text Generation--The Design

  13. Rational Design of Molecular Gelator - Solvent Systems Guided by Solubility Parameters

    Science.gov (United States)

    Lan, Yaqi

    Self-assembled architectures, such as molecular gels, have attracted wide interest among chemists, physicists and engineers during the past decade. However, the mechanism behind self-assembly remains largely unknown and no capability exists to predict a priori whether a small molecule will gelate a specific solvent or not. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (logP), to Henry's law constants (HLC), to solvatochromic ET(30) parameters, to Kamlet-Taft parameters (beta, alpha and pi), to Hansen solubility parameters (deltap, deltad, deltah), etc., are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries.

  14. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system

    Science.gov (United States)

    Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping

    2016-07-01

    Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.

  15. Co-precipitation of loperamide hydrochloride and polyethylene glycol using aerosol solvent extraction system

    International Nuclear Information System (INIS)

    Widjojokusumo, Edward; Youn, Yong-Suk; Lee, Youn-Woo; Veriansyah, Bambang; Tjandrawinata, Raymond Rubianto

    2013-01-01

    The co-precipitation of loperamide hydrochloride (LPM) and polyethylene glycol (PEG) using aerosol solvent extraction system (ASES) was examined. Scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS) analysis showed that the co-precipitation was achieved in various LPM-PEG mass ratios with changes in its morphology. In 10-50% PEG mass ratios, angular-shaped particles were formed, whereas in 65-90% PEG mass ratios, irregular-shaped particles were formed. X-ray diffraction (XRD) analysis of the co-precipitates revealed that the LPM retained amorphous structure, while, on the other hand, the PEG retained crystalline structure. Fourier transform infrared (FT-IR) spectra indicated carbonyl function group of LPM and ether function group of PEG appeared in the co-precipitates. Results of a dissolution test showed that the co-precipitates of LPM-PEG had higher dissolution rate compared to that of the raw material and processed LPM with ASES. Taken together, the co-precipitation of LPMPEG was achieved using ASES and higher in its dissolution rate

  16. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    Stoev, M.; Katerski, A.; Williams, A.

    2000-01-01

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  17. Processing of polymers using reactive solvents

    NARCIS (Netherlands)

    Lemstra, P.J.; Kurja, J.; Meijer, H.E.H.; Meijer, H.E.H.

    1997-01-01

    A review with many refs. on processing of polymers using reactive solvents including classification of synthetic polymers, guidelines for the selection of reactive solvents, basic aspects of processing, examples of intractable and tractable polymer/reactive solvent system

  18. Power generator system for HCL reaction

    International Nuclear Information System (INIS)

    Scragg, R. L.; Parker, A. B.

    1984-01-01

    A power generation system includes a nuclear reactor having a core which in addition to generating heat generates a high frequency electromagnetic radiation. An electromagnetic radiation chamber is positioned to receive at least a portion of the radiation generated by the reactor core. Hydrogen and chlorine are connected into the electromagnetic reactor chamber and react with controlled explosive violence when exposed to the radiation from the nuclear reactor. Oxygen is fed into the reactor chamber as a control medium. The resulting gases under high pressure and temperature are utilized to drive a gas turbine generators. In an alternative embodiment the highly ionized gases, hydrogen and chlorine are utilized as a fluid medium for use in magnetohydrodynamic generators which are attached to the electromagnetic reactor chambers

  19. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  20. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  1. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  2. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.

    Science.gov (United States)

    Zhu, Zhiyuan; Snellings, Geert M B F; Koebel, Matthias M; Malfait, Wim J

    2017-05-31

    Polyisocyanate based aerogels combine ultralow thermal conductivities with better mechanical properties than silica aerogel, but these properties critically depend on the nature of the gelation solvent, perhaps more so than on any other parameter. Here, we present a systematic study of the relationship between the polyurethane-polyisocyanurate (PUR-PIR) aerogel microstructure, surface area, thermal conductivity, and density and the gelation solvent's Hansen solubility parameters for an industrially relevant PUR-PIR rigid foam formulation. We first investigated aerogels prepared in acetone-dimethyl sulfoxide (DMSO) blends and observed a minimum in thermal conductivity (λ) and maximum in specific surface area for an acetone:DMSO ratio of 85:15 v/v. We then prepared PUR-PIR aerogels in 32 different solvent blends, divided into three series with δ Dispersion , δ Polarity , and δ H-bonding fixed at 15.94, 11.30, and 7.48 MPa 1/2 , respectively, corresponding to the optimum parameters for the acetone:DMSO series. The aerogel properties display distinct dependencies on the various solubility parameters: aerogels with low thermal conductivity can be synthesized in solvents with a high δ H-bonding parameter (above 7.2) and δ Dispersion around 16.3 MPa 1/2 . In contrast, the δ Polarity parameter is of lesser importance. Our study highlights the importance of the gelation solvent, clarifies the influence of the different solvent properties, and provides a methodology for a targeted search across the solvent chemical space based on the Hansen solubility parameters.

  3. An expert system for steam generator maintenance

    International Nuclear Information System (INIS)

    Remond, A.

    1988-01-01

    The tube bundles in PWR steam generators are, by far, the major source of problems whether they are due to primary and secondary side corrosion mechanisms or to tube vibration-induced wear at tube support locations. Because of differences in SG operating, materials, and fabrication processes, the damage may differ from steam generator to steam generator. MPGV, an expert system for steam generator maintenance uses all steam generator data containing data on materials, fabrication processes, inservice inspection, and water chemistry. It has access to operational data for individual steam generators and contains models of possible degradation mechanisms. The objectives of the system are: · Diagnosing the most probable degradation mechanism or mechanisms by reviewing the entire steam generator history. · Identifying the tubes most exposed to future damage and evaluating the urgency of repair by simulating the probable development of the problem in time. · Establishing the appropriate preventive actions such as repair, inspection or other measures and establishing an action schedule. The system is intended for utilities either for individual plants before each inspection outage or any time an incident occurs or for a set of plants through a central MPGV center. (author)

  4. Natural Language Generation for dialogue: system survey

    NARCIS (Netherlands)

    Theune, Mariet

    Many natural language dialogue systems make use of `canned text' for output generation. This approach may be su±cient for dialogues in restricted domains where system utterances are short and simple and use fixed expressions (e.g., slot filling dialogues in the ticket reservation or travel

  5. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.; Schavemaker, P.H.; Sluis, van der L.; Kling, W.L.; Kurowicka, D.; Cooke, R.M.

    2006-01-01

    Stochastic generation, i.e., electrical power production by an uncontrolled primary energy source, is expected to play an important role in future power systems. A new power system structure is created due to the large-scale implementation of this small-scale, distributed, non-dispatchable

  6. Experimental Study of a Thermoelectric Generation System

    DEFF Research Database (Denmark)

    Zhu, Junpeng; Gao, Junling; Chen, Min

    2011-01-01

    . System-level simulation is carried out using a quasi-one-dimensional numerical model that enables direct comparison with experimental results. The results of both experiment and simulation will provide a foundation to improve and optimize complex thermoelectric generation systems....

  7. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  8. Phase equilibrium data for systems composed of oregano essential oil compounds and hydroalcoholic solvents at T = 298.2 K

    International Nuclear Information System (INIS)

    Capellini, Maria C.; Carvalho, Fernanda H.; Koshima, Cristina C.; Aracava, Keila K.; Gonçalves, Cintia B.; Rodrigues, Christianne E.C.

    2015-01-01

    Highlights: • (Liquid + liquid) equilibrium data for p-cymene, thymol, terpinen-4-ol, α-terpineol, ethanol and water were determined. • Complete second order models were fitted to the experimental data. • Distribution coefficients of thymol, terpinen-4-ol and α-terpineol in pure and mixed solute were evaluated. • Mass fractions of oxygenated compounds and water influenced the distribution coefficients of the essential oil components. • NRTL and UNIQUAC thermodynamic models satisfactorily describe the partition of components and solvent selectivity. - Abstract: The deterpenation process of essential oils consists of terpene removal and a consequent concentration of oxygenated compounds, which increases the sensorial quality, the aromatic potential and the oxidative stability of the oil. Deterpenation of oregano (Origanum vulgare L., Lamiaceae) essential oil, which has been used extensively as a popular medication and as an antimicrobial, antifungal, antimutagenic and a powerful antioxidant agent, can be performed by (liquid + liquid) extraction using hydroalcoholic solvents. This research presents (liquid + liquid) equilibrium data for model systems composed of p-cymene, thymol, terpinen-4-ol and α-terpineol, some of the main components of oregano essential oil, using hydrous ethanol as the solvent with the water mass fraction ranging from 0.28 to 0.41 at T = (298.2 ± 0.1) K. The results show that an increase in the hydration of the alcoholic solvent causes a negative influence on the values of the distribution coefficient for the three oxygenated compounds (thymol, terpinen-4-ol and α-terpineol), with an increase in solvent selectivity. An increase in the content of oxygenated compounds in the terpene-rich phase reduces their distribution coefficients and the selectivity values. In addition, binary interaction parameters were estimated correlating the experimental data using the NRTL and UNIQUAC thermodynamic models, and the global deviations were

  9. Studies on hydrolysis and radiolysis of tetra(2-ethylhexyl)diglycolamide (TEHDGA)/isodecyl alcohol/n-dodecane solvent system

    International Nuclear Information System (INIS)

    Sharma, J.N.; Ruhela, R.; Suri, A.K.; Singh, K.K.; Kumar, M.; Janardhanan, C.; Achutan, P.V.; Manohar, S.; Wattal, P.K.

    2010-01-01

    To establish the use of TEHDGA/isodecylalcohol/n-dodecane solvent system for actinide partitioning from HLW, the hydrolytic and radiolytic stability of the solvent was investigated. Hydrolysis of TEHDGA with nitric acid at room temperature was not observed. Radiolytic degradation was observed and found to increase with increase in absorbed dose. It was found that the presence of n-dodecane enhances the degradation of TEHDGA whereas isodecyl alcohol, the phase modifier, has no such effect. At gamma-radiation dose as high as 0.2 MGy, no significant loss of TEHDGA was observed. The degradation products were identified by GC-MS, the main products were formed by cleavage of ether and amide bonds of TEHDGA molecule. The extraction behavior of Am(III) at 4.0 M HNO 3 does not vary much with increase in absorbed dose, however stripping behavior is affected by the presence of acidic degradation products formed during radiolysis. The findings indicate that the solvent retains its expected extraction and stripping properties up to a high gamma-radiation dose of 0.2 MGy. Irradiated solvent was purified and made suitable for reuse by treating it with 5% w/v Na 2 CO 3 solution, basic alumina and finally by distillation at reduced pressure. (orig.)

  10. Studies on hydrolysis and radiolysis of tetra(2-ethylhexyl)diglycolamide (TEHDGA)/isodecyl alcohol/n-dodecane solvent system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, J.N.; Ruhela, R.; Suri, A.K. [Bhabha Atomic Research Centre, Mumbai (India). Hydrometallurgy Section, Materials Group; Singh, K.K.; Kumar, M. [Bhabha Atomic Research Centre, Mumbai (India). Chemistry Group; Janardhanan, C.; Achutan, P.V.; Manohar, S.; Wattal, P.K. [Bhabha Atomic Research Centre, Mumbai (India). Nuclear Recycle Group

    2010-07-01

    To establish the use of TEHDGA/isodecylalcohol/n-dodecane solvent system for actinide partitioning from HLW, the hydrolytic and radiolytic stability of the solvent was investigated. Hydrolysis of TEHDGA with nitric acid at room temperature was not observed. Radiolytic degradation was observed and found to increase with increase in absorbed dose. It was found that the presence of n-dodecane enhances the degradation of TEHDGA whereas isodecyl alcohol, the phase modifier, has no such effect. At gamma-radiation dose as high as 0.2 MGy, no significant loss of TEHDGA was observed. The degradation products were identified by GC-MS, the main products were formed by cleavage of ether and amide bonds of TEHDGA molecule. The extraction behavior of Am(III) at 4.0 M HNO{sub 3} does not vary much with increase in absorbed dose, however stripping behavior is affected by the presence of acidic degradation products formed during radiolysis. The findings indicate that the solvent retains its expected extraction and stripping properties up to a high gamma-radiation dose of 0.2 MGy. Irradiated solvent was purified and made suitable for reuse by treating it with 5% w/v Na{sub 2}CO{sub 3} solution, basic alumina and finally by distillation at reduced pressure. (orig.)

  11. Limerick Nuclear Generating Station vibration monitoring system

    International Nuclear Information System (INIS)

    Mikulski, R.

    1988-01-01

    Philadelphia Electric Company utilizes a vibration monitoring computer system at its Limerick Nuclear Generating Station to evaluate machine performance. Performance can be evaluated through instantaneous sampling, online static and transient data. The system functions as an alarm monitor, displaying timely alarm data to the control area. The passage of time since the system's inception has been a learning period. Evaluation through continuous use has led to many enhancements in alarm handling and in the acquisition and display of machine data. Due to the system's sophistication, a routine maintenance program is a necessity. This paper describes the system's diagnostic tools and current utilization. System development and maintenance techniques will also be discussed

  12. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  13. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  14. Novel Solvent System for Post Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alfred; Brown, Nathan

    2013-09-30

    The purpose of this project was to evaluate the performance of ION’s lead solvent and determine if ION’s solvent candidate could potentially meet DOE’s target of achieving 90% CO{sub 2} Capture from a 550 MWe Pulverized Coal Plant without resulting in an increase in COE greater than 35%. In this project, ION’s lead solvent demonstrated a 65% reduction in regeneration energy and a simultaneous 35% reduction in liquid to gas ratio (L/G) in comparison to aqMEA at 90% CO{sub 2} capture using actual flue gas at 0.2 MWe. Results have clearly demonstrated that the ION technology is in line with DOE performance expectations and has the potential to meet DOE’s performance targets in larger scale testing environments.

  15. Dispersed generation: impact on the electricity system

    International Nuclear Information System (INIS)

    Delfanti, M.; Merlo, M.; Silvestri, A.

    2009-01-01

    The paper deals with the impact of Dispersed Generation (D G) on the national electricity system, by proposing a practical approach for determining the current capacity of the networks to accepts this form of generation (hosting capacity). With the prospect of an increasing intake of D G, we finally draft a possible evolution of distribution networks based on the integration of energy and information networks. [it

  16. Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.

    Science.gov (United States)

    Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo

    2015-01-01

    This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.

  17. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes.

    Science.gov (United States)

    Borges, Boniek C D; Souza-Junior, Eduardo Jose; Brandt, William C; Loguercio, Alessandro D; Montes, Marcos A J R; Puppin-Rontani, Regina M; Sinhoreti, Mario Alexandre Coelho

    2012-01-01

    This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fourier transform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (pStae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems.

  18. Third-generation imaging sensor system concepts

    Science.gov (United States)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  19. The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent.

    Science.gov (United States)

    Kim, Seong Min; Park, Sung-Bin; Bedair, Tarek M; Kim, Man-Ho; Park, Bang Ju; Joung, Yoon Ki; Han, Dong Keun

    2017-09-01

    Various drug-eluting stents (DESs) have been developed to prevent restenosis after stent implantation. However, DES still needs to improve the drug-in-polymer coating stability and control of drug release for effective clinical treatment. In this study, the cobalt-chromium (CoCr) alloy surface was coated with biodegradable poly(D,L-lactide) (PDLLA) and sirolimus (SRL) mixed with hydrophilic Pluronic F127 additive by using ultrasonic spray coating system in order to achieve a stable coating surface and control SRL release. The degradation of PDLLA/SRL coating was studied under physiological solution. It was found that adding F127 reduced the degradation of PDLLA and improved the coating stability during 60days. The effects of organic solvent such as chloroform and tetrahydrofuran (THF) on the coating uniformity were also examined. It was revealed that THF produced a very smooth and uniform coating compared to chloroform. The patterns of in vitro drug release according to the type of organic solvent and hydrophilic additive proposed the possibility of controllable drug release design in DES. It was found that using F127 the drug release was sustained regardless of the organic solvent used. In addition, THF was able to get faster and controlled release profile when compared to chloroform. The structure of SRL molecules in different organic solvents was investigated using ultra-small angle neutron scattering. Furthermore, the structure of SRL is concentration-dependent in chloroform with tight nature under high concentration, but concentration-independent in THF. These results strongly demonstrated that coating stability and drug release patterns can be changed by physicochemical properties of various parameters such as organic solvents, additive, and coating strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Efficacy of two rotary retreatment systems in removing Gutta-percha and sealer during endodontic retreatment with or without solvent: A comparative in vitro study.

    Science.gov (United States)

    Bhagavaldas, Moushmi Chalakkarayil; Diwan, Abhinav; Kusumvalli, S; Pasha, Shiraz; Devale, Madhuri; Chava, Deepak Chowdary

    2017-01-01

    The aim of this in vitro study was to compare the efficacy of two retreatment rotary systems in the removal of Gutta-percha (GP) and sealer from the root canal walls with or without solvent. Forty-eight extracted human mandibular first premolars were prepared and obturated with GP and AH Plus sealer. Samples were then randomly divided into four groups. Group I was retreated with MtwoR rotary system without solvent, Group II was retreated with MtwoR rotary system with Endosolv R as the solvent, Group III with D-RaCe rotary system without solvent, and Group IV with D-RaCe rotary system and Endosolv R solvent. The cleanliness of canal walls was determined by stereomicroscope (×20) and AutoCAD software. Kruskal-Wallis test and Mann-Whitney U-test were used to compare the data. Results showed that none of the retreatment systems used in this study was able to completely remove the root canal filling material. D-RaCe with or without solvent showed significantly ( P > 0.05) less filling material at all levels compared to MtwoR with/without solvent. Within the limitation of the current study, D-RaCe rotary retreatment system is more effective in removing filling material from root canal walls when compared to MtwoR rotary retreatment system.

  1. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  2. OCSEGen: Open Components and Systems Environment Generator

    Science.gov (United States)

    Tkachuk, Oksana

    2014-01-01

    To analyze a large system, one often needs to break it into smaller components.To analyze a component or unit under analysis, one needs to model its context of execution, called environment, which represents the components with which the unit interacts. Environment generation is a challenging problem, because the environment needs to be general enough to uncover unit errors, yet precise enough to make the analysis tractable. In this paper, we present a tool for automated environment generation for open components and systems. The tool, called OCSEGen, is implemented on top of the Soot framework. We present the tool's current support and discuss its possible future extensions.

  3. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  4. Methodology toward second generation expert systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.

    1989-01-01

    So-called First Generation Expert Systems were aimed at capturing the expert's know-how. Though providing remarkable achievements, this first wave did not give the expected outcome. A new generation is getting out from the laboratories. Instead of remaining at a shallow level of knowledge - that is the unmotivated reasoning processes expressed by an expert when he is forced to tell them - one attempts to re-build this level of knowledge from the first principles which constitute the basis of an expert's knowledge. These systems are called deep knowledge-based, or second generation expert systems. Discussion in the three first parts rests on two examples: A first generation and a half system for process control in nuclear powers plants, than the system EXTRA for alarm processing in nuclear plants, wherein fonctional knowledge is explicitely represented. We show how deep knowledge can be implemented, and the advantages that can be expected from this methodology. Qualitative Physics is discussed in the next part. Future research developments as well as potential payoffs are mentioned [fr

  5. Solvents in Organic Synthesis: Replacement and Multi-step Reaction Systems

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Gómez, Paola Arenas; Folic, Milica

    2008-01-01

    Solvents are widely used as reaction media in the chemical, fine chemical and pharmaceutical industries, but they present numerous environmental, health and safety (EHS) challenges that need to be managed and are subject to increasing regulatory scrutiny. The above issues, together with the princ...

  6. Measurement of infinite dilution activity coefficient and application of modified ASOG model for solvent-polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.; Choi, J. [Kwangwoon University, Seoul (Korea, Republic of); Tochigi, K.; Kojima, K. [Nihon University, Tokyo (Japan)

    1996-04-20

    A gas chromatographic method was used in order to measure vapor-liquid equilibria for solvent (1)-polymer (2) systems in which the polymers were polystyrene, poly(a-methyl) styrene and the advents were benzene toluene cyclohexane methylisobutylketone, ethylacetate, and vinylacetate. The activity coefficients of solvents for solvent (1)-polymer (2) systems were measured at infinite dilution and the modified ASOG (Analytical Solution of Group) model was suggested to describe vapor-liquid equilibria of those systems within a range of temperatures 423.15K through 498.15K. The model consists of the original ASOG and the free volume term. An external degree of freedom in the free volume term empirically became to a C1={alpha}+{beta}/T as a function of temperature. Each tern in the modified ASOG model is based on the weight fraction. The external degree of freedom in the model was estimated by experimental data within a range of temperatures. As a result of doing it the infinite dilution activity coefficients calculated were agreed with the experimental data within an error of 0.1%. 27 refs., 3 figs., 7 tabs.

  7. Fractionation of lemon essential oil by solvent extraction: Phase equilibrium for model systems at T = 298.2 K

    International Nuclear Information System (INIS)

    Koshima, Cristina C.; Capellini, Maria C.; Geremias, Ivana M.; Aracava, Keila K.; Gonçalves, Cintia B.; Rodrigues, Christianne E.C.

    2012-01-01

    Highlights: ► Deterpenation of lemon oil by solvent extraction using hydrous ethanol. ► Limonene, γ-terpinene, β-pinene, and citral were used to simulate the oil. ► Citral shows a higher distribution coefficient than the hydrocarbons. ► Terpenic hydrocarbons exhibit very similar phase separation behaviour. ► NRTL and UNIQUAC models provided a good description of the phase equilibrium. - Abstract: The fractioning of lemon essential oil can be performed by liquid–liquid extraction using hydrous ethanol as a solvent. A quaternary mixture composed of limonene, γ-terpinene, β-pinene, and citral was used to simulate lemon essential oil. In this paper, we present (liquid + liquid) equilibrium data that were experimentally determined for systems containing essential oil compounds, ethanol, and water at T = 298.2 K. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were less than 0.0053 in all systems, indicating the accuracy of these molecular models in describing our systems. The results show that as the water content in the solvent phase increased, the values of the distribution coefficients decreased, regardless of the type of compound studied. However, the oxygenated compound always showed the highest distribution coefficient among the components of the essential oil, thus making deterpenation of the lemon essential oil a feasible process.

