WorldWideScience

Sample records for solvent hydrogenation zone

  1. Enhanced Attenuation of Unsaturated Chlorinated Solvent Source Zones using Direct Hydrogen Delivery

    Science.gov (United States)

    2013-01-01

    solvents. This approach for bioremediation of unsaturated soils containing chlorinated solvents was originally proposed in a patent by Hughes et al...have been conducted on the use of hydrogen as an electron donor for the anaerobic bioremediation of saturated and unsaturated porous media (Evans and...proven to be very effective in remediating releases of petroleum products including gasoline, jet fuels, kerosene, and diesel fuel. Several field

  2. Process for hydrogenating coal and coal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shridharani, K.G.; Tarrer, A.R.

    1983-02-15

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260/sup 0/ C to 315/sup 0/ C in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275/sup 0/ C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350/sup 0/ C.

  3. Process for hydrogenating coal and coal solvents

    Science.gov (United States)

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  4. Alcohols as hydrogen-donor solvents for treatment of coal

    Science.gov (United States)

    Ross, David S.; Blessing, James E.

    1981-01-01

    A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

  5. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-01-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N_2–CO_2–H_2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO_2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H_2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N_2–CO_2–H_2O–H_2) can be sustained as long as volcanic H_2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H_2 warming is reduced in dense H_2O atmospheres. The atmospheric scale heights of such volcanic H_2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  6. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  7. STUDIES ON SOLVENT EXTRACTION OF FREE HYDROGEN ...

    African Journals Online (AJOL)

    synthesized through glucose degradation (glycolysis) to lactic acid. ... g sample into a well stoppered plastic bottle and mixed with 20 mL of distilled .... Recovery of used solvent is necessary because methylchloroform is toxic to the bacteria.

  8. Solution thermodynamics of valnemulin hydrogen fumarate in different pure solvents

    International Nuclear Information System (INIS)

    Ouyang, Jinbo; Wang, Jingkang; Huang, Xin; Bao, Ying; Wang, Yongli; Yin, Qiuxiang; Liu, Ailing; Li, Xudong; Hao, Hongxun

    2015-01-01

    Highlights: • The solubility of valnemulin hydrogen fumarate in five pure solvents was experimentally determined. • The solubility data were correlated by Wilson model, NRTL model and UNIQUAC model. • Mixing thermodynamic properties of valnemulin hydrogen fumarate in five pure solvents were calculated. - Abstract: Solubility of valnemulin hydrogen fumarate in five pure solvents was determined within temperature range of (278.15 to 323.15) K by a gravimetric method. The results show that the solubility of valnemulin hydrogen fumarate in tested pure solvents increases with the increasing temperature. The solubility values were correlated by the Wilson model, NRTL model and UNIQUAC model. The UNIQUAC volume parameter, area parameter, and Wilson liquid molar volume parameter of valnemulin hydrogen fumarate were estimated by the group contribution method. It was found that the correlated results are in good agreement with the experimental results. Furthermore, the mixing thermodynamic properties of valnemulin hydrogen fumarate in solutions, including the mixing Gibbs energy, the mixing enthalpy and entropy, were determined by using the Wilson model and the experimental solubility results.

  9. Molecular and ionic hydrogen bond formation in fluorous solvents.

    Science.gov (United States)

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-08

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  10. Hydrogenation of diesel aromatic compounds in supercritical solvent environment

    Directory of Open Access Journals (Sweden)

    E.P. Martins

    2000-09-01

    Full Text Available Reactions under supercritical conditions have been employed in many processes. Furthermore, an increasing number of commercial reactions have been conducted under supercritical or near critical conditions. These reaction conditions offer several advantages when compared to conditions in conventional catalytic processes in liquid-phase, gas-liquid interface, or even some gas-phase reactions. Basically, a supercritical solvent can diminish the reactant’s transport resistance from the bulk region to the catalyst surface due to enhancement of liquid diffusivity values and better solubility than those in different phases. Another advantage is that supercritical solvents permit prompt and easy changes in intermolecular properties in order to modify reaction parameters, such as conversion or selectivity, or even proceed with the separation of reaction products. Diesel fractions from petroleum frequently have larger than desirable quantities of aromatic compounds. Diesel hydrogenation is intended to decrease these quantities, i.e., to increase the quantity of paraffin present in this petroleum fraction. In this work, the hydrogenation of tetralin was studied as a model reaction for the aromatic hydrogenation process. A conventional gas-liquid-solid catalytic process was compared with that of supercritical carbon dioxide substrate under similar conditions. Additionally, an equilibrium conversion diagram was calculated for this reaction in a wide range of temperature and reactant ratios, so as to optimize the operational conditions and improve the results of subsequent experiments. An increase in the rate of reaction at 493 K in supercritical fluid, as compared to that in the conventional process, was observed.

  11. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    Science.gov (United States)

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  12. Solvent Effects in the Hydrogenation of 2-Butanone

    Energy Technology Data Exchange (ETDEWEB)

    Akpa, B. S.; DAgostino, C.; Gladden, L. F.; Hindle, K.; Manyar, H.; McGregor, J.; Li, Ruoyu; Neurock, Matthew; Sinha, N.; Stitt, E. H.; Weber, D.; Zeitler, J. A.; Rooney, D. W.

    2012-03-27

    In liquid-phase reaction systems, the role of the solvent is often limited to the simple requirement of dissolving and/or diluting substrates. However, the correct choice, either pure or mixed, can significantly influence both reaction rate and selectivity. For multi-phase heterogeneously catalysed reactions observed variations may be due to changes in mass transfer rates, reaction mechanism, reaction kinetics, adsorption properties and combinations thereof. The liquid-phase hydrogenation of 2-butanone to 2- butanol over a Ru/SiO2 catalyst, for example, shows such complex rate behaviour when varying water/isopropyl alcohol (IPA) solvent ratios. In this paper, we outline a strategy which combines measured rate data with physical property measurements and molecular simulation in order to gain a more fundamental understanding of mixed solvent effects for this heterogeneously catalysed reaction. By combining these techniques, the observed complex behaviour of rate against water fraction is shown to be a combination of both mass transfer and chemical effects.

  13. Reverse mechanical after effect during hydrogenation of zone refined iron

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, L.V.; Skryabina, N.E.; Kurmaeva, L.D.; Smirnov, L.V. (Permskij Gosudarstvennyj Univ. (USSR); AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-12-01

    The relationship between the process of hydrogenation and the reverse mechanical after effect (RMA) microplastic deformation in the zone refined iron has been studied. Metallographic investigations and mechanical testing of the samples hydrogenated under torsional strain have been performed. It is shown that in the zone refined iron the formation of voids responsible for irreversible hydrogen embrittlement does not occur, but the hydrogen-initiated RMA strain is conserved, i. e. the RMA effects are independent of the presence of discontinuities.

  14. HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

    International Nuclear Information System (INIS)

    Pierrehumbert, Raymond; Gaidos, Eric

    2011-01-01

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H 2 -He mixtures can maintain surface temperatures above the freezing point of water well beyond the 'classical' habitable zone defined for CO 2 greenhouse atmospheres. Using a one-dimensional radiative-convective model, we find that 40 bars of pure H 2 on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H 2 , the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H 2 -He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H 2 -He atmosphere and be habitable at ∼2.6 AU from its host M star.

  15. Hydrogenation of Isophthalonitrile with 1-Methylimidazole as an Effective Solvent for m-Xylenediamine Production

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Tae Young; Row, Sung Wook; Yoo, Kye Sang; Lee, Sang Duek [Environment and Process Technology Division, Seoul (Korea, Republic of); Lee, Do Weon [University of Seoul, Seoul (Korea, Republic of)

    2006-03-15

    1-methylimidazole was shown to outperform the other organic solvents in this reaction. Moreover, amount of ammonia with using 1-methylimidazole as a solvent was lower than other processes. Thus, 1-methylimidazole is an attractive solvent in IPN hydrogenation for the production of MXDA. The correct choice of a solvent is a critical factor to govern the catalytic activity with desirable hydrogenation. Conventionally, organic materials such as aromatic hydrocarbons, aliphatic alcohols, aliphatic hydrocarbons, dimethylformamide and dioxane were employed in this reaction. Several MXDA producing processes with the organic solvent including m-xylene, pseudocumene, mesitylene, ethylbenzene, methylpyridine, benzonitrile, m-tolunitrile, MXDA and cyanopyridine were disclosed. However, the solvents and ammonia were vaporized under the operation conditions leading to amine cleavage with the resulting formation of methylbenzyl amines or the consumption of ammonia was still significant. Recently, some researchers reported that a high yield of MXDA was achieved using isopropanol under relatively low pressure condition; however, the consumption of ammonia was very significant.

  16. Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents

    OpenAIRE

    Feng Li; Bo Cao; Wenxi Zhu; Hua Song; Keliang Wang; Cuiqin Li

    2017-01-01

    Carbon nanotubes (CNTs)-supported Pt nanoparticles were prepared with selective deposition of Pt nanoparticles inside and outside CNTs (Pt–in/CNTs and Pt–out/CNTs). The effects of Pt loading and reaction solvents on phenol hydrogenation were investigated. The Pt nanoparticles in Pt–in/CNTs versus Pt–out/CNTs are smaller and better dispersed. The catalytic activity and reuse stability toward phenol hydrogenation both improved markedly. The dichloromethane–water mixture as the reaction solvent,...

  17. Green oxidation of alkenes in ionic liquid solvent by hydrogen ...

    Indian Academy of Sciences (India)

    ern organic synthesis, and pharmacology and poly- mer industry.1–8 ... methyl imidazolium chloride (EMIM) ionic liquid as solvent. ... Synthetic procedure for pure siliceous MCM-41 ... ally coordinating propyl chain spacer, which allowed.

  18. Green oxidation of alkenes in ionic liquid solvent by hydrogen

    Indian Academy of Sciences (India)

    Additionally, ion liquid solvent efficiently improved all the catalytic performances. Finally, the reaction was extended to different alkenes using the heterogeneous complex 2-L4. Among all the alkenes, those containing -electron-withdrawing groups and trans-orientations exhibited lower tendency for oxidation.

  19. studies on solvent extraction of free hydrogen cyanide from river water

    African Journals Online (AJOL)

    A method for free and strongly complexed cyanide measurement in river water was developed. Recovery tests from solution with and without river water, using various solvent combinations and background control were investigated to obtain an accurate and precise extraction method for the measurement of hydrogen ...

  20. Conceptual study of hydrogen donor solvent in the NEDOL coal liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Kouzu, M.; Onozaki, M.; Oi, S. [Mitsui SRC Co Ltd, Tokyo (Japan)

    2002-03-01

    A 150 ton/day coal liquefaction pilot plant (PP) of the NEDOL process, supported by New Energy and Industrial Technology Development Organization (NEDO), was operated successfully for a total of 269 days at Kashima, Japan. With a great number of data obtained through the operation, the design procedure for the NEDOL process was studied. Middle and heavy oils from the coal employed were recycled as a hydrogen-donor solvent after hydrotreatment over Ni Mo/gamma-Al2O{sub 3} in a trickle bed reactor. The hydrogen donating ability of the solvent was high enough to obtain higher oil yield (50-58 wt%) at the aromaticity of ca. 0.45. Life expectancy of solvent hydrotreatment catalyst, requisite to the hydrotreater design, was estimated under PP operating conditions. In addition, physical properties of the solvent required for process design were determined, and hydrodynamics in the liquefaction bubble column reactors were examined. Taking the obtained hydrodynamics and thermal behavior into consideration, a design procedure of the liquefaction bubble column reactors was establsihed using a process simulator (CARD) validated by the product yields of PP. The simulation including distillation and solvent hydrotreatment showed that the content of heavy oil fraction (b.p. 350 - 538{degree} C) in the solvent was a determinant factor in the design of a large scale plant based on the NEDOL process.

  1. Study of the behaviour of some heavy elements in solvents containing hydrogen fluoride

    International Nuclear Information System (INIS)

    Tarnero, M.

    1967-01-01

    The anhydrous liquid mixtures: dinitrogen tetroxide-hydrogen fluoride and antimony pentafluoride-hydrogen fluoride were studied as solvents for heavy elements interesting nuclear energy: uranium, thorium, zirconium and for some of their compounds. For N 2 O 4 -HF mixtures, electric conductivity measurements and liquid phase infrared spectra were also obtained. Uranium and zirconium tetrafluoride are much more soluble in N 2 O 4 -HF mixtures than in pure hydrogen fluoride. Uranium dissolved in these mixtures is pentavalent. In SbF 5 -HF mixtures, uranium dissolves with hydrogen evolution and becomes trivalent. The solid compound resulting from the dissolution is a fluoro-antimonate: U(SbF 6 ) 3 . (author) [fr

  2. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    Science.gov (United States)

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on Hβ-Zeolite Catalyst

    Directory of Open Access Journals (Sweden)

    Ashraf Aly Hassan

    2012-01-01

    Full Text Available Catalytic hydrogenation of anthracene was studied over Ni supported on Hβ-zeolite catalyst under supercritical carbon dioxide (sc-CO2 solvent. Hydrogenation of anthracene in sc-CO2 yielded 100% conversion at 100 °C, which is attributed to the reduced mass transfer limitations, and increased solubility of H2 and substrate in the reaction medium. The total pressure of 7 MPa was found to be optimum for high selectivity of octahydroanthracene (OHA. The conversion and selectivity for OHA increased with an increase in H2 partial pressure, which is attributed to higher concentration of hydrogen atoms at higher H2 pressures. The selectivity reduced the pressure below 7 MPa because of enhanced desorption of the tetrahydro-molecules and intermediates from Ni active sites, due to higher solubility of the surface species in sc-CO2. The selectivity of OHA increased with the increase in catalyst weight and reaction time. The rate of hydrogenation of anthracene was compared with that found for napthalene and phenanthrene. The use of acetonitrile as co-solvent or expanded liquid with CO2 decreased the catalytic activity.

  4. Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Samantha A. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Appel, Aaron M. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Linehan, John C. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Wiedner, Eric S. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA

    2017-10-23

    A critical scientific challenge for utilization of CO2 is the development of catalyst systems that do not depend upon expensive or environmentally unfriendly reagents, such as precious metals, strong organic bases, and organic solvents. We have used thermodynamic insights to predict and demonstrate that the HCoI(dmpe)2 catalyst system, previously described for use in organic solvents, can hydrogenate CO2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO2 from a key dihydride intermediate. The need for a strong organic base was eliminated by performing catalysis in water due to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity. The research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  5. Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2018-05-01

    Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.

  6. Field demonstration of foam injection to confine a chlorinated solvent source zone.

    Science.gov (United States)

    Portois, Clément; Essouayed, Elyess; Annable, Michael D; Guiserix, Nathalie; Joubert, Antoine; Atteia, Olivier

    2018-05-01

    A novel approach using foam to manage hazardous waste was successfully demonstrated under active site conditions. The purpose of the foam was to divert groundwater flow, that would normally enter the source zone area, to reduce dissolved contaminant release to the aquifer. During the demonstration, foam was pre generated and directly injected surrounding the chlorinated solvent source zone. Despite the constraints related to the industrial activities and non-optimal position of the injection points, the applicability and effectiveness of the approach have been highlighted using multiple metrics. A combination of measurements and modelling allowed definition of the foam extent surrounding each injection point, and this appears to be the critical metric to define the success of the foam injection approach. Information on the transport of chlorinated solvents in groundwater showed a decrease of contaminant flux by a factor of 4.4 downstream of the confined area. The effective permeability reduction was maintained over a period of three months. The successful containment provides evidence for consideration of the use of foam to improve traditional flushing techniques, by increasing the targeting of contaminants by remedial agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Solvent Extraction and QSPR of Catecholamines with a Bis(2-ethlhexyl) Hydrogen Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizuka, Kazuharu.; Fujimoto, Yuko.; Ota, Keisuke.; Inoue, Katsutoshi. [Saga University, Saga (Japan). Dept. of Applied Chemistry

    1999-02-01

    In order to develop an effective separation recess for catecholamine (CA), a basic investigation on solvent extraction of dopamine (DA), adrenaline (Ad) and noradrenaline (NA) from hydrochloric acid solution and their stripping is conducted at 30 degree C employing bis(2-ethylhexyl) hydrogen phosphate (D2EHPA) in chloroform, n-hexane and toluene as the organic diluents. From the dependencies of the distribution ratios on the concentrations of reactant species, i.e. CA, hydrogen ion and D2EHPA, it is elucidated that CA (RNH{sub 2}) is extracted with D2EHPA (HR`) according to the ion exchange mechanism, as the complex type, RNH{sub 3}R` (HR`){sub 3}, and the equilibrium constants (K{sub ex,CA}) for the extraction reactions are also evaluated. The quantitative structure property relationship (QSPR) of K{sub ex,CA} values for each organic diluent is discussed using molecular modeling with semi-empirical molecular orbital calculations considering the solvent effect. (author)

  8. pH control for enhanced reductive bioremediation of chlorinated solvent source zones

    International Nuclear Information System (INIS)

    Robinson, Clare; Barry, D.A.; McCarty, Perry L.; Gerhard, Jason I.; Kouznetsova, Irina

    2009-01-01

    Enhanced reductive dehalogenation is an attractive treatment technology for in situ remediation of chlorinated solvent DNAPL source areas. Reductive dehalogenation is an acid-forming process with hydrochloric acid and also organic acids from fermentation of the electron donors typically building up in the source zone during remediation. This can lead to groundwater acidification thereby inhibiting the activity of dehalogenating microorganisms. Where the soils' natural buffering capacity is likely to be exceeded, the addition of an external source of alkalinity is needed to ensure sustained dehalogenation. To assist in the design of bioremediation systems, an abiotic geochemical model was developed to provide insight into the processes influencing the groundwater acidity as dehalogenation proceeds, and to predict the amount of bicarbonate required to maintain the pH at a suitable level for dehalogenating bacteria (i.e., > 6.5). The model accounts for the amount of chlorinated solvent degraded, site water chemistry, electron donor, alternative terminal electron-accepting processes, gas release and soil mineralogy. While calcite and iron oxides were shown to be the key minerals influencing the soil's buffering capacity, for the extensive dehalogenation likely to occur in a DNAPL source zone, significant bicarbonate addition may be necessary even in soils that are naturally well buffered. Results indicated that the bicarbonate requirement strongly depends on the electron donor used and availability of competing electron acceptors (e.g., sulfate, iron (III)). Based on understanding gained from this model, a simplified model was developed for calculating a preliminary design estimate of the bicarbonate addition required to control the pH for user-specified operating conditions.

  9. pH control for enhanced reductive bioremediation of chlorinated solvent source zones

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Clare, E-mail: clare.robinson@epfl.ch [Laboratoire de technologie ecologique, Institut d' ingenierie de l' environnement, Station No. 2, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Now at: Department of Civil and Environmental Engineering, University of Western Ontario, London, Canada N6A 5B9 (Canada); Barry, D.A., E-mail: andrew.barry@epfl.ch [Laboratoire de technologie ecologique, Institut d' ingenierie de l' environnement, Station No. 2, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); McCarty, Perry L., E-mail: pmccarty@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States); Gerhard, Jason I., E-mail: j.gerhard@ed.ac.uk [Now at: Department of Civil and Environmental Engineering, University of Western Ontario, London, Canada N6A 5B9 (Canada); Institute for Infrastructure and Environment, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Kouznetsova, Irina, E-mail: irina.kouznetsova@ed.ac.uk [Institute for Infrastructure and Environment, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2009-08-01

    Enhanced reductive dehalogenation is an attractive treatment technology for in situ remediation of chlorinated solvent DNAPL source areas. Reductive dehalogenation is an acid-forming process with hydrochloric acid and also organic acids from fermentation of the electron donors typically building up in the source zone during remediation. This can lead to groundwater acidification thereby inhibiting the activity of dehalogenating microorganisms. Where the soils' natural buffering capacity is likely to be exceeded, the addition of an external source of alkalinity is needed to ensure sustained dehalogenation. To assist in the design of bioremediation systems, an abiotic geochemical model was developed to provide insight into the processes influencing the groundwater acidity as dehalogenation proceeds, and to predict the amount of bicarbonate required to maintain the pH at a suitable level for dehalogenating bacteria (i.e., > 6.5). The model accounts for the amount of chlorinated solvent degraded, site water chemistry, electron donor, alternative terminal electron-accepting processes, gas release and soil mineralogy. While calcite and iron oxides were shown to be the key minerals influencing the soil's buffering capacity, for the extensive dehalogenation likely to occur in a DNAPL source zone, significant bicarbonate addition may be necessary even in soils that are naturally well buffered. Results indicated that the bicarbonate requirement strongly depends on the electron donor used and availability of competing electron acceptors (e.g., sulfate, iron (III)). Based on understanding gained from this model, a simplified model was developed for calculating a preliminary design estimate of the bicarbonate addition required to control the pH for user-specified operating conditions.

  10. Room Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    KAUST Repository

    El Demellawi, Jehad K.; Holt, Christopher; Abou-Hamad, Edy; Al-Talla, Zeyad; Saih, Youssef; Chaieb, Saharoui

    2015-01-01

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from bio-labeling to hydrogen production, their reactivities with their solvents and their catalytic properties re-main still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g. isopropanol) to ketones and hydrogen. This catalytic reaction was followed by gas chromatography, pH measurements, mass spectroscopy and solidstate NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their stability in solvents in general as well as being candidates in catalysis.

  11. Room Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    KAUST Repository

    El Demellawi, Jehad K.

    2015-05-29

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from bio-labeling to hydrogen production, their reactivities with their solvents and their catalytic properties re-main still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g. isopropanol) to ketones and hydrogen. This catalytic reaction was followed by gas chromatography, pH measurements, mass spectroscopy and solidstate NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their stability in solvents in general as well as being candidates in catalysis.

  12. Amide proton solvent protection in amylin fibrils probed by quenched hydrogen exchange NMR.

    Directory of Open Access Journals (Sweden)

    Andrei T Alexandrescu

    Full Text Available Amylin is an endocrine hormone that accumulates in amyloid plaques in patients with advanced type 2 diabetes. The amyloid plaques have been implicated in the destruction of pancreatic β-cells, which synthesize amylin and insulin. To better characterize the secondary structure of amylin in amyloid fibrils we assigned the NMR spectrum of the unfolded state in 95% DMSO and used a quenched hydrogen-deuterium exchange technique to look at amide proton solvent protection in the fibrils. In this technique, partially exchanged fibrils are dissolved in 95% DMSO and information about amide proton occupancy in the fibrils is determined from DMSO-denatured monomers. Hydrogen exchange lifetimes at pH 7.6 and 37°C vary between ∼5 h for the unstructured N-terminus to 600 h for amide protons in the two β-strands that form inter-molecular hydrogen bonds between amylin monomers along the length of the fibril. Based on the protection data we conclude that residues A8-H18 and I26-Y37 comprise the two β-strands in amylin fibrils. There is variation in protection within the β-strands, particularly for strand β1 where only residues F15-H18 are strongly protected. Differences in protection appear to be due to restrictions on backbone dynamics imposed by the packing of two-layers of C2-symmetry-related β-hairpins in the protofilament structure, with strand β1 positioned on the surface and β2 in the interior.

  13. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  14. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede; Usman, Anwar; Alzayer, Maytham; Hamdi, Ghada A.; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  15. Solvent fractionation of rambutan (Nephelium lappaceum L. kernel fat for production of non-hydrogenated solid fat: Influence of time and solvent type

    Directory of Open Access Journals (Sweden)

    Busakorn Mahisanunt

    2017-01-01

    Full Text Available The present study performed isothermal (25 °C solvent fractionation of rambutan (Nephelium lappaceum L. kernel fat (RKF to obtain the fat fraction that had melting properties comparable to a commercial hydrogenated solid fat. The effect of two fractionation parameters, holding time (12, 18 and 24 h and solvent types (acetone and ethanol, on the properties of fractionated fat were investigated. The results showed that a fractionation time increase caused an increased yield and decreased iodine value for the high melting or stearin fractions. The thermal behaviors and solid fat index (SFI of these stearin fractions were different from the original fat, especially for stearin from acetone fractionation. The major fatty acid in this stearin fraction was arachidic acid (C20:0 consisting of more than 90%. Overall, we demonstrated that acetone fractionation of RKF at 25 °C for 24 h is effective for producing a solid fat fraction, which has comparable crystallizing and melting properties to commercial hydrogenated fat. The fractionated rambutan fat obtained by this process may lead to its potential use in specific food products.

  16. A parametric investigation of hydrogen hcci combustion using a multi-zone model approach

    International Nuclear Information System (INIS)

    Komninos, N.P.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    The purpose of the present study is to examine the effect of various operating variables of a homogeneous charge compression ignition (HCCI) engine fueled with hydrogen, using a multi-zone model developed by the authors. The multi-zone model consists of zones, which are allotted spatial locations within the combustion chamber. The model takes into account heat transfer between the zones and the combustion chamber walls, providing a spatial temperature distribution during the closed part of the engine cycle, i.e. compression, combustion and expansion. Mass transfer between zones is also accounted for, based on the geometric configuration of the zones, and includes the flow of mass in and out of the crevice regions, represented by the crevice zone. Combustion is incorporated using chemical kinetics based on a chemical reaction mechanism for the oxidation of hydrogen. This chemical reaction mechanism also includes the reactions for nitrogen oxides formation. Using the multi-zone model a parametric investigation is conducted, in order to determine the effect of engine speed, equivalence ratio, compression ratio, inlet pressure and inlet temperature, on the performance, combustion characteristics and emissions of an HCCI engine fueled with hydrogen

  17. Product study of 1-adamantyl and 1-bicyclo[2.2.2]octyl radicals in hydrocarbon solvents. An unusually large hydrogen isotope effect

    International Nuclear Information System (INIS)

    Engel, P.S.; Chae, W.K.; Baughman, S.A.; Marschke, G.E.; Lewis, E.S.; Timberlake, J.W.; Luedtke, A.E.

    1983-01-01

    1-Adamantyl (ada.) and 1-bicyclo[2.2.2]octyl (bo.) radicals have been generated by photolysis of the corresponding azoalkanes in various hydrocarbon solvents. Both radicals abstract hydrogen readily from saturated hydrocarbons and they add to aromatic rings much faster than tert-butyl. does. Despite its reactivity, ada. is remarkably selective in hydrogen atom abstraction, preferring a benzylic hydrogen 25:1 over a cyclohexane hydrogen. The effect of solvent viscosity indicates that formation of the radical dimers biada and bibo occurs in the solvent cage. The most striking result of this work is a deuterium isotope effect of 25 for hydrogen transfer from cyclohexane to ada. at 65 0 C. Steric compression in the transition state is postulated to cause an unusually large tunnel correction and hence a large k/sub H//k/sub D/. 6 tables

  18. System zones in capillary zone electrophoresis: Moving boundaries caused by freely migrating hydrogen ions

    Czech Academy of Sciences Publication Activity Database

    Beckers, J. L.; Boček, Petr

    2005-01-01

    Roč. 26, č. 2 (2005), s. 446-452 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/02/0023; GA AV ČR(CZ) IAA4031401; GA AV ČR(CZ) IAA4031103 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary zone electrophoresis * system zone s Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.850, year: 2005

  19. Effect of hydrogen bonding of a solvent on the thermodynamic stability of cadmium complexes of ethylenediamine

    International Nuclear Information System (INIS)

    Ledenkov, S.F.; Sharnin, V.A.; Chistyakova, G.V.

    2004-01-01

    The composition and stability of cadmium(II) ethylenediamine complexes in water-dimethylsulfoxide (DMSO) mixed solvents, depending on the content of organic component, were studied by the methods of pH-metry and calorimetry. It is shown that increase in DMSO content in the solvent gives rise to higher stability of cadmium complexes. The greatest growth of stability constant was pointed out for coordination-saturated compounds. The complexing thermodynamics was discussed from the viewpoint of solvation approach. Protolytic solvents were shown to produce destabilizing effect on the polyligand complexes owing to participation of coordination sphere in H-binding [ru

  20. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  1. Informing hazardous zones for on-board maritime hydrogen liquid and gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, Myra L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bran Anleu, Gabriela A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Proctor, Camron [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2018-01-01

    The significantly higher buoyancy of hydrogen compared to natural gas means that hazardous zones defined in the IGF code may be inaccurate if applied to hydrogen. This could place undue burden on ship design or could lead to situations that are unknowingly unsafe. We present dispersion analyses to examine three vessel case studies: (1) abnormal external vents of full blowdown of a liquid hydrogen tank due to a failed relief device in still air and with crosswind; (2) vents due to naturally-occurring boil-off of liquid within the tank; and (3) a leak from the pipes leading into the fuel cell room. The size of the hydrogen plumes resulting from a blowdown of the tank depend greatly on the wind conditions. It was also found that for normal operations releasing a small amount of "boil- off" gas to regulate the pressure in the tank does not create flammable concentrations.

  2. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  3. Degradation of Transformer Oil (PCB Compounds by Microwave Radiation, Ethanol Solvent, Hydrogen Peroxide and Dioxide Titanium for Reducing Environmental Hazards

    Directory of Open Access Journals (Sweden)

    Reza Tajik

    2013-02-01

    Full Text Available Background: Poly chlorinated biphenyls (PCBs are a class of chlorinated organic chemicals that do not easily degrade in the environment. This study was conducted to determine the effect of microwave rays, hydrogen peroxide, dioxide titanium and ethanol solvent on the degradation of PCBs. Methods: A 900w domestic MW oven with a fixed frequency of 2450 MHZ was used to provide MW irradiation. Ray powers were used in 540, 720, and 900w. A hole was made on the top portion of the oven and a Pyrex vessel reactor (250ml volume was connected to condensing system with a Pyrex tube connector. The PCBs were analyzed by GC-ECD. Results: The degradation of total PCBs was 54.62%, 79.71%, and 95.76% in terms of their ratio to solvent with transformer oil at 1:1, 2:1, and 3:1, respectively. The degradation of total PCBs was 84.27%, 89.18%, and 96.1% when using 540, 720, and 900W microwave radiation, respectively. The degradation of total PCBs was 70.72%, 93.02%, 94.16, 95.23% and 96.1% when not using H2O2/ Tio2 and using 20% H2O2 and 0.05, 0.1, 0.15, and 0.2g Tio2, respectively. Conclusion: In the present study, the optimum conditions to decompose PCBs efficiently included 50 ml volume of ratio to solvent with transformer oil (3:1, sodium hydroxide solution (0.2N 1 cc, use of 20% hydrogen peroxide of total volume of samples, dioxide titanium (0.2g, and irradiation for 9 minutes. Under these optimum conditions, efficiency of PCBs decomposition increased.

  4. Chemoenzymatic epoxidation of alkenes with Candida antarctica lipase B and hydrogen peroxide in deep eutectic solvents

    NARCIS (Netherlands)

    Zhou, Pengfei; Wang, Xuping; Yang, Bo; Hollmann, F.; Wang, Yonghua

    2017-01-01

    Epoxides are important synthetic intermediates for the synthesis of a broad range of industrial products. This study presents a promising solution to the current limitation of enzyme instability. By using simple deep eutectic solvents such as choline chloride/sorbitol, significant stabilization

  5. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  6. Theoretical research on effects of substituents and the solvent on quadruple hydrogen bonded complexes

    Directory of Open Access Journals (Sweden)

    Lingjia Xu

    2007-04-01

    Full Text Available Semiempirical AM1 and INDO/CIS methods were used to study the structures and spectroscopy of hydrogen bonded complexes formed by the oligophenyleneethynylene (monomer A with isophthalic acid (monomer B. The binding energies of the complexes are lowered by increasing electron-donating abilities of the substituents near the hydrogen bonds on monomer A. The first absorptions in the electronic spectra and the vibration frequencies of the N-H bonds in the IR spectra for the complexes are both red-shifted compared with those of the monomers. The presence of dimethylsulfoxide (DMSO can reduce the binding energy of the complex through hydrogen bonding. This results in a blue-shift for the first absorption in the electronic spectrum and red-shift for the vibration frequencies of the N-H bonds in the IR spectrum of the complex.