  8. An electrochemical pumping system for on-chip gradient generation.

    Science.gov (United States)

    Xie, Jun; Miao, Yunan; Shih, Jason; He, Qing; Liu, Jun; Tai, Yu-Chong; Lee, Terry D

    2004-07-01

    Within the context of microfluidic systems, it has been difficult to devise pumping systems that can deliver adequate flow rates at high pressure for applications such as HPLC. An on-chip electrochemical pumping system based on electrolysis that offers certain advantages over designs that utilize electroosmotic driven flow has been fabricated and tested. The pump was fabricated on both silicon and glass substrates using photolithography. The electrolysis electrodes were formed from either platinum or gold, and SU8, an epoxy-based photoresist, was used to form the pump chambers. A glass cover plate and a poly(dimethylsiloxane) (PDMS) gasket were used to seal the chambers. Filling of the chambers was accomplished by using a syringe to inject liquid via filling ports, which were later sealed using a glass cover plate. The current supplied to the electrodes controlled the rate of gas formation and, thus, the resulting fluid flow rate. At low backpressures, flow rates >1 microL/min have been demonstrated using polymer electrospray nozzle, we have confirmed the successful generation of a solvent gradient via a mass spectrometer.

  9. Sequence trajectory generation for garment handling systems

    OpenAIRE

    Liu, Honghai; Lin, Hua

    2008-01-01

    This paper presents a novel generic approach to the planning strategy of garment handling systems. An assumption is proposed to separate the components of such systems into a component for intelligent gripper techniques and a component for handling planning strategies. Researchers can concentrate on one of the two components first, then merge the two problems together. An algorithm is addressed to generate the trajectory position and a clothes handling sequence of clothes partitions, which ar...

  10. Generating units performances: power system requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C; Girard, N; Lefebvre, H

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  11. Next Generation Nuclear Plant System Requirements Manual

    International Nuclear Information System (INIS)

    Not Listed

    2008-01-01

    System Requirements Manual for the NGNP Project. The Energy Policy Act of 2005 (H.R. 6; EPAct), which was signed into law by President George W. Bush in August 2005, required the Secretary of the U.S. Department of Energy (DOE) to establish a project to be known as the Next Generation Nuclear Plant (NGNP) Project. According to the EPAct, the NGNP Project shall consist of the research, development, design, construction, and operation of a prototype plant (to be referred to herein as the NGNP) that (1) includes a nuclear reactor based on the research and development (R and D) activities supported by the Generation IV Nuclear Energy Systems initiative, and (2) shall be used to generate electricity, to produce hydrogen, or to both generate electricity and produce hydrogen. The NGNP Project supports both the national need to develop safe, clean, economical nuclear energy and the Nuclear Hydrogen Initiative (NHI), which has the goal of establishing greenhouse-gas-free technologies for the production of hydrogen. The DOE has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the reactor concept to be used for the NGNP because it is the only near-term Generation IV concept that has the capability to provide process heat at high-enough temperatures for highly efficient production of hydrogen. The EPAct also names the Idaho National Laboratory (INL), the DOE's lead national laboratory for nuclear energy research, as the site for the prototype NGNP

  12. Electric distribution systems and embedded generation capacity

    International Nuclear Information System (INIS)

    Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P.

    2006-01-01

    The main policy issues of European States are sustainable energy supply promotion and liberalization of energy markets, which introduced market competition in electricity production and created support mechanisms to encourage renewable electricity production and consumption. As a result of liberalization, any generator, including small-scale and renewable energy based units, can sell electricity on the free market. In order to meet future sustainability targets, connection of a higher number of Distributed Generation (DG) units to the electrical power system is expected, requiring changes in the design and operation of distribution electricity systems, as well as changes in electricity network regulation. In order to assist distribution system operators in planning and managing DG connections and in maximizing DG penetration and renewable sources exploitation, this paper proposed a reconfiguration methodology based on a Genetic Algorithm (GA), that was tested on a 70-bus system with DG units. The simulation results confirmed that the methodology represents a suitable tool for distribution system operators when dealing with DG capacity expansion and power loss issues, providing information regarding the potential penetration network-wide and allowing maximum exploitation of renewable generation. 35 refs., 4 tabs., 6 figs

  13. LRSYS, PASCAL LR(1) Parser Generator System

    International Nuclear Information System (INIS)

    O'Hair, K.

    1991-01-01

    Description of program or function: LRSYS is a complete LR(1) parser generator system written entirely in a portable subset of Pascal. The system, LRSYS, includes a grammar analyzer program (LR) which reads a context-free (BNF) grammar as input and produces LR(1) parsing tables as output, a lexical analyzer generator (LEX) which reads regular expressions created by the REG process as input and produces lexical tables as output, and various parser skeletons that get merged with the tables to produce complete parsers (SMAKE). Current parser skeletons include Pascal, FORTRAN 77, and C. In addition, the CRAY1, DEC VAX11 version contains LRLTRAN and CFT- FORTRAN 77 skeletons. Other language skeletons can easily be added to the system. LRSYS is based on the LR program (NESC Abstract 822)

  14. An expert system for diesel generator diagnostics

    International Nuclear Information System (INIS)

    Bley, D.C.; Read, J.W.; Kaplan, S.; Liming, J.K.; Brosee, N.M.; Hanley, D.W.

    1987-01-01

    The idea of developing artificial intelligence (AI) systems to capture the knowledge of human experts is receiving much attention these days. The idea is even more attractive when important expertise resides within a single individual, especially one who is nearing retirement and who has not otherwise recorded or passed along his important knowledge and thought processes. The diesel generators at Pilgrim Nuclear Power Station have performed exceptionally well, primarily due to the care and attention of one man. Therefore, the authors are constructing an expert system for the diagnosis of diesel generator problems at Pilgrim. This paper includes a description of the expert system design and operation, examples from the knowledge base, and sample diagnoses, so the reader can observe the process in action

  15. Protective, Modular Wave Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  16. Expansion planning for electrical generating systems

    International Nuclear Information System (INIS)

    1984-01-01

    The guidebook outlines the general principles of electric power system planning in the context of energy and economic planning in general. It describes the complexities of electric system expansion planning that are due to the time dependence of the problem and the interrelation between the main components of the electric system (generation, transmission and distribution). Load forecasting methods are discussed and the principal models currently used for electric system expansion planning presented. Technical and economic information on power plants is given. Constraints imposed on power system planning by plant characteristics (particularly nuclear power plants) are discussed, as well as factors such as transmission system development, environmental considerations, availability of manpower and financial resources that may affect the proposed plan. A bibliography supplements the references that appear in each chapter, and a comprehensive glossary defines terms used in the guidebook

  17. Automatic code generation for distributed robotic systems

    International Nuclear Information System (INIS)

    Jones, J.P.

    1993-01-01

    Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system

  18. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction

    International Nuclear Information System (INIS)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-01-01

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter’s two-component sticky hard sphere model with a Percus–Yevick closure to solve the Ornstein–Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms. (paper)

  19. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction.

    Science.gov (United States)

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-11-16

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  20. Transposon mutations in the flagella biosynthetic pathway of the solvent-tolerant Pseudomonas putida S12 result in a decreased expression of solvent efflux genes

    NARCIS (Netherlands)

    Kieboom, J; Bruinenberg, R; Keizer-Gunnink, [No Value; de Bont, JAM

    2001-01-01

    Fourteen solvent-sensitive transposon mutants were generated from the solvent-tolerant Pseudomonas putida strain S12 by applying the TnMOD-KmO mutagenesis system. These mutants were unable to grow in the presence of octanol and toluene. By cloning the region flanking the transposon insertion point a

  1. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  2. Some regularities in formation and solvent extraction of complexes in metal-salicylic acid or its derivative- organic base systems

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Fadeeva, V.I.; Tikhomirova, T.I.

    1982-01-01

    The influence of concentrations of the reagents, pH and solvent on the conditions for the formation and extraction of Sc, Ti, Zr, Hf, Th complexes has been examined in salicylic acid (H 2 Sal)-heterocyclic amine systems. The extraction chemism and factors, which affect the reactions between the metal ions and the ligands, are discussed. It has been shown that Zr, Hf, Ti form species of ion associate type, Sc and Th form different-ligand complexes under conditions for interphase equilibrium in a Me-H 2 Sal-heterocyclic amine system

  3. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  4. An Improved Apparatus for Vapour-Liquid Equilibria Measurement in Polymer + Solvent Systems at Higher Temperatures: a Study of the Water + Poly(ethylene glycol) System.

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Jan; Bogdanić, Grozdana; Wichterle, Ivan

    2017-01-01

    Roč. 454, 25 DEC (2017), s. 111-115 ISSN 0378-3812 R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : correlation * experimental data * polymer-solvent system Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.473, year: 2016

  5. Examination of nuclear systems of fourth generation

    International Nuclear Information System (INIS)

    2015-01-01

    This report proposes a detailed discussion of the six nuclear systems selected by the Generation IV International Forum with the objective of coordinating research and development activities which should result in the deployment of nuclear systems (reactors and associated fuel cycle installations) of fourth generation by the second half of the 21. century. These systems are: sodium cooled fast reactors (SFR), very high temperature reactors (VHTR), gas cooled fast reactors (GFR), lead cooled fast reactors (LFR) or lead bismuth eutectic reactors (LBE), molten salt reactors (MSR), and supercritical water reactors (SCWR). Fast systems are interesting as they favour the transmutation of fertile materials into fissile materials. History and perspectives of development, main characteristics, management of safety functions, risk analysis, impact on the environment, radiation protection and decommissioning, concept maturity and R and D needs are discussed for each of these systems. A comparison is reported in terms of main characteristics of reactors, of neutron characteristics and reactivity control, of sensitivity to cooling losses, of confinement function, of exploitation safety, of in-service inspection, of behaviour in case of severe accident, of toxicity of chemical substances, of sensitivity to aggressions (seism), of concept maturity and technological difficulties. The report also proposes a review of the various fuels which can be used in these different systems and which have been considered as eligible by the International Forum: oxides, carbides, nitrides, metals, waste processing. The last part addresses the transmutation of long life radioactive elements: physics, context, assessment of scenarios soundness, influence of transmutation on installations and transports

  6. Multimegawatt disk generator system for space applications

    International Nuclear Information System (INIS)

    Solbes, A.; Iwata, H.

    1988-01-01

    The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output

  7. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  8. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    findings indicate that hydrocarbon solubility does not exert a strong influence on hydrocarbon behavior in the systems studied. Other factors such as coal composition and maceral content, surface processes (physisorption), or other molecular interactions appear to affect the partitioning of hydrocarbons within the coal–supercritical CO2 system. Resolving the extent to which these factors might affect hydrocarbon behavior under different geological settings is important to efforts seeking to model petroleum generation, fractionation and expulsion from coal beds and to delineate potential hydrocarbon fate and transport in geologic CO2 sequestration settings.

  9. Implementation of optimum solar electricity generating system

    International Nuclear Information System (INIS)

    Singh, Balbir Singh Mahinder; Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-01-01

    Under the 10 th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels

  10. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  11. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  12. Corrosion products in power generating systems

    International Nuclear Information System (INIS)

    Lister, D.H.

    1980-06-01

    The important mechanisms of corrosion and corrosion product movement and fouling in the heat transport systems of thermal electric generating stations are reviewed. Oil- and coal-fired boilers are considered, along with nuclear power systems - both direct and indirect cycle. Thus, the fireside and waterside in conventional plants, and the primary coolant and steam-raising circuits in water-cooled reactors, are discussed. Corrosion products in organic- and liquid-metal-cooled reactors also are shown to cause problems if not controlled, while their beneficial effects on the cooling water side of condensers are described. (auth)

  13. Electrochemistry as a basis for radiochemical generator systems

    International Nuclear Information System (INIS)

    Bentley, G.E.; Steinkruger, F.J.; Wanek, P.M.

    1984-01-01

    Ion exchange and solvent extraction techniques have been used extensively as the basis for radiochemical generators exploiting the differences in absorption behavior between the parent nuclide and its useful daughter nuclide. Many parent/daughter pairs of nuclides have sufficiently different polarographic half wave potentials so that their electrochemical behavior may be exploited for rapid separation of the daughter from the parent with minimal contamination of the product with the parent isotope

  14. Photodegradation of bifenthrin and deltamethrin-effect of copper amendment and solvent system.

    Science.gov (United States)

    Tariq, Saadia Rashid; Ahmed, Dildar; Farooq, Amna; Rasheed, Sonia; Mansoor, Mubarkah

    2017-02-01

    The photodegradation of bifenthrin and deltamethrin was studied in the presence of Cu salts and two different solvents, methanol and acetonitrile. Results of the study showed that in the absence of any metal salt, the two pesticides degraded more rapidly in acetonitrile than in methanol. After 24 h of UV irradiation, 70% of deltamethrin had degraded in acetonitrile, while only 41% bifenthrin degraded in this solvent. In methanol, bifenthrin degraded at a much enhanced rate than in acetonitrile while the rate of degradation of deltamethrin was comparable to that in acetonitrile. The photodegradation was further enhanced by the addition of copper to the solution of bifenthrin and deltamethrin in acetonitrile. The rate of photodegradation of deltamethrin increased from 2.4 × 10 -2 to 3.5 × 10 -2  h -1 in acetonitrile and 2.5 × 10 -2 to 3.4 × 10 -2  h -1 in methanol after the addition of copper. Similarly, the rate of photodegradation of bifenthrin was increased from 5.0 × 10 -3 to 9.0 × 10 -3  h -1 in acetonitrile and 7.0 × 10 -3 to 9.05 × 10 -3  h -1 in methanol with the addition of copper. Thus, copper has the potential to enhance the photodegradation of bifenthrin and deltamethrin in both the solvents.

  15. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  16. Multimegawatt disk generator system for space applications

    International Nuclear Information System (INIS)

    Solbes, H.; Iwata, H.

    1988-01-01

    The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output. Critical development issues relevant to the development of such power systems are identified and discussed. A R and D plan aimed at establishing the technical feasibility of the proposed system is also presented

  17. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    Science.gov (United States)

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  18. MOLIERE: Automatic Biomedical Hypothesis Generation System.

    Science.gov (United States)

    Sybrandt, Justin; Shtutman, Michael; Safro, Ilya

    2017-08-01

    Hypothesis generation is becoming a crucial time-saving technique which allows biomedical researchers to quickly discover implicit connections between important concepts. Typically, these systems operate on domain-specific fractions of public medical data. MOLIERE, in contrast, utilizes information from over 24.5 million documents. At the heart of our approach lies a multi-modal and multi-relational network of biomedical objects extracted from several heterogeneous datasets from the National Center for Biotechnology Information (NCBI). These objects include but are not limited to scientific papers, keywords, genes, proteins, diseases, and diagnoses. We model hypotheses using Latent Dirichlet Allocation applied on abstracts found near shortest paths discovered within this network, and demonstrate the effectiveness of MOLIERE by performing hypothesis generation on historical data. Our network, implementation, and resulting data are all publicly available for the broad scientific community.

  19. Entropy generation in the flow system generated in between two ...

    Indian Academy of Sciences (India)

    plates for various applications. The entropy ... entropy generation was the same as the variation of the boundary layer thickness. A design analysis ... The second law analysis on a flat plate fin array under cross flow was conducted by Lin ...

  20. Preparation of Second Generation Ionic Liquids by Efficient Solvent-Free Alkylation of N-Heterocycles with Chloroalkanes

    Directory of Open Access Journals (Sweden)

    Werner Bonrath

    2008-01-01

    Full Text Available Non-conventional techniques, such as microwave (MW and power ultrasound(US as well as combined MW/US irradiation, have been used to promote one-potsynthesis of second-generation ionic liquids (ILs, cutting down reaction times andimproving yields. However, the use of chloroalkanes in the alkylation of N-heterocyclesrequires more drastic conditions if results are to match those obtained with more reactivealkyl halides. The present paper describes a series of MW- or MW/US-promoted ILpreparations starting from chloroalkanes and classic heterocycles (1-methylimidazole,pyridine and 1-methylpyrrolidine. When reactions were carried out under conventionalheating in an oil bath they required longer reaction times and gave poorer yields. 1H-NMRanalysis and ion-exchange chromatography showed that the present solventless procedureafforded ILs of satisfactory purity. The observed high yields (usually 70-98% isolated,and short reaction times showed that a straightforward access to ILs can be also achievedwith the use of alkyl chlorides, resulting in a considerable reduction of costs.

  1. Liquid level control system for vapour generator

    International Nuclear Information System (INIS)

    Singh, G.

    1984-01-01

    A system for regulating the liquid level in a vapor generator, in which the incoming flow of feed liquid is regulated in response to the difference between the measured liquid level and a reference level, the difference between the exiting vapor mass flow rate and the incoming liquid mass flow rate, and a function of the measured incoming liquid temperature. The temperature function produces a gain value, which increases in response to decreasing incoming liquid temperature. The purpose of the temperature function is to stabilize the level control under transient conditions (e.g. sudden lose of load). (author)

  2. Pec power generation system using pure energy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K; Sonai, A; Kano, A [Toshiba International Fuel Cells Corp. (Japan). Cell Technology Development Dept.; Yatake, T [Toshiba International Fuel Cells Corp. (Japan). Plant Engineering Dept.

    2002-07-01

    A polymer electrolyte fuel cell (PEFC) power generation system using pure hydrogen was developed by Toshiba International Fuel Cells (TIFC), Japan, under the sponsorship of the World Energy Network (WE-NET) Project. The goals of the project consist of the construction of 30 kilowatt power generation plant for stationary application and target electrical efficiency of over 50 per cent. Two critical technologies were investigated for high utilization stack, as high hydrogen utilization operation represents one of the most important items for the achievement of target efficiency. The first technology examined was the humidification method from cathode side, while the second was the two-block configuration, which is arranged in series in accordance with the flow of hydrogen. Using these technologies as a basis for the work, a 5 kilowatt short stack was developed, and a steady performance was obtained under high hydrogen utilization of up to 98 per cent. It is expected that by March 2003 the design of the hydrogen fueled 30 kilowatt power generation plant will be completed and assembled. 1 ref., 1 tab., 11 figs.

  3. Automatic motion inhibit system for a nuclear power generating system

    International Nuclear Information System (INIS)

    Musick, C.R.; Torres, J.M.

    1977-01-01

    Disclosed is an automatic motion inhibit system for a nuclear power generating system for inhibiting automatic motion of the control elements to reduce reactor power in response to a turbine load reduction. The system generates a final reactor power level setpoint signal which is continuously compared with a reactor power signal. The final reactor power level setpoint is a setpoint within the capacity of the bypass valves to bypass steam which in no event is lower in value than the lower limit of automatic control of the reactor. If the final reactor power level setpoint is greater than the reactor power, an inhibit signal is generated to inhibit automatic control of the reactor. 6 claims, 5 figures

  4. New Generation Power System for Space Applications

    Science.gov (United States)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  5. Olive oil glycero lysis with the immobilized lipase Candida antarctica in a solvent free system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A. K.; Mukhopadhyay, M.

    2012-11-01

    In the present work, the solvent free lipase glycerolysis of olive oil for the production of monoglyceride (MG) and diglyceride (DG) with an immobilized Lipase B Candida antarctica was studied. The experiments were performed in batch mode by varying different process parameters. The Results showed that the MG and DG yields were dependent on operating conditions such as time, temperature, glycerol/ oil molar ratio, enzyme concentration and the water content in glycerol. The optimum operating time for maximum MG, 26 wt% and DG, 30 wt% production was 3h. The initial reaction rate was studied by varying different process parameters for 1h. The initial reaction rate increased at 30 degree centigrade temperature, 2:1 glycerol/oil molar ratio, 3.5% (w/w) water content in glycerol and 0.015g of enzyme loading. Comparative data for MG and DG yields for different oils and enzyme combinations were presented.

  6. Integrated control of next generation power system

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  7. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  8. Selective evolutionary generation systems: Theory and applications

    Science.gov (United States)

    Menezes, Amor A.

    This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight

  9. (Liquid + liquid) equilibrium data of (water + phosphoric acid + solvents) systems at T = (308.2 and 318.2) K

    International Nuclear Information System (INIS)

    Ghanadzadeh Gilani, H.; Ghanadzadeh Gilani, A.; Shekarsaraee, S.; Uslu, H.

    2012-01-01

    Highlights: ► Phase equilibria of the (water + PA + solvents) systems were investigated. ► Experimental LLE data were correlated with NRTL and UNIQUAC models. ► Distribution coefficients and separation factors were evaluated. - Abstract: Ternary equilibrium data for the mixtures of {water + phosphoric acid + organic solvent (cyclohexane, methylcyclohexane, and toluene)} were determined at T = (308.2 and 318.2) K and atmospheric pressure. Solubility data were determined by the cloud-point titration method. In order to obtain the tie-line data, the concentration of each phase was determined by acidimetric titration, the Karl–Fischer technique, and refractive index measurements. The experimental tie-line data were correlated using the UNIQUAC and NRTL models. The reliability of the experimental data was determined through the Othmer–Tobias and Hand plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions. The Katritzky LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems.

  10. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    Science.gov (United States)

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2016-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon the solvent AsahiKlin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned.

  12. System Development from Organic Solvents to Ionic Liquids for Synthesiz-ing Ascorbyl Esters with Conjugated Linoleic Acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Schultz, Lise; Guo, Zheng

    2012-01-01

    . Results show that only Novozym® 435 turned out to be a useful enzymatic preparation for the production of ascorbyl-CLA ester. The optimum reaction conditions in the or-ganic solvent system were 4 h at 55°C and at a molar ratio of 5 (CLA/ascorbic acid). The esterification reaction was trans......-ferred to an ionic liquid system for the purpose of improving solubility of the polar substrate and avoiding the application of organic solvents. From screening experiments, it was evident that only methyltrioctylammonium triflouroacetate (tO-MA·TFA) could provide a proper reaction environment for production...... of ascorbyl-CLA ester when using Novozym® 435 as biocatalyst. It was possible to significantly increase the productivity (150 g/l) through the increase of ascorbic acid sol-ubility in ionic liquids by super saturation together with the increase of reaction temperature to 70°C, far beyond than that in organic...

  13. Solvent extraction technology of 90Mo-sup(99m)Tc system: design and operational considerations

    International Nuclear Information System (INIS)

    Noronha, O.P.D.; Sewatkar, A.B.

    1983-01-01

    The design features of 99 Mo-sup(99m)Tc solvent extraction system have been reviewed. An improved semi-automated system has been improvised using the basic equipment of an indigenous unit along with other accessories, and with an added element of radiation protection to handle daily about 300-600 millicurie amounts of reactor-produced very low specific activity 99 Mo. The system has been used routinely for obtaining sup(99m)TcO 4 - - required for diagnostic purposes in nuclear medicine for the last twelve years. The performance characteristics of this unit with respect to yield and purity of 99 TcO 4 - - consistency of the process, the radiation dose to personnel and related health physics aspects have been evaluated. (author)

  14. DIDACTIC ENGINEERING: DESIGNING NEW GENERATION LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Nail K. Nuriyev

    2016-09-01

    Full Text Available Introduction: the article deals with the organisation of training activities in the man-made environment. Didactic engineering is seen as a methodology within which problems of didactics are solved with application of pedagogical, psychological, engineering methods. It is obvious that in order to implement the training of future engineers in a competence-based format (according to educational standard a new type of teaching system is needed, with new capacities (properties. These systems should set each student towards the development of professionally significant (key abilities, taking into account his/her psychological characteristics; ensure training on the verge of permissible difficulties (developing training, and thereby achieve rapid development of key skills, through his/her zone of “immediate development”; to diagnose the quality of possession of a competence in the academic sense. For the objectivity and reliability of assessment of the level and depth of learned knowledge it is necessary to generate this evaluation in a metric format. As a result, we created a didactic system, which combines all the listed properties and the properties of classical systems. This allowed us to construct a new generation of didactic systems. Materials and Methods: the research is based on a systematic analysis of the activity of an engineer; on models of “zones of immediate development” by L. S. Vygotsky; on “developmental education” by L. N. Zankova; on the use of pedagogical and psychological patterns as well as taxonomic methods, didactic engineering, theory of probability and mathematical statistics. Results: constructed is a model for training engineers in the metric format of competence, which envisages a rapid development of students project and constructive abilit ies based on their knowledge learned. Discussion and Conclusions: the parameters defining the probability of engineer’s success have been described; the taxonomic scale

  15. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  16. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  17. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  18. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  19. Environmental control implications of generating electric power from coal. Appendix B. Assessment of status of technology for solvent refining of coal. 1977 technology status report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report reviews the technology and environmental impacts of the solvent refined coal process to produce clean solid fuel (SRC-I). Information on SRC-I pilot plant operation, process design, and economics is presented. A bibliography of current available literature in this technology area, divided into fourteen categories with abstracts of the references, is appended. The history, current operations, and future plans for the SRC pilot plants at Fort Lewis and Wilsonville are reviewed. Process data generated at these pilot plants for various coals are used as a basis for a conceptual commercial plant design with a capacity to process 20,000 tons per day (TPD) of prepared coal. Block flow diagrams, material balances, an energy balance, and a list of raw materials for the plant are also provided. Capital cost estimates for a 20,000 TPD coal feed plant derived from four prior economic studies range from $706 million to $1093 million in 1976 dollars. The annual net operating cost is estimated at $238.6 million (1976 dollars) and the average product cost at $2.71/MM Btu based on utility financing (equity 25:debt 75) with $25/ton as the delivered price of the dry coal. The report also discusses special technical considerations associated with some of the process operations and major equipment items and enumerates technical risks associated with the commercialization of the SRC-I process.

  20. Next Generation Germanium Systems for Safeguards Applications

    International Nuclear Information System (INIS)

    Dreyer, J.; Burks, M.; Hull, E.

    2015-01-01

    We are developing the latest generation of highly portable, mechanically cooled germanium systems for safeguard applications. In collaboration with our industrial partner, Ph.D.s Co, we have developed the Germanium Gamma Ray Imager (GeGI), an imager with a 2π field of view. This instrument has been thoroughly field tested in a wide range of environments and have performed reliably even in the harshest conditions. The imaging capability of GeGI complements existing safeguards techniques by allowing for the spatial detection, identification, and characterization of nuclear material. Additionally, imaging can be used in design information verification activities to address potential material diversions. Measurements conducted at the Paducah Gaseous Diffusion Plant highlight the advantages this instrument offers in the identification and localization of LEU, HEU and Pu holdup. GeGI has also been deployed to the Savannah River Site for the measurement of radioactive waste canisters, providing information valuable for waste characterization and inventory accountancy. Measuring 30 x 15 x 23 cm and weighing approximately 15 kg, this instrument is the first portable germanium-based imager. GeGI offers high reliability with the convenience of mechanical cooling, making this instrument ideal for the next generation of safeguards instrumentation. (author)

  1. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    Science.gov (United States)

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A systematic approach to solvent selection based on cohesive energy densities in a molecular bulk heterojunction system

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bright; Duong, Duc T.; Dang, Xuan-Dung; Kim, Chunki; Granstrom, Jimmy; Nguyen, Thuc-Quyen [Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106 (United States); Tamayo, Arnold [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401 (United States)

    2011-03-18

    The solubilities of 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP(TBFu){sub 2}) and [6,6]-phenyl-C{sub 71}-butyric acid methyl ester (PC{sub 71}BM) in a series of solvents are measured, and this data is used to calculate the Hansen solubility parameters of the two materials. The dispersion, polar, and H-bonding parameters of DPP(TBFu){sub 2} and PC{sub 71}BM were found to be (19.3, 4.8, 6.3) and (20.2, 5.4, 4.5) MPa{sup 1/2}, respectively, with an error of {+-} 0.8 MPa{sup 1/2}. Based on the solubility properties of the two materials, three new solvents (thiophene, trichloroethylene and carbon disulfide) were utilized for the DPP(TBFu){sub 2}:PC{sub 71}BM system which, after device optimization, led to power conversion efficiencies up to 4.3%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent

    NARCIS (Netherlands)

    Altena, Frank W.; Smolders, C.A.

    1982-01-01

    A numerical method for the calculation of the binodal of liquid-liquid phase separation in a ternary system is described. The Flory-Huggins theory for three-component systems is used. Binodals are calculated for polymer/solvent/nonsolvent systems which are used in the preparation of asymmetric

  4. Avoided operating costs in thermal generating systems

    International Nuclear Information System (INIS)

    Chowdhury, N.; Billinton, R.; Gupta, R.

    1995-01-01

    A simple and straightforward technique was developed to assess avoided system operating costs associated with non-utility generation (NUG). The technique was based on optimum loading configurations of the committed units both before and after the inclusion of NUG energy. The salient features of the technique were presented in this paper. Assessment of avoided operating cost with deterministic and probabilistic criteria were explained. A time differentiated price system was adopted in the algorithms to reflect the different value placed on purchased price by a utility at different times of the day. The algorithms show the utility effects of dispatchable and non-dispatchable NUG energies. The IEEE Reliability Test System (RTS) was utilized for numerical analysis. Results were illustrated. It was found that sensitivity studies similar to those performed on the IEEE-RTS could be utilized to determine the amount of energy and the time period during which utilities and NUGs can maximize their economic benefits. 7 refs., 5 figs., 1 tab

  5. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  6. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.; Inayat, Salman Bin; Smith, Casey Eben

    2013-01-01

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  7. Multi-protocol header generation system

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David A.; Ignatowski, Michael; Jayasena, Nuwan; Loh, Gabriel

    2017-09-05

    A communication device includes a data source that generates data for transmission over a bus, and a data encoder that receives and encodes outgoing data. An encoder system receives outgoing data from a data source and stores the outgoing data in a first queue. An encoder encodes outgoing data with a header type that is based upon a header type indication from a controller and stores the encoded data that may be a packet or a data word with at least one layered header in a second queue for transmission. The device is configured to receive at a payload extractor, a packet protocol change command from the controller and to remove the encoded data and to re-encode the data to create a re-encoded data packet and placing the re-encoded data packet in the second queue for transmission.

  8. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  9. A novel dipicolinamide-dicarbollide synergistic solvent system for actinide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Ajay Bhagwan [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Pune Univ. (India). Garware Research Centre; Pathak, Priyanath; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Shinde, Vaishali Sanjay [Pune Univ. (India). Garware Research Centre; Alyapyshev, M.Yu.; Babain, Vasiliy A. [Federal Agency for Atomic Energy, St. Petersburg (Russian Federation). V.G. Khlopin Radium Institute

    2014-09-01

    Solvent extraction studies of several actinide ions such as Am(III), U(VI), Np(IV), Np(VI), Pu(IV) were carried out from nitric acid medium using a synergistic mixture of N,N'-diethyl-N,N'-di(para)fluorophenyl-2,6-dipicolinamide, (DEtD(p)FPhDPA, DPA), and hydrogen dicarbollylcobaltate (H{sup +}CCD{sup -}) dissolved in phenyltrifluoromethylsulphone (PTMS). The effects of different parameters such as aqueous phase acidity (0.01-3 M HNO{sub 3}), oxidation states of metal ions, ligand concentration, nature of diluent and temperature on the extraction behavior of metal ions were studied. The extracted Am(III) species was determined as H{sup +}[Am(DPA){sub 2}(CCD){sub 4}]{sup -} With increasing aqueous phase acidities, the extractability of both Am(III) and Eu(III) was found to decrease. The synergistic mixture showed better extraction in mM concentrations as compared to previously studied dipicolinamides. The thermodynamic studies were performed to calculate heat of extraction reaction and the extraction constants. The proposed synergistic mixture showed good extraction for all the metal ions, though lanthanide actinide separation results are not encouraging. (orig.)

  10. Development of a New Binary Solvent System Using Ionic Liquids as Additives to Improve Rotenone Extraction Yield from Malaysia Derris sp.

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2015-01-01

    Full Text Available Rotenone is one of the prominent insecticidal isoflavonoid compounds which can be isolated from the extract of Derris sp. plant. Despite being an effective compound in exterminating pests in a minute concentration, procuring a significant amount of rotenone in the extracts for commercialized biopesticides purposes is a challenge to be attained. Therefore, the objective of this study was to determine the best ionic liquid (IL which gives the highest yield of rotenone. The normal soaking extraction (NSE method was carried out for 24 hrs using five different types of binary solvent systems comprising a combination of acetone and five respective ionic liquids (ILs of (1 [BMIM] Cl; (2 [BMIM] OAc; (3 [BMIM] NTf2; (4 [BMIM] OTf; and (5 [BMPy] Cl. Next, the yield of rotenone, % (w/w, and its concentration (mg/mL in dried roots were quantitatively determined by means of RP-HPLC and TLC. The results showed that a binary solvent system of [BMIM] OTf + acetone was the best solvent system combination as compared to other solvent systems (P<0.05. It contributed to the highest rotenone content of 2.69 ± 0.21% (w/w (4.04 ± 0.34 mg/mL at 14 hrs of exhaustive extraction time. In conclusion, a combination of the ILs with a selective organic solvent has been proven to increase a significant amount of bioactive constituents in the phytochemical extraction process.

  11. Next-generation systemic acquired resistance.

    Science.gov (United States)

    Luna, Estrella; Bruce, Toby J A; Roberts, Michael R; Flors, Victor; Ton, Jurriaan

    2012-02-01

    Systemic acquired resistance (SAR) is a plant immune response to pathogen attack. Recent evidence suggests that plant immunity involves regulation by chromatin remodeling and DNA methylation. We investigated whether SAR can be inherited epigenetically following disease pressure by Pseudomonas syringae pv tomato DC3000 (PstDC3000). Compared to progeny from control-treated Arabidopsis (Arabidopsis thaliana; C(1)), progeny from PstDC3000-inoculated Arabidopsis (P(1)) were primed to activate salicylic acid (SA)-inducible defense genes and were more resistant to the (hemi)biotrophic pathogens Hyaloperonospora arabidopsidis and PstDC3000. This transgenerational SAR was sustained over one stress-free generation, indicating an epigenetic basis of the phenomenon. Furthermore, P(1) progeny displayed reduced responsiveness of jasmonic acid (JA)-inducible genes and enhanced susceptibility to the necrotrophic fungus Alternaria brassicicola. This shift in SA- and JA-dependent gene responsiveness was not associated with changes in corresponding hormone levels. Instead, chromatin immunoprecipitation analyses revealed that SA-inducible promoters of PATHOGENESIS-RELATED GENE1, WRKY6, and WRKY53 in P(1) plants are enriched with acetylated histone H3 at lysine 9, a chromatin mark associated with a permissive state of transcription. Conversely, the JA-inducible promoter of PLANT DEFENSIN1.2 showed increased H3 triple methylation at lysine 27, a mark related to repressed gene transcription. P(1) progeny from the defense regulatory mutant non expressor of PR1 (npr1)-1 failed to develop transgenerational defense phenotypes, demonstrating a critical role for NPR1 in expression of transgenerational SAR. Furthermore, the drm1drm2cmt3 mutant that is affected in non-CpG DNA methylation mimicked the transgenerational SAR phenotype. Since PstDC3000 induces DNA hypomethylation in Arabidopsis, our results suggest that transgenerational SAR is transmitted by hypomethylated genes that direct priming

  12. Applications of extraction chromatography in the development of radionuclide generator systems for nuclear medicine

    International Nuclear Information System (INIS)

    Dietz, M.L.; Horwitz, E.P.

    2000-01-01

    Numerous methods have been described for the separation and purification of radionuclides for application in diagnostic and therapeutic nuclear medicine, among them ion exchange, solvent extraction, and various forms of chromatography. Although extraction chromatography has previously been shown to provide a means of performing a number of separations of potential use in radionuclide generator systems, the application of the technique to generator development has thus far been limited. Recent work directed at improved methods for the determination of radionuclides in biological and environmental samples has led to the development of a series of novel extraction chromatographic resins exhibiting enhanced metal ion retention from strongly acidic media and excellent selectivity, among them materials suitable for the isolation of 212 Bi, 90 Y, and 213 Bi. These resins, along with extraction chromatographic materials employing functionalized supports to improve their physical stability or metal ion retention properties, are shown to offer promise in the development of improved radionuclide generators

  13. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    Science.gov (United States)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  14. Probabilistic generation assessment system of renewable energy in Korea

    Directory of Open Access Journals (Sweden)

    Yeonchan Lee

    2016-01-01

    Full Text Available This paper proposes probabilistic generation assessment system introduction of renewable energy generators. This paper is focused on wind turbine generator and solar cell generator. The proposed method uses an assessment model based on probabilistic model considering uncertainty of resources (wind speed and solar radiation. Equivalent generation function of the wind and solar farms are evaluated. The equivalent generation curves of wind farms and solar farms are assessed using regression analysis method using typical least square method from last actual generation data for wind farms. The proposed model is applied to Korea Renewable Generation System of 8 grouped 41 wind farms and 9 grouped around 600 solar farms in South Korea.

  15. Temperature dependence of charge-transfer fluorescence from extended and U-shaped donor-bridge-acceptor systems in glass-forming solvents.

    NARCIS (Netherlands)

    Goes, M.; de Groot, M.; Koeberg, M.; Verhoeven, J.W.; Lokan, N.R.; Shephard, M.J.; Paddon-Row, M.N.

    2001-01-01

    Abstract: The behavior is reported of three fluorescent D-bridge-A systems that display a fascinating temperature dependence in glass forming solvents over the temperature range between 77 and 293 K. In two of these systems, a rigid, saturated alkane bridge maintains an extended conformation, and as

  16. Using sewerage system to generate electricity

    International Nuclear Information System (INIS)

    Asghar, J.

    2005-01-01

    The development of the sanitary engineering has paralleled and contributed to the growth of the city. Without an adequate supply of safe water, the great city could not exist and life in it would be both unpleasant and dangerous unless human and other waste were promptly removed. The concentration of population in relatively small areas has made the task of sanitary engineer more complex. The cities, towns and villages are being polluted ground water and surface water. Industries also demand more and better water from all available sources. The rivers receive ever-increasing amount of sewage and industrial wastes and thus resulting more attention to the water treatment, stream pollution and complicated phenomena of self-purification. In many developing countries there is no such treatment plants for the sewerage water. Rivers receive large amount of polluted water and resulting many diseases. Thus self-purification and treatment plants playa vital role in sanitation. The other benefit is now introducing as Generating electricity from Sewerage System. (author)

  17. Flexible power generation systems and their planning

    International Nuclear Information System (INIS)

    Schwarzenbach, A.; Wunsch, A.K.

    1989-01-01

    By determining their specific annual costs and expressing them in relation to the period of utilization or to the load factor, it is possible to compare the relative merits of different combinbations of power generation systems. This method, with which unsuitable planning variants can be eliminated without having to go through long, intricate calculations and without taking up costly computer time, has the advantage that it points up the origin of the costs and at the same time makes clear how improvement can be achieved by combining base-load, medium-load and peak-load plants. The different types of power plant (hydro-electric, nuclear, steam, gas-turbine, combined cycle, cogeneration and coal gasification) are characterized by their approximate specific capital investment, construction period, efficiency, fuel, duty, and time from cold start to full load. They are compared by plotting their total specific annual costs in SFr/kWa against the load factor. The special benefits which combined cycle plants, with gas turbines, heat-recovery boilers and steam plant, can offer today (not only high fuel utilization and relatively low first-time costs, but also the short time needed for planning and construction) are underlined. 5 refs.; 9 figs.; 3 tabs

  18. Phase equilibrium study of the binary systems (N-hexyl-3-methylpyridinium tosylate ionic liquid + water, or organic solvent)

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowski, Marek

    2011-01-01

    Highlights: → Synthesis, DSC, and measurements of phase equilibrium of N-hexyl-3-methylpyridinium tosylate. → Solvents used: water, alcohols, benzene, alkylbenzenes, and aliphatic hydrocarbons. → Correlation with UNIQUAC, Wilson and NRTL models. → Comparison with different tosylate-based ILs. - Abstract: The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM 3 Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.

  19. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-05

    to how they could serve multiple applications, both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

  20. Computer Aided Solvent Selection and Design Framework

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Conte, Elisa; Abildskov, Jens

    and computer-aided tools and methods for property prediction and computer-aided molecular design (CAMD) principles. This framework is applicable for solvent selection and design in product design as well as process design. The first module of the framework is dedicated to the solvent selection and design...... in terms of: physical and chemical properties (solvent-pure properties); Environment, Health and Safety (EHS) characteristic (solvent-EHS properties); operational properties (solvent–solute properties). 3. Performing the search. The search step consists of two stages. The first is a generation and property...... identification of solvent candidates using special software ProCAMD and ProPred, which are the implementations of computer-aided molecular techniques. The second consists of assigning the RS-indices following the reaction–solvent and then consulting the known solvent database and identifying the set of solvents...

  1. A potentiometric study of molecular heteroconjugation equilibria in (n-butylamine+acetic acid) systems in binary (acetonitrile +1,4-dioxane) solvent mixtures

    International Nuclear Information System (INIS)

    Czaja, Malgorzata; Makowski, Mariusz; Chmurzynski, Lech

    2006-01-01

    By using the potentiometric method the following quantities have been determined: acidity constants of molecular acid, K a (HA), of cationic acid, K a (BH + ), anionic and cationic homoconjugation constants, K AHA - and K BHB + , respectively, as well as molecular heteroconjugation constants, K AHB , in (n-butylamine+acetic acid) systems without proton transfer in binary (acetonitrile+1,4-dioxane), AN+D, solvent mixtures. The results of these measurements have shown that the magnitudes of the molecular heteroconjugation constants do not depend on the 1,4-dioxane content in the mixed solvent, i.e., on solvent polarity. It has also been found that in the (acid+base) systems without proton transfer, the manner of carrying out the titration (direct B+HA vs. reverse HA+B) does not affect the magnitudes of the molecular heteroconjugation constants

  2. A potentiometric study of molecular heteroconjugation equilibria in (n-butylamine+acetic acid) systems in binary (acetonitrile +1,4-dioxane) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Malgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2006-05-15

    By using the potentiometric method the following quantities have been determined: acidity constants of molecular acid, K{sub a}(HA), of cationic acid, K{sub a}(BH{sup +}), anionic and cationic homoconjugation constants, K{sub AHA{sup -}} and K{sub BHB{sup +}}, respectively, as well as molecular heteroconjugation constants, K{sub AHB}, in (n-butylamine+acetic acid) systems without proton transfer in binary (acetonitrile+1,4-dioxane), AN+D, solvent mixtures. The results of these measurements have shown that the magnitudes of the molecular heteroconjugation constants do not depend on the 1,4-dioxane content in the mixed solvent, i.e., on solvent polarity. It has also been found that in the (acid+base) systems without proton transfer, the manner of carrying out the titration (direct B+HA vs. reverse HA+B) does not affect the magnitudes of the molecular heteroconjugation constants.

  3. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conven......Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity......, one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  4. Generation IV nuclear energy systems: road map and concepts. 2. Generation II Measurement Systems for Generation IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Miller, Don W.