  7. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    Science.gov (United States)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  8. Anisotropy in Ba2Cu3O4Cl2 single crystals grown by the traveling solvent floating zone method

    International Nuclear Information System (INIS)

    Yamada, Shigeki; Iwagaki, Yohei; Noro, Sumiko

    2007-01-01

    Magnetic and electrical properties of layered copper oxychloride Ba 2 Cu 3 O 4 Cl 2 single crystals are measured. Single crystal growth of Ba 2 Cu 3 O 4 Cl 2 by the traveling solvent floating zone method is attempted using Ba 3 Cu 2 O 4 Cl 2 as solvent. By optimization of the growth conditions, large single crystals of (φ5mmx30mm) of Ba 2 Cu 3 O 4 Cl 2 are grown. The resistivity with the current parallel to the c-axis is 10 2 -10 3 times larger than that with the current perpendicular to the a-axis. The temperature dependence of the dielectric spectrum for each direction is measured and analyzed by using the Debye model. The spectrum width, which is related to the effective number of electrons (n/m), does not show an appreciable dependence on temperature. The characteristic frequencies at which the dielectric constant changes, which are related to the dissipation (γ), increase with warming. The temperature dependence is almost the same as the resistivity curve. This indicates that the hopping process dominates both DC- and AC-type electrical transport. The spectrum width with the electric field parallel to the a-axis is 30 times larger than that with the electric field parallel to the c-axis. On the other hand, the characteristic frequencies do not show an appreciable dependence on electric field direction

  9. Solvent effects on hydrogen bonds in Watson-Crick, mismatched, and modified DNA base pairs

    NARCIS (Netherlands)

    Poater, Jordi; Swart, Marcel; Guerra, Celia Fonseca; Bickelhaupt, F. Matthias

    2012-01-01

    We have theoretically analyzed a complete series of Watson–Crick and mismatched DNA base pairs, both in gas phase and in solution. Solvation causes a weakening and lengthening of the hydrogen bonds between the DNA bases because of the stabilization of the lone pairs involved in these bonds. We have

  10. Solvent-dependent regioselective oxidation of trans-chalcones using aqueous hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wang; Jiabin, Yang; Lushen, Li, E-mail: jimin@seu.edu.cn [Southeast University, Nanjing (China). School of Biological Science and Medical Engineering; Jin, Cai; Chunlong, Sun; Min, Ji [Southeast University, Nanjing (China). School of Chemistry and Chemical Engineering

    2013-03-15

    A novel method for regioselective oxidation of trans-chalcones with hydrogen peroxide in acetonitrile to afford cinnamic acids is reported. Only trans-b-arylacrylic acids were observed. A wide range of functionalized products can be effectively produced from various chalcones in good to excellent yields. (author)

  11. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  12. Intensification of the Use of Ionic Liquids as Efficient Reaction Co-Solvents in Asymmetric Hydrogenations

    Czech Academy of Sciences Publication Activity Database

    Černá, I.; Klusoň, Petr; Bendová, Magdalena; Floriš, Tomáš; Pelantová, Helena; Pekárek, T.

    2011-01-01

    Roč. 50, č. 3 (2011), s. 264-272 ISSN 0255-2701 R&D Projects: GA AV ČR KAN400720701; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : Ionic liquids * asymmetric hydrogenations * BmimPF6 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.924, year: 2011

  13. Catalysis of photochemical hydrogen production by metal dithiolenes in aqueous organic solvents

    International Nuclear Information System (INIS)

    Zeug, N.

    1983-01-01

    Photolysis(lambda>=248 nm) of zinc ditetrabutylammonium-bis(cis-1,2-dicyano-1,2-dithiol-ethylene) in mixtures of water with 2,5-dihydrofuran (2,5-DHF) or tetrahydroguran (THF) gives rise to catalytic production of hydrogen. The mechanisms of this process were studied here. The photochemical and thermal properties of zinc dithiolene were studied along with the analogous cadmium and mercury complexes. It could be shown that zinc dithiolene is in fact only the precursor to the actual catalyst which has been identified elsewhere as zinc sulphide. (orig./GG) [de

  14. Characterization of the various catalyst for solvent hydrogenation at 1t/d PSU; 1t/d PSU ni okeru kakushu yozai suisoka shokubai no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kakebayashi, H.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Aihara, Y.; Imada, K. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-28

    Performance of various catalysts for hydrogenation of recycle solvent was evaluated for the operation of NEDOL process 1 t/d process supporting unit (PSU). Distillate between 220 and 538{degree}C derived from the liquefaction of Tanito Harum coal was used as recycle solvent. Deactivation behaviors of catalysts were compared using a prediction equation of catalyst life, by which aromatic carbon index (fa) after hydrogenation can be determined from the fa of recycle oil before hydrogenation, reaction temperature, and total hydrogenation time. Total hydrogenation time satisfying the {Delta}fa, 0.05 before and after hydrogenation were 8,000, 4,000, and 2,000 hours for NiMo-based catalysts C, A, and B, respectively. Catalyst C showed the longest life. Used catalysts were also characterized. The catalyst C showed larger mean pore size than those of the others, which resulted in the longer life due to the delay of pore blockage. From measurements by XPS and EPMA, relative atomic concentration of carbon increased remarkably after the use for all of catalysts, which was considered to be due to the adhesion of hydrocarbons. Increase of metal atoms, such as Fe and Cr, was also observed due to the contamination of entrainment residues. Deactivation of catalysts was caused by the adhesion of hydrocarbons, and metallic compounds, such as Fe and Cr. 3 refs., 1 fig., 5 tabs.

  15. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  16. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  17. Photosensitized production of hydrogen by Halobacterium halobium MMT sub 22 coupled to Escherichia coli in reversed micelles of sodium lauryl sulfate in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.M.T.; Bhatt, J.P. (Central Salt and Marine Research Inst., Bhavnagar (India))

    1991-01-01

    Observation on the enhanced production of hydrogen by Halobacterium halobium MMT{sub 22} coupled to Escherichia coli entrapped inside the reversed micelles formed by sodium lauryl sulfate in various organic solvents, namely benzene, carbon tetrachloride, toluene, n-heptane, nitrobenzene, chlorobenzene, are reported. In the present system, a hundred fold increase in activity as compared to the activity in the usual aqueous medium was observed. (author).

  18. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones

    Science.gov (United States)

    Liu, Jin; Hu, Qingyang; Young Kim, Duck; Wu, Zhongqing; Wang, Wenzhong; Xiao, Yuming; Chow, Paul; Meng, Yue; Prakapenka, Vitali B.; Mao, Ho-Kwang; Mao, Wendy L.

    2017-11-01

    Ultralow-velocity zones (ULVZs) at Earth’s core-mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated. Hydrogen-bearing iron peroxide (FeO2Hx) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here we also report a reaction between iron and water at 86 gigapascals and 2,200 kelvin that produces FeO2Hx. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth’s ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth’s core. Unlike other candidates for the composition of ULVZs, FeO2Hx synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core-mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core-mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs.

  19. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yukie, E-mail: mori.yukie@ocha.ac.jp; Masuda, Yuichi

    2015-09-08

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl{sub 4}, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the {sup 17

  20. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    International Nuclear Information System (INIS)

    Mori, Yukie; Masuda, Yuichi

    2015-01-01

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl 4 , acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17 O and 1

  1. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin; Hu, Qingyang; Kim, Duck Young; Wu, Zhongqing; Wang, Wenzhong; Xiao, Yuming; Chow, Paul; Meng, Yue; Prakapenka, Vitali B.; Mao, Ho-Kwang; Mao, Wendy L. (Stanford); (UST - China); (CIW); (UC); (CHPSTAR- China)

    2017-11-22

    Ultralow-velocity zones (ULVZs) at Earth’s core–mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated1,2,3. Hydrogen-bearing iron peroxide (FeO2Hx) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle4,5,6. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here we also report a reaction between iron and water at 86 gigapascals and 2,200 kelvin that produces FeO2Hx. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth’s ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth’s core. Unlike other candidates for the composition of ULVZs7,8,9,10,11,12, FeO2Hx synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core–mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core–mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs.

  2. The safe operation zone of the spark ignition engine working with dual renewable supplemented fuels (hydrogen+ethyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2001-04-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NOx emission while increasing the higher useful compression ratio and output power of hydrogen-supplemented engine. An equation has been derived from experimental data to specify the least quantity of ethyl alcohol blended with gasoline and satisfying constant NOx emission when hydrogen is added. A chart limiting the safe operation zone of the engine fueled with dual renewable supplemented fuel, (hydrogen and ethyl alcohol) has been produced. The safe zone provides lower NOx and CO emission, lower s.f.c. and higher brake power compared to an equivalent gasoline engine. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both brake power and efficiency. (Author)

  3. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.

    Science.gov (United States)

    Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A

    2015-04-24

    Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Intra- versus Intermolecular Hydrogen Bonding: Solvent-Dependent Conformational Preferences of a Common Supramolecular Binding Motif from 1 H NMR and Vibrational Circular Dichroism Spectra.

    Science.gov (United States)

    Demarque, Daniel P; Merten, Christian

    2017-12-19

    When predicting binding properties of small molecules or larger supramolecular aggregates, intra- and intermolecular hydrogen bonds are often considered the most important factor. Spectroscopic techniques such as 1 H NMR spectroscopy are typically utilized to characterize such binding events, but interpretation is often qualitative and follows chemical intuition. In this study, we compare the effects of intramolecular hydrogen bonding and solvation on two chiral 2,6-pyridinediyl-dialkylamides. In comparison with 1 H NMR spectroscopy, vibrational circular dichroism (VCD) spectroscopy proved to be more sensitive to conformational changes. In fact, the change of the solvent from CDCl 3 to [D 6 ]DMSO generates mirror-image VCD spectra for the same enantiomer. Here, the common sense that the sterically less hindered group is more prone to solvation proved to be wrong according predicted VCD spectra, which clearly show that both asymmetric amide hydrogens are equally likely to be solvated, but never simultaneously. The competition between intra- and intermolecular hydrogen bonding and their importance for a correct prediction of spectral properties are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.

    Directory of Open Access Journals (Sweden)

    Harald Schunck

    Full Text Available In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ. OMZs can sporadically accumulate hydrogen sulfide (H2S, which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2, which contained ∼2.2×10(4 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that

  6. An efficient and high-yielding one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones catalyzed by sodium hydrogen carbonate under solvent-free conditions

    OpenAIRE

    Asieh Vafaee; Abolghasem Davoodnia; Mehdi Pordel; Mohammad Reza Bozorgmehr

    2015-01-01

    Sodium hydrogen carbonate, NaHCO3, efficiently catalyzes the one-pot, three-component reaction of phthalhydrazide, an aromatic aldehyde, and malononitrile or ethyl cyanoacetate under solvent-free conditions, to afford the corresponding 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in high yields. Easy work‐up, inexpensive and readily available catalyst and avoiding the use of harmful organic solvents are other advantages of this simple procedure.

  7. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 1. Site description and contaminant source mass reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Riis, Charlotte; Christensen, Anders G.

    2012-01-01

    Field investigations on the effects of ZVI-Clay soil mixing were conducted at a small DNAPL source zone with PCE as the parent compound. In a one-year monitoring program, soil samples were collected at three horizontal sampling planes (2.5, 5.0 and 7.5m bgs.). PCE was found to have a pseudo first...

  8. Modeling the Solid-Liquid Equilibrium in Pharmaceutical-Solvent Mixtures: Systems with Complex Hydrogen Bonding Behvaior

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Economou, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    simpler molecules of similar chemical structure and/or are fitted to Hansen's partial solubility parameters. The methodology is applied to modeling the solubility of three pharmaceuticals, namely acetanilide, phenacetin, and paracetamol, using the nonrandom hydrogen bonding (NRHB) EoS. In all cases...

  9. Dynamics of circular hydrogen bond array in calix[4]arene in a nonpolar solvent: A nuclear magnetic resonance study

    Czech Academy of Sciences Publication Activity Database

    Lang, J.; Deckerová, V.; Czernek, Jiří; Lhoták, P.

    2005-01-01

    Roč. 122, - (2005), 044506/1-044506/11 ISSN 0021-9606 R&D Projects: GA AV ČR KJB4050311 Institutional research plan: CEZ:AV0Z40500505 Keywords : hydrogen bonds * organic compounds * spin-spin relaxation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.138, year: 2005

  10. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects

    International Nuclear Information System (INIS)

    Welsh, K.M.; Creighton, D.J.; Klinman, J.P.

    1980-01-01

    Solvent and alpha-secondary isotope effects have been measured in the yeast alcohol dehydrogenase reaction, under conditions of a rate-limiting transfer of hydrogen between coenzyme and substrate. Determination of catalytic constants in H20 and D20 as a function of pH(D) has allowed the separation of solvent effects on pKa from kcat. The small effect of D20 on pKa is tentatively assigned to ionization of an active-site ZnOH 2 . The near absence of an isotope effect on kcat in the direction of alcohol oxidation rules out a mechanism involving concerted catalysis by an active-site base of hydride transfer. The near identity of kinetic and equilibrium alpha-secondary isotope effects in the direction of alcohol oxidation implicates a transition-state structure which resembles aldehyde with regard to bond hybridization properties. The result contrasts sharply with previously reported structure - reactivity correlations, which implicate a transition-state structure resembling alcohol with regard to charge properties. The significance of these findings to the mechanism of NAD(P)H-dependent redox reactions is discussed

  11. Experimental and theoretical studies of solvent effects on the hydrogen bonds in homoconjugated cations of substituted 4-halo (Cl, Br) pyridine N-oxide derivatives

    International Nuclear Information System (INIS)

    Gurzynski, Lukasz; Puszko, Aniela; Makowski, Mariusz; Chmurzynski, Lech

    2007-01-01

    Hydrogen bond OHO-type bridges formed between six substituted 4-halo (Cl, Br) pyridine N-oxide systems and their simple cations have been investigated by using the potentiometric titration method. The formation constants of these complexes (expressed as lgK BHB + ) have been determined in two non-aqueous aprotic solvents with different polarity, i.e., acetone (AC) and acetonitrile (AN). It has been observed that tri- and tetra-substituted pyridine N-oxides [B] and their cationic acids [BH + ] form stable homocomplexed cations [BHB + ] stabilized by O...H...O bridges in both solvents used. It has been found that the most stable homocomplexed system is formed by 3,5-dimethyl-4-chloropyridine N-oxide (3,5Me 2 4ClPyO). The lgK BHB + values for this compound in acetone and acetonitrile are 3.15 and 2.82, respectively. Furthermore, by using ab initio methods at the RHF and MP2 levels utilizing the Gaussian 6-31++G ** basis set, the energies of formation of the homocomplexed cations and Gibbs free energies have been determined in vacuo. The calculated energy parameters in vacuo have been compared with the cationic homoconjugation constants determined potentiometrically in acetone and acetonitrile to establish a correlation between these magnitudes. Additionally, the results of potentiometric measurements have been used to determine the acidity constants of the conjugate acids of N-oxides

  12. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob

    2013-01-01

    subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system. © 2013 Elsevier B.V.......The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1...

  13. New biphasic solvent system based on cyclopentyl methyl ether for the purification of a non-polar synthetic peptide by pH-zone refining centrifugal partition chromatography.

    Science.gov (United States)

    Amarouche, Nassima; Boudesocque, Leslie; Borie, Nicolas; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, Florence; Renault, Jean-Hugues

    2014-06-01

    A new type 1 ternary biphasic system composed of cyclopentyl methyl ether, dimethylformamide and water was developed, characterized and successfully used for the purification of a lipophilic, protected peptide by pH-zone refining centrifugal partition chromatography. The protected peptide is an 8-mer, key intermediate in bivalirudin (Angiomax®) synthesis and shows a very low solubility in the solvents usually used in liquid chromatography. All ionic groups, except the N-terminal end of the peptide, are protected by a benzyl group. The purification of this peptide was achieved with a purity of about 99.04% and a recovery of 94% using the new ternary biphasic system cyclopentyl methyl ether/dimethylformamide/water (49:40:11, v/v) in the descending pH-zone refining mode with triethylamine (28 mM) as the retainer and methanesulfonic acid (18 mM) as the eluter. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen effect on the properties of the heat affected zone metal of welded joints of quenchable steel within a hold-up period

    International Nuclear Information System (INIS)

    Amosov, V.A.; Borovushkin, I.V.; Pocheptsov, A.V.

    1976-01-01

    The work of failure of the heat-affected zone after welding changes non-monotonously with time: at first it increases, then decreases down to the minimum, and increases again. This is related to a simultaneous action of the 'rest' process of the tempered structure and hydrogen distribution in a weld joint. Hydrogen enters the heat-affected zone during the welding. This is seen from the fact that the level of the work of failure is different as soon as the welding is performed a content of hydrogen in the weld being different. Redistribution of hydrogen in a weld joint of the investigated steel with a ferrite weld in the process of ag is as follows. The initial concentration of hydrogen in the weld decreases monotonously with time; in the heat-affected zone near the melting boundary the total concentration of hydrogen increases and reaches the maximum and then gradually decreases. A decrease in the rate of loading reduces the work of failure of the weld joint in the heat-affected zone

  15. The use of solar energy - photovoltaic - in hydrogen production and arid zones like Saudi Arabia

    Science.gov (United States)

    Sayigh, A. A. M.

    This paper deals with the use of photovoltaic technology for the production of hydrogen from water by electrolysis. First of all the amount of electricity needed for this process was assessed, then various types of solar cell systems to generate the electricity needed were discussed and the best system was established. Some of the investigations involved testing of solar cells with concentrators and with fixed tilt or tracking devices. Several small panels of solar cells were used in testing the effect of local dust and sand as well as the fixed tilt in the area of Riyadh. The cost of producing hydrogen by electrolysis using electricity from a conventional grid was calculated. This cost was compared with the cost of production of hydrogen if a solar cell array was used. The paper outlines the continuous price increase of oil to produce electricity and the rapid decrease in price of solar cells. Both these advances will lead to a cheaper way of producing hydrogen by solar energy. In addition it is shown that technology is almost trouble free and requires very little know-how as far as operation is concerned.

  16. Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems - Monte Carlo simulations using MCNP standard data libraries

    International Nuclear Information System (INIS)

    Wiacek, Urszula; Krynicka, Ewa

    2006-01-01

    Pulsed neutron experiments in two-zone spherical and cylindrical geometry has been simulated using the MCNP code. The systems are built of hydrogenous materials. The inner zone is filled with aqueous solutions of absorbers (H 3 BO 3 or KCl). It is surrounded by the outer zone built of Plexiglas. The system is irradiated with the pulsed thermal neutron flux and the thermal neutron decay in time is observed. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances have been used to simulate the neutron transport. The time decay constant of the fundamental mode of the thermal neutron flux determined in each simulation has been compared with the corresponding result of the real pulsed neutron experiment

  17. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone

    DEFF Research Database (Denmark)

    Bruchert, V.; Jørgensen, BB; Neumann, K.

    2003-01-01

    The coastal upwelling system off central Namibia is one of the most productive regions of the oceans and is characterized by frequently occurring shelf anoxia with severe effects for the benthic life and fisheries. We present data on water column dissolved oxygen, sulfide, nitrate and nitrite, pore......-depleted bottom waters, the oxygen minimum zone on the continental slope, and the lower continental slope below the oxygen minimum zone. High concentrations of dissolved sulfide, up to 22 mM, in the near-surface sediments of the inner shelf result from extremely high rates of bacterial sulfate reduction...

  18. Experimental and theoretical studies of solvent effects on the hydrogen bonds in homoconjugated cations of substituted 4-halo (Cl, Br) pyridine N-oxide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gurzynski, Lukasz [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Puszko, Aniela [Department of Organic Chemistry, School of Economics, Wroclaw (Poland); Makowski, Mariusz [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)], E-mail: lech@chem.univ.gda.pl

    2007-09-15

    Hydrogen bond OHO-type bridges formed between six substituted 4-halo (Cl, Br) pyridine N-oxide systems and their simple cations have been investigated by using the potentiometric titration method. The formation constants of these complexes (expressed as lgK{sub BHB{sup +}}) have been determined in two non-aqueous aprotic solvents with different polarity, i.e., acetone (AC) and acetonitrile (AN). It has been observed that tri- and tetra-substituted pyridine N-oxides [B] and their cationic acids [BH{sup +}] form stable homocomplexed cations [BHB{sup +}] stabilized by O...H...O bridges in both solvents used. It has been found that the most stable homocomplexed system is formed by 3,5-dimethyl-4-chloropyridine N-oxide (3,5Me{sub 2}4ClPyO). The lgK{sub BHB{sup +}} values for this compound in acetone and acetonitrile are 3.15 and 2.82, respectively. Furthermore, by using ab initio methods at the RHF and MP2 levels utilizing the Gaussian 6-31++G{sup **} basis set, the energies of formation of the homocomplexed cations and Gibbs free energies have been determined in vacuo. The calculated energy parameters in vacuo have been compared with the cationic homoconjugation constants determined potentiometrically in acetone and acetonitrile to establish a correlation between these magnitudes. Additionally, the results of potentiometric measurements have been used to determine the acidity constants of the conjugate acids of N-oxides.

  19. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  20. Solvent-Induced Deposition of Cu-Ga-In-S Nanocrystals onto a Titanium Dioxide Surface for Visible-Light-Driven Photocatalytic Hydrogen Production

    KAUST Repository

    Kandiel, Tarek

    2015-11-25

    In this paper, copper-gallium-indium-sulfide (CGIS) nanocrystals with different Ga/In ratios, i.e., CuGaxIn5-xS8, where x = 0, 1, 2, 3, 4 and 5, were synthesized and investigated for visible-light-driven hydrogen (H2) evolution from aqueous solutions that contain sulfide/sulfite ions. The synthesized CGIS nanocrystals were characterized by diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). With 1.0 wt.% Ru as a co-catalyst, the H2 evolution rate on CuGa2In3S8 (CGIS hereafter) showed the highest activity. The CGIS nanocrystals were deposited onto a TiO2 surface via a unique solvent-induced deposition method. The CGIS/TiO2 photocatalyst showed comparable activity to that obtained using bare CGIS nanocrystals when the photocatalyst amount was sufficient in the photoreactor system, suggesting that TiO2 remains intact in terms of photocatalytic activity. The quantity of CGIS nanocrystals, however, required to achieve the rate-plateau condition at saturation was much lower in the presence of TiO2. The enhanced activities at low CGIS loadings observed in the presence of TiO2 were explained by the improved dispersion of the powder suspension and optical path in the photoreactor. This TiO2 supported photocatalyst lowers the required amount of photocatalyst, which is beneficial from an economic point of view.

  1. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  2. SOLVENT FIRE BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D; Samuel Fink, S

    2006-05-22

    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  3. Implant test and acoustic emission technique used to investigate hydrogen assisted cracking in the melted zone of a welded HSLA-80 steel

    International Nuclear Information System (INIS)

    Fals, H. C.; Trevisan, R. E.

    1999-01-01

    Weld metal hydrogen assisted cracking was studied using two flux cored wire (AWS E 70T-5 and AWS E 120 T5-K4) and a mixture gas of CO 2 +5% H 2 to induce values of diffusible hydrogen in high strength low alloy steel (HSLA-80) weldments. An acoustical Emission Measurement System (AEMS) RMS voltmeter was coupled to the implant test (NF 89-100) apparatus to determine energy, amplitude and event numbers of signal. All cracks were initiated in the partially melted zone and propagated into the coarse-grained region of the heat affected zone when E 70 T5 consumable was used, and the quasi-cleavage fracture mode was predominant. When E 120 T5 K4 consumable was used the cracks propagated vertically across the fusion zone, and a mixed fracture mode was the most important. A significant relationship between acoustic emission parameters and fracture modes was found. (Author) 12 refs

  4. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981 for development of a solvent extraction and liquefaction technology. Development of a brown coal based solvent extraction plant (Research on a primary hydrogenation technology, research on a deliming technology, research on a secondary hydrogenation technology, research on a dehydrogenation technology, and research on liquefaction from catalytic aspect); 1981 nendo sekitan ekika gijutsu no kenkyu kaihatsu seika hokokusho. Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (ichiji suiten gijutsu no kenkyu, dakkai gijutsu no kenkyu, niji suiten gijutsu no kenkyu, shokubaimen kara no ekika kenkyu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper describes the achievements in development of brown coal based solvent extraction in the Sunshine Project in fiscal 1981. Element researches were performed to complement and support the development of a liquefaction technology for brown coal produced in Victoria, Australia by using a 50-T/D pilot plant. For the primary hydrogenation technology, a manufacturing experiment was completed by means of nine cycles using a brown coal balancing solvent in a 0.1-t/day bench scale test. Distribution of the formed materials, the solvent properties, and the SRC properties have become nearly constant after 5 to 6 cycles. A test using a batch type device was performed to derive the relationship among dissolution parameters, SRC recovery rates, and deliming rates by using different solvents. For the secondary hydrogenation technology, SRC being the heavy fraction in a primary hydrogenation system (+420 degrees C) was hydrogenated by using an Ni{center_dot}Mo based catalyst at 360 degrees C and 250 kg/cm{sup 2}. A prospect was attained that the processing is possible by using a fixed bed reactor. A test using a small continuous dehydration testing device was carried out by using creosote oil as the solvent and by varying the evaporator operating conditions. Dehydration rate of 90 to 95% was obtained. Discussions were given on selecting catalysts for the secondary hydrogenation of the fixed bed method, and on factors of activity deterioration. A secondary hydrogenation test reactor of the suspended bed method was completed. (NEDO)

  5. Diel cycles of hydrogen peroxide in marine bathing waters in Southern California, USA: In situ surf zone measurements

    International Nuclear Information System (INIS)

    Clark, Catherine D.; De Bruyn, Warren J.; Hirsch, Charlotte M.; Aiona, Paige

    2010-01-01

    Hydrogen peroxide is photochemically produced in natural waters. It has been implicated in the oxidative-induced mortality of fecal indicator bacteria (FIB), a microbial water quality measure. To assess levels and cycling of peroxide in beach waters monitored for FIB, diel studies were carried out in surf zone waters in July 2009 at Crystal Cove State Beach, Southern California, USA. Maximum concentrations of 160-200 nM were obtained within 1 h of solar noon. Levels dropped at night to 20-40 nM, consistent with photochemical production from sunlight. Day-time production and night-time dark loss rates averaged 16 ± 3 nM h -1 and 12 ± 4 nM h -1 respectively. Apparent quantum yields averaged 0.07 ± 0.02. Production was largely dominated by sunlight, with some dependence on chromophoric dissolved organic matter (CDOM) levels in waters with high absorption coefficients. Peroxide levels measured here are sufficient to cause oxidative-stress-induced mortality of bacteria, affect FIB diel cycling and impact microbial water quality in marine bathing waters.

  6. Computational Elucidation of a Role That Brønsted Acidification of the Lewis Acid-Bound Water Might Play in the Hydrogenation of Carbonyl Compounds with H2 in Lewis Basic Solvents.

    Science.gov (United States)

    Heshmat, Mojgan; Privalov, Timofei

    2017-08-25

    Brønsted acidification of water by Lewis acid (LA) complexation is one of the fundamental principles in chemistry. Using transition-state calculations (TS), herein we investigate the role that Brønsted acidification of the LA-bound water might play in the mechanism of the hydrogenation of carbonyl compounds in Lewis basic solvents under non-anhydrous conditions. The potential energy scans and TS calculations were carried out with a series of eight borane LAs as well as the commonly known strong LA AlCl 3 in 1,4-dioxane or THF as Lewis basic solvents. Our molecular model consists of the dative LA-water adduct with hydrogen bonds to acetone and a solvent molecule plus one additional solvent molecule that participates is the TS structure describing the cleavage of H 2 at acetone's carbonyl carbon atom. In all the molecular models applied here, acetone (O=CMe 2 ) is the archetypical carbonyl substrate. We demonstrate that Brønsted acidification of the LA-bound water can indeed lower the barrier height of the solvent-involving H 2 -cleavage at the acetone's carbonyl carbon atom. This is significant because at present it is believed that the mechanism of the herein considered reaction is described by the same mechanism regardless of whether the reaction conditions are strictly anhydrous or non-anhydrous. Our results offer an alternative to this belief that warrants consideration and further study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  8. Fluorescence imaging of sample zone narrowing and dispersion in a glass microchip: the effects of organic solvent (acetonitrile)-salt mixtures in the sample matrix and surfactant micelles in the running buffer.

    Science.gov (United States)

    Jia, Zhijian; Lee, Yi-kuen; Fang, Qun; Huie, Carmen W

    2006-03-01

    A mismatch in the EOF velocities between the sample zone and running buffer region is known to generate pressure-driven, parabolic flow profile of the sample plug in electrokinetic separation systems. In the present study, video fluorescence microscopy was employed to capture real-time dynamics of the sample plug (containing fluorescein as the probe molecule) in a discontinuous conductivity system within a glass microchip, in which the sample matrix consisted of a mixture of ACN and salt (NaCl), and the running buffer contained sodium cholate (SC) micelles as the pseudo-stationary phase (i.e., performing "ACN stacking" in the mode of MEKC). Upon application of the separation voltage, the video images revealed that zone narrowing and broadening of the probe molecules occurred as the sample plug headed toward the cathode during the initial time period, probably resulting in part from the stacking/sweeping, and destacking of the SC micelles at the boundaries between the sample zone and running buffer. Interestingly, a second sample zone narrowing event can be observed as the sample plug moved further toward the cathode, which could be attributed to the sweeping of the slower moving probe molecules by the faster moving SC micelles that originated from the anode. This phenomenon was studied as a function of pH, sample plug length, as well as the concentration of organic solvent and salt in the sample matrix. The data suggested that the presence of large amounts of an organic solvent (such as ACN or methanol) and salts in the sample matrix not only induces sample dispersion due to the formation of a pressure-driven (hydrodynamic) flow, but may also lead to the formation of a double sample zone narrowing phenomenon by altering the local EOF dynamics within the separation system.

  9. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  10. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  11. CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonding: Effect of local rigidification on solvent extraction toward f-block elements

    International Nuclear Information System (INIS)

    Chu, Hongzhu; He, Lutao; Jiang, Qian; Fang, Yuyu; Jia, Yiming; Yuan, Xiangyang; Zou, Shuliang; Li, Xianghui; Feng, Wen; Yang, Yuanyou; Liu, Ning; Luo, Shunzhong; Yang, Yanqiu; Yang, Liang; Yuan, Lihua

    2014-01-01

    Highlights: • Three CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonds were designed and synthesized. • The influence of local rigidification caused by intramolecular hydrogen bonds upon extraction of f-elements was investigated. • Selective extraction is realized via tuning local chelating surroundings by aid of intramolecular hydrogen bonds. -- Abstract: To understand intramolecular hydrogen bonding in effecting liquid–liquid extraction behavior of CMPO-calixarenes, three CMPO-modified calix[4]arenes (CMPO-CA) 5a–5c with hydrogen-bonded spacer were designed and synthesized. The impact of spacer rotation that is hindered by introduction of intramolecular hydrogen bonding upon extraction of La 3+ , Eu 3+ , Yb 3+ , Th 4+ , and UO 2 2+ has been examined. The results show that 5b and 5c containing only one hydrogen bond with a less hindered rotation spacer extract La 3+ more efficiently than 5a containing two hydrogen bonds with a more hindered rotation spacer, demonstrating the importance of local rigidification of spacer in the design of extractants in influencing the coordination environment. The large difference in extractability between La 3+ and Yb 3+ (or Eu 3+ ) by 5b (or 5c), and the small difference by 5a, suggests intramolecular hydrogen bonding do exert pronounced influence upon selective extraction of light and heavy lanthanides. Log–log plot analysis indicates a 1:1, 2:1 and 1:1 stoichiometry (ligand/metal) for the extracted complex formed between 5b and La 3+ , Th 4+ , UO 2 2+ , respectively. Additionally, their corresponding acyclic analogs 7a–7c exhibit negligible extraction toward these metal ions. These results reveal the possibility of selective extraction via tuning local chelating surroundings of CMPO-CA by aid of intramolecular hydrogen bonding

  12. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981. Development of a solvent extraction and liquefaction plant (research and development of secondary hydrogenation); 1981 nendo sekitan ekika gijutsu no kenkyu kaihatsu, yozai chushutsu ekika plant no kaihatsu seika hokokusho. Niji suiten no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Among the items of the Sunshine Project in fiscal 1981 for development of a solvent extraction and liquefaction plant, this paper describes the achievements in developing secondary hydrogenation. A small continuous hydrogenation device equipped with three reaction columns that can be filled with catalyst of 50 cc, and a dedicated testing room were designed, and orders were placed with manufacturers. The fabrication, assembly, delivery, installation, piping and wiring were all completed. The device passed a completion inspection based on the high-pressure gas safety assurance law in December 1981. After leakage due to gas and material oil was checked, a trial operation was performed, and verified of normal operation. A screening test was carried out on three kinds of commercially available and prototype catalysts before testing the SRC containing material for studying the secondary hydrogenation. The circulating solvent having a boiling point from 180 to 430 degree C (F56-01) was used as the test sample. In order to investigate the relationship between the kinds of solvent used for the SRC fraction and the secondary hydrogenation capability, solvents were made by treating the spent solvent F56-01. Trial manufacture was begun on the alumina based catalyst as a deliming catalyst, and on the red mud, bauxite and alumina based catalysts as hydrogenation and decomposition catalysts. (NEDO)

  13. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  14. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  15. Study of the behaviour of some heavy elements in solvents containing hydrogen fluoride; Etude du comportement de quelques elements lourds dans des solvants a base d'acide fluorhydrique

    Energy Technology Data Exchange (ETDEWEB)

    Tarnero, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-01-01

    The anhydrous liquid mixtures: dinitrogen tetroxide-hydrogen fluoride and antimony pentafluoride-hydrogen fluoride were studied as solvents for heavy elements interesting nuclear energy: uranium, thorium, zirconium and for some of their compounds. For N{sub 2}O{sub 4}-HF mixtures, electric conductivity measurements and liquid phase infrared spectra were also obtained. Uranium and zirconium tetrafluoride are much more soluble in N{sub 2}O{sub 4}-HF mixtures than in pure hydrogen fluoride. Uranium dissolved in these mixtures is pentavalent. In SbF{sub 5}-HF mixtures, uranium dissolves with hydrogen evolution and becomes trivalent. The solid compound resulting from the dissolution is a fluoro-antimonate: U(SbF{sub 6}){sub 3}. (author) [French] On a etudie les melanges liquides anhydres: peroxyde d'azote-acide fluorhydrique et pentafluorure d'antimoine-acide fluorhydrique comme solvants d'elements lourds interessant l'energie nucleaire: uranium, thorium, zirconium et de quelques uns de leurs composes. Pour les melanges N{sub 2}O{sub 4}-HF on a egalement effectue des mesures de conductivite electrique, ainsi que des spectres d'absorption infrarouge en phase liquide. Le tetrafluorure d'uranium et le tetrafluorure de zirconium sont beaucoup plus solubles dans les melanges N{sub 2}O{sub 4}-HF que dans l'acide fluorhydrique. L'uranium dissous dans ces melanges est a l'etat pentavalent. Dans les melanges SbF{sub 5}-HF l'uranium se dissout avec degagement d'hydrogene et passe a l'etat trivalent. Le compose solide resultant de la dissolution est un fluoantimoniate: U(SbF{sub 6}){sub 3}. (auteur)

  16. CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonding: effect of local rigidification on solvent extraction toward f-block elements.