    2001-01-01

    Instrumentation and Control (I and C) systems in current operating plants have not changed appreciably since their original design in the 1950's. These systems depend on a variety of traditional process and radiation sensors for the measurement of safety and control variables such as temperature, pressure, and neutron flux. To improve their performance and to make them more robust, many plant control systems have been upgraded from analog to digital; most of them continue to utilize traditional single-input single-output architecture. Transmission of data, for the most part, continues to employ large coaxial cables. These cables are not the small cables used in a laboratory (i.e., RG-58 or RG-59). Because of concern about electromagnetic and radio frequency interference and other environmental effects, bulky triax cables, which are cables with two outer shields separated by an insulator, are used. In a nuclear plant there are literally miles of cables and hundreds of specialized penetrations for cables going through containment or pressure vessel walls. The I and C systems in the advanced light water reactor (ALWR) designs, i.e., Generation III reactors, do employ more advanced technology than current plants; however, they do not incorporate new technology on a broad scale. This in part is a consequence of the ALWR design philosophy that discouraged use of advanced technology if current technology was adequate. As a consequence, the I and C systems in the ALWRs continue to make use of current technology. There are two exceptions, however, which include the broad use of software-based digital systems and fiber optics for signal isolation and data transmission in nonradioactive areas. The ALWR design philosophy was a justifiably low-risk approach when considering the overall objective of 'capturing' lessons learned from current operating plants to design a plant that would exhibit performance superior to current plants and would be relatively easy to license without

  5. Production of 13C by chemical exchange reaction between amine carbamate and carbon dioxide in a solvent-carrier system

    International Nuclear Information System (INIS)

    Ghate, M.R.; Taylor, T.I.

    1975-01-01

    The chemical exchange reaction between amine carbamate and CO 2 has been investigated for the purpose of using it as a practical method to concentrate 13 C. The effects of solvent, concentration of amines, catalysts, flow rate, and diameter of the column have been studied for a number of amines. Of the solutions studied, di-n-butylamine (DNBA) in triethylamine (TEA) as a solvent proved to be the most favorable for use in the preparation of highly enriched 13 C. The overall separations obtained as a function of the concentration of DNBA using 2.5 cm i.d. x 100 cm column ranged from 2.05 at 1 M to 1.69 at 2.84 M. For 2 M DNBA the maximum separation was 1.94. At this concentration of DNBA the overall separation as a function of flow rate ranged from 1.94 at 0.845 ml/cm 2 -min to 1.31 at 2.9 ml/cm 2 -min. Neither the rate of exchange nor the overall separations were improved by use of catalysts. Increasing the diameter twofold resulted in little or no loss in overall separations. On the basis of the properties of the system and the data obtained with respect to the above variables, design calculations were made for a six-stage tapered cascade. These calculations were based on a flow of 40 ml/min of 2 M DNBA in TEA, giving a maximum transport of 7.1 x 10 -3 mmole/min or a maximum production rate of 130 mg 13 C/day. The cascade was operated for about 5 months during which period gram quantities of 67 percent 13 C were produced

  6. Reputation system for User Generated wireless podcasting

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars; Le Boudec, J-Y

    2008-01-01

    The user-generated podcasting service over mobile opportunistic networks can facilitate the user generated content dissemination while humans are on the move. However, in such a distributed and dynamic network environment, the design of efficient content forwarding and cache management schemes...

  7. Processing of (in)tractable polymers using reactive solvents, 4: Structure development in the model system poly(ethylene)/styrene

    NARCIS (Netherlands)

    Goossens, J.G.P.; Rastogi, S.; Meijer, H.E.H.; Lemstra, P.J.

    1998-01-01

    The use of reactive solvents provides a unique opportunity to extend the processing characteristics of both intractable and standard (tractable) polymers beyond existing limits. The polymer to be processed is dissolved in the reactive solvent (monomer) and the solution is transferred into a mould.

  8. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  9. Cuypers : a semi-automatic hypermedia generation system

    NARCIS (Netherlands)

    J.R. van Ossenbruggen (Jacco); F.J. Cornelissen; J.P.T.M. Geurts (Joost); L. Rutledge (Lloyd); L. Hardman (Lynda)

    2000-01-01

    textabstractThe report describes the architecture of emph{Cuypers, a system supporting second and third generation Web-based multimedia. First generation Web-content encodes information in handwritten (HTML) Web pages. Second generation Web content generates HTML pages on demand, e.g. by filling in

  10. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Ignatova, Svetlana; Garrard, Ian; Wybraniec, Sławomir

    2013-12-15

    Two mixtures of decarboxylated and dehydrogenated betacyanins from processed red beet roots (Beta vulgaris L.) juice were fractionated by high performance counter-current chromatography (HPCCC) producing a range of isolated components. Mixture 1 contained mainly betacyanins, 14,15-dehydro-betanin (neobetanin) and their decarboxylated derivatives while mixture 2 consisted of decarboxy- and dehydro-betacyanins. The products of mixture 1 arose during thermal degradation of betanin/isobetanin in mild conditions while the dehydro-betacyanins of mixture 2 appeared after longer heating of the juice from B. vulgaris L. Two solvent systems were found to be effective for the HPCCC. A highly polar, high salt concentration system of 1-PrOH-ACN-(NH4)2SO4 (satd. soln)-water (v/v/v/v, 1:0.5:1.2:1) (tail-to-head mode) enabled the purification of 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin and neobetanin (all from mixture 1) plus 17-decarboxy-neobetanin, 2,15,17-tridecarboxy-2,3-dehydro-neobetanin, 2-decarboxy-neobetanin and 2,15,17-tridecarboxy-neobetanin (from mixture 2). The other solvent system included heptafluorobutyric acid (HFBA) as ion-pair reagent and consisted of tert-butyl methyl ether (TBME)-1-BuOH-ACN-water (acidified with 0.7% HFBA) (2:2:1:5, v/v/v/v) (head-to-tail mode). This system enabled the HPCCC purification of 2,17-bidecarboxy-betanin/-isobetanin and neobetanin (from mixture 1) plus 2,15,17-tridecarboxy-2,3-dehydro-neobetanin, 2,17-bidecarboxy-2,3-dehydro-neobetanin and 2,15,17-tridecarboxy-neobetanin (mixture 2). The results of this research are crucial in finding effective isolation methods of betacyanins and their derivatives which are meaningful compounds due their colorant properties and potential health benefits regarding antioxidant and cancer prevention. The pigments were detected by LC-DAD and LC-MS/MS techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  12. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  13. Organic solvent topical report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    1999-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed

  14. Schedule Sales Query Report Generation System

    Data.gov (United States)

    General Services Administration — Schedule Sales Query presents sales volume figures as reported to GSA by contractors. The reports are generated as quarterly reports for the current year and the...

  15. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  16. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    International Nuclear Information System (INIS)

    Czaja, MaIgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech

    2005-01-01

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K a (HA), cationic acid, K a (BH + ), of anionic and cationic homoconjugation, K AHA - andK BHB + , respectively, and of molecular heteroconjugation, K AHB (K BHA ), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK a (HA) and pK a (BH + ), as well as lgK AHA - values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity

  17. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, MaIgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kozak, Anna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2005-08-15

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K{sub a}(HA), cationic acid, K{sub a}(BH{sup +}), of anionic and cationic homoconjugation, K{sub AHA{sup -}}andK{sub BHB{sup +}}, respectively, and of molecular heteroconjugation, K{sub AHB} (K{sub BHA}), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK{sub a}(HA) and pK{sub a}(BH{sup +}), as well as lgK{sub AHA{sup -}} values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity.

  18. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    Science.gov (United States)

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Extraction of Am(III) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a 'green' approach for radioactive waste processing

    NARCIS (Netherlands)

    Sengupta, A; Mohapatra, P.K.; Iqbal, M.; Verboom, Willem; Huskens, Jurriaan; Godbole, S.V.

    2012-01-01

    Extraction of Am3+ from acidic feed solutions was investigated using novel solvent systems containing a tripodal diglycolamide (T-DGA) in three room temperature ionic liquids (RTIL), viz. [C4mim][NTf2], [C6mim][NTf2] and [C8mim][NTf2]. Compared to the results obtained with N,N,N′,N′-tetra-n-octyl

  20. Modeling of the Mixed Solvent Electrolyte System CO2-Na2CO3-NaHCO3-Monoethylene Glycol-Water

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    The extended UNIQUAC electrolyte activity coefficient model has been correlated to 751 experimental solid−liquid equilibrium (SLE), vapor−liquid equilibrium (VLE), and excess enthalpy data for the mixed solvent CO2−NaHCO3−Na2CO3−monoethylene glycol(MEG)−H2O electrolyte system. The model...

  1. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    Science.gov (United States)

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  2. Chaotic Music Generation System Using Music Conductor Gesture

    OpenAIRE

    Chen, Shuai; Maeda, Yoichiro; Takahashi, Yasutake

    2013-01-01

    In the research of interactive music generation, we propose a music generation method, that the computer generates the music, under the recognition of human music conductor's gestures.In this research, the generated music is tuned by the recognized gestures for the parameters of the network of chaotic elements in real time. The music conductor's hand motions are detected by Microsoft Kinect in this system. Music theories are embedded in the algorithm, as a result, the generated music will be ...

  3. Music Conductor Gesture Recognized Interactive Music Generation System

    OpenAIRE

    CHEN, Shuai; MAEDA, Yoichiro; TAKAHASHI, Yasutake

    2012-01-01

    In the research of interactive music generation, we propose a music generation method, that the computer generates the music automatically, and then the music will be arranged under the human music conductor's gestures, before it outputs to us. In this research, the generated music is processed from chaotic sound, which is generated from the network of chaotic elements in realtime. The music conductor's hand motions are detected by Microsoft Kinect in this system. Music theories are embedded ...

  4. Cuypers : a semi-automatic hypermedia generation system

    OpenAIRE

    Ossenbruggen, Jacco; Cornelissen, F.J.; Geurts, Joost; Rutledge, Lloyd; Hardman, Lynda

    2000-01-01

    textabstractThe report describes the architecture of emph{Cuypers, a system supporting second and third generation Web-based multimedia. First generation Web-content encodes information in handwritten (HTML) Web pages. Second generation Web content generates HTML pages on demand, e.g. by filling in templates with content retrieved dynamically from a database or transformation of structured documents using style sheets (e.g. XSLT). Third generation Web pages will make use of rich markup (e.g. ...

  5. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  6. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  7. Stratified systems without organic solvent - new extraction type of macro- and microquantities of metal ions

    International Nuclear Information System (INIS)

    Dyogtev, M.I.; Alikina, E.N.; Popova, O.N.; Amindjanov, A.A.

    2012-01-01

    This article describes the results of studies on solubility in four component systems: di anti pyril methane-benzoic (salicylic) acid-HCl-H 2 O, hexyl di anti pyril methane-benzoic (salicylic) acid-HCl-H 2 O at 298 and 323 K. It is defined that stable stratification appears by addition of hydrochloric acid in the concentration range of 3.0-4.9 wt.% HCl. At substitution of di anti pyril methane on hexyl di anti pyril methane the wide range of stratification in the cut of hexyl di anti pyril methane-benzoic (salicylic) acid - 5 wt.% HCl is observes. The possibility of using of stratified systems for quantitative extraction of copper, cadmium, iron, thallium and tin is proposed.

  8. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid–liquid microextraction coupled with flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Anthemidis, Aristidis N.; Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D.

    2012-01-01

    Highlights: ► A dispersive liquid–liquid micro extraction method for lead and copper determination. ► A micro-volume transportation system for extractant solvent lighter than water. ► Analysis of natural water samples. - Abstract: A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L −1 and 3.3% for lead and 0.12 μg L −1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.

  9. Hybrid compensation arrangement in dispersed generation systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a hybrid compensation system consisting of an active filter and distributed passive filters. In the system, each individual passive filter is connected to a distortion source and designed to eliminate main harmonics and supply reactive power for the distortion source, while...... filter system consisting of distributed passive filters and an active filter....... the active filter is responsible for the correction of the system unbalance and the cancellation of the remaining harmonics. The paper also analyzes the effects of the circuit configuration on the system impedance characteristics and consequently the effectiveness of the filter system. Simulation studies...

  10. Open channel steam generator feedwater system

    International Nuclear Information System (INIS)

    Kim, R.F.; Min-Hsiung Hu.

    1985-01-01

    A steam generator which utilizes a primary fluid to vaporize a secondary fluid is provided with an open flow channel and elevated discharge nozzle for the introduction of secondary fluid. The discharge nozzle is positioned above a portion of the inlet line such that the secondary fluid passes through a vertical section of inlet line prior to its discharge into the open channel. (author)

  11. Automatic control system generation for robot design validation

    Science.gov (United States)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  12. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pence, Natasha K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficients of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO3)3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO3)3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO3)3 activity coefficients for the binary Ln(NO3)3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO3)3 activity

  13. Computer Generated Hologram System for Wavefront Measurement System Calibration

    Science.gov (United States)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  14. Liquid heat capacity of the solvent system (piperazine + n-methyldiethanolamine + water)

    International Nuclear Information System (INIS)

    Chen, Y.-R.; Caparanga, Alvin R.; Soriano, Allan N.; Li, M.-H.

    2010-01-01

    A new set of values for the heat capacity of aqueous mixtures of piperazine (PZ) and n-methyldiethanolamine (MDEA) at different concentrations and temperatures are reported in this paper. The differential scanning calorimetry technique was used to measure the property over the range T = 303.2 K to T = 353.2 K for mixtures containing 0.60 to 0.90 mole fraction water with 15 different concentrations of the system (PZ + MDEA + H 2 O). Heat capacity for four concentrations of the binary system (PZ + MDEA) was also measured. A Redlich-Kister-type equation was adopted to estimate the excess molar heat capacity, which was used to predict the value of the molar heat capacity at a particular concentration and temperature, which would then be compared against the measured value. A total of 165 data points fit into the model resulted in a low overall average absolute deviation of 4.6% and 0.3% for the excess molar heat capacity and molar heat capacity, respectively. Thus, the results presented here are of acceptable accuracy for use in engineering process design.

  15. Study on Micro Wind Generator System for Automobile

    Science.gov (United States)

    Fujimoto, Koji; Washizu, Shinsuke; Ichikawa, Tomohiko; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Oshima, Takamitsu; Hayashi, Niichi; Tobi, Nobuo

    This paper proposes the micro wind generator system for automobile. This proposes system is composed of the deflector, the micro windmill, the generator, and electric storage device. Then, the effectiveness is confirmed from an examination using air blower. Therefore, new energy can be expected to be obtained by installing this system in the truck.

  16. Radio resource management for next generation mobile communication systems

    DEFF Research Database (Denmark)

    Wang, Hua

    The key feature of next generation (4G) mobile communication system is the ability to deliver a variety of multimedia services with different Quality-of-Service (QoS) requirements. Compared to the third generation (3G) mobile communication systems, 4G mobile communication system introduces several...

  17. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  18. Thermoelectric generator cooling system and method of control

    Science.gov (United States)

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  19. STARTER-GENERATOR SYSTEM FOR AUXILIARY POWER UNIT

    Directory of Open Access Journals (Sweden)

    A. V. Levin

    2017-01-01

    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  20. Discrete and continuum modeling of solvent effects in a twisted intramolecular charge transfer system: The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule.

    Science.gov (United States)

    Modesto-Costa, Lucas; Borges, Itamar

    2018-08-05

    The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule is a prototypical system displaying twisted intramolecular (TICT) charge transfer effects. The ground and the first four electronic excited states (S 1 -S 4 ) in gas phase and upon solvation were studied. Charge transfer values as function of the torsion angle between the donor group (dimethylamine) and the acceptor moiety (benzonitrile) were explicitly computed. Potential energy curves were also obtained. The algebraic diagrammatic construction method at the second-order [ADC(2)] ab initio wave function was employed. Three solvents of increased polarities (benzene, DMSO and water) were investigated using discrete (average solvent electrostatic configuration - ASEC) and continuum (conductor-like screening model - COSMO) models. The results for the S 3 and S 4 excited states and the S 1 -S 4 charge transfer curves were not previously available in the literature. Electronic gas phase and solvent vertical spectra are in good agreement with previous theoretical and experimental results. In the twisted (90°) geometry the optical oscillator strengths have negligible values even for the S 2 bright state. Potential energy curves show two distinct pairs of curves intersecting at decreasing angles or not crossing in the more polar solvents. Charge transfer and electric dipole values allowed the rationalization of these results. The former effects are mostly independent of the solvent model and polarity. Although COSMO and ASEC solvent models mostly lead to similar results, there is an important difference: some crossings of the excitation energy curves appear only in the ASEC solvation model, which has important implications to the photochemistry of DMABN. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Factors influencing phase-disengagement rates in solvent-extraction systems employing tertiary amine extractants

    International Nuclear Information System (INIS)

    Moyer, B.A.; McDowell, W.J.

    1981-01-01

    The primary purpose of the present investigation was to examine the effects of amine size and structure on phase disengagement. Nine commercial tertiary amines were tested together with four laboratory-quality amines for uranium extraction and both organic-continuous (OC) and aqueous-continuous (AC) phase disengagement under Amex-type conditions. Synthetic acid sulfate solutions with and without added colloidal silica and actual ore leach solutions were used as the aqueous phases. Phase disengagement results were correlated with amine size and branching and solution wetting behavior on a silicate (glass) surface. The results suggest that the performance of some Amex systems may be improved by using branched chain tertiary amine extractants of higher molecular weight than are now normally used

  2. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  3. Formation of zinc-peptide spherical microparticles during lyophilization from tert-butyl alcohol/water co-solvent system.

    Science.gov (United States)

    Qian, Feng; Ni, Nina; Chen, Jia-Wen; Desikan, Sridhar; Naringrekar, Vijay; Hussain, Munir A; Barbour, Nancy P; Smith, Ronald L

    2008-12-01

    To understand the mechanism of spherical microparticle formation during lyophilizing a tert-Butyl alcohol (TBA)/water solution of a zinc peptide adduct. A small peptide, PC-1, as well as zinc PC-1 at (3:2) and (3:1) ratios, were dissolved in 44% (wt.%) of TBA/water, gradually frozen to -50 degrees C over 2 h ("typical freezing step"), annealed at -20 degrees C for 6 h ("annealing step"), and subsequently lyophilized with primary and secondary drying. Zinc peptide (3:1) lyophile was also prepared with quench cooling instead of the typical freezing step, or without the annealing step. Other TBA concentrations, i.e., 25%, 35%, 54% and 65%, were used to make the zinc peptide (3:1) adduct lyophile with the typical freezing and annealing steps. The obtained lyophile was analyzed by Scanning Electron Microscopy (SEM). The zinc peptide solutions in TBA/water were analyzed by Differential Scanning Calorimeter (DSC). The surface tension of the TBA/water co-solvent system was measured by a pendant drop shape method. With typical freezing and annealing steps, the free peptide lyophile showed porous network-like structure that is commonly seen in lyophilized products. However, with increasing the zinc to peptide ratio, uniform particles were gradually evolved. Zinc peptide (3:1) adduct lyophiles obtained from 25%, 35% and 44% TBA exhibit a distinctive morphology of uniform and spherical microparticles with diameters of approximately 3-4 microm, and the spherical zinc peptide particles are more predominant when the TBA level approaches 20%. Adopting quench cooling in the lyophilization cycle leads to irregular shape fine powders, and eliminating the annealing step causes rough particles surface. When TBA concentration increases above 54%, the lyophiles demonstrate primarily irregular shape particles. A proposed mechanism of spherical particle formation of the 3:1 zinc peptide encompasses the freezing of a TBA/water solution (20-70% TBA) causing the formation of a TBA hydrate

  4. Feasibility study on volcanic power generation system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Investigations were carried out to determine the feasibility of volcanic power generation on Satsuma Io Island. Earthquakes were studied, as were the eruptions of subaerial and submarine hot springs. Hydrothermal rock alteration was studied and electrical surveys were made. General geophysical surveying was performed with thermocameras and radiation monitoring equipment. In particular, the Toyoba mine was studied, both with respect to its hot spring and its subsurface temperatures.

  5. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A computer code for calculation of solvent-extraction separation in a multicomponent system with reference to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Carassiti, F.; Liuzzo, G.; Morelli, A.

    1982-01-01

    Nuclear technology development pointed out the need for a new assessment of the fuel cycle back-end. Treatment and disposal of radioactive wastes arising from nuclear fuel reprocessing is known as one of the problems not yet satisfactorily solved, together with separation process of uranium and plutonium from fission products in highly irradiated fuels. Aim of this work is to present an improvement of the computer code for solvent extraction process calculation previously designed by the authors. The modeling of the extraction system has been modified by introducing a new method for calculating the distribution coefficients. The new correlations were based on deriving empirical functions for not only the apparent equilibrium constants, but also the solvation number. The mathematical model derived for calculating separation performance has been then tested for up to ten components and twelve theoretical stages with minor modifications to the convergence criteria. Suitable correlations for the calculation of the distribution coefficients of Uranium, Plutonium, Nitric Acid and fission products were constructed and used to successfully simulate several experimental conditions. (Author)

  7. Optimization of 2-ethylhexyl palmitate production using lipozyme RM IM as catalyst in a solvent-free system.

    Science.gov (United States)

    Richetti, Aline; Leite, Selma G F; Antunes, Octávio A C; de Souza, Andrea L F; Lerin, Lindomar A; Dallago, Rogério M; Paroul, Natalia; Di Luccio, Marco; Oliveira, J Vladimir; Treichel, Helen; de Oliveira, Débora

    2010-04-01

    This work reports the application of a lipase in the 2-ethylhexyl palmitate esterification in a solvent-free system with an immobilized lipase (Lipozyme RM IM). A sequential strategy was used applying two experimental designs to optimize the 2-ethylhexyl palmitate production. An empirical model was then built so as to assess the effects of process variables on the reaction conversion. Afterwards, the operating conditions that optimized 2-ethylhexyl palmitate production were established as being acid/alcohol molar ratio 1:3, temperature of 70 degrees C, stirring rate of 150 rpm, 10 wt.% of enzyme, leading to a reaction conversion as high as 95%. From this point, a kinetic study was carried out evaluating the effect of acid:alcohol molar ratio, the enzyme concentration and the temperature on product conversion. The results obtained in this step permit to verify that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt.%) and temperature of 70 degrees C, led to conversions next to 100%.

  8. Stabilization and activation of alpha-chymotrypsin in water-organic solvent systems by complex formation with oligoamines.

    Science.gov (United States)

    Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V

    2003-04-01

    Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.