    Science.gov (United States)

    Chu, Hongzhu; He, Lutao; Jiang, Qian; Fang, Yuyu; Jia, Yiming; Yuan, Xiangyang; Zou, Shuliang; Li, Xianghui; Feng, Wen; Yang, Yuanyou; Liu, Ning; Luo, Shunzhong; Yang, Yanqiu; Yang, Liang; Yuan, Lihua

    2014-01-15

    To understand intramolecular hydrogen bonding in effecting liquid-liquid extraction behavior of CMPO-calixarenes, three CMPO-modified calix[4]arenes (CMPO-CA) 5a-5c with hydrogen-bonded spacer were designed and synthesized. The impact of spacer rotation that is hindered by introduction of intramolecular hydrogen bonding upon extraction of La(3+), Eu(3+), Yb(3+), Th(4+), and UO2(2+) has been examined. The results show that 5b and 5c containing only one hydrogen bond with a less hindered rotation spacer extract La(3+) more efficiently than 5a containing two hydrogen bonds with a more hindered rotation spacer, demonstrating the importance of local rigidification of spacer in the design of extractants in influencing the coordination environment. The large difference in extractability between La(3+) and Yb(3+) (or Eu(3+)) by 5b (or 5c), and the small difference by 5a, suggests intramolecular hydrogen bonding do exert pronounced influence upon selective extraction of light and heavy lanthanides. Log-log plot analysis indicates a 1:1, 2:1 and 1:1 stoichiometry (ligand/metal) for the extracted complex formed between 5b and La(3+), Th(4+), UO2(2+), respectively. Additionally, their corresponding acyclic analogs 7a-7c exhibit negligible extraction toward these metal ions. These results reveal the possibility of selective extraction via tuning local chelating surroundings of CMPO-CA by aid of intramolecular hydrogen bonding. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Solvent extraction of microamounts of strontium and barium into nitrobenzene using hydrogen dicarbollylcobaltate in the presence of polyethylene glycol PEG 600

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Vaňura, P.; Sedláková, Zdeňka

    2009-01-01

    Roč. 280, č. 3 (2009), s. 607-611 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z40500505 Keywords : strontium * barium * hydrogen dicarbollylcobaltate Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.631, year: 2009

  18. Solvent-Induced Deposition of Cu-Ga-In-S Nanocrystals onto a Titanium Dioxide Surface for Visible-Light-Driven Photocatalytic Hydrogen Production

    KAUST Repository

    Kandiel, Tarek; Takanabe, Kazuhiro

    2015-01-01

    In this paper, copper-gallium-indium-sulfide (CGIS) nanocrystals with different Ga/In ratios, i.e., CuGaxIn5-xS8, where x = 0, 1, 2, 3, 4 and 5, were synthesized and investigated for visible-light-driven hydrogen (H2) evolution from aqueous

  19. Solvent substitutes

    International Nuclear Information System (INIS)

    Evanoff, S.P.

    1995-01-01

    The environmental and industrial hygiene regulations promulgated since 1980, most notably the Superfund Amendments and Reauthorization Act (SARA), the Hazardous and Solid Waste Amendments to the Resources Conservation and Recovery Act (RCRA), and the Clean Air Act Amendments of 1990, have brought about an increased emphasis on user exposure, hazardous waste generation, and air emissions. As a result, industry is performing a fundamental reassessment of cleaning solvents, processes, and procedures. The more progressive organizations have made their goal the elimination of solvents that may pose significant potential human health and environmental hazards. This chapter discusses solvent cleaning in metal-finishing, metal-manufacturing, and industrial maintenance applications; precision cleaning; and electronics manufacturing. Nonmetallic cleaning, adhesives, coatings, inks, and aerosols also will be addressed, but in a more cursory manner

  20. Selective solvent extraction of oils

    Energy Technology Data Exchange (ETDEWEB)

    1938-04-09

    In the selective solvent extraction of naphthenic base oils, the solvent used consists of the extract obtained by treating a paraffinic base oil with a selective solvent. The extract, or partially spent solvent is less selective than the solvent itself. Selective solvents specified for the extraction of the paraffinic base oil are phenol, sulphur dioxide, cresylic acid, nitrobenzene, B:B/sup 1/-dichlorethyl ether, furfural, nitroaniline and benzaldehyde. Oils treated are Coastal lubricating oils, or naphthenic oils from the cracking, or destructive hydrogenation of coal, tar, lignite, peat, shale, bitumen, or petroleum. The extraction may be effected by a batch or counter-current method, and in the presence of (1) liquefied propane, or butane, or naphtha, or (2) agents which modify the solvent power such as, water, ammonia, acetonitrile, glycerine, glycol, caustic soda or potash. Treatment (2) may form a post-treatment effected on the extract phase. In counter-current treatment in a tower some pure selective solvent may be introduced near the raffinate outlet to wash out any extract therefrom.

  1. Unambiguous Determination of Intermolecular Hydrogen Bond of NMR Structure by Molecular Dynamics Refinement Using All-Atom Force Field and Implicit Solvent Model

    International Nuclear Information System (INIS)

    Jee, Jun Goo

    2010-01-01

    It has been shown that AMD refinement is very useful for defining an intermolecular hydrogen bond in NMR structure calculation. The refined structure also provides a clue for explaining the pH dependence in Ub and UIM complexes. As reported by Choi et al., serine-mediated hydrogen bonds are the third most populated hydrogen bonds found in protein-protein intermolecular interactions, after the backbone-backbone and backbone-aspartate ones. The abundance imposes the requirement of an method to determine the interface of protein-protein complexes. The precise geometry is particularly important in the complex structures between Ub and UBDs. Ub recognizes various targets with the same surface, where both hydrophobic and hydrophobic interactions are involved. Hence, the details of the hydrophilic interactions are necessary to find the common binding modes. The structure determination of a biomolecule by NMR depends heavily on the distance restraints derived by the NOE cross peaks that are observed between two protons within 6 A through space. Therefore, the existence of the NOE peaks and their correct assignments to two corresponding protons are essential for an accurate and precise structure determination. Recent developments of NOE assignment and calculation algorithms have enabled the determination of protein 3D structures without any manual interpretation, provided chemical shifts are assigned in most atoms and sufficient NOE peaks exist. Along with these advances, the necessity of determining complicated structures such as complexes is increasing

  2. Examination of hydrogen-bonding interactions between dissolved solutes and alkylbenzene solvents based on Abraham model correlations derived from measured enthalpies of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, Mikhail A.; Rakipov, Ilnaz T. [Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Acree, William E., E-mail: acree@unt.edu [Department of Chemistry, 1155 Union Circle # 305070, University of North Texas, Denton, TX 76203-5017 (United States); Brumfield, Michela [Department of Chemistry, 1155 Union Circle # 305070, University of North Texas, Denton, TX 76203-5017 (United States); Abraham, Michael H. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-10-20

    Highlights: • Enthalpies of solution measured for 48 solutes dissolved in mesitylene. • Enthalpies of solution measured for 81 solutes dissolved in p-xylene. • Abraham model correlations derived for enthalpies of solvation of solutes in mesitylene. • Abraham model correlations derived for enthalpies of solvation of solutes in p-xylene. • Hydrogen-bonding enthalpies reported for interactions of aromatic hydrocarbons with hydrogen-bond acidic solutes. - Abstract: Enthalpies of solution at infinite dilution of 48 organic solutes in mesitylene and 81 organic solutes in p-xylene were measured using isothermal solution calorimeter. Enthalpies of solvation for 92 organic vapors and gaseous solutes in mesitylene and for 130 gaseous compounds in p-xylene were determined from the experimental and literature data. Abraham model correlations are determined from the experimental enthalpy of solvation data. The derived correlations describe the experimental gas-to-mesitylene and gas-to-p-xylene solvation enthalpies to within average standard deviations of 1.87 kJ mol{sup −1} and 2.08 kJ mol{sup −1}, respectively. Enthalpies of X-H⋯π (X-O, N, and C) hydrogen bond formation of proton donor solutes (alcohols, amines, chlorinated hydrocarbons etc.) with mesitylene and p-xylene were calculated based on the Abraham solvation equation. Obtained values are in good agreement with the results determined using conventional methods.

  3. Vanadium Hydrogen Sulfate Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Bis-(indolyl) methanes

    Energy Technology Data Exchange (ETDEWEB)

    Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D. Imani [Univ. of Guilan, Rasht (Iran, Islamic Republic of)

    2010-06-15

    We have developed a mild, simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and bis-(indolyl) methanes catalyzed by V(HSO{sub 4}){sub 3}. Based on our studies, this method offers several adavantages including mild reaction conditions, good to high yields of the products, short reaction times, solvent-free reaction conditions and simple experimental procedure. 3,4-Dihydropyrimidin-2(1H)-ones and their derivatives have attracted increasing interest due to their wide range of therapeutical and pharmacological properties, such as antiviral, antitumor, antibacterial, and antiinflammatory properties. Some of them have been successfully used as calcium channel blockers, antihypertensive agents, and α1a-antagonists. Moreover, several marine alkaloids whose molecular structures contain the dihydropyrimidinone core also exhibit interesting biological activities. Therefore, synthesis of these type of compounds is still of great importance.

  4. Vanadium Hydrogen Sulfate Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Bis-(indolyl) methanes

    International Nuclear Information System (INIS)

    Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D. Imani

    2010-01-01

    We have developed a mild, simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and bis-(indolyl) methanes catalyzed by V(HSO 4 ) 3 . Based on our studies, this method offers several adavantages including mild reaction conditions, good to high yields of the products, short reaction times, solvent-free reaction conditions and simple experimental procedure. 3,4-Dihydropyrimidin-2(1H)-ones and their derivatives have attracted increasing interest due to their wide range of therapeutical and pharmacological properties, such as antiviral, antitumor, antibacterial, and antiinflammatory properties. Some of them have been successfully used as calcium channel blockers, antihypertensive agents, and α1a-antagonists. Moreover, several marine alkaloids whose molecular structures contain the dihydropyrimidinone core also exhibit interesting biological activities. Therefore, synthesis of these type of compounds is still of great importance

  5. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance.

    Science.gov (United States)

    Vogtt, K; Winter, R

    2005-08-01

    COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80 degrees C) and under high pressure conditions at low temperature (3.75 kbar, -13 degrees C). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  6. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    K. Vogtt

    2005-08-01

    Full Text Available COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC and under high pressure conditions at low temperature (3.75 kbar, -13ºC. Moreover, the influence of co-solvents (sorbitol, urea on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  7. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  8. Solvent extraction of calcium and strontium into nitrobenzene by using synergistic mixture of hydrogen dicarbollylcobaltate and diphenyl-N-butylcarbamoylmethyl phosphine oxide

    International Nuclear Information System (INIS)

    Makrlik, E.

    2010-01-01

    Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H + B - ) in the presence of diphenyl-N-butylcarbamoylmethyl phosphine oxide (DPBCMPO, L) has been investigated. The equilibrium data have been explained assuming that the species HL + , HL 2 + , ML 2 2+ , ML 3 2+ and ML 4 2+ (M 2+ = Ca 2+ , Sr 2+ ) are extracted into the organic phase. The values of extraction and stability constants of the cationic complexes in nitrobenzene saturated with water have been determined. In the considered nitrobenzene medium, it was found that the stability of the SrL 2,org 2+ complex is somewhat higher than that of species CaL 2,org 2+ , while the stability constants of the remaining strontium complexes SrL 3,org 2+ and SrL 4,org 2+ are smaller than those of the corresponding complex species CaL n 2+ (n = 3, 4). (author)

  9. On-Line Organic Solvent Field Enhanced Sample Injection in Capillary Zone Electrophoresis for Analysis of Quetiapine in Beagle Dog Plasma

    Directory of Open Access Journals (Sweden)

    Yuqing Cao

    2016-01-01

    Full Text Available A rapid and sensitive capillary zone electrophoresis (CZE method with field enhanced sample injection (FESI was developed and validated for the determination of quetiapine fumarate in beagle dog plasma, with a sample pretreatment by LLE in 96-well deep format plate. The optimum separation was carried out in an uncoated 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 13 kV. The electrophoretic analysis was performed by 50 mM phosphate at pH 2.5. The detection wavelength was 210 nm. Under these optimized conditions, FESI with acetonitrile enhanced the sensitivity of quetiapine about 40–50 folds in total. The method was suitably validated with respect to stability, specificity, linearity, lower limit of quantitation, accuracy, precision and extraction recovery. Using mirtazapine as an internal standard (100 ng/mL, the response of quetiapine was linear over the range of 1–1000 ng/mL. The lower limit of quantification was 1 ng/mL. The intra- and inter-day precisions for the assay were within 4.8% and 12.7%, respectively. The method represents the first application of FESI-CZE to the analysis of quetiapine fumarate in beagle dog plasma after oral administration.

  10. Large scale hydrogen production from wind energy in the Magallanes area for consumption in the central zone of Chile

    International Nuclear Information System (INIS)

    Zolezzi, J.M.; Garay, A.; Reveco, M.

    2010-01-01

    The energy proposal of this research suggests the use of places with abundant wind resources for the production of H 2 on a large scale to be transported and used in the central zone of Chile with the purpose of diversifying the country's energy matrix in order to decrease its dependence on fossil fuels, increase its autonomy, and cover the future increases in energy demand. This research showed that the load factor of the proposed wind park reaches a value of 54.5%, putting in evidence the excellent wind conditions of the zone. This implies that the cost of the electricity produced by the wind park located in the Chilean Patagonia would have a cost of 0.0213 US$ kWh -1 in the year 2030. The low prices of the electricity obtained from the park, thanks to the economy of scale and the huge wind potential, represent a very attractive scenario for the production of H 2 in the future. The study concludes that by the year 2030 the cost of the H 2 generated in Magallanes and transported to the port of Quinteros would be 18.36 US$ MBTU -1 , while by that time the cost of oil would be about 17.241 US$ MBTU -1 , a situation that places H 2 in a very competitive position as a fuel. (author)

  11. The Effect of Solvent, Hydrogen Peroxide and Dioxide Titanium on Degradation of PCBs, Using Microwave Radiation in Order to Reduce Occupational Exposure

    Directory of Open Access Journals (Sweden)

    Tajik Reza

    2014-07-01

    Full Text Available Polychlorinated biphenyls (PCBs are one group of persistent organic pollutants (POPs that are of international concern because of global distribution, persistence, and toxicity. Removal of these compounds from the environment remains a very difficult challenge because the compounds are highly hydrophobic and have very low solubility in water. A 900 W domestic microwave oven, pyrex vessel reactor, pyrex tube connector and condensing system were used in this experiment. Radiation was discontinuous and ray powers were 540, 720 and 900 W. The PCBS were analyzed by GC-ECD. The application of microwave radiation and H2O2/TiO2 agents for the degradation of polychlorinated biphenyl contaminated oil was explored in this study. PCB – contaminated oil was treated in a pyrex reactor by microwave irradiation at 2450 MHz with the addition of H2O2/TiO2. A novel grain TiO2 (GT01 was used. The determination of PCB residues in oil by gas chromatography (GC revealed that rates of PCB decomposition were highly dependent on microwave power, exposure time, ratio to solvent with transformer oil in 3:1, the optimal amount of GT01 (0.2 g and 0.116 mol of H2O2 were used in the study. It was suggested that microwave irradiation with the assistance of H2O2/TiO2 might be a potential technology for the degradation of PCB – contaminated oil. The experiments show that MW irradiation, H2O2 oxidant and TiO2 catalyst lead to a degradation efficiency of PCBs only in the presence of ethanol. The results showed that the addition of ethanol significantly enhanced degradation efficiency of PCBs.

  12. Thermodynamic properties of solutions of sodium di-hydrogen phosphate in (1-propanol + water) mixed-solvent media over the temperature range of (283.15 to 303.15) K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Parhizkar, Hana

    2008-01-01

    The apparent molar volume and apparent molar isentropic compressibility of solutions of sodium di-hydrogen phosphate (NaH 2 PO 4 ) in (1-propanol + water) mixed-solvent media with alcohol mass fractions of 0.00, 0.05, 0.10, and 0.15 are reported over the range of temperature (283.15 to 303.15) K at 5 K intervals. The results were fitted to a Redlich-Mayer type equation from which the apparent molar volume and apparent molar isentropic compressibility of the solutions at the infinite dilution were also calculated at the working temperature. The results show a positive transfer volume of NaH 2 PO 4 from an aqueous solution to an aqueous 1-propanol solution. The apparent molar isentropic compressibility of NaH 2 PO 4 in aqueous 1-propanol solutions is negative and it increases with increasing the concentration of NaH 2 PO 4 , 1-propanol, and temperature. Electrical conductivity and refractive index of the solutions are also studied at T = 298.15 K. The effects of the electrolyte concentration and relative permittivity of the medium on the molar conductivity were also investigated

  13. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  14. SOLVENT EFFECT ON PROTONATION OF TPPS IN WATER-DMF ...

    African Journals Online (AJOL)

    2016 Chemical Society of Ethiopia ... Department of Chemistry, Jouybar branch, Islamic Azad University, Jouybar, Iran ... hydrogen bonding interactions between solute and solvent components are mainly responsible for the change in.

  15. Analysis of recovered solvents from coal liquefaction in a flowing-solvent reactor by SEC and UV-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Y.; Feng, J.; Xie, K.C.; Kandiyoti, R. [Taiyuan University of Technology, Taiyuan (China)

    2005-08-01

    Point of Ayr coal has been extracted using three solvents: tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP); at two temperatures: 350 {sup o}C and 450{sup o}C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. These solvents differ in solvent power and the ability to donate hydrogen atoms to stabilize free radicals produced by pyrolysis of the coal. Analysis of the fresh solvents and recovered solvents from coal liquefaction was achieved by size exclusion chromatography and UV-fluorescence spectroscopy. In the blank run, it was testified that the filling material sand and the steel powder did not react with solvent with increasing reaction temperature. The role of hydrogen donation in the tetralin extracts was to increase the proportion of large molecules with increasing extraction temperature. Quinoline and NMP both have the powerful extracting capability to get more materials out of coal with increasing extraction temperature.

  16. Analysis of recovered solvents from coal liquefaction in a flowing-solvent reactor by SEC and UV-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Ying Li; Jie Feng; Ke-Chang Xie; R. Kandiyoti [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology for Ministry of Education and Shanxi Province

    2005-08-01

    Point of Ayr coal has been extracted using three solvents: tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP); at two temperatures: 350{sup o}C and 450{sup o}C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. These solvents differ in solvent power and the ability to donate hydrogen atoms to stabilize free radicals produced by pyrolysis of the coal. Analysis of the fresh solvents and recovered solvents from coal liquefaction was achieved by size exclusion chromatography and UV-fluorescence spectroscopy. In the blank run, it was testified that the filling material sand and the steel powder did not react with solvent with increasing reaction temperature. The role of hydrogen donation in the tetralin extracts was to increase the proportion of large molecules with increasing extraction temperature. Quinoline and NMP both have the powerful extracting capability to get more materials out of coal with increasing extraction temperature.

  17. South Pacific Convergence Zone Changes during the Late Holocene Identified from Hydrogen Isotope Ratios of Terrestrial and Aquatic Biomarkers from Freshwater Lake Sediments in Vanuatu

    Science.gov (United States)

    Maloney, A. E.; Ladd, N.; Nelson, D. B.; Sachs, J. P.; Dubois, N.

    2017-12-01

    The South Pacific Convergence Zone (SPCZ) is one of Earth's major precipitation features. Mean annual rainfall rates are as high as 10 mm/day in the Solomon Islands in the northwest portion of the SPCZ, and decline to 4 mm/day in portions of French Polynesia the southeastern reach of the SPCZ. Coral records suggest that the mean annual position and precipitation intensity associated with the SPCZ have most likely expanded and contracted on decadal to centennial timescales, but existing data is limited, making it difficult to constrain and characterize these changes. Thion Island (15.03 °S, 167.09 °E) is located off the east coast of Espírito Santo in Vanuatu, at an intermediate position in the modern SPCZ. As such, it should be sensitive to major contractions and expansions of the SPCZ, with wetter conditions when the SPCZ expands southeast, and drier conditions when it contracts to the northwest. In order to determine changes in precipitation over the past millennium on Thion Island, we collected sediment cores from two adjacent freshwater lakes on the island, White Lake and Red Lake, and measured compound specific hydrogen isotope ratios (2H/1H) of lipid biomarkers from terrestrial plants (long-chain n-alkanes and n­-alkanoic acids), aquatic plants (mid-chain n­-alkanes and n-alkanoic acids), and microalgae (dinosterol and botryococcenes). For all measured biomarkers, 2H/1H ratios were higher during the Little Ice Age (LIA, late 14th century to early 19th century) relative to the preceding Medieval Climate Anomaly (MCA) and to the 20th century, suggesting drier conditions at this location during the LIA. The magnitude of decrease in 2H/1H ratios was twice as large for microalgal dinosterol ( 40 ‰ decrease) as for leaf waxes associated with higher plants ( 20 ‰ decrease). The leaf wax data likely reflects changes in precipitation isotopes due to the amount effect, while the microalgal values should change with lake water 2H/1H, which is sensitive to both

  18. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  19. Analysis of solvent extracts from coal liquefaction in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Ying; Feng, Jie; Xie, Ke-Chang [Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024 (China); Kandiyoti, R. [Department of Chemical Engineering and Chemical Technology, Imperial College, University of London, London SW7 2BY (United Kingdom)

    2004-10-15

    Point of Ayr coal has been extracted using three solvents, tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP) at two temperatures 350 and 450 C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. The three solvents differ in solvent power and the ability to donate hydrogen atoms to stabilise free radicals produced by pyrolysis of the coal. The extracts were prepared in a flowing solvent reactor to minimise secondary thermal degradation of the primary extracts. Analysis of the pentane-insoluble fractions of the extracts was achieved by size exclusion chromatography, UV-fluorescence spectroscopy in NMP solvent and probe mass. With increasing extraction temperature, the ratio of the amount having big molecular weight to that having small molecular weight in tetralin extracts was increased; the tetralin extract yield increased from 12.8% to 75.9%; in quinoline, increasing extraction temperature did not have an effect on the molecular weight of products but there was a big increase in extract yield. The extracts in NMP showed the enhanced solvent extraction power at both temperatures, with a shift in the ratio of larger molecules to smaller molecules with increasing extraction temperature and with the highest conversion of Point of Ayr coal among these three solvents at both temperatures. Solvent adducts were detected in the tetralin and quinoline extracts by probe mass spectrometry; solvent products were formed from NMP at both temperatures.

  20. Characterization through nano indentation technique of mechanical properties of an aluminium alloy welded zone for hydrogen storage; Apport de la nanoindentation pour la caracterisation d'un cordon de soudure par faisceau d'electrons d'un reservoir d'hydrogene sous pression en alliage d'aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Delobelle, P.; Perreux, D.; Russo, C. [Universite de Franche-Comte, Institut FEMTO-ST, UMR 6174, Depart. LMARC, 25 - Besancon (France); Meunier, E. [CEA Valduc (DRMN/SMCM/LCSi), 21 - Is-sur-Tille (France); Decamps, B. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209, 94 - Vitry-Thiais, (France)

    2008-07-01

    In this study we use the nano indentation technique which is a powerful tool to characterise the mechanical properties of a welded bond. The Berkovich indentation has the advantage to test small material volumes compared to the conventional tensile tests. The welded process with electrons beam of hydrogen vessels induces different regions and the aim of this study is to characterize the differences of the mechanical properties of the different zones of the weld. To identify the stress-strain curves of the tested material, F.E. inverse method has been used. After treatment, for one pass, the hardness of the melted zone is greater than those of the base material and for the two passes, the hardness is still lower than those of the base material. The interface zones present a hardness which is always higher than those of the weld. A relation of the Hall-Petch type which correlates the evolution of the hardness with the zinc concentration and the grain size has been proposed. Moreover a relation between the normalized hardness and the hydrogen concentration CH has been found. The parameters of the stress-strain curves of the four regions; base material, interface, one and two passes melted zones, have been deduced. The identified laws are used in a F.E. model of a welded sphere to model its radial deformation under internal pressure loading. (authors)

  1. Organic Solvent Tropical Report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    2000-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines

  2. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  3. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  4. Two-stage coal liquefaction without gas-phase hydrogen

    Science.gov (United States)

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  5. Oils; destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    1928-03-01

    Coals, oil-shales, or other carbonaceous solids are dissolved in or extracted by solvents at temperatures over 200/sup 0/C, and under pressure, preferably over 30 atmospheres, in presence of halogens, hydrogen halides, or compounds setting free the halogen or halide under the conditions.

  6. Challenges in subsurface in situ remediation of chlorinated solvents

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical...

  7. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  8. Studies on catalytic hydrotreating of recycled solvents from coal liquefaction process. Part 1. Characteristics changes of recycled solvents during hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Morimura, Y.; Nakata, S.; Yokota, Y.; Shirota, Y.; Nakamura, M. [Chiyoda Corp., Tokyo (Japan); Mitarai, Y. [Sumitomo Metal Mining Co. Ltd., Tokyo (Japan); Inoue, Y. [Nippon Ketjen Co. Ltd., Tokyo (Japan)

    1995-07-01

    A bituminous coal liquefaction process, called the NEDOL process, is under development by the New Energy and Industrial Technology Development Organization (NEDO). Important features of this process include the capacity to produce hydrogen-donatable solvents, obtained by hydrogenation of middle distillates of coal derived oils, and to recycle these solvents to a liquefaction stage as hydrogen donor solvents. These recycled solvents, obtained by liquefaction of Wandoan coal, and their catalytic hydrotreated oils, have been extensively characterized, using a variety of analytical methods. The following items have been examined and are discussed in this study: (1) Influence of chemical hydrogen consumption on the reactivities of hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodeoxygenation (HDO) and hydrogenation of aromatic-rings, during hydrotreating; (2) Changes in composition of hydrocarbon types, nitrogen- and oxygen-containing compounds, as a function of chemical hydrogen consumption; (3) Changes of average molecular weights; (4) Characteristics changes of oxygen- and nitrogen-containing compounds, and reactivities of HDO and HDN; (5) Characteristics changes of donatable hydrogen as a function of a degree of hydrogenation ({delta}fa). 14 refs., 14 figs., 3 tabs.

  9. Laser shocks on helium, hydrogen and diamond: an experimental study of the warm dense matter zone; Chocs laser sur l'helium, l'hydrogene et le diamant: une etude experimentale de la 'Warm Dense Matter'

    Energy Technology Data Exchange (ETDEWEB)

    Brygoo, St

    2006-11-15

    The purpose of this work was to develop a new approach of laser shocks on pre-compressed targets in order to collect data concerning the equation of state in the warm dense matter zone of the phase diagram. The accuracy of the measurement has been increased by the use of a new metrology based on quartz. Quartz is considered as a standard for the measurement of both the pressure and the density, a model of an isentropic relaxation based on a Grueneisen type approximation has been developed. By combining laser shocks with diamond anvil cells and by using this new metrology, we have investigated the following systems: diamond, helium, hydrogen, deuterium and hydrogen-helium mixtures. The results for helium agree very well with the predictions of the Saumon-Chabrier model. The results for deuterium are consistent with the latest results found in literature. As for the results concerning hydrogen, they have showed the limits of the quartz-based metrology. In fact, by being so little dense we are at the limit of the application range of the quartz relaxation. A mixture of helium-hydrogen (50 %) has been investigated, no sign of phase separation has been found.

  10. Trace elements retained in washed nuclear fuel reprocessing solvents

    International Nuclear Information System (INIS)

    Gray, L.W.; MacMurdo, K.W.

    1979-09-01

    Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally 106 Ru, 129 I, 3 H, 235 U, and 239 Pu. The 129 I concentration was about 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, 129 I concentration varied from about 0.1 to 0.5 ppM. Both 129 I and 3 H appear to be in the organic solvent as a result of exchange with hydrogen

  11. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  12. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  13. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    This article is an overview of efforts at INEL to reduce the generation of hazardous wastes through the elimination of hazardous solvents. To aid in their efforts, a number of databases have been developed and will become a part of an Integrated Solvent Substitution Data System. This latter data system will be accessible through Internet

  14. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    Science.gov (United States)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  15. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    OpenAIRE

    Wadood Taher Mohammed; Raghad Fareed Kassim Almilly; Sheam Bahjat Abdulkareem Al-Ali

    2015-01-01

    This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as extractants . Also the ef...

  16. Solvent - solute interaction

    International Nuclear Information System (INIS)

    Urbanczyk, A.; Kalinowski, M.K.

    1983-01-01

    The electronic absorption spectrum of vanadyl acetylacetonate has been studied in 15 organic solvents. It has been found that wavenumbers and molar absorptivities of the long-wavelength bands (d-d transitions) can be well described by a complementary Lewis acid-base model including Gutmann's donor number [Gutmann V., Wychera E., Inorg. Nucl. Chem. Letters 2, 257 (1966)] and acceptor number [Mayer U., Gutmann V., Gerger W., Monatsh. Chem. 106, 1235 (1975)] of a solvent. This model describes also the solvent effect of the hyperfine splitting constant, Asub(iso)( 51 V), from e.s.r. spectra of VOacac 2 . These observations are discussed in terms of the donor-acceptor concept for solvent-solute interactions. (Author)

  17. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Wadood Taher Mohammed

    2015-02-01

    Full Text Available This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN and N-methyl – 2 - pyrrolidone (NMP as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450 rpm, temperature (30 , 40 , 45 , and 50 oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5 , catalyst/oxidant ratio(0.125,0.25,0.5,and0.75 , and solvent/simulated diesel fuel ratio(0.5,0.6,0.75,and1 were examined as well as solvent type. The results exhibit that the highest removal of sulfur is 98.5% using NMP solvent while it is 95.8% for ACN solvent. The set of conditions that show the highest sulfur removal is: stirring speed of 350 rpm , temperature 50oC , oxidant/simulated diesel fuel ratio 1 , catalyst/oxidant ratio 0.5 , solvent/simulated diesel fuel ratio 1. These best conditions were applied upon real diesel fuel (produced from Al-Dora refinerywith 1000 ppm sulfur content . It was found that sulfur removal was 64.4% using ACN solvent and 75% using NMP solvent.

  18. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  19. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    Science.gov (United States)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  20. The solvent effects on dimethyl phthalate investigated by FTIR characterization, solvent parameter correlation and DFT computation

    Science.gov (United States)

    Chen, Yi; Zhang, Hui; Zhou, Wenzhao; Deng, Chao; Liao, Jian

    2018-06-01

    This study set out with the aim of investigating the solvent effects on dimethyl phthalate (DMP) using FTIR characterization, solvent parameter correlation and DFT calculation. DMP exposed to 17 organic solvents manifested varying shift in the carbonyl stretching vibration frequency (νCdbnd O). Non-alkanols induced Band I and alkanols produced Band I and Band II. Through correlating the νCdbnd O with the empirical solvent scales including acceptor parameter (AN), Schleyer's linear free energy parameter (G), and linear free salvation energy relationships (LSER), Band I was mainly ascribed to non-specific effects from either non-alkanols or alkanol polymers ((alkanol)n). νCdbnd O of the latter indicated minor red shift and less variability compared to the former. An assumption was made and validated about the sequestering of hydroxyl group by the bulky hydrophobic chain in (alkanol)n, creating what we refer to as "screening effects". Ab initio calculation, on the other hand, provided insights for possible hydrogen binding between DMP and (ethanol)n or between ethanol monomers. The two components of Band I observed in inert solvents were assigned to the two Cdbnd O groups adopting differentiated conformations. This in turn prompted our consideration that hydrogen binding was highly selective in favor of lowly associated (alkanol)n and the particular Cdbnd O group having relatively less steric hindrance and stronger electron-donating capacity. Band II was therefore believed to derive from hydrogen-bond interactions mainly in manner of 1:1 and 1:2 DMP-(alkanol)n complexes.