  9. Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Mir Ali [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: farajzade@yahoo.com; Bahram, Morteza [Department of Chemistry, Faculty of Science, Urmia University, Urmia (Iran, Islamic Republic of); Zorita, Saioa [Department of Analytical Chemistry, University of Lund, P.O. Box 124, 221 00 Lund (Sweden); Mehr, Behzad Ghorbani [Department of Chemistry, Faculty of Science, Urmia University, Urmia (Iran, Islamic Republic of)

    2009-01-30

    In this study a homogeneous liquid-liquid extraction based on the Ph-dependent phase-separation process was investigated using a ternary solvent system (water-acetic acid-chloroform) for the preconcentration of Cu{sup 2+} ions. 8-Hydroxy quinoline was used as the chelating agent prior to its extraction. Flame atomic absorption spectrophotometry using acetylene-air flame was used for the quantitation of analyte after preconcentration. The effect of various experimental parameters in extraction step was investigated using two optimization methods, one variable at a time and central composite design. The experimental design was done at five levels of operating parameters. Nearly the same optimized results were obtained using both methods: sample size, 5 mL; volume of NaOH 10 M, 2 mL; chloroform volume, 300 {mu}L; 8-hydroxy quinoline concentration more than 0.01 M and salt amount did not affect the extraction significantly. Under the optimum conditions the calibration graph was linear over the range 10-2000 {mu}g L{sup -1}. The relative standard deviation was 7.6% for six repeated determinations (C = 500 {mu}g L{sup -1}). Furthermore, the limit of detection (S/N = 3) and limit of quantification (S/N = 10) of the method were obtained as 1.74 and 6 {mu}g L{sup -1}, respectively.

  10. Development of novel solvent extraction system by utilizing the metal ions excitation with ultraviolet pulse laser

    International Nuclear Information System (INIS)

    Saeki, Morihisa; Sasaki, Yuji; Yokoyama, Atsushi

    2010-01-01

    Novel liquid-liquid extraction technique was developed using ultraviolet pulse laser. The liquid-liquid system was composed of pure water and the 1-octanol solution of EuCl 3 and TODGA (TODGA = N,N,N',N'-tetraoctyl-diglycolamide). The Eu 3+ ion, which was formed to be the Eu 3+ (TODGA) n complex in 1-octanol, was reduced to Eu 2+ by irradiation of fourth harmonic of Nd:YAG laser (266 nm). The Eu 2+ ion was stabilized by addition of 15-Crown-5 (15C5). The observation by in-situ emission spectroscopy showed that the Eu 2+ ion reduced by the 266 nm-laser irradiation resulted in back-extraction of Eu from the 1-octanol solution to the water. The emission spectrum observed in 1-octanol suggested the change from the Eu 3+ (TODGA) n to the Eu 2+ (15C5) m complex after the reduction by the 266 nm laser. Time dependence of the concentration of Eu 2+ (15C5) m was investigated at the aqueous phase, the organic one and their interface. The results suggest that (1) rapid formation of Eu 2+ (15C5) m in 1-octanol after the irradiation of the 266 nm laser, (2) slow diffusion of Eu 2+ (15C5) m in 1-octanol, and (3) existence of time-lag between the formation of Eu 2+ (15C5) m in 1-octanol and its back-extraction to the water. (author)

  11. Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.

    Science.gov (United States)

    McCarthy, Carrie L; Brutchey, Richard L

    2017-05-02

    Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.

  12. Next Generation Space Surveillance System-of-Systems

    Science.gov (United States)

    McShane, B.

    2014-09-01

    International economic and military dependence on space assets is pervasive and ever-growing in an environment that is now congested, contested, and competitive. There are a number of natural and man-made risks that need to be monitored and characterized to protect and preserve the space environment and the assets within it. Unfortunately, today's space surveillance network (SSN) has gaps in coverage, is not resilient, and has a growing number of objects that get lost. Risks can be efficiently and effectively mitigated, gaps closed, resiliency improved, and performance increased within a next generation space surveillance network implemented as a system-of-systems with modern information architectures and analytic techniques. This also includes consideration for the newest SSN sensors (e.g. Space Fence) which are born Net-Centric out-of-the-box and able to seamlessly interface with the JSpOC Mission System, global information grid, and future unanticipated users. Significant opportunity exists to integrate legacy, traditional, and non-traditional sensors into a larger space system-of-systems (including command and control centers) for multiple clients through low cost sustainment, modification, and modernization efforts. Clients include operations centers (e.g. JSpOC, USSTRATCOM, CANSPOC), Intelligence centers (e.g. NASIC), space surveillance sensor sites (e.g. AMOS, GEODSS), international governments (e.g. Germany, UK), space agencies (e.g. NASA), and academic institutions. Each has differing priorities, networks, data needs, timeliness, security, accuracy requirements and formats. Enabling processes and technologies include: Standardized and type accredited methods for secure connections to multiple networks, machine-to-machine interfaces for near real-time data sharing and tip-and-queue activities, common data models for analytical processing across multiple radar and optical sensor types, an efficient way to automatically translate between differing client and

  13. New generation control system at SLAC

    International Nuclear Information System (INIS)

    Melen, R.

    1981-03-01

    The proposed SLAC Linear Collider (SLC) project will require an Instrumentation and Control system that provides integrated automatic monitoring and control functions. The present SLAC LINAC Instrumentation and Control system will be totally revamped and it will be expanded to include the support of all of the additional accelerator components that will be required for the whole SLC project. This paper describes the functional operation of the new system

  14. Engineering Supply Management System: The Next Generation

    Science.gov (United States)

    1991-09-01

    010 Partia! receipts 0018 Automatic inventory update 0 048 Discrepant material 0 004 Order processing requirements Transaction reversal capability 0 012...August 1991. 2-5 sys.em’s modules that support the DEH’s needs are the Sales Order Processing , Register Sales, Purchase Order Processing , Inventory...modular system developed by PIC Business Systems, Incorporated. This system possesses Order Processing , Inventory Management, Purchase Orders, and

  15. Aqueous biphasic systems containing PEG-based deep eutectic solvents for high-performance partitioning of RNA.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Yuzhi; Zhou, Yigang; Xu, Kaijia; Li, Na; Wen, Qian; Yang, Qin

    2017-08-01

    In this work, 16 kinds of novel deep eutectic solvents (DESs) composed of polyethylene glycol (PEG) and quaternary ammonium salts, were coupled with Aqueous Biphasic Systems (ABSs) to extract RNA. The phase forming ability of ABSs were comprehensively evaluated, involving the effects of various proportions of DESs' components, carbon chain length and anions species of quaternary ammonium salts, average molecular weights of PEG and inorganic salts nature. Then the systems were applied in RNA extraction, and the results revealed that the extraction efficiency values were distinctly enhanced by relatively lower PEG content in DESs, smaller PEG molecular weights, longer carbon chain of quaternary ammonium salts and more hydrophobic inorganic salts. Then the systems composed of [TBAB][PEG600] and Na 2 SO 4 were utilized in the influence factor experiments, proving that the electrostatic interaction was the dominant force for RNA extraction. Therefore, back-extraction efficiency values ranging between 85.19% and 90.78% were obtained by adjusting the ionic strength. Besides, the selective separation of RNA and tryptophane (Trp) was successfully accomplished. It was found that 86.19% RNA was distributed in the bottom phase, while 72.02% Trp was enriched in the top phase in the novel ABSs. Finally, dynamic light scattering (DLS) and transmission electron microscope (TEM) were used to further investigate the extraction mechanism. The proposed method reveals the outstanding feasibility of the newly developed ABSs formed by PEG-based DESs and inorganic salts for the green extraction of RNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization and Monitoring of Natural Attenuation of Chlorinated Solvents in Ground Water: A Systems Approach

    Science.gov (United States)

    Cutshall, N. H.; Gilmore, T.; Looney, B. B.; Vangelas, K. M.; Adams, K. M.; Sink, C. H.

    2006-05-01

    the attenuation capacity. The mass balance approach is controlled by a combination of boundary conditions (e.g., water inputs and outputs), flow dynamics, and contaminant concentrations. As a result, long term monitoring might be improved while reducing costs by measuring fewer point concentrations and simultaneously adding large-scale measurements of boundary conditions, using weather data, remote sensing of evapotranspiration, stream-flow monitoring, etc. Because there are no specific regulatory drivers for performance-monitoring, regulators are not accustomed to participating in monitoring system design. A partnership with the Interstate Technology Regulatory Council (ITRC) has been formed to promote communication and develop advanced guidance for MNA. Early and continued communication among technology developers, end users, regulators and the public has been essential to this progress.

  17. The international cooperation for 4. generation systems

    International Nuclear Information System (INIS)

    Bouchard, J.

    2007-01-01

    This series of slides begins with a likely scenario for the demand of nuclear power in 2050: 3.2 Gtep compared to the 0.7 Gtep of today. The demand could be even bigger if more constraints were appearing on the use of fossil energies. Today's industrial offer of nuclear reactors is based on second and third generation design of reactors but sustainable development implies to close the fuel cycle to spare uranium resource and to minimize the volume of high-level radioactive wastes produced so a new generation of reactors is required. 6 concepts have been selected for the fourth generation of reactors. 1) VHTR (Very High Temperature Reactors) for the production of hydrogen. The countries interested in VHTR are: EURATOM countries, France, the Usa, Japan, Switzerland and South-Korea. 2) SFR (Sodium cooled Fast Reactors), the countries interested in SFR are: EURATOM countries, France, Japan, the Usa and South-Korea. 3) LFR (Lead or Bismuth/Lead cooled Fast Reactors), the LFR steering committee is composed of Switzerland, Japan, the Usa and South-Korea. 4) GFR (Gas cooled Fast Reactors), the countries interested in GFR are EURATOM countries, France, Japan and Switzerland. 5) SCWR (Super-Critical Water cooled Reactors), the countries interested in this concept are Canada, EURATOM countries and Japan. 6) MSR (Molten Salt Reactors), the MSR steering committee is composed of France, EURATOM countries and the Usa. Other countries like Argentina, Brazil and United-Kingdom have shown interest in the VHTR concept but have lacked willingness till now to take part into the program. (A.C.)

  18. Distributed Power-Generation Systems and Protection

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Yang, Dongsheng

    2017-01-01

    the challenging issues and, more importantly, to leverage the energy generation, stringent demands from both utility operators and consumers have been imposed on the DPGS. Furthermore, as the core of energy conversion, numerous power electronic converters employing advanced control techniques have been developed...... for the DPGS to consolidate the integration. In light of the above, this paper reviews the power-conversion and control technologies used for DPGSs. The impacts of the DPGS on the distributed grid are also examined, and more importantly, strategies for enhancing the connection and protection of the DPGS...

  19. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  20. Upgraded Steam Generator Lancing System for Uljin NPP no.2

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Hong, Sung Yull

    2005-01-01

    KEPRI(Korea Electric Power Research Institute) has developed various types of steam generator lancing systems since 1998. In this paper, we introduce a new lancing system with new improvements from the previous steam generator lancing system for Uljin NPP #2(nuclear power plant) constructed by KEPRI. The previous lancing system is registered as KALANS R -II and was developed for System-80 type steam generators. The previous lancing system was applied to Uljin unit #3 and it lowered radiation exposure of operators in comparison to manually operated lancing systems. And it effectively removed sludge accumulated around kidney bean zone in the Uljin unit #3 steam generators. But the previous lancing system could only clean partially the steam generators of Uljin unit #4. This was because the rail of the previous lancing system interfered with a part of the steam generator. Therefore we developed a new lancing system that can solve the interference problem. This new lancing system was upgraded from the previous lancing system. Also, a new lancing system for System-80 S/G will be introduced in this paper

  1. The next generation control system of GANIL

    International Nuclear Information System (INIS)

    Luong, T.T.; David, L.; Lecorche, E.; Ulrich, M.

    1992-01-01

    A short description of the new control system of GANIL is presented. It consists of a three layer distributed architecture of a VAX6000-410/VMS host computer, a real time control system made up of a dual-host VAX3800 and workstation based operator consoles, and VME and CAMAC processors at the frontend segment, running under the VAXELN operating system, and programmable logic controllers for local controls. The basic issues with regard to architecture, human interface, information management, etc. are discussed. First implementations and operation results are presented. (author) 11 figs

  2. Design Optimization and Evaluation of Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, Hui

    2008-01-01

    . In this paper, seven variable speed constant frequency (VSCF) wind generator systems are investigated, namely permanent magnet synchronous generators with the direct-driven (PMSG_DD), the single-stage gearbox (PMSG_1G) and three-stage gearbox (PMSG_3G) concepts, doubly fed induction generators with the three......With rapid development of wind power technologies and significant growth of wind power capacity installed worldwide, various wind generator systems have been developed and built. The objective of this paper is to evaluate various wind generator systems by optimization designs and comparisons......-stage gearbox (DFIG_3G) and with the single-stage gearbox (DFIG_1G), the electricity excited synchronous generator with the direct-driven (EESG_DD), and the VSCF squirrel cage induction generator with the three-stage gearbox (SCIG_3G). Firstly, the design models of wind turbines, three/single stage gearbox...

  3. The next generation control system of GANIL

    International Nuclear Information System (INIS)

    Luong, T.T.; David, L.; Lecorche, E.; Ulrich, M.

    1992-01-01

    The existing computer control system of GANIL is being renewed to fulfil the increasing requirements of the accelerator operation. This medium term major improvement is aiming at providing the physicists with a wider range of ion beams of higher quality under more flexible and reliable conditions. This paper gives a short description of the new control system envisioned. It consists of a three layer distributed architecture federating a VAX6000-410/VMS host computer, a real time control system made up of a dual host VAX3800 and workstation based operator consoles, and at the frontend segment: VME and CAMAC processors running under the VAXELN operating system, and programmable logic controllers for local controls. The basic issues with regard to architecture, human interface, information management, ... are discussed. Lastly, first implementations and operation results are presented. (author)

  4. The Next Generation ATLAS Production System

    CERN Document Server

    Borodin, Mikhail; The ATLAS collaboration; Golubkov, Dmitry; Klimentov, Alexei; Maeno, Tadashi; Mashinistov, Ruslan; Vaniachine, Alexandre

    2015-01-01

    The ATLAS experiment at LHC data processing and simulation grows continuously, as more data and more use cases emerge. For data processing the ATLAS experiment adopted the data transformation approach, where software applications transform the input data into outputs. In the ATLAS production system, each data transformation is represented by a task, a collection of many jobs, dynamically submitted by the ATLAS workload management system (PanDA/JEDI) and executed on the Grid, clouds and supercomputers. Patterns in ATLAS data transformation workflows composed of many tasks provided a scalable production system framework for template definitions of the many-tasks workflows. User interface and system logic of these workflows are being implemented in the Database Engine for Tasks (DEFT). Such development required using modern computing technologies and approaches. We report technical details of this development: database implementation, server logic and Web user interface technologies.

  5. The second generation of electronic blasting systems

    Energy Technology Data Exchange (ETDEWEB)

    Hammelmann, F.; Petzold, J. [Dynamit Nobel GmbH (Germany)

    2001-07-01

    8 years after the market introduction of the first commercial electronic detonator - DYNATRONIC - the paper describes a new area of electronic blasting systems Made in Germany: i-kon. The results of a joint development between Dynamit Nobel and Orica is a unique universal electronic detonator, which is as simple to use as a standard non-electric detonator. The delay time or delay interval is not factory preprogrammed and the system is not based on a numbered system like conventional detonators. The miner or Blaster decides on site which delay timing he likes to use and is programming the whole blast on site. The new i-kon system allows delay times between 0 and 8000 ms by increments of 1 ms. With the control equipment it is possible to blast up to 1600 detonators in a single blast. The paper describes the construction and functionality of this new electronic blasting system - manufactured and developed by Precision Blasting Systems, a joint venture between Orica and Dynamic Nobel. (orig.)

  6. Indium recovery by solvent extraction

    International Nuclear Information System (INIS)

    Fortes, Marilia Camargos Botelho

    1999-04-01

    Indium has been recovered as a byproduct from residues generated from the sulfuric acid leaching circuits in mineral plants for zinc recovery. Once its recovery comes from the slags of other metals recovery, it is necessary to separate it from the other elements which usually are present in high concentrations. Many works have been approaching this separation and indicate the solvent extraction process as the main technique used. In Brazilian case, indium recovery depends on the knowledge of this technique and its development. This paper describes the solvent extraction knowledge for the indium recovery from aqueous solutions generated in mineral plants. The results for determination of the best experimental conditions to obtain a high indium concentration solution and minimum iron poisoning by solvent extraction with di (2-ethylhexyl)-phosphoric acid (D2EHPA) solubilized in isoparafin and exxsol has been presented. (author)

  7. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    Science.gov (United States)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model

  8. Fuel oil systems for standby diesel-generators

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides the design requirements for fuel oil system for diesel-generators that provide standby power for a nuclear power generating station. The system includes all essential equipment from and including fuel oil storage tanks up to the terminal connection on the diesel-engine. It does not include that portion of the fuel oil system supplied by the diesel-generator manufacturer which is in accordance with Trial-Use Criteria for Diesel-Generator Units Applied as Standby Power Supplies for Nuclear Power Generating Stations, IEEE-387-1972. This definition of scope is intended to exclude only those factory-assembled, engine-mounted appurtances supplied with a diesel-generator unit. Integral tanks are, however, within the scope of this Standard. It also excludes motors, motor control centers, switchgear, cables, and other electrical equipment which is used in operation of the fuel oil system, except to define interface requirements

  9. A System for Automatically Generating Scheduling Heuristics

    Science.gov (United States)

    Morris, Robert

    1996-01-01

    The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.

  10. Method and system of nuclear energy generation

    International Nuclear Information System (INIS)

    Wilke, W.

    1975-01-01

    The method is based on the nuclear reaction Li 6 (n,α)H 3 . Thermal neutrons, whose generation require a power reactor, are fed to a lithium deuterite target in such a manner that part of the tritons produced in this reaction undergo nuclear fusion of the kind d(T,n)α with the deuterons of the target. The remaining tritons are reacted with additional deuterons. The tritium produced in this reaction is processed and fed back to the lithium target over a triton source. It is also possible to process the tritium to a target, feed deuterons to it, and in addition to give the neutrons produced from the T(d,n)α reaction after slowing down to thermal energy to the lithium target. (DG/LH) [de

  11. Next-Generation Shipboard DC Power System

    DEFF Research Database (Denmark)

    Jin, Zheming; Sulligoi, Giorgio; Cuzner, Rob

    2016-01-01

    sources (RES) are commonly recognized as the major driven force of the revolution, the outburst of customer electronics and new kinds of household electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase...... in research interests and industrial applications. In addition, the concept of flexible and smart distribution has also been proposed, which tends to exploit distributed generation and pack the distributed RESs and local electrical loads as an independent and self-sustainable entity, namely microgrid....... At present, the research of dc microgrid has investigated and developed a series of advanced methods in control, management and objective-oriented optimization, which would found the technical interface enabling the future applications in multiple industrial areas, such as smart buildings, electric vehicles...

  12. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  13. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    Science.gov (United States)

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  14. Voltage Control System of A DC Generator Using PLC

    OpenAIRE

    Subrata CHATTOPADHYAY; Sagarika PAL

    2008-01-01

    The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reporte...

  15. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  16. Individual heterogeneity generating explosive system network dynamics.

    Science.gov (United States)

    Manrique, Pedro D; Johnson, Neil F

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  17. Individual heterogeneity generating explosive system network dynamics

    Science.gov (United States)

    Manrique, Pedro D.; Johnson, Neil F.

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  18. Magnetic field generated by lightning protection system

    Science.gov (United States)

    Geri, A.; Veca, G. M.

    1988-04-01

    A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.

  19. Windfarm Generation Assessment for ReliabilityAnalysis of Power Systems

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis; Holmstrøm, Ole; Bak-Jensen, Birgitte

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...

  20. Windfarm generation assessment for reliability analysis of power systems

    DEFF Research Database (Denmark)

    Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...

  1. Switching control of linear systems for generating chaos

    International Nuclear Information System (INIS)

    Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong

    2006-01-01

    In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors

  2. Port-Hamiltonian approaches to motion generation for mechanical systems

    NARCIS (Netherlands)

    Sakai, Satoru; Stramigioli, Stefano

    This paper gives new motion generation methods for mechanical port-Hamiltonian systems. First, we propose a generation method based on an asymptotic stabilization method without damping assignment. This asymptotic stabilization method preserves the Hamiltonian structure in the closed-loop system

  3. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  4. A System for Natural Language Sentence Generation.

    Science.gov (United States)

    Levison, Michael; Lessard, Gregory

    1992-01-01

    Describes the natural language computer program, "Vinci." Explains that using an attribute grammar formalism, Vinci can simulate components of several current linguistic theories. Considers the design of the system and its applications in linguistic modelling and second language acquisition research. Notes Vinci's uses in linguistics…

  5. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions...

  6. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame...

  7. Options for Next Generation Digital Acquisition Systems

    CERN Document Server

    Boccardi, A

    2011-01-01

    Digital acquisition system designers have an always increasing number of options in terms of bus standards and digital signal processing hardware among which to choose. This allows for high flexibility but also opens the door to a proliferation of different architectures, potentially limiting the reusability and the design synergies among the various instrumentation groups. This contribution illustrates the design trends in some of the major institutes around the world with design examples including VME, PCI and TCA based modular systems using AMC and/or FMC mezzanines. Some examples of FPGA design practices aimed at increasing reusability of code will be mentioned together with some of the tools already available to designers to improve the information exchange and collaboration, like the Open Hardware Repository project.

  8. Next generation intelligent environments ambient adaptive systems

    CERN Document Server

    Nothdurft, Florian; Heinroth, Tobias; Minker, Wolfgang

    2016-01-01

    This book covers key topics in the field of intelligent ambient adaptive systems. It focuses on the results worked out within the framework of the ATRACO (Adaptive and TRusted Ambient eCOlogies) project. The theoretical background, the developed prototypes, and the evaluated results form a fertile ground useful for the broad intelligent environments scientific community as well as for industrial interest groups. The new edition provides: Chapter authors comment on their work on ATRACO with final remarks as viewed in retrospective Each chapter has been updated with follow-up work emerging from ATRACO An extensive introduction to state-of-the-art statistical dialog management for intelligent environments Approaches are introduced on how Trust is reflected during the dialog with the system.

  9. Creating the next generation control system software

    International Nuclear Information System (INIS)

    Schultz, D.E.

    1989-01-01

    A new 1980's style support package for future accelerator control systems is proposed. It provides a way to create accelerator applications software without traditional programming. Visual Interactive Applications (VIA) is designed to meet the needs of expanded accelerator complexes in a more cost effective way than past experience with procedural languages by using technology from the personal computer and artificial intelligence communities. 4 refs

  10. Prometheus: a next-generation monitoring system

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Prometheus is an open eco-system that provides an end-to-end approach to infrastructure and application monitoring. It covers all levels beginning with easy instrumentation based on a flexible, multi-dimensional data model. The Prometheus server itself collects and stores time series while trying to maintain operational simplicity while being adaptable to varying scales and layouts of infrastructure. By integrating with a wide range of service discovery systems, it always stays in sync with the world it is monitoring. The powerful query language allows us to ask complex questions and can be applied seamlessly between ad-hoc investigation and static dashboarding. It is also directly applied in the eco-system's alerting layer, which favors a time-series based over and event driven approach. In this talk we will look at all aspects of Prometheus from the high-level philosophy behind its design to its practical concerns of implementation and operation. About the speaker Fabian Reinartz is a software eng...

  11. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    International Nuclear Information System (INIS)

    Leahy, Timothy J.

    2010-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated 'toolkit' consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  12. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  13. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods...

  14. Culinary and pressure irrigation water system hydroelectric generation

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Cory [Water Works Engineers, Pleasant Grove City, UT (United States)

    2016-01-29

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.

  15. Modelling of control system architecture for next-generation accelerators

    International Nuclear Information System (INIS)

    Liu, Shi-Yao; Kurokawa, Shin-ichi

    1990-01-01

    Functional, hardware and software system architectures define the fundamental structure of control systems. Modelling is a protocol of system architecture used in system design. This paper reviews various modellings adopted in past ten years and suggests a new modelling for next generation accelerators. (author)

  16. Into the depths of deep eutectic solvents

    NARCIS (Netherlands)

    Rodriguez, N.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Ionic liquids (ILs) have been successfully tested in a wide range of applications; however, their high price and complicated synthesis make them infeasible for large scale implementation. A decade ago, a new generation of solvents so called deep eutectic solvents (DESs) was reported for the first

  17. Fast pulse beam generation systems for electron accelerators

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1977-01-01

    The fast pulse beam generation system to supply the SLAC storage ring, SPEAR, by the two one nanosecond bunch electron beam pulses is described. Generation of these pulses is accomplished with a combination of a fast pulsed grided gun and a synchronized transverse beam chopper. Fast gun based on spherical cathode-grid assembly has output current up to 2As. Fast pulse amplifier system can handle trains of short pulses with repetition rates up to 40 MHz during the 1.6 μs normal accelerating time. Chopping deflector system consists of a resonant coaxial line with the deflecting plates. The resonator frequency is 39.667 MHz. A schematic diagram of the resonant system is shown. The fast beam pickup system has a one hundred picosecond rise time overrall. Fast beam generation and chopper systems permit to generate almost any short or single bunch beam profile needed for experiments

  18. Systemic study of knowledge generation at IPEN

    International Nuclear Information System (INIS)

    Monteiro, Carlos Anisio

    2016-01-01

    With the aim of providing subsidies to understand how scientific collaboration process occurs and develops into a research institution, particularly IPEN, this study used two methodological approaches. The first used the social networking analysis (SNA) technique to map the scientific collaboration networks in R&D of IPEN. The data used for the SNA technique were extracted from the technical and scientific publications database of IPEN, using a computer program, and were based on co-authorship from 2001 to 2010 period. These data were grouped into consecutive intervals of two years generating five biennial networks. This first approach showed several structural features related to collaborative networks, especially the most prominent authors, distribution of components, density, boundary spanners and aspects related to distance and clustering to define small world networks. In the second approach, partial least squares, a method to structure equation modeling, was used to evaluate and test a conceptual model based on personal, social, cultural and circumstantial factors to identify those that best explain the propensity of an IPENs author in establishing links of collaboration in R&D environments. From the consolidated model, we evaluated how much it explains the structural position of an author on the network based on SNA indicators. In this second part, the data were collected through a survey research using a questionnaire. The results showed that the model explains about 41% of the propensity of an IPEN author in collaborating with others authors, and in relation to the structural position of an author on the network, the explanation power of model ranged between 3% and 3.6%. Other results have shown that collaboration between IPEN authors have a positive correlation with moderate intensity to productivity, in the same way, the most central authors in the network tend to increase its visibility. Finally, several other bibliometric statistical indicators related

  19. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Flaibani, Marina; Elvassore, Nicola, E-mail: nicola.elvassore@unipd.it

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity ({approx} 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. - Highlights: Black-Right-Pointing-Pointer Gas anti-solvent precipitation and salt leaching for scaffold fabrication. Black-Right-Pointing-Pointer Hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) sponges. Black-Right-Pointing-Pointer Gas anti-solvent precipitation

  20. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds

    International Nuclear Information System (INIS)

    Flaibani, Marina; Elvassore, Nicola

    2012-01-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10–15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177–0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (∼ 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. - Highlights: ► Gas anti-solvent precipitation and salt leaching for scaffold fabrication. ► Hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) sponges. ► Gas anti-solvent precipitation induces nano-porous structures. ► Scaffolds are biocompatible and

  1. Solution thermodynamics of creatine monohydrate in binary (water + ethanol) solvent systems at T = (278.15 to 328.15) K

    International Nuclear Information System (INIS)

    Song, Liangcheng; Wei, Lihua; Si, Tao; Guo, Huai; Yang, Chunhui

    2016-01-01

    Highlights: • The solubilities of creatine monohydrate in (ethanol + water) mixtures were investigated. • The solubility data were well correlated by Jouyban–Acree model. • Solution thermodynamic properties were calculated. • The dissolving process of creatine monohydrate in was endothermic and entropy-driven. - Abstract: In order to optimize the crystallization process of creatine monohydrate, the solubility of creatine monohydrate in the binary (water + ethanol) mixture was measured at temperatures ranging from 278.15 K to 328.15 K using the laser monitoring technique. The solubility increased with both the temperature and the mole fraction of water in the solvent mixture. The experimental solubility was well correlated by the Jouyban–Acree model, which generated a sensitive solubility surface for creatine monohydrate. Furthermore, the thermodynamic parameters of this dissolution process were also estimated. The results showed that the dissolution process of creatine monohydrate in each solvent mixture was endothermic and entropy-driven, and that the dissolution of creatine monohydrate became much easier when the mole fraction of water in the solvent mixture increased.

  2. FEM Simulation of Small Wind Power Generating System Using PMSG

    Science.gov (United States)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  3. Model-Driven Test Generation of Distributed Systems

    Science.gov (United States)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  4. Electric Generator in the System for Damping Oscillations of Vehicles

    OpenAIRE

    Serebryakov A.; Kamolins E.; Levin N.

    2017-01-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better ef...

  5. Design and optimization of flexible multi-generation systems

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst

    variations and dynamics, and energy system analysis, which fails to consider process integration synergies in local systems. The primary objective of the thesis is to derive a methodology for linking process design practices with energy system analysis for enabling coherent and holistic design optimization...... of flexible multi-generation system. In addition, the case study results emphasize the importance of considering flexible operation, systematic process integration, and systematic assessment of uncertainties in the design optimization. It is recommended that future research focus on assessing system impacts...... from flexible multi-generation systems and performance improvements from storage options....

  6. Diagnostic system of steam generator, especially molten metal heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1986-01-01

    A diagnostic system is described and graphically represented consisting of a leak detector, a medium analyzer and sensors placed on the piping connected to the indication sections of both tube plates. The advantage of the designed system consists in the possibility of detecting tube failure immediately on leak formation, especially in generators with duplex tubes. This shortens the period of steam generator shutdown for repair and reduces power losses. The design also allows to make periodical leak tests during planned steam generator shutdowns. (A.K.)

  7. B-DNA model systems in non-terran bio-solvents : Implications for structure, stability and replication

    NARCIS (Netherlands)

    Hamlin, Trevor A.; Poater, Jordi; Fonseca Guerra, Célia; Bickelhaupt, F. Matthias

    2017-01-01

    We have computationally analyzed a comprehensive series of Watson-Crick and mismatched B-DNA base pairs, in the gas phase and in several solvents, including toluene, chloroform, ammonia, methanol and water, using dispersion-corrected density functional theory and implicit solvation. Our analyses

  8. INFLUENCE OF SOLVENT AND SORBENT CHARACTERISTICS ON DISTRIBUTION OF PENTACHLOROPHENOL IN OCTANOL-WATER AND SOIL-WATER SYSTEMS

    Science.gov (United States)

    Sorbent and solvent characteristics influencing sorption of pentachlorophenol (PCP) were investigated. Analysis of aqueous sorption data for several sorbents over a broad pH range suggested hydrophobic sorption of neutral PCP predominates at pH 7. At pH > 7, sorption of the penta...

  9. Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents. New systems for fundamental studies and biocatalytic transformations.

    Science.gov (United States)

    Mozhaev, V V; Poltevsky, K G; Slepnev, V I; Badun, G A; Levashov, A V

    1991-11-04

    A typical hydrophilic enzyme, CT, can be dissolved in nonpolar organic solvents (n-octane, cyclohexane and toluene) up to microM concentrations. In the homogeneous solution obtained, the enzyme possesses catalytic activity and enormously high thermostability. It does not lose this activity even after several hours refluxing in octane (126 degrees C) or cyclohexane (81 degrees C).

  10. Investigation of an inventory calculation model for a solvent extraction system and the development of its computer programme - SEPHIS-J

    International Nuclear Information System (INIS)

    Ihara, Hitoshi; Nishimura, Hideo; Ikawa, Koji; Ido, Masaru.

    1986-11-01

    In order to improve the applicability of near-real-time materials accountancy (N.R.T.MA) to a reprocessing plant, it is necessary to develop an estimation method for the nuclear material inventory at a solvent extraction system under operation. For designing the solvent extraction system, such computer codes as SEPHIS, SOLVEX and TRANSIENTS had been used. Accuracy of these codes in tracing operations and predicting inventories in the extraction system had been discussed. Then, much better codes, e.g., SEPHIS Mod4 and PUBG, were developed. Unfortunately, SEPHIS Mod4 was not available in countries other than the USA and PUBG was not suitable for use with a mini-computer which would be practical as a field computer because of quite a lot of computing time needed. The authors investigated an inventory estimation model compatible with PUBG in functions and developed the corresponding computer programme, SEPHIS-J, based on the SEPHIS Mod3 code, resulting in a third of computing time compared with PUBG. They also validated the programme by calculating a static state as well as a dynamic one of the solvent extraction process and by comparing them among the programme, SEPHIS Mod3 and PUBG. Using the programme, it was shown that the inventory changes due to changes of feed flow and concentration were not so small that they might be neglected although the changes of feed flow and concentration were within measurement errors. (author)

  11. New solvent systems for gradient counter-current chromatography in separation of betanin and its derivatives from processed Beta vulgaris L. juice.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Garrard, Ian; Ignatova, Svetlana; Wybraniec, Sławomir

    2015-02-06

    Betalains, natural plant pigments, are beneficial compounds due to their antioxidant and possible chemoprotective properties. A mixture of betalains: betanin/isobetanin, decarboxybetanins and neobetanin from processed red beet roots (Beta vulgaris L.) juice was separated in food-grade, gradient solvent systems using high-performance counter-current chromatography (HPCCC). The decarboxylated and dehydrogenated betanins were obtained by thermal degradation of betanin/isobetanin from processed B. vulgaris L. juice under mild conditions. Two solvent systems (differing in their composition by phosphoric acid and ethanol volume gradient) consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-1000:1300:700:2.5-10) in the 'tail-to-head' mode were run. The flow rate of the mobile phase (organic phase) was 1.0 or 2.0 ml/min and the column rotation speed was 1,600 rpm (20°C). The retention of the solvent system stationary phase (aqueous phase) was ca. 80%. The system with the acid and ethanol volume gradient consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-240:1300:700:2.5-4.5) pumped at 2.0 ml/min was the most effective for a separation of betanin/isobetanin, 17-decarboxy-betanin/-isobetanin, 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin pairs as well as neobetanin. The pigments were detected by LC-DAD and LC-MS. The results are crucial in the application of completely food-grade solvent systems in separation of food-grade compounds as well, and the systems can possibly be extended to other ionizable and polar compounds with potential health benefits. In particular, the method is applicable for the isolation and purification of betalains present in such rich sources as B. vulgaris L. roots as well as cacti fruits and Amaranthaceae flowering plants due to modification possibilities of the solvent systems polarity. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Experimental determination of the LLE data of systems consisting of {hexane + benzene + deep eutectic solvent} and prediction using the Conductor-like Screening Model for Real Solvents

    NARCIS (Netherlands)

    Rodriguez Rodriguez, Nerea; Gerlach, T.; Scheepers, Daniëlle; Kroon, M.C.; Smirnova, I.

    2017-01-01

    Recently, deep eutectic solvents (DESs) have proven to be excellent extracting agents in the separation of aromatic components from their mixtures with aliphatic compounds. The tunable properties of the DESs allow to tailor-make optimal solvents for this application. In this work type III DESs,

  13. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to

  14. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  15. The Impact of Connecting Distributed Generation to the Distribution System

    Directory of Open Access Journals (Sweden)

    E. V. Mgaya

    2007-01-01

    Full Text Available This paper deals with the general problem of utilizing of renewable energy sources to generate electric energy. Recent advances in renewable energy power generation technologies, e.g., wind and photovoltaic (PV technologies, have led to increased interest in the application of these generation devices as distributed generation (DG units. This paper presents the results of an investigation into possible improvements in the system voltage profile and reduction of system losses when adding wind power DG (wind-DG to a distribution system. Simulation results are given for a case study, and these show that properly sized wind DGs, placed at carefully selected sites near key distribution substations, could be very effective in improving the distribution system voltage profile and reducing power losses, and hence could  improve the effective capacity of the system

  16. Future development of the electricity systems with distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Bayod-Rujula, Angel A. [Department of Electrical Engineering, Centro Politecnico Superior, University of Zaragoza, C/Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-03-15

    Electrical power systems have been traditionally designed taking energy from high-voltage levels, and distributing it to lower voltage level networks. There are large generation units connected to transmission networks. But in the future there will be a large number of small generators connected to the distribution networks. Efficient integration of this distributed generation requires network innovations. A development of active distribution network management, from centralised to more distributed system management, is needed. Information, communication, and control infrastructures will be needed with increasing complexity of system management. Some innovative concepts such as microgrids and virtual utilities will be presented. (author)

  17. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  18. Donor-acceptor interaction between non-aqueous solvents and I{sub 2} to generate I{sup -}{sub 3}, and its implication in dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Zerihun [Department of Chemistry, Kotebe College of Teacher Education, P.O. Box 31248, Addis Ababa (Ethiopia); Lindquist, Sten-Eric [Department of Physical Chemistry, Uppsala University, P.O. Box 532, S-751 21 Uppsala (Sweden)

    1999-03-16

    The spectrophotometric properties of I{sup -}, I{sub 2} and the I{sup -}/I{sub 2} mixture were studied in 1,2-dichloroethane (DCE), acetone (AC), acetonitrile (ACN), ethanol (EtOH), methanol (MeOH), tertiary-butanol (t-BuOH), dimethylformamide (DMF), propylenecarbonate (PC), 3-methoxypropionitrile (MePN), dimethylsulfoxide (DMSO), dioxane (DIO) and pyridine (PY) solutions. From the investigation it has been realized that in DCE, I{sup -}, I{sub 2} and I{sup -}/I{sub 2} mixture have the same absorption peak at 500 nm. I{sup -} gives rise to the absorption spectra at about 220, 290 and 360 nm in t-BuOH and in PY solutions. However, in all other solvents the I{sup -} generates peaks only around 220 nm. Similarly I{sub 2} and the I{sup -}/I{sub 2} mixture in all solvents except DCE have indicated similar absorption peaks around 220, 290 and 360 nm. On the other hand, except in PC and DMF, I{sub 2} shows the additional peaks in the range of 380-500 nm which are assigned to the formation of a I{sub 2}-solvent complex. The peaks around 290 and 360 nm indicate the presence of I{sup -}{sub 3} and around 220 nm is the peak of I{sup -}. The spectral shift of the I{sub 2} solutions in the visible region is interesting and is the core of this report. It points to the importance of donor-acceptor interaction between solvents and iodine. The data obtained in these solvents were well correlated to the donor number (DN) of the solvents. From this correlation the DN of MePN was estimated to 14.6. The absorption peak of I{sub 2} in DCE(DN=0.0) is 500 nm and in PY(DN=33.1) is 378 nm. This peak shift due to solvent effects corresponds to an energy difference close to 0.8 eV. The absorption peak shift due to addition of the 0.0080 vol%. PY(1 mM) in 1 mM I{sub 2}-ACN solutions corresponds to ca. 0.6 eV. The blue shift of I{sub 2} absorption in basic solvents indicates the tendency to form a complex. The increase of the efficiency of the dye-sensitized solar cell by addition of PY to I

  19. "Method, system and storage medium for generating virtual brick models"

    DEFF Research Database (Denmark)

    2009-01-01

    An exemplary embodiment is a method for generating a virtual brick model. The virtual brick models are generated by users and uploaded to a centralized host system. Users can build virtual models themselves or download and edit another user's virtual brick models while retaining the identity...

  20. Electric micro-generation system for nautical applications

    International Nuclear Information System (INIS)

    Giordana, A; Ponzinibbio, P

    2005-01-01

    Application specific requirements are studied in first part of this work.As well possible wind turbines and the switched reluctance generator choice fundaments are analyzed.In a second part, a Savonius helical turbine, switched reluctance generator and control system designs are reviewed. Finally, prototype test results are presented

  1. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  2. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    Science.gov (United States)

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  3. Design of improved fuel cell controller for distributed generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Olsen Berenguer, F.A. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste, 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste, 1109, J5400ARL San Juan (Argentina)

    2010-06-15

    The world has been undergoing a deregulation process which allowed competition in the electricity generation sector. This situation is bringing the opportunity for electricity users to generate power by using small-scale generation systems with emerging technologies, allowing the development of distributed generation (DG). A fuel cell power plant (FCPP) is a distributed generation technology with a rapid development because it has promising characteristics, such as low pollutant emissions, silent operation, high efficiency and long lifetime because of its small number of moving parts. The power conditioning system (PCS) is the interface that allows the effective connection to the electric power system. With the appropriate topology of the PCS and its control system design, the FCPP unit is capable of simultaneously performing both instantaneous active and reactive power flow control. This paper describes the design and implementation of a novel high performance PCS of an FCPP and its controller, for applications in distributed generation systems. A full detailed model of the FCPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed system is validated by digital simulation in SimPowerSystems (SPS) of MATLAB/Simulink. (author)

  4. Towards an Explanation Generation System for Robots: Analysis and Recommendations

    Directory of Open Access Journals (Sweden)

    Ben Meadows

    2016-10-01

    Full Text Available A fundamental challenge in robotics is to reason with incomplete domain knowledge to explain unexpected observations and partial descriptions extracted from sensor observations. Existing explanation generation systems draw on ideas that can be mapped to a multidimensional space of system characteristics, defined by distinctions, such as how they represent knowledge and if and how they reason with heuristic guidance. Instances in this multidimensional space corresponding to existing systems do not support all of the desired explanation generation capabilities for robots. We seek to address this limitation by thoroughly understanding the range of explanation generation capabilities and the interplay between the distinctions that characterize them. Towards this objective, this paper first specifies three fundamental distinctions that can be used to characterize many existing explanation generation systems. We explore and understand the effects of these distinctions by comparing the capabilities of two systems that differ substantially along these axes, using execution scenarios involving a robot waiter assisting in seating people and delivering orders in a restaurant. The second part of the paper uses this study to argue that the desired explanation generation capabilities corresponding to these three distinctions can mostly be achieved by exploiting the complementary strengths of the two systems that were explored. This is followed by a discussion of the capabilities related to other major distinctions to provide detailed recommendations for developing an explanation generation system for robots.

  5. An Ethernet LAN based distributed generation system load shedding strategy

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2011-01-01

    This paper firstly analyzes and compares various communication technologies, and proposes a communication system for a distributed generation system (DGS) with wind turbines. Then the paper presents a novel simulation method of considering the interactions between the communication system and power...

  6. Truly random dynamics generated by autonomous dynamical systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.

    2001-09-01

    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.

  7. System for Automatic Generation of Examination Papers in Discrete Mathematics

    Science.gov (United States)

    Fridenfalk, Mikael

    2013-01-01

    A system was developed for automatic generation of problems and solutions for examinations in a university distance course in discrete mathematics and tested in a pilot experiment involving 200 students. Considering the success of such systems in the past, particularly including automatic assessment, it should not take long before such systems are…

  8. [Multimag-M magnetotherapy system of the new generation].

    Science.gov (United States)

    Borisov, A G; Grigor'ev, E M; Gurzhin, S G; Zhulev, V I; Kriakov, V G; Proshin, E M

    2007-01-01

    The Multimag-M microprocessor chronomagne-totherapy system of the new generation is described. The system provides on-line diagnosis of the pulse parameters and the breathing rate during a biotechnical feedback session. The requirements to the system software, as well as its specific features and design principles, are considered.

  9. Organic Solvent Tropical Report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    2000-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines

  10. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  11. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  12. Competition and Cooperation of Distributed Generation and Power System

    Science.gov (United States)

    Miyake, Masatoshi; Nanahara, Toshiya

    Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.

  13. Energy and environmental evaluation of tri-generation energy systems

    International Nuclear Information System (INIS)

    Chicco, G.; Mancarella, P.