  1. Purex process solvent: literature review

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables.

  2. Purex process solvent: literature review

    International Nuclear Information System (INIS)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables

  3. Destructive hydrogenation. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1929-07-15

    Liquid or readily liquefiable products are obtained from solid distillable carbonaceous materials such as coals, oil shales or other bituminous substances by subjecting the said initial materials to destructive hydrogenation under mild conditions so that the formation of benzine is substantially avoided, and then subjecting the treated material to extraction by solvents. By hydrogenating under mild conditions the heavy oils which prevent the asphaltic substances from being precipitated are preserved, and the separation of the liquid products from the solid residue is facilitated. Solid paraffins and high boiling point constituents suitable for the production of lubricating oils may be removed before or after the extraction process. The extraction is preferably carried out under pressure with solvents which do not precipitate asphaltic substances. Brown coal containing 11 per cent ash is passed at 450/sup 0/C, and 200 atmospheres pressure in counter current to hydrogen; 40 per cent of the coal is converted into liquid products which are condensed out of the hydrogen stream; the pasty residue, on extraction with benzene, yields 45 per cent of high molecular weight products suitable for the production of lubricating oil.

  4. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  5. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  6. Different Supramolecular Coordination Polymers of [N,N'-di(pyrazin-2-yl-pyridine-2,6-diamine]Ni(II with Anions and Solvent Molecules as a Result of Hydrogen Bonding

    Directory of Open Access Journals (Sweden)

    Hsin-Ta Wang

    2007-04-01

    Full Text Available Ni(II complexes of N,N'–di(pyrazin–2–ylpyridine–2,6–diamine (H2dpzpda with different anions were synthesized and their structures were determined by X-ray diffraction. Hydrogen bonds between the amino groups and anions assembled the mononuclear molecules into different architectures. The perchlorate complex had a 1-D chain structure, whereas switching the anion from perchlorate to nitrate resulted in a corresponding change of the supramolecular structure from 1-D to 3-D. When the nitrate complex packed with the co-crystallized water, a double chain structure was formed through hydrogen bonding. The magnetic studies revealed values of g = 2.14 and D = 3.11 cm-1 for [Ni(H2dpzpda2](ClO42 (1 and g = 2.18 and D = 2.19 cm-1 for [Ni(H2dpzpda2](NO32 (2, respectively.

  7. Separation by solvent extraction

    International Nuclear Information System (INIS)

    Holt, C.H. Jr.

    1976-01-01

    In a process for separating fission product values from U and Pu values contained in an aqueous solution, an oxidizing agent is added to the solution to secure U and Pu in their hexavalent state. The aqueous solution is contacted with a substantially water-immiscible organic solvent with agitation while the temperature is maintained at from -1 to -2 0 C until the major part of the water present is frozen. The solid ice phase is continuously separated as it is formed and a remaining aqueous liquid phase containing fission product values and a solvent phase containing Pu and U values are separated from each other. The last obtained part of the ice phase is melted and added to the separated liquid phase. The resulting liquid is treated with a new supply of solvent whereby it is practically depleted of U and Pu

  8. Solvent effects in ionic liquids: empirical linear energy-density relationships.

    Science.gov (United States)

    Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R

    2012-07-28

    Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.

  9. Hydrogen solubility in polycrystalline - and nonocrystalline niobium

    International Nuclear Information System (INIS)

    Ishikawa, T.T.; Silva, J.R.G. da

    1981-01-01

    Hydrogen solubility in polycrystalline and monocrystalline niobium was measured in the range 400 0 C to 1000 0 C at one atmosphere hydrogen partial pressure. The experimental technique consists of saturation of the solvent metal with hydrogen, followed by quenching and analysis of the solid solution. It is presented solubility curves versus reciprocal of the absolute doping temperature, associated with their thermodynamical equation. (Author) [pt

  10. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  11. 21 CFR 173.275 - Hydrogenated sperm oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated sperm oil. 173.275 Section 173.275... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following prescribed...

  12. Solvent isotope effect on the fluorescence of azoalkanes

    International Nuclear Information System (INIS)

    Mirbach, M.J.; Mirbach, M.F.; Cherry, W.R.; Turro, N.J.; Engel, P.

    1977-01-01

    A study of fluorescence quantum yields and fluorescence lifetimes of two cyclic azoalkanes reveal a striking dependence of phisub(F) and tausub(F) on solvent and on isotopic substitution (OH → OD). A mechanism involving specific deactivation of the fluorescent state from a hydrogen bonded complex is proposed to rationalize the data. (orig./HK) [de

  13. Statistical and computer analysis for the solvent effect on the elctronis adsorption spectra of monoethanolamine complexes

    International Nuclear Information System (INIS)

    Masoud, M.S.; Motaweh, H.A.; Ali, A.E.

    1999-01-01

    Full text.the electronic absorption spectra of the octahedral complexes containing monoethanolamine were recorded in different solvents (dioxine, chlororm, ethanol, dimethylformamide, dimethylsulfoxide and water). The data analyzed based on multiple linear regression technique using the equation: ya (a is the regression intercept) are various empirical solvent polarytiparameters; constants are calculated using micro statistic program on pc computer. The solvent spectral data of the complexes are compared to that of nugot, the solvent assists the spectral data to be red shifts. In case of Mn (MEA) CL complex, numerous bands are appeared in presence of CHCI DMF and DMSO solvents probably due to the numerous oxidation states. The solvent parameters: E (solvent-solute hydrogen bond and dipolar interaction); (dipolar interaction related to the dielectric constant); M (solute permanent dipole-solvent induced ipole) and N (solute permanent dipole-solvent permanent dipole) are correlated with the structure of the complexes, in hydrogen bonding solvents (Band in case of complexes as the dielectric constant increases, blue shift occurs in due to conjugation with high stability, the data in DMF and DMSO solvents are nearly the same probably due to their similarity

  14. Thermophysical properties and solubility of different sugar-derived molecules in deep eutectic solvents

    NARCIS (Netherlands)

    Dietz, C.H.J.T.; Kroon, M.C.; van Sint Annaland, M.; Gallucci, F.

    2017-01-01

    Deep eutectic solvents (DESs) are designer solvents analogous to ionic liquids but with lower preparation cost. Most known DESs are water-miscible, but recently water-immiscible DESs have also been presented, which are a combination of hydrogen bond donors and acceptors with long hydrophobic alkyl

  15. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    International Nuclear Information System (INIS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-01-01

    values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail

  16. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  17. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  18. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  19. Organic solvent topical report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    1999-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed

  20. Organic solvent topical report

    International Nuclear Information System (INIS)

    Cowley, W.L.

    1998-01-01

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel

  1. DESIGNING GREENER SOLVENTS

    Science.gov (United States)

    Computer-aided design of chemicals and chemical mixtures provides a powerful tool to help engineers identify cleaner process designs and more-benign alternatives to toxic industrial solvents. Three software programs are discussed: (1) PARIS II (Program for Assisting the Replaceme...

  2. Chlorinated solvents in groundwater of the United States

    Science.gov (United States)

    Moran, M.J.; Zogorski, J.S.; Squillace, P.J.

    2007-01-01

    Four chlorinated solvents-methylene chloride, perchloroethene (PCE), 1,1,1-trichloroethane, and trichloroethene (TCE)-were analyzed in samples of groundwater taken throughout the conterminous United States by the U.S. Geological Survey. The samples were collected between 1985 and 2002 from more than 5,000 wells. Of 55 volatile organic compounds (VOCs) analyzed in groundwater samples, solvents were among the most frequently detected. Mixtures of solvents in groundwater were common and may be the result of common usage of solvents or degradation of one solvent to another. Relative to other VOCs with Maximum Contaminant Levels (MCLs), PCE and TCE ranked high in terms of the frequencies of concentrations greater than or near MCLs. The probability of occurrence of solvents in groundwater was associated with dissolved oxygen content of groundwater, sources such as urban land use and population density, and hydraulic properties of the aquifer. The results reinforce the importance of understanding the redox conditions of aquifers and the hydraulic properties of the saturated and vadose zones in determining the intrinsic susceptibility of groundwater to contamination by solvents. The results also reinforce the importance of controlling sources of solvents to groundwater. ?? 2007 American Chemical Society.

  3. Origin of microbial life hypothesis: a gel cytoplasm lacking a bilayer membrane, with infrared radiation producing exclusion zone (EZ) water, hydrogen as an energy source and thermosynthesis for bioenergetics.

    Science.gov (United States)

    Trevors, J T; Pollack, G H

    2012-01-01

    The hypothesis is proposed that pre-biotic bacterial cell(s) and the first cells capable of growth/division did not require a cytoplasmic membrane. A gel-like microscopic structure less than a cubic micrometer may have had a dual role as both an ancient pre-cytoplasm and a boundary layer to the higher-entropy external environment. The gel pre-cytoplasm exposed to radiant energy, especially in the infrared (IR) region of the EM spectrum resulted in the production of an exclusion zone (EZ) with a charge differential (-100 to -200 mV) and boundary that may have been a possible location for the latter organization of the first cytoplasmic membrane. Pre-biotic cells and then-living cells may have used hydrogen as the universal energy source, and thermosynthesis in their bioenergetic processes. These components will be discussed as to how they are interconnected, and their hypothesized roles in the origin of life. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  5. Magnetic effects on the solvent properties investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi, Fatemeh, E-mail: moosavibaigi@um.ac.ir; Gholizadeh, Mostafa

    2014-03-15

    This paper investigates how an external constant magnetic field in the Z-direction affects the performance of a solvent. The molecular dynamics simulation comprised common inorganic and organic solvents including water, acetone, acetonitrile, toluene, and n-hexane at the ambient temperature and pressure. A static magnetic field applied in the simulation process is able to reduce the solvent mobility in the solution in order to enhance the solvent–solute reaction. Simulation results show that the diffusivity decreases because of increasing the effective interactions. Besides, magnetic field reduces the volume of the solvent and increases the strength of the hydrogen bonds by maximizing attractive electrostatic and vdW interactions caused by changes in the radial distribution function of the solvents. Hydrogen-bonding characteristics of solvents investigated by molecular dynamics simulations were evidence for the hydrogen bonding strength of O···H that is a more efficient intermolecular hydrogen-bonding in comparison with N···H. - Highlights: • Molecular dynamics simulation technique investigates the effect of magnetic field on transport dynamics inside the solvent bulk. • External constant magnetic field influences on intermolecular interactions, thermophysics, and transport properties of the solvents. • Applying magnetic field strengthened hydrogen bond maximizes attractive electrostatic interactions, charge distribution becomes stronger, and the molecule mobility is demoted. • The low diffusivity of the solvents in the solutions increases the performance of the interactions and promotes the interactions. • On introducing a magnetic field of flux density parallel to the Z-direction, solvent acts as an obstacle to diffusion of solutes.

  6. Reactivity of cyclohex-1-enylcarboxylic and 2-methylcyclohex-1-enylcarboxylic acids with diazodiphenylmethane in aprotic solvents

    Directory of Open Access Journals (Sweden)

    VERA V. KRSTIC

    2000-12-01

    Full Text Available Rate constants for the reaction of diazodiphenylmethane with cyclohex-1-enylcarboxylic acid and 2-methylcyclohex-1-enylcarboxylic acid were determined in nine aprotic solvents, as well as in seven protic solvents, at 30°C using the appropriate UV-spectroscopic method. In protic solvents the unsubsituted acid displayed higher reaction rates than the methyl-substituted one. The results in aprotic solvents showed quite the opposite, and the reaction rates were considerably lower. In order to explain the obtained results through solvent effects, reaction rate constants (k of the examined acids were correlated using the total solvatochromic equation of the form: log k=logk0+sp*+aa+bb, where p* is the measure of the solvent polarity, a represents the scale of the solvent hydrogen bond donor acidities (HBD and b represents the scale of the solvent hydrogen bond acceptor basicities (HBA. The correlation of the kinetic data were carried out by means of multiple linear regression analysis and the opposite effects of aprotic solvents, as well as the difference in the influence of protic and aprotic solvents on the reaction of the two examined acids with DDM were discussed. The results presented in this paper for cyclohex-1-enylcarboxylic and 2-methylcyclohex-1-enylcarboxylic acids were compared with the kinetic data for benzoic acid obtained in the same chemical reaction, under the same experimental conditions.

  7. Solvent selection methodology for pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Gani, Rafiqul

    2016-01-01

    A method for the selection of appropriate solvents for the solvent swap task in pharmaceutical processes has been developed. This solvent swap method is based on the solvent selection method of Gani et al. (2006) and considers additional selection criteria such as boiling point difference...... in pharmaceutical processes as well as new solvent swap alternatives. The method takes into account process considerations such as batch distillation and crystallization to achieve the swap task. Rigorous model based simulations of the swap operation are performed to evaluate and compare the performance...

  8. Improvements in solvent extraction columns

    International Nuclear Information System (INIS)

    Aughwane, K.R.

    1987-01-01

    Solvent extraction columns are used in the reprocessing of irradiated nuclear fuel. For an effective reprocessing operation a solvent extraction column is required which is capable of distributing the feed over most of the column. The patent describes improvements in solvent extractions columns which allows the feed to be distributed over an increased length of column than was previously possible. (U.K.)

  9. Solvent extraction columns

    International Nuclear Information System (INIS)

    Middleton, P.; Smith, J.R.

    1979-01-01

    In pulsed columns for use in solvent extraction processes, e.g. the reprocessing of nuclear fuel, the horizontal perforated plates inside the column are separated by interplate spacers manufactured from metallic neutron absorbing material. The spacer may be in the form of a spiral or concentric circles separated by radial limbs, or may be of egg-box construction. Suitable neutron absorbing materials include stainless steel containing boron or gadolinium, hafnium metal or alloys of hafnium. (UK)

  10. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is 'What can we use as replacements for hazardous solvents?'You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product's constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace

  11. Effect of Recycle Solvent Hydrotreatment on Oil Yield of Direct Coal Liquefaction

    Directory of Open Access Journals (Sweden)

    Shansong Gao

    2015-07-01

    Full Text Available Effects of the recycle solvent hydrotreatment on oil yield of direct coal liquefaction were carried out in the 0.18 t/day direct coal liquefaction bench support unit of National Engineering Laboratory for Direct Coal Liquefaction (China. Results showed that the hydrogen-donating ability of the hydrogenated recycle solvent improved and the hydrogen consumption of solvent hydrotreatment was increased by decreasing liquid hourly space velocity (LHSV from 1.5 to 1.0 h−1 and increasing reaction pressure from 13.7 to 19.0 MPa. The hydrogen-donating ability of the hydrogenated recycle solvent was enhanced, thus promoting the oil yield and coal conversion of the liquefaction reaction. The coal conversion and distillates yield of coal liquefaction were increased from 88.74% to 88.82% and from 47.41% to 49.10%, respectively, with the increase in the solvent hydrotreatment pressure from 13.7 to 19.0 MPa. The coal conversion and distillates of coal liquefaction were increased from 88.82% to 89.27% and from 49.10% to 54.49%, respectively, when the LHSV decreased from 1.5 to 1.0 h−1 under the solvent hydrotreatment pressure of 19.0 MPa.

  12. Molecular accessibility in solvent swelled coals

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  13. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  14. Hydrogenation Reactions in Ionic Liquids. The Efficient Reduction of ...

    African Journals Online (AJOL)

    NJD

    2008-12-09

    Dec 9, 2008 ... Volatile organic solvents such as ethanol, methanol and THF are often used for the ... remained consistently high and only declined markedly on the fifth cycle. ... transferral of the viscous liquid from the hydrogenation reactor.

  15. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  16. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  17. Solvent effects in the synergistic solvent extraction of Co2+

    International Nuclear Information System (INIS)

    Kandil, A.T.; Ramadan, A.

    1979-01-01

    The extraction of Co 2+ from a 0.1M ionic strength aqueous phase (Na + , CH 3 COOH) of pH = 5.1 was studied using thenoyltrifluoroacetone, HTTA, in eight different solvents and HTTA + trioctylphosphine oxide, TOPO, in the same solvents. A comparison of the effect of solvent dielectric constant on the equilibrium constant shows a synergism as a result of the increased hydrophobic character imparted to the metal complex due to the formation of the TOPO adduct. (author)

  18. Solubilities of hydrogen and methane in coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ho-mu; Sebastian, H M; Simnick, J J; Chao, Kwang Chu

    1981-04-01

    The solubilities of hydrogen and methane in Exxon Donor Solvent (EDS) and Solvent Refined Coal II (SRC-II) coal liquids are determined at 190 and 270 C and pressures to 250 atm. Two narrow boiling distillate cuts from EDS and three from SRC-II are studied.

  19. Solvent extraction of zirconium

    International Nuclear Information System (INIS)

    Kim, S.S.; Yoon, J.H.

    1981-01-01

    The extraction of zirconium(VI) from an aqueous solution of constant ionic strength with versatic acid-10 dissolved in benzen was studied as a function of pH and the concentration of zirconium(VI) and organic acid. The effects of sulphate and chlorine ions on the extraction of the zirconium(VI) were briefly examined. It was revealed that (ZrOR 2 .2RH) is the predominant species of extracted zirconium(VI) in the versatic acid-10. The chemical equation and the apparent equilibrium constants thereof have been determined as follows. (ZrOsup(2+))aq+ 2(R 2 H 2 )sub(org) = (ZrOR 2 .2RH)sub(org)+2(H + )aq Ksub(Zr) = (ZrOR 2 .2RH)sub(org)(H + ) 2 /(ZrOsup(2+))sub(aq)(R 2 H 2 )sup(2)sub(org) = 3.3 x 10 -7 . The synergistic effects of TBP and D2EHPA were also studied. In the mixed solvent with 0.1M TBP, the synergistic effect was observed, while the mixed solvent with D2EHPA showed the antisynergistic effect. (Author)

  20. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  1. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  2. Specific solvent effect on lumazine photophysics: A combined fluorescence and intrinsic reaction coordinate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moyon, N. Shaemningwar; Gashnga, Pynsakhiat Miki; Phukan, Smritakshi; Mitra, Sivaprasad, E-mail: smitra@nehu.ac.in

    2013-06-27

    Highlights: • Correlation of lumazine photophysics with multiparametric Kamlet–Taft equation. • Solvent basicity (β) contributes maximum towards the hydrogen bonding (HB) effect. • HB interaction occurs at N1 and N3 proton in S{sub 0} and S{sub 1} state, respectively. • IRC calculation for different tautomerization processes both in S{sub 0} and S{sub 1} states. • Process related to riboflavin biosynthesis is thermodynamically feasible. - Abstract: The photophysical properties and tautomerization behavior of neutral lumazine were studied by fluorescence spectroscopy and density functional theory calculation. A quantitative estimation of the contributions from different solvatochromic parameters, like solvent polarizibility (π{sup ∗}), hydrogen bond donation (α) and hydrogen bond accepting (β) ability of the solvent, was made using linear free energy relationships based on the Kamlet–Taft equation. The analysis reveals that the hydrogen bond acceptance ability of the solvent is the most important parameter characterizing the excited state behavior of lumazine. Theoretical calculations result predict an extensive charge redistribution of lumazine upon excitation corresponding to the N3 and N1 proton dissociation sites by solvents in the ground and excited states, respectively. Comparison of S{sub 0} and S{sub 1} state potential energy curves constructed for several water mediated tautomerization processes by intrinsic reaction coordinate analysis of lumazine-H{sub 2}O cluster shows that (3,2) and (1,8) hydrogen migrations are the most favorable processes upon excitation.

  3. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  4. Reversible Interconversion between 2,5-Dimethylpyrazine and 2,5-Dimethylpiperazine by Iridium-Catalyzed Hydrogenation/Dehydrogenation for Efficient Hydrogen Storage.

    Science.gov (United States)

    Fujita, Ken-Ichi; Wada, Tomokatsu; Shiraishi, Takumi

    2017-08-28

    A new hydrogen storage system based on the hydrogenation and dehydrogenation of nitrogen heterocyclic compounds, employing a single iridium catalyst, has been developed. Efficient hydrogen storage using relatively small amounts of solvent compared with previous systems was achieved by this new system. Reversible transformations between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine, accompanied by the uptake and release of three equivalents of hydrogen, could be repeated almost quantitatively at least four times without any loss of efficiency. Furthermore, hydrogen storage under solvent-free conditions was also accomplished. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The effect of solvent upon molecularly thin rotaxane film formation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Alan A. [Nanoscale Function Group, Centre for Research on Adaptive Nanostructures and Nanodevices, University of Dublin, Trinity College, Dublin 2 (Ireland)]. E-mail: farrelaa@tcd.ie; Kay, Euan R. [School of Chemistry, University of Edinburgh, The King' s Buildings, West Mains Road, Edinburgh EH9 3 JJ (United Kingdom); Bottari, Giovanni [School of Chemistry, University of Edinburgh, The King' s Buildings, West Mains Road, Edinburgh EH9 3 JJ (United Kingdom); Leigh, David A. [School of Chemistry, University of Edinburgh, The King' s Buildings, West Mains Road, Edinburgh EH9 3 JJ (United Kingdom); Jarvis, Suzanne P. [Nanoscale Function Group, Centre for Research on Adaptive Nanostructures and Nanodevices, University of Dublin, Trinity College, Dublin 2 (Ireland)

    2007-05-15

    We have investigated variations in molecularly thin rotaxane films deposited by solvent evaporation, using atomic force microscopy (AFM). Small changes in rotaxane structure result in significant differences in film morphology. The addition of exo-pyridyl moietes to the rotaxane macrocycle results in uniform domains having orientations corresponding to the underlying substrate lattice, while a larger, less symmetric molecule results in a greater lattice mismatch and smaller domain sizes. We have measured differences in film heights both as a function of the solvent of deposition and as a function of surface coverage of rotaxanes. Based on these observations we describe how the use of solvents with higher hydrogen-bond basicity results in films which are more likely to favour sub-molecular motion.

  6. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  7. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin

  8. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a

  9. Anti-solvent co-crystallization of carbamazepine and saccharin.

    Science.gov (United States)

    Wang, In-Chun; Lee, Min-Jeong; Sim, Sang-Jun; Kim, Woo-Sik; Chun, Nan-Hee; Choi, Guang J

    2013-06-25

    The co-crystal approach has been investigated extensively over the past decade as one of the most promising methods to enhance the dissolution properties of insoluble drug substances. Co-crystal powders are typically produced by mechanical grinding (neat or wet) or a solution method (evaporation or cooling). In this study, high-purity carbamazepine-saccharin (CBZ-SAC) co-crystals were manufactured by a novel method, anti-solvent addition. Among various solvents, methanol was found to perform well with water as the anti-solvent for the co-crystallization of CBZ and SAC. When water was added to the methanol solution of CBZ and SAC at room temperature under agitation, nucleation of CBZ-SAC co-crystals occurred within 2-3 min. Co-crystallization was complete after 30 min, giving a solid yield as high as 84.5% on a CBZ basis. The effects of initial concentrations, focusing on the SAC/CBZ ratio, were examined to establish optimal conditions. The whole anti-solvent co-crystallization process was monitored at-line via ATR-FTIR analysis of regularly sampled solutions. The nucleation and crystal growth of CBZ-SAC co-crystals were detected by a significant increase in absorption in the range of 2400-2260 cm(-1), associated with the formation of hydrogen bonds between the carbonyl group in CBZ and the N-H of SAC. When CBZ hydrates were formed as impurities during anti-solvent co-crystallization, the hydrogen bonding between methanol and water was reduced greatly, primarily due to the incorporation of water molecules into the CBZ crystal lattice. In conclusion, an anti-solvent approach can be used to produce highly pure CBZ-SAC co-crystal powders with a high solid yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Constrained Unfolding of a Helical Peptide: Implicit versus Explicit Solvents.

    Directory of Open Access Journals (Sweden)

    Hailey R Bureau

    Full Text Available Steered Molecular Dynamics (SMD has been seen to provide the potential of mean force (PMF along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD. Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.

  11. Molecular accessibility in solvent swelled coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1994-04-01

    The conversion of coal by an economically feasible catalytic method requires the catalyst to diffuse into the coal sample so that hydrogenation catalysis can occur from within as well as the normal surface catalysis. Thus an estimate of the size, shape, and reactivity, of the pores in the coal before and after the swelling with different solvents is needed so that an optimum sized catalyst will be used. This study characterizes the accessible area found in Argonne Premium Coal Samples (APCS) using a EPR spin probe technique. The properties deduced in this manner correlate well with the findings deduced from SANS, NMR, SEM, SAXS and light scattering measurements. The use of nitroxide spin probes with swelling solvents is a simple way in which to gain an understanding of the pore structure of coals, how it changes in the presence of swelling solvents and the chemistry that occurs at the pore wall. Hydrogen bonding sites occur primarily in low-rank coals and vary in reactive strength as rank is varied. Unswelled coals contain small, spherical pores which disappear when coal is swelled in the presence of polar solvents. Swelling studies of polystyrene-divinyl benzene copolymers implied that coal is polymeric, contains significant quantities of covalent cross-links and the covalent cross-link density increases with rank.

  12. Estimation of diffusion coefficients in bitumen solvent mixtures as derived from low field NMR spectra

    International Nuclear Information System (INIS)

    Wen, Y.; Bryan, J.; Kantzas, A.

    2005-01-01

    Use of solvents for the extraction of heavy oil and bitumen appears to be an increasingly feasible technology. Both vapour extraction and direct solvent injection are considered for conventional exploration and production schemes, while solvent dilution of bitumen is a standard technique in oil sands mining. Mass transfer between solvent and bitumen is a poorly understood process. In some cases, it is totally ignored compared to viscous force effects. In other cases, phenomenological estimations of diffusion and dispersion coefficients are used. Low field NMR has been used successfully in determining both solvent content and viscosity reduction in heavy oil and bitumen mixtures with various solvents. As a solvent comes into contact with a heavy oil or bitumen sample, the mobility of hydrogen bearing molecules of both solvent and oil changes. These changes are detectable through changes in the NMR relaxation characteristics of both solvent and oil. Relaxation changes can then be correlated to mass flux and concentration changes. Based on Fick's Second Law, a diffusion coefficient, which is independent of concentration, was calculated against three oils and six solvents. (author)

  13. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  14. Selection and design of solvents

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    and design of solvents will be presented together with application examples. The selection problem is defined as finding known chemicals that match the desired functions of a solvent for a specified set of applications. The design problem is defined as finding the molecular structure (or mixture of molecules....... With increasing interest on issues such as waste, sustainability, environmental impact and green chemistry, the selection and design of solvents have become important problems that need to be addressed during chemical product-process design and development. Systematic methods and tools suitable for selection......) that match the desired functions of a solvent for a specified set of applications. Use of organic chemicals and ionic liquids as solvents will be covered....

  15. Synthesis and investigation of solvent effects on the ultraviolet absorption spectra of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones

    Directory of Open Access Journals (Sweden)

    NATASA V. VALENTIC

    2001-08-01

    Full Text Available A number of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones from cyanoacetamide and the corresponding alkyl ethyl acetoacetates were synthesized according to modified literature procedures. The alkyl ethyl acetoacetates were obtained by the reaction of C-alkylation of ethyl acetoacetate. An investigation of the reaction conditions for the synthesis of 4-methyl-3-cyano-6-hydroxy-2-pyridone from cyanoacetamide and ethyl acetoacetate in eight different solvents was also performed. The ultraviolet absorption spectra of synthesized pyridones were measured in nine different solvents in the range 200–400 nm. The effects of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of linear solvation energy relationships using a general equation of the form n = n0 + sp* + aa + bb, where p* is a measure of the solvent polarity, a is the scale of the solvent hydrogen bond donor acidities and b is the scale of the solvent hydrogen bond acceptor basicities.

  16. A method for processing the critical zone of a carbonate stratum

    Energy Technology Data Exchange (ETDEWEB)

    Dytyuk, L T; Barsukov, A V; Bragina, O A; Kalabina, A V; Samakayev, R Kh

    1982-01-01

    A method is proposed for processing the critical zone of a carbonate stratum by pumping a carbonate rock solvent into it. It is distinguished by the fact that in order to increase the penetration depth of the solvent into the stratum by reducing the speed of interaction of the solvent, a solution of beta-phenoxyvinylphosphonic acid is pumped into the critical zone of the stratum.

  17. Solvent extraction of Zn and metals in Zn ores by nonphosphorous solvents

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Tostain, Jacqueline.

    1975-07-01

    This bibliography follows a first work on Zn solvent extraction by organo-phosphorous compounds. The other solvents used in Zn extraction, are studied: oxygenated nonphosphorous solvents (ketones, alcohols, carboxylic acids, sulfonates), nitrogenous solvents and hydrocarbons [fr

  18. Study on hydrogen transfer in coal liquefaction by tritium and carbon-14 tracers

    International Nuclear Information System (INIS)

    Nitoh, Osamu; Kabe, Toshiaki; Kabe, Yaeko.

    1985-01-01

    For the analysis of mechanism of hydrogenation and cracking of coal, the liquefaction of Taiheiyo coal using tritium labeled gaseous hydrogen and tritium labeled tetralin with small amounts of carbon-14 labeled naphthalene has been studied. Taiheiyo coal(25g) was thermally decomposed in tetralin or naphthalene solvent(75g) at 400--440 0 C under the initial hydrogen pressure of 5.9MPa for 30min with Ni-Mo-Al 2 O 3 catalyst(0--5g). The reaction mixture in an autoclave was separated by filtration, distillation and solvent extraction. Produced gas, oils and the solvent were analyzed by gas chromatography. The tritium and carbon-14 contents of separated reaction products were measured with a liquid scintilation counter to study the hydrogen transfer mechanism. The distribution of reaction products and the amount of hydrogen transfer from gas or solvent to the products were also determined. In hydrogen donor solvent such as tetralin, the coal liquefaction yield was independent from the catalyst, but the catalyst was effective in hydrocracking of preasphaltene and asphaltene. In naphthalene solvent, the coal liquefaction reaction hardly occured in the absence of the catalyst, because hydrogen transfer from both the solvent and gaseous hydrogen was scarce. Tritium distribution in the reaction products showed that complicated hydrogen exchange reactions between gaseous hydrogen, coal liquids and solvent came out by the presence of coal liquids and catalyst. The very small amounts of carbon-14 transferred to the liquefaction products showed that carbon exchange or transfer between solvent and coal did not take place. (author)

  19. Cesium Concentration in MCU Solvent

    International Nuclear Information System (INIS)

    Walker, D

    2006-01-01

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing ∼4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to ∼2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain ∼23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a ∼70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional

  20. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  1. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  2. Oxidative Desulfurization of Gasoline by Ionic Liquids Coupled with Extraction by Organic Solvents

    OpenAIRE

    Abro, Rashid; Gao, Shurong; Chen, Xiaochun; Yu, Guangren; Abdeltawab, Ahmed A.; Al-Deyab, Salem S.

    2016-01-01

    In this work, desulfurization of real fluidized catalytic cracking (FCC) gasoline was investigated in dual steps; first in oxidative desulfurization (ODS) using imidazolium and pyrrolidonium based Brønsted acidic ionic liquids (ILs) as solvent and catalyst and hydrogen peroxide as oxidant. In second step, extractive desulfurization took place using organic solvents of furfural, furfural alcohol and ethylene glycol. Variety of factors such as temperature, time, mass ratio of oil/ILs and regene...

  3. Processing of polymers using reactive solvents

    NARCIS (Netherlands)

    Lemstra, P.J.; Kurja, J.; Meijer, H.E.H.; Meijer, H.E.H.

    1997-01-01

    A review with many refs. on processing of polymers using reactive solvents including classification of synthetic polymers, guidelines for the selection of reactive solvents, basic aspects of processing, examples of intractable and tractable polymer/reactive solvent system

  4. Handbook of organic solvent properties

    CERN Document Server

    Smallwood, Ian

    2012-01-01

    The properties of 72 of the most commonly used solvents are given, tabulated in the most convenient way, making this book a joy for industrial chemists to use as a desk reference. The properties covered are those which answer the basic questions of: Will it do the job? Will it harm the user? Will it pollute the air? Is it easy to handle? Will it pollute the water? Can it be recovered or incinerated? These are all factors that need to be considered at the early stages of choosing a solvent for a new product or process.A collection of the physical properties of most commonly used solvents, their

  5. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-10-15

    Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal. 21 refs., 4 figs., 3 tabs.