    2008-01-01

    Tri generation facilities manufactured with various technologies represent an important alternative solution for the development more efficient energy systems and low environmental impact. Are described the issues related to modelling and energy and environmental evaluation [it

  14. Advanced On Board Inert Gas Generation System (OBBIGS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  15. Intelligent control of energy-saving power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyuan; Zhang, Guoqing; Guo, Zhizhong [Harbin Institute of Technology, Harbin (China). Dept. of Electrical Engineering

    2013-07-01

    Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind of city science and technology innovation, which has the characteristics of environmental protection and sustainable utilization. Making full use of vehicle impact speed control humps, we design a new kind of highway speed control humps combined with solar electric generation system integration. Developing green energy, energy saving and environment protection can be achieved.

  16. Cold weather hydrogen generation system and method of operation

    Science.gov (United States)

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  17. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.

    Science.gov (United States)

    Flaibani, Marina; Elvassore, Nicola

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M; Yokoyama, R; Yasuda, K [Tokyo Metropolitan Univ. (Japan); Sasaki, H [Hiroshima Univ. (Japan); Ogimoto, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  19. Automatic Generation of Supervisory Control System Software Using Graph Composition

    Science.gov (United States)

    Nakata, Hideo; Sano, Tatsuro; Kojima, Taizo; Seo, Kazuo; Uchida, Tomoyuki; Nakamura, Yasuaki

    This paper describes the automatic generation of system descriptions for SCADA (Supervisory Control And Data Acquisition) systems. The proposed method produces various types of data and programs for SCADA systems from equipment definitions using conversion rules. At first, this method makes directed graphs, which represent connections between the equipment, from equipment definitions. System descriptions are generated using the conversion rules, by analyzing these directed graphs, and finding the groups of equipment that involve similar operations. This method can make the conversion rules multi levels by using the composition of graphs, and can reduce the number of rules. The developer can define and manage these rules efficiently.

  20. Photovoltaic-wind hybrid autonomous generation systems in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Dei, Tsutomu; Ushiyama, Izumi

    2005-01-01

    Two hybrid stand-alone (autonomous) power systems, each with wind and PV generation, were studied as installed at health clinics in semi-desert and mountainous region in Mongolia. Meteorological and system operation parameters, including power output and the consumption of the system, were generally monitored by sophisticated monitoring. However, where wind and solar site information was lacking, justifiable estimates were made. The results show that there is a seasonal complementary relationship between wind and solar irradiation in Tarot Sum. The users understood the necessity of Demand Side Management of isolated wind-PV generation system through technology transfer seminars and actually executed DSM at both sites. (author)

  1. Voltage Control System of A DC Generator Using PLC

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2008-06-01

    Full Text Available The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reported in this paper.

  2. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery.

    Science.gov (United States)

    Tang, Wei-Lun; Tang, Wei-Hsin; Szeitz, Andras; Kulkarni, Jayesh; Cullis, Pieter; Li, Shyh-Dar

    2018-06-01

    The solvent-assisted active loading technology (SALT) was developed for encapsulating a water insoluble weak base into the liposomal core in the presence of 5% DMSO. In this study, we further examined the effect of various water miscible solvents in promoting active loading of other types of drugs into liposomes. To achieve complete drug loading, the amount of solvent required must result in complete drug solubilization and membrane permeability enhancement, but must be below the threshold that induces liposomal aggregation or causes bilayer disruption. We then used the SALT to load gambogic acid (GA, an insoluble model drug that shows promising anticancer effect) into liposomes, and optimized the loading gradient and lipid composition to prepare a stable formulation (Lipo-GA) that displayed >95% drug retention after incubation with serum for 3 days. Lipo-GA contained a high drug-to-lipid ratio of 1/5 (w/w) with a mean particle size of ∼75 nm. It also displayed a prolonged circulation half-life (1.5 h vs. 18.6 h) and enhanced antitumor activity in two syngeneic mice models compared to free GA. Particularly, complete tumor regression was observed in the EMT6 tumor model for 14 d with significant inhibition of multiple oncogenes including HIF-1α, VEGF-A, STAT3, BCL-2, and NF-κB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    Science.gov (United States)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  4. Design and Implementation of the Permanent- Magnet Synchronous Generator Drive in Wind Generation Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Chih Chang

    2018-06-01

    Full Text Available The design and implementation of the permanent-magnet synchronous generator drive in wind generation systems is presented in this paper. The permanent-magnet synchronous generator (PMSG can converse the alternating current (AC power of the wind turbine to direct current (DC power. In this paper, the dynamic model of a PMSG is first introduced. The current controller is designed based on T-S fuzzy models of the PMSG. The stability of the proposed PMSG drive system is analyzed and proved. The proposed T-S fuzzy current control possesses a disturbance suppression ability. Compared with the traditional fuzzy logic system, its stability can be proved and verified. Finally, the control performance of the PMSG drive is verified by experimental results.

  5. Impacts of intermittent renewable generation on electricity system costs

    International Nuclear Information System (INIS)

    Batalla-Bejerano, Joan; Trujillo-Baute, Elisa

    2016-01-01

    A successful deployment of power generation coming from variable renewable sources, such as wind and solar photovoltaic, strongly depends on the economic cost of system integration. This paper, in seeking to look beyond the impact of renewable generation on the evolution of the total economic costs associated with the operation of the electricity system, aims to estimate the sensitivity of balancing market requirements and costs to the variable and non-fully predictable nature of intermittent renewable generation. The estimations reported in this paper for the Spanish electricity system stress the importance of both attributes as well as power system flexibility when accounting for the cost of balancing services. - Highlights: •A successful deployment of VRES-E strongly depends on the economic cost of its integration. •We estimate the sensitivity of balancing market requirements and costs to VRES-E. •Integration costs depend on variability, predictability and system flexibility.

  6. Performance evaluation of microturbine generation system for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Salam, A.A.; Mohamed, A.; Hannan, M.A.; Shareef, H.; Wanik, M.Z.C. [Kebangsaan Malaysia Univ., Selangor (Malaysia). Dept. of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment

    2009-03-11

    A control system for microturbine generation system (MGS) units in microgrid applications was presented. A dynamic model of the microturbine and power electronics interface systems was used to determine converter control strategies for distributed generation operation. Back-to-back converters were used to interface the microturbine-based distributed generation system to the grid. The controllers were used to regulate the output voltage value at the reference bus voltage and the frequency of the whole grid. Reference values were predetermined in the control scheme in order to obtain the desired value of voltage amplitude and frequency. An investigation of system dynamics was conducted using simulations in both grid-connected and islanded modes. Results of the simulations demonstrated the ability of the MGS to improve electricity grid reliability. The model can be used to accurately simulate MGS dynamic performance for both grid- and islanded modes of operation. 10 refs., 17 figs.

  7. A third generation mobile high energy radiography system

    International Nuclear Information System (INIS)

    Fry, D.A.; Valdez, J.E.; Johnson, C.S.; Kimerly, H.J.; Vananne, J.R.

    1997-01-01

    A third generation mobile high energy radiographic capability has been completed and put into service by the Los Alamos National Laboratory. The system includes a 6 MeV linac x-ray generator, Co-60 gamma source, all-terrain transportation, on-board power, real-time radiography (RTR), a control center, and a complete darkroom capability. The latest version includes upgraded and enhanced portability, flexibility, all-terrain operation, all-weather operation, and ease of use features learned from experience with the first and second generation systems. All systems were required to have the following characteristics; all-terrain, all-weather operation, self-powered, USAF airlift compatible, reliable, simple to setup, easy to operate, and all components two-person portable. The systems have met these characteristics to differing degrees, as is discussed in the following section, with the latest system being the most capable

  8. Model Oriented Application Generation for Industrial Control Systems

    CERN Document Server

    Copy, B; Blanco Vinuela, E; Fernandez Adiego, B; Nogueira Ferandes, R; Prieto Barreiro, I

    2011-01-01

    The CERN Unified Industrial Control Systems framework (UNICOS) is a software generation methodology and a collection of development tools that standardizes the design of industrial control applications [1]. A Software Factory, named the UNICOS Application Builder (UAB) [2], was introduced to ease extensibility and maintenance of the framework, introducing a stable metamodel, a set of platformindependent models and platformspecific configurations against which code generation plugins and configuration generation plugins can be written. Such plugins currently target PLC programming environments (Schneider and SIEMENS PLCs) as well as SIEMENS WinCC Open Architecture SCADA (previously known as ETM PVSS) but are being expanded to cover more and more aspects of process control systems. We present what constitutes the UNICOS metamodel and the models in use, how these models can be used to capture knowledge about industrial control systems and how this knowledge can be leveraged to generate both code and configuratio...

  9. Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent free system

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    By-product formation is a serious problem in the lipase-catalyzed acyl exchange of phospholipids (PL). By-products are formed due to parallel hydrolysis reactions and acyl migration in the reaction system. A clear elucidation of these side reactions is important for practical operation in order...... to minimize by-products during reaction. In the present study we examined the Lipozyme RM IM-catalyzed acidolysis for the production of structured phospholipids between phosphatidylcholine (PC) and caprylic acid in the solvent free system. A five-factor response surface design was used to evaluate...

  10. Exterior field evaluation of new generation video motion detection systems

    International Nuclear Information System (INIS)

    Malone, T.P.

    1988-01-01

    Recent advancements in video motion detection (VMD) system design and technology have resulted in several new commercial VMD systems. Considerable interest in the new VMD systems has been generated because the systems are advertised to work effectively in exterior applications. Previous VMD systems, when used in an exterior environment, tended to have very high nuisance alarm rates due to weather conditions, wildlife activity and lighting variations. The new VMD systems advertise more advanced processing of the incoming video signal which is aimed at rejecting exterior environmental nuisance alarm sources while maintaining a high detection capability. This paper discusses the results of field testing, in an exterior environment, of two new VMD systems

  11. The effect of pressure, isotopic (H/D) substitution, and other variables on miscibility in polymer-solvent systems. The nature of the demixing process; dynamic light scattering and small angle neutron scattering studies. Final report

    International Nuclear Information System (INIS)

    Van Hook, W.A.

    2000-01-01

    A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering

  12. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  13. Dynamic Braking System of a Tidal Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation. The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal

  14. Experimental Investigation and Modeling of Integrated Tri-generation Systems

    Science.gov (United States)

    Cetinkaya, Eda

    Energy demand in the world is increasing with population growth and higher living standards. Today, the need for energy requires a focus on renewable sources without abandoning fossil fuels. Efficient use of energy is one of the most important tasks in modern energy systems to achieve. In addition to the energy need, growing environmental concerns are linked with energy is emerged. Multi-purpose energy generation allows a higher efficiency by generating more outputs with the same input in the same system. Tri-generation systems are expected to provide at least three commodities, such as heating, cooling, desalination, storable fuel production and some other useful outputs, in addition to power generation. In this study, an experimental investigation of gasification is presented and two integrated tri-generation systems are proposed. The first integrated tri-generation system (System 1) utilizes solar energy as input and the outputs are power, fresh water and hot water. It consists of four sub-systems, namely solar power tower system, desalination system, Rankine cycle and organic Rankine cycle (ORC). The second integrated tri-generation system (System 2) utilizes coal and biomass as input and the outputs are power, fuel and hot water. It consists of five sub-systems: gasification plant, Brayton cycle, Rankine cycle, Fischer-Tropsch synthesis plant and an organic Rankine cycle (ORC). Experimental investigation includes coal and biomass gasification, where the experimental results of synthesis gas compositions are utilized in the analysis of the second systems. To maximize efficiency, heat losses from the system should be minimized through a recovery system to make the heat a useful commodity for other systems, such as ORCs which can utilize the low-grade heat. In this respect, ORCs are first analyzed for three different configurations in terms of energy and exergy efficiencies altering working fluids to increase the power output. Among two types of coal and one type

  15. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    This chapter introduces Energy System Analysis methodologies and tools, which can be used for identifying the best application of different Fuel Cell (FC) technologies to different regional or national energy systems. The main point is that the benefits of using FC technologies indeed depend...... on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... technologies are very often connected to the use of hydrogen, which has to be provided e.g. from electrolysers. Decentralised and distributed generation has the possibility of improving the overall energy efficiency and flexibility of energy systems. Therefore, energy system analysis tools and methodologies...

  16. Evaluation of a continuous-positive pressure generating system

    Directory of Open Access Journals (Sweden)

    Herrera N

    2016-03-01

    Full Text Available Nestor Herrera,1,2 Roberto Regnícoli,1,2 Mariel Murad1,2 1Neonatology Unit, Italian Hospital Garibaldi, Rosario, Argentina; 2Experimental Medicine and Surgery Unit, Italian University Institute of Rosario, Argentina Abstract: The use of systems that apply continuous-positive airway pressure by means of noninvasive methods is widespread in the neonatal care practice and has been associated with a decrease in the use of invasive mechanical ventilation, less administration of exogenous surfactant, and bronchopulmonary dysplasia. Few experimental studies on the functioning of the neonatology systems that generate continuous-positive airway pressure have been reported. A flow resistor system associated with an underwater seal resistor in a lung test model was described, and it was compared with an underwater seal threshold resistor system. Important differences in the pressures generated in the different systems studied were verified. The generation of pressure was associated with the immersion depth and the diameter of the bubble tubing. The flow resistor associated with an underwater seal, with small bubble tubing, showed no important differences in the evaluated pressures, exerting a stabilizing effect on the generated pressures. The importance of measuring the pressure generated by the different systems studied was verified, due to the differences between the working pressures set and the pressures measured. Keywords: continuous-positive pressure, flow and threshold resistor, BCPAP

  17. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Tan, Lippong; Date, Abhijit; Singh, Baljit; Akbarzadeh, Aliakbar

    2015-01-01

    Highlights: • A new passive power cogeneration system using industrial waste heat was introduced. • Heat pipes and thermoelectrics were used for recovering waste heat and electricity. • Theoretical model predicted the 2 kW test rig could recover 1.345 kW thermal power. • 10.39 W electrical power was produced equivalent to 0.77% conversion efficiency. - Abstract: This research explores a new method of recovering waste heat and electricity using a combination of heat pipes and thermoelectric generators (HP-TEG). The HP-TEG system consists of Bismuth Telluride (Bi 2 Te 3 ) based thermoelectric generators (TEGs), which are sandwiched between two finned heat pipes to achieve a temperature gradient across the TEG for thermoelectricity generation. A theoretical model was developed to predict the waste heat recovery and electricity conversion performances of the HP-TEG system under different parametric conditions. The modelling results show that the HP-TEG system has the capability of recovering 1.345 kW of waste heat and generating 10.39 W of electrical power using 8 installed TEGs. An experimental test bench for the HP-TEG system is under development and will be discussed in this paper

  18. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was

  19. Distributed Generation in Power Systems: An Overview and Key Issues

    DEFF Research Database (Denmark)

    Singh, Sri Niwas

    2009-01-01

    quality, etc. However, depending on the system configuration and management, these advantages may not be true. Moreover, due to structural and managerial changes in the electricity supply industry motivated with introduction of completion, the role of small generations distributed in the low...... issues in the DG integration in power systems...

  20. SCOS2: ESA's new generation of mission control systems

    Science.gov (United States)

    Kaufeler, J. F.; Head, N. C.

    1993-01-01

    The paper describes the next generation Spacecraft Control System infrastructure (SCOSII) which is being developed at the Operations Centre (ESOC) of the European Space Agency (ESA). The objectives of the new system and selected areas of the proposed hardware and software approach are described.

  1. Protection issues on microgrid/distributed generation based systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Angelo R. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil); Ribeiro, Paulo F. [Calvin College, Grand Rapids, MI (United States). Dept. of Electrical Engineering; Iung, Anderson M. [Geracao Paranapanema S.A., SP (Brazil). Duke Energy International. Market Analysis Dept.; Garcia, Paulo A.N. [Federal University of Juiz de Fora (UFJF), MG (Brazil). Dept. of Circuits

    2009-07-01

    This paper aims to discuss protection issues related to the presence of distributed generation (DG) in distribution systems. A case study is developed to show some impacts of transitions and operations with relay static settings to verify the reliability of systems in the presence of DG. (author)

  2. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    Buckthorpe, Derek

    2010-01-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO 2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  3. Mathematical modeling of control system for the experimental steam generator

    Science.gov (United States)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  4. Mathematical modeling of control system for the experimental steam generator

    Directory of Open Access Journals (Sweden)

    Podlasek Szymon

    2016-01-01

    Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  5. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  6. Instrumentation and control of turbine, generator and associated systems

    International Nuclear Information System (INIS)

    Vogtland, U.

    1982-01-01

    The purpose of this presentation is to give some information on Instrumentation and Control (I and C) for turbine-generators, in this case for nuclear application. The I and C scope of supply for such a turbine-generator can be divided as follows: - Closed-loop controls - Turbine stress control systems - Supervisory instrumentation - Protection systems - Open-loop controls. The main systems used for nuclear application are presented by means of examples taken from these a.m. categories. (orig./RW)

  7. Control and operation of distributed generation in distribution systems

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    Many distribution systems nowadays have significant penetration of distributed generation (DG)and thus, islanding operation of these distribution systems is becoming a viable option for economical and technical reasons. The DG should operate optimally during both grid-connected and island...... algorithm, which uses average rate of change off requency (Af5) and real power shift RPS), in the islanded mode. RPS will increase or decrease the power set point of the generator with increasing or decreasing system frequency, respectively. Simulation results show that the proposed method can operate...

  8. Practical system for generating digital mixed reality video holograms.

    Science.gov (United States)

    Song, Joongseok; Kim, Changseob; Park, Hanhoon; Park, Jong-Il

    2016-07-10

    We propose a practical system that can effectively mix the depth data of real and virtual objects by using a Z buffer and can quickly generate digital mixed reality video holograms by using multiple graphic processing units (GPUs). In an experiment, we verify that real objects and virtual objects can be merged naturally in free viewing angles, and the occlusion problem is well handled. Furthermore, we demonstrate that the proposed system can generate mixed reality video holograms at 7.6 frames per second. Finally, the system performance is objectively verified by users' subjective evaluations.

  9. On-Line Generation and Arming of System Protection Schemes

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Blanke, Mogens; Møller, Jakob Glarbo

    2016-01-01

    This paper presents a new method to automatically generate system protection schemes in real-time, where contingencies are filtered using a method providing N– 1 system snapshots. With future power systems consisting largely of renewable distributed generation with time-varying production, highly....... The method is based on a recently proposed method of calculating post-contingency Thevenin equivalents, which are used to assess the security of the post-contingency condition. The contingencies that violate the emergency limits are contained by pre-determining event-based remedial actions. The instability...

  10. System considerations for airborne, high power superconducting generators

    International Nuclear Information System (INIS)

    Southall, H.L.; Oberly, C.E.

    1979-01-01

    The design of rotating superconducting field windings in high power generators is greatly influenced by system considerations. Experience with two superconducting generators designed to produce 5 and 20 Mw resulted in a number of design restrictions. The design restrictions imposed by system considerations have not prevented low weight and high voltage power generation capability. The application of multifilament Nb;sub 3;Sn has permitted a large thermal margin to be designed into the rotating field winding. This margin permits the field winding to remain superconducting under severe system operational requirements. System considerations include: fast rotational startup, fast ramped magnetic fields, load induced transient fields and airborne cryogen logistics. Preliminary selection of a multifilament Nb;sub 3;Sn cable has resulted from these considerations. The cable will carry 864 amp at 8.5K and 6.8 Tesla. 10 refs

  11. Application of cultural algorithm to generation scheduling of hydrothermal systems

    International Nuclear Information System (INIS)

    Yuan Xiaohui; Yuan Yanbin

    2006-01-01

    The daily generation scheduling of hydrothermal power systems plays an important role in the operation of electric power systems for economics and security, which is a large scale dynamic non-linear constrained optimization problem. It is difficult to solve using traditional optimization methods. This paper proposes a new cultural algorithm to solve the optimal daily generation scheduling of hydrothermal power systems. The approach takes the water transport delay time between connected reservoirs into consideration and can conveniently deal with the complicated hydraulic coupling simultaneously. An example is used to verify the correctness and effectiveness of the proposed cultural algorithm, comparing with both the Lagrange method and the genetic algorithm method. The simulation results demonstrate that the proposed algorithm has rapid convergence speed and higher solution precision. Thus, an effective method is provided to solve the optimal daily generation scheduling of hydrothermal systems

  12. Formal Specification Based Automatic Test Generation for Embedded Network Systems

    Directory of Open Access Journals (Sweden)

    Eun Hye Choi

    2014-01-01

    Full Text Available Embedded systems have become increasingly connected and communicate with each other, forming large-scaled and complicated network systems. To make their design and testing more reliable and robust, this paper proposes a formal specification language called SENS and a SENS-based automatic test generation tool called TGSENS. Our approach is summarized as follows: (1 A user describes requirements of target embedded network systems by logical property-based constraints using SENS. (2 Given SENS specifications, test cases are automatically generated using a SAT-based solver. Filtering mechanisms to select efficient test cases are also available in our tool. (3 In addition, given a testing goal by the user, test sequences are automatically extracted from exhaustive test cases. We’ve implemented our approach and conducted several experiments on practical case studies. Through the experiments, we confirmed the efficiency of our approach in design and test generation of real embedded air-conditioning network systems.

  13. Thermo-electrical systems for the generation of electricity

    International Nuclear Information System (INIS)

    Bitschi, A.; Froehlich, K.

    2010-01-01

    This article takes a look at theoretical models concerning thermo-electrical systems for the generation of electricity and demonstrations of technology actually realised. The potentials available and developments are discussed. The efficient use of energy along the whole generation and supply chain, as well as the use of renewable energy sources are considered as being two decisive factors in the attainment of a sustainable energy supply system. The large amount of unused waste heat available today in energy generation, industrial processes, transport systems and public buildings is commented on. Thermo-electric conversion systems are discussed and work being done on the subject at the Swiss Federal Institute of Technology in Zurich is discussed. The findings are discussed and results are presented in graphical form

  14. Conformational and bioactivity analysis of insulin: freeze-drying TBA/water co-solvent system in the presence of surfactant and sugar.

    Science.gov (United States)

    Zhang, Yong; Deng, Yingjie; Wang, Xueli; Xu, Jinghua; Li, Zhengqiang

    2009-04-17

    Despite the extensive research into the freeze-drying of aqueous solutions of proteins, it remains unknown whether proteins can survive the lyophilization process in a water-organic co-solvent system and how the process and additives affect the structural stability and activity of the proteins. In the present study, a conformational analysis of insulin in the absence/presence of bile salt and trehalose was carried out, before and after freeze-drying of a tert-butyl alcohol (TBA)/water co-solvent system at volume ratios of TBA to water ranging from 50/50 to 0/100. The study involved the use of ultraviolet derivative and fluorescence spectroscopy, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Also the bioactivity of insulin was evaluated in vivo using the streptozotocin (STZ)-induced diabetic mice as an animal model. Initial investigations indicate that the extent of the structural change of insulin depends significantly both on the TBA content and on the concentration of additives, such as sodium deoxycholate, prior to lyophilization. This could be accounted for by the phase behavior properties of the TBA/water co-solvent system, surface denaturation together with the selective and/or forced dispersion of insulin during phase separation. Lyophilized insulin in the presence of bile salt and trehalose retained more of its bioactivity and native-like structure in the solid state compared with that in the absence of additives at various TBA/water ratios, although in all cases there was a major and reversible rearrangement of secondary structure after rehydration, except for insulin at 50% TBA (v/v). Furthermore, both lyophilization in non-eutectic systems and less structural changes in the formulation process lead to more bioactivity.

  15. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering.

    Science.gov (United States)

    Dong, Hongjun; Tao, Wenwen; Zhang, Yanping; Li, Yin

    2012-01-01

    Clostridium acetobutylicum is an important solvent (acetone-butanol-ethanol) producing bacterium. However, a stringent, effective, and convenient-to-use inducible gene expression system that can be used for regulating the gene expression strength in C. acetobutylicum is currently not available. Here, we report an anhydrotetracycline-inducible gene expression system for solvent-producing bacterium C. acetobutylicum. This system consists of a functional chloramphenicol acetyltransferase gene promoter containing tet operators (tetO), Pthl promoter (thiolase gene promoter from C. acetobutylicum) controlling TetR repressor expression cassette, and the chemical inducer anhydrotetracycline (aTc). The optimized system, designated as pGusA2-2tetO1, allows gene regulation in an inducer aTc concentration-dependent way, with an inducibility of over two orders of magnitude. The stringency of TetR repression supports the introduction of the genes encoding counterselective marker into C. acetobutylicum, which can be used to increase the mutant screening efficiency. This aTc-inducible gene expression system will thus increase the genetic manipulation capability for engineering C. acetobutylicum. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Next generation Zero-Code control system UI

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.

  17. Prediction of Corrosion of Alloys in Mixed-Solvent Environments

    Energy Technology Data Exchange (ETDEWEB)

    Anderko, Andrzej [OLI Systems Inc. Morris Plains (United States); Wang, Peiming [OLI Systems Inc. Morris Plains (United States); Young, Robert D. [OLI Systems Inc. Morris Plains (United States); Riemer, Douglas P. [OLI Systems Inc. Morris Plains (United States); McKenzie, Patrice [OLI Systems Inc. Morris Plains (United States); Lencka, Malgorzata M. [OLI Systems Inc. Morris Plains (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-06-05

    Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte

  18. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  19. Modular sludge collection system for a nuclear steam generator

    International Nuclear Information System (INIS)

    Appleman, R.H.; Bein, J.D.; Powasaki, F.S.

    1986-01-01

    A sludge collection system is described for a vertically oriented nuclear steam generator wherein vapors produced in the steam generator pass through means for separating entrained liquid from the vapor prior to the vapor being discharged from the steam generator. The sludge collection system comprises: an upwardly open chamber for collecting the separated liquid and feedwater entering the steam generator; upwardly open sludge collecting containers positioned within the chamber, wherein each of the containers includes a top rim encompassing an opening leading to the interior of each container; generally flat, perforated covers, each of the covers being positioned over one of the openings such that a gap is formed between the cover and the adjacent top rim; sludge agitating means on at least one of the containers; and sludge removal means on at least one of the containers

  20. Risk assessment of electric generation systems with high wind penetration

    International Nuclear Information System (INIS)

    Salgado Duarte, Yorlandys; Castillo Serpa, Alfredo M. del

    2017-01-01

    The research evaluates the risk function of an Electric Generation System (SGE) with high wind power penetration using the Sequential Monte Carlo Simulation (SMCS) method, which allows calculating indicators that characterize the performance of the SGE with expected average values. The research uses a Markov model of two states or four states according to the characteristics of the generator to simulate the instantaneous capacity. The primary sources of each conventional generator are assumed to be always available; however, wind power depends on the wind behavior in each analyzed region. In this research, the Chronological Series and Weibull models are used to model the wind behavior, and the analyzes are performed in the IEEE-RTS system. The work shows that the behavior of the probabilistic indicators used to analyze the static capacity of the SGE is determined by the model used to simulate the stochastic of the generators and by the primary energy source. (author)

  1. Molecular Thermodynamic Modeling of Mixed Solvent Solubility

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2010-01-01

    A method based on statistical mechanical fluctuation solution theory for composition derivatives of activity coefficients is employed for estimating dilute solubilities of 11 solid pharmaceutical solutes in nearly 70 mixed aqueous and nonaqueous solvent systems. The solvent mixtures range from...... nearly ideal to strongly nonideal. The database covers a temperature range from 293 to 323 K. Comparisons with available data and other existing solubility methods show that the method successfully describes a variety of observed mixed solvent solubility behaviors using solute−solvent parameters from...

  2. How to Generate Security Cameras: Towards Defence Generation for Socio-Technical Systems

    NARCIS (Netherlands)

    Gadyatskaya, Olga

    2016-01-01

    Recently security researchers have started to look into automated generation of attack trees from socio-technical system models. The obvious next step in this trend of automated risk analysis is automating the selection of security controls to treat the detected threats. However, the existing

  3. Influence of molar mass of polymer on the solvent activity for binary system of poly N-vinylcaprolactam and water

    International Nuclear Information System (INIS)

    Foruotan, Masumeh; Zarrabi, Mona

    2009-01-01

    The water activity in aqueous solution of poly N-vinyl caprolactam with different molecular weights is measured by isopiestic method at T = 308.15 K. The results show that water activity and vapour pressure of poly N-vinylcaprolactam solution increases with increasing the molecular weight. The Flory-Huggins model, the modified Flory-Huggins model and Freed Flory-Huggins equation + NRTL model are used for correlation of the experimental solvent activity. It is found that the Freed Flory-Huggins + NRTL model is better than the others

  4. Embedding the Form Generator in a Content Management System

    Science.gov (United States)

    Delgado, A.; Wicenec, A.; Delmotte, N.; Tejero, A.

    2008-08-01

    Given the tremendous amount of data generated by ESO's telescopes and the rapid evolution of the World Wide Web, the ESO archive web interface needs to offer more flexible services and advanced functionalities to a growing community of users all over the world. To achieve this endeavour, a query form generator is being developed inside a Content Management System. We present here a progress report.

  5. Development of data management system for steam generator inspection

    International Nuclear Information System (INIS)

    Jung, Yong Moo; Im, Chang Jae; Lee, Yoon Sang; Kang, Soon Joo; An, Jong Kwan

    1994-06-01

    The data communications environment for transferring Nuclear Power Plant Steam Generator Eddy Current testing data was investigated and after connecting LAN to Hinet-F network, the remote data transfer with the speed of 56 kbps was tested successfully. Data management system for Steam Generator Eddy current testing was also developed by using HP-UX, RMB (Rock Mountain Basic) 21 figs, 13 tabs, 5 refs. (Author)

  6. Development of data management system for steam generator inspection

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Moo; Im, Chang Jae; Lee, Yoon Sang; Kang, Soon Joo; An, Jong Kwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    The data communications environment for transferring Nuclear Power Plant Steam Generator Eddy Current testing data was investigated and after connecting LAN to Hinet-F network, the remote data transfer with the speed of 56 kbps was tested successfully. Data management system for Steam Generator Eddy current testing was also developed by using HP-UX, RMB (Rock Mountain Basic) 21 figs, 13 tabs, 5 refs. (Author).

  7. Reliability worth assessment of radial systems with distributed generation

    OpenAIRE

    Bellart Llavall, Francesc Xavier

    2010-01-01

    With recent advances in technology, utilities generation (DG) on the distribution systems. Reliability worth is very important in power system planning and operation. Having a DG ensures reli increase the reliability worth. This research project presents the study of a radial distribution system and the impact of placing DG in order to increase the reliability worth. where a DG have to be placed. The reliability improvement is measured by different reliability indices tha...

  8. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  9. Anosov C-systems and random number generators

    Science.gov (United States)

    Savvidy, G. K.

    2016-08-01

    We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.

  10. How will fourth-generation nuclear systems be deployed?; Comment les systemes nucleaires de 4. generation se deploieront-ils?

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, B.; Carre, F. [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France)

    2007-07-01

    If it is to be fully consonant with a sustainable development perspective, nuclear energy needs must rely on systems that will ensure the greatest optimization of fissile material utilization, while minimizing production of ultimate waste. Deployment scenarios, for systems of the new generation, remain very much open. (authors)

  11. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  12. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  13. Ontario Hydro Pickering Generating Station fuel handling system performance

    International Nuclear Information System (INIS)

    Underhill, H.J.

    1986-01-01

    The report briefly describes the Pickering Nuclear Generating Station (PNGS) on-power fuel handling system and refuelling cycle. Lifetime performance parameters of the fuelling system are presented, including station incapability charged to the fuel handling system, cost of operating and maintenance, dose expenditure, events causing system unavailability, maintenance and refuelling strategy. It is concluded that the 'CANDU' on-power fuelling system, by consistently contributing less than 1% to the PNGS incapability, has been credited with a 6 to 20% increase in reactor capacity factor, compared to off-power fuelling schemes. (author)

  14. Community Microgrid Based on Micro-Wind Generation System

    OpenAIRE

    Mariam, Lubna; Basu, Malabika; Conlon, Michael

    2013-01-01

    Penetration of renewable energy sources (such as solar/wind) are being explored mostly as micro power generation (μGen) or mega power plant system. In recent years, emphasis has been given on Microgrid (μGrid) systems because of their few advantages over μGen systems in terms of power quality, stability, reliability, economics etc. But the commercial installation of the μGrid system is not yet progressing significantly. This paper presents the techno-economic aspects of μGen and μGrid systems...

  15. Static and dynamic high power, space nuclear electric generating systems

    International Nuclear Information System (INIS)

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  16. Stirling based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, J.S.; Zutt, J.G.M.; Rabou, L.P.L.M.; Beckers, G.J.J. [ECN Clean Fossil Fuels, Petten (Netherlands); Baijens, C.A.W.; Luttikholt, J.J.M. [ATAG Verwarming, Lichtenvoorde (Netherlands)

    2000-04-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%. Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. 5 refs.

  17. CASTOR - Advanced System for VVER Steam Generator Inspection

    International Nuclear Information System (INIS)

    Mateljak, Petar

    2014-01-01

    From the safety point of view, steam generator is a very important component of a nuclear power plant. Only a thin tube wall prevents leakage of radioactive material from the primary side into the environment. Therefore, it is very important to perform inspections in order to detect pipe damage and apply appropriate corrective actions during outage. Application of the nondestructive examination (NDE) technique, that can locate degradation and measure its size and orientation, is an integral part of nuclear power plant maintenance. The steam generator inspection system is consisted of remotely controlled manipulator, testing instrument and software for data acquisition and analysis. Recently, the inspection systems have evolved to a much higher level of automation, efficiency and reliability resulting in a lower cost and shorter outage time. Electronic components have become smaller and deal with more complex algorithms. These systems are very fast, precise, reliable and easy to handle. The whole inspection, from the planning, examination, data analysis and final report, is now a highly automated process, which makes inspection much easier and more reliable. This paper presents the new generation of INETEC's VVER steam generator inspection system as ultimate solution for steam generator inspection and repair. (author)

  18. Commissioning of the JET flywheel-generator-convertor systems

    International Nuclear Information System (INIS)

    Huart, M.

    1985-01-01

    The JET Power Supply Scheme relies on a combination of generator convertors and mains driven transformer rectifiers to supply power to the four major pulse loads, namely the toroidal field coils, the poloidal field coils, the plasma positioning coils and the additional heating. The availability of a network with considerable pulse capability has allowed the generator-convertors to be dedicated, one to the poloidal field coils and the other to the toroidal field coils, thus making possible the use of diode in the output AC/DC convertors. Moreover, it has allowed the use of high p.u. machine reactance compatible with the pulse duty. The extent of supply covered by the Contract, awarded to GEC Large Machine Ltd of Rugby, includes the generators, driving/braking system, excitation system, control-monitoring and protection system, cooling system, output AC/DC convertors, inductors and DC busbars as well as all generator auxiliaries and cabling. Both generators were specified identical to reduce design, tool and spare costs

  19. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  20. Application of automated reasoning software: procedure generation system verifier

    International Nuclear Information System (INIS)

    Smith, D.E.; Seeman, S.E.

    1984-09-01

    An on-line, automated reasoning software system for verifying the actions of other software or human control systems has been developed. It was demonstrated by verifying the actions of an automated procedure generation system. The verifier uses an interactive theorem prover as its inference engine with the rules included as logic axioms. Operation of the verifier is generally transparent except when the verifier disagrees with the actions of the monitored software. Testing with an automated procedure generation system demonstrates the successful application of automated reasoning software for verification of logical actions in a diverse, redundant manner. A higher degree of confidence may be placed in the verified actions gathered by the combined system

  1. Grid-connected inverter for wind power generation system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; RUAN Yi; SHEN Huan-qing; TANG Yan-yan; YANG Ying

    2009-01-01

    In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on PI-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.

  2. The frequency-independent control method for distributed generation systems

    DEFF Research Database (Denmark)

    Naderi, Siamak; Pouresmaeil, Edris; Gao, Wenzhong David

    2012-01-01

    In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG are contr......In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG...

  3. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  4. Simulation of load-sharing in standalone distributed generation system

    Science.gov (United States)

    Ajewole, Titus O.; Craven, Robert P. M.; Kayode, Olakunle; Babalola, Olufisayo S.

    2018-05-01

    This paper presents a study on load-sharing among the component generating units of a multi-source electric microgrid that is operated as an autonomous ac supply-mode system. Emerging trend in power system development permits deployment of microgrids for standalone or stand-by applications, thereby requiring active- and reactive power sharing among the discrete generating units contained in hybrid-source microgrids. In this study, therefore, a laboratory-scale model of a microgrid energized with three renewable energy-based sources is employed as a simulation platform to investigate power sharing among the power-generating units. Each source is represented by a source emulator that captures the real operational characteristics of the mimicked generating unit and, with implementation of real-life weather data and load profiles on the model; the sharing of the load among the generating units is investigated. There is a proportionate generation of power by the three source emulators, with their frequencies perfectly synchronized at the point of common coupling as a result of balance flow of power among them. This hybrid topology of renewable energy-based microgrid could therefore be seamlessly adapted into national energy mix by the indigenous electric utility providers in Nigeria.

  5. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  6. Moisture separator for steam generator level measurement system

    International Nuclear Information System (INIS)

    Cantineau, B.J.

    1987-01-01

    A steam generator level measurement system having a reference leg which is kept full of water by a condensation pot, has a liquid/steam separator in the connecting line between the condensation pot and the steam phase in the steam generator to remove excess liquid from the steam externally of the steam generator. This ensures that the connecting line does not become blocked. The separator pot has an expansion chamber which slows down the velocity of the steam/liquid mixture to aid in separation, and a baffle, to avoid liquid flow into the line connected to the condensate pot. Liquid separated is returned to the steam generator below the water level through a drain line. (author)

  7. Gas generation and migration analysis for TRU waste disposal system

    International Nuclear Information System (INIS)

    Ando, Kenichi; Noda, Masaru; Yamamoto, Mikihiko; Mihara, Morihiro

    2005-09-01

    In TRU waste disposal system, significant quantities of gases may be generated due to metal corrosion, radiolysis effect and microorganism activities. It is therefore recommended that the potential impact of gas generation and migration on TRU waste repository should be evaluated. In this study, gas generation rates were calculated in the repository and gas migration analysis in the disposal system were carried out using two phase flow model with results of gas generation rates. First, the time dependencies of gas generation rate in each TRU waste repositories were evaluated based on amounts of metal, organic matter and radioactivity. Next, the accumulation pressure of gases and expelled pore water volume nuclides in the repository were calculated by TOUGH2 code. After that, the results showed that the increase of gas pressure was the range of 1.3 to 1.4 MPa. In the repository with and without buffer, the rate of expelled pore water was 0.006 - 0.009 m 3 /y and 0.018 - 0.24m 3 /y, respectively. In addition, the radioactive gas migration through the repository and geosphere are evaluated. And re-saturation analysis is also performed to evaluate the initial condition of the system. (author)

  8. COMBINED SYSTEMS OF ENERGY GENERATION – A CHARACTERISATION AND CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Jan Gilewski

    2014-09-01

    Full Text Available The study presents issues concerning technical solutions of combined systems of energy generation which can be used primarily in low-level power plants, installed in various types of public utility sites. A detailed description is given of selected ways of powering combined energy generation systems, presenting conceptual outlines of their operation and information on their advantages, disadvantages and applications. The following systems are introduced: gas-steam, back-pressure steam turbine, extraction-condensing steam turbine, gas turbine, gas microturbine, Stirling engine, fuel cells and internal combustion piston engine. Moreover, the study addresses economic aspects of energy generation in combined systems, discussing different methodologies of cost calculation, including the one used by the European Union. The article also gives a detailed review of piston engine combined-system aggregates available in the Polish market. Type series of associated systems designed for low-power appliances are shown, produced by Polish and foreign companies such as Viessmann, Centrum Elektroniki Stosowanej CES, H. Cegielski – Poznań, KWE Technika Energetyczna, TEDOM Poland or the EPS System.

  9. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  10. Policy-induced market introduction of Generation IV reactor systems

    International Nuclear Information System (INIS)

    Heek, Aliki Irina van; Roelofs, Ferry

    2011-01-01

    Almost 10 years ago the U.S. Department of Energy (DOE) started the Generation IV Initiative (GenIV) with 9 other national governments with a positive ground attitude towards nuclear energy. Some of these Generation IV systems, like the fast reactors, are nearing the demonstration stage. The question on how their market introduction will be implemented becomes increasingly urgent. One main topic for future reactor technologies is the treatment of radioactive waste products. Technological solutions to this issue are being developed. One possible process is the transformation of long-living radioactive nuclides into short living ones; a process known as transmutation, which can be done in a nuclear reactor only. Various Generation IV reactor concepts are suitable for this process, and of these systems most experience has been gained with the sodium-cooled fast reactor (SFR). However, both these first generation SFR plants and their Generation IV successors are designed as electricity generating plants, and therefore supposed to be commercially viable in the electricity markets. Various studies indicate that the generation costs of a combined LWR-(S)FR nuclear generating park (LWR: light water reactor) will be higher than that of an LWR-only park. To investigate the effects of the deployment of the different reactors and fuel cycles on the waste produced, resources used and costs incurred as a function of time, a dynamic fuel cycle assessment is performed. This study will focus on the waste impact of the introduction of a fraction of fast reactors in the European nuclear reactor park with a cost increase as described in the previous paragraph. The nuclear fuel cycle scenario code DANESS is used for this, as well as the nuclear park model of the EU-27 used for the previous study. (orig.)

  11. Electric Generator in the System for Damping Oscillations of Vehicles

    Directory of Open Access Journals (Sweden)

    Serebryakov A.

    2017-04-01

    Full Text Available The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  12. Electric Generator in the System for Damping Oscillations of Vehicles

    Science.gov (United States)

    Serebryakov, A.; Kamolins, E.; Levin, N.

    2017-04-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  13. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  14. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    scientific understanding on how we can design and implement a suitable and least-cost transformation into a sustainable energy future. The concept of Smart Energy Systems emphasizes the importance of being coherent and cross-sectoral when the best solutions are to be found and how this also calls......This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  15. The Use of Nuclear Generation to Provide Power System Stability

    OpenAIRE

    Heather Wyman-Pain; Yuankai Bian; Furong Li

    2016-01-01

    The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor dev...

  16. SABATPG-A Structural Analysis Based Automatic Test Generation System

    Institute of Scientific and Technical Information of China (English)

    李忠诚; 潘榆奇; 闵应骅

    1994-01-01

    A TPG system, SABATPG, is given based on a generic structural model of large circuits. Three techniques of partial implication, aftereffect of identified undetectable faults and shared sensitization with new concepts of localization and aftereffect are employed in the system to improve FAN algorithm. Experiments for the 10 ISCAS benchmark circuits show that the computing time of SABATPG for test generation is 19.42% less than that of FAN algorithm.

  17. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    International Nuclear Information System (INIS)

    King, D.A.

    1994-01-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan

  18. On generating neutron transport tables with the NJOY system

    International Nuclear Information System (INIS)

    Caldeira, Alexandre D.; Claro, Luiz H.

    2013-01-01

    Incorrect values for the product of the average number of neutrons released per fission and the fission microscopic cross-section were detected in several energy groups of a neutron transport table generated with the most updated version of the NJOY system. It was verified that the problem persists when older versions of this system are utilized. Although this problem exists for, at least, ten years, it is still an open question. (author)

  19. Healthcare waste generation and its management system: the case ...

    African Journals Online (AJOL)

    Healthcare waste generation and its management system: the case of health ... of an environmental risk to health care workers, the public and the environment at large. ... Only four out of ten health centers used local type of incinerators, while ...

  20. WASP as a planning tool of electrical generation systems expansion

    International Nuclear Information System (INIS)

    D'Isidoro, G.

    1984-01-01

    The ''Wien Automatic System Package'' (WASP), consists of six modules or computer programmes which assist in decision taking process in expanding an electrical generation network. A general description of this model is made and some conclusions are drawn from the data processed to this date