  7. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    Energy Technology Data Exchange (ETDEWEB)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  8. Removing oxygen from a solvent extractant in an uranium recovery process

    International Nuclear Information System (INIS)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds

  9. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  10. Uranium refining by solvent extraction

    International Nuclear Information System (INIS)

    Kraikaew, J.

    1996-01-01

    The yellow cake refining was studied in both laboratory and semi-pilot scales. The process units mainly consist of dissolution and filtration, solvent extraction, and precipitation and filtration. Effect of flow ratio (organic flow rate/ aqueous flow rate) on working efficiencies of solvent extraction process was studied. Detailed studies were carried out on extraction, scrubbing and stripping processes. Purity of yellow cake product obtained is high as 90.32% U 3 O 8

  11. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  12. A Failure Locus for Hydrogen Assisted Failure

    DEFF Research Database (Denmark)

    Fuentes-Alonso, Sandra; Harris, Zach D.; Burns, James T.

    2017-01-01

    of a hydrogen-dependent traction separation law. A special control algorithm is employed to overcome numerical instabilities intrinsically associated with cohesive zone formulations. The fracture energy is degraded by means of an experimentally-motivated hydrogen degradation relation. Numerical results provide...... important insight into the failure process, enabling to identify critical values of hydrogen concentration and remote stresses that trigger cracking. The work builds upon previous works by the authors and brings important insight into the technologically important problem of hydrogen assisted cracking....

  13. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  14. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  15. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  16. Mixture for plugging absorption zones

    Energy Technology Data Exchange (ETDEWEB)

    Sitinkov, G V; Kovalenko, N G; Makarov, L V; Zinnatulchin, Ts Kh

    1981-01-17

    A mixture is proposed for plugging absorption zones. The mixture contains synthetic polymer and a solvent. So as to increase the penetrability of the mixture through a reduction in its viscosity and an increase in insulation properties, the compound contains either Capron or Neilon as the synthetic polyamide resin polmyer, and concentrated chloride as the solvent. The mixture is prepared in a special AzINMASh-30 unit (acid cart). After the mixture has been produced, it is injected into the borehole by means of an acid cart pump. So as to prevent coaggulation at the point when the mixture in injected into the stratum through tubes, the mixture is placed betwen chemically inert fluids, for example, a clay mortar. The inert and compressed fluids are injected by means of a cementing unit. The entire process of production and application of the mixture is simple and fully automated through the use of well-known equipment.

  17. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    Directory of Open Access Journals (Sweden)

    Jonathan Maiangwa

    2017-05-01

    Full Text Available The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent

  18. Sterically hindered solvent extractants

    International Nuclear Information System (INIS)

    Solka, J.L.; Reis, A.H. Jr.; Mason, G.W.; Lewey, S.M.; Peppard, D.F.

    1978-01-01

    Di-t-pentylphosphinic acid, [C(CH 3 ) 2 (CH 2 CH 3 )] 2 PO(OH), H[Dt-PeP], has been shown by single-crystal X-ray diffraction data to be dimeric in the solid state. H[Dt-PeP] crystallizes in the centro-symmetric orthorhombic space group, Cmca, with unit cell parameters, a = 17.694(7), b = 11.021(4), and c = 13.073(5) A, and Z = 8, indicating that the molecule must conform to a crystallographic mirror plane or 2-fold axis. A measured density of 1.088 g/cm 3 is in good agreement with a calculated value of 1.074 g/cm 3 for a unit cell volume of 2549.3(A) 3 and a formula weight of 206.25 g. A total of 646 three-dimensional X-ray data were collected on an automated XRD-490 G.E. diffractometer. The structure was solved using a combination of direct methods, Patterson, Fourier, and least-squares refinement techniques. Refinement of the data indicates that H[Dt-PeP] is dimeric, and contains a mirror plane in which the hydrogen-bonded, eight-membered ring lies. A structural disorder involving principally the ethylene carbon but affecting the methyl carbons as well precluded a precise determination of the carbon positions and severely reduced the precision of the final refinement. In the liquid-liquid extraction system consisting of a solution of H[Dt-PeP] in benzene vs an acidic aqueous chloride phase, the extraction of UO 2 2+ follows the stoichiometry: UO 2 sub(A) 2+ + 2(HY) 2 subO = UO 2 (HY 2 ) 2 sub(O) + 2Hsub(A) + where (HY) 2 represents the dimer of H[Dt-PeP] and A and O represent the mutually equilibrated aqueous and organic phases. The expression for the distribution ratio, k, for UO 2 2+ is given. (author)

  19. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  20. Solvent recyclability in a multistep direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Hetland, M.D.; Rindt, J.R. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken to produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.

  1. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  2. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    Directory of Open Access Journals (Sweden)

    Peter I. Nagy

    2014-10-01

    Full Text Available A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011 or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic in acid-base complexes have been surveyed.

  3. Multiple sclerosis and organic solvents

    DEFF Research Database (Denmark)

    Mortensen, J T; Brønnum-Hansen, Henrik; Rasmussen, K

    1998-01-01

    We investigated a possible causal relation between exposure to organic solvents in Danish workers (housepainters, typographers/printers, carpenters/cabinetmakers) and onset of multiple sclerosis. Data on men included in the Danish Multiple Sclerosis Register (3,241 men) were linked with data from......, and butchers. Over a follow-up period of 20 years, we observed no increase in the incidence of multiple sclerosis among men presumed to be exposed to organic solvents. It was not possible to obtain data on potential confounders, and the study design has some potential for selection bias. Nevertheless......, the study does not support existing hypotheses regarding an association between occupational exposure to organic solvents and multiple sclerosis....

  4. Indium recovery by solvent extraction

    International Nuclear Information System (INIS)

    Fortes, Marilia Camargos Botelho

    1999-04-01

    Indium has been recovered as a byproduct from residues generated from the sulfuric acid leaching circuits in mineral plants for zinc recovery. Once its recovery comes from the slags of other metals recovery, it is necessary to separate it from the other elements which usually are present in high concentrations. Many works have been approaching this separation and indicate the solvent extraction process as the main technique used. In Brazilian case, indium recovery depends on the knowledge of this technique and its development. This paper describes the solvent extraction knowledge for the indium recovery from aqueous solutions generated in mineral plants. The results for determination of the best experimental conditions to obtain a high indium concentration solution and minimum iron poisoning by solvent extraction with di (2-ethylhexyl)-phosphoric acid (D2EHPA) solubilized in isoparafin and exxsol has been presented. (author)

  5. Solvent isotope effects upon the thermodynamics of some transition-metal redox couples in aqueous media

    International Nuclear Information System (INIS)

    Weaver, M.J.; Nettles, S.M.

    1980-01-01

    The effects of substituting D 2 O for H 2 O as solvent upon the formal potentials of a number of transition-metal redox couples containing aquo, ammine, and simple chelating ligands have been investigated with the intention of evaluating the importance of specific solvation factors in the thermodynamics of such couples. The solvent liquid junction formed between H 2 O and D 2 O was shown to have a negligible effect on the measured formal potentials. Substantial solvent isotope effects were observed for a number of these systems, particularly for couples containing aquo ligands. The effects of separately deuterating the ligands and the surrounding solvent were investigated for some ammine couples. Possible origins of the solvent isotope effects are discussed in terms of changes in metal-ligand and ligand-solvent interactions. It is tentatively concluded that the latter influence provides the predominant contribution to the observed effects for aquo couples arising from increases in the extent of hydrogen bonding between the aquo ligands and surrounding solvent when D 2 O replaces H 2 O. The implications of these results in unraveling the solvent isotope effects upon the kinetics of simple redox reactions are also considered

  6. Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ...

    Indian Academy of Sciences (India)

    lar solvents as an effective single component dipo- lar liquid that is characterized ... and time (t) dependent solvation energy of mobile dipo- lar solute with density ..... Even though this way for modification of C is purely ad- hoc, the observation ...

  7. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  8. A class of fluorescent heterocyclic dyes revisited: photophysics, structure, and solvent effects

    DEFF Research Database (Denmark)

    Zhu, Lianjie; Jensen, Hans-Christian Becker; Henriksen, Lars

    2009-01-01

    The photophysical behavior of a series of 2-methylthio-5-(Z-carbonyl)thieno-[3,4-e]-3,4-dihydro-1,2,3-triazine-4-ones was investigated by absorption and emission spectroscopy in a range of solvents representing a systematic variation in polarity, polarizability, as well as hydrogen bond donating ...

  9. High Speed Liquid Chromatographic Determination of Total Aromatics in Enamel and Lacquer Solvents.

    Science.gov (United States)

    Esposito, G. G.

    Aromatic solvents possess the strongest solvency of the hydrogen types, but various air pollution control districts have established maximum limits on the amount that may be present in organic coatings. In the proposed procedure, high efficiency liquid chromatography is used to determine total aromatics in enamels and lacquer thinners, their…

  10. Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures

    International Nuclear Information System (INIS)

    Jozefowicz, Marek; Heldt, Janina R.

    2003-01-01

    Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures has been studied using steady-state spectroscopic measurements. This study concerns the solvent-induced shift of the absorption and fluorescence spectra of both molecules in two solvent mixtures, i.e., cyclohexane-tetrahydrofuran and cyclohexane-ethanol. The first system contains polar solute molecules, fluorenone and 4-hydroxyfluorenone, in a mixture of polar aprotic (tetrahydrofuran) and non-polar (cyclohexane) solvents. In the second solvents mixture, hydrogen bonding with solute molecules (ethanol) may occur. The results of spectroscopic measurements are analysed using theoretical models of Bakshiev, Mazurenko and Suppan which describe preferential solvation phenomena. In the case of cyclohexane-tetrahydrofuran mixtures, the deviation from linearity in the absorption and fluorescence solvatochromic shifts vs. the solution polarity is due to non-specific dipolar solvent-solute interactions. For cyclohexane-ethanol binary mixtures, both non-specific and specific (hydrogen bond and proton-relay tautomerization) interactions contribute to the observed solvatochromism

  11. Review on Carbon Dioxide Absorption by Choline Chloride/Urea Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Rima J. Isaifan

    2018-01-01

    Full Text Available In the recent past few years, deep eutectic solvents (DESs were developed sharing similar characteristics to ionic liquids but with more advantageous features related to preparation cost, environmental impact, and efficiency for gas separation processes. Amongst many combinations of DES solvents that have been prepared, reline (choline chloride as the hydrogen bond acceptor mixed with urea as the hydrogen bond donor was the first DES synthesized and is still the one with the lowest melting point. Choline chloride/urea DES has proven to be a promising solvent as an efficient medium for carbon dioxide capture when compared with amine alone or ionic liquids under the same conditions. This review sheds light on the preparation method, physical and chemical characteristics, and the CO2 absorption capacity of choline chloride/urea DES under different temperatures and pressures reported up to date.

  12. Hydrogen bond dynamics in bulk alcohols

    International Nuclear Information System (INIS)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups

  13. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  14. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  15. A relationship between solvent viscosity and biomolecule picosecond thermal fluctuations

    International Nuclear Information System (INIS)

    Cornicchi, E.; De Francesco, A.; Marconi, M.; Onori, G.; Paciaroni, A.

    2008-01-01

    Through elastic neutron scattering measurements, we investigated the picosecond dynamics of DNA in the hydrated powder state or embedded in glycerol glassy matrix from 20 K to 300 K. We calculated the relaxational contribution of the mean square displacements (MSD) of DNA hydrogen atoms. We found the existence of a linear relationship between the inverse of the biomolecule relaxational MSD and the logarithm of the bulk viscosity of the surrounding environment. From the comparison with the case of lysozyme in the same environments, for which the validity of the relationship was already verified, possible differences and analogies concerning the biomolecule-to-solvent dynamical coupling can be stressed

  16. Improved Purex solvent scrubbing methods

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-01-01

    Studies of hydrazine and hydroxylamine salts as solvent scrubbing agents that can be decomposed into gases are summarized. Results from testing of countercurrent scrubbers and solid sorber columns that produce lesser amounts of permanent salts are reported. The status of studies of the acid-degradation of paraffin diluent and the options for removal of long-chain organic acids is given

  17. Risk assessment for halogenated solvents

    International Nuclear Information System (INIS)

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area

  18. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    Science.gov (United States)

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  19. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  20. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    Science.gov (United States)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  1. Enhanced bioremediation as a cost effective approach following thermally enhanced soil vapour extraction for sites requiring remediation of chlorinated solvents - 16296

    International Nuclear Information System (INIS)

    Kozlowska, Anna-Maria; Kahlon, Manjit S.; Langford, Steve R.; Williams, Haydn G.

    2009-01-01

    Thermally enhanced bioremediation can be a more cost-effective alternative to full scale in-situ thermal treatment especially for sites contaminated with chlorinated solvents, where reductive dechlorination is or might be a dominant biological step. The effect of Thermally Enhanced Soil Vapour Extraction (TESVE) on indigenous microbial communities and the potential for subsequent biological polishing of chlorinated solvents was investigated in field trials at the Western Storage Area (WSA) - RSRL (formerly United Kingdom Atomic Energy Authority - UKAEA) Oxfordshire, UK. The WSA site had been contaminated with various chemicals including mineral oil, chloroform, trichloroethane (TCA), carbon tetrachloride and tetrachloroethene (PCE). The contamination had affected the unsaturated zone, groundwater in the chalk aquifer and was a continuing source of groundwater contamination below the WSA. During TESVE the target treatment zone was heated to above the boiling point of water increasing the degree of volatilization of contaminants of concern (CoC), which were mobilised and extracted in the vapour phase. A significant reduction of concentrations of chlorinated solvent in the unsaturated zone was achieved by the full-scale application of TESVE - In Situ Thermal Desorption (ISTD) technology. The rock mass temperature within target treatment zone remained in the range of 35 deg. - 44 deg. C, 6 months after cessation of heating. The concentration of chlorinated ethenes and other CoC were found to be significantly lower adjacent to the thermal treatment area and 1 to 2 orders of magnitude lower within the thermal treatment zone. Samples were collected within and outside the thermal treatment zone using BioTraps R (passive, in- situ microbial samplers) from which the numbers of specific bacteria were measured using quantitative polymerase chain reaction (qPCR) methods of analysis. High populations of reductive de-chlorinators such as Dechalococcoides spp. and Dehalobacter spp

  2. Theory of solvent effects on the hyperfine splitting constants in ESR spectra of free radicals

    International Nuclear Information System (INIS)

    Abe, T.; Tero-Kubota, S.; Ikegami, Y.

    1982-01-01

    An expression for the effects of solvation and hydrogen bonding on the hyperfine splitting constants of a free radical has been derived by obtaining π-electron spin densities of the radical in solution by perturbation theory. When no hydrogen bonding occurs between the radical and a solvent molecule, the splitting constant is approximately proportional to the Block and Walker parameter of theta(epsilon/sub r/) identical with 3 epsilon/sub r/ (ln epsilon/sub r/)/(epsilon/sub r/ ln epsilon/sub r/ - epsilon/sub r/ + 1) - 6/(ln epsilon/sub r/) - 2, where epsilon/sub r/ is the relative permittivity of the solvent. The expression is successfully applied to the di-tert-butyl nitroxide radical, the 1-methyl-4-(methoxycarbonyl)pyridinyl radical, and other free radicals. The effects of hydrogen bonding are discussed

  3. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1983-01-01

    Deuterium is concentrated in a hydrogen-water isotopic exchange process enhanced by the use of catalyst materials in cold and hot tower contacting zones. Water is employed in a closed liquid recirculation loop that includes the cold tower, in which deuterium is concentrated in the water, and the upper portion of the hot tower in which said deuterium is concentrated in the hydrogen stream. Feed water is fed to the lower portion of said hot tower for contact with the circulating hydrogen stream. The feed water does not contact the water in the closed loop. Catalyst employed in the cold tower and the upper portion of the hot tower, preferably higher quality material, is isolated from impurities in the feed water that contacts only the catalyst, preferably of lower quality, in the lower portion of the hot zone. The closed loop water passes from the cold zone to the dehumidification zone, and a portion of said water leaving the upper portion of the hot tower can be passed to the humidification zone and thereafter recycled to said closed loop. Deuterium concentration is enhanced in said catalytic hydrogen-water system while undue retarding of catalyst activity is avoided

  4. Hydrogen utilization potential in subsurface sediments

    Directory of Open Access Journals (Sweden)

    Rishi Ram Adhikari

    2016-01-01

    Full Text Available Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material.We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i increasing importance of fermentation in successively deeper biogeochemical zones and (ii adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  5. Iodine removing method in organic solvent

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Sakurai, Manabu

    1988-01-01

    Purpose: To effectively remove iodine in an organic solvent to thereby remove iodine in the solvent that can be re-used or put to purning treatment. Method: Organic solvent formed from wastes of nuclear facilities is mixed with basic lead acetate, or silica gel or activated carbon incorporated with such a compound to adsorb iodine in the organic solvent to the basic lead acetate. Then, iodine in the organic solvent is removed by separating to eliminate the basic lead acetate adsorbing iodine from the organic solvent or by passing the organic solvent through a tower or column charged or pre-coated with silica gel or activated carbon incorporated with lead acetate. By using basic lead acetate as the adsorbents, iodine can effective by adsorbed and eliminated. Thus, the possibility of circumstantial release of iodine can be reduced upon reusing or burning treatment of the organic solvent. (Kamimura, M.)

  6. Computer Aided Solvent Selection and Design Framework

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Conte, Elisa; Abildskov, Jens

    and computer-aided tools and methods for property prediction and computer-aided molecular design (CAMD) principles. This framework is applicable for solvent selection and design in product design as well as process design. The first module of the framework is dedicated to the solvent selection and design...... in terms of: physical and chemical properties (solvent-pure properties); Environment, Health and Safety (EHS) characteristic (solvent-EHS properties); operational properties (solvent–solute properties). 3. Performing the search. The search step consists of two stages. The first is a generation and property...... identification of solvent candidates using special software ProCAMD and ProPred, which are the implementations of computer-aided molecular techniques. The second consists of assigning the RS-indices following the reaction–solvent and then consulting the known solvent database and identifying the set of solvents...

  7. Canyon solvent cleaning with solid adsorbents

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands that hold fission products in the solvent. Treatment of solvent with a solid adsorbent removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  8. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    2003-12-11

    three to five times, leading to a more rapid clean-up of the DNAPL zone. The most favored electron donor to add is one which partitions well with the chlorinated solvent or can be concentrated near it. Unfortunately, an ideal electron donor, such as vegetable oil, is difficult to introduce and mix with DNAPL in the ground, doing this properly remains an engineering challenge. Numerical model studies have indicated that several factors may significantly influence the rate and extent of enhancement, including the inhibitory effects of PCE and cDCE, the level of ED concentration, DNAPL configuration, and competition for ED. Such factors need to be considered when contemplating engineered DNAPL bioremediation. Pseudomonas stuzeri KC is an organism that transforms CT to carbon dioxide and chloride without the formation of the hazardous intermediate, chloroform. This is accomplished by production and secretion of a molecule called PDTC. This study was direct ed towards determining how PDTC works. Cu (II) at a ratio of 1:1 Cu to PDTC was found to result in the most rapid CT transformation, confirming that the PDTC-Cu complex is both a reactant and a catalyst in CT transformation. CT degradation requires that the PDTC be in a reduced form, which is generated by contact with cell components. Fe(II) inhibits CT transformation by PDTC. Studies indicated that this inhibition is enhanced by some compound or factor in the supernatant with molecular weight greater than 10,000 Da. We have made progress in determining what this factor might be, but have not yet been able to identify it. In related studies, we found that CT transformation by another organism, Shewanella oneidensis MR1, also involves an excreted factor, but this factor is different from PDTC and results in chloroform transformation as an intermediate. Our studies have indicated that this factor is similar to vitamin K2, and we have also confirmed that vitamin K2 does transform C T into chloroform.

  9. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    International Nuclear Information System (INIS)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig S.

    2003-01-01

    three to five times, leading to a more rapid clean-up of the DNAPL zone. The most favored electron donor to add is one which partitions well with the chlorinated solvent or can be concentrated near it. Unfortunately, an ideal electron donor, such as vegetable oil, is difficult to introduce and mix with DNAPL in the ground, doing this properly remains an engineering challenge. Numerical model studies have indicated that several factors may significantly influence the rate and extent of enhancement, including the inhibitory effects of PCE and cDCE, the level of ED concentration, DNAPL configuration, and competition for ED. Such factors need to be considered when contemplating engineered DNAPL bioremediation. Pseudomonas stuzeri KC is an organism that transforms CT to carbon dioxide and chloride without the formation of the hazardous intermediate, chloroform. This is accomplished by production and secretion of a molecule called PDTC. This study was direct ed towards determining how PDTC works. Cu (II) at a ratio of 1:1 Cu to PDTC was found to result in the most rapid CT transformation, confirming that the PDTC-Cu complex is both a reactant and a catalyst in CT transformation. CT degradation requires that the PDTC be in a reduced form, which is generated by contact with cell components. Fe(II) inhibits CT transformation by PDTC. Studies indicated that this inhibition is enhanced by some compound or factor in the supernatant with molecular weight greater than 10,000 Da. We have made progress in determining what this factor might be, but have not yet been able to identify it. In related studies, we found that CT transformation by another organism, Shewanella oneidensis MR1, also involves an excreted factor, but this factor is different from PDTC and results in chloroform transformation as an intermediate. Our studies have indicated that this factor is similar to vitamin K2, and we have also confirmed that vitamin K2 does transform C T into chloroform

  10. Recent solvent extraction experience at Savannah River

    International Nuclear Information System (INIS)

    Gray, L.W.; Burney, G.A.; Gray, J.H.; Hodges, M.E.; Holt, D.L.; Macafee, I.M.; Reif, D.J.; Shook, H.E.

    1986-01-01

    Tributyl phosphate-based solvent extraction processes have been used at Savannah River for more than 30 years to separate and purify thorium, uranium, neptunium, plutonium, americium, and curium isotopes. This report summarizes the advancement of solvent extraction technology at Savannah River during the 1980's. Topics that are discussed include equipment improvements, solvent treatment, waste reduction, and an improved understanding of the various chemistries in the process streams entering, within, and leaving the solvent extraction processes

  11. Solvent extraction studies of RERTR silicide fuels

    International Nuclear Information System (INIS)

    Gouge, Anthony P.

    1983-01-01

    Uranium silicide fuels, which are candidate RERTR fuel compositions, may require special considerations in solvent extraction reprocessing. Since Savannah River Plant may be reprocessing RERTR fuels as early as 1985, studies have been conducted at Savannah River Laboratory to demonstrate the solvent extraction behavior of this fuel. Results of solvent extraction studies with both unirradiated and irradiated fuel are presented along with the preliminary RERTR solvent extraction reprocessing flow sheet for Savannah River Plant. (author)

  12. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    Directory of Open Access Journals (Sweden)

    Peng Sang

    2016-02-01

    Full Text Available To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein.

  13. Studies of initial stage in coal liquefaction. Effect of prethermal treatment condition with process solvent to increase oil yields; Ekika hanno no shoki katei ni kansuru kenkyu. Sekitan no maeshori joken to yozai koka

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, T.; Komatsu, N.; Kishimoto, M.; Okui, T.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. ltd., Tokyo (Japan)

    1996-10-28

    Process solvent was hydrogenated in the brown coal liquefaction, to investigate the influence of it on the prethermal treatment and liquefaction. Consequently, it was found that the n-hexane soluble (HS) yield was improved. In this study, capacity of hydrogen transfer from solvent during prethermal treatment and effects of catalyst were investigated. Since prethermal treatment in oil was effective for improving the oil yield in the presence of hydrogen/catalyst or high hydrogen-donor solvent, influence of hydrogen-donor performance of solvent or addition of catalyst on the hydrogenation behavior of coal and the characteristics of products during prethermal treatment were investigated in relation to successive liquefaction results. As a result, it was found that the increase of HS yield was due to the acceleration of conversion of THF-insoluble using high hydrogen-donor solvent and/or by adding catalyst. It was also found that the use of high hydrogen-donor solvent and highly active catalyst at the stage of prethermal treatment before the successive liquefaction was effective for improving the HS yield, i.e., liquefied oil yield. 2 refs., 5 figs., 1 tab.

  14. Restoring solvent for nuclear separation processes

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    Solvent extraction separation processes are used to recover usable nuclear materials from spent fuels. These processes involve the use of an extractant/diluent (solvent) for separation of the reusable actinides from unwanted fission products. The most widely used processes employ tributyl phosphate as an extractant diluted with a normal-paraffin hydrocarbon. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. In most processes, the solvent is recycled after cleaning. Solvent cleaning generally involves scrubbing with a sodium carbonate solution. Studies at the Savannah River Laboratory have shown that carbonate washing, although removing residual solvent activity, does not remove more solvent-soluble binding ligands (formed by solvent degradation), which hold fission products in the solvent. Treatment of the solvent with a solid adsorbent after carbonate washing removes binding ligands and significantly improves recycled solvent performance. Laboratory work to establish the advantage of adsorbent cleaning and the development of a full-scale adsorption process is described. The application of this process for cleaning the first cycle solvent of a Savannah River Plant production process is discussed

  15. Solvent Extraction of Furfural From Biomass

    Science.gov (United States)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  16. Adaptive Resolution Simulation of MARTINI Solvents

    NARCIS (Netherlands)

    Zavadlav, Julija; Melo, Manuel N.; Cunha, Ana V.; de Vries, Alex H.; Marrink, Siewert J.; Praprotnik, Matej

    We present adaptive resolution dynamics simulations of aqueous and apolar solvents coarse-grained molecular models that are compatible with the MARTINI force field. As representatives of both classes solvents we have chosen liquid water and butane, respectively, at ambient temperature. The solvent

  17. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  18. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection pr...

  19. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  20. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  1. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  2. Molecular accessibility in solvent swelled coals. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  3. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Kochly

    2016-01-01

    Full Text Available A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement, and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. 1H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet–Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion.

  4. Insecticide solvents: interference with insecticidal action.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans.

  5. Organic solvents in electromembrane extraction: recent insights

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2016-01-01

    the introduction. Under the influence of an electrical field, EME is based on electrokinetic migration of the analytes through a supported liquid membrane (SLM), which is an organic solvent immobilized in the pores of the polymeric membrane, and into the acceptor solution. Up to date, close to 150 research...... articles with focus on EME have been published. The current review summarizes the performance of EME with different organic solvents and discusses several criteria for efficient solvents in EME. In addition, the authors highlight their personal perspective about the most promising organic solvents for EME...... and have indicated that more fundamental work is required to investigate and discover new organic solvents for EME....

  6. Hydrogen-related stress corrosion cracking in line pipe steel

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    1997-01-01

    A correlation between hydrogen concentration (C0) and the critical stress intensity factor for propagation of hydrogen-related cracks has been established by fracture mechanical testing of CT-specimens for the heat affected zone of an X-70 pipeline steel. This has been compared with field...

  7. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  8. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  9. Noncovalent Hydrogen Isotope Effects

    Science.gov (United States)

    Buchachenko, A. L.; Breslavskaya, N. N.

    2018-02-01

    Zero-point energies (ZPE) and isotope effects, induced by intermolecular, noncovalent vibrations, are computed and tested by experimental data. The ZPE differences of H- and D-complexes of water with hydrogen, methane, and water molecules are about 100-300 cal/mol; they result to isotope effects IE of 1.20-1.70. Semi-ionic bonds between metal ions and water ligands in M(H2O) 6 2+ complexes are much stronger; their ZPEs are about 12-14 kcal/mol per molecule and result to IE of 1.9-2.1 at 300 K. Protonated (deuterated) water and biwater exhibit the largest ZPE differences and isotope effects; the latter are 25-28 and 12-13 for water and biwater, respectively. Noncovalent IEs contribute markedly into the experimentally measured effects and explain many anomalous and even magic properties of the effects, such as the dependence of IE on the solvents and on the presence of the third substances, enormously large isotope effects at the mild conditions, the difference between IEs measured in the reactions of individual protiated and deuterated compounds and those measured in their mixture. Noncovalent IEs are not negligible and should be taken into account to make correct and substantiated conclusions on the reaction mechanisms. The kinetic equations are derived for the total isotope effects, which include noncovalent IEs as additive factors.

  10. Advanced integrated solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A. [Argonne National Lab., IL (United States)

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  11. CALmsu contactor for solvent extraction with integrated flowrate meters

    International Nuclear Information System (INIS)

    Siddiqui, I.A.; Shah, B.V.; Theyyunni, T.K.

    1994-01-01

    Mixer-settlers are widely used as contactors in solvent extraction processes. In the nuclear industry, solvent extraction techniques are used for the separation and purification of a range of materials. A major difficulty is faced in the nuclear industry due to the constraints on the design of the equipment and its operation by the presence of radioactive materials in process solutions. The development of CALmsu contactor was necessitated by the requirements of the operating environment in radiochemical plants. This contactor is a mixer-settler designed to use a CALMIX (combined air lifting and mixing device) static mixer. The CALMIX comprises two air lifts which raise the liquid phases to a highly turbulent mixing zone situated above the lifts. Its principle and construction are simple, and it is compact in size. It is a passive device and needs no maintenance. It has proved to be efficient during extensive testing. The simple and efficient CALmsu contactor internals are specially engineered for use of CALMIX mixer. It has been extensively tested in pilot plant for extraction and stripping of uranium, recovery of uranium from thorium by THOREX process and for treatment of degraded solvents. A model for the design of CALmsu contactors has been evolved and based on this model a software for engineering design of CALMIX and CALmsu contactors of throughput between 50 and 3000 lph has been developed. (author)

  12. CALmsu contactor for solvent extraction with integrated flowrate meters

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, I A; Shah, B V; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Mixer-settlers are widely used as contactors in solvent extraction processes. In the nuclear industry, solvent extraction techniques are used for the separation and purification of a range of materials. A major difficulty is faced in the nuclear industry due to the constraints on the design of the equipment and its operation by the presence of radioactive materials in process solutions. The development of CALmsu contactor was necessitated by the requirements of the operating environment in radiochemical plants. This contactor is a mixer-settler designed to use a CALMIX (combined air lifting and mixing device) static mixer. The CALMIX comprises two air lifts which raise the liquid phases to a highly turbulent mixing zone situated above the lifts. Its principle and construction are simple, and it is compact in size. It is a passive device and needs no maintenance. It has proved to be efficient during extensive testing. The simple and efficient CALmsu contactor internals are specially engineered for use of CALMIX mixer. It has been extensively tested in pilot plant for extraction and stripping of uranium, recovery of uranium from thorium by THOREX process and for treatment of degraded solvents. A model for the design of CALmsu contactors has been evolved and based on this model a software for engineering design of CALMIX and CALmsu contactors of throughput between 50 and 3000 lph has been developed. (author). 8 refs., 1 fig.

  13. Microfluidic Extraction of Biomarkers using Water as Solvent

    Science.gov (United States)

    Amashukeli, Xenia; Manohara, Harish; Chattopadhyay, Goutam; Mehdi, Imran

    2009-01-01

    A proposed device, denoted a miniature microfluidic biomarker extractor (mu-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the mu-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 L) of water as a universal solvent. As a rule of thumb, in order to enable solvation and extraction of molecules, it is necessary to use solvents that have polarity sufficiently close to the polarity of the target molecules. The mu-EX would make selection of specific organic solvents unnecessary, because mu-EX would exploit a unique property of liquid water: the possibility of tuning its polarity to match the polarity of organic solvents appropriate for extraction of molecules of interest. The change of the permittivity of water would be achieved by exploiting interactions between the translational states of water molecules and an imposed electromagnetic field in the frequency range of 300 to 600 GHz. On a molecular level, these interactions would result in disruption of the three-dimensional hydrogen-bonding network among liquid-water molecules and subsequent solvation and hydrolysis of target molecules. The mu-EX is expected to be an efficient means of hydrolyzing chemical bonds in complex macromolecules as well and, thus, enabling analysis of the building blocks of these complex chemical systems. The mu-EX device would include a microfluidic channel, part of which would lie within a waveguide coupled to an electronically tuned source of broad-band electromagnetic radiation in the frequency range from 300 to 600 GHz (see figure). The part of the microfluidic channel lying in the waveguide would

  14. On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide

    Science.gov (United States)

    Dabkowska, Aleksandra P.; Lawrence, M. Jayne; McLain, Sylvia E.; Lorenz, Christian D.

    2013-01-01

    Molecular dynamics simulations are used to provide a detailed investigation of the hydrogen bond networks around the phosphatidylcholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine in pure water, 10 mol.% and 30 mol.% dimethylsulfoxide (DMSO)-water solutions. Specifically, it is observed that DMSO replaces those water molecules that are within the first solvation shell of the choline, phosphate and ester groups of the PC head group, but are not hydrogen-bonded to the group. The effect of the presence of DMSO on the hydrogen bond network around the PC head groups of the lipid changes with the concentration of DMSO. In comparison to the hydrogen bond network observed in the pure water system, the number of hydrogen-bonded chains of solvent molecules increases slightly for the 10 mol.% DMSO system, while, in the 30 mol.% DMSO system, the number of hydrogen-bonded chains of solvent molecules decreases.

  15. thermodynamic stability of hydrogen-bonded nanostructures: a calorimetric study

    NARCIS (Netherlands)

    ten Cate, M.G.J.; Huskens, Jurriaan; Crego Calama, Mercedes; Reinhoudt, David

    2004-01-01

    The self-assembly of hydrogen-bonded aggregates (rosettes) in solvent mixtures of different polarity has been studied by calorimetry. The C50 parameter, the concentration when 50 % of the components are incorporated in the assembly, is used to compare assemblies with different stoichiometry. C50 for

  16. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  17. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  18. Benzene adsorption and hydrogenation on Pd-Ru alloy by pulse chromatography

    International Nuclear Information System (INIS)

    Dobrokhotov, V.G.; Pavlova, L.F.; Gryaznov, V.M.

    1983-01-01

    Pulse chromatography has been applied to investigate benzene adsorption and hydrogenation on the Walls of a capillary of the Pd-6% Ru alloy at different hydrogen contents in the alloy and various methods of hydrogen supply: as a mixture with benzene vapors or by diffusion through the walls of the capillary. It is stated that reversible adsorption of benzene vapors on the Pd-6% Ru alloy at 303 K under the conditions of the β-phase existence in the alloy-hydrogen system does not change whereas in the region of the α-phase existence it slightly increases with a growth of hydrogen pressure. Strongly adsorbed benzene occupies approximately 7% of the surface. Only strongly adsorbed benzene is hydrogenated on the α-phase of the alloy-hydrogen system. Hydrogen supply to the hydrogenation zone by diffusion throUgh the alloy results in supersaturation of the surface active in the reaction of benzene hydrogenation with a chemisorbed hydrogen form

  19. Amperometric biosensor for the detection of hydrogen peroxide using catalase modified electrodes in polyacrylamide.

    Science.gov (United States)

    Varma, Shailly; Mattiasson, Bo

    2005-09-23

    A simple biosensor for the detection of hydrogen peroxide in organic solvents has been developed and coupled to a flow injection analysis (FIA) system. Catalase was entrapped in polyacrylamide gel and placed on the surface of platinum (working electrode) fixed in a Teflon holder with Ag-wire (auxiliary electrode), followed by addition of filter paper soaked in KCl. The entrapped catalase gel was held on the electrode using membranes. The effects of cellulose and polytetrafluroethylene (PTFE) membranes on the electrode response towards hydrogen peroxide have been studied. The modified electrode has been used to study the detection of hydrogen peroxide in solvents like water, dimethyl sulfoxide (DMSO), and 1,4-dioxane using amperometric techniques like cyclic voltammetry (CV) and FIA. The CV of modified catalase electrode showed a broad oxidation peak at -150 mV and a clear reduction peak at -212 mV in the presence of hydrogen peroxide. Comparison of CV with hydrogen peroxide in various solvents has been carried out. The electrode showed an irreversible kinetics with DMSO as the solvent. A flow cell has been designed in order to carry on FIA studies to obtain calibration plots for hydrogen peroxide with the modified electrode. The calibration plots in several solvents such as water, dimethyl sulfoxide, 1,4-dioxane have been obtained. The throughput of the enzyme electrode was 10 injections per hour. Due to the presence of membrane the response time of the electrode is concentration dependent.

  20. A Recyclable Nanoparticle-Supported Rhodium Catalyst for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Maria Michela Dell’Anna

    2010-05-01

    Full Text Available Catalytic hydrogenation under mild conditions of olefins, unsaturated aldeydes and ketones, nitriles and nitroarenes was investigated, using a supported rhodium complex obtained by copolymerization of Rh(cod(aaema [cod: 1,5-cyclooctadiene, aaema–: deprotonated form of 2-(acetoacetoxyethyl methacrylate] with acrylamides. In particular, the hydrogenation reaction of halonitroarenes was carried out under 20 bar hydrogen pressure with ethanol as solvent at room temperature, in order to minimize hydro-dehalogenation. The yields in haloanilines ranged from 85% (bromoaniline to 98% (chloroaniline.

  1. Destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; Dufour, L

    1929-01-21

    Oils of high boiling point, e.g. gas oil, lamp oil, schist oil, brown coal tar etc., are converted into motor benzine by heating them at 200 to 500/sup 0/C under pressure of 5 to 40 kilograms/cm/sup 2/ in the presence of ferrous chloride and gases such as hydrogen, or water gas, the desulfurization of the oils proceeding simultaneously. One kilogram of lamp oil and 100 g. ferrous chloride are heated in an autoclave in the presence of water gas under a pressure of 18 kg/cm/sup 2/ to 380 to 400/sup 0/C. The gaseous products are allowed to escape intermittently and are replaced by fresh water gas. A product distilling between 35 and 270/sup 0/C is obtained.

  2. Theory of polyelectrolytes in solvents.

    Science.gov (United States)

    Chitanvis, Shirish M

    2003-12-01

    Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.

  3. Improved performance of molecular bulk-heterojunction photovoltaic cells through predictable selection of solvent additives

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Kenneth R.; Wieruszewski, Patrick M.; Stalder, Romain; Mei, Jianguo [The George and Josephine Butler, Polymer Research Laboratory, Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL 32611-7200 (United States); Hartel, Michael J.; So, Franky [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Reynolds, John R. [The George and Josephine Butler, Polymer Research Laboratory, Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL 32611-7200 (United States); School of Chemistry and Biochemistry, School of Materials Science and Engineering and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2012-11-21

    Solvent additives provide an effective means to alter the morphology and thereby improve the performance of organic bulk-heterojunction photovoltaics, although guidelines for selecting an appropriate solvent additive remain relatively unclear. Here, a family of solvent additives spanning a wide range of Hansen solubility parameters is applied to a molecular bulk-heterojunction system consisting of an isoindigo and thiophene containing oligomer as the electron donor and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 61}BM) as the electron acceptor. Hansen solubility parameters are calculated using the group contribution method and compared with the measured solubilities for use as a screening method in solvent additive selection. The additives are shown to alter the morphologies in a semipredictable manner, with the poorer solvents generally resulting in decreased domain sizes, increased hole mobilities, and improved photovoltaic performance. The additives with larger hydrogen bonding parameters, namely triethylene glycol (TEG) and N-methyl-2-pyrrolidone (NMP), are demonstrated to increase the open circuit voltage by 0.2 V. Combining a solvent additive observed to increase short circuit current, poly(dimethylsiloxane), with TEG results in an increase in power conversion efficiency from 1.4 to 3.3%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    Science.gov (United States)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  5. Effect of electrostatic interaction on thermochemical behavior of 12-crown-4 ether in various polar solvents

    International Nuclear Information System (INIS)

    Barannikov, Vladimir P.; Guseynov, Sabir S.; Vyugin, Anatoliy I.

    2010-01-01

    The enthalpies of solution of 12-crown-4 ether have been measured in chloroform, ethyl acetate, acetone, pyridine, acetonitrile and methanol at 298.15 K. The values of enthalpy of solvation and solute-solvent interaction were determined from the obtained results and similar literature data for 12-crown-4 in solvents of various polarities. It was shown that the certain correlation is observed between the enthalpy of solute-solvent interaction and the squared dipole moment of the solvent molecules for solutions in tetrachlormethane, ethyl acetate, pyridine, acetonitrile, DMF, DMSO and propylene carbonate. This means that the electrostatic interaction of 12-crown-4 with polar solvent molecules contributes significantly to the exothermic effect of solvation. The understated negative value was found for the enthalpy of interaction of 12-crown-4 with acetone that can be connected with domination of low polar conformer of the crown ether in acetone medium. The most negative values of enthalpy of solvation are observed for solutions in chloroform and water because of hydrogen bonding between O-atoms of crown ether and molecules of the indicated solvents. This effect is not observed for methanol. The negative coefficient of pairwise solute-solute interaction in methanol indicates that the effects of solvophobic solute-solute interaction and H-bonding of the ether molecule with chain associates of methanol are not evinced in the thermochemical behavior of 12-crown-4.

  6. Zone separator for multiple zone vessels

    Science.gov (United States)

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  7. Sustainable development of gree solvent separation process

    OpenAIRE

    Lisickov, Kiril; Fidancevska, Emilija; Grujic, Radoslav; Srebrenkoska, Vineta; Kuvendziev, Stefan

    2011-01-01

    Solvents defi ne a major part of the environmental performance of processes in the chemical industry and impact on cost, safety and health issues. The idea of green solvents expresses the goal to minimize the environmental impact resulting from the use of solvents in chemical production. In spite of conventional separation methods, precise process green technologies are based on the application of modern processes and process equipment as well as control and management...

  8. Supercritical solvent extraction of oil sand bitumen

    Science.gov (United States)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  9. Canyon solvent cleaning with activated alumina

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    This paper presents recent work at SRL concerning the cleaning of solvent extraction solvent used at SRP. The paper explains why we undertook the work, and some laboratory studies on two approaches to solvent cleaning, namely extended carbonate washing and use of solid adsorbents. The paper then discusses scale-up of the preferred method and the results of the full-scale cleaning. 19 figs

  10. Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture

    Science.gov (United States)

    Mulia, Kamarza; Putri, Sylvania; Krisanti, Elsa; Nasruddin

    2017-03-01

    This study was conducted to determine the effectiveness of Natural Deep Eutectic Solvent (NADES), consisting of choline chloride and a hydrogen bonding donor (HBD) compound, in terms of carbon dioxide absorption. Solubility of carbon dioxide in NADES was found to be influenced HBD compound used and choline chloride to HBD ratio, carbon dioxide pressure, and contact time. HBD and choline/HBD ratios used were 1,2-propanediol (1:2), glycerol (1:2), and malic acid (1:1). The carbon dioxide absorption measurement was conducted using an apparatus that utilizes the volumetric method. Absorption curves were obtained up to pressures of 30 bar, showing a linear relationship between the amount absorbed and the final pressure of carbon dioxide. The choline and 1,2-propanediol eutectic mixture absorbs the highest amount of carbon dioxide, approaching 0.1 mole-fraction at 3.0 MPa and 50°C. We found that NADES ability to absorb carbon dioxide correlates with its polarity as tested using Nile Red as a solvatochromic probe.

  11. Solvent tailoring in coal liquefaction. Quarterly report, August 1982-November 1982

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A.R.; Guin, J.A.; Curtis, C.W.; Williams, D.C.

    1982-01-01

    A gradientless, high-pressure, continuous reaction system equipped with a carberry-type catalyst basket, was designed and built for hydrotreating liquid feedstocks. A model reaction system (naphthalene dissolved in a carrier vehicle) was used to verify the key results of the simulation study. Investigation of the sensitivity of hydrotreater performance to variations in the volatility of the feedstream were continued. Hydrogenation activity was found to be highly sensitive to differences in the volatility of feedstreams. As part of the sensitivity analyses with respect to feedstream volatility, the reactor was simulated to study the highly interactive effects of hydrogen flowrate, feed concentration, temperature, and pressure. With the use of heavy carrier solvents (e.g. hexadecane or white oil) naphthalene conversion was insensitive to increases in hydrogen flowrate (above the theoretical minimum) or increases in hydrogen flowrate (above the theoretical minimum) or increases in feed concentration. However, with the use of a light carrier solvent (e.g. toluene or cyclohexane) naphthalene conversion was sensitive to both increases in hydrogen flowrate and increases in feedstream concentration. The sensitivity of conversion to reactor pressure was found to be greater for the heavier feed system. It is thus worth noting that the failure to account for liquid vaporization effects could lead to false activation energies and frequency factors. A possible disadvantage to concentrating the reactants and increasing their residence time, with the use of a highly volatile vehicle medium, could be accelerated catalyst deactivation.

  12. Aminosilicone solvent recovery methods and systems

    Science.gov (United States)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  13. Molecular Thermodynamic Modeling of Mixed Solvent Solubility

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2010-01-01

    A method based on statistical mechanical fluctuation solution theory for composition derivatives of activity coefficients is employed for estimating dilute solubilities of 11 solid pharmaceutical solutes in nearly 70 mixed aqueous and nonaqueous solvent systems. The solvent mixtures range from...... nearly ideal to strongly nonideal. The database covers a temperature range from 293 to 323 K. Comparisons with available data and other existing solubility methods show that the method successfully describes a variety of observed mixed solvent solubility behaviors using solute−solvent parameters from...

  14. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  15. Solvent anode for plutonium purification

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Fife, K.W.; Christensen, D.C.

    1986-01-01

    The purpose of this study is to develop a technique to allow complete oxidation of plutonium from the anode during plutonium electrorefining. This will eliminate the generation of a ''spent'' anode heel which requires further treatment for recovery. Our approach is to employ a solvent metal in the anode to provide a liquid anode pool throughout electrorefining. We use molten salts and metals in ceramic crucibles at 700 0 C. Our goal is to produce plutonium metal at 99.9% purity with oxidation and transfer of more than 98% of the impure plutonium feed metal from the anode into the salt and product phases. We have met these criteria in experiments on the 100 to 1000 g scale. We plan to scale our operations to 4 kg of feed plutonium and to optimize the process parameters

  16. Quantitation of buried contamination by use of solvents. [degradation of silicone polymers by amine solvents

    Science.gov (United States)

    Pappas, S. P.; Hsiao, Y. C.; Hill, L. W.

    1973-01-01

    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided.

  17. Cleanup of 7.5% tributyl phosphate/n-paraffin solvent-extraction solvent

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-02-01

    The HM process at the Savannah River Plant uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials which influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands which hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM process first cycle solvent is discussed

  18. Implicit solvent simulations of DNA and DNA-protein complexes: Agreement with explicit solvent vs experiment

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Feig, M.

    2006-01-01

    Roč. 110, č. 34 (2006), s. 17240-17251 ISSN 1520-6106 Keywords : implicit solvent * explicit solvent * protein DNA complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  19. The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents

    International Nuclear Information System (INIS)

    Vieira, L.; Schennach, R.; Gollas, B.

    2016-01-01

    Highlights: • Mechanistic insight into zinc electrodeposition from deep eutectic solvents. • Overpotential for hydrogen evolution affects the electrodeposition of zinc. • Electrodeposited zinc forms surface alloys on Cu, Au, and Pt. • In situ PM-IRRAS of a ZnCl_2 containing deep eutectic solvent on glassy carbon. - Abstract: The voltammetric behaviour of the ZnCl_2 containing deep eutectic solvent choline chloride/ethylene glycol 1:2 was investigated on glassy carbon, stainless steel, Au, Pt, Cu, and Zn electrodes. While cyclic voltammetry on glassy carbon and stainless steel showed a cathodic peak for zinc electrodeposition only in the anodic reverse sweep, a cathodic peak was found also in the cathodic forward sweep on Au, Pt, Cu, and Zn. This behaviour is in agreement with the proposed mechanism of zinc deposition from an intermediate species Z, whose formation depends on the cathodic reduction potential of the solvent. The voltammetric reduction of the electrolyte involves hydrogen evolution and as a result the formation of Z and its reduction to zinc depend on the hydrogen overpotential for each electrode material. On Au, Pt, and Cu also the anodic stripping was different from that on glassy carbon and steel due to the formation of surface zinc alloys with the three former metals. The morphology of the zinc layers on Cu has been characterised by scanning electron microscopy and focussed ion beam. X-ray diffraction confirmed the presence of crystalline zinc and a Cu_4Zn phase. Spectroelectrochemistry by means of polarization modulation reflection-absorption spectroscopy (PM-IRRAS) on a glassy carbon electrode in the ZnCl_2 containing deep eutectic solvent showed characteristic potential dependent changes. The variation of band intensities at different applied potentials correlate with the voltammetry and suggest the formation of a compact blocking layer on the electrode surface, which inhibits the electrodeposition of zinc at sufficiently negative

  20. Hydrogen converters

    International Nuclear Information System (INIS)

    Mondino, Angel V.

    2003-01-01

    The National Atomic Energy Commission of Argentina developed a process of 99 Mo production from fission, based on irradiation of uranium aluminide targets with thermal neutrons in the RA-3 reactor of the Ezeiza Atomic Centre. These targets are afterwards dissolved in an alkaline solution, with the consequent liberation of hydrogen as the main gaseous residue. This work deals with the use of a first model of metallic converter and a later prototype of glass converter at laboratory scale, adjusted to the requirements and conditions of the specific redox process. Oxidized copper wires were used, which were reduced to elementary copper at 400 C degrees and then regenerated by oxidation with hot air. Details of the bed structure and the operation conditions are also provided. The equipment required for the assembling in cells is minimal and, taking into account the operation final temperature and the purge with nitrogen, the procedure is totally safe. Finally, the results are extrapolated for the design of a converter to be used in a hot cell. (author)

  1. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  2. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability.

    Science.gov (United States)

    Sigala, Paul A; Ruben, Eliza A; Liu, Corey W; Piccoli, Paula M B; Hohenstein, Edward G; Martínez, Todd J; Schultz, Arthur J; Herschlag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (ΔGf) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to ΔGf, but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H···O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite ΔGf differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond ΔGf are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  3. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  4. Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model.

    Science.gov (United States)

    Turan, Başak; Selçuki, Cenk

    2014-09-01

    Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.

  5. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  6. Into the depths of deep eutectic solvents

    NARCIS (Netherlands)

    Rodriguez, N.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Ionic liquids (ILs) have been successfully tested in a wide range of applications; however, their high price and complicated synthesis make them infeasible for large scale implementation. A decade ago, a new generation of solvents so called deep eutectic solvents (DESs) was reported for the first

  7. Remediation of Contaminated Soils by Solvent Flushing

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Jessup, Ron E.; Rao, P. Suresh C.; Wood, A. Lynn

    1994-01-01

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, and increases the

  8. Structuring of polymer solutions upon solvent evaporation

    NARCIS (Netherlands)

    Schaefer, C.; van der Schoot, P.|info:eu-repo/dai/nl/102140618; Michels, J. J.

    2015-01-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench

  9. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  10. Singlet oxygen reactivity in water-rich solvent mixtures

    Directory of Open Access Journals (Sweden)

    Cristina Sousa

    2008-01-01

    Full Text Available The 3-methylindole (3MI oxygenation sensitized by psoralen (PSO has been investigated in 100%, 20% and 5% O2-saturated water/dioxane (H2O/Dx mixtures. The lowering of the ¹O2* chemical rate when water (k chem∆3MI = 1.4 × 109 M-1 s-1 is replaced by deuterated water (k chem∆3MI = 1.9 × 108 M-1 s-1 suggests that hydrogen abstraction is involved in the rate determining step. A high dependence of the chemical rate constant on water concentration in H2O/Dx mixtures was found showing that water molecules are absolutely essential for the success of the 3MI substrate oxidation by ¹O2* in water-rich solvent mixtures.

  11. Comparison of Intermolecular Forces in Anhydrous Sorbitol and Solvent Cocrystals.

    Science.gov (United States)

    Dierks, Teresa M; Korter, Timothy M

    2017-08-03

    The hygroscopicity of solid sorbitol is important for its utilization as a sweetener in the pharmaceutical and food industries. The molecular foundations of sorbitol hydration characteristics are explored here using two solvated cocrystals, sorbitol-water and sorbitol-pyridine. In this work, solid-state density functional theory and terahertz time-domain spectroscopy were used to evaluate the relative stabilities of these cocrystals as compared to anhydrous sorbitol in terms of conformational and cohesive energies. The modification of the hydrogen-bonding network in crystalline sorbitol by solvent molecules gives new insight into the origins of the notable stability of sorbitol-water as compared to similar solids such as mannitol-water. In particular, the energy analysis reveals that the relative instability of the mannitol hydrate is based primarily in the lack of water-water interactions which provide considerable stabilization in the sorbitol-water crystal.

  12. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  13. Solvent free amorphisation for pediatric formulations (minitablets) using mesoporous silica

    DEFF Research Database (Denmark)

    Monsuur, Fred; Choudhari, Yogesh; Reddy, Upendra

    2016-01-01

    Introduction: Most silica based amorphisation strategies are using organic solvent loading methods. Towards pediatric formulations this is creating concerns. With this in mind the development of a dry amorphisation strategy was the focus of this study. The high internal surface area of mesoporous...... silica gel is densely crowded with silanol groups, which can provide hydrogen-bonding possibilities with a drug, potentially resulting in amorphisation. Purpose: Amorphous drugs provide an advantage in solubility; however, their low physical stability always remained concern. Additional there was a need...... to understand the mechanism and variables of dry amorphisation. Method: Ibuprofen (IBU) and Syloid® silica at different ratios were co-milled at variable milling times between 1 and 90 min. The interaction with; and amorphisation of IBU; on Syloid® silica was analyzed using SEM, FTIR, DSC and XRD. The co...

  14. Photoreactivity of biologically active compounds. XVII. Influence of solvent interactions on spectroscopic properties and photostability of primaquine.

    Science.gov (United States)

    Kristensen, S

    2005-06-01

    The influence of solvent interactions on absorption properties, fluorescence properties (emission spectra and quantum yields) and relative photochemical degradation rates of primaquine has been investigated, in order to evaluate photochemical reaction mechanisms and chemical properties of the compound. The first absorption band (n - pi*) of primaquine is only slightly dependent on properties of the solvent, which can be ascribed to a strong, intramolecular hydrogen bond between the quinoline N and amine group in the ground state (S0). Amphiprotic solvents with predominant acidic properties (water and methanol) will to some extent stabilize the molecule and initiate hypsochromic shifts of the absorption band by protic interactions, while the other solvents (amphiprotic, basic and neutral) influence the absorption spectrum by general solvent effects only. The excited singlet (S1*) state of primaquine interacts more efficiently with the surrounding solvents than the S0 state, as evaluated by the Stokes shifts. The pKa value of the quinoline N is likely to increase in the S1* state, which is important for the observed protic interactions with amphiprotic solvents of predominant acidity. Specific solvent effects are highly important for the efficiency of the fluorescence (fluorescence quantum yields; phi f). The fluorescence is quenched by amphiprotic solvents, likely due to a rupture of the intramolecular bond and protonation of the quinolone N, and enhanced by polar, non-protic (basic) solvents, probably by stabilization of the delta intramolecular hydrogen bond. The observed photochemical degradation rates of primaquine in amphiprotic media are positively correlated with phi f, indicating that the photochemical degradation of primaquine is dependent on intramolecular hydrogen bonding and non protonated lone-pair electrons at the quinoline N. The intramolecular ring-formation with a subsequent increased lipophilic character and (lack of) interactions with the

  15. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Michael T. Klein

    2000-01-01

    There are several aspects of the Direct Coal Liquefaction process which are not fully understood and which if better understood might lead to improved yields and conversions. Among these questions are the roles of the catalyst and the solvent. While the solvent is known to act by transfer of hydrogen atoms to the free radicals formed by thermal breakdown of the coal in an uncatalyzed system, in the presence of a solid catalyst as is now currently practiced, the yields and conversions are higher than in an uncatalyzed system. The role of the catalyst in this case is not completely understood. DOE has funded many projects to produce ultrafine and more active catalysts in the expectation that better contact between catalyst and coal might result. This approach has met with limited success probably because mass transfer between two solids in a fluid medium i.e. the catalyst and the coal, is very poor. It is to develop an understanding of the role of the catalyst and solvent in Direct Liquefaction that this project was initiated. Specifically it was of interest to know whether direct contact between the coal and the catalyst was important. By separating the solid catalyst in a stainless steel basket permeable to the solvent but not the coal in the liquefaction reactor, it was shown that the catalyst still maintains a catalytic effect on the liquefaction process. There is apparently transfer of hydrogen atoms from the catalyst through the basket wall to the coal via the solvent. Strong hydrogen donor solvents appear to be more effective in this respect than weak hydrogen donors. It therefore appears that intimate contact between catalyst and coal is not a requirement, and that the role of the catalyst may be to restore the hydrogen donor strength to the solvent as the reaction proceeds. A range of solvents of varying hydrogen donor strength was investigated. Because of the extensive use of thermogravimetric analysis in this laboratory in was noted that the peak

  16. Solvent distillations studies for a reprocessing plant

    International Nuclear Information System (INIS)

    Ginisty, C.; Guillaume, B.

    1989-01-01

    The substantial amounts of solvent used in large reprocessing plants are such that considerable care must be paid to solvent management to limit the production of organic wastes. The installation of intensive treatment by chemical regeneration serves to increase the service life of the solvent. General solvent management, combined with a distillation unit under reduced pressure also helps to recycle the two components of the solvent at a low activity level. Distillation also serves to remove the heavy degradation products that are generally responsible for poor hydraulic behavior and for the holdup of radioactive products such as plutonium, zirconium and ruthenium. From the safety standpoint, the flashpoint of the distilled diluent tends to rise. It can therefore be recycled without risk

  17. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  18. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  19. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981. Development of a solvolysis liquefaction plant (research on realization of solvolysis pitch hydrogenation equipment); Sekitan ekika gijutsu no kenkyu kaihatsu, solvolysis ekika plant no kaihatsu seika hokokusho. Solvolysis pitch no suiten sochika kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Among researches on solvolysis coal liquefaction technologies in the Sunshine Project in fiscal 1981, this paper describes the research on realization of solvolysis pitch hydrogenation equipment. In realizing a hydrogenation and decomposition reacting equipment for the second stage reaction process, it is important to stabilize operation by preventing coking and catalytic deterioration in elevated temperature zones. Therefore, a reactor of catalytic fluid system was assumed. Fiscal 1981 has fabricated and experimented a flow testing equipment for the purpose of acquiring data for realization of the equipment. A reactor that can deal with temperatures higher than 400 degrees C was installed in a 0.1-t/d continuously operating equipment. For selecting adequate operating conditions, an operation manual was prepared from the results of the cold model test and the fundamental test on hydrogenation and decomposition. The devices used were verified to have good operability. As the gasification rate increases when the reaction temperature is raised, resulting in reduced oil yield, it is necessary to keep the temperature lower than 430 degrees C. Increased pressure does not increase the oil yield as much as it increases hydrogen consumption, hence pressure of 200 kg/cm{sup 2} or lower is suitable. The secondary hydrogenation solvent requires no proton donation performance, and light fraction should be preferable. Catalysts were also discussed, and a clue to improvements was obtained. (NEDO)

  20. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  1. Natural deep eutectic solvents as new potential media for green technology

    International Nuclear Information System (INIS)

    Dai, Yuntao; Spronsen, Jaap van; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-01-01

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  2. Natural deep eutectic solvents as new potential media for green technology

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yuntao [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Spronsen, Jaap van; Witkamp, Geert-Jan [Laboratory for Process Equipment, Delft University of Technology, Delft (Netherlands); Verpoorte, Robert [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Choi, Young Hae, E-mail: y.choi@chem.leidenuniv.nl [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands)

    2013-03-05

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  3. PARIS II: Computer Aided Solvent Design for Pollution Prevention

    Science.gov (United States)

    This product is a summary of U.S. EPA researchers' work developing the solvent substitution software tool PARIS II (Program for Assisting the Replacement of Industrial Solvents, version 2.0). PARIS II finds less toxic solvents or solvent mixtures to replace more toxic solvents co...

  4. Possibilities of Production and Storage of Hydrogen in the Black Sea

    International Nuclear Information System (INIS)

    Mehmet Haklidir; Fusun Servin Tut; Sule Kapkin

    2006-01-01

    Black Sea, a highly-isolated inland sea, is the largest anoxic zone in the world. Since the hydrogen sulphide zone was discovered in early 19. century in the Black Sea, it has been adopted that there is no life in the depths of the Black Sea and there are only bacteria live in the hydrogen sulphide layer. High content of organic matter, with maximum processes of bacterial sulfate reduction is the major source of this hydrogen sulphide zone. Hydrogen sulphide is one of the most poisonous gases in the world but it has great economic value to obtain hydrogen via dissociated into hydrogen and sulphur. Thus the Black Sea is not only has a serious environmental contamination but also has potential source of hydrogen energy, if a decomposition process can be developed. In this study, the sources of hydrogen sulphide, environmental impact of hydrogen sulphide in the Black Sea, the available techniques of hydrogen production from hydrogen sulphide and the possibilities of hydrogen storage by the natural sources in the Black Sea have been investigated. (authors)

  5. The effect of varying the anion of an ionic liquid on the solvent effects on a nucleophilic aromatic substitution reaction.

    Science.gov (United States)

    Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B

    2018-05-09

    A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.

  6. Solvent effects on the photochemistry of dimethyl sulfoxide-Cl complexes studied by combined pulse radiolysis and laser flash photolysis

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Minegishi, Hideki; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Photolysis of complexes of dimethyl sulfoxide (DMSO) with chlorine atoms results in rapid and permanent photobleaching which may be due to intramolecular hydrogen abstraction. The effects of solvent polarity were examined in a wide variety of DMSO-carbon tetrachloride mixed solvents. The quantum yields of photobleaching decreased from 0.27 to 0.08 as the solvent polarity increased, while significant changes were observed in the low DMSO concentration range ( -3 ). This cannot be accounted for by simple solvent polarity effects. The effects of polar and nonpolar additives were also examined and it is concluded that the specific solvation effect of DMSO was the main cause of the significant change in quantum yields in the low concentration range of DMSO

  7. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  8. Combustion of a high-velocity hydrogen microjet effluxing in air

    Science.gov (United States)

    Kozlov, V. V.; Grek, G. R.; Korobeinichev, O. P.; Litvinenko, Yu. A.; Shmakov, A. G.

    2016-09-01

    This study is devoted to experimental investigation of hydrogen-combustion modes and the structure of a diffusion flame formed at a high-velocity efflux of hydrogen in air through round apertures of various diameters. The efflux-velocity range of the hydrogen jet and the diameters of nozzle apertures at which the flame is divided in two zones with laminar and turbulent flow are found. The zone with the laminar flow is a stabilizer of combustion of the flame as a whole, and in the zone with the turbulent flow the intense mixing of fuel with an oxidizer takes place. Combustion in these two zones can occur independently from each other, but the steadiest mode is observed only at the existence of the flame in the laminar-flow zone. The knowledge obtained makes it possible to understand more deeply the features of modes of microjet combustion of hydrogen promising for various combustion devices.

  9. Destruction of oxalate by reaction with hydrogen peroxide. [Hydrazine oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Mailen, J.C.; Tallent, O.K.; Arwood, P.C.

    1981-09-01

    The destruction of oxalate by oxidation to carbon dioxide using hydrogen peroxide was studied as an alternative method for the disposal of oxalate in connection with the possible use of an aqueous hydrazine oxalate solution as a scrubbing agent for solvent cleanup in processes for the recovery of uranium, plutonium, and thorium by solvent extraction. The rate of oxidation of oxalate by hydrogen peroxide in acid solution at the reflux temperature was adequate for process application; reaction half-times at 100/sup 0/C were less than one hour when the hydrogen peroxide concentration was greater than 0.5 M. The reaction was first order with respect to both the oxalate and hydrogen peroxide concentrations and had an activation energy of 58.7 kJ/g-mol. The rate increased with the hydrogen ion concentration as (H/sup +/)/sup 0/ /sup 3/ but was not significantly affected by the presence of 100 ppM of uranium or copper in solution. In the near-neutral hydrazine oxalate solutions, the reaction of either component with hydrogen peroxide was too slow for process application.

  10. A cohesive zone framework for environmentally assisted fatigue

    DEFF Research Database (Denmark)

    del Busto, Susana; Betegón, Covadonga; Martínez Pañeda, Emilio

    2017-01-01

    We present a compelling finite element framework to model hydrogen assisted fatigue by means of a hydrogen- and cycle-dependent cohesive zone formulation. The model builds upon: (i) appropriate environmental boundary conditions, (ii) a coupled mechanical and hydrogen diffusion response, driven...... by chemical potential gradients, (iii) a mechanical behavior characterized by finite deformation J2 plasticity, (iv) a phenomenological trapping model, (v) an irreversible cohesive zone formulation for fatigue, grounded on continuum damage mechanics, and (vi) a traction-separation law dependent on hydrogen...... coverage calculated from first principles. The computations show that the present scheme appropriately captures the main experimental trends; namely, the sensitivity of fatigue crack growth rates to the loading frequency and the environment. The role of yield strength, work hardening, and constraint...

  11. Effects of solvent and catalysts on the hydrogenolysis of alkylnaphthalenes; Alkylnaphthalene no suisoka bunkai ni okeru yobai to shokubai no koka

    Energy Technology Data Exchange (ETDEWEB)

    Futamura, S. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Catalytic effects of metal and carbon materials, which promote hydrogen transfer from hydrogen donor solvents, are investigated during hydrogenolysis of benzyl-1-methylnaphthalenes (BMN) selected as a hydrogen acceptor. For the isomer distribution of BMN after the reaction, almost the same molecular ratio before the reaction was obtained independent of the presence of catalysts. Selectivity of position during the addition of hydrogen atoms from tetralin was not found. For the reaction of BMN in tetralin, 1-methylnaphthalene and toluene were obtained as products, but the formation of benzylnaphthalene was not found. As for the nuclear hydride of BMN, the trace amount formation was confirmed by gas chromatography. For the hydrogen transfer from tetralin progressed catalytically, it was found that the nuclear of naphthalene can not be hydrogenated easily. This was considered to be due to the obstruction of hydrogen transfer from tetralin by the strong adsorption of BMN on the Ni surface. 1 ref., 1 fig., 2 tabs.

  12. Radiation and Heterogeneous processes and hydrogen safety of nuclear reactors

    International Nuclear Information System (INIS)

    Agayev, T.N.; Eyubov, K.T.; Aliyev, S.M.; Faradjzade, I.A.; Imanova, G.T.

    2017-01-01

    Due to the development of the quantitative and probabilistic analysis of safety of atomic power stations, interest in major accidents which can lead to overheating and fusion of an active zone has increased now. One of the major processes from the point of view of assessment of accident consequences with damage of an active zone is process of hydrogen formation. In the real work sources of hydrogen formation at various stages of accident with loss of the coolant of water-to-water power reactors are considered. The role of different processes of hydrogen formation depends on temperature, an amount of water and steam in an active zone and some other parameters. In this regard we have tried to formulate approach to creation of mathematical model of dynamics of hydrogen formation at accident in which the factors mentioned above would be considered. At the first stage of accident which lasted several tens of seconds depressurization of the first contour and loss of pressure took place. Water of the first contour under normal conditions of operation contained radiolytic hydrogen which concentration significantly exceeded its solubility with an atmospheric pressure. Therefore the dissolved hydrogen was emitted in a gas phase at a rupture of the pipeline. The second stage of accident is characterized by water vaporization from the first contour. During this period the amount of water in an active zone is constant and also water temperature in an active zone is constant. At last, at the third stage of accident there is water vaporization from an active zone also a warming up of the heat allocating assembly and constructional materials of an active zone.

  13. Evidence for the TICT mediated nonradiative deexcitation process for the excited coumarin-1 dye in high polarity protic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Kumbhakar, Manoj [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Nath, Sukhendu [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Pal, Haridas [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2005-08-29

    Photophysical properties of coumarin-1 (C1) dye in different protic solvents have been investigated using steady-state and time-resolved fluorescence measurements. Correlation of the Stokes' shifts ({delta}{nu}-bar ) with the solvent polarity ({delta}f) suggests the intramolecular charge transfer (ICT) character for the dye fluorescent state. Fluorescence quantum yields ({phi}{sub f}) and lifetimes ({tau}{sub f}) of the dye show an abrupt reduction in high polarity solvents having {delta}f >{approx}0.28. In these solvents {tau}{sub f} is seen to be strongly temperature dependent, though it is temperature independent in solvents with {delta}f <{approx}0.28. It is inferred that in high polarity protic solvents there is a participation of an additional nonradiative decay process via the involvement of twisted intramolecular charge transfer (TICT) state. Unlike present results, no involvement of TICT state was observed even in strongly polar aprotic solvent like acetonitrile. It is indicated that the intermolecular hydrogen bonding of the dye with protic solvents in addition with the solvent polarity helps in the stabilization of the TICT state for C1 dye. Unlike most TICT molecules, the activation barrier ({delta}E{sub a}) for the TICT mediated nonradiative process for C1 dye is seen to increase with solvent polarity. This is rationalized on the basis of the assumption that the TICT to ground state conversion is the activation-controlled rate-determining step for the present system than the usual ICT to TICT conversion as encountered for most other TICT molecules.

  14. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  15. Solvent Hold Tank Sample Results for MCU-16-934-935-936: June 2016 Monthly Sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-934-935-936), pulled on 07/01/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-934-935-936 indicated the Isopar™L concentration is above its nominal level (101%). The modifier (CS-7SB) and the TiDG concentrations are 8% and 29 % below their nominal concentrations. This analysis confirms the solvent may require the addition of TiDG, and possibly of modifier. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, up to 21.1 ± 4 micrograms of mercury per gram of solvent (or 17.5 μg/mL) was detected in this sample (as determined by the XRF method of undigested sample). The current gamma level (1.41E5 dpm/mL) confirmed that the gamma concentration has returned to previous levels (as observed in the late 2015 samples) where the process operated normally and as expected.

  16. Selection of solvents to strip toxic gases from emissions in industrial plants

    International Nuclear Information System (INIS)

    Castro, G. P.; Franco Junior, M.R.

    2000-01-01

    Acid gases such as carbon dioxide and hydrogen sulfide are normally found in some industrial emissions. Investigations of the solubility of them in some industrial solvents have been done. Currently, there is a limited amount of experimental data in the literature regarding the solubility of these compounds in some solvents. A model was developed for correlating the solubility of some hydrocarbons in water and other solvents. The new model will be presented in this work that is based on Henry's law for one phase and an equation of state for the other phase. It has been utilized for use with aqueous solutions of alkanolamines. Experimental equilibrium data have been compared to the ones from the literature. Some excellent results about prediction of solubility of hydrocarbons (methane, ethane and propane) in alkanolamines were published by Castro and Franco Jr, 2000. Now we are checking the model in predicting solubility data of some acid gases in streams which will be thrown in the atmosphere. One solvent or mixture of solvents should be selected to perform this process and in this way providing less air pollution. (author)

  17. Influence of the solvents on the γ-ray polymerization of acrylic acid. II

    International Nuclear Information System (INIS)

    Laborie, F.

    1977-01-01

    The presence of plurimolecular H-bonded aggregates in the acrylic acid allows the polymer to involve some stereoregular sequences. This effect is made easier when some polymer is already formed in the reacting medium: the aggregates are stabilized by hydrogen bonds with the polymer which gives rise to a matrix effect. Two groups of solvents have been characterized by examination of the monomer's association forms in solution. In a first group of solvents (methanol--dioxan--water), the aggregates are maintained and reinforced; in the second one, acrylic acid exists only as cyclic dimers (hydrocarbons--chlorinated solvents). The difference between the association forms of the monomer involves some important modifications on the kinetics of polymerization and the structure of the obtained polymers. In the solvents of the first group, the obtained polymers are crystallizable and may involve syndiotactic sequences, while in the presence of the solvents of the second group no crystallization or stereoregularity of the polymer can occur. A very close correlation is thus found between the aggregated structure of the monomer, the polymerization kinetics, and the structure of the polymers

  18. Solvent-Dependent Self-Assembly of 4,7-Dibromo-5,6-bis(octyloxybenzo[c][1,2,5] Thiadiazole on Graphite Surface by Scanning Tunneling Microscopy

    Directory of Open Access Journals (Sweden)

    Bao Zha

    2013-01-01

    Full Text Available Solvent effect on self-assembly of 4,7-dibromo-5,6-bis(octyloxybenzo[c][1,2,5] thiadiazole (DBT on a highly oriented graphite (HOPG surface was investigated by scanning tunneling microscopy (STM by using 1-phenyloctane, 1-octanoic acid, and 1-octanol as the solvents. Two different patterns were obtained in 1-phenyloctane and 1-octanoic acid, suggesting that the self-assembly of DBT was solvent dependent. At the 1-phenyloctane/HOPG interface, a linear structure was revealed due to the intermolecular halogen bonding. When 1-octanoic acid and 1-octanol are used as the solvents, the coadsorption of solvent molecules resulting from the hydrogen bonding between DBT and solvent made an important contribution to the formation of a lamellar structure. The results demonstrate that solvents could affect the molecular self-assembly according to the variational intermolecular interactions.

  19. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  20. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    Science.gov (United States)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  1. Ultrafast OH-stretching frequency shifts of hydrogen- bonded 2-naphthol photoacid-base complexes in solution

    Directory of Open Access Journals (Sweden)

    Batista VictorS.

    2013-03-01

    Full Text Available We characterize the transient solvent-dependent OH-stretching frequency shifts of photoacid 2-naphthol hydrogen-bonded with CH3CN in the S0- and S1-states using a combined experimental and theoretical approach, and disentangle specific hydrogen-bonding contributions from nonspecific dielectric response.

  2. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes

    DEFF Research Database (Denmark)

    He, Jian; Yang, Song; Riisager, Anders

    2018-01-01

    Magnetic nickel ferrite (NiFe2O4) nanoparticles were exploited as stable and easily separable heterogeneous catalysts for catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as both the hydrogen source and the solvent providing 94% product yield at 180 degrees C...

  3. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  4. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    Science.gov (United States)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be

  5. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  6. Characterization and antioxidant activity of bovine serum albumin and sulforaphane complex in different solvent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xueyan; Zhou, Rui; Jing, Hao, E-mail: h200521@cau.edu.cn

    2014-02-15

    Modes and influencing factors of bovine serum albumin (BSA) and sulforaphane (SFN) interaction will help us understand the interaction mechanisms and functional changes of bioactive small molecule and biomacromolecule. This study investigated interaction mechanisms of BSA and SFN and associated antioxidant activity in three solvent systems of deionized water (dH{sub 2}O), dimethyl sulfoxide (DMSO) and ethanol (EtOH), using Fourier transform infrared spectroscopy (FT-IR), fluorescence spectroscopy, synchronous fluorescence spectroscopy, DPPH and ABTS radical scavenging assays. The results revealed that SFN had ability to quench BSA's fluorescence in static modes, and to interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues, while the Trp residues were highly sensitive, which was demonstrated by fluorescence at 340 nm. Hydrophobic forces, hydrogen bonds and van der Waals interactions were all involved in BSA and SFN interaction, which were not significantly changed by three solvents. The binding constant values and binding site numbers were in a descending order of dH{sub 2}O>DMSO>EtOH. The values of free energy change were in a descending order of dH{sub 2}O>DMSO>EtOH, which indicated that the binding forces were in a descending order of dH{sub 2}O>DMSO>EtOH. There was no significant difference in antioxidant activity between SFN and BSA–SFN. Moreover, three solvents had not significant influence on antioxidant activity of SFN and BSA–SFN. -- Highlights: • We report interaction mechanisms of BSA and sulforaphane in three solvent systems. • We report antioxidant activity of BSA–sulforaphane complex in three solvent systems. • Decreasing the solvent polarity will decrease the binding of BSA and sulforaphane. • Three solvents had not influence on antioxidant activity of BSA–sulforaphane.

  7. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  8. Solvent Handbook Database System user's manual

    International Nuclear Information System (INIS)

    1993-03-01

    Industrial solvents and cleaners are used in maintenance facilities to remove wax, grease, oil, carbon, machining fluids, solder fluxes, mold release, and various other contaminants from parts, and to prepare the surface of various metals. However, because of growing environmental and worker-safety concerns, government regulations have already excluded the use of some chemicals and have restricted the use of halogenated hydrocarbons because they affect the ozone layer and may cause cancer. The Solvent Handbook Database System lets you view information on solvents and cleaners, including test results on cleaning performance, air emissions, recycling and recovery, corrosion, and non-metals compatibility. Company and product safety information is also available

  9. Modeling of Salt Solubilities in Mixed Solvents

    DEFF Research Database (Denmark)

    Chiavone-Filho, O.; Rasmussen, Peter

    2000-01-01

    A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...

  10. Solvent extraction in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eccles, H.; Naylor, A.

    1987-01-01

    Solvent extraction techniques have been used in the uranium nuclear fuel cycle in three main areas; concentration of uranium from ore leach liquor, purification of ore concentrates and fuel reprocessing. Solvent extraction has been extended to the removal of transuranic elements from active waste liquor, the recovery of uranium from natural sources and the recovery of noble metals from active waste liquor. Schemes are presented for solvent extraction of uranium using the Amex or Dapex process; spent fuel reprocessing and the Purex process. Recent and future developments of the techniques are outlined. (UK)

  11. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  12. Spreadsheet algorithm for stagewise solvent extraction

    International Nuclear Information System (INIS)

    Leonard, R.A.; Regalbuto, M.C.

    1994-01-01

    The material balance and equilibrium equations for solvent extraction processes have been combined with computer spreadsheets in a new way so that models for very complex multicomponent multistage operations can be setup and used easily. A part of the novelty is the way in which the problem is organized in the spreadsheet. In addition, to facilitate spreadsheet setup, a new calculational procedure has been developed. The resulting Spreadsheet Algorithm for Stagewise Solvent Extraction (SASSE) can be used with either IBM or Macintosh personal computers as a simple yet powerful tool for analyzing solvent extraction flowsheets. 22 refs., 4 figs., 2 tabs

  13. TRUEX process solvent cleanup with solid sorbents

    International Nuclear Information System (INIS)

    Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

    1989-01-01

    Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs

  14. Uranium refining by solvent extraction

    International Nuclear Information System (INIS)

    Kraikaew, J.; Srinuttrakul, W.

    2014-01-01

    The solvent extraction process to produce higher purity uranium from yellowcake was studied in laboratory scale. Yellowcake, which the uranium purity is around 70% and the main impurity is thorium, was obtained from monazite processing pilot plant of Rare Earth Research and Development Center in Thailand. For uranium re-extraction process, the extractant chosen was Tributylphosphate (TBP) in kerosene. It was found that the optimum concentration of TBP was 10% in kerosene and the optimum nitric acid concentration in uranyl nitrate feed solution was 4 N. An increase in concentrations of uranium and thorium in feed solution resulted in a decrease in the distribution of both components in the extractant. However, the distribution of uranium into the extractant was found to be more than that of thorium. The equilibration study of the extraction system, UO_2(NO_3)/4N HNO_3 – 10%TBP/Kerosene, was also investigated. Two extraction stages were calculated graphically from 100,000 ppm uranium concentration in feed solution input with 90% extraction efficiency and the flow ratio of aqueous phase to organic phase was adjusted to 1.0. For thorium impurity scrubbing process, 10% TBP in kerosene was loaded with uranium and minor thorium from uranyl nitrate solution prepared from yellowcake and was scrubbed with different low concentration nitric acid. The results showed that at nitric acid normality was lower than 1 N, uranium distributed well to aqueous phase. As conclusion, optimum nitric acid concentration for scrubbing process should not less than 1 N and diluted nitric acid or de-ionized water should be applied to strip uranium from organic phase in the final refining process. (author)

  15. The Relative Hydrogen Bonding Strength of Oxygen and Nitrogen Atoms as a Proton Acceptor

    International Nuclear Information System (INIS)

    Hyun, Jong Cheol; Lee, Ho Jin; Kim, Nak Kyoon; Choi, Young Sang; Park, Jeung Hee; Yoon, Chang Ju

    1999-01-01

    The thermodynamic parameters for the formation of the hydrogen bonding were widely used to understand the protein- ligand interaction. We have been interested in the hydrogen bonding strength of various proton acceptors toward the amide in a nonpolar solvent, This work is in the line of our interest. In drug design, the functional group is often replaced in order to enhance or reduce the binding affinity, which is usually determined by hydrogen bonding strength. Therefore, to understand this biochemical process the knowledge of relative hydrogen bonding strength is of importance.

  16. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  17. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    is mobile and can easily move through the material). Hydrogen diffuses ... The determination of the relationship of light-enhanced hydrogen motion to ... term is negligible, and using the thermodynamic relation given below f(c) = kBT .... device-applications problematic but the normal state can be recovered by a thermal an-.

  18. Process for enriching a hydrogen isotope bound in water and device for carrying out the process

    International Nuclear Information System (INIS)

    Drescher, H.P.

    1986-01-01

    In order to make compact construction in relatively small operating units with horizontally arranged separating columns possible for hydrogen isotope separation with different water phases moving in counterflow through a heating zone and a cooling zone, the water bound to a solid adsorption medium is moved in counterflow to a liquid phase of the water relative to the heating zone and the cooling zone. (orig.) [de

  19. [Chemical hazards when working with solvent glues].

    Science.gov (United States)

    Domański, Wojciech; Makles, Zbigniew

    2012-01-01

    Solvent glues are used in a wide variety of industries, e.g., textile, footwear and rubber. The problem of workers' exposure to solvent vapors is rarely tackled within the area of occupational safety and health in small and medium-sized enterprises. In order to assess exposure to solvents, organic solvents emitted by glues were identified in the samples of workplace air. The concentration of acetone, benzene, cyclohexane, ethylbenzene, n-hexane, methylcyclohexane, butyl acetate and toluene were determined. The obtained results evidenced the presence of cyclohexane, ethylbenzene, ethylcyclohexane, heptane, n-hexane, o-xylene, methylcyclohexane, methylcyclopentane, butyl acetate and toluene in workplace air. The concentration of those compounds in workplace air was low, usually below 0.15 of MAC. At some workstations the presence of benzene was also observed. Occupational risk was assessed at workstations where gluing took place. It showed that the risk at those workstations was medium or low.

  20. Organic solvents from sugar cane molasses

    Energy Technology Data Exchange (ETDEWEB)

    Oeser, H

    1970-01-01

    The production of organic solvents by fermentation of low priced cane molasses is discussed. Processes described and illustrated in detail include the production of acetone, butanol, ethanol, acetic acid, ethyl acetate and butyl acetate.

  1. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  2. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  3. Full scale solvent extraction remedial results

    International Nuclear Information System (INIS)

    Cash, A.B.

    1992-01-01

    Sevenson Extraction Technology, Inc. has completed the development of the Soil Restoration Unit (initially developed by Terra-Kleen Corporation), a mobile, totally enclosed solvent extraction treatment facility for the removal of organic contaminated media is greater by a closed loop, counter current process that recycles all solvents. The solvents used are selected for the individual site dependant upon the contaminants, such as PCB's, oil, etc. and the soil conditions. A mixture of up to fourteen non-toxic solvents can be used for complicated sites. The full scale unit has been used to treat one superfund site, the Traband Site in Tulsa, Oklahoma, and is currently treating another superfund site, the Pinette's Salvage Yard Site in Washburn, Maine. The full scale Soil Restoration Unit has also been used at a non-superfund site, as part of a TSCA Research and Development permit. The results from these sites will be discussed in brief herein, and in more detail in the full paper

  4. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    Unknown

    solvents to effect an asymmetric synthesis is an important step forward towards ... In continuation of our preliminary communication 2, we wish to ..... formation of chiral enamine 74 from the reaction of S-proline with pro-R carbonyl group.

  5. Green and Bio-Based Solvents.

    Science.gov (United States)

    Calvo-Flores, Francisco G; Monteagudo-Arrebola, María José; Dobado, José A; Isac-García, Joaquín

    2018-04-24

    Chemical reactions and many of the procedures of separation and purification employed in industry, research or chemistry teaching utilize solvents massively. In the last decades, with the birth of Green Chemistry, concerns about the employment of solvents and the effects on human health, as well as its environmental impacts and its dependence on non-renewable raw materials for manufacturing most of them, has drawn the attention of the scientific community. In this work, we review the concept of green solvent and the properties and characteristics to be considered green. Additionally, we discuss the different possible routes to prepare many solvents from biomass, as an alternative way to those methods currently applied in the petrochemical industry.

  6. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  7. Solvent exposure and related work practices amongst apprentice spray painters in automotive body repair workshops.

    Science.gov (United States)

    Winder, C; Turner, P J

    1992-08-01

    As part of a multidisciplinary study into the health effects of solvents, workplace assessments and airborne solvent vapour monitoring was conducted in 46 spray painting workshops in the Sydney metropolitan area. Breathing-zone samples were taken from 50 apprentices and 14 experienced spray painters. An interview schedule was developed to obtain information about the use of acrylic or two-pack paint systems, the use of engineering controls, the use of personal protective equipment and the availability of material safety data sheets. Contaminants typical of the chemical products used in this industry were encountered (aromatic hydrocarbons, C5-C7 aliphatic hydrocarbons, ketones, esters). The results of airborne solvent monitoring indicate a total solvent exposure in the range 1-99% of a combined Worksafe Australia exposure standard, with a mean of 19%. Solvent exposure was highest when spraying acrylic paint in the open workshop and lowest when spraying two pack paint in a spray booth. Much the same personal protective equipment was available in all workshops, but wide variation in its use was observed. Material safety data sheets were not observed in any of the workshops.

  8. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  9. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  10. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  11. A prediction study of a spark ignition supercharged hydrogen engine

    International Nuclear Information System (INIS)

    Al-Baghdadi, Maher A.R. Sadiq.; Al-Janabi, Haroun A.K. Shahad

    2003-01-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO x emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO x emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO x emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio

  12. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  13. An overview of industrial solvent use or is there life after chlorinated solvents?

    International Nuclear Information System (INIS)

    Green, B.

    1991-01-01

    Everyone using industrial chemicals has been affected by the fire- storm of new regulations governing solvent use. How will companies currently using hazardous solvents prepare for the changes ahead? What will the impact be on commonly used industrial solvents? What effect are environmental pressures having on solvent use and disposal? Are the responsible individuals in your company up-to-date on phase-out schedules? This paper is written for an audience of compliance coordinators, consultants, production engineers and corporate management. In it, the either addresses the above questions and discusses the specific products affected. The author reviews currently available alternatives to chlorinated and hazardous solvents and introduces a simple system for rating alternatives. The program also includes a discussion of solvent minimization programs and worker reeducation

  14. Occupational exposure to solvents and bladder cancer

    DEFF Research Database (Denmark)

    Hadkhale, Kishor; Martinsen, Jan Ivar; Weiderpass, Elisabete

    2017-01-01

    logistic regression model was used to estimate hazard ratios (HR) and their 95% confidence intervals (95% CI). Increased risks were observed for trichloroethylene (HR 1.23, 95% 95% CI 1.12-1.40), toluene (HR 1.20, 95% CI 1.00-1.38), benzene (HR 1.16, 95% CI 1.04-1.31), aromatic hydrocarbon solvents (HR 1...... of occupational exposure to trichloroethylene, perchloroethylene, aromatic hydrocarbon solvents, benzene and toluene and the risk of bladder cancer....

  15. Computer-Aided Solvent Screening for Biocatalysis

    DEFF Research Database (Denmark)

    Abildskov, Jens; Leeuwen, M.B. van; Boeriu, C.G.

    2013-01-01

    constrained properties related to chemical reaction equilibrium, substrate and product solubility, water solubility, boiling points, toxicity and others. Two examples are provided, covering the screening of solvents for lipase-catalyzed transesterification of octanol and inulin with vinyl laurate....... Esterification of acrylic acid with octanol is also addressed. Solvents are screened and candidates identified, confirming existing experimental results. Although the examples involve lipases, the method is quite general, so there seems to be no preclusion against application to other biocatalysts....

  16. Solvent management in a reprocessing plant

    International Nuclear Information System (INIS)

    Guillaume, B.; Germain, M.; Puyou, M.; Rouyer, H.

    1987-01-01

    Solvent management in large capacity reprocessing plant is studied to limit production of organic wastes. Chemical processing increases life time of solvent. Low pressure distillation allows the recycling of TBP and diluent at a low activity level. Besides heavy degradation products are eliminated. For the safety the flash point of distillated diluent increases slightly. Tests on an industrial scale started in 1985 and since more than 500 cubic meters were treated [fr

  17. An alternative process for hydrogenation of sunflower oil

    Directory of Open Access Journals (Sweden)

    Rosana de Cassia de Souza Schneider

    2010-12-01

    Full Text Available Classic methodologies for hydrogenation of vegetable oils have traditionally been carried out by nickel catalysts under high pressure of H2 and high temperature. An alternative method for hydrogenation of sunflower oil using limonene and palladium-on-carbon was investigated in this study. The use of limonene as a hydrogen donor solvent was proposed in order to avoid high temperature and high-pressure conditions. The catalytic transfer of hydrogenation was studied by using 0.5 to 2% of Pd as a catalyst, a limonene:oil ratio of 3:1, and reaction times from 0.5 to 2 hours. Under these conditions, high selectivities for oleic acid and low concentrations of stearic acid were obtained.

  18. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  19. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  20. Hydrogen-metal systems

    International Nuclear Information System (INIS)

    Wenzl, H.; Springer, T.

    1976-01-01

    A survey is given on the alloys of metal crystals with hydrogen. The system niobium-hydrogen and its properties are especially dealt with: diffusion and heat of solution of hydrogen in the host crystal, phase diagram, coherent and incoherent phase separation, application of metal-hydrogen systems in technology. Furthermore, examples from research work in IFF (Institut fuer Festkoerperforschung) of the Nuclear Research Plant, Juelich, in the field of metal-H systems are given in summary form. (GSC) [de

  1. Hazardous Solvent Substitution Data System reference manual

    International Nuclear Information System (INIS)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC reg-sign, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC reg-sign produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC reg-sign user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC reg-sign so the user may begin accessing the data contained in the HSSDS

  2. Solubility testing of actinides on breathing-zone and area air samples

    International Nuclear Information System (INIS)

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS reg-sign) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U 3 O 8 . Profiles developed for U 3 O 8 samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills

  3. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-10-08

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  4. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  5. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  6. Zoning Districts - Volusia County HUB Zones

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Historically Underutilized Business (HUB) Zones in Volusia County. Go to http://www.sba.gov/hubzone or contact the Department of Economic Development (386) 248-8048...

  7. Hawaii hydrogen energy economy: production and distribution of hydrogen and oxygen in the district of north Kohala, the Big Island of Hawaii: a global prototype

    International Nuclear Information System (INIS)

    Russel, G.

    1993-01-01

    This paper shows how a community which is totally oil dependent can be transformed into a hydrogen fuel based economy by using the concept of setting hydrogen zones, with the use of off-peak hydro-electrical power and renewable energies. An existing hydro-electric plant in Hawaii could serve as a local prototype. 2 figs

  8. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  9. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Ksenia V., E-mail: zaitseva.ksenia@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Solomonov, Boris N., E-mail: boris.solomonov@ksu.ru [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation)

    2012-05-10

    Highlights: Black-Right-Pointing-Pointer Solution enthalpies and activity coefficients of amines in methanol were measured. Black-Right-Pointing-Pointer Thermodynamic functions of H-bonding of amines with methanol were determined. Black-Right-Pointing-Pointer Specific interaction entropy of amines in methanol can be about zero or positive. Black-Right-Pointing-Pointer Cooperativity of H-bonds in methanol media is smaller than in water solutions. Black-Right-Pointing-Pointer A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes 'methanol-amine' determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent-solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  10. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  11. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  12. Explosive nucleosynthesis in zones rich in hydrogen and helium

    International Nuclear Information System (INIS)

    Toussaint, Jacques.

    1975-01-01

    Explosive nucleosynthesis was studied for element with masses lower than that of 35 Cl at temperatures between 10 8 to 10 9 K. It is shown that in some astrophysical objects (Novae, Supernovae or super-massive-stars) an explosive nucleosynthesis of isotopes such as 3 He, 7 Li, 25 Mg or 29 Si is possible. The existence of those elements in the interstellar medium would make possible, ultimately, the formation of heavier elements (iron peak and above) [fr

  13. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  14. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  15. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  16. Hydrogen and its challenges

    International Nuclear Information System (INIS)

    Schal, M.

    2008-01-01

    The future of hydrogen as a universal fuel is in jeopardy unless we are able to produce it through an environment-friendly way and at a competitive cost. Today almost all the hydrogen used in the world is produced by steam reforming of natural gas. This process releases 8 tonnes of CO 2 per tonne of hydrogen produced. Other means of producing hydrogen are the hydrolysis, the very high temperature hydrolysis, and the direct chemical dissociation of water, these processes are greener than steam reforming but less efficient. About one hundred buses in the world operate on fuel cells fed by hydrogen, but it appears that the first industrial use of hydrogen at great scale will be for the local generation of electricity. Globally the annual budget for research concerning hydrogen is 4.4 milliard (10 9 ) euros worldwide. (A.C.)

  17. 29 CFR 1915.32 - Toxic cleaning solvents.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Toxic cleaning solvents. 1915.32 Section 1915.32 Labor... Preservation § 1915.32 Toxic cleaning solvents. (a) When toxic solvents are used, the employer shall employ one or more of the following measures to safeguard the health of employees exposed to these solvents. (1...

  18. COMPUTER-AIDED SOLVENT DESIGN FOR POLLUTION PREVENTION: PARIS II

    Science.gov (United States)

    Solvent substitution is an attractive way of elijminating the use of regulated solvents because it usually does not require major chanages in existing processes, equipment or operations. Successful solvent substitution is dependent on finding solvents that are as effective or be...

  19. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  20. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.

    Science.gov (United States)

    Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L

    2014-07-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible. © 2013 Wiley Periodicals, Inc.

  1. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    Science.gov (United States)

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  2. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Process for synthesis of ammonia borane for bulk hydrogen storage

    Science.gov (United States)

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  4. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  5. Measurement and correlation of solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Jinxiu; Xie, Chuang; Yin, Qiuxiang; Tao, Linggang; Lv, Jun; Wang, Yongli; He, Fang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of cefmenoxime hydrochloride in pure and binary solvents was determined. • The experimental solubility data were correlated by thermodynamic models. • A model was employed to calculate the melting temperature of cefmenoxime hydrochloride. • Mixing thermodynamic properties of cefmenoxime hydrochloride were calculated. - Abstract: The solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures was measured at temperatures from (283.15 to 313.15) K by using the UV spectroscopic method. The results reveal that the solubility of cefmenoxime hydrochloride increases with increasing temperature in all solvent selected. The solubility of cefmenoxime hydrochloride reaches its maximum value when the mole fraction of isopropanol is 0.2 in the binary solvent mixtures of (isopropanol + water). The modified Apelblat equation and the NRTL model were successfully used to correlate the experimental solubility in pure solvents while the modified Apelblat equation, the CNIBS/R–K model and the Jouyban–Acree model were applied to correlate the solubility in binary solvent mixtures. In addition, the mixing thermodynamic properties of cefmenoxime hydrochloride in different solvents were also calculated based on the NRTL model and experimental solubility data.

  6. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    Science.gov (United States)

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  7. Solvent extraction studies in miniature centrifugal contactors

    International Nuclear Information System (INIS)

    Siczek, A.A.; Meisenhelder, J.H.; Bernstein, G.J.; Steindler, M.J.

    1980-01-01

    A miniature short-residence-time centrifugal solvent extraction contactor and an eight-stage laboratory minibank of centrifugal contactors were used for testing the possibility of utilizing kinetic effects for improving the separation of uranium from ruthenium and zirconium in the Purex process. Results of these tests showed that a small improvement found in ruthenium and zirconium decontamination in single-stage solvent extraction tests was lost in the multistage extraction tests- in fact, the extent of saturation of the solvent by uranium, rather than the stage residence time, controlled the extent of ruthenium and zirconium extraction. In applying the centrifugal contactor to the Purex process, the primary advantages would be less radiolytic damage to the solvent, high troughput, reduced solvent inventory, and rapid attainment of steady-state operating conditions. The multistage mini contactor was also tested to determine the suitability of short-residence-time contactors for use with the Civex and Thorex processes and was found to be compatible with the requirements of these processes. (orig.) [de

  8. Ions, solutes and solvents, oh my!

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Daniel David [Iowa State Univ., Ames, IA (United States)

    2009-08-01

    Modern methods in ab initio quantum mechanics have become efficient and accurate enough to study many gas-phase systems. However, chemists often work in the solution phase. The presence of solvent molecules has been shown to affect reaction mechanisms1, lower reaction energy barriers2, participate in energy transfer with the solute3 and change the physical properties of the solute4. These effects would be overlooked in simple gas phase calculations. Careful study of specific solvents and solutes must be done in order to fully understand the chemistry of the solution phase. Water is a key solvent in chemical and biological applications. The properties of an individual water molecule (a monomer) and the behavior of thousands of molecules (bulk solution) are well known for many solvents. Much is also understood about aqueous microsolvation (small clusters containing ten water molecules or fewer) and the solvation characteristics when bulk water is chosen to solvate a solute. However, much less is known about how these properties behave as the cluster size transitions from the microsolvated cluster size to the bulk. This thesis will focus on species solvated with water clusters that are large enough to exhibit the properties of the bulk but small enough to consist of fewer than one hundred solvent molecules. New methods to study such systems will also be presented.

  9. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    Science.gov (United States)

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the

  10. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  11. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1...

  12. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1...

  13. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction... formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent...

  14. Green solvents and technologies for oil extraction from oilseeds

    OpenAIRE

    Kumar, S. P. Jeevan; Prasad, S. Rajendra; Banerjee, Rintu; Agarwal, Dinesh K.; Kulkarni, Kalyani S.; Ramesh, K. V.

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n-hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330?kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to...

  15. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  16. Reaction mechanism of hydroxymaleimide induced by γ-irradiation in alcohol solvents

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2010-01-01

    Methanol and 2-propanol solutions of hydroxymaleimide were irradiated with γ-ray and mechanism of its γ-irradiation-induced reactions was investigated through final-product analyses using high performance liquid chromatography (HPLC) coupled with mass spectroscopy. An addition reaction of a solvent radical toward hydroxymaleimide was dominant among its oxygen-free γ-irradiation-induced reactions in its alcohol solutions while it is known that electron attachment toward hydroxyphthalimide or hydroxysuccinimide is dominant among their γ-irradiation-induced reactions. The radical adduct abstracts hydrogen from solvent molecule to re-produce a solvent radical. Therefore, the degradation efficiency of hydroxymaleimide was more than ten times larger than that of hydroxyphthalimide and hydroxysuccinimide. Dimer was also produced through electron attachment process in the solutions of hydroxymaleimide. In addition, it was found that the degradation efficiency increased with decrease in dose rate. An additional reaction of a solvent radical toward hydroxymaleimide competes with a radical-radical recombination. The latter was reduced, with the former leading to efficient degradation of hydroxymaleimide increased by irradiation at lower dose rate. On the contrary, the production yield of the adduct radical as well as the degradation efficiency of hydroxymaleimide was inhibited in the presence of oxygen.

  17. Reaction mechanism of hydroxymaleimide induced by γ-irradiation in alcohol solvents

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2010-01-01

    Methanol and 2-propanol solutions of hydroxymaleimide were irradiated with γ-ray and mechanism of its γ-irradiation-induced reactions was investigated through final-product analyses using high performance liquid chromatography (HPLC) coupled with mass spectroscopy. An addition reaction of a solvent radical toward hydroxymaleimide was dominant among its oxygen-free γ-irradiation-induced reactions in its alcohol solutions while it is known that electron attachment toward hydroxyphthalimide or hydroxysuccinimide is dominant among their γ-irradiation-induced reactions. The radical adduct abstracts hydrogen from solvent molecule to re-produce a solvent radical. Therefore, the degradation efficiency of hydroxymaleimide was more than 10 times larger than that of hydroxyphthalimide and hydroxysuccinimide. Dimer was also produced through electron attachment process in the solutions of hydroxymaleimide. In addition, it was found that the degradation efficiency increased with decreasing the dose rate. An addition reaction of a solvent radical toward hydroxymaleimide competes with a radical-radical recombination. The latter was reduced and the former leading to efficient degradation of hydroxymaleimide increased by irradiation at lower dose rate. On the contrary, the production yield of the adduct radical as well as the degradation efficiency of hydroxymaleimide was inhibited in the presence of oxygen.

  18. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents.

    Science.gov (United States)

    Tang, Xing; Zuo, Miao; Li, Zheng; Liu, Huai; Xiong, Caixia; Zeng, Xianhai; Sun, Yong; Hu, Lei; Liu, Shijie; Lei, Tingzhou; Lin, Lu

    2017-07-10

    The scientific community has been seeking cost-competitive and green solvents with good dissolving capacity for the valorization of lignocellulosic biomass. At this point, deep eutectic solvents (DESs) are currently emerging as a new class of promising solvents that are generally liquid eutectic mixtures formed by self-association (or hydrogen-bonding interaction) of two or three components. DESs are attractive solvents for the fractionation (or pretreatment) of lignocellulose and the valorization of lignin, owing to the high solubility of lignin in DESs. DESs are also employed as effective media for the modification of cellulose to afford functionalized cellulosic materials, such as cellulose nanocrystals. More interestingly, biomassderived carbohydrates, such as fructose, can be used as one of the constituents of DESs and then dehydrated to 5-hydroxymethylfurfural in high yield. In this review, a comprehensive summary of recent contribution of DESs to the processing of lignocellulosic biomass and its derivatives is provided. Moreover, further discussion about the challenges of the application of DESs in biomass processing is presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  20. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    Science.gov (United States)

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  1. KINETIC BEHAVIOR IN THE HYDROGENATION OF FURFURAL OVER IR CATALYSTS SUPPORTED ON TIO2

    OpenAIRE

    ROJAS, HUGO; MARTÍNEZ, JOSÉ J.; REYES, PATRICIO

    2010-01-01

    The kinetics of the liquid-phase hydrogenation of furfuraldehyde to furfuryl alcohol over Ir catalysts supported over TiO2 was studied in the temperature range of 323 to 373 K. The effect of furfural concentration, hydrogen pressure and the solvent effect were also studied. A high selectivity towards furfuryl alcohol was demonstrated. Initial rates describes the order global of the reaction. The experimental data could also be explained using the Langmuir-Hinshelwood model with of a single-si...

  2. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  3. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  4. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  5. High density hydrogen research

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1977-01-01

    The interest in the properties of very dense hydrogen is prompted by its abundance in Saturn and Jupiter and its importance in laser fusion studies. Furthermore, it has been proposed that the metallic form of hydrogen may be a superconductor at relatively high temperatures and/or exist in a metastable phase at ambient pressure. For ten years or more, laboratories have been developing the techniques to study hydrogen in the megabar region (1 megabar = 100 GPa). Three major approaches to study dense hydrogen experimentally have been used, static presses, shockwave compression, and magnetic compression. Static tchniques have crossed the megabar threshold in stiff materials but have not yet been convincingly successful in very compressible hydrogen. Single and double shockwave techniques have improved the precision of the pressure, volume, temperature Equation of State (EOS) of molecular hydrogen (deuterium) up to near 1 Mbar. Multiple shockwave and magnetic techniques have compressed hydrogen to several megabars and densities in the range of the metallic phase. The net result is that hydrogen becomes conducting at a pressure between 2 and 4 megabars. Hence, the possibility of making a significant amount of hydrogen into a metal in a static press remains a formidable challenge. The success of such experiments will hopefully answer the questions about hydrogen's metallic vs. conducting molecular phase, superconductivity, and metastability. 4 figures, 15 references

  6. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  7. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  8. Comprehensive Model for Enhanced Biodegradation of Chlorinated Solvents in Groundwater

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Robinson, C.; Barry, A. D.; Harkness, M.; Mack, E. E.; Dworatzek, S.

    2007-12-01

    SABRE (Source Area BioREmediation) is a public/private consortium whose charter is to de-termine if enhanced anaerobic bioremediation can result in effective treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research and development project is a field site in the United Kingdom containing TCE DNAPL. A comprehensive numerical model for simulating dehalogenation of chlorinated ethenes has been developed. The model considers the kinetic dissolution of DNAPL and nonaqueous organic amendments, bacterial growth and decay, and the interaction of biological and geochemical reactions that might influence biological activity. The model accounts for inhibitory effects of high chlorin-ated solvent concentrations as well as the link between fermentation and dehalogenation due to dynamic hydrogen concentration (the direct electron donor). In addition to the standard biodegradation pathways, sulphate reduction, mineral dissolution and precipitation kinetics are incorporated. These latter processes influence the soil buffering capacity and thus the net acidity generated. One-dimensional simulations were carried out to reproduce the data from columns packed with site soil and groundwater exhibiting both intermediate (250 mg/L) and near solubility (1100 mg/L) TCE concentrations. The modelling aims were to evaluate the key processes underpinning bioremediation success and provide a tool for investigating field sys-tem sensitivity to site data and design variables. This paper will present the model basis and validation and examine sensitivity to key processes including chlorinated ethene partitioning into soybean oil, sulphate reduction, and geochemical influences such as pH and the role of buffering in highly dechlorinating systems.

  9. ZoneLib

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik

    2006-01-01

    We present a dynamic model for climate in a livestock building divided into a number of zones, and a corresponding modular Simulink library (ZoneLib). While most literature in this area consider air flow as a control parameter we show how to model climate dynamics using actual control signals...... development of ZoneLib....

  10. Alternative Solvents through Green Chemistry Project

    Science.gov (United States)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  11. Hazardous Solvent Substitution Data System tutorial

    International Nuclear Information System (INIS)

    Twitchell, K.E.; Skinner, N.L.

    1993-07-01

    This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC reg-sign to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications

  12. Solvent Front Position Extraction procedure with thin-layer chromatography as a mode of multicomponent sample preparation for quantitative analysis by instrumental technique.

    Science.gov (United States)

    Klimek-Turek, A; Sikora, E; Dzido, T H

    2017-12-29

    A concept of using thin-layer chromatography to multicomponent sample preparation for quantitative determination of solutes followed by instrumental technique is presented. Thin-layer chromatography (TLC) is used to separate chosen substances and their internal standard from other components (matrix) and to form a single spot/zone containing them at the solvent front position. The location of the analytes and internal standard in the solvent front zone allows their easy extraction followed by quantitation by HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  14. Catalog solvent extraction: anticipate process adjustments

    International Nuclear Information System (INIS)

    Campbell, S.G.; Brass, E.A.; Brown, S.J.; Geeting, M.W.

    2008-01-01

    The Modular Caustic-Side Solvent Extraction Unit (MCU) utilizes commercially available centrifugal contactors to facilitate removal of radioactive cesium from highly alkaline salt solutions. During the fabrication of the contactor assembly, demonstrations revealed a higher propensity for foaming than was initially expected. A task team performed a series of single-phase experiments that revealed that the shape of the bottom vanes and the outer diameter of those vanes are key to the successful deployment of commercial contactors in the Caustic-Side Solvent Extraction Process. (authors)

  15. The probability of heterogeneous recombination of hydrogen atoms in low-temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Islyaikin, A.; Rybkin, V.; Svetsov, V.

    2000-01-01

    In the group of the optical methods, the investigations of the process of recombination of the hydrogen atoms were studied mainly by the jet procedure, based on the measurement of the dependence of the intensity of radiation of the discharge on the speed of flow of particles which makes it possible to obtain information on the processes of annihilation of active particles on the surface of the discharge device both in the zone of plasma at outside to the zone (in the post glow region). However, to realise this method, it is necessary to use higher linear speed of the flow of the particles and this creates additional technical difficulties. A similar disadvantage is not found in the calculation methods of technical application with special reference to the examination of the processes of heterogeneous recombination of the atoms in the low-temperature hydrogen plasma is the main task of this work

  16. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  17. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    . A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling......This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up...

  18. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  19. Hydrogen adsorption in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Senkovska, Irena; Kaskel, Stefan [Department of Inorganic Chemistry, Technical University, Dresden (Germany)

    2008-07-01

    Metal-Organic Frameworks (MOFs) have recently received considerable attention because of their high specific micropore volume and the ability to store gas molecules exceeding the storage capacity of traditional adsorbents. A variety of differences in the MOFs structures makes it difficult to analyze the influence of different factors on hydrogen uptake capabilities in MOFs. We have investigated the influence of the minor structural changes of the MOFs on their hydrogen storage capacity. The influence of the incorporated metal was shown for following isostructural compounds: Cu{sub 3}(BTC){sub 2} (BTC=1,3,5-benzenetricarboxylate) and Mo{sub 3}(BTC){sub 2}; Zn{sub 2}(BDC){sub 2}DABCO and Co{sub 2}(BDC){sub 2}DABCO (BDC=1,4-benzenedicarboxylate, DABCO=1,4-diazabicyclo[2.2.2]octane). Our research interest is directed also towards the discovery of new MOFs, as well as adjusting the pore dimensions of MOFs, using different building blocks, solvent and solvent mixtures, in order to improve gas uptake and adsorption properties. Magnesium-based MOFs were found with the same network topology, very small pore size and selective adsorption behaviour. They show a guest-induced reversible structure transformation due to the flexibility of the Mg{sub 3}-cluster and the organic linkers. This effect could be used for fitting the pore sizes and for the increase of gas sorption capability in Mg contained MOFs after all. The hydrogen adsorption was also studied in several Al-based IRMOFs.

  20. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  1. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  2. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  3. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  4. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  5. Fine element (F.E.) modelling of hydrogen migration and blister formation in PHWR coolant channels

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Sinha, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    The formation of a cold spot in pressure tube due to its contact with calandria tube of PHWR coolant results in the migration of Hydrogen in pressure tube towards contact zone from its surrounding material. A 3-D finite element code SPARSH is developed to model the hydrogen redistribution and consequent hydride blister formation due to thermal and Hydrogen concentration gradients. In the present paper, the details and performance of this code are presented. (author). 6 refs., 2 figs

  6. Adsorption decontamination of radioactive waste solvent by activated alumina and bauxites

    International Nuclear Information System (INIS)

    Hassan, N.M.; Marra, J.C.; Kyser, E.A.

    1994-01-01

    An adsorption process utilizing activated alumina and activated bauxite adsorbents was evaluated as a function of operating parameters for the removal of low level radioactive contaminants from organic waste solvent generated in the fuel reprocessing facilities and support operations at Savannah River Site. The waste solvent, 30% volume tributyl phosphate in n-paraffin diluent, was degraded due to hydrolysis and radiolysis reactions of tributyl phosphate and n-paraffin diluent, producing fission product binding degradation impurities. The process, which has the potential for removing these activity-binding degradation impurities from the solvent, was operated downflow through glass columns packed with activated alumina and activated bauxite adsorbents. Experimental breakthrough curves were obtained under various operating temperatures and flow rates. The results show that the adsorption capacity of the activated alumina was in the order 10 4 dpm/g and the capacity of the activated bauxite was 10 5 dpm/g. The performance of the adsorption process was evaluated in terms of dynamic parameters (i.e. adsorption capacity, the height and the efficiency of adsorption zone) in such a way as to maximize the adsorption capacity and to minimize the height of the mass transfer or adsorption zone

  7. Estimation of the nucleation kinetics for the anti-solvent crystallisation of paracetamol in methanol/water solutions

    Science.gov (United States)

    Ó'Ciardhá, Clifford T.; Frawley, Patrick J.; Mitchell, Niall A.

    2011-08-01

    In this work the primary nucleation kinetics have been estimated for the anti-solvent crystallisation of paracetamol in methanol-water solutions from metastable zone widths (MSZW) and induction times at 25 °C. Laser back-scattering via a focused beam reflectance Measurement (FBRM ®) is utilised to detect the onset of nucleation. The theoretical approach of Kubota was employed to estimate the nucleation kinetics, which accounts for the sensitivity of the nucleation detection technique. This approach is expanded in this work to analyse the induction time for an anti-solvent crystallisation process. Solvent composition is known to have a significant impact on the measured induction times and MSZW. The induction time in this paper was measured from 40% to 70% mass water and the MSZW is measured from 40% to 60% mass water. The primary focus of the paper was to gauge the extent of how solvent composition affects nucleation kinetics so that this effect may be incorporated into a population balance model. Furthermore, the effects of solvent composition on the estimated nucleation rates are investigated. The primary nucleation rates were found to decrease with dynamic solvent composition, with the extent of their reduction linked to the gradient of the solubility curve. Finally, both MSZW and induction time methods have been found to produce similar estimates for the nucleation parameters.

  8. A turn-on type stimuli-responsive fluorescent dye with specific solvent effect: Implication for a new prototype of paper using water as the ink

    Science.gov (United States)

    Hu, Xiaochen; Liu, Yang; Duan, Yuai; Han, Jingqi; Li, Zhongfeng; Han, Tianyu

    2017-09-01

    In this study, we reported the photoluminescence (PL) behaviour of a new intramolecular charge transfer (ICT) compound, ((E)-2-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzoic acid, (HABA), which shows ICT solvent effect in aprotic solvents as confirmed by absorption and emission spectra. While in protic solvents including water and ethanol, the charge transfer (CT) band significantly reduces. Remarkable fluorescence enhancement in the blue region was also observed for HABA in polar protic solvents. We described such phenomena as ;specific solvent effect;. It can be ascribed to the hydrogen bonding formation between HABA and protic solvents, which not only causes significant reduction in the rate of internal conversion but also elevates the energy gap. Density functional theory (DFT) calculations as well as the dynamics analysis were performed to further verify the existence of hydrogen bonding complexes. Stronger emission turn-on effect was observed on HABA solid film when it is treated with water and base solution. The stimuli-responsive fluorescence of HABA enables a new green printing technique that uses water/base as the ink, affording fluorescent handwritings highly distinct from the background. Thermoanalysis of the dye suggests the nice thermostability, which is highly desired for real-world printing in a wide temperature range.

  9. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  10. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  11. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  12. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  13. New hydrogen technologies

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H 2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H 2 . Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  14. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  15. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  16. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  17. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  18. NaHSO4-SiO2-Promoted Solvent-Free Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    K. Ravi Kumar

    2013-01-01

    Full Text Available An efficient protocol has been developed for the preparation of a library of benzoxazole, benzimidazole, and benzothiazole derivatives from reactions of acyl chlorides with o-substituted aminoaromatics in the presence of catalytic amount of silica-supported sodium hydrogen sulphate under solvent-free conditions. Simple workup procedure, high yield, easy availability, reusability, and use of ecofriendly catalyst are some of the striking features of the present protocol.

  19. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scherman, Carl [Savannah River Remediation, LLC., Aiken, SC (United States); Martin, David [Savannah River Remediation, LLC., Aiken, SC (United States); Suggs, Patricia [Savannah River Site (SRS), Aiken, SC (United States)

    2015-01-14

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

  20. Volumetric, acoustic and viscometric behaviour of dipotassium hydrogen phosphate and disodium hydrogen phosphate in aqueous solution of N-acetyl glycine at different temperatures

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Mittal, Heena

    2016-01-01

    Highlights: • Densities, speeds of sound, viscosities of phosphate salts in aqueous N-acetyl glycine. • Large values of partial molar volume for dipotassium hydrogen phosphate. • Partial molar volume of transfer are positive for phosphate salts. • Positive B-coefficient values indicate ion–solvent interactions. - Abstract: Densities, speeds of sound and viscosities of dipotassium hydrogen phosphate (DPHP) and disodium hydrogen phosphate (DSHP) in aqueous solutions of N-acetyl glycine (AcGly) are reported at different temperatures. Densities and speeds of sound have been used to calculate apparent molar volume, apparent molar isentropic compression, partial molar volume, partial molar isentropic compression, partial molar volume of transfer, partial molar isentropic compression of transfer and partial molar expansivity. Pair and triplet interaction coefficients have also been calculated. Experimental viscosities have been used to determine B-coefficients. Further pair and triplet interaction coefficients have also been calculated. The results are discussed in terms of solute–solvent interactions.

  1. Work zone safety analysis.

    Science.gov (United States)

    2013-11-01

    This report presents research performed analyzing crashes in work zones in the state of New Jersey so as to : identify critical areas in work zones susceptible to crashes and key factors that contribute to these crashes. A field : data collection on ...

  2. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  3. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    International Nuclear Information System (INIS)

    Clark, Sue B.

    2016-01-01

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  4. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Sue B. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2016-10-31

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  5. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  6. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    DEFF Research Database (Denmark)

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30....... The results from DSC, XRD showed that TEL was molecularly dispersed in the OSF-SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between TEL and its carriers. The OSF-SDs exhibited significantly higher AUC0-24 h and Cmax, but similar Tmax as compared...

  7. Determination of organic bases in non-aqueous solvents by catalytic thermometric titration.

    Science.gov (United States)

    Vajgand, V J; Kiss, T A; Gaál, F F; Zsigrai, I J

    1968-07-01

    Catalytic thermometric titrations have been developed for bases (brucine, diethylaniline, potassium acetate and triethylamine) in acetic acid by continuous and discontinuous addition of the standard solution and automatic temperature recording. The determination of weak bases, e.g., antipyrine, unsuccessful in acetic acid by catalytic thermometric titration, has been achieved by using nitromethane or acetic anhydride as solvent. Catalytic thermometric titrations were also performed by coulometric generation of hydrogen ions for the determination of micro amounts of weak bases in a mixture of acetic anhyride and acetic acid.

  8. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-08

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  9. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  10. Solvent-tolerant bacteria in biocatalysis.

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1998-01-01

    The toxicity of fine chemicals to the producer organism is a problem in several biotechnological production processes. In several instances, an organic phase can be used to extract the toxic product from the aqueous phase during a fermentation. With the discovery of solvent-tolerant bacteria, more

  11. SHORT COMMUNICATION SOLVENT FREE PREPARATION OF N ...

    African Journals Online (AJOL)

    Preferred Customer

    KEYWORDS: Solvent free, Maleanilic acids, Maleic anhydride, Aniline derivatives ... associated with the carboxylic group between 3275-2877 cm-1, the weak –NH .... Chemical shifts (σ/ppm) relative to TMS*. O-H N-H Ha. Hb. Hc. Hd. He. Hf.

  12. Simulation of solvent extraction in reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shekhar; Koganti, S B [Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-06-01

    A SIMulation Program for Solvent EXtraction (SIMPSEX) has been developed for simulation of PUREX process used in nuclear fuel reprocessing. This computer program is written in double precision structured FORTRAN77 and at present it is used in DOS environment on a PC386. There is a plan to port it to ND supermini computers in future. (author). 5 refs., 3 figs.

  13. Deposition dynamics of multi-solvent bioinks

    Science.gov (United States)

    Kaneelil, Paul; Pack, Min; Cui, Chunxiao; Han, Li-Hsin; Sun, Ying

    2017-11-01

    Inkjet printing cellular scaffolds using bioinks is gaining popularity due to the advancement of printing technology as well as the growing demands of regenerative medicine. Numerous studies have been conducted on printing scaffolds of biomimetic structures that support the cell production of human tissues. However, the underlying physics of the deposition dynamics of bioinks remains elusive. Of particular interest is the unclear deposition dynamics of multi-solvent bioinks, which is often used to tune the micro-architecture formation. Here we systematically studied the effects of jetting frequency, solvent properties, substrate wettability, and temperature on the three-dimensional deposition patterns of bioinks made of Methacrylated Gelatin and Carboxylated Gelatin. The microflows inside the inkjet-printed picolitre drops were visualized using fluorescence tracer particles to decipher the complex processes of multi-solvent evaporation and solute self-assembly. The evolution of droplet shape was observed using interferometry. With the integrated techniques, the interplay of solvent evaporation, biopolymer deposition, and multi-drop interactions were directly observed for various ink and substrate properties, and printing conditions. Such knowledge enables the design and fabrication of a variety of tissue engineering scaffolds for potential use in regenerative medicine.

  14. Double Solvent for Extracting Rare Earth Concentrate

    International Nuclear Information System (INIS)

    Bintarti, AN; Bambang EHB

    2007-01-01

    An extraction process to rare earth concentrate which contain elements were yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm), gadolinium (Gd) and dysprosium (Dy) which were dissolved in to nitric acid has been done. The experiment of the extraction by double solvent in batch to mix 10 ml of the feed with 10 ml solvent contained the pair of solvent was TBP and TOA, D2EHPA and TOA, TBP and D2EHPA in cyclohexane as tinner. It was selected a right pairs of solvent for doing variation such as the acidity of the feed from 2 - 6 M and the time of stirring from 5 - 25 minutes gave the good relatively extraction condition to Dy element such as using 10 % volume of TOA in D2EHPA and cyclohexane, the acidity of the feed 3 M and the time stirring 15 minutes produced coefficient distribution to dysprosium = 0.586 and separation factor Dy-Ce = ∼ (unlimited); Dy-Nd = 4.651. (author)

  15. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.; Koch, Donald L.

    2012-01-01

    as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent

  16. Solvent (acetone-butanol: ab) production

    Science.gov (United States)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  17. Expanding solvent SAGD in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Govind, P.A. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Das, S.; Wheeler, T.J. [Society of Petroleum Engineers, Richardson, TX (United States)]|[ConocoPhillips Co., Houston, TX (United States); Srinivasan, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas Univ., Austin, TX (United States)

    2008-10-15

    Steam assisted gravity drainage (SAGD) projects have proven effective for the recovery of oil and bitumen. Expanding solvent (ES) SAGD pilot projects have also demonstrated positive results of improved performance. This paper presented the results of a simulation study that investigated several important factors of the ES-SAGD process, including solvent types; concentration; operating pressure; and injection strategy. The objectives of the study were to examine the effectiveness of the ES-SAGD process in terms of production acceleration and energy requirements; to optimize solvent selection; to understand the effect of dilation in unconsolidated oil sands and the directional impact on reservoir parameters and oil production rate in ES-SAGD; and to understand the impact of operating conditions such as pressure, solvent concentration, circulation preheating period and the role of conduction heating and grid size in this process. The advantages of ES-SAGD over SAGD were also outlined. The paper presented results of sensitivity studies that were conducted on these four factors. Conclusions and recommendations for operating strategy were also offered. It was concluded that dilation is an important factor for SAGD performance at high operating pressure. 8 refs., 15 figs.

  18. Processing of thermoplastic polymers using reactive solvents

    NARCIS (Netherlands)

    Meijer, H.E.H.; Venderbosch, R.W.; Goossens, J.G.P.; Lemstra, P.J.

    1996-01-01

    The use of reactive solvents offers an interesting and flexible route to extent the processing characteristics of thermoplastic polymers beyond their existing limits. This holds for both intractable and tractable polymers. The first mainly applies for amorphous high-Tg polymers where processing may

  19. Mixed Solvent Reactive Recrystallization of Sodium Carbonate

    NARCIS (Netherlands)

    Gaertner, R.S.

    2005-01-01

    Investigation of the reactive recrystallization of trona (sodium sesquicarbonate) and sodium bicarbonate to sodium carbonate (soda) in a mixed solvent led to the design of several alternative, less energy consumptive, economically very attractive process routes for the production of soda from all

  20. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    International Nuclear Information System (INIS)

    Zaitseva, Ksenia V.; Varfolomeev, Mikhail A.; Solomonov, Boris N.

    2012-01-01

    Highlights: ► Solution enthalpies and activity coefficients of amines in methanol were measured. ► Thermodynamic functions of H-bonding of amines with methanol were determined. ► Specific interaction entropy of amines in methanol can be about zero or positive. ► Cooperativity of H-bonds in methanol media is smaller than in water solutions. ► A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes “methanol–amine” determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent–solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  1. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  2. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  3. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  4. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  5. An Experimental Study of Unconfined Hydrogen/Oxygen and Hydrogen/Air Explosions

    Science.gov (United States)

    Richardson, Erin; Skinner, Troy; Blackwood, James; Hays, Michael; Bangham, Mike; Jackson, Austin

    2014-01-01

    Development tests are being conducted to characterize unconfined Hydrogen/air and Hydrogen/Oxygen blast characteristics. Most of the existing experiments for these types of explosions address contained explosions, like shock tubes. Therefore, the Hydrogen Unconfined Combustion Test Apparatus (HUCTA) has been developed as a gaseous combustion test device for determining the relationship between overpressure, impulse, and flame speed at various mixture ratios for unconfined reactions of hydrogen/oxygen and hydrogen/air. The system consists of a central platform plumbed to inject and mix component gasses into an attached translucent bag or balloon while monitoring hydrogen concentration. All tests are ignited with a spark with plans to introduce higher energy ignition sources in the future. Surrounding the platform are 9 blast pressure "Pencil" probes. Two high-speed cameras are used to observe flame speed within the combustion zone. The entire system is raised approx. 6 feet off the ground to remove any ground reflection from the measurements. As of this writing greater than 175 tests have been performed and include Design of Experiments test sets. Many of these early tests have used bags or balloons between approx. 340L and approx. 1850L to quantify the effect of gaseous mixture ratio on the properties of interest. All data acquisition is synchronized between the high-speed cameras, the probes, and the ignition system to observe flame and shock propagation. Successful attempts have been made to couple the pressure profile with the progress of the flame front within the combustion zone by placing a probe within the bag. Overpressure and impulse data obtained from these tests are used to anchor engineering analysis tools, CFD models and in the development of blast and fragment acceleration models.

  6. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    Science.gov (United States)

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  7. Diels-Alder reactions in water : Enforced hydrophobic interaction and hydrogen bonding

    NARCIS (Netherlands)

    Engberts, Jan B.F.N.

    1995-01-01

    Second-order rate constants have been measured for the Diels-Alder (DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and hydrogen-bond acceptor capacity in water, in a series of organic solvents and in alcohol-water mixtures. The intramolecular DA reaction of

  8. DIELS-ALDER REACTIONS IN WATER - ENFORCED HYDROPHOBIC INTERACTION AND HYDROGEN-BONDING

    NARCIS (Netherlands)

    Engberts, J.B.F.N.

    Second-order rate constants have been measured for the Diels-Alder (DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and hydrogen-bond acceptor capacity in water, in a series of organic solvents and in alcohol-water mixtures. The intramolecular DA reaction of

  9. Simultaneous hydrolysis and hydrogenation of cellobiose to sorbitol in molten salt hydrate media

    NARCIS (Netherlands)

    Li, J.; Soares, H.S.M.P.; Moulijn, J.A.; Makkee, M.

    2013-01-01

    The hydrolysis and hydrogenation of cellobiose (4-O-b-D-glucopyranosyl-D-glucose) in ZnCl2_4H2O solvent was studied to optimize the conditions for conversion of lignocellulose (the most abundant renewable resource) into sorbitol (D-glucitol). Water at neutral pH does not allow hydrolysis of

  10. Excited state hydrogen bonding fluorescent probe: Role of structure and environment

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Debarati, E-mail: debaratidey07@gmail.com [Department of Chemistry, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006 (India); Sarangi, Manas Kumar [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Ray, Angana; Bhattacharyya, Dhananjay [Computational Science Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Maity, Dilip Kumar [Department of Chemistry, University College of Science and Technology, 92 A.P.C. Road, Kolkata 700009 (India)

    2016-05-15

    An environment sensitive fluorescent probe, 11-benzoyl-dibenzo[a,c]phenazine (BDBPZ), has been synthesized and characterized that acts via excited state hydrogen bonding (ESHB). On interaction with hydrogen bond donating solvents the fluorescence intensity of BDBPZ increases abruptly with a concomitant bathochromic shift. The extent of fluorescence increment and the red-shift of λ{sub max} depend on hydrogen bond donating ability of the solvent associated. ESHB restricts the free rotation of the benzoyl group and hence blocks the non-radiative deactivation pathway. BDBPZ forms an exciplex with organic amine in nonpolar medium that readily disappears on increasing the polarity of the solvent. In polar environment the fluorescence of both the free molecule and excited state hydrogen bonded species are quenched on addition of amine unlike its parent dibenzo[a,c]phenazine (DBPZ), that remains very much inaccessible towards the solvent as well as quencher molecules due to its structure. This newly synthesized derivative BDBPZ is much more interactive due to the benzoyl group that is flanked outside the skeletal aromatic rings of DBPZ, which helps to sense the environment properly and thus shows better ESHB capacity than DBPZ.

  11. Mechanisms of hydrogen exchange in proteins from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme

    International Nuclear Information System (INIS)

    Wedin, R.E.; Delepierre, M.; Dobson, C.M.; Poulsen, F.M.

    1982-01-01

    The individual rates of solvent exchange of the six tryptophan indole NH hydrogens of lysozyme in 2 H 2 O have been measured over a wide range of temperatures by using 1 H NMR. Two distinct mechanisms for exchange have been identified, one characterized by a high activation energy and the other by a much lower activation energy. The high-energy process has been shown to be associated directly with the cooperative thermal unfolding of the protein and is the dominant mechanism for exchange of the most slowly exchanging hydrogen even 15 0 C below the denaturation temperature. Rate constants and activation energies for the folding and unfolding reactions were obtained from the experimental exchange rates. At low temperatures, a lower activation energy mechanism is dominant for all hydrogens, and this can be associated with local fluctuations in the protein structure which allow access of solvent. The relative exchange rates and activation energies can only qualitatively be related to the different environments of the residues in the crystal structure. There is provisional evidence that a mechanism intermediate between these two extremes may be significant for some hydrogens under restricted conditions

  12. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  13. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  14. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  15. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  16. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  17. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  18. Hydrogen pellet injection device

    International Nuclear Information System (INIS)

    Kanno, Masahiro.

    1992-01-01

    In a hydrogen pellet injection device, a nozzle block having a hydrogen gas supply channel is disposed at the inner side of a main cryogenic housing, and an electric resistor is attached to the block. Further, a nozzle block and a hydrogen gas introduction pipe are attached by way of a thermal insulating spacer. Electric current is supplied to the resistor to positively heat the nozzle block and melt remaining solid hydrogen in the hydrogen gas supply channel. Further, the effect of temperature elevation due to the resistor is prevented from reaching the side of the hydrogen gas introduction pipe by the thermal insulation spacer. That is, the temperature of the nozzle block is directly and positively elevated, to melt the solid hydrogen rapidly. Preparation operation from the injection of the hydrogen pellet to the next injection can be completed in a shorter period of time compared with a conventional case thereby enabling to make the test more efficient. Further, only the temperature of the nozzle block is elevated with no effect of temperature elevation due to the resistor to other components by the thermal insulation flange. (N.H.)

  19. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  20. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven