WorldWideScience

Sample records for solvent diffusion technique

  1. Preparation and Characterization of Astaxanthin Nanoparticles by Solvent-Diffusion Technique

    International Nuclear Information System (INIS)

    Anarjan, N.; Tan, C.P.

    2011-01-01

    In this work, astaxanthin nanoparticles were prepared in aqueous media using solvent-diffusion technique. Sodium caseinate, gelatin, Polysorbate 20 and gum Arabic were selected as different food grade surface active molecules for the stabilization of the produced nanoparticles. Results showed that among produced astaxanthin nanoparticles, the Polysorbate 20-stabilized nanoparticles showed the smallest particle size; gum Arabic-stabilized nanoparticles had the smallest polydispersity index and highest physical stability in simulated gastric fluid (SGF); and those stabilized using gelatin had the highest zeta potential. Sodium caseinate stabilized nanoparticles had the highest astaxanthin content in fresh samples as compared to other prepared nano dispersions. (author)

  2. Estimation of diffusion coefficients in bitumen solvent mixtures as derived from low field NMR spectra

    International Nuclear Information System (INIS)

    Wen, Y.; Bryan, J.; Kantzas, A.

    2005-01-01

    Use of solvents for the extraction of heavy oil and bitumen appears to be an increasingly feasible technology. Both vapour extraction and direct solvent injection are considered for conventional exploration and production schemes, while solvent dilution of bitumen is a standard technique in oil sands mining. Mass transfer between solvent and bitumen is a poorly understood process. In some cases, it is totally ignored compared to viscous force effects. In other cases, phenomenological estimations of diffusion and dispersion coefficients are used. Low field NMR has been used successfully in determining both solvent content and viscosity reduction in heavy oil and bitumen mixtures with various solvents. As a solvent comes into contact with a heavy oil or bitumen sample, the mobility of hydrogen bearing molecules of both solvent and oil changes. These changes are detectable through changes in the NMR relaxation characteristics of both solvent and oil. Relaxation changes can then be correlated to mass flux and concentration changes. Based on Fick's Second Law, a diffusion coefficient, which is independent of concentration, was calculated against three oils and six solvents. (author)

  3. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2016-12-01

    Full Text Available Purpose: The quasi-emulsion solvent diffusion (QESD has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate. The solid state of obtained particles was investigated by differential scanning calorimetry (DSC and Fourier transform infrared (FT-IR spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  4. Experimental and Modeling Study of Solvent Diffusion in PDMS for Nanoparticle-Polymer Cosuspension Imprint Lithography.

    Science.gov (United States)

    Gervasio, Michelle; Lu, Kathy; Davis, Richey

    2015-09-15

    This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.

  5. Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2

    International Nuclear Information System (INIS)

    Hayamizu, Kikuko; Aihara, Yuichi

    2004-01-01

    Two binary mixed solvent systems typically used for lithium batteries were studied by measuring the self-diffusion coefficients of the solvent, lithium ion and anion, independently by using the multi-nuclear pulsed field-gradient spin-echo (PGSE) 1 H, 7 Li and 19 F NMR method. One system was propylene carbonate (PC) and diethyl carbonate (DEC) system and the other binary system was PC and 1,2-dimethoxyethane (DME), and the lithium salt used was LiN(SO 2 CF 3 ) 2 (LiTFSI). The relative ratio of the PC was changed from zero (pure DME and DEC) to 100% (pure PC) in the DME-PC and the DEC-PC systems, respectively. The self-diffusion coefficients of the solvents were measured with and without the lithium salt, and the two solvents had almost the same diffusion coefficient in the DEC-PC system, while DME diffused faster than PC in the DME-PC system. In the electrolytes the solvents diffused the fastest, followed by the anion with the lithium ion diffusing the slowest. The degree of ion dissociation was estimated for each electrolyte by comparing the ionic conductivities estimated from the ion diffusion and those measured directly by the electrochemical method

  6. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    Science.gov (United States)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  7. Accelerated Solvent Extraction: An Innovative Sample Extraction Technique for Natural Products

    International Nuclear Information System (INIS)

    Hazlina Ahmad Hassali; Azfar Hanif Abd Aziz; Rosniza Razali

    2015-01-01

    Accelerated solvent extraction (ASE) is one of the novel techniques that have been developed for the extraction of phytochemicals from plants in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yield and enhance the quality of extracts. This technique combines elevated temperatures and pressure with liquid solvents. This paper gives a brief overview of accelerated solvent extraction technique for sample preparation and its application to the extraction of natural products. Through practical examples, the effects of operational parameters such as temperature, volume of solvent used, extraction time and extraction yields on the performance of ASE are discussed. It is demonstrated that ASE technique allows reduced solvent consumption and shorter extraction time, while the extraction yields are even higher than those obtained with conventional methods. (author)

  8. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method

    DEFF Research Database (Denmark)

    Cui, Fude; Yang, Mingshi; Jiang, Yanyan

    2003-01-01

    crystallization technique, i.e. quasi-emulsion solvent diffusion method. The factors of effect on micromeritic properties and release profiles of the resultant microspheres were investigated. And the bioavailability of nitrendipine microspheres was evaluated in six healthy dogs. The results showed...... that the particle size of microspheres was determined mainly by the agitation speed. The dissolution rate of nitrendipine from microspheres was enhanced significantly with increasing the amount of dispersing agents, and sustained by adding retarding agents. The release rate of microspheres could be controlled...

  9. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    Science.gov (United States)

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (pHDPE as barriers in the field.

  10. On the diffusion of alpha-helical proteins in solvents

    Science.gov (United States)

    Barredo, Wilson I.; Bornales, Jinky B.; Bernido, Christopher C.; Aringa, Henry P.

    2015-01-01

    The winding probability function for a biopolymer diffusing in a crowded cell is obtained with the drift coefficient f(s) involving Bessel functions of general form f(s) = kJ2p+1 (νs). The variable s is the length along the chain and ν is a constant which can be used to simulate the frequency of appearance of a certain type of amino acid. Application of a particular case p = 3 to protein chains is carried out for different alpha helical proteins found in the Protein Data Bank (PDB). Analysis of our results leads us to an empirical formula that can be used to conveniently predict k/D and ν, where D is the diffusion coefficient of various α-helical proteins in solvents.

  11. The effects of esterified solvents on the diffusion of a model compound across human skin: an ATR-FTIR spectroscopic study.

    Science.gov (United States)

    McAuley, W J; Chavda-Sitaram, S; Mader, K T; Tetteh, J; Lane, M E; Hadgraft, J

    2013-04-15

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effects of three fatty acid esters on skin permeation. Propylene glycol diperlargonate (DPPG), isopropyl myristate (IPM) and isostearyl isostearate (ISIS) were selected as pharmaceutically relevant solvents with a range of lipophilicities and cyanophenol (CNP) was used as a model drug. The resultant data were compared with that obtained when water was used as the solvent. The diffusion of CNP, DPPG and IPM across epidermis was successfully described by a Fickian model. When ISIS was used as a solvent Fickian behaviour was only obtained across isolated stratum corneum suggesting that the hydrophilic layers of the epidermis interfere with the permeation of the hydrophobic ISIS. The diffusion coefficients of CNP across epidermis in the different solvents were not significantly different. Using chemometric data analysis diffusion profiles for the solvents were deconvoluted from that of the skin and modelled. Each of these solvents was found to diffuse at a faster rate across the skin than CNP. DPPG considerably increased the concentration of CNP in the stratum corneum in comparison with the other solvents indicating strong penetration enhancer potential. In contrast IPM produced a similar CNP concentration in the stratum corneum to water with ISIS resulting in a lower CNP concentration suggesting negligible enhancement and penetration retardation effects for these two solvents respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    International Nuclear Information System (INIS)

    Rydberg, J.

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs

  13. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry and Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs.

  14. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  15. Development of spent solvent treatment process by a submerged combustion technique

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide; Chida, Mitsuhisa

    1994-01-01

    An experimental study using a bench-scale equipment of 1 kg-simulated spent solvents per hour has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of tri-n-butyl phosphate and/or n-dodecane, and on the distribution behaviors of combustion products such as phosphoric acid, Ru, I, Zr and lanthanides as TRU simulants in the submerged combustion process. Also the experimental results of TRU separation from phosphoric acid solution by co-precipitation using bismuth phosphate are reported. It was shown that the submerged combustion technique was applicable to the treatment of spent solvents including the distillation residues of the solvent. Based on the experimental data, a new treatment process of spent solvent was proposed which consisted of submerged combustion, co-precipitation using bismuth phosphate, ceramic membrane filtration, cementation of TRU lean phosphate, and vitrification of TRU rich waste. (author)

  16. Dynamic Behaviors of Solvent Molecules Restricted in Poly (Acryl Amide Gels Analyzed by Dielectric and Diffusion NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hironobu Saito

    2018-06-01

    Full Text Available Dynamics of solvent molecules restricted in poly (acryl amide gels immersed in solvent mixtures of acetone–, 1,4-dioxane–, and dimethyl sulfoxide–water were analyzed by the time domain reflectometry method of dielectric spectroscopy and the pulse field gradient method of nuclear magnetic resonance. Restrictions of dynamic behaviors of solvent molecules were evaluated from relaxation parameters such as the relaxation time, its distribution parameter, and the relaxation strength obtained by dielectric measurements, and similar behaviors with polymer concentration dependences for the solutions were obtained except for the high polymer concentration in collapsed gels. Scaling analyses for the relaxation time and diffusion coefficient respectively normalized by those for bulk solvent suggested that the scaling exponent determined from the scaling variable defined as a ratio of the size of solvent molecule to mesh size of polymer networks were three and unity, respectively, except for collapsed gels. The difference in these components reflects characteristic molecular interactions in the rotational and translational diffusions, and offered a physical picture of the restriction of solvent dynamics. A universal treatment of slow dynamics due to the restriction from polymer chains suggests a new methodology of characterization of water structures.

  17. A novel technique to determine concentration-dependent solvent dispersion in Vapex

    Energy Technology Data Exchange (ETDEWEB)

    Abukhalifeh, H.; Lohi, A.; Upreti, S. R. [Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada)

    2009-07-01

    Vapex (vapor extraction of heavy oil and bitumen) is a promising recovery technology because it consumes low energy, and is very environmentally-friendly. The dispersion of solvents into heavy oil and bitumen is a crucial transport property governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to effectively predict the amount and time scale of oil recovery as well to optimize the field operations. In this work, a novel technique is developed to experimentally determine the concentration-dependent dispersion coefficient of a solvent in Vapex process. The principles of variational calculus are utilized in conjunction with a mass transfer model of the experimental Vapex process. A computational algorithm is developed to optimally compute solvent dispersion as a function of its concentration in heavy oil. The developed technique is applied to Vapex utilizing propane as a solvent. The results show that dispersion of propane is a unimodal function of its concentration in bitumen. (author)

  18. A Novel Technique to Determine Concentration-Dependent Solvent Dispersion in Vapex

    Directory of Open Access Journals (Sweden)

    Hadil Abukhalifeh

    2009-10-01

    Full Text Available Vapex (vapor extraction of heavy oil and bitumen is a promising recovery technology because it consumes low energy, and is very environmentally-friendly. The dispersion of solvents into heavy oil and bitumen is a crucial transport property governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to effectively predict the amount and time scale of oil recovery as well to optimize the field operations. In this work, a novel technique is developed to experimentally determine the concentration-dependent dispersion coefficient of a solvent in Vapex process. The principles of variational calculus are utilized in conjunction with a mass transfer model of the experimental Vapex process. A computational algorithm is developed to optimally compute solvent dispersion as a function of its concentration in heavy oil. The developed technique is applied to Vapex utilizing propane as a solvent. The results show that dispersion of propane is a unimodal function of its concentration in bitumen.

  19. Diffusivities, viscosities, and conductivities of solvent-free ionically grafted nanoparticles

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    A new class of conductive composite materials, solvent-free ionically grafted nanoparticles, were modeled by coarse-grained molecular dynamics methods. The grafted oligomeric counterions were observed to migrate between different cores, contributing to the unique properties of the materials. We investigated the dynamics by analyzing the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities) and counterion migration kinetics. Temperature dependence of all properties follows the Arrhenius equation, but chain length and grafting density have distinct effects on different properties. In particular, structural effects on the diffusion coefficients are described by the Rouse model and the theory of nanoparticles diffusing in polymer solutions, viscosities are strongly influenced by clustering of cores, and conductivities are dominated by the motions of oligomeric counterions. We analyzed the migration kinetics of oligomeric counterions in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. © 2013 The Royal Society of Chemistry.

  20. Detection of diffusible substances

    Energy Technology Data Exchange (ETDEWEB)

    Warembourg, M [Lille-1 Univ., 59 - Villeneuve-d' Ascq (France)

    1976-12-01

    The different steps of a radioautographic technique for the detection of diffusible substances are described. Using this radioautographic method, the topographic distribution of estradiol-concentrating neurons was studied in the nervous system and pituitary of the ovariectomized mouse and guinea-pig. A relatively good morphological preservation of structures can be ascertained on sections from unfixed, unembedded tissues prepared at low temperatures and kept-under relatively low humidity. The translocation or extraction of diffusible substances is avoided by directly mounting of frozen sections on dried photographic emulsion. Since no solvent is used, this technique excludes the major sources of diffusion artifacts and permits to be in favourable conditions for the localization of diffusible substances.

  1. Magnetic effects on the solvent properties investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi, Fatemeh, E-mail: moosavibaigi@um.ac.ir; Gholizadeh, Mostafa

    2014-03-15

    This paper investigates how an external constant magnetic field in the Z-direction affects the performance of a solvent. The molecular dynamics simulation comprised common inorganic and organic solvents including water, acetone, acetonitrile, toluene, and n-hexane at the ambient temperature and pressure. A static magnetic field applied in the simulation process is able to reduce the solvent mobility in the solution in order to enhance the solvent–solute reaction. Simulation results show that the diffusivity decreases because of increasing the effective interactions. Besides, magnetic field reduces the volume of the solvent and increases the strength of the hydrogen bonds by maximizing attractive electrostatic and vdW interactions caused by changes in the radial distribution function of the solvents. Hydrogen-bonding characteristics of solvents investigated by molecular dynamics simulations were evidence for the hydrogen bonding strength of O···H that is a more efficient intermolecular hydrogen-bonding in comparison with N···H. - Highlights: • Molecular dynamics simulation technique investigates the effect of magnetic field on transport dynamics inside the solvent bulk. • External constant magnetic field influences on intermolecular interactions, thermophysics, and transport properties of the solvents. • Applying magnetic field strengthened hydrogen bond maximizes attractive electrostatic interactions, charge distribution becomes stronger, and the molecule mobility is demoted. • The low diffusivity of the solvents in the solutions increases the performance of the interactions and promotes the interactions. • On introducing a magnetic field of flux density parallel to the Z-direction, solvent acts as an obstacle to diffusion of solutes.

  2. Single molecule studies of solvent-dependent diffusion and entrapment in poly(dimethylsiloxane) thin films.

    Science.gov (United States)

    Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A

    2008-12-15

    Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly

  3. Preparation of bovine serum albumin hollow microparticles by the water-in-oil emulsion solvent diffusion technique for drug delivery applications

    International Nuclear Information System (INIS)

    Baimark, Y.; Srisa-Ard, M.; Srihaman, P.

    2012-01-01

    Biodegradable bovine serum albumin (BSA) hollow microparticles have been prepared by a single step and rapid water-in-oil emulsion solvent diffusion method without any emulsifiers and templates. Aqueous BSA solution and ethyl acetate were used as water and oil phases, respectively. BSA solution was cross-linked with polyethylene glycol diglycidyl ether (PEGDE) before microparticle formation. Methylene blue (MB) was used as a water-soluble model drug to entrap in the microparticle matrix. The non-cross-linked and cross-linked BSA microparticles contained empty core structure with outer smooth surface. Inner surface and matrix of hollow microparticles consisted void structure. Drug loading did not affect the microparticle morphology. Cumulative drug released from microparticles was decreased steadily as decreasing of MB ratio and increasing of PEGDE ratio. The BSA hollow microparticles may have potential application in controlled release drug delivery application. (author)

  4. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    International Nuclear Information System (INIS)

    Hu, Chengyao; Huang, Pei

    2011-01-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also

  5. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    Science.gov (United States)

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  6. Mutual diffusion coefficient models for polymer-solvent systems based on the Chapman-Enskog theory

    Directory of Open Access Journals (Sweden)

    R. A. Reis

    2004-12-01

    Full Text Available There are numerous examples of the importance of small molecule migration in polymeric materials, such as in drying polymeric packing, controlled drug delivery, formation of films, and membrane separation, etc. The Chapman-Enskog kinetic theory of hard-sphere fluids with the Weeks-Chandler-Andersen effective hard-sphere diameter (Enskog-WCA has been the most fruitful in diffusion studies of simple fluids and mixtures. In this work, the ability of the Enskog-WCA model to describe the temperature and concentration dependence of the mutual diffusion coefficient, D, for a polystyrene-toluene system was evaluated. Using experimental diffusion data, two polymer model approaches and three mixing rules for the effective hard-sphere diameter were tested. Some procedures tested resulted in models that are capable of correlating the experimental data with the refereed system well for a solvent mass fraction greater than 0.3.

  7. Accelerated solvent extraction (ASE) - a fast and automated technique with low solvent consumption for the extraction of solid samples (T12)

    International Nuclear Information System (INIS)

    Hoefler, F.

    2002-01-01

    Full text: Accelerated solvent extraction (ASE) is a modern extraction technique that significantly streamlines sample preparation. A common organic solvent as well as water is used as extraction solvent at elevated temperature and pressure to increase extraction speed and efficiency. The entire extraction process is fully automated and performed within 15 minutes with a solvent consumption of 18 ml for a 10 g sample. For many matrices and for a variety of solutes, ASE has proven to be equivalent or superior to sonication, Soxhlet, and reflux extraction techniques while requiring less time, solvent and labor. First ASE has been applied for the extraction of environmental hazards from solid matrices. Within a very short time ASE was approved by the U.S. EPA for the extraction of BNAs, PAHs, PCBs, pesticides, herbicides, TPH, and dioxins from solid samples in method 3545. Especially for the extraction of dioxins the extraction time with ASE is reduced to 20 minutes in comparison to 18 h using Soxhlet. In food analysis ASE is used for the extraction of pesticide and mycotoxin residues from fruits and vegetables, the fat determination and extraction of vitamins. Time consuming and solvent intensive methods for the extraction of additives from polymers as well as for the extraction of marker compounds from herbal supplements can be performed with higher efficiencies using ASE. For the analysis of chemical weapons the extraction process and sample clean-up including derivatization can be automated and combined with GC-MS using an online ASE-APEC-GC system. (author)

  8. Application of Solvent-In-Pulp Technique for Uranium Extraction from Mineralization Granite

    International Nuclear Information System (INIS)

    Ali, M.M.; Hussein, A.E.M.; Youseif, W.M.; El Didamony, A.M.

    2017-01-01

    Investigations on uranium extraction from a representative mineralized granite sample (Gattar granite GII) by solvent-in-pulp (SIP) technique were carried out in the present study. For this purpose, the solvent (tri-butyl amine) (TBA) was mixed with the leaching slurry without prior filtration. The influence of various factors affecting the SIP process, such as contact time, solvent concentration, dilution factor, type of surfactant, surfactant/solid ratio were studied. About 91% uranium extraction efficiency was attained by the application of the chosen extraction SIP conditions. Also, about 96% of the loaded uranium could be stripped by using sulfuric acid as an effective stripping agent

  9. Energy conservation techniques as innovations, and their diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Darley, J M

    1978-04-01

    Many effective products, procedures, and techniques for achieving energy conservation have been discovered by researchers. This paper focuses on the conditions under which these procedures and techniques will be adopted voluntarily. It is suggested, first, that an economic incentive for the utilization of those energy-conserving techniques is not a sufficient condition for their adoption, and second, that a psychologically-based theory of the diffusion of innovation will identify the critical variables for promoting the adoption of energy-conserving products and techniques. Based on preliminary, small-scale observations of homeowners' reactions to a complex, time-controlled thermostat, the initial parameters of a diffusion theory for energy innovation are suggested.

  10. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    Science.gov (United States)

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  11. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    Science.gov (United States)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  12. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2012-01-01

    The diffusivity and structural relaxation characteristics of oligomer-grafted nanoparticles have been investigated with simulations of a previously proposed coarse-grained model at atmospheric pressure. Solvent-free, polymer-grafted nanoparticles as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent-free nanoparticles with longer chains have higher relative diffusivities than their short chain counterparts. Solvent-free nanoparticles with short chains undergo a glass transition as indicated by a vanishing diffusivity, diverging structural relaxation time and the formation of body-centered-cubic-like order. Nanoparticles with longer chains exhibit a more gradual increase in the structural relaxation time with decreasing temperature and concomitantly increasing particle volume fraction. The diffusivity of the long chain nanoparticles exhibits a minimum at an intermediate temperature and volume fraction where the polymer brushes of neighboring particles overlap, but must stretch to fill the interparticle space. © 2012 American Institute of Physics.

  13. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  14. Preparation of Risedronate Nanoparticles by Solvent Evaporation Technique

    Directory of Open Access Journals (Sweden)

    Eliska Vaculikova

    2014-11-01

    Full Text Available One approach for the enhancement of oral drug bioavailability is the technique of nanoparticle preparation. Risedronate sodium (Biopharmaceutical Classification System Class III was chosen as a model compound with high water solubility and low intestinal permeability. Eighteen samples of risedronate sodium were prepared by the solvent evaporation technique with sodium dodecyl sulfate, polysorbate, macrogol, sodium carboxymethyl cellulose and sodium carboxymethyl dextran as nanoparticle stabilizers applied in three concentrations. The prepared samples were characterized by dynamic light scattering and scanning electron microscopy. Fourier transform mid-infrared spectroscopy was used for verification of the composition of the samples. The particle size of sixteen samples was less than 200 nm. Polysorbate, sodium carboxymethyl dextran and macrogol were determined as the most favourable excipients; the particle size of the samples of risedronate with these excipients ranged from 2.8 to 10.5 nm.

  15. Surface diffusion studies by optical diffraction techniques

    International Nuclear Information System (INIS)

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect

  16. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation

    OpenAIRE

    Nemade, K. R.; Waghuley, S. A.

    2014-01-01

    Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with a...

  17. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  18. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    Science.gov (United States)

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  19. Binary joint transform correlation using error-diffusion techniques

    Science.gov (United States)

    Inbar, Hanni; Marom, Emanuel; Konforti, Naim

    1993-08-01

    Optical pattern recognition techniques based on the optical joint transform correlator (JTC) scheme are attractive due to their simplicity. Recent improvements in spatial light modulators (SLM) increased the popularity of the JTC, providing means for real time operation. Using a binary SLM for the display of the Fourier spectrum, first requires binarization of the joint power spectrum distribution. Although hard-clipping is the simplest and most common binarization method used, we suggest to apply error-diffusion as an improved binarization technique. The performance of a binary JTC, whose input image is considered to contain additive zero-mean white Gaussian noise, is investigated. Various ways for nonlinearly modifying the joint power spectrum prior to the binarization step, which is based on either error-diffusion or hard-clipping techniques, are discussed. These nonlinear modifications aim at increasing the contrast of the interference fringes at the joint power spectrum plane, leading to better definition of the correlation signal. Mathematical analysis, computer simulations and experimental results are presented.

  20. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    Directory of Open Access Journals (Sweden)

    Phaechamud T

    2016-06-01

    Full Text Available Thawatchai Phaechamud,1 Sarun Tuntarawongsa2 1Department of Pharmaceutical Technology, 2Pharmaceutical Intelligence Unit Prachote Plengwittaya, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. Keywords

  1. Evaluation Technique of Chloride Penetration Using Apparent Diffusion Coefficient and Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Diffusion coefficient from chloride migration test is currently used; however this cannot provide a conventional solution like total chloride contents since it depicts only ion migration velocity in electrical field. This paper proposes a simple analysis technique for chloride behavior using apparent diffusion coefficient from neural network algorithm with time-dependent diffusion phenomena. For this work, thirty mix proportions of high performance concrete are prepared and their diffusion coefficients are obtained after long term-NaCl submerged test. Considering time-dependent diffusion coefficient based on Fick’s 2nd Law and NNA (neural network algorithm, analysis technique for chloride penetration is proposed. The applicability of the proposed technique is verified through the results from accelerated test, long term submerged test, and field investigation results.

  2. Impurity diffusion in transition-metal oxides

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe 3 O 4 . Tracer impurity diffusion in these materials and TiO 2 , together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO 2 whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures

  3. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Albin, S.; Winfree, W.P.; Crews, B.S.

    1990-01-01

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  4. Molecular accessibility in solvent swelled coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1994-04-01

    The conversion of coal by an economically feasible catalytic method requires the catalyst to diffuse into the coal sample so that hydrogenation catalysis can occur from within as well as the normal surface catalysis. Thus an estimate of the size, shape, and reactivity, of the pores in the coal before and after the swelling with different solvents is needed so that an optimum sized catalyst will be used. This study characterizes the accessible area found in Argonne Premium Coal Samples (APCS) using a EPR spin probe technique. The properties deduced in this manner correlate well with the findings deduced from SANS, NMR, SEM, SAXS and light scattering measurements. The use of nitroxide spin probes with swelling solvents is a simple way in which to gain an understanding of the pore structure of coals, how it changes in the presence of swelling solvents and the chemistry that occurs at the pore wall. Hydrogen bonding sites occur primarily in low-rank coals and vary in reactive strength as rank is varied. Unswelled coals contain small, spherical pores which disappear when coal is swelled in the presence of polar solvents. Swelling studies of polystyrene-divinyl benzene copolymers implied that coal is polymeric, contains significant quantities of covalent cross-links and the covalent cross-link density increases with rank.

  5. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.

    Science.gov (United States)

    Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa

    2015-11-30

    Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Influence of solvent absorption on the migration of Irganox 1076 from LDPE

    NARCIS (Netherlands)

    Helmroth, I.E.; Dekker, M.; Hankemeier, T.

    2002-01-01

    The effect of solvent absorption on additive migration was studied by relating the diffusion coefficient (D) of Irganox 1076 to the maximum solvent absorption of different solvents in low-density polyethylene (LDPE) film. Solvents tested were ethanol, isopropanol, isooctane, ethylacetate,

  7. Survey on visualization and analysis techniques based on diffusion MRI for in-vivo anisotropic diffusion structures

    International Nuclear Information System (INIS)

    Masutani, Yoshitaka; Sato, Tetsuo; Urayama, Shin-ichi; Bihan, D.L.

    2008-01-01

    In association with development of diffusion MR imaging technologies for anisotropic diffusion measurement in living body, related research is explosively increasing including research fields of applied mathematics and visualization in addition to MR imaging, biomedical image technology, and medical science. One of the reasons is that the diffusion MRI data set is a set of high dimensional image information beyond conventional scalar or vector images, and is attractive for the researchers in the related fields. This survey paper is mainly aimed at introducing state-of-the-art of post processing techniques reported in the literature for diffusion MRI data, such as analysis and visualization. (author)

  8. A multi-slice sliding cell technique for diffusion measurements in liquid metals

    Science.gov (United States)

    Zhong, Langxiang; Hu, Jinliang; Geng, Yongliang; Zhu, Chunao; Zhang, Bo

    2017-09-01

    The long capillary and shear-cell techniques are traditionally used for diffusion measurements in liquid metals. Inspired by the idea of the shear-cell method, we have built a multi-slice sliding cell device for inter-diffusion measurements in liquid metals. The device is designed based on a linear sliding movement rather than a rotational shearing as used in the traditional shear-cell method. Compared with the normal shear-cell method, the present device is a more compact setup thus easier to handle. Also, it is expected to be easier to monitor with X-rays or neutrons if used in in situ experiments. A series of benchmark time-dependent diffusion experiments in Al-Cu melts carried out with the present technique reveal that accurate diffusion constants can be achieved only after a sufficient time. For short annealing times, the initial shearing process causing convective flow dominates the measurement and leads to an increase of the measured diffusion coefficient by a factor three. The diffusion data obtained for Al-Cu liquids are consistent with the most accurate data measured by the in situ X-ray radiography method under well controlled conditions of no temperature gradient or other perturbation. High accuracy and easy handling as well as superior adaptability make the present technique suitable for diffusion studies in liquid metals.

  9. Novel process intensification techniques in solvent extraction. Contributed Paper IT-09

    International Nuclear Information System (INIS)

    Ghosh, S.K.

    2014-01-01

    Process intensification can be briefly described as any chemical engineering development that leads to substantially smaller, cleaner and more energy efficient technology. Process intensification in active nuclear material processing will offer additional benefit in terms of reduced containment volume. The intensification can be realized either by use of novel equipment or by novel operating techniques. Feasibility of hollow fiber (HF) modules and microchannels or microfluidic devices will be explained for their utilization in process intensification of solvent extraction operation in nuclear fuel cycle

  10. A systematic determination of diffusion coefficients of trace elements in open and restricted diffusive layers used by the diffusive gradients in a thin film technique

    DEFF Research Database (Denmark)

    Shiva, Amir Houshang; Teasdale, Peter R.; Bennett, William W.

    2015-01-01

    A systematic comparison of the diffusion coefficients of cations (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and oxyanions (Al, As, Mo, Sb, V, W) in open (ODL) and restricted (RDL) diffusive layers used by the DGT technique was undertaken. Diffusion coefficients were measured using both the diffusion cell...... concentrations required with the Dcell measurements. This is the first time that D values have been reported for several oxyanions using RDL. Except for Al at pH 8.30 with ODL, all DDGT measurements were retarded relative to diffusion coefficients in water (DW) for both diffusive hydrogels. Diffusion in RDL...

  11. Alginate Adsorbent Immobilization Technique Promotes Biobutanol Production by Clostridium acetobutylicum Under Extreme Condition of High Concentration of Organic Solvent

    Directory of Open Access Journals (Sweden)

    Zhuoliang Ye

    2018-05-01

    Full Text Available In Acetone-Butanol-Ethanol fermentation, bacteria should tolerate high concentrations of solvent products, which inhibit bacteria growth and limit further increase of solvents to more than 20 g/L. Moreover, this limited solvent concentration significantly increases the cost of solvent separation through traditional approaches. In this study, alginate adsorbent immobilization technique was successfully developed to assist in situ extraction using octanol which is effective in extracting butanol but presents strong toxic effect to bacteria. The adsorbent improved solvent tolerance of Clostridium acetobutylicum under extreme condition of high concentration of organic solvent. Using the developed technique, more than 42% of added bacteria can be adsorbed to the adsorbent. Surface area of the adsorbent was more than 10 times greater than sodium alginate. Scanning electron microscope image shows that an abundant amount of pore structure was successfully developed on adsorbents, promoting bacteria adsorption. In adsorbent assisted ABE fermentation, there was 21.64 g/L butanol in extracting layer compared to negligible butanol produced with only the extractant but without the adsorbent, for the reason that adsorbent can reduce damaging exposure of C. acetobutylicum to octanol. The strategy can improve total butanol production with respect to traditional culture approach by more than 2.5 fold and save energy for subsequent butanol recovery, which effects can potentially make the biobutanol production more economically practical.

  12. Influence of solvent on the morphology and microstructure of YSZ films obtained by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Falcade, T.; Oliveira, G.B.; Mueller, I.L.; Malfatti, C.F.

    2010-01-01

    This work aims to investigate the influence of solvent used for the deposition of thin films of yttria stabilized zirconia (YSZ) on porous substrate. The films were obtained directly on the porous LSM substrate by spray pyrolysis technique, which consists of spraying a precursor solution containing salts of zirconium (Zr (C 6 H 7 O 2 ) 4) and yttrium (YCl 3 .6H 2 O), dissolved in specific solvents, on the heated substrate. The use of solvents with different boiling points and viscosity aims the optimization of experimental operating parameters to obtain homogeneous and dense films suitable for application as electrolyte in fuel cells, solid oxide (SOFC). The films were characterized by scanning electron microscopy, infrared spectroscopy and X-ray diffraction. (author)

  13. Friction and diffusion of a nano-colloidal disk in a two-dimensional solvent with a liquid-liquid transition.

    Science.gov (United States)

    Torres-Carbajal, Alexis; Castañeda-Priego, Ramón

    2018-03-07

    We report on the friction and diffusion of a single mobile nano-colloidal disk, whose size and mass are one and two orders of magnitude, respectively, greater than the molecules of the host solvent; all particles are restricted to move in a two-dimensional space. Using molecular dynamics simulations, the variation of the transport coefficients as a function of the thermodynamic state of the supporting fluid, in particular, around those states in the neighbourhood of the liquid-liquid phase coexistence, is investigated. The diffusion coefficient is determined through the fit of the mean-square displacement at long times and with the Green-Kubo relationship for the velocity autocorrelation function, whereas the friction coefficient is computed from the correlation of the fluctuating force. From the determination of the transport properties, the applicability of the Stokes-Einstein relation in two dimensions around the second critical point is discussed.

  14. Characteristics of Laser Flash Technique for Thermal Diffusivity Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M.; Hong, G. P

    2008-08-15

    In relation to selection of thermal conductivity measurement technology, various thermal conductivity measurement technique are investigated for characteristics of each technique and it's measurable range. For the related laser flash techniques, various technical characteristics are reviewed and discussed. Especially, Parker adiabatic model are reviewed because of importance for basic theory of the thermal diffusivity determination. Finite pulse time effect, heat loss effect and non-uniform heating effect, which are main technical factors for laser flash technique, are considered. Finally, characteristics of constituent elements for laser flash measurement system are reviewed and investigated in detail.

  15. Preparation of Polysaccharide-Based Microspheres by a Water-in-Oil Emulsion Solvent Diffusion Method for Drug Carriers

    Directory of Open Access Journals (Sweden)

    Yodthong Baimark

    2013-01-01

    Full Text Available Polysaccharide-based microspheres of chitosan, starch, and alginate were prepared by the water-in-oil emulsion solvent diffusion method for use as drug carriers. Blue dextran was used as a water-soluble biomacromolecular drug model. Scanning electron microscopy showed sizes of the resultant microspheres that were approximately 100 μm or less. They were spherical in shape with a rough surface and good dispersibility. Microsphere matrices were shown as a sponge. Drug loading efficiencies of all the microspheres were higher than 80%, which suggested that this method has potential to prepare polysaccharide-based microspheres containing a biomacromolecular drug model for drug delivery applications.

  16. Hydrolysis studies of thorium using solvent extraction technique

    International Nuclear Information System (INIS)

    Engkvist, I.; Albinsson, Y.

    1992-01-01

    The Swedish concept for final disposal of spent nuclear fuel is focused on a repository in crystalline rock at a depth of 500 m. In order to calculate migration rates from such a repository, chemical speciation becomes important. A method for determining complexation of actinides and lanthanides with inorganic ligands using solvent extraction has been developed. The apparatus used is called AKUFVE and the used technique can measure distribution values in a two liquid phase system in the range 10 -5 to 10 5 , pH 1 to 11. Hydrolysis of thorium has been studied in 1 M NaClO 4 in inert atmosphere. Th-234 separated from U-238 was extracted with 0.01-1 M 2,4-pentanedione (HAa) in toluene. From extraction data, calculations of hydrolysis constants have been made, regarding hydroxide complexes as competing and nonextractable. As a result we conclude that the constant for tri- and tetrahydroxide complexes are overestimated. (orig.)

  17. Diffusion processes in unsaturated porous media studied with nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Farrher, German David

    2006-01-01

    Unsaturated porous media form two-phase systems consisting of the liquid and its vapor. Molecular exchange between the two phases defines an effective diffusion coefficient which substantially deviates from the bulk value of the liquid. The objective of the present thesis is to study self-diffusion under such conditions by varying both the filling degree of the porous medium and the diffusion time. The main experimental tool was a combination of two different NMR field gradient diffusometry techniques. For comparison, diffusion in a porous medium was modeled with the aid of Monte Carlo simulations. The NMR diffusometry techniques under consideration were the pulsed gradient stimulated echo (PGStE) method, the fringe field stimulated echo (FFStE) method, and the magnetization grid rotating frame imaging (MAGROFI) method. As liquids, water and cyclohexane were chosen as representatives of polar and nonpolar species. The porous glasses examined were Vycor with a mean pore size of 4 nm and VitraPor 5, with a pore size ranging from 1 to 1.6 μm. Using a combination of the FFStE and the MAGROFI technique permits one to cover four decades of the diffusion time from 100 μs to 1 s. The time dependences acquired in this way were compared with Monte Carlo simulations of a model structure in a time window of eight decades, from 125 ps up to 12.5 ms. NMR microscopy of VitraPor5 partially filled with water or cyclohexane reveals heterogeneous distributions of the liquid on a length scale much longer than the pore dimension. As a consequence of the inhomogeneous filling degree, the effective transverse relaxation time varies, which in turn leads to NMR imaging contrasts. The NMR methods employed, that is, a combination of FFStE and MAGROFI diffusometry, provide effective diffusion coefficients not affected by spatial variations of the transverse relaxation time, in contrast to the PGStE method: The FFStE and MAGROFI techniques render the effective diffusion coefficient averaged

  18. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    Science.gov (United States)

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  19. Liquid Salt as Green Solvent: A Novel Eco-Friendly Technique to Enhance Solubility and Stability of Poorly Soluble Drugs

    Science.gov (United States)

    Patel, Anant A.

    As a result of tremendous efforts in past few decades, various techniques have been developed in order to resolve solubility issues associated with class II and IV drugs, However, majority of these techniques offer benefits associated with certain drawbacks; majorly including low drug loading, physical instability on storage and excessive use of environmentally challenging organic solvents. Hence, current effort was to develop an eco-friendly technique using liquid salt as green solvent, which can offer improvement in dissolution while maintaining long term stability. The liquid salt formulations (LSF) of poorly soluble model drugs ibuprofen, gemfibrozil and indomethacin were developed using 1-Ethyl-3-methylimidazolium ethyl sulfate (EMIM ES) as a non-toxic and environmentally friendly alternate to organic solvents. Liquid medications containing clear solutions of drug, EMIM ES and polysorbate 20, were adsorbed onto porous carrier Neusilin US2 to form free flowing powder. The LSF demonstrated greater rate and extent of dissolution compared to crystalline drugs. The dissolution data revealed that more than 80% drug release from LSF within 20 mins compared to less than 18% release from pure drugs. As high as 70% w/w liquid loading was achieved while maintaining good flowability and compressibility. In addition, the LSF samples exposed to high temperature and high humidity i.e. 40°C/80% RH for 8 weeks, demonstrated excellent physical stability without any signs of precipitation or crystallization. As most desirable form of administration is tablet, the developed liquid salt formulations were transformed into tablets using design of experiment approach by Design Expert Software. The tablet formulation composition and critical parameter were optimized using Box-Behnken Design. This innovative liquid salt formulation technique offered improvement in dissolution rate and extent as well as contributed to excellent physical stability on storage. Moreover, this formulation

  20. Measurement of molecular diffusion coefficients of carbon dioxide and methane in heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.; Tharanivasan, A.K.; Yang, C. [Regina Univ., SK (Canada)

    2004-07-01

    Vapour extraction (VAPEX) is a solvent-based thermal recovery process which is considered to be a viable process for recovering heavy oil. In order to develop a solvent-based enhanced oil recovery (EOR) operation, it is necessary to know the rate and extent of oil mobilization by the solvent. The molecular diffusion coefficient of solvent gas in heavy oil must be known. In this study, the pressure decay method was used to measure the molecular diffusivity of a gas solvent in heavy oil by monitoring the decaying pressure. The pressure decay method is a non-intrusive method in which physical contact is made between the gas solvent and the heavy oil. The pressure versus time data are measured until the heavy oil reaches complete saturation. The diffusion coefficient can be determined from the measured data and a mathematical model. In this study, the molecular diffusion coefficients of carbon dioxide-heavy oil and methane-heavy oil systems were measured and compared. The experiments were performed in closed high-pressure cells at constant reservoir temperature. An analytical solution was also obtained to predict the pressure in the gas phase and for the boundary conditions at the solvent-heavy oil interface for each solvent. Solvent diffusivity was determined by finding the best match of the numerically predicted and experimentally measured pressures.

  1. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica

    DEFF Research Database (Denmark)

    Genina, Natalja; Hadi, Batol; Löbmann, Korbinian

    2018-01-01

    The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high...... friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus(®) (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed...... into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi...

  2. A new technique to measure fission-product diffusion coefficients in UO2 fuel

    International Nuclear Information System (INIS)

    Hocking, W.H.; Verrall, R.A.; Bushby, S.J.

    1999-01-01

    This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)

  3. Quantification of simultaneous solvent evaporation and chemical curing in thermoset coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2010-01-01

    The mechanisms of simultaneous solvent evaporation and film formation in high-solids thermoset coatings are considered. The relevant phenomena, chemical reactions, solvent diffusion and evaporation, gelation, vitrification, network mobility restrictions, and crosslinking, are quantified and a mat...

  4. Preparation and Characterization of Estradiol-Loaded PLGA Nanoparticles Using Homogenization-Solvent Diffusion Method

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2008-09-01

    Full Text Available Background: The inherent shortcomings of conventional drug delivery systems containing estrogens and the potential of nanoparticles (NPs have offered tremendous scope for investigation. Although polymeric NPs have been used as drug carriers for many active agents, the use of appropriate polymer and method of NP preparation to overcome different challenges is very important. Materials and methods: Poly lactide-co-glycolide (PLGA NPs containing estradiol valerate were prepared by the modified spontaneous emulsification solvent diffusion method. Several parameters including the drug/polymer ratios in range of 2.5-10%, poly vinyl alcohol (PVA in concentration of 0-4% as stabilizer and internal phase volume and composition were examined to optimize formulation. The size distribution and morphology of the NPs, encapsulation efficacy and in vitro release profile in phosphate buffer medium (pH 7.4 during 12 hrs were then investigated. Results: The NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. By adjustment of the process parameters, the size and the drug encapsulation efficacy as well as the drug release kinetics can be optimally controlled. The mean particle size of the best formula with encapsulation efficiency of 100% was 175 ± 19, in which release profile was best fitted to Higuchi's model of release which showed that release mechanism was mainly controlled by diffusion of the drug to the release medium. Conclusion: According to the size and surface properties of the prepared particles, it may be concluded that they are a good formulation for non-parenteral routes of administration.

  5. Separation of trivalent actinide from lanthanide by a solvent extraction technique using imidazoledithiocarboxylic acid

    International Nuclear Information System (INIS)

    Miyashita, S.; Yanaga, M.; Okuno, K.; Suganuma, H.; Satoh, I.

    2006-01-01

    The extraction behavior of 241 Am and 152,154 Eu by a solvent extraction technique using imidazoledithiocarboxylic acid (IMD) were investigated. Although the solubility of IMD into organic solvent is very poor, it was improved by the formation of ion pair with hydrophobic cation, such as tetrabutylammonium ion (TBA + ) or tetraoctylammonium ion (TOA + ). The obtained tetrabutylammonium imidazole-dithiocarboxylate (TBA + IMD - ) and tetraoctylammonium imidazoledithiocarboxylate (TOA + TMD - ) are able to solve into various organic solvents, for example cyclohexanone, chloroform and nitrobenzene, but not to solve into nonpolar alkane. The radionuclides of Am(III) and Eu(III) are able to be extracted in the region of 2 eq + IMD - /cyclohexanone and TOA + IMD - /cyclohexanone. The distribution ratio of Am(III) is higher than that of Eu(III) when the organic phase is 0.1 M TBA + IMD - /cyclohexanone and the aqueous phase is 1.0 M (H,Na)NO 3 . The separation factor (Am(III)/Eu(III)) at pH eq =5.5 is ca. 30. In the region of pH>6, the distribution ratios of Am(III) and Eu(III) in the system described above showed constant values, respectively. (author)

  6. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques.

    Science.gov (United States)

    de Sousa Júnior, José Aginaldo; Carregosa Santana, Márcia Luciana; de Figueiredo, Fabricio Eneas Diniz; Faria-E-Silva, André Luis

    2015-08-01

    This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05). Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

  7. Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique

    International Nuclear Information System (INIS)

    Heink, W.; Kaerger, J.; Walter, A.

    1978-01-01

    The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)

  8. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    Science.gov (United States)

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A double isotope technique for the detection of diffuse liver disease

    International Nuclear Information System (INIS)

    McCready, V.R.; Seelentag, W.W.; Lillicrap, S.C.; Royal Mardsen Hospital, Sutton, Surrey

    1978-01-01

    Radioisotope, ultrasound and CT X-ray scanning are all moderately successful in diagnosing focal abnormalities of the liver. However, the diagnosis of diffuse disease remains difficult or impossible in spite of recent advances in imaging and biochemical techniques. This paper investigates the possibility of using two radioactive compounds which detect different aspects of liver function to determine the presence of diffuse disease. Normal patients and patients with obvious metastases were studied after an injection of a mixture of Tc 99m sulphur colloid and Gallium 67 citrate. Measurements of the absolute and relative uptake in the liver were made within one hour and at 48 hours using a quantitative dual probe system and a collimated dual detector system. The Tc 99m:Ga-67 ratio was calculated. The ratio for abnormals ranged from 1.5-3.9 mean=2.5 and the normals ranged from 3.67-6.25 (mean=4.5). The technique shows promise in the detection of diffuse disease. (author)

  10. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros; Panagiotopoulos, Athanassios Z.; Koch, Donald L.

    2012-01-01

    as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent

  11. Remediation of Contaminated Soils by Solvent Flushing

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Jessup, Ron E.; Rao, P. Suresh C.; Wood, A. Lynn

    1994-01-01

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, and increases the

  12. Analysis of petroleum-contaminated soils by diffuse reflectance spectroscopy and sequential ultrasonic solvent extraction–gas chromatography

    International Nuclear Information System (INIS)

    Okparanma, Reuben N.; Coulon, Frederic; Mouazen, Abdul M.

    2014-01-01

    In this study, we demonstrate that partial least-squares regression analysis with full cross-validation of spectral reflectance data estimates the amount of polycyclic aromatic hydrocarbons in petroleum-contaminated tropical rainforest soils. We applied the approach to 137 field-moist intact soil samples collected from three oil spill sites in Ogoniland in the Niger Delta province (5.317°N, 6.467°E), Nigeria. We used sequential ultrasonic solvent extraction–gas chromatography as the reference chemical method. We took soil diffuse reflectance spectra with a mobile fibre-optic visible and near-infrared spectrophotometer (350–2500 nm). Independent validation of combined data from studied sites showed reasonable prediction precision (root-mean-square error of prediction = 1.16–1.95 mg kg −1 , ratio of prediction deviation = 1.86–3.12, and validation r 2 = 0.77–0.89). This suggests that the methodology may be useful for rapid assessment of the spatial variability of polycyclic aromatic hydrocarbons in petroleum-contaminated soils in the Niger Delta to inform risk assessment and remediation. -- Highlights: • We model NIR diffuse reflectance spectra for PAH prediction in contaminated soils. • Soil diffuse reflectance decreases with increasing PAH concentration. • Mechanism of prediction relies on co-variation of PAH with other soil properties. • Positions of important wavelengths are largely similar for studied sites. • Positive regression coefficients around 1647 nm show a link to PAH. -- This approach may be used to collect large spatial data at reduced cost and time to assess the variability of polycyclic aromatic hydrocarbons in petroleum release sites

  13. Weldability of Al4C3-Al composites via diffusion welding technique

    International Nuclear Information System (INIS)

    Arik, Halil; Aydin, Mustafa; Kurt, Adem; Turker, Mehmet

    2005-01-01

    In this study, Al-Al 4 C 3 composites, produced by powder metallurgy in situ techniques, were joined by diffusion welding technique at 250 MPa pressure with various welding temperatures and durations. Microstructures and shear strengths of the joined areas were determined. Al powders were mixed with 2% carbon black and milled in a high energy ball mill (mechanical alloying) for up to 20 h. In order to obtain cylindrical blanks with 10 mm in diameter and 15 mm in height, powders were compacted in a single action press at 1000 MPa. Samples were sintered in Ar atmosphere at 650 deg C and metal matrix composite (MMC) containing 8% Al 4 C 3 particles were produced. Products were then joined to each other by using diffusion welding techniques. Scanning electron microscopy examination was carried out on the welded interfaces and shear tests were conducted to the sample interfaces to find out the effect of welding temperatures and duration on the weldability properties. It was found that high welding temperatures resulted in increase of both joined strength and shear properties. However, increase in welding duration did not make any detectable changes. Results indicated that MMC could be joined by diffusion welding technique successfully with the 88% strength of base material

  14. Techniques for the generation and monitoring of vapors

    International Nuclear Information System (INIS)

    Nelson, G.O.

    1981-01-01

    Controlled test atmospheres can be produced using a variety of techniques. Gases are usually generated by using flow dilution methods while vapors are produced by using solvent injection and vaporization, saturation, permeation and diffusion techniques. The resulting gas mixtures can be monitored and measured using flame ionization, photoionization, electrochemical and infrared analytical systems. An ideal system for the production of controlled test atmospheres would not only be able to generate controlled test atmospheres, but also monitor all pertinent environmental parameters, such as temperature, humidity, and air flow

  15. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

    Directory of Open Access Journals (Sweden)

    José Aginaldo de Sousa Júnior

    2015-08-01

    Full Text Available Objectives This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05. Results Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05, while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05. Stae showed the lowest bond strength values (p < 0.05, while no significant difference was observed between XP Bond and Ambar. Conclusions Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

  16. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)

    2012-10-15

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  17. Manipulating Single Microdroplets of NaCl Solutions: Solvent Dissolution, Microcrystallization, and Crystal Morphology

    DEFF Research Database (Denmark)

    Utoft, Anders; Kinoshita, Koji; Bitterfield, Deborah

    2018-01-01

    that the same Epstein−Plesset (EP) model, which was originally developed for diffusion-controlled dissolution and uptake of gas, and successfully applied to liquid-in-liquid dissolution, can now also be applied to describe the diffusion-controlled uptake of water from a water-saturated environment using...... of nucleation in the decane system as compared to the octanol system. Thus, the crystal structure is reported to be dendritic for NaCl solution microdroplets dissolving rapidly and nucleating violently in octanol, while they are formed as single cubic crystals in a gentler way for solution-dissolution in decane....... These new techniques and analyses can now also be used for any other system where all relevant parameters are known. An example of this is control of drug/hydrogel/emulsion particle size change due to solvent uptake....

  18. Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements

    Science.gov (United States)

    Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.

    2001-03-01

    We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.

  19. Radioactive diffusion gaseous probe technique for study adsorbent structure inhomogeneity

    International Nuclear Information System (INIS)

    Zyuzin, A.Yu.; Korobkov, V.I.; Bekman, I.N.

    1990-01-01

    One of the versions of the method of diffusion gaseous probe - method of longitudinal shear in combination with autoradiography (ARG) - was used for characterising sorbents and catalysts, which are considered to be promising for reprocessing of sulfur-containing natural gases. Hydrogen sulfide, labelled with 35 S was used as diffusion radioactive probe. Zeolite granules of 4A type and granulated adsorbents on the basis of CR and AM aluminium oxides, which are industrial catalysts of Clauss reaction developed at SNEA company, were used as objects under investigation. It is shown that technique for fabrication of 4A zeolite granules leads to asymmetrical pore distribution over the granule diameter. Technique for AM granule fabrication leads to occuRrence of local inhomogeneities of the structure in the form of narrow coaxial rings with decreased or increased local adsorption ability. Granules of adsorbent of CR type are characterized by rather homogeneous structure. It is recommended to use the mentioned method for industrial adsorbent diagnosis

  20. Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces

    Science.gov (United States)

    Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.

    2012-01-01

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved

  1. Re-Refining of Waste Lubricating Oil by Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Hassan Ali Durrani

    2011-04-01

    Full Text Available Re-refining of waste lubricating oil by solvent extraction is one of the potential techniques. The advantages of solvent extraction technique practically offers from environmental and economic points of view have received due attention. In this paper selection of composite solvent and technique to upgrade the used lubricant oil into base oil has been made. The composite solvent 2-propanol, 1-butanol and butanone have two alcohols that make a binary system reasonably effective. This work also attempts to study the performance of the composite solvent in the extraction process for recovering waste lubricating oil. The key parameters considered were vacuum pressure, temperature and the weight ratio of solvent to waste lubricating oil. The performance was investigated on the PSR (Percentage Sludge Removal and POL (Percent Oil Loss. The best results were obtained using composite solvent 25% 2-propanol, 37% 1-butanol and 38% butanone by a solvent to oil ratio of 6:1 at vacuum pressure 600mmHg and distillation temperature 250oC. The vacuum distilled oil pretreated with the composite solvents was matched to the standard base oil 500N and 150N, found in close agreement and could be used for similar purpose.

  2. Solvent extraction in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eccles, H.; Naylor, A.

    1987-01-01

    Solvent extraction techniques have been used in the uranium nuclear fuel cycle in three main areas; concentration of uranium from ore leach liquor, purification of ore concentrates and fuel reprocessing. Solvent extraction has been extended to the removal of transuranic elements from active waste liquor, the recovery of uranium from natural sources and the recovery of noble metals from active waste liquor. Schemes are presented for solvent extraction of uranium using the Amex or Dapex process; spent fuel reprocessing and the Purex process. Recent and future developments of the techniques are outlined. (UK)

  3. MR imaging in solvent-induced chronic toxic encephalopathy

    International Nuclear Information System (INIS)

    Thuomas, K.AA.; Moeller, C.; Oedkvist, L.M.; Flodin, U.; Dige, N.

    1996-01-01

    To use MR to examine patients with CNS symptoms indicating chronic intoxication. Thirty-two subjects exposed to industrial solvents for 5 to 28 years and 40 age-matched, healthy controls were examined. All patients showed decreased signal in the basal ganglia on T2-weighted images. In 11 of the patients the white matter showed diffuse hyperintensity with loss of the grey-white matter discrimination and with distinct periventricular hyperintensities in 5 of the patients. The controls had no pathological changes in the brain. Although the relatively small number of patients may obscure the significance, findings observed on T2-weighted images were patchy periventricular hyperintensities and hypointensities in the basal ganglia. Fast spin-echo is a good technique with fast acquisition of images with true spin-echo contrast features. (orig.)

  4. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases

    OpenAIRE

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-01-01

    Purpose: The activity of the glymphatic system is impaired in animal models of Alzheimer’s disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Materials and methods: Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along t...

  5. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Indium recovery by solvent extraction

    International Nuclear Information System (INIS)

    Fortes, Marilia Camargos Botelho

    1999-04-01

    Indium has been recovered as a byproduct from residues generated from the sulfuric acid leaching circuits in mineral plants for zinc recovery. Once its recovery comes from the slags of other metals recovery, it is necessary to separate it from the other elements which usually are present in high concentrations. Many works have been approaching this separation and indicate the solvent extraction process as the main technique used. In Brazilian case, indium recovery depends on the knowledge of this technique and its development. This paper describes the solvent extraction knowledge for the indium recovery from aqueous solutions generated in mineral plants. The results for determination of the best experimental conditions to obtain a high indium concentration solution and minimum iron poisoning by solvent extraction with di (2-ethylhexyl)-phosphoric acid (D2EHPA) solubilized in isoparafin and exxsol has been presented. (author)

  7. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  8. Computer Aided Solvent Selection and Design Framework

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Conte, Elisa; Abildskov, Jens

    and computer-aided tools and methods for property prediction and computer-aided molecular design (CAMD) principles. This framework is applicable for solvent selection and design in product design as well as process design. The first module of the framework is dedicated to the solvent selection and design...... in terms of: physical and chemical properties (solvent-pure properties); Environment, Health and Safety (EHS) characteristic (solvent-EHS properties); operational properties (solvent–solute properties). 3. Performing the search. The search step consists of two stages. The first is a generation and property...... identification of solvent candidates using special software ProCAMD and ProPred, which are the implementations of computer-aided molecular techniques. The second consists of assigning the RS-indices following the reaction–solvent and then consulting the known solvent database and identifying the set of solvents...

  9. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    Science.gov (United States)

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  10. Extractability of Lanthanoids(III) into Solvents Contributing to Environmental Protection

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Hara, M.

    1999-01-01

    To perform effective mutual separation of lanthanoids(III) by solvent extraction with avoiding several problems caused by diffusion of organic solvents into air and into water , into commercial available mixed solvents, aliphatic and aromatic solvents consisting of carbon number of 9 to 12, which have high flash points, the extraction of lanthanoid(III) thiocyanates with trioctylphosphine oxide has been measured and the equilibrium constants have been determined across lanthanoid series. Then the extraction constants were compared with those of single solvents, hexane and benzene , widely being used as solvents for liquid-liquid extraction. The extraction constants obtained for the aliphatic mixed solvents are very similar to those for hexane across lanthanoid series. The variation of the constants for aromatic mixed solvents is also similar to that for benzene. The pattern of the variation of the distribution ratio under a constant condition across the series is similar to each other, either using the aliphatic solvents or using aromatic ones, except for in the middle of the series. Accordingly, the use of the high molecular weight mixed aromatic solvents would be recommendable as organic solvents in the mutual separation of lanthanoids from the point of view of safety for fire and health for the people handling the extraction

  11. The impact of oil dispersant solvent on performance

    International Nuclear Information System (INIS)

    Fiocco, R.J.; Lessard, R.R.; Canevari, G.P.; Becker, K.W.; Daling, P.S.

    1995-01-01

    Modern oil spill dispersant formulations are concentrated blends of surface active agents (surfactants) in a solvent carrier system. The surfactants are effective for lowering the interfacial tension of the oil slick and promoting and stabilizing oil-in-water dispersions. The solvent system has 2 key functions: (1) reduce viscosity of the surfactant blend to allow efficient dispersant application, and (2) promote mixing and diffusion of the surfactant blend into the oil film. A more detailed description than previously given in the literature is proposed to explain the mechanism of chemical dispersion and illustrate how the surfactant is delivered by the solvent to the oil-water interface. Laboratory data are presented which demonstrate the variability in dispersing effectiveness due to different solvent composition, particularly for viscous and emulsified test oils with viscosities up to 20,500 mPa·s. Other advantages of improved solvent components can include reduced evaporative losses during spraying, lower marine toxicity and reduced protective equipment requirements. Through this improved understanding of the role of the solvent, dispersants which are more effective over a wider range of oil types are being developed

  12. Molecular dynamics in porous media studied by nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Mattea, C.

    2006-01-01

    Field cycling NMR relaxometry was used to study dynamics of fluids under confinement in different scenarios: fluids flowing through porous media, fluids partially filling porous media and polymer melts in nanoscopic pores. Diffusion in partially filled porous media was also studied with the aid of an NMR diffusometry technique. It is shown that hydrodynamic flow influences the spin-lattice relaxation rate of water confined in mesoscopic porous media under certain conditions. The effect is predicted by an analytical theory and Monte Carlo simulations, and confirmed experimentally by field-cycling NMR relaxometry. Field-cycling NMR relaxometry has been applied to polar and non polar adsorbates in partially filled silica porous glasses. The dependence of the spin-lattice relaxation rate on the filling degree shows that limits for slow and fast exchange between different phases can be distinguished and identified depending on the pore size and polarity of the solvents. Diffusion in the same unsaturated systems was studied with the aid of NMR diffusometry technique. The effective diffusion coefficient of solvents with different polarities displays opposite tendencies as a function of the liquid content. A two-phase fast exchange model including Knudsen and ordinary diffusion and different effective tortuosities is presented accounting for these phenomena. In the case of polymer melts confined in narrow artificial tubes of a porous solid matrix with variable diameter (9 to 57 nm), the characteristics of reptation were experimentally verified using proton field cycling NMR relaxometry technique. This observation is independent of the molecular mass and pore size. In bulk, the same polymer melts show either Rouse or renormalized Rouse dynamics, depending on the molecular mass. The polymers under confinement show features specific for reptation even with a pore diameter 15 times larger than the Flory radius while bulk melts of the same polymers do not. (orig.)

  13. Thermal diffusivity measurement for p-Si and Ag/p-Si by photoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi, E-mail: mohammed55865@yahoo.com [Department of Physics, Faculty of Science, Universiti PutraMalaysia (UPM), Serdang (Malaysia)

    2015-10-15

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f{sub c.} In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm{sup 2}/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon. (author)

  14. Thermal Diffusivity Measurement for p-Si and Ag/p-Si by Photoacoustic Technique

    Science.gov (United States)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi

    2015-10-01

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f c . In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm2/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon.

  15. A radiochemical technique for the establishment of a solvent-independent scale of ion activities in amphiprotic solvents

    International Nuclear Information System (INIS)

    Kim, J.I.; Duschner, H.; Born, H.J.

    1975-01-01

    The radiochemical determination of solubilities of hardly soluble compounds of silver (Ph 4 BAg, AgCl), by means of Ag-110m in amphiprotic solutions is used for setting-up a solvent-independent scale of ion activities based on the concept of the media effect. The media effects of the salts are calculated from the solubility data of the Ag compounds in question. The splitting into the media effects of single ions takes place with the extrathermodynamic assumption of the same media effects for large ions, such as Ph 4 B - = Ph 4 As - . A standardized ion activity scale in connection with the activity coefficients for the solvent in question can be established with water as the basic state of the chemical potential. As the sum of the media effects of the single ions gives the media effect of the salt concerned, which is easily obtained from data which are experimentally accessible (solubility, vapour pressure, ion exchange ect.), this method leads to single ion activities of a large number of ions in a multitude of solvents. (orig./LH) [de

  16. Parallel halftoning technique using dot diffusion optimization

    Science.gov (United States)

    Molina-Garcia, Javier; Ponomaryov, Volodymyr I.; Reyes-Reyes, Rogelio; Cruz-Ramos, Clara

    2017-05-01

    In this paper, a novel approach for halftone images is proposed and implemented for images that are obtained by the Dot Diffusion (DD) method. Designed technique is based on an optimization of the so-called class matrix used in DD algorithm and it consists of generation new versions of class matrix, which has no baron and near-baron in order to minimize inconsistencies during the distribution of the error. Proposed class matrix has different properties and each is designed for two different applications: applications where the inverse-halftoning is necessary, and applications where this method is not required. The proposed method has been implemented in GPU (NVIDIA GeForce GTX 750 Ti), multicore processors (AMD FX(tm)-6300 Six-Core Processor and in Intel core i5-4200U), using CUDA and OpenCV over a PC with linux. Experimental results have shown that novel framework generates a good quality of the halftone images and the inverse halftone images obtained. The simulation results using parallel architectures have demonstrated the efficiency of the novel technique when it is implemented in real-time processing.

  17. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  18. Conformational Diffusion and Helix Formation Kinetics

    International Nuclear Information System (INIS)

    Hummer, Gerhard; Garcia, Angel E.; Garde, Shekhar

    2000-01-01

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society

  19. Conformational Diffusion and Helix Formation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, Gerhard [Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States); Garcia, Angel E. [Theoretical Biology and Biophysics Group T-10, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Garde, Shekhar [Department of Chemical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)

    2000-09-18

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society.

  20. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    Directory of Open Access Journals (Sweden)

    Talita Baumgratz Cachapuz CHIMELI

    2014-07-01

    Full Text Available Objective: To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake and nanoleakage of adhesive systems. Material and Methods: Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness were produced (N=48 using the adhesives: Clearfil S3 Bond (CS3/Kuraray, Clearfil SE Bond - control group (CSE/Kuraray, Optibond Solo Plus (OS/Kerr and Scotchbond Universal Adhesive (SBU/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group, and then photoactivated for 80 s (550 mW/cm2. After desiccation, the specimens were weighed and stored in distilled water (N=12 or mineral oil (N=12 to evaluate the water diffusion over a 7-day period. Net water uptake (% was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%. The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results: Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05. Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control presented significantly lower net uptake (5.4%. The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions: Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  1. Mathematical modelling of simultaneous solvent evaporation and chemical curing in thermoset coatings: A parameter study

    DEFF Research Database (Denmark)

    Kiil, Søren

    2011-01-01

    A mathematical model, describing the curing behaviour of a two-component, solvent-based, thermoset coating, is used to conduct a parameter study. The model includes curing reactions, solvent intra-film diffusion and evaporation, film gelation, vitrification, and crosslinking. A case study with a ...

  2. Characterization and in vitro release of cyclosporine-A from poly(D,L-lactide-co-glycolide implants obtained by solvent/extraction evaporation

    Directory of Open Access Journals (Sweden)

    Juliana Barbosa Saliba

    2012-01-01

    Full Text Available Cyclosporine-A-loaded PLGA implants were developed intended for ocular route. Implants were prepared using solvent extraction/evaporation technique followed by casting of the cake into rods in a heated surface. XRD patterns showed that cyclosporine-A was completely incorporated into PLGA. FTIR and DSC results indicated alterations on drug molecular conformation aiming to reach the most stable thermodynamic conformation at polymer/drug interface. Implants provided controlled/sustained in vitro release of the drug. During the first 7 weeks, the drug release was controlled by the diffusion of the cyclosporine-A; and between 7-23 week period, the drug diffusion and degradation of PLGA controlled the drug release.

  3. Self-diffusion and solute diffusion in alloys under irradiation: Influence of ballistic jumps

    International Nuclear Information System (INIS)

    Roussel, Jean-Marc; Bellon, Pascal

    2002-01-01

    We have studied the influence of ballistic jumps on thermal and total diffusion of solvent and solute atoms in dilute fcc alloys under irradiation. For the diffusion components that result from vacancy migration, we introduce generalized five-frequency models, and show that ballistic jumps produce decorrelation effects that have a moderate impact on self-diffusion but that can enhance or suppress solute diffusion by several orders of magnitude. These could lead to new irradiation-induced transformations, especially in the case of subthreshold irradiation conditions. We also show that the mutual influence of thermal and ballistic jumps results in a nonadditivity of partial diffusion coefficients: the total diffusion coefficient under irradiation may be less than the sum of the thermal and ballistic diffusion coefficients. These predictions are confirmed by kinetic Monte Carlo simulations. Finally, it is shown that the method introduced here can be extended to take into account the effect of ballistic jumps on the diffusion of dumbbell interstitials in dilute alloys

  4. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range.

    Science.gov (United States)

    Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola

    2018-05-15

    Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Formulation, characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique.

    Science.gov (United States)

    Jelvehgari, Mitra; Barar, Jaleh; Valizadeh, Hadi; Shadrou, Sanam; Nokhodchi, Ali

    2011-01-01

    The aim was to prepare theophylline-loaded Eudragit RS 100 microsphere to achieve sustained release pattern with relatively high production yield. To this end, microspheres were prepared by oil/oil solvent evaporation method using an acetone-methanol mixture and liquid paraffin system containing aluminum tristearate. Drug release profiles were determined at pH 1.2 and 7.4. Morphology and solid state of microspheres were examined using SEM, DSC, X-ray powder diffraction (XRPD), and FT-IR. As the ratio of acetone/methanol increased during the preparation of microspheres the size of microsphere was reduced. The highest drug loading efficiency (87.21%) was obtained for the microsphere containing a high ratio of polymer to drug (6:1) and high volume of acetone. SEM studies showed that the microspheres are almost spherical with a few pores and cracks at surfaces. The FT-IR, XRPD and DSC results ruled out any chemical interaction between theophylline and Eudragit. The microspheres prepared with low ratio of polymer to drug (1:2) showed faster dissolution rate than those with high polymer to drug ratio. The ratio of polymer to drug and the volume of polymer solvent were found to be the key factors affecting the release profile which could lead to microspheres with desired release behavior.

  6. Determination of the diffusion coefficient of salts in non-Newtonian liquids by the Taylor dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br

    2010-07-01

    This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)

  7. Study of micelle formation in solutions of alkylammonium carboxylates in apolar solvents by positron annihilation techniques

    International Nuclear Information System (INIS)

    Fucugauchi, L.A.; Djermouni, B.; Handel, E.D.; Ache, H.J.

    1979-01-01

    The positron annihilation technique was applied to the study of the self-association process in solutions of alkylammonium carboxylates in apolar solvents, such as cyclohexane and benzene. The results indicate that the positronium formation probability responds very sensitively to changes in the microenvironment in these solutions. A distinct cooperative effect of the solution resulting in abrupt changes in the number of thermal ortho-positronium atoms formed was observed and studied as a function of the length and structure of the hydrocarbon chain in the cationic and anionic parts of the surfactant molecules. While the chain length in the cationic portion of the surfactant seems to have little effect on the positronium formation probability, distinct differences can be observed when the structure of the carboxylate is changed. Furthermore, a profound effect in the physical property of the solutions was recognized when cyclohexane was replaced by benzene as a solvent. The results are discussed in terms of the existing models for self-association. 4 figures

  8. Diffusion bonding techniques

    International Nuclear Information System (INIS)

    Peters, R.D.

    1978-01-01

    The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force

  9. Effect of temperature on the transport of solvents through PTMSP under ultra-high pressures

    International Nuclear Information System (INIS)

    Grekhov, A M; Belogorlov, A A; Eremin, Yu S; Pastukhova, E V; Yushkin, A A; Volkov, A V

    2016-01-01

    Despite a large number of studies, by now there is no any definitive explanation of the solvent transport mechanism in nanostructured polymer materials. Both convective and diffusive transport of solvents can be observed in these materials. The study of the solvents permeability at different temperatures and pressures allow the variation of the physical parameters and structure of the solvent-membrane interaction thus becoming the key factor in the understanding of the fundamental aspects of the selective transport process in nanostructured polymer membranes. The paper presents the study of ethanol, propanol and water transport through poly [1- (trimethylsilyl)-l-propine] (PTMSP) at pressures 50-150 atm and temperature up to 90°C. The study was done by the method of pressure dynamic decay. As the temperature rises, the permeability of ethanol and propanol through PTMSP is shown to increase in proportion to decreasing viscosity that denotes a convective type of transport. As for water, the permeability change is thermo-activated that is typical for a diffusive type of transport. This difference in the transport characteristics can be related to a change in the membrane structure and energetic characteristics of the solvent-polymer interaction. (paper)

  10. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    Science.gov (United States)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the

  11. The measuring technique developed to evaluate the thermal diffusivity of the multi-layered thin film specimens

    Directory of Open Access Journals (Sweden)

    Li Tse-Chang

    2017-01-01

    Full Text Available In the present study, the thermal diffusivities of the Al, Si and ITO films deposited on the SUS304 steel substrate are evaluated via the present technique. Before applying this technique, the temperature for the thin film of the multi-layered specimen is developed theoretically for the one- dimensional steady heat conduction in response to amplitude and frequency of the periodically oscillating temperature imposed by a peltier placed beneath the specimen's substrate. By the thermal-electrical data processing system excluding the lock-in amplifier, the temperature frequency a3 has been proved first to be independent of the electrical voltage applied to the peltier and the contact position of the thermocouples. The experimental data of phase difference for three kinds of specimen are regressed well by a straight line with a slope. Then, the thermal diffusivity of the thin film is thus determined if the slope value and the film- thickness are available. In the present arrangements for the thermocouples, two thermal diffusivity values are quite close each other and valid for every kind of specimen. This technique can provide an efficient, low-cost method for the thermal diffusivity measurements of thin films.

  12. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...

  14. Application of safeguards techniques to the Eurodif gas diffusion plant

    International Nuclear Information System (INIS)

    Coates, J.H.; Goens, J.R.

    1979-01-01

    The characteristic features of gas diffusion plants are such that safeguards procedures specifically suited for this technique can be proposed. The first of these features is the fact that appreciably altering the enrichment level of the plant product is not possible without making easily detectable changes either in the plant structure itself or in the movement of incoming and outgoing materials. Furthermore, because of the size of gas diffusion plants large stocks of uranium are present in them. Although inventory differences may be small in relative terms, they are large in abosolute terms and exceed the quantities of low-enriched uranium considered significant from the standpoint of safeguards. Lastly, the impossibility for economic reasons for taking a physical inventory of the plant after it has been emptied prevents a comparison of the physical inventory with the book inventory. It would therefore seem that the safeguarding of a gas diffusion plant should be focused on the movement of nuclear material between the plant and the outside world. The verification of inputs and outputs can be considered satisfactory from the safeguards standpoint as long as it is possible to make sure of the containment of the plant and of the surveillance for the purpose of preventing clandestine alterations of structure. The description of the Eurodif plant and the movement of materials planned there at present indicate that the application of such a safeguards technique to the plant should be acceptable to the competent authorities. For this purpose a monitoring area has been set aside in which the inspectors will be able to keep track of all movements between the outside world and the enrichment plant

  15. Stability studies of colloidal silica dispersions in binary solvent mixtures

    International Nuclear Information System (INIS)

    Bean, Keith Howard

    1997-01-01

    A series of monodispersed colloidal silica dispersions, of varying radii, has been prepared. These particles are hydrophilic in nature due to the presence of surface silanol groups. Some of the particles have been rendered hydrophobic by terminally grafting n-alkyl (C 18 ) chains to the surface. The stability of dispersions of these various particles has been studied in binary mixtures of liquids, namely (i) ethanol and cyclohexane, and (ii) benzene and n-heptane. The ethanol - cyclohexane systems have been studied using a variety of techniques. Adsorption excess isotherms have been established and electrophoretic mobility measurements have been made. The predicted stability of the dispersions from D.V.L.O. calculations is compared to the observed stability. The hydrophilic silica particles behave as predicted by the calculations, with the zeta potential decreasing and the van der Waals attraction increasing with increasing cyclohexane concentration. The hydrophobic particles behave differently than expected, and the stability as a function of solvent mixture composition does not show a uniform trend. The effect of varying the coverage of C 18 chains on the surface and the effect of trace water in the systems has also been investigated. Organophilic silica dispersions in benzene - n-heptane solvent mixtures show weak aggregation and phase separation into a diffuse 'gas-like' phase and a more concentrated 'liquid-like' phase, analogous to molecular condensation processes. Calculations of the van der Waals potential as a function of solvent mixture composition show good agreement with the observed stability. Determination of the number of particles in each phase at equilibrium allows the energy of flocculation to be determined using a simple thermodynamic relationship. Finally, the addition of an AB block copolymer to organophilic silica particles in benzene n-heptane solvent mixtures has been shown to have a marked effect on the dispersion stability. This stability

  16. Determination of stability constants of lanthanide nitrate complex formation using a solvent extraction technique

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.; Eberhardt, K.

    2006-01-01

    For lanthanides and actinides, nitrate complex formation is an important factor with respect to the reprocessing of nuclear fuels and in studies that treat partitioning and transmutation/conditioning. Different techniques, including microcalorimetry, various kinds of spectroscopy, ion-exchange and solvent extraction, can be used to determine stability constants of nitrate complex formation. However, it is uncommon that all lanthanides are studied at the same time, using the same experimental conditions and technique. The strengths of the complexes are different for lanthanides and actinides, a feature that may assist in the separation of the two groups. This paper deals with nitrate complex formation of lanthanides using a solvent extraction technique. Trace amounts of radioactive isotopes of lanthanides were produced at the TRIGA Mainz research reactor and at the Institutt for Energiteknikk in Kjeller, Norway (JEEP II reactor). The extraction of lanthanide ions into an organic phase consisting of 2, 6-bis-(benzoxazolyl)-4-dodecyloxylpyridine, 2-bromodecanoic acid and tert-butyl benzene as a function of nitrate ion concentration in the aqueous phase was studied in order to estimate the stability constants of nitrate complex formation. When the nitrate ion concentration is increased in the aqueous phase, the nitrate complex formation starts to compete with the extraction of metal ions. Thus the stability constants of nitrate complex formation can be estimated by measuring the decrease in extraction and successive fitting of an appropriate model. Extraction curves for La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho and Er were obtained and stability constants for their nitrate complex formation were estimated. Tb, Tm, Yb and Lu were also investigated, but no stability constants could be determined. The distribution ratios for the metal ions at low nitrate ion concentration were obtained at the same time, showing the effect of lanthanide contraction resulting in decreasing

  17. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases.

    Science.gov (United States)

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-04-01

    The activity of the glymphatic system is impaired in animal models of Alzheimer's disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along the perivascular spaces as well as projection fibers and association fibers separately, to acquire an index for diffusivity along the perivascular space (ALPS-index) and correlated them with the mini mental state examinations (MMSE) score. We found a significant negative correlation between diffusivity along the projection fibers and association fibers. We also observed a significant positive correlation between diffusivity along perivascular spaces shown as ALPS-index and the MMSE score, indicating lower water diffusivity along the perivascular space in relation to AD severity. Activity of the glymphatic system may be evaluated with diffusion images. Lower diffusivity along the perivascular space on DTI-APLS seems to reflect impairment of the glymphatic system. This method may be useful for evaluating the activity of the glymphatic system.

  18. Determination of the diffusion coefficient of oxygen in sodium chloride solutions with a transient pulse technique

    NARCIS (Netherlands)

    van Stroe, A.J.; Janssen, L.J.J.

    1993-01-01

    An accurate and rapid method for detg. the diffusion coeffs. of electrochem. active gases in electrolytes is described. The technique is based on chronoamperometry where transient currents are measured and interpreted with a Cottrell-related equation. The diffusion coeffs. of oxygen were detd. for

  19. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  20. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Claire M., E-mail: claire.thompson@anu.edu.au; Ellwood, Michael J., E-mail: michael.ellwood@anu.edu.au; Wille, Martin, E-mail: martin.wille@uni-tuebingen.de

    2013-05-02

    Graphical abstract: -- Highlights: •A new sample preparation method for seawater copper isotopic analysis (δ{sup 65}Cu). •Solvent-extraction was used to pre-concentrate metals from seawater samples. •Anion-exchange was used to purify copper from the metal-rich extract. •δ{sup 65}Cu was measured in the north Tasman Sea. •Seawater δ{sup 65}Cu may be linked to marine biological activity. -- Abstract: Stable copper (Cu) isotope geochemistry provides a new perspective for investigating and understanding Cu speciation and biogeochemical Cu cycling in seawater. In this work, sample preparation for isotopic analysis employed solvent-extraction with amino pyrollidine dithiocarbamate/diethyl dithiocarbamate (APDC/DDC), coupled with a nitric acid back-extraction, to concentrate Cu from seawater. This was followed by Cu-purification using anion-exchange. This straightforward technique is high yielding and fractionation free for Cu and allows precise measurement of the seawater Cu isotopic composition using multi-collector inductively coupled plasma mass-spectrometry. A deep-sea profile measured in the oligotrophic north Tasman Sea shows fractionation in the Cu isotopic signature in the photic zone but is relatively homogenised at depth. A minima in the Cu isotopic profile correlates with the chlorophyll a maximum at the site. These results indicate that a range of processes are likely to fractionate stable Cu isotopes in seawater.

  1. Solvent Front Position Extraction procedure with thin-layer chromatography as a mode of multicomponent sample preparation for quantitative analysis by instrumental technique.

    Science.gov (United States)

    Klimek-Turek, A; Sikora, E; Dzido, T H

    2017-12-29

    A concept of using thin-layer chromatography to multicomponent sample preparation for quantitative determination of solutes followed by instrumental technique is presented. Thin-layer chromatography (TLC) is used to separate chosen substances and their internal standard from other components (matrix) and to form a single spot/zone containing them at the solvent front position. The location of the analytes and internal standard in the solvent front zone allows their easy extraction followed by quantitation by HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.

    Science.gov (United States)

    Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel

    2014-01-01

    To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (padhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  3. Effect of casting solvents on the properties of styrene-butadiene-styrene block copolymers studied by positron annihilation techniques

    International Nuclear Information System (INIS)

    Djermouni, B.; Ache, H.J.

    1980-01-01

    The positron annihilation technique was used to study the properties of styrene-butadiene-styrene block copolymers obtained by casting them in four different solvents: toluene, carbon tetrachloride, ethyl acetate, and methyl ethyl ketone. The positron annihilation rates plotted as a function of temperature show in all films irregularities at -70 and +85 0 C which were attributed to the onset of motions in the polybutadiene and polystyrene domaines, respectively. In addition to that, two irregularities were observed at -14 and +10 0 C if a poor solvent, such as ethyl acetate or methyl ethyl ketone, was used, while films cast in a good solvent such as toluene or carbon tetrachloride show only one additional irregularity on the lambda 2 -T curves at -14 0 C. The latter results were explained in terms of the interfacial model by assuming that these irregularities correspond to the glass transition of interlayer phases between the pure polystyrene and the pure polybutadiene phases. The one which shows the irregularity at -14 0 C could be the phase in which polybutadiene is the major component, while the transition at +10 0 C can be attributed to a phase in which polystyrene is the dominating factor

  4. A technique to measure the thermal diffusivity of high-Tc superconductors

    International Nuclear Information System (INIS)

    Powers, C.E.

    1991-01-01

    High T(sub c) superconducting electrical current leads and ground straps will be used in cryogenic coolers in future NASA Goddard Space Flight Center missions. These superconducting samples are long, thin leads with a typical diameter of two millimeters. A longitudinal method is developed to measure the thermal diffusivity of candidate materials for this application. This technique uses a peltier junction to supply an oscillatory heat wave into one end of a sample and will use low mass thermocouples to follow the heat wave along the sample. The thermal diffusivity is calculated using both the exponential decay of the heat wave and the phase shift to the wave. Measurements are performed in a cryostat between 10 K and room temperature

  5. Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography

    International Nuclear Information System (INIS)

    Brendel, Bernhard; Ziegler, Ronny; Nielsen, Tim

    2008-01-01

    Reconstruction in diffuse optical tomography (DOT) necessitates solving the diffusion equation, which is nonlinear with respect to the parameters that have to be reconstructed. Currently applied solving methods are based on the linearization of the equation. For spectral three-dimensional reconstruction, the emerging equation system is too large for direct inversion, but the application of iterative methods is feasible. Computational effort and speed of convergence of these iterative methods are crucial since they determine the computation time of the reconstruction. In this paper, the iterative methods algebraic reconstruction technique (ART) and conjugated gradients (CGs) as well as a new modified ART method are investigated for spectral DOT reconstruction. The aim of the modified ART scheme is to speed up the convergence by considering the specific conditions of spectral reconstruction. As a result, it converges much faster to favorable results than conventional ART and CG methods

  6. Apparatus for diffusion-gap thermal desalination

    Science.gov (United States)

    Lowenstein, Andrew

    2017-09-26

    A thermal distillation apparatus including evaporation surfaces that are wetted with a solution, and from which at least some of the volatile solvent contained in the solution evaporates, condensers having an external surface in close proximity to, but not touching, a corresponding one of the one or more evaporation surfaces, and on which vapors of the solvent condense, releasing thermal energy that heats a flow of the solution moving upward within the condensers, spacers that prevent contact between the evaporating surfaces and the condensers, wherein spaces between the evaporating surfaces and the condensers are filled with a gaseous mixture composed of solvent vapor and one or more non-condensable gases, and except for diffusion of the solvent vapor relative to the non-condensable gases, the gaseous mixture is stationary.

  7. Proceedings of ISEC 2008, International Solvent Extraction Conference - Solvent Extraction: Fundamentals to Industrial Applications

    International Nuclear Information System (INIS)

    Moyer, Bruce A.

    2008-01-01

    The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly how this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these

  8. Self-normalizing multiple-echo technique for measuring the in vivo apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Perman, W.H.; Gado, M.; Sandstrom, J.C.

    1989-01-01

    This paper presents work to develop a new technique for quantitating the in vivo apparent diffusion/perfusion coefficient (ADC) by obtaining multiple data points from only two images with the capability to normalize the data from consecutive images, thus minimizing the effect of interimage variation. Two multiple-echo (six-to eight-echo) cardiac-gated images are obtained, one without and one with additional diffusion/perfusion encoding gradients placed about the 180 RF pulses of all but the first echo. Since the first echoes of both images have identical pulse sequence parameters, variations in signal intensity-between the first echoes represent image-to-image variation. The signal intensities of the subsequent echoes with additional diffusion/perfusion encoding gradients are then normalized by using the ratio of the first-echo signal intensities

  9. Effects of solvent evaporation conditions on solvent vapor annealed cylinder-forming block polymer thin films

    Science.gov (United States)

    Grant, Meagan; Jakubowski, William; Nelson, Gunnar; Drapes, Chloe; Baruth, A.

    Solvent vapor annealing is a less time and energy intensive method compared to thermal annealing, to direct the self-assembly of block polymer thin films. Periodic nanostructures have applications in ultrafiltration, magnetic arrays, or other structures with nanometer dimensions, driving its continued interest. Our goal is to create thin films with hexagonally packed, perpendicular aligned cylinders of poly(lactide) in a poly(styrene) matrix that span the thickness of the film with low anneal times and low defect densities, all with high reproducibility, where the latter is paramount. Through the use of our computer-controlled, pneumatically-actuated, purpose-built solvent vapor annealing chamber, we have the ability to monitor and control vapor pressure, solvent concentration within the film, and solvent evaporation rate with unprecedented precision and reliability. Focusing on evaporation, we report on two previously unexplored areas, chamber pressure during solvent evaporation and the flow rate of purging gas aiding the evaporation. We will report our exhaustive results following atomic force microscopy analysis of films exposed to a wide range of pressures and flow rates. Reliably achieving well-ordered films, while occurring within a large section of this parameter space, was correlated with high-flow evaporation rates and low chamber pressures. These results have significant implications on other methods of solvent annealing, including ``jar'' techniques.

  10. Application and results of whole-body autoradiography in distribution studies of organic solvents.

    Science.gov (United States)

    Bergman, K

    1983-01-01

    With the growing concern for the health hazards of occupational exposure to toxic substances attention has been focused on the organic solvents, which are associated with both deleterious nervous system effects and specific tissue injuries. Relatively little is known about the distribution of organic solvents and their metabolites in the living organism. Knowledge of the specific tissue localizations and retention of solvents and solvent metabolites is of great value in revealing and understanding the sites and mechanisms of organic solvent toxicity. Whole-body autoradiography has been modified and applied to distribution studies of benzene, toluene, m-xylene, styrene, methylene chloride, chloroform, carbon tetrachloride, trichloroethylene and carbon disulfide. The high volatility of these substances has led to the development of cryo-techniques. Whole-body autoradiographic techniques applicable to the study of volatile substances are reviewed. The localizations of nonvolatile solvent metabolites and firmly bound metabolites have also been examined. The obtained results are discussed in relation to toxic effects and evaluated by comparison with other techniques used in distribution studies of organic solvents and their metabolites.

  11. Measurement of methanol diffusion coefficient in polymer electrode membrane by small NMR sensor. 1st report. Development of method of measure methanol diffusion coefficient and evaluation of measured results

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    2010-01-01

    A method for measuring the diffusion coefficient of methanol in a polymer electrolyte membrane (PEM) was developed using the NMR method. A circular coil of 0.6mm inside diameter was used as a small NMR sensor. The PEM was inserted in a penetration cell, where methanol solvent is supplied to one side of the PEM and nitrogen gas is supplied to the other side of the PEM. The small NMR sensor was placed on the nitrogen gas side of the PEM. The small NMR sensor detects the NMR signal from the methanol solvent which permeates the PEM. The CH and OH components of the methanol solvent were obtained from the NMR signal by spectral analysis. The methanol concentration in the PEM was determined by the ratio of CH to OH components. The methanol concentration was acquired at intervals of 30s and was measured for 2000s. After 1500 seconds, the methanol concentration in the PEM reaches a steady state. The final methanol concentration was about 20% of the methanol concentration of the solvent. It assumed that the diffusion phenomenon of methanol in a PEM was a one-dimensional transport phenomenon, and the time-dependent change of methanol concentration was analyzed by parameterizing the diffusion coefficient. The diffusion coefficient of methanol in a PEM was determined by comparison with the measurement result of the time change of methanol concentration and the analysis results. The concentration difference diffusion coefficient of methanol in PEM obtained using this method was 3.5 * 10 -10 m 2 /s. (author)

  12. Self-consistent photothermal techniques: Application for measuring thermal diffusivity in vegetable oils

    Science.gov (United States)

    Balderas-López, J. A.; Mandelis, Andreas

    2003-01-01

    The thermal wave resonator cavity (TWRC) was used to measure the thermal properties of vegetable oils. The thermal diffusivity of six commercial vegetable oils (olive, corn, soybean, canola, peanut, and sunflower) was measured by means of this device. A linear relation between both the amplitude and phase as functions of the cavity length for the TWRC was observed and used for the measurements. Three significant figure precisions were obtained. A clear distinction between extra virgin olive oil and other oils in terms of thermal diffusivity was shown. The high measurement precision of the TWRC highlights the potential of this relatively new technique for assessing the quality of this kind of fluids in terms of their thermophysical properties.

  13. Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation

    International Nuclear Information System (INIS)

    Kim, Won Suk; Park, Young Hun; Lee, Dai Woon; Moon, Myeong Hee; Yu, Euy Kyung

    1998-01-01

    An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ration of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted ΔT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value

  14. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngme [Ewha Womans University, College of Pharmacy (Korea, Republic of); Sah, Eric [University of Notre Dame, College of Science (United States); Sah, Hongkee, E-mail: hsah@ewha.ac.kr [Ewha Womans University, College of Pharmacy (Korea, Republic of)

    2015-11-15

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.Graphical AbstractSchematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion

  15. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    International Nuclear Information System (INIS)

    Lee, Youngme; Sah, Eric; Sah, Hongkee

    2015-01-01

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.Graphical AbstractSchematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion

  16. Sorption behaviour of polystyrene grafted sago starch in various solvents

    International Nuclear Information System (INIS)

    Janarthanan, P.; Yunus, W.M.Z.W.; Ahmed, M.B.; Rahman, M.Z.; Haron, M.J.; Silong, S.

    2001-01-01

    This paper describes swelling properties of polystyrene grafted sago starch in dimethyl sulfoxide (DMSO); chloroform (CHCl/sub 3/), water, acetone carbon tetrachloride (CCl/sub 4/) cyclohexanone and toluene. The copolymer for this study was prepared by grafting styrene onto sago starch using ceric ammonium nitrate as a redox initiator. Solvent uptake of the copolymer with respect to time was obtained by soaking the samples in chosen solvents for various time intervals at 25+-1 degree centigrade. The results obtained from swelling of polystyrene grafted sago starch in polar and non polar solvents showed that the percentage of swelling at equilibrium and the swelling rate coefficient decreased in the following order: DMSO > water > acetone cyclohexanone approx. CHCl/sub 3/ > toluene approx. CCl/sub 4/. Dimethyl sulfoxide showed the highest percentage of swelling at equilibrium that is 765%. Diffusions of the solvents onto the polymers were found to be of a Fickian only for DMSO. (author)

  17. Diffusion barrier characteristics of co monolayer prepared by Langmuir Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sumit, E-mail: sumitelsd2007@gmail.com [Electronic Science Department, Kurukshetra University, Kurukshetra, Haryana 136119 (India); Kumar, Mukesh, E-mail: kumarmukesh@gmail.com [Department of Electrical Engineering, College of Engineering at Wadi Aldawasir, Prince Sattam Bin Abdulaziz University, Wadi Aldawasir 11991 (Saudi Arabia); Rani, Sumita [Electronic Science Department, Kurukshetra University, Kurukshetra, Haryana 136119 (India); Kumar, Dinesh, E-mail: dineshelsd@gmail.com [Electronic Science Department, Kurukshetra University, Kurukshetra, Haryana 136119 (India)

    2016-04-30

    Graphical abstract: Thermal stability of structures (a) Cu/SiO{sub 2}/Si and (b) Cu/Co/SiO{sub 2}/Si, indicating that presence of thin cobalt layer improves the thermal stability of the structure up to 600 °C. - Highlights: • Monolayers of cobalt were deposited on SiO{sub 2}/Si substrates using LB technique. • Copper layers were deposited on this structures using thermal evaporation method. • Thermal stability was determined by annealing the structures at various temperatures. • The structure was found to be stable up to 650 °C. - Abstract: Monolayers of Co over SiO{sub 2}/Si substrate were deposited using Langmuir Blodgett (LB) technique. The diffusion barrier capability of Co layer was evaluated against copper diffusion. The structure of the deposited Co layer was analyzed using X-ray photoelectron spectroscopy (XPS), Energy Dispersive X-ray Spectroscopy (EDS) and Atomic force microscopy (AFM) techniques. Thermal stability of Cu/SiO{sub 2}/Si and Cu/Co/SiO{sub 2}/Si test structures was studied and compared using X-ray diffraction (XRD), scanning electron microscope (SEM) and four probe techniques. The samples were annealed at different temperatures starting from 200 °C up to 700 °C in vacuum for 30 min. XRD results indicated that combination of Co/SiO{sub 2} worked as diffusion barrier up to 550 °C whereas SiO{sub 2} alone could work as barrier only up to 300 °C. Sheet resistance of these samples was measured as a function of annealing temperature which also supports XRD results. C–V curves of these structures under the influence of Biased Thermal Stress (BTS) were analyzed. BTS was applied at 2.5 MV cm{sup −1} at 150 °C. Results showed that in the presence of Co barrier layer there was no shift in the C–V curve even after 90 min of BTS while in the absence of barrier there was a significant shift in the C–V curve even after 30 min of BTS. Further these test structures were examined for leakage current density (j{sub L}) at same BTS

  18. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO 3 , dibutyl phosphate (DBP), UO 2 2+ , Pu 4+ , various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO 3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  19. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  20. On the determination of diffusivities of volatile hydrocarbons in semi-solid bitumen

    International Nuclear Information System (INIS)

    Tang, J. S.

    2001-01-01

    Carbon dioxide, supercritical ethane and propane have been considered as solvents to recover heavy oil. Given that mixing solvent with bitumen is one of the important parameters governing the performance of the solvent extraction processes, good understanding of solvent dispersion is essential for the proper design of the process. Produced bitumen can still contain some residual volatile hydrocarbons after gas flashing off a three-phase separator. When exposed to the air due to a spill or ruptured line, these residual hydrocarbons can escape and create air pollution problems. Consequently, knowledge of the diffusivities of volatile components in bitumen is needed to assess the extent of environmental damage that may result from bitumen spill or working loss of vapour to the atmosphere. This paper discusses the de-coupled transfer model developed by this author (and described in a paper in vol. 78 of this journal) and its limiting solution, and provides a re-intrepretation of the method by Fu and Phillips (1979) which in turn was based on the late-time limiting solution advanced by Tang and Zhang (2000). The analysis indicates that gas purging is a valid method for determining the diffusion coefficients of trace, volatile hydrocarbons in bitumen. However, the assumption of de-coupling may not be appropriate for large diffusion flux and slow gas flow. Furthermore, improper use of the limiting solution theory could lead to a 25 per cent error in calculating the diffusion coefficient. 14 refs., 2 tabs., 8 figs

  1. Spherical crystallization: A technique use to reform solubility and flow property of active pharmaceutical ingredients.

    Science.gov (United States)

    Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra

    2017-01-01

    Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.

  2. Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-11-01

    Full Text Available The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.

  3. The importance of the chosen technique to estimate diffuse solar radiation by means of regression

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Talha; Altyn Yavuz, Arzu [Department of Statistics. Science and Literature Faculty. Eskisehir Osmangazi University (Turkey)], email: mtarslan@ogu.edu.tr, email: aaltin@ogu.edu.tr; Acikkalp, Emin [Department of Mechanical and Manufacturing Engineering. Engineering Faculty. Bilecik University (Turkey)], email: acikkalp@gmail.com

    2011-07-01

    The Ordinary Least Squares (OLS) method is one of the most frequently used for estimation of diffuse solar radiation. The data set must provide certain assumptions for the OLS method to work. The most important is that the regression equation offered by OLS error terms must fit within the normal distribution. Utilizing an alternative robust estimator to get parameter estimations is highly effective in solving problems where there is a lack of normal distribution due to the presence of outliers or some other factor. The purpose of this study is to investigate the value of the chosen technique for the estimation of diffuse radiation. This study described alternative robust methods frequently used in applications and compared them with the OLS method. Making a comparison of the data set analysis of the OLS and that of the M Regression (Huber, Andrews and Tukey) techniques, it was study found that robust regression techniques are preferable to OLS because of the smoother explanation values.

  4. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    Science.gov (United States)

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  5. A Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-03-01

    Full Text Available In tissue engineering, there is limited availability of a simple, fast and solvent-free process for fabricating micro-porous thin membrane scaffolds. This paper presents the first report of a novel surface suspension melt technique to fabricate a micro-porous thin membrane scaffolds without using any organic solvent. Briefly, a layer of polycaprolactone (PCL particles is directly spread on top of water in the form of a suspension. After that, with the use of heat, the powder layer is transformed into a melted layer, and following cooling, a thin membrane is obtained. Two different sizes of PCL powder particles (100 µm and 500 µm are used. Results show that membranes made from 100 µm powders have lower thickness, smaller pore size, smoother surface, higher value of stiffness but lower ultimate tensile load compared to membranes made from 500 µm powder. C2C12 cell culture results indicate that the membrane supports cell growth and differentiation. Thus, this novel membrane generation method holds great promise for tissue engineering.

  6. Improvement of Soybean Oil Solvent Extraction through Enzymatic Pretreatment

    Directory of Open Access Journals (Sweden)

    F. V. Grasso

    2012-01-01

    Full Text Available The purpose of this study is to evaluate multienzyme hydrolysis as a pretreatment option to improve soybean oil solvent extraction and its eventual adaptation to conventional processes. Enzymatic action causes the degradation of the cell structures that contain oil. Improvements in terms of extraction, yield, and extraction rate are expected to be achieved. Soybean flakes and collets were used as materials and hexane was used as a solvent. Temperature, pH, and incubation time were optimized and diffusion coefficients were estimated for each solid. Extractions were carried out in a column, oil content was determined according to time, and a mathematical model was developed to describe the system. The optimum conditions obtained were pH 5.4, 38°C, and 9.7 h, and pH 5.8, 44°C, and 5.8h of treatment for flakes and collets, respectively. Hydrolyzed solids exhibited a higher yield. Diffusion coefficients were estimated between 10-11 and 10-10. The highest diffusion coefficient was obtained for hydrolyzed collets. 0.73 g oil/mL and 0.7 g oil/mL were obtained at 240 s in a column for collets and flakes, respectively. Hydrolyzed solids exhibited a higher yield. The enzymatic incubation accelerates the extraction rate and allows for higher yield. The proposed model proved to be appropriate.

  7. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  8. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents.

    Directory of Open Access Journals (Sweden)

    Laleh Bahadori

    Full Text Available The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs containing ammonium-based salts and hydrogen bond donvnors (polyol type are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden's rule. The oxidation of ferrocene (Fc/Fc+ and reduction of cobaltocenium (Cc+/Cc at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5 appears suitable for further testing in electrochemical energy storage devices.

  9. Fluorescence quenching of newly synthesized biologically active coumarin derivative by aniline in binary solvent mixtures

    International Nuclear Information System (INIS)

    Evale, Basavaraj G.; Hanagodimath, S.M.

    2009-01-01

    The fluorescence quenching of newly synthesized coumarin (chromen-2-one) derivative, 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one (MFBMC) by aniline in different solvent mixtures of benzene and acetonitrile was determined at room temperature (296 K) by steady-state fluorescence measurements. The quenching is found to be appreciable and positive deviation from linearity was observed in the Stern-Volmer (S-V) plots in all the solvent mixtures. This could be explained by static and dynamic quenching models. The positive deviation in the S-V plot is interpreted in terms of ground-state complex formation model and sphere of action static quenching model. Various rate parameters for the fluorescence quenching process have been determined by using the modified Stern-Volmer equation. The sphere of action static quenching model agrees very well with experimental results. The dependence of Stern-Volmer constant K SV , on dielectric constant ε of the solvent mixture suggests that the fluorescence quenching is diffusion-limited. Further with the use of finite sink approximation model, it is concluded that these bimolecular quenching reactions are diffusion-limited. Using lifetime (τ o ) data, the distance parameter R' and mutual diffusion coefficient D are estimated independently.

  10. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale.

    Science.gov (United States)

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-12-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  11. New resin gel for uranium determination by diffusive gradient in thin films technique

    Czech Academy of Sciences Publication Activity Database

    Gregušová, Michaela; Dočekal, Bohumil

    2011-01-01

    Roč. 684, 1-2 (2011), s. 142-146 ISSN 0003-2670 R&D Projects: GA ČR GAP503/10/2002 Institutional research plan: CEZ:AV0Z40310501 Keywords : diffusive gradient in thin film technique * 8-hydroxyquinoline resin gel * uranium determination Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.555, year: 2011

  12. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    Science.gov (United States)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be

  13. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    International Nuclear Information System (INIS)

    Ahlawat, Shivani; Fayad, Laura M.

    2018-01-01

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  14. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopaedic Surgery, Baltimore, MD (United States)

    2018-03-15

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  15. A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S J; Timmons, A; Pitz, W J

    2008-11-13

    Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

  16. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale

    Directory of Open Access Journals (Sweden)

    Maximillan Leite Santos

    2013-12-01

    Full Text Available The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  17. Radiation processed polychloroprene-co-ethylene-propene diene terpolymer blends: Effect of radiation vulcanization on solvent transport kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, K.A. [Radiation Technology Development Section, Bhabha Atomic Research Centre, Room No. S-1, HIRUP Building, Trombay, Mumbai 400 085 (India); Bhardwaj, Y.K. [Radiation Technology Development Section, Bhabha Atomic Research Centre, Room No. S-1, HIRUP Building, Trombay, Mumbai 400 085 (India)], E-mail: ykbhard@barc.gov.in; Chaudhari, C.V.; Kumar, Virendra; Goel, N.K.; Sabharwal, S. [Radiation Technology Development Section, Bhabha Atomic Research Centre, Room No. S-1, HIRUP Building, Trombay, Mumbai 400 085 (India)

    2009-03-15

    Blends of polychloroprene rubber (PCR) and ethylene propylene diene terpolymer rubber (EPDM) of different compositions were made and exposed to different gamma radiation doses. The radiation sensitivity and radiation vulcanization efficiency of blends was estimated by gel-content analysis, Charlesby-Pinner parameter determination and crosslinking density measurements. Gamma radiation induced crosslinking was most efficient for EPDM (p{sub 0}/q{sub 0} {approx} 0.08), whereas it was the lowest for blends containing 40% PCR (p{sub 0}/q{sub 0} {approx} 0.34). The vulcanized blends were characterized for solvent diffusion characteristics by following the swelling dynamics. Blends with higher PCR content showed anomalous swelling. The sorption and permeability of the solvent were not strictly in accordance with each other and the extent of variation in two parameters was found to be a function of blend composition. The {delta}G values for solvent diffusion were in the range -2.97 to -9.58 kJ/mol and indicated thermodynamically favorable sorption for all blends. These results were corroborated by dynamic swelling, experimental as well as simulated profiles and have been explained on the basis of correlation between crosslinking density, diffusion kinetics, thermodynamic parameters and polymer-polymer interaction parameter.

  18. Characterization of microenvironment polarity and solvent accessibility of polysilsesquioxane xerogels by the fluorescent probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Shea, K.J.; Zhu, H.D. [Univ., of California, Irvine, CA (United States). Dept. of Chemistry; Loy, D.A. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Poly (1, 4 bis(triethoxysilyl)benzene) (PTESB), a representative of a new type of organic-inorganic hybrid polysilsesquioxane material, was characterized by fluorescence spectroscopy for both microenvironmental polarity and solvent accessibility. A dansyl fluorescent molecule was incorporated into the bulk as well as onto the surface of both PTESB and silica materials. Information about the microenvironment polarity and accessibility of PTESB to various organic solvents was determined and compared to that of silica gel. This study found that both the bulk and surface of PTESB are less polar than that of the silica material. The silica material is accessible to polar solvents and water, while YMB is accessible to polar solvents but not to water. The hydrophobicity of PTESB differentiates these new materials from silica gel.

  19. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    Science.gov (United States)

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509

  20. Diffusivity measurements in some organic solvents by a gas-liquid diaphragm cell

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases In liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process Is followed by means of the gas pressure decrease which is recorded by means of a

  1. Diffusivity Measurements in Some Organic Solvents by a Gas-Liquid Diaphragm Cell

    NARCIS (Netherlands)

    Littel, Rob J.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases in liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process is followed by means of the gas pressure decrease which is recorded by means of a

  2. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    Chlorinated solvents are among the most frequently found contaminants in groundwater. In fractured media, chlorinated ethenes and ethanes are transported downwards through preferential pathways with subsequent diffusion into the sediment matrix. Due to slow back diffusion it can serve as a long...... (direct push delivery, Gl. Kongevej). Degradation of chlorinated ethenes (and ethanes) in the clay till matrix and in embedded high permeability features was investigated by high resolution sampling of intact cores combined with groundwater sampling. An integrated approach using chemical analysis...... (hydraulic fracturing with gravitational injection and direct push delivery) were therefore tested in clay till by injection of amendment-comparable tracers to investigate the possibility to overcome diffusion limitations in the low permeability matrix. The study of hydraulic fracturing demonstrated...

  3. Diffusion coefficients of gaseous scavengers in organic liquids used in radiation chemistry

    International Nuclear Information System (INIS)

    Luthjens, L.H.; De Leng, H.C.; Warman, J.M.; Hummel, A.

    1990-01-01

    Diffusion coefficients have been measured of some gaseous scavengers commonly used in radiation chemical studies: CO 2 , NH 3 , SF 6 and O 2 in trans-decalin, cyclohexane, isooctane and n-hexane, and CO 2 in cis-decalin, at 25 0 C. A modified diaphragm cell method has been used in order to limit the time needed for a measurement to about 6 h. Analysis of the results yields a simple semi-empirical predictive relation for the diffusion coefficient of a (gaseous) solute A in an organic solvent B. Diffusion coefficients calculated using the simple relation appear to give results in fair agreement with published values, over a range of organic solvents including alcohols, and over a range of temperatures. Some measured and predicted values are discussed with reference to results from the literature. (author)

  4. Brazing and diffusion bonding processes as available repair techniques for gas turbine blades and nozzles

    International Nuclear Information System (INIS)

    Mazur, Z.

    1997-01-01

    The conventionally welding methods are not useful for repair of heavily damaged gas turbine blades and nozzles. It includes thermal fatigue and craze cracks, corrosion, erosion and foreign object damage, which extend to the large areas. Because of required extensive heat input and couponing, it can cause severe distortion of the parts and cracks in the heat affected zone, and can made the repair costs high. For these cases, the available repair methods of gas turbine blades and nozzles, include brazing and diffusion bonding techniques are presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which have influence to get sound joint is carried out. Depend of kind of blades and nozzle damage or deterioration registered a different methods of brazing and diffusion bonding applicability is presented. (Author) 65 refs

  5. Next Generation Solvent - Materials Compatibility With Polymer Components Within Modular Caustic-Side Solvent Extraction Unit (Final Report)

    International Nuclear Information System (INIS)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-01

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX(reg s ign)79 and MaxCalix was varied systematically) showed that LIX(reg s ign)79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX(reg s ign)79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX(reg s ign)79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX(reg s ign)79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  6. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  7. Simultaneous Absorptance and Thermal-Diffusivity Determination of Optical Components with Laser Calorimetry Technique

    Science.gov (United States)

    Wang, Yanru; Li, Bincheng

    2012-11-01

    The laser calorimetry (LCA) technique is used to determine simultaneously the absorptances and thermal diffusivities of optical components. An accurate temperature model, in which both the finite thermal conductivity and the finite sample size are taken into account, is employed to fit the experimental temperature data measured with an LCA apparatus for a precise determination of the absorptance and thermal diffusivity via a multiparameter fitting procedure. The uniqueness issue of the multiparameter fitting is discussed in detail. Experimentally, highly reflective (HR) samples prepared with electron-beam evaporation on different substrates (BK7, fused silica, and Ge) are measured with LCA. For the HR-coated sample on a fused silica substrate, the absorptance is determined to be 15.4 ppm, which is close to the value of 17.6 ppm, determined with a simplified temperature model recommended in the international standard ISO11551. The thermal diffusivity is simultaneously determined via multiparameter fitting to be approximately 6.63 × 10-7 m2 · s-1 with a corresponding square variance of 4.8 × 10-4. The fitted thermal diffusivity is in reasonably good agreement with the literature value (7.5 × 10-7 m2 · s -1). Good agreement is also obtained for samples with BK7 and Ge substrates.

  8. Diffusion and mass transfer

    CERN Document Server

    Vrentas, James S

    2013-01-01

    The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...

  9. Alternative Solvents through Green Chemistry Project

    Science.gov (United States)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  10. Molecular dynamics investigation of tracer diffusion in a simple liquid

    International Nuclear Information System (INIS)

    Ould-Kaddour, F.; Barrat, J.L.

    1991-05-01

    Extensive Molecular-Dynamics (MD) simulations have been carried out for a model trace-solvent system made up of 100 solvent molecules and 8 tracer molecules interacting through truncated Lennard-Jones potentials. The influence of the size ratio between solute and solvent, of their mass ratio and of the solvent viscosity on the diffusivity of a small tracer were investigated. Positive deviations from a Stokes-Einstein behaviour are observed, in qualitative agreement with experimental observations. It was also observed that as tracer and solvent become increasingly dissimilar, their respective dynamics becomes decoupled. We suggest that such decouplings can be interpreted by writing their mobility of the tracer as the sum of two terms, the first one arising from a coupling between tracer dynamics and hydrodynamics modes of the solvent, and the second one describing jump motion in a locally nearly frozen environment. (author). 17 refs, 4 figs, 6 tabs

  11. Self-diffusion in electrolyte solutions a critical examination of data compiled from the literature

    CERN Document Server

    Mills, R

    1989-01-01

    This compilation - the first of its kind - fills a real gap in the field of electrolyte data. Virtually all self-diffusion data in electrolyte solutions as reported in the literature have been examined and the book contains over 400 tables covering diffusion in binary and ternary aqueous solutions, in mixed solvents, and of non-electrolytes in various solvents.An important feature of the compilation is that all data have been critically examined and their accuracy assessed. Other features are an introductory chapter in which the methods of measurement are reviewed; appendices containing tables

  12. Switchover of reactions of solvated electrons with nitrate ions and ammonium ions in propanol-water solvents

    International Nuclear Information System (INIS)

    Kang, T.B.; Freeman, G.R.

    1993-01-01

    The reaction rate constants of e s - with ammonium nitrate (∼0.1 mol m -3 ) in 1-propanol-water and 2-propanol-water binary solvents correspond to [e s - + (NO 3 - ) s ] reaction in the water-rich solvents, and to [e s - + (NH 4 + ) s ] reaction in alcohol-rich solvents. The overall rate constant is smaller in solvents with 40-99 mol% water, with a minimum at 70 mol% water. The Arrhenius temperature coefficient is 26 kJ mol -1 in each pure propanol solvent, increases to 29 kJ mol -1 at 40 mol% water, then decreases to 17 kJ mol -1 in pure water solvent. The high reaction rates in the single component solvents, alcohol or water, are limited mainly by solvent processes related to shear viscosity (diffusion) and dielectric relaxation (dipole reorientation). Rate constants reported for concentrated solutions (50-1000 mol m -3 ) of ammonium and nitrate salts in methanol have been quantitatively reinterpreted in terms of the ion atmosphere model. 28 refs., 5 figs., 2 tabs

  13. Solvent selection methodology for pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Gani, Rafiqul

    2016-01-01

    A method for the selection of appropriate solvents for the solvent swap task in pharmaceutical processes has been developed. This solvent swap method is based on the solvent selection method of Gani et al. (2006) and considers additional selection criteria such as boiling point difference...... in pharmaceutical processes as well as new solvent swap alternatives. The method takes into account process considerations such as batch distillation and crystallization to achieve the swap task. Rigorous model based simulations of the swap operation are performed to evaluate and compare the performance...

  14. Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel

    Directory of Open Access Journals (Sweden)

    Thawatchai Phaechamud

    2018-03-01

    Full Text Available Solvent exchange induced in situ forming gel (ISG is the promising drug delivery system for periodontitis treatment owing to the prospect of maintaining an effective high drug level in the gingival crevicular fluid. In the present study, the influence of clove oil (CO on the characteristics of doxycycline hyclate (DH-loaded ISG comprising Eudragit RS (ERS was investigated including viscosity/rheology, syringeability, in vitro gel formation/drug release, matrix formation/solvent diffusion and antimicrobial activities. CO could dissolve ERS and increase the viscosity of ISG and its hydrophobicity could also retard the diffusion of solvent and hinder the drug diffusion; thus, the minimization of burst effect and sustained drug release were achieved effectively. All the prepared ISGs comprising CO could expel through the 27-gauge needle for administration by injection and transform into matrix depot after exposure to the simulated gingival crevicular fluid. The antimicrobial activities against Staphylococcus aureus, Escherichia coli, Streptococcus mutans and Porphyromonas gingivalis were increased when the ratio of CO and N-methyl pyrrolidone (NMP was decreased from 1:1 to 1:10 owing to higher diffusion of DH except that for C. albicans was increased as CO amount was higher. Therefore, CO could minimize the burst while prolonging the drug release of DH-loaded ERS ISG for use as a local drug delivery system for periodontitis treatment. Keywords: In situ forming gel, Eudragit RS, Clove oil, Doxycycline hyclate, Periodonditis, Burst release

  15. A note on determination of the diffuse-field sensitivity of microphones using the reciprocity technique

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Jacobsen, Finn

    2008-01-01

    angles of incidence but also on the accuracy of the frequency response at normal incidence. By contrast, this paper is concerned with determining the absolute diffuse-field response of a microphone using the reciprocity technique. To examine this possibility, a reciprocity calibration setup is used...

  16. Analysis of the Diffusion Process by pH Indicator in Microfluidic Chips for Liposome Production

    Directory of Open Access Journals (Sweden)

    Elisabetta Bottaro

    2017-07-01

    Full Text Available In recent years, the development of nano- and micro-particles has attracted considerable interest from researchers and enterprises, because of the potential utility of such particles as drug delivery vehicles. Amongst the different techniques employed for the production of nanoparticles, microfluidic-based methods have proven to be the most effective for controlling particle size and dispersity, and for achieving high encapsulation efficiency of bioactive compounds. In this study, we specifically focus on the production of liposomes, spherical vesicles formed by a lipid bilayer encapsulating an aqueous core. The formation of liposomes in microfluidic devices is often governed by diffusive mass transfer of chemical species at the liquid interface between a solvent (i.e., alcohol and a non-solvent (i.e., water. In this work, we developed a new approach for the analysis of mixing processes within microfluidic devices. The method relies on the use of a pH indicator, and we demonstrate its utility by characterizing the transfer of ethanol and water within two different microfluidic architectures. Our approach represents an effective route to experimentally characterize diffusion and advection processes governing the formation of vesicular/micellar systems in microfluidics, and can also be employed to validate the results of numerical modelling.

  17. Solution of the diffusion equation in the GPT theory by the Laplace transform technique

    International Nuclear Information System (INIS)

    Lemos, R.S.M.; Vilhena, M.T.; Segatto, C.F.; Silva, M.T.

    2003-01-01

    In this work we present a analytical solution to the auxiliary and importance functions attained from the solution of a multigroup diffusion problem in a multilayered slab by the Laplace Transform technique. We also obtain the the transcendental equation for the effective multiplication factor, resulting from the application of the boundary and interface conditions. (author)

  18. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples.

    Science.gov (United States)

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef

    2015-09-04

    A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. BLINDAGE: A neutron and gamma-ray transport code for shieldings with the removal-diffusion technique coupled with the point-kernel technique

    International Nuclear Information System (INIS)

    Fanaro, L.C.C.B.

    1984-01-01

    It was developed the BLINDAGE computer code for the radiation transport (neutrons and gammas) calculation. The code uses the removal - diffusion method for neutron transport and point-kernel technique with buil-up factors for gamma-rays. The results obtained through BLINDAGE code are compared with those obtained with the ANISN and SABINE computer codes. (Author) [pt

  20. [Study on predicting firmness of watermelon by Vis/NIR diffuse transmittance technique].

    Science.gov (United States)

    Tian, Hai-Qing; Ying, Yi-Bin; Lu, Hui-Shan; Xu, Hui-Rong; Xie, Li-Juan; Fu, Xia-Ping; Yu, Hai-Yan

    2007-06-01

    Watermelon is a popular fruit in the world and firmness (FM) is one of the major characteristics used for assessing watermelon quality. The objective of the present research was to study the potential of visible/near Infrared (Vis/NIR) diffuse transmittance spectroscopy as a way for the nondestructive measurement of FM of watermelon. Statistical models between the spectra and FM were developed using partial least square (PLS) and principle component regression (PCR) methods. Performance of different models was assessed in terms of correlation coefficients (r) of validation set of samples and root mean square errors of prediction (RMSEP). Models for three kinds of mathematical treatments of spectra (original, first derivative and second derivative) were established. Savitsky-Goaly filter smoothing method was used for spectra data smoothing. The PLS model of the second derivative spectra gave the best prediction of FM, with a correlation coefficient (r) of 0. 974 and root mean square errors of prediction (RMSEP) of 0. 589 N using Savitsky-Goaly filter smoothing method. The results of this study indicate that NIR diffuse transmittance spectroscopy can be used to predict the FM of watermelon. The Vis/NIR diffuse transmittance technique will be valuable for the nandestructive detection large shape and thick peel fruits'.

  1. Understanding Lithium Solvation and Diffusion through Topological Analysis of First-Principles Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Harsh [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gyulassy, Attila [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ong, Mitchell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Draeger, Erik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-27

    The performance of lithium-ion batteries is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact, both, the solvation and diffusivity of Li ions. In this work, we present our application of the topological techniques to extract and predict such behavior in the data generated by the first-principles molecular dynamics simulation of Li ions in an important organic solvent -ethylene carbonate. More specifically, we use the scalar topology of the electron charge density field to analyze the evolution of the solvation structures. This allows us to derive a parameter-free bond definition for lithium-oxygen bonds, to provide a quantitative measure for bond strength, and to understand the regions of influence of each atom in the simulation. This has provided new insights into how and under what conditions certain bonds may form and break. As a result, we can identify and, more importantly, predict, unstable configurations in solvation structures. This can be very useful in understanding when small changes to the atoms' movements can cause significantly different bond structures to evolve. Ultimately, this promises to allow scientists to explore lithium ion solvation and diffusion more systematically, with the aim of new insights and potentially accelerating the calculations themselves.

  2. Isotope effect of impurity diffusion of cadmium in silver

    International Nuclear Information System (INIS)

    Rockosch, H.J.; Herzig, C.

    1984-01-01

    The isotope effect of impurity diffusion of cadmium in silver single crystals was measured with the radioisotopes 115 Cd/ 109 Cd by gamma spectrometry. As a mean value E = 0.37 at T = 1060 K was obtained. The correlation factor f /SUB Cd/ = 0.41 is in disagreement with previous results of other investigators due to their unfavourable experimental approach. The present value of f /SUB Cd/ , however, is consistent with those of In and Sn in Ag. A comparison with the corresponding correlation factors in the copper solvent reveals a distinct influence of lattice perturbations because of the different atomic volumes of the solvents. Since the size effect is neglected in the electrostatic diffusion model, the agreement with this model is only qualitative. The frequency ratios for vacancy jumps were calculated. The free binding enthalpy of the vacancy-impurity complex was estimated to be Δg /SUB Cd/ = -0.064 eV. This value is smaller than those for In and Sn in Ag and complies with the relative diffusivities of these impurities in Ag

  3. Measurement of diffusion coefficient of thallium ion in H2O and D2O systems at different concentrations

    International Nuclear Information System (INIS)

    Das, A.; Changdar, S.N.

    1992-01-01

    Sliding cell method, developed in our laboratory, has been used to measure the inter diffusion coefficient of thallium ion in thallous sulphate solution over a wide concentration range using both water and heavy water as solvent at 35degC. The results have been analysed from the point of view of both ion-ion and ion-solvent interactions. The comparison of the diffusivities of the same ion in D 2 O and H 2 O electrolyte solutions at the same temperature indicate that the addition of salt affects the two solvent differently. (author). 8 refs., 1 fig., 1 tab

  4. Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents

    Science.gov (United States)

    Park, Chanbum; Kanduč, Matej; Chudoba, Richard; Ronneburg, Arne; Risse, Sebastian; Ballauff, Matthias; Dzubiella, Joachim

    2018-01-01

    The performance of modern lithium-sulfur (Li/S) battery systems critically depends on the electrolyte and solvent compositions. For fundamental molecular insights and rational guidance of experimental developments, efficient and sufficiently accurate molecular simulations are thus in urgent need. Here, we construct a molecular dynamics (MD) computer simulation model of representative state-of-the art electrolyte-solvent systems for Li/S batteries constituted by lithium-bis(trifluoromethane)sulfonimide (LiTFSI) and LiNO3 electrolytes in mixtures of the organic solvents 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL). We benchmark and verify our simulations by comparing structural and dynamic features with various available experimental reference systems and demonstrate their applicability for a wide range of electrolyte-solvent compositions. For the state-of-the-art battery solvent, we finally calculate and discuss the detailed composition of the first lithium solvation shell, the temperature dependence of lithium diffusion, as well as the electrolyte conductivities and lithium transference numbers. Our model will serve as a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements for the optimization of modern Li/S batteries (and related devices).

  5. A robust computational technique for a system of singularly perturbed reaction–diffusion equations

    Directory of Open Access Journals (Sweden)

    Kumar Vinod

    2014-06-01

    Full Text Available In this paper, a singularly perturbed system of reaction–diffusion Boundary Value Problems (BVPs is examined. To solve such a type of problems, a Modified Initial Value Technique (MIVT is proposed on an appropriate piecewise uniform Shishkin mesh. The MIVT is shown to be of second order convergent (up to a logarithmic factor. Numerical results are presented which are in agreement with the theoretical results.

  6. Determination of nitrous acid in air using wet effluent diffusion denuder–FIA technique

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Motyka, Kamil; Večeřa, Zbyněk

    2008-01-01

    Roč. 77, č. 2 (2008), s. 635-641 ISSN 0039-9140. [International Conference on Flow Injection Analysis and Related Techniques. Berlin, 02.09.2007-07.09.2007] R&D Projects: GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z40310501 Keywords : nitrous acid * wet effluent diffusion denuder * FIA Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.206, year: 2008

  7. Characterization of particulate sol-gel synthesis of LiNi0.8Co0.2O2 via maleic acid assistance with different solvents

    International Nuclear Information System (INIS)

    Zhong, Y.D.; Zhao, X.B.; Cao, G.S.; Tu, J.P.; Zhu, T.J.

    2006-01-01

    Particulate sol-gel LiNi 0.8 Co 0.2 O 2 has been synthesized by a maleic-acid-assisted process using de-ionized water or ethanol as the solvent. A comparison of the effect on these two different solvents was made on the basis of thermal studies, Fourier transform infrared spectroscopy, X-ray diffraction analysis, chemical diffusion coefficients measurement, and electrochemical cyclability tests. An esterification reaction occurred on the xerogel prepared with ethanol as solvent, reducing Ni and Co from their nitrate salts. LiNi 0.8 Co 0.2 O 2 grew at the expense of Li 2 CO 3 , NiO, and CoO during calcination. Better results of capacity and cyclability were obtained in a DI-water-solvent sample associated with a larger interslab thickness between O-Li-O and lower Ni occupancy on the Li site. The activation energy for the calcinations of DI-water-solvent sample is one-half of that of the ethanol-solvent one, which could be the reason for its better properties. Chemical diffusion coefficients of Li + ion are of the same order 10 -10 cm 2 /s, is not affected by the solvents used and/or the temperature raise to 55 deg. C

  8. New resin gel for uranium determination by diffusive gradient in thin films technique

    International Nuclear Information System (INIS)

    Gregusova, Michaela; Docekal, Bohumil

    2011-01-01

    A new resin gel based on Spheron-Oxin chelating ion-exchanger with anchored 8-hydroxyquinoline functional groups was tested for application in diffusive gradient in thin film technique (DGT) for determination of uranium. Selectivity of uranium uptake from model carbonate loaded solutions of natural water was studied under laboratory conditions and compared with selectivity of the conventional Chelex 100 based resin gel. The affinity of Spheron-Oxin functional groups enables determination of the overall uranium concentration in water containing carbonates up to the concentration level of 10 2 mg L -1 . The effect of uranium binding to the polyacrylamide (APA) and agarose diffusive gels (AGE) was also studied. Uranium is probably bound in both gels by a weak interaction with traces of acrylic acid groups in the structure of APA gel and with pyruvic and sulfonic acid groups in the AGE gel. These sorption effects can be eliminated to the negligible level by prolonged deployment of DGT probes or by disassembling probes after the 1-2 days post-sampling period that is sufficient for release of uranium from diffusive gel and its sorption in resin gel.

  9. New resin gel for uranium determination by diffusive gradient in thin films technique

    Energy Technology Data Exchange (ETDEWEB)

    Gregusova, Michaela, E-mail: gregusova@iach.cz [Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Veveri 97, 602 00 Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Veveri 97, 602 00 Brno (Czech Republic)

    2011-01-17

    A new resin gel based on Spheron-Oxin chelating ion-exchanger with anchored 8-hydroxyquinoline functional groups was tested for application in diffusive gradient in thin film technique (DGT) for determination of uranium. Selectivity of uranium uptake from model carbonate loaded solutions of natural water was studied under laboratory conditions and compared with selectivity of the conventional Chelex 100 based resin gel. The affinity of Spheron-Oxin functional groups enables determination of the overall uranium concentration in water containing carbonates up to the concentration level of 10{sup 2} mg L{sup -1}. The effect of uranium binding to the polyacrylamide (APA) and agarose diffusive gels (AGE) was also studied. Uranium is probably bound in both gels by a weak interaction with traces of acrylic acid groups in the structure of APA gel and with pyruvic and sulfonic acid groups in the AGE gel. These sorption effects can be eliminated to the negligible level by prolonged deployment of DGT probes or by disassembling probes after the 1-2 days post-sampling period that is sufficient for release of uranium from diffusive gel and its sorption in resin gel.

  10. Deposition dynamics of multi-solvent bioinks

    Science.gov (United States)

    Kaneelil, Paul; Pack, Min; Cui, Chunxiao; Han, Li-Hsin; Sun, Ying

    2017-11-01

    Inkjet printing cellular scaffolds using bioinks is gaining popularity due to the advancement of printing technology as well as the growing demands of regenerative medicine. Numerous studies have been conducted on printing scaffolds of biomimetic structures that support the cell production of human tissues. However, the underlying physics of the deposition dynamics of bioinks remains elusive. Of particular interest is the unclear deposition dynamics of multi-solvent bioinks, which is often used to tune the micro-architecture formation. Here we systematically studied the effects of jetting frequency, solvent properties, substrate wettability, and temperature on the three-dimensional deposition patterns of bioinks made of Methacrylated Gelatin and Carboxylated Gelatin. The microflows inside the inkjet-printed picolitre drops were visualized using fluorescence tracer particles to decipher the complex processes of multi-solvent evaporation and solute self-assembly. The evolution of droplet shape was observed using interferometry. With the integrated techniques, the interplay of solvent evaporation, biopolymer deposition, and multi-drop interactions were directly observed for various ink and substrate properties, and printing conditions. Such knowledge enables the design and fabrication of a variety of tissue engineering scaffolds for potential use in regenerative medicine.

  11. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    Science.gov (United States)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  12. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    Science.gov (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  13. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  14. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    OpenAIRE

    Wadood Taher Mohammed; Raghad Fareed Kassim Almilly; Sheam Bahjat Abdulkareem Al-Ali

    2015-01-01

    This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as extractants . Also the ef...

  15. Thermal diffusion in dilute nanofluids investigated by photothermal interferometry

    International Nuclear Information System (INIS)

    Philip, J; Nisha, M R

    2010-01-01

    We have carried out a theoretical analysis of the dependence of the particle mass fraction on the thermal diffusivity of dilute suspensions of nanoparticles in liquids (dilute nanofluids). The analysis takes in to account adsorption of an ordered layer of solvent molecules around the nanoparticles. It is found that thermal diffusivity decreases with mass fraction for sufficiently small particle sizes. Beyond a critical particle size thermal diffusivity begins to increase with mass fraction for the same system. The results have been verified experimentally by measuring the thermal diffusivity of dilute suspensions of TiO 2 nanoparticles dispersed in polyvinyl alcohol (PVA) medium. The effect is attributed to Kapitza resistance of thermal waves in the medium.

  16. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-10-15

    Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal. 21 refs., 4 figs., 3 tabs.

  17. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    Science.gov (United States)

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  18. Nanoparticle-Assisted Diffusion Brazing of Metal Microchannel Arrays: Nanoparticle Synthesis, Deposition, and Characterization

    Science.gov (United States)

    Eluri, Ravindranadh T.

    sputtering a 1 microm thick layer of Cu before depositing a 5 nm thick film of AgNPs resulting in a lap shear strength of 45.3 +/- 0.2 MPa. In the middle section of this thesis, several techniques are investigated for the synthesis of sub 10 nm diameter nickel nanoparticles (NiNPs) to be used in the diffusion brazing of 316L stainless steel. The average NiNP size was varied from 9.2 nm to 3.9 nm based on the synthesis technique, solvent and reducing agent used. Conventional wet-chemical synthesis using NiCl2.6H2O in ethylene glycol (solvent) and N2 H4.H2O (reducing agent) resulted in the formation of 5.4 +/- 0.9 nm NiNPs. Continuous flow synthesis using a microchannel T-mixer (barrel diameter of 521microm) and a 10 second residence time of reactants in a bath temperature of 130ºC resulted in a particle size of with 5.3 +/- 1 nm. To make the synthesis safer and less energy intense, microwave heating was used along with less toxic Ni(CH3CO 2)2·4H2O (nickel salt), propylene glycol (solvent) and NaPH2O2 (reducing agent) yielding 3.9 +/- 0.8 nm diameter NiNPs. For the final section, nickel nanoparticles were synthesized using NiCl2.6H2O (nickel salt), de-ionized water (solvent), NaBH4 (co-reducing agent), N2H4.H 2O (reducing agent) and polyvinylpyrolidone (capping agent) yielding 4.2 +/- 0.6 nm NiNP. Several deposition techniques were investigated for controlling film thickness and uniformity in the diffusion brazing of 316L stainless steel (SS). Using in-house prepared NiNP and automated dispensing, a hermetic joint up to 70 psi (tested pressure) was obtained in 316L SS substrates under brazing conditions of 800ºC, 2 MPa and 30 min. Throughout the course of this thesis, techniques used for characterizing nanoparticles, films and joints included FT-IR, XRD, SEM, TEM, HRTEM, EDS, EPMA, DSC, mass spectrometry, and lap-shear testing.

  19. Cleanup of 7.5% tributyl phosphate/n-paraffin solvent-extraction solvent

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-02-01

    The HM process at the Savannah River Plant uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials which influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands which hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM process first cycle solvent is discussed

  20. Using GC-FID to Quantify the Removal of 4-sec-Butylphenol from NGS Solvent by NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Sloop, Jr., Frederick V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-01

    A caustic wash of the solvent used in the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process was found to remove the modifier breakdown product 4-sec-butylphenol (SBP) with varying efficiency depending on the aqueous NaOH concentration. Recent efforts at ORNL have aimed at characterizing the flowsheet chemistry and reducing the technical uncertainties of the NG-CSSX process. One technical uncertainty has been the efficacy of caustic washing of the solvent for the removal of lipophilic anions, in particular, the efficient removal of SBP, an important degradation product of the solvent modifier, Cs-7SB. In order to make this determination, it was necessary to develop a sensitive and reliable analytical technique for the detection and quantitation of SBP. This report recounts the development of a GC-FID-based (Gas Chromatography Flame Ionization Detection) technique for analyzing SBP and the utilization of the technique to subsequently confirm the ability of the caustic wash to efficiently remove SBP from the Next Generation Solvent (NGS) used in NG-CSSX. In particular, the developed technique was used to monitor the amount of SBP removed from a simple solvent and the full NGS by contact with sodium hydroxide wash solutions over a range of concentrations. The results show that caustic washing removes SBP with effectively the same efficiency as it did in the original Caustic-Side Solvent Extraction (CSSX) process.

  1. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique*

    OpenAIRE

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-01-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyz...

  2. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    Science.gov (United States)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  3. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Wadood Taher Mohammed

    2015-02-01

    Full Text Available This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN and N-methyl – 2 - pyrrolidone (NMP as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450 rpm, temperature (30 , 40 , 45 , and 50 oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5 , catalyst/oxidant ratio(0.125,0.25,0.5,and0.75 , and solvent/simulated diesel fuel ratio(0.5,0.6,0.75,and1 were examined as well as solvent type. The results exhibit that the highest removal of sulfur is 98.5% using NMP solvent while it is 95.8% for ACN solvent. The set of conditions that show the highest sulfur removal is: stirring speed of 350 rpm , temperature 50oC , oxidant/simulated diesel fuel ratio 1 , catalyst/oxidant ratio 0.5 , solvent/simulated diesel fuel ratio 1. These best conditions were applied upon real diesel fuel (produced from Al-Dora refinerywith 1000 ppm sulfur content . It was found that sulfur removal was 64.4% using ACN solvent and 75% using NMP solvent.

  4. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenggao, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Jiangsu, Suzhou 215006 (China); Sun, Hui; Cheng, Li-Tien [Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112 (United States); Dzubiella, Joachim [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany and Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Li, Bo, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Department of Chemistry and Biochemistry, Department of Pharmacology, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0365 (United States)

    2016-08-07

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the

  5. Study on electrohydrodynamic jetting performance of organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hong; Nguyen, Xuan Hung; Gim, Yeong Hyeon; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-11-15

    The electrohydrodynamic (EHD) inkjet method is a printing technology using electricity. This technique allows for the printing of EML (Emission layer) materials, usually used for OLED devices, on a substrate. In this study, ejection experiments were performed with various solvents to verify which of them is properly ejected in the EHD method. The solvents employed were dielectric liquids with low viscosity and it was confirmed that among them two solvents, 1,2-Dichlorobenzene (DCB) and 1,2-Dichloroethane (DCE), produced the pulsating cone-Jet mode and stable cone-jet mode well. In addition, experiments were conducted to find out how the voltage and applied flux influence the ejection mode, in order to apply the result to the ejection control. It was found that the selected solvent was easily ejected and printed, due to the free surface charge and charge density determined by the dielectric constant. Finally, a patterning experiment was performed to verify proper printing.

  6. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    Directory of Open Access Journals (Sweden)

    O’neil W. Guthrie

    2016-01-01

    Full Text Available Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.

  7. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    Science.gov (United States)

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  8. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction.

    Science.gov (United States)

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.

  9. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Science.gov (United States)

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  10. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Directory of Open Access Journals (Sweden)

    Preston Donovan

    Full Text Available The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  11. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  12. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  13. The disposal of radioactive solvent waste

    International Nuclear Information System (INIS)

    Dean, B.; Baker, W.T.

    1976-01-01

    As the use of radioisotope techniques increases, laboratories are faced with the problem of disposing of considerable quantities of organic solvent and aqueous liquid wastes. Incineration or collection by a waste contractor both raise problems. Since most of the radiochemicals are preferentially water soluble, an apparatus for washing the radiochemicals out into water and discharging into the normal drainage system in a high diluted form is described. Despite the disadvantages (low efficiency, high water usuage, loss of solvent in presence of surface active agents, precipitation of phosphors from dioxan based liquids) it is felt that the method has some merit if a suitably improved apparatus can be designed at reasonable cost. (U.K.)

  14. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  15. An asymptotic analytical solution to the problem of two moving boundaries with fractional diffusion in one-dimensional drug release devices

    International Nuclear Information System (INIS)

    Yin Chen; Xu Mingyu

    2009-01-01

    We set up a one-dimensional mathematical model with a Caputo fractional operator of a drug released from a polymeric matrix that can be dissolved into a solvent. A two moving boundaries problem in fractional anomalous diffusion (in time) with order α element of (0, 1] under the assumption that the dissolving boundary can be dissolved slowly is presented in this paper. The two-parameter regular perturbation technique and Fourier and Laplace transform methods are used. A dimensionless asymptotic analytical solution is given in terms of the Wright function

  16. Mechanism and kinetics of hydrated electron diffusion

    International Nuclear Information System (INIS)

    Tay, Kafui A.; Coudert, Francois-Xavier; Boutin, Anne

    2008-01-01

    Molecular dynamics simulations are used to study the mechanism and kinetics of hydrated electron diffusion. The electron center of mass is found to exhibit Brownian-type behavior with a diffusion coefficient considerably greater than that of the solvent. As previously postulated by both experimental and theoretical works, the instantaneous response of the electron to the librational motions of surrounding water molecules constitutes the principal mode of motion. The diffusive mechanism can be understood within the traditional framework of transfer diffusion processes, where the diffusive step is akin to the exchange of an extramolecular electron between neighboring water molecules. This is a second-order process with a computed rate constant of 5.0 ps -1 at 298 K. In agreement with experiment the electron diffusion exhibits Arrhenius behavior over the temperature range of 298-400 K. We compute an activation energy of 8.9 kJ mol -1 . Through analysis of Arrhenius plots and the application of a simple random walk model it is demonstrated that the computed rate constant for exchange of an excess electron is indeed the phenomenological rate constant associated with the diffusive process

  17. Permeation of aromatic solvent mixtures through nitrile protective gloves.

    Science.gov (United States)

    Chao, Keh-Ping; Hsu, Ya-Ping; Chen, Su-Yi

    2008-05-30

    The permeation of binary and ternary mixtures of benzene, toluene, ethyl benzene and p-xylene through nitrile gloves were investigated using the ASTM F739 test cell. The more slowly permeating component of a mixture was accelerated to have a shorter breakthrough time than its pure form. The larger differences in solubility parameter between a solvent mixture and glove resulted in a lower permeation rate. Solubility parameter theory provides a potential approach to interpret the changes of permeation properties for BTEX mixtures through nitrile gloves. Using a one-dimensional diffusion model based on Fick's law, the permeation concentrations of ASTM F739 experiments were appropriately simulated by the estimated diffusion coefficient and solubility. This study will be a fundamental work for the risk assessment of the potential dermal exposure of workers wearing protective gloves.

  18. Determination of hydrogen diffusivity and permeability in W near room temperature applying a tritium tracer technique

    International Nuclear Information System (INIS)

    Ikeda, T.; Otsuka, T.; Tanabe, T.

    2011-01-01

    Tungsten is a primary candidate of plasma facing material in ITER and beyond, owing to its good thermal property and low erosion. But hydrogen solubility and diffusivity near ITER operation temperatures (below 500 K) have scarcely studied. Mainly because its low hydrogen solubility and diffusivity at lower temperatures make the detection of hydrogen quite difficult. We have tried to observe hydrogen plasma driven permeation (PDP) through nickel and tungsten near room temperatures applying a tritium tracer technique, which is extremely sensible to detect tritium diluted in hydrogen. The apparent diffusion coefficients for PDP were determined by permeation lag times at first time, and those for nickel and tungsten were similar or a few times larger than those for gas driven permeation (GDP). The permeation rates for PDP in nickel and tungsten were larger than those for GDP normalized to the same gas pressure about 20 and 5 times larger, respectively.

  19. Transport and calorimetric properties of AISI 321 by pulse thermal diffusivity and calorimetric techniques

    International Nuclear Information System (INIS)

    Perovic, N.L.; Maglic, K.D.; Stanimirovic, A.M.; Vukovic, G.S.

    1995-01-01

    The study of the thermophysical properties of AISI 321 stainless steel was the last part of work within the IAEA-coordinated Research Programme for the Establishment of a Database of Thermophysical Properties of LW and HW Reactor Materials (IAEA CRP) effected at the Institute of Nuclear Sciences Vinca (NIV). The AISI 321 stainless steel belongs to the group of construction materials whose thermophysical and calorimetric properties have significance for the IAEA CRP. Because there have been few investigations of the thermal properties of this material, the CRP foresaw the need for new measurements, which are reported in this paper. Experimental research performed at NIV consisted of the investigation of thermal diffusivity, electric resistivity, and specific heat capacity of this austenitic stainless steel. The thermal diffusivity was measured by the laser pulse technique, and the elastic resistivity and specific heat capacity were determined by use of millisecond-resolution pulse calorimetry. All measurements were performed from ambient temperature to above 1000 o C, within which temperature range the material maintains its structure and stable thermophysical properties. Values for the thermal conductivity were computed from data on the thermal diffusivity, specific heat capacity, and the room-temperature density. (author)

  20. Diffusion affected magnetic field effect in exciplex fluorescence

    International Nuclear Information System (INIS)

    Burshtein, Anatoly I.; Ivanov, Anatoly I.

    2014-01-01

    The fluorescence of the exciplex, 1 [D +δ A −δ ], formed at contact of photoexcited acceptor 1 A * with an electron donor 1 D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1,3 [D + …A − ]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates

  1. Diffusion affected magnetic field effect in exciplex fluorescence

    Science.gov (United States)

    Burshtein, Anatoly I.; Ivanov, Anatoly I.

    2014-07-01

    The fluorescence of the exciplex, 1[D+δA-δ], formed at contact of photoexcited acceptor 1A* with an electron donor 1D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1, 3[D+…A-]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.

  2. Versatile Production of Poly(Epsilon-Caprolactone Fibers by Electrospinning Using Benign Solvents

    Directory of Open Access Journals (Sweden)

    Liliana Liverani

    2016-04-01

    Full Text Available The electrospinning technique is widely used for the fabrication of micro- and nanofibrous structures. Recent studies have focused on the use of less toxic and harmful solvents (benign solvents for electrospinning, even if those solvents usually require an accurate and longer process of optimization. The aim of the present work is to demonstrate the versatility of the use of benign solvents, like acetic acid and formic acid, for the fabrication of microfibrous and nanofibrous electrospun poly(epsilon-caprolactone mats. The solvent systems were also shown to be suitable for the fabrication of electrospun structures with macroporosity, as well as for the fabrication of composite electrospun mats, fabricated by the addition of bioactive glass (45S5 composition particles in the polymeric solution.

  3. TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique

    Science.gov (United States)

    Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.

    2018-06-01

    Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.

  4. Evaluation of 14C labelled solvents for its use in the E.R.A. technique in the case of curing of unsaturated poliesters

    International Nuclear Information System (INIS)

    Pisarello de Troparevsky, M.L.; Mitta, A.E.A.; Troparevsky, Alejandro

    1978-05-01

    The Evaporative Rate Analysis (E.R.A.) technique was evaluated for the study of the curing of unsaturated polyesters as a function of time. Ethylene glycol monoethyl ether acetate 14 C was found to be a suitable solvent for this purpose. Determinations take less than 5 minutes, thus avoiding the problems of long test-time which often introduces uncertainly about the real curing time of the sample. (author) [es

  5. On the coupling between molecular diffusion and solvation shell exchange

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Rey, Rossend; Masia, Marco

    2005-01-01

    The connection between diffusion and solvent exchanges between first and second solvation shells is studied by means of molecular dynamics simulations and analytic calculations, with detailed illustrations for water exchange for the Li+ and Na+ ions, and for liquid argon. First, two methods...

  6. Kinetic investigations of emulsion- and solvent-mediated radiation induced graft copolymerization of glycidyl methacrylate onto nylon-6 fibres

    International Nuclear Information System (INIS)

    Teo Ming Ting; Paveswari Sithambaranathan

    2017-01-01

    Kinetic behaviour of graft copolymerisation of glycidyl methacrylate onto nylon-6 fibres in solvent- and emulsion- media was investigated. The order for the dependence of the initial rate of grafting on the monomer concentration for solvent and emulsion grafting systems were found to be 1.65 and 1.57, respectively. The order of dependence of the initial rate of grafting on the absorbed dose was found to be 1.55 for solvent and 0.62 emulsion grafting systems. The results showed that grafting in both systems is controlled by diffusion mechanism and the degree of grafting can be effectively tuned by variation of the grafting parameters. (author)

  7. Exploring Solvent Shape and Function Using - and Isomer-Selective Vibrational Spectroscopy

    Science.gov (United States)

    Johnson, Mark

    2010-06-01

    We illustrate the new types of information than can be obtained through isomer-selective ``hole-burning'' spectroscopy carried out in the vibrational manifolds of Ar-tagged cluster ions. Three examples of increasing complexity will be presented where the changes in a solute ion are correlated with different morphologies of a surrounding solvent cage. In the first, we discuss the weak coupling limit where different hydration morphologies lead to small distortions of a covalent ion. We then introduce the more interesting case of the hydrated electron, where different shapes of the water network lead to dramatic changes in the extent of delocalization in the diffuse excess electron cloud. We then turn to the most complex case involving hydration of the nitrosonium ion, where different arrangements of the same number of water molecules span the range in behavior from simple solvation to actively causing a chemical reaction. The latter results are particularly interesting as they provide a microscopic, molecular-level picture of the ``solvent coordinate'' commonly used to describe solvent mediated processes.

  8. Solvent extraction of Zn and metals in Zn ores by nonphosphorous solvents

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Tostain, Jacqueline.

    1975-07-01

    This bibliography follows a first work on Zn solvent extraction by organo-phosphorous compounds. The other solvents used in Zn extraction, are studied: oxygenated nonphosphorous solvents (ketones, alcohols, carboxylic acids, sulfonates), nitrogenous solvents and hydrocarbons [fr

  9. Solvent Effects on Protein Folding/Unfolding

    Science.gov (United States)

    García, A. E.; Hillson, N.; Onuchic, J. N.

    Pressure effects on the hydrophobic potential of mean force led Hummer et al. to postulate a model for pressure denaturation of proteins in which denaturation occurs by means of water penetration into the protein interior, rather than by exposing the protein hydrophobic core to the solvent --- commonly used to describe temperature denaturation. We study the effects of pressure in protein folding/unfolding kinetics in an off-lattice minimalist model of a protein in which pressure effects have been incorporated by means of the pair-wise potential of mean force of hydrophobic groups in water. We show that pressure slows down the kinetics of folding by decreasing the reconfigurational diffusion coefficient and moves the location of the folding transition state.

  10. Characterization and Compatibility Studies of Different Rate Retardant Polymer Loaded Microspheres by Solvent Evaporation Technique: In Vitro-In Vivo Study of Vildagliptin as a Model Drug

    Directory of Open Access Journals (Sweden)

    Irin Dewan

    2015-01-01

    Full Text Available The present study has been performed to microencapsulate the antidiabetic drug of Vildagliptin to get sustained release of drug. The attempt of this study was to formulate and evaluate the Vildagliptin loaded microspheres by emulsion solvent evaporation technique using different polymers like Eudragit RL100, Eudragit RS100, Ethyl cellulose, and Methocel K100M. In vitro dissolution studies were carried out in 0.1 N HCl for 8 hours according to USP paddle method. The maximum and minimum drug release were observed as 92.5% and 68.5% from microspheres, respectively, after 8 hours. Release kinetics were studied in different mathematical release models to find out the linear relationship and release rate of drug. The SEM, DSC, and FTIR studies have been done to confirm good spheres and smooth surface as well as interaction along with drug and polymer. In this experiment, it is difficult to explain the exact mechanism of drug release. But the drug might be released by both diffusion and erosion as the correlation coefficient (R2 best fitted with Korsmeyer model and release exponent (n was 0.45–0.89. At last it can be concluded that all in vitro and in vivo experiments exhibited promising result to treat type II diabetes mellitus with Vildagliptin microspheres.

  11. [Study on predicting sugar content and valid acidity of apples by near infrared diffuse reflectance technique].

    Science.gov (United States)

    Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping

    2005-11-01

    The nondestructive method for quantifying sugar content (SC) and available acid (VA) of intact apples using diffuse near infrared reflectance and optical fiber sensing techniques were explored in the present research. The standard sample sets and prediction models were established by partial least squares analysis (PLS). A total of 120 Shandong Fuji apples were tested in the wave number of 12,500 - 4000 cm(-1) using Fourier transform near infrared spectroscopy. The results of the research indicated that the nondestructive quantification of SC and VA, gave a high correlation coefficient 0.970 and 0.906, a low root mean square error of prediction (RMSEP) 0.272 and 0.056 2, a low root mean square error of calibration (RMSEC) 0.261 and 0.0677, and a small difference between RMSEP and RMSEC 0.011 a nd 0.0115. It was suggested that the diffuse nearinfrared reflectance technique be feasible for nondestructive determination of apple sugar content in the wave number range of 10,341 - 5461 cm(-1) and for available acid in the wave number range of 10,341 - 3818 cm(-1).

  12. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  13. Diffusion affected magnetic field effect in exciplex fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Burshtein, Anatoly I. [Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Anatoly I., E-mail: Anatoly.Ivanov@volsu.ru [Volgograd State University, University Avenue, 100, Volgograd 400062 (Russian Federation)

    2014-07-14

    The fluorescence of the exciplex, {sup 1}[D{sup +δ}A{sup −δ}], formed at contact of photoexcited acceptor {sup 1}A{sup *} with an electron donor {sup 1}D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, {sup 1,3}[D{sup +}…A{sup −}]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.

  14. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    Science.gov (United States)

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  15. Encapsulating acetaminophen into poly(L-lactide) microcapsules by solvent-evaporation technique in an O/W emulsion.

    Science.gov (United States)

    Lai, M-K; Tsiang, R C-C

    2004-05-01

    Microencapsulation of acetaminophen in poly(L-lactide) was studied using the oil-in-water emulsification solvent-evaporation technique. Methylene chloride was used as the dispersed medium and water as the dispersing medium. The thermogravimetric analysis and differential scanning calorimetry data indicated that the acetaminophen was encapsulated and uniformly distributed in the poly(L-lactide) microcapsules. The addition of either gelatin or polyvinyl alcohol as the protective colloid to the emulsion was found to have a significant impact on the resulting microcapsules. Increasing the concentration of either protective colloid in the dispersing medium increased the recovery and the release rate of acetaminophen, but reduced the particle size and loading efficiency of the microcapsules. Scanning electron micrographs manifested that all the microcapsules attained a nearly round shape. While gelatin imparted a smooth topography to the surface of the microcapsules, PVA made the surface of the microcapsules bumpy and humped.

  16. Mercuric iodide crystals obtained by solvent evaporation using ethanol

    International Nuclear Information System (INIS)

    Ugucioni, J.C.; Ghilardi Netto, T.; Mulato, M.

    2010-01-01

    Millimeter-sized mercuric iodide crystals were fabricated by the solvent evaporation technique using pure ethanol as a solvent. Three different conditions for solution evaporation were tested: (i) in the dark at room temperature; (ii) in the presence of light at room temperature and (iii) in an oven at 40 deg. C. Morphology, structure, optical and electrical properties were investigated using several techniques. Crystals fabricated in the dark show better properties and stability than others, possibly because the larger the energy of the system, the larger the number of induced growth defects. The crystals fabricated in the dark have adequate structure for higher resistivity and activation energy close to half the optical band-gap, as desired. With proper encapsulation these crystals might be good candidates for the development of ionizing radiation sensors.

  17. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.

    2014-01-06

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  18. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.; Al-Mulla, Noah

    2014-01-01

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  19. Effect of solvent and temperature on solution-crystallized terfenadine

    International Nuclear Information System (INIS)

    Leitao, M. Luisa P.; Canotilho, Joao; Ferreira, Simone C.R.; Sousa, Adriano T.; Simoes Redinha, J.

    2004-01-01

    The aim of this work was to understand the crystallization process of terfenadine in solution. Cooling of saturated solutions prepared at 50 deg. C at different temperatures, evaporating the solvent from nearly saturated solutions at a certain temperature, and exposing ethanol solutions of terfenadine to water vapour atmosphere were the techniques used for obtaining terfenadine specimens. The characterization of these specimens was carried out by thermal microscopy, differential thermal analysis, thermogravimetry and powder X-ray diffraction. Crystalline phases, amorphous solids, and solvates were identified. For the solvents used in the present study, the crystallinity degree of terfenadine decreases from ethanol-water to ethanol and from this to methanol. Decreasing the temperature promotes the formation of amorphous solid material; at low temperatures, methanol and ethanol solvates are also formed. Desolvation, following the terfenadine aggregation process in solution accounts for the different behaviour found for the solvents and for the effect of temperature on the structure. The role of the solvent as structure-mediator is explained on the grounds of the values previously published for the enthalpy of solution of terfenadine in the solvents under study

  20. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique: A methodological study of the aging brain

    International Nuclear Information System (INIS)

    Chen, Z.G.; Hindmarsh, T.; Li, T.Q.

    2001-01-01

    Purpose: To quantify age-related changes of the average diffusion coefficient value in normal adult brain using orientation-independent diffusion tensor trace mapping and to address the methodological influences on diffusion quantification. Material and Methods: Fifty-four normal subjects (aged 20-79 years) were studied on a 1.5-T whole-body MR medical unit using a diffusion-weighted single-shot echo-planar imaging technique. Orientation-independent diffusion tensor trace maps were constructed for each subject using diffusion-weighted MR measurements in four different directions using a tetrahedral gradient combination pattern. The global average (including cerebral spinal fluid) and the tissue average of diffusion coefficients in adult brains were determined by analyzing the diffusion coefficient distribution histogram for the entire brain. Methodological influences on the measured diffusion coefficient were also investigated by comparing the results obtained using different experimental settings. Results: Both global and tissue averages of the diffusion coefficient are significantly correlated with age (p<0.03). The global average of the diffusion coefficient increases 3% per decade after the age of 40, whereas the increase in the tissue average of diffusion coefficient is about 1% per decade. Experimental settings for self-diffusion measurements, such as data acquisition methods and number of b-values, can slightly influence the statistical distribution histogram of the diffusion tensor trace and its average value. Conclusion: Increased average diffusion coefficient in adult brains with aging are consistent with findings regarding structural changes in the brain that have been associated with aging. The study also demonstrates that it is desirable to use the same experimental parameters for diffusion coefficient quantification when comparing between different subjects and groups of interest

  1. Membrane formation : diffusion induced demixing processes in ternary polymeric systems

    NARCIS (Netherlands)

    Reuvers, Albertus Johannes

    1987-01-01

    In this thesis the mechanism of membrane formation by means of immersion precipitation is studied. Immersion of a concentrated polymer solution film into a nonsolvent bath induces an exchange of solvent and nonsolvent in the film by means of diffusion. This process results in an asymmetric polymer

  2. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  3. Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Sehlin, Emma; Lundstedt, Staffan; Andersson, Patrik L.; Haglund, Peter; Tysklind, Mats

    2007-01-01

    The aim of this study was to evaluate different techniques for assessing the availability of polycyclic aromatic hydrocarbons (PAHs) in soil. This was done by comparing the amounts (total and relative) taken up by the earthworm Eisenia fetida with the amounts extracted by solid-phase microextraction (SPME), semi-permeable membrane devices (SPMDs), leaching with various solvent mixtures, leaching using additives, and sequential leaching. Bioconcentration factors of PAHs in the earthworms based on equilibrium partitioning theory resulted in poor correlations to observed values. This was most notable for PAHs with high concentrations in the studied soil. Evaluation by principal component analysis (PCA) showed distinct differences between the evaluated techniques and, generally, there were larger proportions of carcinogenic PAHs (4-6 fused rings) in the earthworms. These results suggest that it may be difficult to develop a chemical method that is capable of mimicking biological uptake, and thus estimating the bioavailability of PAHs. - The total and relative amounts of PAHs extracted by abiotic techniques for assessing the bioavailability of PAHs was found to differ from the amounts taken up by Eisenia fetida

  4. Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives

    Energy Technology Data Exchange (ETDEWEB)

    Bergknut, Magnus [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden)]. E-mail: magnus.bergknut@chem.umu.se; Sehlin, Emma [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden); Lundstedt, Staffan [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden); Andersson, Patrik L. [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden); Haglund, Peter [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden); Tysklind, Mats [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden)

    2007-01-15

    The aim of this study was to evaluate different techniques for assessing the availability of polycyclic aromatic hydrocarbons (PAHs) in soil. This was done by comparing the amounts (total and relative) taken up by the earthworm Eisenia fetida with the amounts extracted by solid-phase microextraction (SPME), semi-permeable membrane devices (SPMDs), leaching with various solvent mixtures, leaching using additives, and sequential leaching. Bioconcentration factors of PAHs in the earthworms based on equilibrium partitioning theory resulted in poor correlations to observed values. This was most notable for PAHs with high concentrations in the studied soil. Evaluation by principal component analysis (PCA) showed distinct differences between the evaluated techniques and, generally, there were larger proportions of carcinogenic PAHs (4-6 fused rings) in the earthworms. These results suggest that it may be difficult to develop a chemical method that is capable of mimicking biological uptake, and thus estimating the bioavailability of PAHs. - The total and relative amounts of PAHs extracted by abiotic techniques for assessing the bioavailability of PAHs was found to differ from the amounts taken up by Eisenia fetida.

  5. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    Science.gov (United States)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    groundwater sampling provide reference data within the project and for calibrating interpretations. In our studies, we show the results from DCIP measurements from two different areasin sothern Sweden with chlorinated solvent contamination. From one of the areas, a pilot test on stimulation reductive dechlorination has been carried out and the treated area reveals sharp anomalies in the DCIP response. Time lapse measurements show changes within the stimulated area and this could be used to follow remediation changes and i.e. groundwater quality changes. Tests with DCIP time lapse are also carried out in the second area together with multiple CSIA analyses of groundwater samples and ongoing is the planning for the gas samples. Evaluation of the possible uses, benefits and limitations of the technique for monitoring changes and delimit polluted areas to be able to monitor and follow groundwater quality changes is ongoing.

  6. Ultra-high performance size-exclusion chromatography in polar solvents.

    Science.gov (United States)

    Vancoillie, Gertjan; Vergaelen, Maarten; Hoogenboom, Richard

    2016-12-23

    Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2μm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  8. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-10-08

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  9. Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations.

    Science.gov (United States)

    Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi

    2018-01-01

    The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.

  10. Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents

    International Nuclear Information System (INIS)

    Pal, Haridas; Nad, Sanjukta; Kumbhakar, Manoj

    2003-01-01

    Photophysical properties of coumarin-120 (C120; 7-amino-4-methyl-1,2-benzopyrone) dye have been investigated in different solvents using steady-state and time-resolved fluorescence and picosecond laser flash photolysis (LFP) and nanosecond pulse radiolysis (PR) techniques. C120 shows unusual photophysical properties in nonpolar solvents compared to those in other solvents of moderate to higher polarities. Where the Stokes shifts (Δν-bar=ν-bar abs -ν-bar fl ), fluorescence quantum yields (Φ f ), and fluorescence lifetimes (τ f ) show more or less linear correlation with the solvent polarity function Δf={(ε-1)/(2ε+1)-(n 2 -1)/(2n 2 +1)}, all these parameters are unusually lower in nonpolar solvents. Unlike in other solvents, both Φ f and τ f in nonpolar solvents are also strongly temperature dependent. It is indicated that the excited singlet (S 1 ) state of C120 undergoes a fast activation-controlled nonradiative deexcitation in nonpolar solvents, which is absent in all other solvents. LFP and PR studies indicate that the intersystem crossing process is negligible for the present dye in all the solvents studied. Photophysical behavior of C120 in nonpolar solvent has been rationalized assuming that in these solvents the dye exists in a nonpolar structure, with its 7-NH 2 group in a pyramidal configuration. In this structure, since the 7-NH 2 group is bonded to the 1,2-benzopyrone moiety by a single bond, the former group can undergo a fast flip-flop motion, which in effect causes the fast nonradiative deexcitation of the dye excited state. In moderate to higher polarity solvents, it is indicated that the dye exists in an intramolecular charge-transfer structure, where the bond between 7-NH 2 group and the 1,2-benzopyrone moiety attains substantial double bond character. In this structure, the flip-flop motion of the 7-NH 2 group is highly restricted and thus there is no fast nonradiative deexcitation process for the excited dye

  11. Tuning crystalline ordering by annealing and additives to study its effect on exciton diffusion in a polyalkylthiophene copolymer.

    Science.gov (United States)

    Chowdhury, Mithun; Sajjad, Muhammad T; Savikhin, Victoria; Hergué, Noémie; Sutija, Karina B; Oosterhout, Stefan D; Toney, Michael F; Dubois, Philippe; Ruseckas, Arvydas; Samuel, Ifor D W

    2017-05-17

    The influence of various processing conditions on the singlet exciton diffusion is explored in films of a conjugated random copolymer poly-(3-hexylthiophene-co-3-dodecylthiophene) (P3HT-co-P3DDT) and correlated with the degree of crystallinity probed by grazing incidence X-ray scattering and with exciton bandwidth determined from absorption spectra. The exciton diffusion coefficient is deduced from exciton-exciton annihilation measurements and is found to increase by more than a factor of three when thin films are annealed using CS 2 solvent vapour. A doubling of exciton diffusion coefficient is observed upon melt annealing at 200 °C and the corresponding films show about 50% enhancement in the degree of crystallinity. In contrast, films fabricated from polymer solutions containing a small amount of either solvent additive or nucleating agent show a decrease in exciton diffusion coefficient possibly due to formation of traps for excitons. Our results suggest that the enhancement of exciton diffusivity occurs because of increased crystallinity of alkyl-stacking and longer conjugation of aggregated chains which reduces the exciton bandwidth.

  12. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    Science.gov (United States)

    Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-01-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g−1 at 1.5 A g−1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g−1 at 1.5 A g−1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors. PMID:28989753

  13. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    Science.gov (United States)

    Anil Kumar, Yedluri; Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-09-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g-1 at 1.5 A g-1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g-1 at 1.5 A g-1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors.

  14. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  15. Diffusion of $^{52}$Mn in GaAs

    CERN Multimedia

    2002-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of Mn in GaAs under intrinsic conditions in a previously un-investigated temperature region. The aim of the presently proposed experiments is twofold. \\begin{itemize} \\item A quantitative study of Mn diffusion in GaAs at low Mn concentrations would be decisive in providing new information on the diffusion mechanism involved. \\item As Ga vacancies are expected to be involved in the Mn diffusion process it can be predicted that also the GaAs material growth technique most likely plays a role. To clarify this assumption diffusion experiments will be conducted for GaAs material grown by two different techniques. \\end{itemize} For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{52}$Mn$^{+}$ ion beam.

  16. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Stephen J.; Timmons, Adam [General Motors R and D Center, MC 480-102-000, Warren, MI 48090-9055 (United States); Pitz, William J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2009-09-05

    Under abusive conditions Li-ion cells can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical and combustion properties of these gases that determine whether they ignite and how energetically they burn. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. We also show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this contrast is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak heat release rate of an analogous propane flame. Interestingly, peak temperatures differ by only 25%. We argue that heat release rate is a more useful parameter than temperature when evaluating the likelihood that a flame in one cell will ignite a neighboring cell. Our results suggest that thermochemical and combustion property factors might well be considered when choosing solvent mixtures when flammability is a concern. (author)

  17. Solvent Dependency in the Quantum Efficiency of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] Aniline Hydrochloride.

    Science.gov (United States)

    Pathrose, Bini; Nampoori, V P N; Radhakrishnan, P; Sahira, H; Mujeeb, A

    2015-05-01

    In the present work dual beam thermal lens technique is used for studying the solvent dependency on the quantum efficiency of a novel dye used for biomedical applications. The role of solvent in the absolute fluorescence quantum yield of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] aniline hydrochloride is studied using thermal lens technique. It is observed that the variation in solvents and its concentration results considerable variations in the fluorescence quantum yield. These variations are due to the non-radiative relaxation of the absorbed energy and because of the different solvent properties. The highest quantum yield of the dye is observed in the polar protic solvent-water.

  18. Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.

    Science.gov (United States)

    Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo

    2015-01-01

    This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.

  19. Self-thermophoresis and thermal self-diffusion in liquids and gases.

    Science.gov (United States)

    Brenner, Howard

    2010-09-01

    This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.

  20. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    Science.gov (United States)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  1. Translational and rotational diffusion of dilute solid amorphous spherical nanocolloids by molecular dynamics simulation

    Science.gov (United States)

    Heyes, D. M.; Nuevo, M. J.; Morales, J. J.

    Following on from our previous study (Heyes, D. M., Nuevo, M. J, and Morales, J. J., 1996, Molec. Phys., 88, 1503), molecular dynamics simulations have been carried out of translational and rotational diffusion of atomistically rough near-spherical solid Lennard-Jones (LJ) clusters immersed in a Weeks-Chandler-Andersen liquid solvent. A single cluster consisting of up to about 100LJ particles as part of an 8000 atom fluid system was considered in each case. The translational and rotational diffusion coefficients decrease with increasing cluster size and solvent density (roughly in proportion to the molar volume of the solvent). The simulations reveal that for clusters in excess of about 30LJ atoms there is a clear separation of timescales between angular velocity and orientation relaxation which adhere well to the small-step diffusion model encapsulated in Hubbard's relationship. For 100 atom clusters both the StokesEinstein (translation) and Stokes-Einstein-Debye (rotation) equations apply approximately. The small departures from these reference solutions indicate that the translational relaxation experiences a local viscosity in excess of the bulk value (typically by ~ 30%), whereas rotational relaxation experiences a smaller viscosity than the bulk (typically by ~ 30%) reasonably in accord with the Gierer-Wirtz model. Both of these observations are consistent with an observed layering of the liquid molecules next to the cluster observed in our previous study.

  2. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing: Solvent and Thickness Effects

    Directory of Open Access Journals (Sweden)

    Qiuyan Yang

    2017-10-01

    Full Text Available Solvent vapor annealing of block copolymer (BCP thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for nanolithography and hybrid materials preparation. However, precise control of the arising morphologies is essential, but in most cases difficult to achieve. In this work, we investigated the solvent and thickness effects on the morphology of poly(styrene-b-2 vinyl pyridine (PS-b-P2VP thin films with a film thickness range from 0.4 L0 up to 0.8 L0. Ordered perpendicular structures were achieved. One of the main merits of our work is that the phase behavior of the ultra-high molecular weight BCP thin films, which hold a 100-nm sized domain distance, can be easily monitored via current available techniques, such as scanning electron microscope (SEM, atomic force microscope (AFM, and transmission electron microscope (TEM. Systematic monitoring of the self-assembly behavior during solvent vapor annealing can thus provide an experimental guideline for the optimization of processing conditions of related BCP films systems.

  3. Measurement of internal quality of watermelon by Vis/NIR diffuse transmittance technique

    Science.gov (United States)

    Tian, Haiqing; Xu, Huirong; Ying, Yibin; Lu, Huishan; Yu, Haiyan

    2006-10-01

    Watermelon is a popular fruit in the world. Soluble solids content (SSC) is major characteristic used for assessing watermelon internal quality. This study was about a method for nondestructive internal quality detection of watermelons by means of visible/Near Infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer when the watermelon was in motion (1.4m/s) and in static state. Spectra data were analyzed by partial least squares (PLS) method. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models and the PLS method can provide good results. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon both in motion and in static state, and the predicted values were highly correlated with destructively measured values. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon internal quality in a nondestructive way.

  4. Solvent extraction of gold using ionic liquid based process

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  5. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  6. Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

    Directory of Open Access Journals (Sweden)

    John Canning

    2014-03-01

    Full Text Available Percolation diffusion into long (11.5 cm self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS. Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm2∙s−1 of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10−4 nm2∙s−1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described.

  7. Development of dispersive liquid-liquid microextraction technique using ternary solvents mixture followed by heating for the rapid and sensitive analysis of phthalate esters and di(2-ethylhexyl) adipate.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Khoshmaram, Leila

    2015-01-30

    In this study, for the first time, a dispersive liquid-liquid microextraction technique using a ternary solvent mixture is reported. In order to extract five phthalate esters and di(2-ethylhexyl) adipate with different polarities from aqueous samples, a simplex centroid experimental design method was used to select an optimal mixture of ternary solvents prior to gas chromatographyflame ionization detection. In this work, dimethyl formamide as a disperser solvent containing dichloromethane, chloroform, and carbon tetrachloride as a ternary extraction solvent mixture is injected into sample solution and a cloudy solution is formed. After centrifuging, 250μL of the obtained sedimented phase was transferred into another tube and 5μL DMF was added to it. Then, the tube was heated in a water bath at 75°C for 5min in order to evaporate the main portion of the extraction solvents. Finally, 2μL of the remained phase is injected into the separation system. Under the optimum extraction conditions, the method shows wide linear ranges and low limits of detection and quantification between 0.03-0.15 and 0.09-0.55μgL(-1), respectively. Enrichment factors and extraction recoveries are in the ranges of 980-4500 and 20-90%, respectively. The method is successfully applied in the determination of the target analytes in mineral water, soda, lemon juice, vinegar, dough, and yogurt packed in plastic packages. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Application des techniques de diffusion de la lumière des rayons X et des neutrons à l'étude des systèmes colloïdaux. Première partie : Présentation théorique des trois techniques Application of Light, X-Ray and Neutron Diffusion Techniques to the Study of Colloidal Systems. Part One : Theoretical Description of Three Techniques

    Directory of Open Access Journals (Sweden)

    Espinat D.

    2006-11-01

    Full Text Available Les techniques de diffusion, des rayons X, des neutrons et de la lumière, jouent un rôle très important pour la compréhension des milieux colloïdaux. Peu d'articles de la littérature s'attachent à présenter conjointement les trois méthodes. Nous avons, dans la première partie de cet article, détaillé les principes théoriques en insistent tout particulièrement sur les spécificités de chacune. Après les rappels concernant la diffusion par les systèmes dilués, nous nous sommes intéressés aux systèmes concentrés pour lesquels les entités diffusantes sont en interaction. Les milieux dispersés montrent souvent une certaine polydispersité que l'on cherche à mesurer; les techniques de diffusion permettent cette mesure. Nous terminerons cette revue par une description des appareillages utilisés. La deuxième partie de cet article concernera une large illustration des possibilités de ces méthodes d'analyse à l'étude des systèmes colloïdaux, sur la base de travaux effectués à I'IFP (Institut Français du Pétrole ou dans de nombreux laboratoires de recherche extérieurs. This article aims to describe X-ray, neutron and light scattering techniques with emphasis on their specific nature and their scope of application. Indeed, whereas light diffusion has been used for a long time in research laboratories, in particular for characterizing polymers in solution, small angle X-ray scattering has been the subject of renewed interest in recent years. Neutron scattering, which is obviously more difficultly accessible, has proven to be extremely useful for studying various systems for which light and X-ray scattering remain relatively powerless. Whereas there is an abundant literature concerning various applications of the three methods, it should be noted that only a few articles have attempted to describe all three techniques at the same time. In this article we have tried to make up for this lack, and as such it was

  9. Diffusion mediated agglomeration of CdS nanoparticles via Langmuir–Blodgett technique

    International Nuclear Information System (INIS)

    Das, Nayan Mani; Roy, Dhrubojyoti; Gupta, P.S.

    2013-01-01

    Graphical abstract: - Highlights: • Diffusion mediated agglomeration of CdS nanoparticles are discussed. • Formation of CdS nanoparticles are confirmed by the change of chain length in XRD. • AFM shows the agglomeration of particles with a film swelling of about 5 Å. • UV–vis absorbance suggests that the grown particles show quantum confinement. • Hexagonal form of particle was confirmed by UV–vis reflectivity. - Abstract: We have reported a diffusion mediated agglomeration of cadmium sulphide (CdS) nanoparticles within cadmium arachidate (CdA 2 ) film matrix. The structural morphology and formation of CdS nanoparticles are characterized by X-ray diffraction (XRD), X-ray reflectivity (XRR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy techniques. X-ray diffraction (XRD) results show a change in bilayer difference from 53.04 Å to 43 Å after the sulphidation. An epitaxial growth of the films by ∼5 Å after sulphidation is confirmed from atomic force microscopy studies. The particle size calculated form UV–vis absorption edges are found to be varying from 2.6 nm to 3.3 nm for the different layers. A lateral dimension of 72–80 nm from AFM measurements and a size of 2.6–3.3 nm have confirmed one side flat pseudo two-dimensional disk-like nanoparticles. UV–vis reflectivity peak at E 1 (A) confirms the formation of hexagonal CdS nanoparticles along the c-axis

  10. Solvent Effects in the Hydrogenation of 2-Butanone

    Energy Technology Data Exchange (ETDEWEB)

    Akpa, B. S.; DAgostino, C.; Gladden, L. F.; Hindle, K.; Manyar, H.; McGregor, J.; Li, Ruoyu; Neurock, Matthew; Sinha, N.; Stitt, E. H.; Weber, D.; Zeitler, J. A.; Rooney, D. W.

    2012-03-27

    In liquid-phase reaction systems, the role of the solvent is often limited to the simple requirement of dissolving and/or diluting substrates. However, the correct choice, either pure or mixed, can significantly influence both reaction rate and selectivity. For multi-phase heterogeneously catalysed reactions observed variations may be due to changes in mass transfer rates, reaction mechanism, reaction kinetics, adsorption properties and combinations thereof. The liquid-phase hydrogenation of 2-butanone to 2- butanol over a Ru/SiO2 catalyst, for example, shows such complex rate behaviour when varying water/isopropyl alcohol (IPA) solvent ratios. In this paper, we outline a strategy which combines measured rate data with physical property measurements and molecular simulation in order to gain a more fundamental understanding of mixed solvent effects for this heterogeneously catalysed reaction. By combining these techniques, the observed complex behaviour of rate against water fraction is shown to be a combination of both mass transfer and chemical effects.

  11. Combination of chemical suppression techniques for dual suppression of fat and silicone at diffusion-weighted MR imaging in women with breast implants

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Dow-Mu; Hughes, J. [Royal Marsden Hospital, Department of Radiology, Sutton (United Kingdom); Blackledge, M.; Leach, M.O.; Collins, D.J. [Institute of Cancer Research, CR UK-EPSRC Cancer Imaging Centre, Sutton (United Kingdom); Burns, S. [Nuada 3T MRI Centre, London (United Kingdom); Stemmer, A.; Kiefer, B. [Siemens Healthcare, Erlangen (Germany)

    2012-12-15

    Silicone breast prostheses prove technically challenging when performing diffusion-weighted MR imaging in the breasts. We describe a combined fat and chemical suppression scheme to achieve dual suppression of fat and silicone, thereby improving the quality of diffusion-weighted images in women with breast implants. MR imaging was performed at 3.0 and 1.5 T in women with silicone breast implants using short-tau inversion recovery (STIR) fat-suppressed echo-planar (EPI) diffusion-weighted MR imaging (DWI) on its own and combined with the slice-select gradient-reversal (SSGR) technique. Imaging was performed using dedicated breast imaging coils. Complete suppression of the fat and silicone signal was possible at 3.0 T using EPI DWI with STIR and SSGR, evaluated with dedicated breast coils. However, a residual silicone signal was still perceptible at 1.5 T using this combined approach. Nevertheless, a further reduction in silicone signal at 1.5 T could be achieved by employing thinner slice partitions and the addition of the chemical-selective fat-suppression (CHESS) technique. DWI using combined STIR and SSGR chemical suppression techniques is feasible to eliminate or reduce silicone signal from prosthetic breast implants. (orig.)

  12. Detection of solvent losses (entrainment) in gas streams of process vessels using radioisotope tracing techniques

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir; Juhari Mohd Yusof

    2002-01-01

    Liquid droplets (MDEA aqueous solution) entrained in the gas streams can cause severe problems on chemical plants. On-line detection of liquid entrainment (carry over) into gas streams from process vessel is investigated using radioisotope iodine ( 131 I). In order to obtain information on whether there is any carry-over of MDEA in the vapour space leaving from the process system, a number of test and calibration injections involving the released of certain amount of tracer activity (mCi) at the inlet and overhead lines of the process vessels were made using a special injection device. MDEA solvent- tagged tracer in the overhead line of the designated process vessels was monitored using radiation scintillation detectors mounted externally at specified locations of the vessels. Output pulses (response curves) with respect to time of measurements from all detectors were plotted and analysed for the finger prints of solvent losses leaving the vessels. From this study, no distinguishable peaks were detected at the outlet vessels of the overhead lines. Thus, no significant MDEA solvent losses in the form of vapour being discovered along the gas streams due to the process taking place in the system. (Author)

  13. Analysis of solvent extracts from coal liquefaction in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Ying; Feng, Jie; Xie, Ke-Chang [Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024 (China); Kandiyoti, R. [Department of Chemical Engineering and Chemical Technology, Imperial College, University of London, London SW7 2BY (United Kingdom)

    2004-10-15

    Point of Ayr coal has been extracted using three solvents, tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP) at two temperatures 350 and 450 C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. The three solvents differ in solvent power and the ability to donate hydrogen atoms to stabilise free radicals produced by pyrolysis of the coal. The extracts were prepared in a flowing solvent reactor to minimise secondary thermal degradation of the primary extracts. Analysis of the pentane-insoluble fractions of the extracts was achieved by size exclusion chromatography, UV-fluorescence spectroscopy in NMP solvent and probe mass. With increasing extraction temperature, the ratio of the amount having big molecular weight to that having small molecular weight in tetralin extracts was increased; the tetralin extract yield increased from 12.8% to 75.9%; in quinoline, increasing extraction temperature did not have an effect on the molecular weight of products but there was a big increase in extract yield. The extracts in NMP showed the enhanced solvent extraction power at both temperatures, with a shift in the ratio of larger molecules to smaller molecules with increasing extraction temperature and with the highest conversion of Point of Ayr coal among these three solvents at both temperatures. Solvent adducts were detected in the tetralin and quinoline extracts by probe mass spectrometry; solvent products were formed from NMP at both temperatures.

  14. Solvent sensitivity of smart 3D-printed nanocomposite liquid sensor

    Science.gov (United States)

    Aliheidari, Nahal; Ameli, Amir; Pötschke, Petra

    2018-03-01

    Fused deposition modeling (FDM) is one of the 3D printing methods that has attracted significant attention. In this method, small and complex samples with nearly no limitation in geometry can be fabricated layer by layer to form end-use parts. This work investigates the liquid sensing behavior of FDM printed flexible thermoplastic polyurethane, TPU filled with multiwalled carbon nanotubes, MWCNTs. The sensing capability of printed TPU-MWCNT was studied as a function of MWCNT content and infill density in response to different solvents, i.e., ethanol, acetone and toluene. The solvents were selected based on their widespread use and importance in medical and industrial applications. U-shaped liquid sensors with 2, 3 and 4wt.% MWCNT content were printed at three different infill densities of 50, 75 and 100%. Solvent sensitivity was then characterized by immersing the sensors in the solvents and measuring the resistance evolution over 25s. The results indicated a sensitivity order of acetone > toluene > ethanol, which was in agreement with the predictions of FloryHiggins solubility equation. For all the solvents, the sensitivity was enhanced as the infill density of the printed samples was decreased. This was attributed to the increased surface area to volume ratio and shortened diffusion paths. The MWCNT content was also observed to have a profound effect on the sensitivity; in samples with partial infill, the sensitivity was found to be inversely proportional to the MWCNT content, such that the highest resistance change was obtained for nanocomposites with the lowest MWCNT content of 2wt.%. For instance, a resistance increase of more than 10 times was obtained in 25 s once TPU-2wt.%MWCNT with 50% infill was tested against acetone. The results of this work reveals that highly sensitive liquid sensors can be fabricated with the aid of 3D printing without the need for complex processing methods.

  15. Conceptual design study and evaluation of an advanced treatment process applying a submerged combustion technique for spent solvents

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fijine, Sachio; Chida, Mitsuhisa; Kirishima, Kenji.

    1993-10-01

    An advanced treatment process based on a submerged combustion technique was proposed for spent solvents and the distillation residues containing transuranium (TRU) nuclides. A conceptual design study and the preliminary cost estimation of the treatment facility applying the process were conducted. Based on the results of the study, the process evaluation on the technical features, such as safety, volume reduction of TRU waste and economics was carried out. The key requirements for practical use were also summarized. It was shown that the process had the features as follows: the simplified treatment and solidification steps will not generate secondary aqueous wastes, the volume of TRU solid waste will be reduced less than one tenth of that of a reference technique (pyrolysis process), and the facility construction cost is less than 1 % of the total construction cost of a future large scale reprocessing plant. As for the low level wastes of calcium phosphate, it was shown that the further removal of β · γ nuclides with TRU nuclides from the wastes would be required for the safety in interim storage and transportation and for the load of shielding. (author)

  16. Kinetic Model of Resin-Catalyzed Decomposition of Acetone Cyanohydrin in Organic Solvent

    Institute of Scientific and Technical Information of China (English)

    章亭洲; 杨立荣; 朱自强; 吴坚平

    2003-01-01

    Decomposition of acetone cyanohydrin is the first-step reaction for preparing (S)-α-cyano-3-phenoxybenzyl alcohol (CPBA) by the one-pot method in organic media. Considering the compatibility of biocatalysts with chemical catalysts and the successive operation in the bioreactor, anion exchange resin (D301) was used as catalyst for this reaction. External diffusion limitation was excluded by raising rotational speed to higher than 190r·min-1 in both solvents. Internal diffusion limitation was verified to be insignificant in this reaction system. The effect of acetone cyanohydrin concentration on the reaction was also investigated. An intrinsic kinetic model was proposed when the mass transfer limitation was excluded, and the average deviation of the model is 10.5%.

  17. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection pr...

  18. Solvent effects in the synergistic solvent extraction of Co2+

    International Nuclear Information System (INIS)

    Kandil, A.T.; Ramadan, A.

    1979-01-01

    The extraction of Co 2+ from a 0.1M ionic strength aqueous phase (Na + , CH 3 COOH) of pH = 5.1 was studied using thenoyltrifluoroacetone, HTTA, in eight different solvents and HTTA + trioctylphosphine oxide, TOPO, in the same solvents. A comparison of the effect of solvent dielectric constant on the equilibrium constant shows a synergism as a result of the increased hydrophobic character imparted to the metal complex due to the formation of the TOPO adduct. (author)

  19. Study of the uranium-zirconium diffusion; Etude de la diffusion uranium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The intermetallic diffusion of uranium fuel and zirconium used as cladding is studied. Intermetallic diffusion can occur during the cladding of uranium rods and uranium can penetrate the zirconium cladding. Different parameters are involved in this mechanism as structure and mechanical properties of the diffusion area as well as presence of impurities in the metal. The uses of different analysis techniques (micrography, Castaing electronic microprobe, microhardness and autoradiography) have permitted to determine with great accuracy the diffusion coefficient in gamma phase (body centered cubic system) and the results have given important information on the intermetallic diffusion mechanisms. The existence of the Kirkendall effect in the U-Zr diffusion is also an argument in favor of the generality of the diffusion mechanism by vacancies in body centered cubic system. (M.P.)

  20. Dimensional reduction of a general advection–diffusion equation in 2D channels

    Science.gov (United States)

    Kalinay, Pavol; Slanina, František

    2018-06-01

    Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick–Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient can be always found.

  1. SOLVENT FIRE BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D; Samuel Fink, S

    2006-05-22

    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  2. An overview of industrial solvent use or is there life after chlorinated solvents?

    International Nuclear Information System (INIS)

    Green, B.

    1991-01-01

    Everyone using industrial chemicals has been affected by the fire- storm of new regulations governing solvent use. How will companies currently using hazardous solvents prepare for the changes ahead? What will the impact be on commonly used industrial solvents? What effect are environmental pressures having on solvent use and disposal? Are the responsible individuals in your company up-to-date on phase-out schedules? This paper is written for an audience of compliance coordinators, consultants, production engineers and corporate management. In it, the either addresses the above questions and discusses the specific products affected. The author reviews currently available alternatives to chlorinated and hazardous solvents and introduces a simple system for rating alternatives. The program also includes a discussion of solvent minimization programs and worker reeducation

  3. Influences of Restaurant Waste Fats and Oils (RWFO from Grease Trap as Binder on Rheological and Solvent Extraction Behavior in SS316L Metal Injection Molding

    Directory of Open Access Journals (Sweden)

    Mohd Halim Irwan Ibrahim

    2016-02-01

    Full Text Available This article deals with rheological and solvent extraction behavior of stainless steel 316L feedstocks using Restaurant Waste Fats and Oils (RWFO from grease traps as binder components along with Polypropylene (PP copolymer as a backbone binder. Optimal binder formulation and effect of solvent extraction variables on green compacts are being analyzed. Four binder formulations based on volumetric ratio/weight fraction between PP and RWFO being mixed with 60% volumetric powder loading of SS316L powder each as feedstock. The rheological analysis are based on viscosity, shear rate, temperature, activation energy, flow behavior index, and moldability index. The optimal feedstock formulation will be injected to form green compact to undergo the solvent extraction process. Solvent extraction variables are based on solvent temperature which are 40 °C, 50 °C, and 60 °C with different organic solvents of n-hexane and n-heptane. Analysis of the weight loss percentage and diffusion coefficient is done on the green compact during the solvent extraction process. Differential Scanning Calorimeter (DSC is used to confirm the extraction of the RWFO in green compacts. It is found that all binder fractions exhibit pseudoplastic behavior or shear thinning where the viscosity decreases with increasing shear rate. After considering the factors that affect the rheological characteristic of the binder formulation, feedstock with binder formulation of 20/20 volumetric ratio between PP and RWFO rise as the optimal binder. It is found that the n-hexane solvent requires less time for extracting the RWFO at the temperature of 60 °C as proved by its diffusion coefficient.

  4. 1H NMR study of the solvent THF concerning their structural and dynamical properties in chemically Li-intercalated SWNT

    KAUST Repository

    Schmid, Marc R.

    2011-09-01

    Structural and dynamical properties of the THF solvent in single-walled carbon nanotubes intercalated with lithium are investigated by NMR. 1H NMR experiments reveal the existence of two types of inequivalent THF solvent molecules with different chemical environments and dynamical behavior. At low temperatures THF molecules perpendicularly arranged in between adjacent SWNT presumably exhibit a restricted rotation around their dipolar axis. At higher temperatures THF molecules are isotropically rotating and diffusing along the interstitial channels of the SWNT bundles. © 2011 Elsevier B.V. All rights reserved.

  5. 1H NMR study of the solvent THF concerning their structural and dynamical properties in chemically Li-intercalated SWNT

    KAUST Repository

    Schmid, Marc R.; Goze-Bac, Christophe; Bouhrara, Mohamed; Saih, Youssef; Mehring, Michael; Abou-Hamad, Edy

    2011-01-01

    Structural and dynamical properties of the THF solvent in single-walled carbon nanotubes intercalated with lithium are investigated by NMR. 1H NMR experiments reveal the existence of two types of inequivalent THF solvent molecules with different chemical environments and dynamical behavior. At low temperatures THF molecules perpendicularly arranged in between adjacent SWNT presumably exhibit a restricted rotation around their dipolar axis. At higher temperatures THF molecules are isotropically rotating and diffusing along the interstitial channels of the SWNT bundles. © 2011 Elsevier B.V. All rights reserved.

  6. An Expedient Method for the Synthesis of Thiosemicarbazones under Microwave Irradiation in Solvent-free Medium

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping; ZHENG, Peng-Zhi; ZHU, Jun-Ge; LIU, Rui-Jie; QU, Gui-Rong

    2006-01-01

    A simple, efficient and eco-friendly method for the synthesis of thiosemicarbazones from thiosemicarbazides and aldehyde under microwave irradiation has been reported, and no solvent and catalyst were used. And the technique of microwave irradiation coupled with solvent-free condition proved to be a quite valuable method in the organic synthesis.

  7. The Measurement of Thermal Diffusivity in Conductor and Insulator by Photodeflection Technique

    Science.gov (United States)

    Achathongsuk, U.; Rittidach, T.; Tipmonta, P.; Kijamnajsuk, P.; Chotikaprakhan, S.

    2017-09-01

    The purpose of this study is to estimate thermal diffusivities of high thermal diffusivity bulk material as well as low thermal diffusivity bulk material by using many types of fluid such as Ethyl alcohol and water. This method is studied by measuring amplitude and phase of photodeflection signal in various frequency modulations. The experimental setup consists of two laser lines: 1) a pump laser beams through a modulator, varied frequency, controlled by lock-in amplifier and focused on sample surface by lens. 2) a probe laser which parallels with the sample surface and is perpendicular to the pump laser beam. The probe laser deflection signal is obtained by a position sensor which controlled by lock-in amplifier. Thermal diffusivity is calculated by measuring the amplitude and phase of the photodeflection signal and compared with the thermal diffusivity of a standard value. The thermal diffusivity of SGG agrees well with the literature but the thermal diffusivity of Cu is less than the literature value by a factor of ten. The experiment requires further improvement to measure the thermal diffusivity of Cu. However, we succeed in using ethyl alcohol as the coupling medium instead of CCl4 which is highly toxic.

  8. Direct oxide reduction (DOR) solvent salt recycle in pyrochemical plutonium recovery operations

    International Nuclear Information System (INIS)

    Fife, K.W.; Bowersox, D.F.; Davis, C.C.; McCormick, E.D.

    1987-02-01

    One method used at Los Alamos for producing plutonium metal is to reduce the oxide with calcium metal in molten CaCl 2 at 850 0 C. The solvent CaCl 2 from this reduction step is currently discarded as low-level radioactive waste because it is saturated with the reaction by-product, CaO. We have developed and demonstrated a molten salt technique for rechlorinating the CaO, thereby regenerating the CaCl 2 and incorporating solvent recycle into the batch PuO 2 reduction process. We discuss results from the process development experiments and present our plans for incorporating the technique into an advanced design for semicontinuous plutonium metal production

  9. Solvent - solute interaction

    International Nuclear Information System (INIS)

    Urbanczyk, A.; Kalinowski, M.K.

    1983-01-01

    The electronic absorption spectrum of vanadyl acetylacetonate has been studied in 15 organic solvents. It has been found that wavenumbers and molar absorptivities of the long-wavelength bands (d-d transitions) can be well described by a complementary Lewis acid-base model including Gutmann's donor number [Gutmann V., Wychera E., Inorg. Nucl. Chem. Letters 2, 257 (1966)] and acceptor number [Mayer U., Gutmann V., Gerger W., Monatsh. Chem. 106, 1235 (1975)] of a solvent. This model describes also the solvent effect of the hyperfine splitting constant, Asub(iso)( 51 V), from e.s.r. spectra of VOacac 2 . These observations are discussed in terms of the donor-acceptor concept for solvent-solute interactions. (Author)

  10. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    Directory of Open Access Journals (Sweden)

    Anne-Gaëlle Sicaire

    2015-04-01

    Full Text Available The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil and non-food (bio fuel applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols. Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF as alternative solvent compared to hexane as petroleum solvent.

  11. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  12. Single-Molecule Tracking Study of the Permeability and Transverse Width of Individual Cylindrical Microdomains in Solvent-Swollen Polystyrene-block-poly(ethylene oxide) Films.

    Science.gov (United States)

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; Higgins, Daniel A; Ito, Takashi

    2016-12-01

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent molecules (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT ) and transverse variance of the 1D trajectories (σ δ 2 ), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. These results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.

  13. Universality of Viscosity Dependence of Translational Diffusion Coefficients of Carbon Monoxide, Diphenylacetylene, and Diphenylcyclopropenone in Ionic Liquids under Various Conditions.

    Science.gov (United States)

    Kimura, Y; Kida, Y; Matsushita, Y; Yasaka, Y; Ueno, M; Takahashi, K

    2015-06-25

    Translational diffusion coefficients of diphenylcyclopropenone (DPCP), diphenylacetylene (DPA), and carbon monoxide (CO) in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIm][NTf2]) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIm][NTf2]) were determined by the transient grating (TG) spectroscopy under pressure from 0.1 to 200 MPa at 298 K and from 298 to 373 K under 0.1 MPa. Diffusion coefficients of these molecules at high temperatures in tributylmethylphosphonium bis(trifluoromethanesulfonyl)imide ([P4441][NTf2]), and tetraoctylphosphonium bis(trifluoromethanesulfonyl)imide ([P8888][NTf2]), and also in the mixtures of [BMIm][NTf2], N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ([Pp13][NTf2]), and trihexyltetradecylphosphonium bis(trifluoromethanesulfonyl)imide ([P66614][NTf2]) with ethanol or chloroform have been determined. Diffusion coefficients except in ILs of phosphonium cations were well scaled by the power law of T/η, i.e., (T/η)(P), where T and η are the absolute temperature and the viscosity, irrespective of the solvent species, pressure and temperature, and the compositions of mixtures. The values of the exponent P were smaller for the smaller size of the molecules. On the other hand, the diffusion coefficients in ILs of phosphonium cations with longer alkyl chains were larger than the values expected from the correlation obtained by other ILs and conventional liquids. The deviation becomes larger with increasing the number of carbon atoms of alkyl-chain of cation, and with decreasing the molecular size of diffusing molecules. The molecular size dependence of the diffusion coefficient was correlated by the ratio of the volume of the solute to that of the solvent as demonstrated by the preceding work (Kaintz et al., J. Phys. Chem. B 2013 , 117 , 11697 ). Diffusion coefficients have been well correlated with the power laws of both T/η and the relative volume of the solute to the solvent.

  14. Tracer diffusion study in binary alloys

    International Nuclear Information System (INIS)

    Bocquet, Jean-Louis

    1973-01-01

    The diffusional properties of dilute alloys are quite well described with 5 vacancy jump frequencies: the diffusion experiments allow as to determine only 3 jump frequency ratios. The first experiment set, found by Howard and Manning, was used in order to determine the 3 frequency ratios in the dilute Cu-Fe alloy. N.V. Doan has shown that the isotope effect measurements may be replaced by easier electromigration experiments: this new method was used with success for the dilute Ag-Zn and Ag-Cd alloys. Two effects which take place in less dilute alloys cannot be explained with the 5 frequency model, these are: the linear enhancement of solute diffusion and the departure from linear enhancement of solvent diffusion versus solute concentration. To explain these effects, we have had to take account of the influence of solute pairs on diffusion via 53 new vacancy jump frequencies. Diffusion in a concentrated alloy can be described with a quasi-chemical approach: we show that a description with 'surrounded atoms' allows the simultaneous explanation of the thermodynamical properties of the binary solid solution, the dependence of atomic jump frequencies with respect to the local concentration of the alloy. In this model, the two atomic species have a jump frequency spectrum at their disposal, which seems to greatly modify Manning's correlation analysis. (author) [fr

  15. Counterion self-diffusion in polyelectrolyte solutions

    Science.gov (United States)

    Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.

    1997-12-01

    The self-diffusion coefficient of 0953-8984/9/50/019/img1, tetra-methylammonium 0953-8984/9/50/019/img2, tetra-ethylammonium 0953-8984/9/50/019/img3, tetra-propylammonium 0953-8984/9/50/019/img4 and tetra-butylammonium 0953-8984/9/50/019/img5 in solutions of the weak polymethacrylic acid (PMA) were measured with PFG NMR. No additional salt was present in any of the experiments. The polyion concentration and degree of neutralization were varied. The maximum relative counterion self-diffusion coefficient against polyion concentration, that was reported earlier, was observed for both alkali and tetra-alkylammonium 0953-8984/9/50/019/img6 counterions. We propose that the maximum is due to the combination of the obstruction by the polyion and the changing counterion distribution at increasing polyion concentration. An explanation of this proposal is offered in terms of the Poisson - Boltzmann - Smoluchowski (PBS) model for polyelectrolytes. Qualitative agreement of this model with experiment was found for the dependence of the counterion self-diffusion coefficient on the degree of neutralization of the polyion, on counterion radius and on polyion concentration, over a concentration range from 0.01 to 1 0953-8984/9/50/019/img7. Adaption of the theoretical obstruction, to fit the self-diffusion data of the solvent, also greatly improves the model predictions on the counterion self-diffusion.

  16. New RO TFC Membranes by Interfacial Polymerization in n-Dodecane with Various co-Solvents.

    Science.gov (United States)

    Al-Hobaib, Abdullah Sulaiman; Al-Suhybani, Mohammed Sulaiman; Al-Sheetan, Khalid Mohammed; Mousa, Hasan; Shaik, Mohammed Rafi

    2016-04-29

    The objective of this research is to prepare and characterize a new and highly efficient polyamide TFC RO membrane by interfacial polymerization in dodecane solvent mixed with co-solvents. Three co-solvents were tested namely; acetone, ethyl acetate, and diethyl ether of concentration of 0.5, 1, 2, 3, and 5 wt %. The modified membranes were characterized by SEM, EDX, AFM and contact angle techniques. The results showed that addition of co-solvent results in a decrease in the roughness, pore size and thickness of the produced membranes. However, as the concentration of the co-solvent increases the pore size of the membranes gets larger. Among the three co-solvents tested, acetone was found to result in membranes with the largest pore size and contact angle followed by diethyl ether then ethyl acetate. Measured contact angle increases as the concentration of the co-solvent increases reaching a constant value except for ethyl acetate where it was found to drop. Investigating flux and salt rejection by the formulated membranes showed that higher flux was attained when acetone was used as a co-solvent followed by diethyl ether then ethyl acetate. However, the highest salt rejection was achieved with diethyl ether.

  17. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique.

    Science.gov (United States)

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-02-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 degrees Brix (QL); 0.58 degrees Brix (ZC)], low RMSEC [0.48 degrees Brix (QL); 0.34 degrees Brix (ZC)] and small difference between the RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a

  18. Statistical and computer analysis for the solvent effect on the elctronis adsorption spectra of monoethanolamine complexes

    International Nuclear Information System (INIS)

    Masoud, M.S.; Motaweh, H.A.; Ali, A.E.

    1999-01-01

    Full text.the electronic absorption spectra of the octahedral complexes containing monoethanolamine were recorded in different solvents (dioxine, chlororm, ethanol, dimethylformamide, dimethylsulfoxide and water). The data analyzed based on multiple linear regression technique using the equation: ya (a is the regression intercept) are various empirical solvent polarytiparameters; constants are calculated using micro statistic program on pc computer. The solvent spectral data of the complexes are compared to that of nugot, the solvent assists the spectral data to be red shifts. In case of Mn (MEA) CL complex, numerous bands are appeared in presence of CHCI DMF and DMSO solvents probably due to the numerous oxidation states. The solvent parameters: E (solvent-solute hydrogen bond and dipolar interaction); (dipolar interaction related to the dielectric constant); M (solute permanent dipole-solvent induced ipole) and N (solute permanent dipole-solvent permanent dipole) are correlated with the structure of the complexes, in hydrogen bonding solvents (Band in case of complexes as the dielectric constant increases, blue shift occurs in due to conjugation with high stability, the data in DMF and DMSO solvents are nearly the same probably due to their similarity

  19. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  20. Diffusion Experiments in Opalinus Clay: Laboratory, Large-Scale Diffusion Experiments and Microscale Analysis by RBS.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Alonso de los Rios, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2008-08-06

    The Opalinus Clay (OPA) formation in the Zurcher Weiland (Switzerland) is a potential host rock for a repository for high-level radioactive waste. Samples collected in the Mont Terri Underground Rock Laboratory (URL), where the OPA formation is located at a depth between -200 and -300 m below the surface, were used to study the radionuclide diffusion in clay materials. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), to understand the transport properties of the OPA and to enhance the methodologies used for in situ diffusion experiments. Through-Diffusion and In-Diffusion conventional laboratory diffusion experiments were carried out with HTO, 36{sup C}l-, I-, 22{sup N}a, 75{sup S}e, 85{sup S}r, 233{sup U}, 137{sup C}s, 60{sup C}o and 152{sup E}u. Large-scale diffusion experiments were performed with HTO, 36{sup C}l, and 85{sup S}r, and new experiments with 60{sup C}o, 137{sup C}s and 152{sup E}u are ongoing. Diffusion experiments with RBS technique were done with Sr, Re, U and Eu. (Author) 38 refs.

  1. The Safe and Efficient Evaporation of a Solvent from Solution

    Science.gov (United States)

    Mahon, Andrew R.

    1997-02-01

    The process of evaporating a solvent from a solution can cause problems for many students. By using a water-vacuum aspirator, backflashes of water can flood the sample tube and be detrimental to the experiment. This type of apparatus can also cause problems by drawing the solution it is evaporating back into the vacuum hose, causing the student to lose part or all of the products of their experiment. Macroscale and Microscale Organic Experiments, 2nd edition (1), suggested two techniques to dissolve solvents from a mixture. It suggested blowing a stream of air over the solution from a Pasteur pipet, or attaching a Pasteur pipet to an aspirator and drawing air over the surface of the liquid. Again, the danger of blowing air over the solution leaves the risk of splattering the solution, and drawing air over the surface of the liquid as described further endangers the products of the experiment through the risk of sucking the products up into the pipet aspirator. In an effort to eliminate these problems, a new technique has been developed. By inverting an ordinary 200-mL vacuum flask and pulling a steady current of air from the vacuum apparatus through it, any type of small container can be placed under it, allowing the solvent to be evaporated in a steady, mistake-free manner . By evaporating the solvent from the container that the products will be submitted in, no sample is lost through the process of transferring it from a vacuum flask or beaker to the final container.

  2. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  3. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Adams

    2011-06-01

    Full Text Available In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs, including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL or dissolved in groundwater. This study assessed: (1 how air injection rate affects the mass removal of dissolved phase contamination, (2 the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3 the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  4. Organic Synthesis under Solvent-free Condition. An Environmentally ...

    Indian Academy of Sciences (India)

    Though it is a common practice to run the organic reactions in solvent media, the ... this concept is simple. That is, the ... to vigorous research activity and reinvestigation of known reac- tions to achieve ... experimental procedure, work up technique and saving in labour. These would be ... This is true not only of the crystals of ...

  5. Solvent Effects on Cesium Complexation with Crown Ethers from Liquid to Supercritical Fluids

    International Nuclear Information System (INIS)

    Wai, Chien M.; Rustenholtz, Anne; Wang, Shaofen; Lee, Su-Chen; Herman, Jamie; Porter, Richard A.

    2004-01-01

    Nuclear magnetic resonance (NMR) techniques were used to study crown ether-water interactions in solvents of low dielectric constants such as chloroform and carbon tetrachloride. Water forms a 1:1 complex with a number of crown ethers including 12-crown-4, 15-crown-5, 18-crown-6, dicyclohexano-18=crown-6, dicyclohexano-24-crown 8, and dibenzl-24-crown-8 in chloroform. Among these crown ethers, the 18-crown-6-H2 complex has the largest equilibrium constant (K=545) and 97% of the crown is complexed to water in chloroform. Addition of carbon tetrachloride to chloroform lowers the equilibrium constants of the crown-water complexes. The partition coefficients of crown ethers (D=crown in water/crown in solvent) between water and organic solvent also vary with solvent composition

  6. Solubility of 3-Caffeoylquinic Acid in Different Solvents at 291-340 K

    Science.gov (United States)

    Wang, Y. T.; Zhang, C. L.; Cheng, X. L.; Zhao, J. H.; Wang, L. C.

    2017-12-01

    Using a laser monitoring observation technique the solubilities of 3-caffeoylquinic acid in pure solvents, water, methanol, ethanol, 1-propanol, 1-butanol, and two mixed solvents, methanol + water, ethanol + water have been determined at temperature range from 291-340 K. The experimental data were correlated by the modified Apelblat equation, λ h equation, and ideal model. The calculated solubilities were turned out very consistent with the experimental results, and the modified Apelblat equation shows the best agreement.

  7. Metals pollution tracing in the sewerage network using the diffusive gradients in thin films technique.

    Science.gov (United States)

    Thomas, P

    2009-01-01

    Diffusive Gradients in Thin-films (DGT) is a quantitative, passive monitoring technique that can be used to measure concentrations of trace species in situ in solutions. Its potential for tracing metals pollution in the sewer system has been investigated by placing the DGT devices into sewage pumping stations and into manholes, to measure the concentration of certain metals in the catchment of a sewage treatment works with a known metals problem. In addition the methodology and procedure of using the DGT technique in sewers was investigated. Parameters such as temperature and pH were measured to ensure they were within the limits required by the DGT devices, and the optimum deployment time was examined. It was found that although the results given by the DGT technique could not be considered to be fully quantitative, they could be used to identify locations that were showing an excess concentration of metals, and hence trace pollution back to its source. The DGT technique is 'user friendly' and requires no complicated equipment for deployment or collection, and minimal training for use. It is thought that this is the first time that the DGT technique has been used in situ in sewers for metals pollution tracing.

  8. New analytical technique for carbon dioxide absorption solvents

    Energy Technology Data Exchange (ETDEWEB)

    Pouryousefi, F.; Idem, R.O. [University of Regina, Regina, SK (Canada). Faculty of Engineering

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  9. Radiation measurement and inverse analysis techniques applied on the determination of the apparent mass diffusion coefficient for diverse contaminants and soil samples

    International Nuclear Information System (INIS)

    Rey Silva, D.V.F.M.; Oliveira, A.P.; Macacini, J.F.; Da Silva, N.C.; Cipriani, M.; Quinelato, A.L.

    2005-01-01

    Full text of publication follows: The study of the dispersion of radioactive materials in soils and in engineering barriers plays an important role in the safety analysis of nuclear waste repositories. In order to proceed with such kind of study the involved physical properties must be determined with precision, including the apparent mass diffusion coefficient, which is defined as the ratio between the effective mass diffusion coefficient and the retardation factor. Many different experimental and estimation techniques are available on the literature for the identification of the diffusion coefficient and this work describes the implementation of that developed by Pereira et al [1]. This technique is based on non-intrusive radiation measurements and the experimental setup consists of a cylindrical column filled with compacted media saturated with water. A radioactive contaminant is mixed with a portion of the media and then placed in the bottom of the column. Therefore, the contaminant will diffuse through the uncontaminated media due to the concentration gradient. A radiation detector is used to measure the number of counts, which is associated to the contaminant concentration, at several positions along the column during the experiment. Such measurements are then used to estimate the apparent diffusion coefficient of the contaminant in the porous media by inverse analysis. The inverse problem of parameter estimation is solved with the Levenberg-Marquart Method of minimization of the least-square norm. The experiment was optimized with respect to the number of measurement locations, frequency of measurements and duration of the experiment through the analysis of the sensitivity coefficients and by using a D-optimum approach. This setup is suitable for studying a great number of combinations of diverse contaminants and porous media varying in composition and compacting, with considerable easiness and reliable results, and it was chosen because that is the

  10. Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis(thiourea)cadmium chloride in various solvents

    International Nuclear Information System (INIS)

    Gaur, Rama; Jeevanandam, P.

    2015-01-01

    CdS nanoparticles with different morphologies have been synthesized by thermal decomposition of bis(thiourea)cadmium chloride in different solvents without the use of any ligand/surfactant. CdS nanoparticles with pyramid, sponge-like and hexagonal disc-like morphologies were obtained in diphenyl ether (DPE), 1-octadecene (ODE) and ethylene glycol (EG), respectively. In addition, CdS nanoparticles with unique morphologies were obtained when the decomposition of the complex was carried out in mixed solvents (DPE–EG and ODE–EG). Extensive characterization of the CdS nanoparticles was carried out using powder X-ray diffraction, FT-IR spectroscopy, thermal analysis, field-emission scanning electron microscopy, diffuse reflectance spectroscopy and photoluminescence spectroscopy, and detailed mechanism of the formation of CdS nanoparticles with different morphologies in various solvents has been proposed

  11. Mathematical methods for diffusion MRI processing

    International Nuclear Information System (INIS)

    Lenglet, C.; Lenglet, C.; Sapiro, G.; Campbell, J.S.W.; Pike, G.B.; Campbell, J.S.W.; Siddiqi, K.; Descoteaux, M.; Haro, G.; Wassermann, D.; Deriche, R.; Wassermann, D.; Anwander, A.; Thompson, P.M.

    2009-01-01

    In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). (authors)

  12. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    Science.gov (United States)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  13. Rational Design of Molecular Gelator - Solvent Systems Guided by Solubility Parameters

    Science.gov (United States)

    Lan, Yaqi

    Self-assembled architectures, such as molecular gels, have attracted wide interest among chemists, physicists and engineers during the past decade. However, the mechanism behind self-assembly remains largely unknown and no capability exists to predict a priori whether a small molecule will gelate a specific solvent or not. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (logP), to Henry's law constants (HLC), to solvatochromic ET(30) parameters, to Kamlet-Taft parameters (beta, alpha and pi), to Hansen solubility parameters (deltap, deltad, deltah), etc., are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries.

  14. Molecular accessibility in solvent swelled coals

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  15. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    International Nuclear Information System (INIS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-01-01

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient

  16. Membrane extraction instead of solvent extraction - what does it give

    International Nuclear Information System (INIS)

    Macasek, F.

    1989-01-01

    Membrane extraction, i.e. separation in double-emulsion systems, is analyzed theoretically as a three-phase distribution process. Its efficiency is evaluated from the point of view of chemical equilibria and diffusion transport kinetics. The main advantages of membrane extraction as compared with solvent extraction are in higher yields (for preconcentration) and higher capacity for recovery of solutes. A pertraction factor and multiplication factor were defined. They are convenient parameters for numerical characterization of solute distribution, system capacity, process economics, and separation kinetics (both at a linear and non-linear extraction isotherm). 17 refs.; 4 figs

  17. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Fathordoobady, Farahnaz; Mirhosseini, Hamed; Selamat, Jinap; Manap, Mohd Yazid Abd

    2016-07-01

    The main objective of the present study was to investigate the effect of solvent type and ratio as well as the extraction techniques (i.e. supercritical fluid extraction (SFE) and conventional solvent extraction) on betacyanins and antioxidant activity of the peel and fresh extract from the red pitaya (Hylocereus polyrhizus). The peel and flesh extracts obtained by SFE at 25MPa pressure and 10% EtOH/water (v/v) mixture as a co-solvent contained 24.58 and 91.27mg/100ml total betacyanin, respectively; while the most desirable solvent extraction process resulted in a relatively higher total betacyanin in the peel and flesh extracts (28.44 and 120.28mg/100ml, respectively). The major betacyanins identified in the pitaya peel and flesh extracts were betanin, isobetanin, phyllocactin, butyrylbetanin, isophyllocactin and iso-butyrylbetanin. The flesh extract had the stronger antioxidant activity than the peel extract when the higher proportion of ethanol to water (E/W) was applied for the extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of water-methanol mixed solvents on the ultrasonic relaxation of cadmium acetate

    International Nuclear Information System (INIS)

    Sree Rama Murthy, J.; Ramachandra Rao, B.

    1976-01-01

    Measurements of ultrasonic absorption have been made by pulse technique in 1 M solutions of cadmium acetate with water-methanol mixed solvents. Results are analysed by assuming a single relaxation mechanism. The characteristic frequency of relaxation is found to decrease with increasing composition of methanol in the solvent. It is proposed that the mechanism of relaxation may be perturbation of chemical equilibrium between complex CdAc + ions and Cd ++ , Ac - species by soundwaves. (author)

  19. Diffusion weighted imaging in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Cher Heng [The University of Texas, M D Anderson Cancer Center, Department of Diagnostic Radiology, Division of Diagnostic Imaging, Houston, TX (United States); Tan Tock Seng Hospital, Department of Diagnostic Radiology, Singapore (Singapore); Wang, Jihong [The University of Texas, M D Anderson Cancer Center, Department of Imaging Physics, Division of Diagnostic Imaging, Houston, TX (United States); Kundra, Vikas [The University of Texas, M D Anderson Cancer Center, Department of Diagnostic Radiology, Division of Diagnostic Imaging, Houston, TX (United States); The University of Texas, M D Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Division of Diagnostic Imaging, Houston, TX (United States)

    2011-03-15

    Diffusion-weighted imaging has generated substantial interest in the hope that it can be developed into a robust technique to improve the accuracy of MRI for the evaluation of prostate cancer. This technique has the advantages of short acquisition times, no need for intravenous administration of contrast medium, and the ability to study diffusion of water molecules that indirectly reflects tissue cellularity. In this article, we review the existing literature on the utility of DWI in tumour detection, localisation, treatment response, limitations of the technique, how it compares with other imaging techniques, technical considerations and future directions. (orig.)

  20. Physics and chemistry of an ionic liquid in some industrially important solvent media probed by physicochemical techniques

    International Nuclear Information System (INIS)

    Roy, Mahendra Nath; Banik, Ishani; Ekka, Deepak

    2013-01-01

    Highlights: ► Molecular interaction of Bu 4 PBF 4 in DMSO, DMA, and DMF has been studied. ► More ion–solvent interaction between Bu 4 PBF 4 and DMSO. ► Ion–solvent interaction dominate over ion–ion interaction in the studied solutions. - Abstract: Electrolytic conductivities (Λ), densities (ρ), viscosities (η), and ultrasonic speed (u) of an ionic liquid (IL) tetrabutylphosphonium tetrafluoroborate [Bu 4 PBF 4 ] have been studied in dimethylsulfoxide (DMSO), dimethylacetamide (DMA), and dimethylformamide (DMF) at T = 298.15 K. The limiting molar conductivity (Λ 0 ), the association constant (K A ), and the distance of closest approach of ions (R) have been evaluated using the Fuoss conductance equation (1978). The molar conductivities observed were explained by the formation of ion-pairs (M + + X − ↔ MX). The Walden product is obtained and discussed. Ion–solvent interactions have been interpreted in terms of apparent molar volumes (φ V ) and viscosity B-coefficients which are obtained from the results supplemented with densities and viscosities, respectively. The limiting apparent molar volumes (φ V 0 ), experimental slopes (S V ∗ ) derived from the Masson equation and viscosity A and B coefficients using the Jones–Dole equation have been interpreted in terms of ion–ion and ion–solvent interactions respectively. The adiabatic compressibility (β) has been evaluated using the ultrasonic speed (u) values. Finally values of the limiting partial molar adiabatic compressibility (φ K 0 ) are calculated and discussed.

  1. Restoring solvent for nuclear separation processes

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    Solvent extraction separation processes are used to recover usable nuclear materials from spent fuels. These processes involve the use of an extractant/diluent (solvent) for separation of the reusable actinides from unwanted fission products. The most widely used processes employ tributyl phosphate as an extractant diluted with a normal-paraffin hydrocarbon. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. In most processes, the solvent is recycled after cleaning. Solvent cleaning generally involves scrubbing with a sodium carbonate solution. Studies at the Savannah River Laboratory have shown that carbonate washing, although removing residual solvent activity, does not remove more solvent-soluble binding ligands (formed by solvent degradation), which hold fission products in the solvent. Treatment of the solvent with a solid adsorbent after carbonate washing removes binding ligands and significantly improves recycled solvent performance. Laboratory work to establish the advantage of adsorbent cleaning and the development of a full-scale adsorption process is described. The application of this process for cleaning the first cycle solvent of a Savannah River Plant production process is discussed

  2. Selective solvent extraction of oils

    Energy Technology Data Exchange (ETDEWEB)

    1938-04-09

    In the selective solvent extraction of naphthenic base oils, the solvent used consists of the extract obtained by treating a paraffinic base oil with a selective solvent. The extract, or partially spent solvent is less selective than the solvent itself. Selective solvents specified for the extraction of the paraffinic base oil are phenol, sulphur dioxide, cresylic acid, nitrobenzene, B:B/sup 1/-dichlorethyl ether, furfural, nitroaniline and benzaldehyde. Oils treated are Coastal lubricating oils, or naphthenic oils from the cracking, or destructive hydrogenation of coal, tar, lignite, peat, shale, bitumen, or petroleum. The extraction may be effected by a batch or counter-current method, and in the presence of (1) liquefied propane, or butane, or naphtha, or (2) agents which modify the solvent power such as, water, ammonia, acetonitrile, glycerine, glycol, caustic soda or potash. Treatment (2) may form a post-treatment effected on the extract phase. In counter-current treatment in a tower some pure selective solvent may be introduced near the raffinate outlet to wash out any extract therefrom.

  3. Diffusion in membranes: Toward a two-dimensional diffusion map

    Directory of Open Access Journals (Sweden)

    Toppozini Laura

    2015-01-01

    Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  4. Water diffusion in fluoropolymer-based fuel-cell electrolyte membranes investigated by radioactivated-tracer permeation technique

    International Nuclear Information System (INIS)

    Sawada, S.; Yamaki, T.; Asano, M.; Maekawa, Y.; Suzuki, A.; Terai, T.

    2011-01-01

    The self-diffusion coefficient of water, D, in proton exchange membranes (PEMs) based on crosslinkedpolytetrafluoroethylene (cPTFE) films was measured by a radioactivated-tracer permeation technique using tritium labeled water (HTO). The D value was found to increase with the water volume fraction of the PEM, φ, probably because the water-filled regions were more effectively interconnected with each other at high φ, allowing water permeation to be faster through a PEM. Interestingly, the grafted PEMs showed the lower D compared to that of Nafion in spite of their high φ. This would be caused by tortuous structures of transport pathways and a strong coulombic interaction between water and the negatively-charged sulfonate (SO 3 - ) groups. Heavyoxygen water (H 2 18 O) was also used in the similar permeation experiment to obtain the D. Since the HTO diffusion actually occurred not only by translational motion of water but also by intermolecular hydrogen-atom hopping, comparing the D of HTO with that of H 2 18 O was likely to give the information about the state of water in the PEMs. (orig.)

  5. Solvent substitutes

    International Nuclear Information System (INIS)

    Evanoff, S.P.

    1995-01-01

    The environmental and industrial hygiene regulations promulgated since 1980, most notably the Superfund Amendments and Reauthorization Act (SARA), the Hazardous and Solid Waste Amendments to the Resources Conservation and Recovery Act (RCRA), and the Clean Air Act Amendments of 1990, have brought about an increased emphasis on user exposure, hazardous waste generation, and air emissions. As a result, industry is performing a fundamental reassessment of cleaning solvents, processes, and procedures. The more progressive organizations have made their goal the elimination of solvents that may pose significant potential human health and environmental hazards. This chapter discusses solvent cleaning in metal-finishing, metal-manufacturing, and industrial maintenance applications; precision cleaning; and electronics manufacturing. Nonmetallic cleaning, adhesives, coatings, inks, and aerosols also will be addressed, but in a more cursory manner

  6. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    Science.gov (United States)

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  7. Retrieving the thermal diffusivity and effusivity of solids from the same frequency scan using the front photopyroelectric technique

    International Nuclear Information System (INIS)

    Salazar, Agustín; Oleaga, Alberto; Mendioroz, Arantza; Apiñaniz, Estibaliz

    2017-01-01

    The photopyroelectric (PPE) technique in the front configuration consists in illuminating one surface of a pyroelectric slab while the other surface is in contact with the test sample. This method has been widely used to measure the thermal effusivity of liquids. Recently, it has been extended to measure the thermal effusivity of solids, by taking into account the influence of the coupling fluid layer used to guarantee the thermal contact. In both cases, the sample (liquid or solid) must be very thick. In this work, we propose a classical frequency scan of a thin sample slab to retrieve the thermal diffusivity and effusivity simultaneously. We use the amplitude and the phase of the front PPE signal, which depend on four parameters: the sample diffusivity and effusivity, the coupling fluid thickness and the coefficient of heat losses. It is demonstrated that the four quantities are not correlated. PPE measurements performed on a set of calibrated solids confirm the ability of the method to obtain the thermal diffusivity and effusivity of solids accurately. (paper)

  8. Canyon solvent cleaning with solid adsorbents

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands that hold fission products in the solvent. Treatment of solvent with a solid adsorbent removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  9. Computational Diffusion MRI : MICCAI Workshop

    CERN Document Server

    Grussu, Francesco; Ning, Lipeng; Tax, Chantal; Veraart, Jelle

    2018-01-01

    This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it wil...

  10. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, Olivier [Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8 (Canada)], E-mail: olivier.clarisse@umoncton.ca; Foucher, Delphine; Hintelmann, Holger [Trent University, Department of Chemistry, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8 (Canada)

    2009-03-15

    The diffusive gradient in thin film (DGT) technique was successfully used to monitor methylmercury (MeHg) speciation in the dissolved phase of a stratified boreal lake, Lake 658 of the Experimental Lakes Area (ELA) in Ontario, Canada. Water samples were conventionally analysed for MeHg, sulfides, and dissolved organic matter (DOM). MeHg accumulated by DGT devices was compared to MeHg concentration measured conventionally in water samples to establish MeHg speciation. In the epilimnion, MeHg was almost entirely bound to DOM. In the top of the hypolimnion an additional labile fraction was identified, and at the bottom of the lake a significant fraction of MeHg was potentially associated to colloidal material. As part of the METAALICUS project, isotope enriched inorganic mercury was applied to Lake 658 and its watershed for several years to establish the relationship between atmospheric Hg deposition and Hg in fish. Little or no difference in MeHg speciation in the dissolved phase was detected between ambient and spike MeHg. - Methylmercury speciation was determined in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique.

  11. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

    International Nuclear Information System (INIS)

    Clarisse, Olivier; Foucher, Delphine; Hintelmann, Holger

    2009-01-01

    The diffusive gradient in thin film (DGT) technique was successfully used to monitor methylmercury (MeHg) speciation in the dissolved phase of a stratified boreal lake, Lake 658 of the Experimental Lakes Area (ELA) in Ontario, Canada. Water samples were conventionally analysed for MeHg, sulfides, and dissolved organic matter (DOM). MeHg accumulated by DGT devices was compared to MeHg concentration measured conventionally in water samples to establish MeHg speciation. In the epilimnion, MeHg was almost entirely bound to DOM. In the top of the hypolimnion an additional labile fraction was identified, and at the bottom of the lake a significant fraction of MeHg was potentially associated to colloidal material. As part of the METAALICUS project, isotope enriched inorganic mercury was applied to Lake 658 and its watershed for several years to establish the relationship between atmospheric Hg deposition and Hg in fish. Little or no difference in MeHg speciation in the dissolved phase was detected between ambient and spike MeHg. - Methylmercury speciation was determined in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique

  12. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scherman, Carl [Savannah River Remediation, LLC., Aiken, SC (United States); Martin, David [Savannah River Remediation, LLC., Aiken, SC (United States); Suggs, Patricia [Savannah River Site (SRS), Aiken, SC (United States)

    2015-01-14

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

  13. Permanganate diffusion and reaction in sedimentary rocks.

    Science.gov (United States)

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Optimal (Solvent) Mixture Design through a Decomposition Based CAMD methodology

    DEFF Research Database (Denmark)

    Achenie, L.; Karunanithi, Arunprakash T.; Gani, Rafiqul

    2004-01-01

    Computer Aided Molecular/Mixture design (CAMD) is one of the most promising techniques for solvent design and selection. A decomposition based CAMD methodology has been formulated where the mixture design problem is solved as a series of molecular and mixture design sub-problems. This approach is...

  15. Solvent Extraction of Rare Earths by Di-2 Ethylhexyl Phosphoric Acid

    International Nuclear Information System (INIS)

    Srinuttrakul, Wannee; Kranlert, Kannika; Kraikaew, Jarunee; Pongpansook, Surasak; Chayavadhanangkur, Chavalek; Kranlert, Kannika

    2004-10-01

    Solvent extraction has been widely applied for individual rare earth separation because the separation time is rapid and a large quantity of products is obtained. In this work, this technique was utilized to extract mixed rare earths, obtained from monazite digestion process. Di-2-ethylhexyl phosphoric acid (D2EHPA) was used as an extractant. The factors affected the extraction including HNO 3 concentration in mixed rare earth nitrate solution and the amount of D2EHPA were studied. The appropriate concentrations of HNO 3 and D2EHPA were found to be 0.01 and 1.5 M, respectively. From the result of equilibrium curve study, it was observed that heavy rare earths were extracted more efficient than light rare earths. A 6-stage continuous countercurrent solvent extraction was simulated for rare earth extraction. The optimum ratio of solvent to feed solution (S/F) was 2. Because of the high cost of D2EHPA, 1.0 M of D2EHPA was suitable for the rare earth extraction by the continuous countercurrent solvent extraction

  16. Purex process solvent: literature review

    International Nuclear Information System (INIS)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables

  17. Purex process solvent: literature review

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables.

  18. Extraction of antioxidants from spruce (Picea abies) bark using eco-friendly solvents.

    Science.gov (United States)

    Co, Michelle; Fagerlund, Amelie; Engman, Lars; Sunnerheim, Kerstin; Sjöberg, Per J R; Turner, Charlotta

    2012-01-01

    Antioxidants are known to avert oxidation processes and they are found in trees and other plant materials. Tree bark is a major waste product from paper pulp industries; hence it is worthwhile to develop an extraction technique to extract the antioxidants. To develop a fast and environmentally sustainable extraction technique for the extraction of antioxidants from bark of spruce (Picea abies) and also to identify the extracted antioxidants that are abundant in spruce bark. A screening experiment that involved three different techniques was conducted to determine the best technique to extract antioxidants. The antioxidant capacity of the extracts was determined with DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Pressurised fluid extraction (PFE) turned out to be the best technique and a response surface design was therefore utilised to optimise PFE. Furthermore, NMR and HPLC-DAD-MS/MS were applied to identify the extracted antioxidants. PFE using water and ethanol as solvent at 160 and 180°C, respectively, gave extracts of the highest antioxidant capacity. Stilbene glucosides such as isorhapontin, piceid and astringin were identified in the extracts. The study has shown that PFE is a fast and environmentally sustainable technique, using water and ethanol as solvent for the extraction of antioxidants from spruce bark. Copyright © 2011 John Wiley & Sons, Ltd.

  19. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties

    Directory of Open Access Journals (Sweden)

    Mehrabanian M

    2011-08-01

    Full Text Available Mehran Mehrabanian1, Mojtaba Nasr-Esfahani21Member of Young Researchers Club, Najafabad Branch, Islamic Azad University, Isfahan, Iran; 2Department of Materials Science and Engineering, Najafabad Branch, Islamic Azad University, Isfahan, IranAbstract: Nanohydroxyapatite (n-HA/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60% for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 µm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface.Keywords: scaffold, nanohydroxyapatite, nylon 6,6, salt-leaching/solvent casting, bioactivity

  20. Surface functionalization of SBA-15 by the solvent-free method

    International Nuclear Information System (INIS)

    Wang Yimeng; Zheng Yingwu; Zhu Jianhua

    2004-01-01

    A solvent-free technique was employed for fast modification of mesoporous materials. Copper, chromium and iron oxide species could be highly dispersed in SBA-15 by manually grinding the corresponding precursor salts and the host, followed by calcinations for the first time. This method is more effective to spontaneously disperse oxide species onto SBA-15 than impregnation, probably forming monolayer or submonolayer dispersion of salts or oxides. Besides, Cr(VI) species dominate in the mixing sample while Cr(III) species dominate in the impregnation one. In the temperature programmed surface reaction of nitrosamines, the sample prepared by solvent-free method showed a higher catalytic activity than the impregnation one

  1. Investigating the solvent and temperature effects on the cyclohexadienyl radical in an ionic liquid

    International Nuclear Information System (INIS)

    Taylor, Becky; Cormier, P.J.; Lauzon, J.M.; Ghandi, Khashayar

    2009-01-01

    The cyclohexadienyl radical was studied in a novel green solvent; tetradecyl (trihexyl) phosphonium chloride ionic liquid (IL 101). Both the solvent effects and how the hyperfine coupling changes with respect to temperature have been examined and compared to literature. This was done through experimental muon techniques at the TRIUMF National Laboratory in Canada as well as through ab initio calculations. The ionic liquid solvent effects were found to be consistent with other solvents, when assuming ionic liquids to be a combination of ion pairs. In ionic liquid the hyperfine coupling constants of the proton and reduced muon decreased linearly with increasing temperature. The analysis showed that the majority of this relationship is due to a vibrational effect, although the solvent density plays a role too. The temperature effect on the entropy of the system was determined to be negligible. The temperature coefficient of the reduced muon hyperfine coupling was larger than that of the proton in IL 101 due to the effects of nearby ionic liquid molecules.

  2. Investigating the solvent and temperature effects on the cyclohexadienyl radical in an ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Becky; Cormier, P.J.; Lauzon, J.M. [Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G3 (Canada); Ghandi, Khashayar, E-mail: kghandi@mta.c [Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G3 (Canada)

    2009-04-15

    The cyclohexadienyl radical was studied in a novel green solvent; tetradecyl (trihexyl) phosphonium chloride ionic liquid (IL 101). Both the solvent effects and how the hyperfine coupling changes with respect to temperature have been examined and compared to literature. This was done through experimental muon techniques at the TRIUMF National Laboratory in Canada as well as through ab initio calculations. The ionic liquid solvent effects were found to be consistent with other solvents, when assuming ionic liquids to be a combination of ion pairs. In ionic liquid the hyperfine coupling constants of the proton and reduced muon decreased linearly with increasing temperature. The analysis showed that the majority of this relationship is due to a vibrational effect, although the solvent density plays a role too. The temperature effect on the entropy of the system was determined to be negligible. The temperature coefficient of the reduced muon hyperfine coupling was larger than that of the proton in IL 101 due to the effects of nearby ionic liquid molecules.

  3. 2015 MICCAI Workshop on Computational Diffusion MRI

    CERN Document Server

    Ghosh, Aurobrata; Kaden, Enrico; Rathi, Yogesh; Reisert, Marco

    2016-01-01

    These Proceedings of the 2015 MICCAI Workshop “Computational Diffusion MRI” offer a snapshot of the current state of the art on a broad range of topics within the highly active and growing field of diffusion MRI. The topics vary from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms, new computational methods applied to diffusion magnetic resonance imaging data, and applications in neuroscientific studies and clinical practice. Over the last decade interest in diffusion MRI has exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into clinical practice. New processing methods are essential for addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber t...

  4. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser

    International Nuclear Information System (INIS)

    Kim, Sung; Lee, Kyoung Yong; Kim, Joon Hyung; Kim, Jin Hyuk; Jung, Uk Hee; Choi, Young Seok

    2015-01-01

    In this paper, we describe a numerical study about the performance improvement of a mixed-flow pump by optimizing the design of the impeller and diffuser using a commercial computational fluid dynamics (CFD) code and design-of-experiments (DOE). The design variables of impeller and diffuser in the vane plane development were defined with a fixed meridional plane. The design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffuser. The vane plane development was controlled using the blade-angle in a fixed meridional plane. The blade shape of the impeller and diffuser were designed using a traditional method in which the inlet and exit angles are connected smoothly. First, the impeller optimum design was performed with impeller design variables. The diffuser optimum design was performed with diffuser design variables while the optimally designed impeller shape was fixed. The importance of the impeller and diffuser design variables was analyzed using 2 k factorial designs, and the design optimization of the impeller and diffuser design variables was determined using the response surface method (RSM). The objective functions were defined as the total head (Ht) and the total efficiency (ηt) at the design flow rate. The optimally designed model was verified using numerical analysis, and the numerical analysis results for both the optimum model and the reference model were compared to determine the reasons for the improved pump performance. A pump performance test was carried out for the optimum model, and its reliability was proved by a comparative analysis of the results of the numerical analysis and an experiment using the optimum model.

  5. Improvement in performance of a direct solar-thermally driven diffusion-absorption refrigerator; Leistungssteigerung einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Fabian; Bierling, Bernd; Spindler, Klaus [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2012-07-01

    The diffusion-absorption refrigeration process offers the possibility of a wear-free refrigeration system without electricity and noise. At the Institute for Thermodynamics and Thermal Engineering (Stuttgart, Federal Republic of Germany), a decentralized solar refrigeration system is developed based on this process. The expeller and the thermosiphon pump of this process are integrated in the collector, and thus are heated directly. The diffusion-absorption refrigeration process also can be used for domestic water heating by means of a second cycle in the collector. A cooling capacity of 400 W is to be achieved for each solar collector (2.5 m{sup 2}). Several refrigeration systems can be modular interconnected for higher cooling capacities. As part of the DKV Conference 2011, the construction of the plant, the first measurement data and results were presented. Since then, both the cooling capacity and the coefficient of performance of the diffusion-absorption refrigeration system could be increased significantly. For this, solvent heat exchanger, evaporator, absorber and gas heat exchanger have been optimized in terms of system efficiency. In addition, a stable system operation could be achieved by means of a bypass line. About this line, an exaggerated refrigerant already is removed in the solvent heat exchanger. In addition, a condensate pre-cooler was integrated in order to increase the efficiency. For a detailed investigation of the auxiliary gas cycle facilities, the volume flow and the concentration of the auxiliary gas circuit were examined under utilization of an ultrasonic sensor. In order to evaluate the influence factors by means of a parametric study, the mass transfer in the auxiliary gas circuit was simulated using the two-fluid model. The results of these studies, the current system configuration and the current results are presented in the contribution under consideration.

  6. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Safety confirmation study of TRUEX solvent by accelerating rate calorimeter (ARC)

    International Nuclear Information System (INIS)

    Sato, Yoshihiko; Hirumachi, Suguru; Takeda, Shinso; Kanazawa, Yoshito; Sasaya, Shinji

    1999-02-01

    TRUEX solvent-10 M nitric acid single phase sample were almost the same. 4) Using the heat quantity measured by SC-DSC and reaction rate constant evaluated by the ARC measurement result, the start temperature for self accelerated reaction was estimated according to the technique with which Koike et al. carried out safety analysis for a plutonium evaporator of a model plant. The start temperature of the self accelerated reaction of each solvent surpassed 135degC which was the thermal limiting value of heating containers such as the evaporator in reprocessing plant, when mixing solvent was 100 g. 5) There seemed no change of the component on the assay sample of reaction products in cold storage at about -15degC by sealed container. The analysis by the gas chromatography was possible for the component anticipated as an oxidation-decomposition product without pretreating the assay sample. The qualitative analysis of the organic substance component was possible by using GC/MS as a detector. (J.P.N.)

  8. Diffusion weighted imaging by MR method

    International Nuclear Information System (INIS)

    Horikawa, Yoshiharu; Naruse, Shoji; Ebisu, Toshihiko; Tokumitsu, Takuaki; Ueda, Satoshi; Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro.

    1993-01-01

    Diffusion weighted magnetic resonance imaging is a recently developed technique used to examine the micromovement of water molecules in vivo. We have applied this technique to examine various kinds of brain diseases, both experimentally and clinically. The calculated apparent diffusion coefficient (ADC) in vivo showed reliable values. In experimentally induced brain edema in rats, the pathophysiological difference of the type of edema (such as cytotoxic, and vasogenic) could be differentiated on the diffusion weighted MR images. Cytotoxic brain edema showed high intensity (slower diffusion) on the diffusion weighted images. On the other hand, vasogenic brain edema showed a low intensity image (faster diffusion). Diffusion anisotropy was demonstrated according to the direction of myelinated fibers and applied motion proving gradient (MPG). This anisotropy was also demonstrated in human brain tissue along the course of the corpus callosum, pyramidal tract and optic radiation. In brain ischemia cases, lesions were detected as high signal intensity areas, even one hour after the onset of ischemia. Diffusion was faster in brain tumor compared with normal brain. Histological differences were not clearly reflected by the ADC value. In epidermoid tumor cases, the intensity was characteristically high, was demonstrated, and the cerebrospinal fluid border was clearly demonstrated. New clinical information obtainable with this molecular diffusion method will prove to be useful in various clinical studies. (author)

  9. Solvent-free ZnO dye-sensitised solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, E.; Anta, J.A. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla (Spain); Fernandez-Lorenzo, C.; Alcantara, R.; Martin-Calleja, J. [Departamento de Quimica Fisica, Universidad de Cadiz, Cadiz (Spain)

    2009-10-15

    Dye-sensitised solar cells (DSSC) based on commercial nanostructured zinc oxide combined with imidazolium-based room temperature ionic-liquid electrolytes are characterized. The electrolytes are based on a binary mixture of two ionic liquids, one of them used as source of iodide ions. The composition of this solvent-free electrolyte is optimized with respect to the concentration of iodine and iodide and the effect of additives such as lithium and tert-butylpyridine (TBP) on the photovoltaic performance and the recombination rate is analyzed and discussed. A maximum photoconversion efficiency of 3.4% at 1 sun illumination has been obtained for cells of 0.64 cm{sup 2} active area with the best performing compositions. Diffusion limitations due to slow transport processes are analyzed and discussed. (author)

  10. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    Science.gov (United States)

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  11. Measurement and correlation of solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Jinxiu; Xie, Chuang; Yin, Qiuxiang; Tao, Linggang; Lv, Jun; Wang, Yongli; He, Fang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of cefmenoxime hydrochloride in pure and binary solvents was determined. • The experimental solubility data were correlated by thermodynamic models. • A model was employed to calculate the melting temperature of cefmenoxime hydrochloride. • Mixing thermodynamic properties of cefmenoxime hydrochloride were calculated. - Abstract: The solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures was measured at temperatures from (283.15 to 313.15) K by using the UV spectroscopic method. The results reveal that the solubility of cefmenoxime hydrochloride increases with increasing temperature in all solvent selected. The solubility of cefmenoxime hydrochloride reaches its maximum value when the mole fraction of isopropanol is 0.2 in the binary solvent mixtures of (isopropanol + water). The modified Apelblat equation and the NRTL model were successfully used to correlate the experimental solubility in pure solvents while the modified Apelblat equation, the CNIBS/R–K model and the Jouyban–Acree model were applied to correlate the solubility in binary solvent mixtures. In addition, the mixing thermodynamic properties of cefmenoxime hydrochloride in different solvents were also calculated based on the NRTL model and experimental solubility data.

  12. Measurement and prediction of dabigatran etexilate mesylate Form II solubility in mono-solvents and mixed solvents

    International Nuclear Information System (INIS)

    Xiao, Yan; Wang, Jingkang; Wang, Ting; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun; Bao, Ying; Fang, Wen; Yin, Qiuxiang

    2016-01-01

    Highlights: • Solubility of DEM Form II in mono-solvents and binary solvent mixtures was measured. • Regressed UNIFAC model was used to predict the solubility in solvent mixtures. • The experimental solubility data were correlated by different models. - Abstract: UV spectrometer method was used to measure the solubility data of dabigatran etexilate mesylate (DEM) Form II in five mono-solvents (methanol, ethanol, ethane-1,2-diol, DMF, DMAC) and binary solvent mixtures of methanol and ethanol in the temperature range from 287.37 K to 323.39 K. The experimental solubility data in mono-solvents were correlated with modified Apelblat equation, van’t Hoff equation and λh equation. GSM model and Modified Jouyban-Acree model were employed to correlate the solubility data in mixed solvent systems. And Regressed UNIFAC model was used to predict the solubility of DEM Form II in the binary solvent mixtures. Results showed that the predicted data were consistent with the experimental data.

  13. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.

    Science.gov (United States)

    Xiao, Perry; Imhof, Robert E

    2012-10-01

    Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Solvent influence upon structure & throughput of poly vinyledene fluoride thin film nano-patterns by imprint lithography

    Science.gov (United States)

    Sankar, M. S. Ravi; Gangineni, R. B.

    2018-04-01

    This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.

  15. Ion beam analysis of diffusion in heterogeneous materials

    International Nuclear Information System (INIS)

    Clough, A.S.; Jenneson, P.M.

    1998-01-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair. (orig.)

  16. Ion beam analysis of diffusion in heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Clough, A.S.; Jenneson, P.M. [Surrey Univ., Guildford (United Kingdom). Dept. of Physics

    1998-04-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair. (orig.) 13 refs.

  17. Evaluation of empirical atmospheric diffusion data

    International Nuclear Information System (INIS)

    Horst, T.W.; Doran, J.C.; Nickola, P.W.

    1979-10-01

    A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for groundlevel sources

  18. Brownian motion of a nano-colloidal particle: the role of the solvent.

    Science.gov (United States)

    Torres-Carbajal, Alexis; Herrera-Velarde, Salvador; Castañeda-Priego, Ramón

    2015-07-15

    Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the

  19. Cesium Concentration in MCU Solvent

    International Nuclear Information System (INIS)

    Walker, D

    2006-01-01

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing ∼4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to ∼2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain ∼23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a ∼70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional

  20. Comparative Study on Electronic, Emission, Spontaneous Property of Porous Silicon in Different Solvents

    Directory of Open Access Journals (Sweden)

    M. Naziruddin Khan

    2014-01-01

    Full Text Available Luminescent porous silicon (Psi fabricated by simple chemical etching technique in different organic solvents was studied. By quantifying the silicon wafer piece, optical properties of the Psi in solutions were investigated. Observation shows that no photoluminescence light of Psi in all solvents is emitted. Morphology of Psi in different solvents indicates that the structure and distribution of Psi are differently observed. Particles are uniformly dispersive with the sizes around more or less 5–8 nm. The crystallographic plane and high crystalline nature of Psi is observed by selected area diffraction (SED and XRD. Electronic properties of Psi in solutions are influenced due to the variation of quantity of wafer and nature of solvent. Influence in band gaps of Psi calculated by Tauc’s method is obtained due to change of absorption edge of Psi in solvents. PL intensities are observed to be depending on quantity of silicon wafer, etched cross-section area on wafer surface. Effects on emission peaks and bands of Psi under temperature annealing are observed. The spontaneous signals of Psi measured under high power Pico second laser 355 nm source are significant, influenced by the nature of solvent, pumped energy, and quantity of Si wafer piece used in etching process.

  1. Iodine removing method in organic solvent

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Sakurai, Manabu

    1988-01-01

    Purpose: To effectively remove iodine in an organic solvent to thereby remove iodine in the solvent that can be re-used or put to purning treatment. Method: Organic solvent formed from wastes of nuclear facilities is mixed with basic lead acetate, or silica gel or activated carbon incorporated with such a compound to adsorb iodine in the organic solvent to the basic lead acetate. Then, iodine in the organic solvent is removed by separating to eliminate the basic lead acetate adsorbing iodine from the organic solvent or by passing the organic solvent through a tower or column charged or pre-coated with silica gel or activated carbon incorporated with lead acetate. By using basic lead acetate as the adsorbents, iodine can effective by adsorbed and eliminated. Thus, the possibility of circumstantial release of iodine can be reduced upon reusing or burning treatment of the organic solvent. (Kamimura, M.)

  2. Sensibilidade do carrapato Boophilus microplus a solventes Sensibility of Boophilus microplus tick to solvents

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Souza Chagas

    2003-02-01

    Full Text Available Os experimentos envolvendo o uso de acaricidas sintéticos ou naturais, geralmente necessitam da utilização de um solvente. Com a finalidade de verificar a sensibilidade do carrapato bovino Boophilus microplus a diferentes solventes, larvas e fêmeas ingurgitadas deste ectoparasito foram expostas a sete solventes em cinco diferentes concentrações, na ausência e presença de azeite de oliva. Os resultados mostraram que a utilização do azeite de oliva não produz resultados diferentes estatisticamente em testes de larvas com papel impregnado, fato não verificado em testes de imersão de adultos com compostos hidrofílicos. A mortalidade média causada pelos solventes foi menor nos testes com papel impregnado, aumentando nos testes de imersão de larvas e de adultos. Solventes de baixo peso molecular e pouca viscosidade como o álcool metílico e o álcool etílico, não interferiram na mortalidade média em testes biológicos de B. microplus, principalmente em concentrações inferiores a 76%.Experiments carried out with synthetic or natural acaricides usually use a solvent. To investigate the sensitivity of Boophilus microplus cattle tick to different solvents, larvae and engorged female were subjected to seven solvents in five different concentrations. It was done in the presence and absence of olive oil. The results showed that the utilization of olive oil doesn't produce different statistical results in impregnated paper larvae test. It did not happen in adults immersion test with hydrophilic compounds. The mean mortality caused by solvents was small in impregnated paper larvae test, increasing in immersion tests of larvae and adults. Solvents with low molecular weight and viscosity like ethyl alcohol and methyl alcohol did not cause interference in the mortality of B. microplus in biological tests, mainly in concentrations below 76%.

  3. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Birdwell, Joseph F. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  4. Selection and design of solvents

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    and design of solvents will be presented together with application examples. The selection problem is defined as finding known chemicals that match the desired functions of a solvent for a specified set of applications. The design problem is defined as finding the molecular structure (or mixture of molecules....... With increasing interest on issues such as waste, sustainability, environmental impact and green chemistry, the selection and design of solvents have become important problems that need to be addressed during chemical product-process design and development. Systematic methods and tools suitable for selection......) that match the desired functions of a solvent for a specified set of applications. Use of organic chemicals and ionic liquids as solvents will be covered....

  5. An inverse diffusivity problem for the helium production–diffusion equation

    International Nuclear Information System (INIS)

    Bao, Gang; Xu, Xiang

    2012-01-01

    Thermochronology is a technique for the extraction of information about the thermal history of rocks. Such information is crucial for determining the depth below the surface at which rocks were located at a given time (Bao G et al 2011 Commun. Comput. Phys. 9 129). Mathematically, extracting the time–temperature path can be formulated as an inverse diffusivity problem for the helium production–diffusion equation which is the underlying process of thermochronology. In this paper, to reconstruct the diffusivity which depends on space only and accounts for the structural information of rocks, a local Hölder conditional stability is obtained by a Carleman estimate. A uniqueness result is also proven for extracting the thermal history, i.e. identifying the time-dependant part of the diffusion coefficient, provided that it is analytical with respect to time. Numerical examples are presented to illustrate the validity and effectiveness of the proposed regularization scheme. (paper)

  6. Diffusion tensor imaging and tractography in clinical neuro sciences

    International Nuclear Information System (INIS)

    Zarei, M.; Johansen-Berg, H.; Matthews, P.M.

    2003-01-01

    Rapidly evolving MR technology has allowed better understanding of structure and function of the human brain. Diffusion weighted MRI was developed two decades ago and it is now well established in diagnosis of acute ischaemia in patients with stroke. Diffusion tensor MRI uses the same principles but takes a step further allowing US to measure magnitude of the diffusion along different directions. This lead to the development of diffusion tensor tractography, a technique by which major neural pathways in the living brain can be visualized. There is a growing interest in exploring possible use of these techniques in clinical neurology and psychiatry. This article aims to review the principles of this technique and recent discoveries which may help US to better understand neurological and psychiatric disorders

  7. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    This article is an overview of efforts at INEL to reduce the generation of hazardous wastes through the elimination of hazardous solvents. To aid in their efforts, a number of databases have been developed and will become a part of an Integrated Solvent Substitution Data System. This latter data system will be accessible through Internet

  8. Effect of solvent content on resin hybridization in wet dentin bonding.

    Science.gov (United States)

    Wang, Yong; Spencer, Paulette; Yao, Xiaomei; Brenda, Bohaty

    2007-09-15

    With wet bonding techniques, the channels between the demineralized dentin collagen fibrils are filled with debris, solvent, and water. Commercial adhesives include solvents such as ethanol or acetone to facilitate resin-infiltration into this wet substrate. Under in vivo conditions, the solvent may be diluted because of repeated exposure of the material to the atmosphere, or concentrated because of separation of the bonding liquids into layers within the bottle. The purpose of this study was to investigate the effect of different concentrations of ethanol (10-50%) on infiltration of the adhesive resin and collagen fibril encapsulation in the adhesive/dentin interface using light microscopy, micro-Raman spectroscopy, and scanning electron microscopy. The results indicated that under wet bonding conditions the hybridization process was highly sensitive to the initial solvent concentration in the adhesive system. The staining and scanning electron microscopy results showed that the quality of the interfacial hybrid layer was poor at the lower (10%) or higher (50%) ethanol content. Micro-Raman analysis indicated that there was a distinct difference in the degree of adhesive penetration among adhesives containing different concentrations of ethanol. Adhesives containing 10 or 50% ethanol did not realize effective penetration; the penetration of the adhesive monomers increased dramatically when the initial ethanol content was 30%. The amount of solvents are essential for achieving effective bonding to dentin. Copyright 2007 Wiley Periodicals, Inc.

  9. Review of diffusion tensor imaging and its application in children

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2015-09-15

    Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)

  10. Solvent Engineering for High-Performance PbS Quantum Dots Solar Cells

    Directory of Open Access Journals (Sweden)

    Rongfang Wu

    2017-07-01

    Full Text Available PbS colloidal quantum dots (CQDs solar cells have already demonstrated very impressive advances in recent years due to the development of many different techniques to tailor the interface morphology and compactness in PbS CQDs thin film. Here, n-hexane, n-octane, n-heptane, isooctane and toluene or their hybrids are for the first time introduced as solvent for comparison of the dispersion of PbS CQDs. PbS CQDs solar cells with the configuration of PbS/TiO2 heterojunction are then fabricated by using different CQDs solution under ambient conditions. The performances of the PbS CQDs solar cells are found to be tuned by changing solvent and its content in the PbS CQDs solution. The best device could show a power conversion efficiency (PCE of 7.64% under AM 1.5 G illumination at 100 mW cm−2 in a n-octane/isooctane (95%/5% v/v hybrid solvent scheme, which shows a ~15% improvement compared to the control devices. These results offer important insight into the solvent engineering of high-performance PbS CQDs solar cells.

  11. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    Science.gov (United States)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  12. Modeling 2D and 3D diffusion.

    Science.gov (United States)

    Saxton, Michael J

    2007-01-01

    Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

  13. Organic Solvent Tropical Report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    2000-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines

  14. Correlated diffusion imaging

    International Nuclear Information System (INIS)

    Wong, Alexander; Glaister, Jeffrey; Cameron, Andrew; Haider, Masoom

    2013-01-01

    Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization. In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities. Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland. A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer

  15. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Yabré

    2018-05-01

    Full Text Available The greening of analytical methods has gained increasing interest in the field of pharmaceutical analysis to reduce environmental impacts and improve the health safety of analysts. Reversed-phase high-performance liquid chromatography (RP-HPLC is the most widely used analytical technique involved in pharmaceutical drug development and manufacturing, such as the quality control of bulk drugs and pharmaceutical formulations, as well as the analysis of drugs in biological samples. However, RP-HPLC methods commonly use large amounts of organic solvents and generate high quantities of waste to be disposed, leading to some issues in terms of ecological impact and operator safety. In this context, greening HPLC methods is becoming highly desirable. One strategy to reduce the impact of hazardous solvents is to replace classically used organic solvents (i.e., acetonitrile and methanol with greener ones. So far, ethanol has been the most often used alternative organic solvent. Others strategies have followed, such as the use of totally aqueous mobile phases, micellar liquid chromatography, and ionic liquids. These approaches have been well developed, as they do not require equipment investments and are rather economical. This review describes and critically discusses the recent advances in greening RP-HPLC methods dedicated to pharmaceutical analysis based on the use of alternative solvents.

  16. Evaluation of empirical atmospheric diffusion data

    Energy Technology Data Exchange (ETDEWEB)

    Horst, T.W.; Doran, J.C.; Nickola, P.W.

    1979-10-01

    A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for ground-level sources.

  17. Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2006-01-01

    Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations

  18. Dynamics of Nano-Chain Diffusing in Porous Media

    International Nuclear Information System (INIS)

    Chen Jiang-Xing; Zheng Qiang; Huang Chun-Yun; Xu Jiang-Rong; Ying He-Ping

    2015-01-01

    A coarse-grained model is proposed to study the dynamics of a nano-chain diffusing in porous media. The simulation utilizes a hybrid method which combines stochastic rotation dynamics with molecular dynamics. Solvent molecules are explicitly taken into account to represent the hydrodynamic interactions and random fluctuations. The conformation, relaxation, and diffusion properties of a polymer chain are investigated by changing the density degree of the obstacle matrix. It is found that the average size of the chain is a nonmonotonic function of the obstacle volume fraction ϕ. A dense environment may contribute to extending a linear chain, which can be characterized by larger exponents in the corresponding power law. The relaxation behavior of a stretched chain to a steady state shows dramatic crossover from exponent to power-law relaxation when the values of φ are increased. The dependence of the diffusion coefficient on the chain size is also studied. Various kinds of scaling properties are presented and discussed. The results can give additional insight into the density effect of porous media on polymer structure and dynamics. (paper)

  19. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.

    Science.gov (United States)

    Phaechamud, Thawatchai; Mahadlek, Jongjan

    2015-10-15

    Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparative Evaluation of Different Extraction Techniques and Solvents for the Assay of Phytochemicals and Antioxidant Activity of Hashemi Rice Bran

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2015-06-01

    Full Text Available Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v ethanol-water extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05 were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM, total flavonoids (156.20 mg/100 g DM, and total tocotrienols (56.23 mg/100 g DM, and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH, 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity. Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v ultrasonic, ethanol-water (50:50 v/v maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.

  1. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    Science.gov (United States)

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  2. Effects of solvent-extraction contactor selection on flowsheet and facility design

    International Nuclear Information System (INIS)

    Whatley, M.E.

    1982-01-01

    The notion is developed that the selection of a solvent extraction contactor is part of a more general development of principles and philosophy guiding the overall plant design. Specifically, the requirements and constraints placed on the plant by the solvent extraction system must be consistent with those imposed by the other operations, which generally are more expensive and more complicated. Were a conservative philosophy employed throughout the plant, the choice of pulsed columns seem correct. Were the plant intended to employ modern techniques and state-of-the-art technology, particularly in remote maintenance and process control, the selection of centrifugal contactors seems appropriate. The process improvements attainable from employing more stages in a more tightly controlled solvent extraction system seem marginal at present when applied to conventional flowsheets, although the cost-benefit may be attractive in a modern plant. The potential for improvement through major flowsheet modification can not presently be assessed quantitatively

  3. Insecticide solvents: interference with insecticidal action.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans.

  4. Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory.

    Science.gov (United States)

    Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V

    2012-09-19

    Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.

  5. Diffusion in molybdenum disilicide

    International Nuclear Information System (INIS)

    Salamon, M.; Mehrer, H.

    2005-01-01

    The diffusion behaviour of the high-temperature material molybdenum disilicide (MoSi 2 ) was completely unknown until recently. In this paper we present studies of Mo self-diffusion and compare our present results with our already published studies of Si and Ge diffusion in MoSi 2 . Self-diffusion of molybdenum in monocrystalline MoSi 2 was studied by the radiotracer technique using the radioisotope 99 Mo. Deposition of the radiotracer and serial sectioning after the diffusion anneals to determine the concentration-depth profiles was performed using a sputtering device. Diffusion of Mo is a very slow process. In the entire temperature region investigated (1437 to 2173 K), the 99 Mo diffusivities in both principal directions of the tetragonal MoSi 2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster by two to three orders of magnitude than parallel to it. The activation enthalpies for diffusion perpendicular and parallel to the tetragonal axis are Q perpendicular to = 468 kJ mol -1 (4.85 eV) and Q parallel = 586 kJ mol -1 (6.07 eV), respectively. Diffusion of Si and its homologous element Ge is fast and is mediated by thermal vacancies of the Si sublattice of MoSi 2 . The diffusion of Mo is by several orders of magnitude slower than the diffusion of Si and Ge. This large difference suggests that Si and Mo diffusion are decoupled and that the diffusion of Mo likely takes place via vacancies on the Mo sublattice. (orig.)

  6. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique

    International Nuclear Information System (INIS)

    Nasu, Katsuhiro; Kuroki, Yoshihumi; Murakami, Koji; Nawano, Shigeru; Kuroki, Seiko; Moriyama, Noriyuki

    2004-01-01

    We wanted to determine the feasibility of diffusion-weighted single shot echo planar imaging using a sensitivity encoding diffusion weighted imaging (SENSE-DWI) technique in depicting colorectal cancer. Forty-two patients with sigmoid colon cancer and rectal cancer, all proven pathologically, were examined on T2-turbo spin echo (TSE) and SENSE-DWI. No bowel preparation was performed before examination. The b-factors used in SENSE-DWI were zero and 1000 s/mm 2 . In 10 randomly selected cases, the images whose b-factors were 250 and 500 s/mm 2 were also obtained. The reduction factor of SENSE was 2.0 in all sequences. Two radiologists evaluated the obtained images from the viewpoints of tumor detectability, image distortion and misregistration of the tumors. The apparent diffusion coefficients (ADCs) of the tumors and urine in the urinary bladders in each patient were measured to evaluate the correlation between ADC and pathological classification of each tumor. All tumors were depicted hyperintensely on SENSE-DWI. Even though single shot echo planar imaging (EPI) was used, the image distortion and misregistration was quite pronounced because of simultaneous use of SENSE. On SENSE-DWI whose b-factor was 1000 s/mm 2 , the normal colon wall and feces were always hypointense and easily differentiated from the tumors. The mean ADC value of each tumor was 1.02±0.1 (x 10 -3 ) mm 2 /s. No overt correlation can be pointed out between ADC and pathological classification of each tumor. SENSE-DWI is a feasible method for depicting colorectal cancer. SENSE-DWI provides strong contrast among colorectal cancers, normal rectal wall and feces. (authors)

  7. Determination of Diffusion Coefficients and Activation Energy of Selected Organic Liquids using Reversed-Flow Gas Chromatographic Technique

    International Nuclear Information System (INIS)

    Khalisanni Khalid; Rashid Atta Khan; Sharifuddin Mohd Zain

    2012-01-01

    Evaporation of vaporize organic liquid has ecological consequences when the compounds are introduced into both freshwater and marine environments through industrial effluents, or introduced directly into the air from industrial unit processes such as bioreactors and cooling towers. In such cases, a rapid and simple method are needed to measure physicochemical properties of the organic liquids. The Reversed-Flow Gas Chromatography (RF-GC) sampling technique is an easy, fast and accurate procedure. It was used to measure the diffusion coefficients of vapors from liquid into a carrier gas and at the same time to determine the rate coefficients for the evaporation of the respective liquid. The mathematical expression describing the elution curves of the samples peaks was derived and used to calculate the respective parameters for the selected liquid pollutants selected such as methanol, ethanol, 1-propanol, 1-butanol, n-pentane, n-hexane, n-heptane and n-hexadecane, evaporating into the carrier gas of nitrogen. The values of diffusion coefficients found were compared with those calculated theoretically or reported in the literature. The values of evaporation rate were used to determine the activation energy of respective samples using Arrhenius equation. An interesting finding of this work is by using an alternative mathematical analysis based on equilibrium at the liquid-gas interphase, the comparison leads to profound agreement between theoretical values of diffusion coefficients and experimental evidence. (author)

  8. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  9. Indications of quantum diffusion of H in Pd

    International Nuclear Information System (INIS)

    Behar, M; Weiser, M.; Kalbitzer, S.

    1989-01-01

    Low temperature diffusion measurements of hydrogen in palladium using the nuclear reaction technique have shown indications of H quantum diffusion behaviour. For temperatures higher than 100 K the experimental diffusion coefficients follow an Arrhenius type behaviour. However, for lower temperatures (30 K 2 behaviour. (Author) [es

  10. Diffusion in a liquid alloy - theories and experiments

    International Nuclear Information System (INIS)

    Chastang, C.

    1997-01-01

    Different theories concerning the calculation of diffusion coefficients in liquid metals, as well for auto as for hetero-diffusion are presented and some experimental procedures using tracer techniques in shear cells and capillary tubes are described. Diffusion curves are calculated with the TRIO-EF code. Calculated and measured values of diffusion coefficients are compared and discussed with regard to various diffusion mechanisms. Copper gadolinium mixtures have been investigated in more detail. (C.B.)

  11. Qualitative methods for the study of policy diffusion

    DEFF Research Database (Denmark)

    Starke, Peter

    2013-01-01

    This article deals with the question whether and how processes of policy diffusion can be examined with qualitative methods. More specifically, how can qualitative methods address the “twin challenge of interdependence,” namely the challenge to identify diffusion, on the one hand, and the challen...... closes with some suggestions for further methodological development in the study of policy diffusion, including the combination of quantitative and qualitative methods.......This article deals with the question whether and how processes of policy diffusion can be examined with qualitative methods. More specifically, how can qualitative methods address the “twin challenge of interdependence,” namely the challenge to identify diffusion, on the one hand, and the challenge...... to discriminate between mechanisms of diffusion, on the other? I argue, first, that there are three distinct qualitative techniques that can be used, namely cross-case analysis (often based on systematic case selection), within-case process tracing, and counterfactual reasoning. I demonstrate how these techniques...

  12. Demonstration of non-Gaussian restricted diffusion in tumor cells using diffusion-time dependent diffusion weighted MR contrast

    Directory of Open Access Journals (Sweden)

    Tuva Roaldsdatter Hope

    2016-08-01

    Full Text Available The diffusion weighted imaging (DWI technique enables quantification of water mobility for probing microstructural properties of biological tissue, and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated a bi-exponential signal attenuation, ascribed to fast (high ADC and slow (low ADC diffusion components. In this empirical study, we investigate the properties of the diffusion time (∆ - dependent components of the diffusion-weighted (DW signal in a constant b-value experiment. A Xenograft GBM mouse was imaged using ∆ = 11 ms, 20 ms, 40 ms, 60 ms and b=500-4000 s/mm2 in intervals of 500s/mm2. Data was corrected for EPI distortions and the ∆-dependence on the DW signal was measured within three regions of interest (intermediate- and high-density tumor regions and normal appearing brain tissue regions (NAB. In this empirical study we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on ∆, consistent with restricted diffusion of the intracellular space. As the DW-signal as a function of ∆ is specific to restricted diffusion, manipulating ∆ at constant b-value (cb provides a complementary and direct approach for separating the restricted from the hindered diffusion component. Our results show that only tumor tissue signal of our data demonstrate ∆-dependence, based on a bi-exponential model with a restricted diffusion component, we successfully estimated the restricted ADC, signal volume fraction and cell size within each tumor ROI.

  13. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birdwell, Jr, Joseph F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duncan, Nathan C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ensor, Dale [Tennessee Technological Univ., Cookeville, TN (United States); Hill, Talon G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Denise L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rajbanshi, Arbin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roach, Benjamin D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Szczygiel, Patricia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sloop, Jr., Frederick V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stoner, Erica L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Neil J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modular Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.

  14. Improvements in solvent extraction columns

    International Nuclear Information System (INIS)

    Aughwane, K.R.

    1987-01-01

    Solvent extraction columns are used in the reprocessing of irradiated nuclear fuel. For an effective reprocessing operation a solvent extraction column is required which is capable of distributing the feed over most of the column. The patent describes improvements in solvent extractions columns which allows the feed to be distributed over an increased length of column than was previously possible. (U.K.)

  15. Bubbles in solvent microextraction: the influence of intentionally introduced bubbles on extraction efficiency.

    Science.gov (United States)

    Williams, D Bradley G; George, Mosotho J; Meyer, Riaan; Marjanovic, Ljiljana

    2011-09-01

    Significant improvements to microdrop extractions of triazine pesticides are realized by the intentional incorporation of an air bubble into the solvent microdroplet used in this microextraction technique. The increase is attributed partly to greater droplet surface area resulting from the air bubble being incorporated into the solvent droplet as opposed to it sitting thereon and partly to thin film phenomena. The method is useful at nanogram/liter levels (LOD 0.002-0.012 μg/L, LOQ 0.007-0.039 μg/L), is precise (7-12% at 10 μg/L concentration level), and is validated against certified reference materials containing 0.5 and 5.0 μg/L analyte. It tolerates water and fruit juice as matrixes without serious matrix effects. This new development brings a simple, inexpensive, and efficient preconcentration technique to bear which rivals solid phase microextraction methods.

  16. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  17. Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cells

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel; Hagemann, Ole; Alstrup, Jan

    2009-01-01

    large-scale production of polymer solar cells using screen printing. Screen-printed solar cells are still very inferior to state of the art P3HT/PCBM technology, but it is our view that it is necessary to explore these printing technologies if polymer solar cells are to ever become commercial products.......The synthesis and characterization of a number of so-called thermo-cleavable solvents are described with their application in all-air, all-solution and all-screen-printed polymer solar cells. These solvents were developed to meet some requirements for printing techniques such as long “open time...... (TGA) and high-temperature NMR established the onset temperature of decomposition, the rate of the reaction and the nature of the products. Printing experiments with inks based on these solvents together with conjugated polymers are exemplified for polymer solar cell devices to show how they enable...

  18. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  19. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  20. Investigation of solvent dynamic effects on the electron self-exchange in two thianthrene couples with large inner reorganization energies.

    Science.gov (United States)

    Choto, P; Rasmussen, K; Grampp, G

    2015-02-07

    The large structural difference between thianthrene radical cations and their neutral parent molecules can possibly affect their electron self-exchange reactions. Before this can be investigated experimentally, it is necessary to first understand the influence of the solvent on such electron transfer reactions. To achieve this, the rate constants of the electron self-exchange reactions of the Th˙(+)/Th and MTh˙(+)/MTh (Th = thianthrene, MTh = 2,3,7,8-tetramethoxythianthrene) couples were investigated by means of ESR line broadening experiments in different solvents at 293 K. The diffusion corrected rate constants cover a range of 7.2 × 10(8)≤ket≤ 44 × 10(8) M(-1) s(-1) for Th˙(+)/Th and 2.0 × 10(8)≤ket≤ 11.6 × 10(8) M(-1) s(-1) for MTh˙(+)/MTh, respectively. The results were analysed within the framework of the Marcus Theory and the characteristic reorganization energy, λ, was determined. Both couples clearly show a solvent dynamic effect controlled by the longitudinal relaxation time τL of the solvents. However, the influence of the structural changes, in terms of λ, was smaller than expected at room temperature.

  1. A novel image inpainting technique based on median diffusion

    Indian Academy of Sciences (India)

    numerical methods such as anisotropic diffusion and multiresolution schemes. Some steps ... Roth & Black (2005) have developed a framework for learning a generic and expressive image priors that ..... This paper presents a new approach for image inpainting by propagating median information .... J. Graphics Tools 9(1):.

  2. Solution of the advection-diffusion equation for a nonhomogeneous and nonstationary Planetary Boundary Layer by GILTT (Generalized Integral Laplace Transform Technique)

    International Nuclear Information System (INIS)

    Mello, Kelen Berra de

    2005-02-01

    In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)

  3. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites.

    Science.gov (United States)

    Adamson, David T; de Blanc, Phillip C; Farhat, Shahla K; Newell, Charles J

    2016-08-15

    Management of groundwater sites impacted by 1,4-dioxane can be challenging due to its migration potential and perceived recalcitrance. This study examined the extent to which 1,4-dioxane's persistence was subject to diffusion of mass into and out of lower-permeability zones relative to co-released chlorinated solvents. Two different release scenarios were evaluated within a two-layer aquifer system using an analytical modeling approach. The first scenario simulated a 1,4-dioxane and 1,1,1-TCA source zone where spent solvent was released. The period when 1,4-dioxane was actively loading the low-permeability layer within the source zone was estimated to be high effective solubility. While this was approximately an order-of-magnitude shorter than the loading period for 1,1,1-TCA, the mass of 1,4-dioxane stored within the low-permeability zone at the end of the simulation period (26kg) was larger than that predicted for 1,1,1-TCA (17kg). Even 80years after release, the aqueous 1,4-dioxane concentration was still several orders-of-magnitude higher than potentially-applicable criteria. Within the downgradient plume, diffusion contributed to higher concentrations and enhanced penetration of 1,4-dioxane into the low-permeability zones relative to 1,1,1-TCA. In the second scenario, elevated 1,4-dioxane concentrations were predicted at a site impacted by migration of a weak source from an upgradient site. Plume cutoff was beneficial because it could be implemented in time to prevent further loading of the low-permeability zone at the downgradient site. Overall, this study documented that 1,4-dioxane within transmissive portions of the source zone is quickly depleted due to characteristics that favor both diffusion-based storage and groundwater transport, leaving little mass to treat using conventional means. Furthermore, the results highlight the differences between 1,4-dioxane and chlorinated solvent source zones, suggesting that back diffusion of 1,4-dioxane mass may be

  4. Processing of polymers using reactive solvents

    NARCIS (Netherlands)

    Lemstra, P.J.; Kurja, J.; Meijer, H.E.H.; Meijer, H.E.H.

    1997-01-01

    A review with many refs. on processing of polymers using reactive solvents including classification of synthetic polymers, guidelines for the selection of reactive solvents, basic aspects of processing, examples of intractable and tractable polymer/reactive solvent system

  5. Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films

    Science.gov (United States)

    Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn

    2015-03-01

    Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.

  6. Carcinogenicity of petroleum lubricating oil distillates: effects of solvent refining, hydroprocessing, and blending.

    Science.gov (United States)

    Halder, C A; Warne, T M; Little, R Q; Garvin, P J

    1984-01-01

    Certain refining processes were investigated to determine their influence on the dermal carcinogenic activity of petroleum-derived lubricating oil distillates. Specifically, the effects of solvent refining, hydroprocessing, a combination of both processes, and the blending of oils processed using each technique were evaluated in standard mouse skin-painting bioassays. The refining process used as well as the level or severity of treatment greatly influenced the carcinogenic outcome of processed lubricating oils. Solvent refining at severities normally used appeared to eliminate carcinogenicity. In contrast, hydroprocessing alone at mild levels of treatment was successful only in reducing the carcinogenic potency; severe hydroprocessing conditions were necessary to eliminate carcinogenic activity without the use of additional refining processes. Carcinogenic activity could also be eliminated by following moderate solvent refining with mild hydroprocessing. Blending of hydroprocessed oils with solvent-refined oils resulted in a substantial reduction or even elimination of carcinogenic activity. However, the degree of protection obtained varied with the particular distillates used and appeared largely dependent on the inherent biological activity of the hydroprocessed oil.

  7. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction... formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent...

  8. Ionic liquid solutions as extractive solvents for value-added compounds from biomass.

    Science.gov (United States)

    Passos, Helena; Freire, Mara G; Coutinho, João A P

    2014-12-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.

  9. The use of solvent extraction in the nuclear fuel cycle, forty years of progress

    International Nuclear Information System (INIS)

    Germain, M.

    1990-01-01

    The high degree of purity required for the fissile and fertile elements used as fuels in nuclear reactors has made solvent extraction the choice as the purification method in the different steps of the fuel cycle. This technique, owing to its specificity, and its adaptability both to continuous multistage processes and to remote control, has served to achieve the requisite purities with safe, reliable operation. A review of the different steps of the cycle including uranium and thorium production, uranium enrichment, reprocessing, and the recovery of transuranics, highlights the diversity of the solvents used and the improvements made to the processes and the equipment. According to the different authors, this technique is capable of meeting future needs, aimed to reduce the harmful effects associated with the nuclear fuel cycle to the lowest possible levels

  10. Effects of solvent and structure on the reactivity of 6-substituted nicotinic acids with diazodiphenylmethane in aprotic solvents

    Directory of Open Access Journals (Sweden)

    BRATISLAV Ž. JOVANOVIĆ

    2009-12-01

    Full Text Available The rate constants for the reactions of diazodiphenylmethane (DDM with 6-substituted nicotinic acids in aprotic solvents at 30 °C were determined. The obtained second order rate constants in aprotic solvents, together with literature data for benzoic and nicotinic acids in protic solvents, were used for the calculation of solvent effects, employing the Kamlet-Taft solvatochromic equation (linear solvation energy relationship – LSER in the form: log k = log k0 + s* + a + b. The correlations of the kinetic data were performed by means of multiple linear regression analysis taking appropriate solvent parameters. The sign of the equation coefficients (s, a and b were in agreement with the postulated reaction mechanism, and the mode of the solvent influences on the reaction rate is discussed based on the correlation results. A similar contribution of the non-specific solvent effect and electrophilic solvation was observed for all acids, while the highest contribution of nucleophilic solvation was influenced by their high acidity. Correlation analysis of the rate data with substituent p parameters in an appropriate solvent using the Hammett equation was also performed. The substituent effect on the acid reactivity was higher in aprotic solvents of higher dipolarity/polarizability. The mode of the transmission of the substituent effect is discussed in light of the contribution of solute–solvent interaction on the acid reactivity.

  11. Studies of matrix diffusion in gas phase

    International Nuclear Information System (INIS)

    Hartikainen, K.; Timonen, J.; Vaeaetaeinen, K.; Pietarila, H.

    1994-03-01

    The diffusion of solutes from fractures into rock matrix is an important factor in the safety analysis of disposal of radioactive waste. Laboratory measurements are needed to complement field investigations for a reliable determination of the necessary transport parameters. Measurements of diffusion coefficients in tight rock samples are usually time consuming because the diffusion processes are slow. On the other hand it is well known that diffusion coefficients in the gas phase are roughly four orders of magnitude larger than those in the liquid phase. Therefore, for samples whose structures do not change much upon drying, it is possible to estimate the diffusion properties of the liquid phase when the properties of the gas phase are known. Advantages of the gas method are quick and easy measurements. In the measurements nitrogen was used as the carrier gas and helium as the tracer gas, and standard techniques have been used for helium detection. Techniques have been developed for both channel flow and through-diffusion measurements. The breakthrough curves have been measured in every experiment and all measurements have been modelled by using appropriate analytical models. As a result matrix porosities and effective diffusion coefficients in the gas phase have been determined. (12 refs., 21 figs., 6 tabs.)

  12. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1...

  13. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1...

  14. Analysis and visualization methods for interpretation of diffusion MRI data

    NARCIS (Netherlands)

    Vos, S.B.

    2013-01-01

    Diffusion MRI is an imaging technique that is very sensitive to microstructural changes in tissue. Diffusion tensor MRI, the most commonly used method, can estimate the magnitude and anisotropy of diffusion. These tensor-based diffusion parameters have been shown to change in many neuropathological

  15. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  16. Scaling exponent and dispersity of polymers in solution by diffusion NMR.

    Science.gov (United States)

    Williamson, Nathan H; Röding, Magnus; Miklavcic, Stanley J; Nydén, Magnus

    2017-05-01

    Molecular mass distribution measurements by pulsed gradient spin echo nuclear magnetic resonance (PGSE NMR) spectroscopy currently require prior knowledge of scaling parameters to convert from polymer self-diffusion coefficient to molecular mass. Reversing the problem, we utilize the scaling relation as prior knowledge to uncover the scaling exponent from within the PGSE data. Thus, the scaling exponent-a measure of polymer conformation and solvent quality-and the dispersity (M w /M n ) are obtainable from one simple PGSE experiment. The method utilizes constraints and parametric distribution models in a two-step fitting routine involving first the mass-weighted signal and second the number-weighted signal. The method is developed using lognormal and gamma distribution models and tested on experimental PGSE attenuation of the terminal methylene signal and on the sum of all methylene signals of polyethylene glycol in D 2 O. Scaling exponent and dispersity estimates agree with known values in the majority of instances, leading to the potential application of the method to polymers for which characterization is not possible with alternative techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Some notes on experiments measuring diffusion of sorbed nuclides through porous media

    International Nuclear Information System (INIS)

    Lever, D.A.

    1986-11-01

    Various experimental techniques for measuring the important parameters governing diffusion of sorbed nuclides through water-saturated porous media are described, and the particular parameters obtained from each technique are discussed. Recent experiments in which diffusive transport takes place more rapidly than expected are reviewed. The author recommends that through-transport diffusion experiments are the most satisfactory method of determining whether this arises from surface diffusion of sorbed nuclides. (author)

  18. Synthesis, fractionation, and thin film processing of nanoparticles using the tunable solvent properties of carbon dioxide gas expanded liquids

    Science.gov (United States)

    Anand, Madhu

    Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Materials built from nanoparticles possess unique chemical, physical, mechanical and optical properties. Due to these properties, they hold potential in application areas such as catalysts, sensors, semiconductors and optics. At the same time, CO 2 in the form of supercritical fluid or CO2 gas-expanded liquid mixtures has gained significant attention in the area of processing nanostructures. This dissertation focuses on the synthesis and processing of nanoparticles using CO2 tunable solvent systems. Nanoparticle properties depend heavily on their size and, as such, the ability to finely control the size and uniformity of nanoparticles is of utmost importance. Solution based nanoparticle formation techniques are attractive due to their simplicity, but they often result in the synthesis of particles with a wide size range. To address this limitation, a post-synthesis technique has been developed in this dissertation to fractionate polydisperse nanoparticles ( s . = 30%) into monodisperse fractions ( s . = 8%) using tunable physicochemical properties of CO 2 expanded liquids, where CO2 is employed as an antisolvent. This work demonstrates that by controlling the addition of CO2 (pressurization) to an organic dispersion of nanoparticles, the ligand stabilized nanoparticles can be size selectively precipitated within a novel high pressure apparatus that confines the particle precipitation to a specified location on a surface. Unlike current techniques, this CO2 expanded liquid approach provides faster and more efficient particle size separation, reduction in organic solvent usage, and pressure tunable size selection in a single process. To improve our fundamental understanding and to further refine the size separation process, a detailed study has been performed to identify the key parameters enabling size separation of various

  19. Adaptive Resolution Simulation of MARTINI Solvents

    NARCIS (Netherlands)

    Zavadlav, Julija; Melo, Manuel N.; Cunha, Ana V.; de Vries, Alex H.; Marrink, Siewert J.; Praprotnik, Matej

    We present adaptive resolution dynamics simulations of aqueous and apolar solvents coarse-grained molecular models that are compatible with the MARTINI force field. As representatives of both classes solvents we have chosen liquid water and butane, respectively, at ambient temperature. The solvent

  20. Techniques for removing contaminants from optical surfaces

    International Nuclear Information System (INIS)

    Stowers, I.F.; Patton, H.G.

    1978-01-01

    Particle removal procedures such as plasma cleaning, ultrasonic agitation of solvents, detergents, solvent wiping, mild abrasives, vapor degreasing, high pressure solvent spraying and others have been evaluated and the results are reported here. Wiping with a lens tissue wetted with an organic solvent and high pressure fluid spraying are the only methods by which particles as small as 5 μm can be effectively removed. All of the other methods tested were found to be at least two orders of magnitude less effective at removing small insoluble particles. An additional and as yet unresolved problem is the development of a reliable method for evaluating particulate surface cleanliness. Without such a reproducible monitoring technique, the large diversity of cleaning methods currently available cannot be quantitatively evaluated

  1. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  2. Formation of vacancies in thermal equilibrium in α-range alloys

    International Nuclear Information System (INIS)

    Hehenkamp, Th.

    1982-01-01

    A model for aggregates (complexes) between vacancies and one or more impurity atoms is described for nearest neighbor interactions. Binding enthalpies in the different complexes have been unambigeously derived therefrom employing a variety of experimental techniques for the determination of vacancy concentrations as function of composition and temperature, (resistivity, positron annihilation, calorimetry, dl/l - da/a techniques), for some noble metals alloys. Solvent diffusion in these alloys has been found to be essentially governed by the increase of vacancy concentrations as function of these variables. Approximation for changes in the migration and correlation permits one to obtain the different binding enthalpies from measurements of solvent diffusion enhancement in an independent fashion and gives comparable results to the former techniques. (author)

  3. Green and Bio-Based Solvents.

    Science.gov (United States)

    Calvo-Flores, Francisco G; Monteagudo-Arrebola, María José; Dobado, José A; Isac-García, Joaquín

    2018-04-24

    Chemical reactions and many of the procedures of separation and purification employed in industry, research or chemistry teaching utilize solvents massively. In the last decades, with the birth of Green Chemistry, concerns about the employment of solvents and the effects on human health, as well as its environmental impacts and its dependence on non-renewable raw materials for manufacturing most of them, has drawn the attention of the scientific community. In this work, we review the concept of green solvent and the properties and characteristics to be considered green. Additionally, we discuss the different possible routes to prepare many solvents from biomass, as an alternative way to those methods currently applied in the petrochemical industry.

  4. Chapman--Enskog approach to flux-limited diffusion theory

    International Nuclear Information System (INIS)

    Levermore, C.D.

    1979-01-01

    Using the technique developed by Chapman and Enskog for deriving the Navier--Stokes equations from the Boltzmann equation, a framework is set up for deriving diffusion theories from the transport equation. The procedure is first applied to give a derivation of isotropic diffusion theory and then of a completely new theory which is naturally flux-limited. This new flux-limited diffusion theory is then compared with asymptotic diffusion theory

  5. Molecular accessibility in solvent swelled coals. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  6. Structured inverse modeling in parabolic diffusion processess

    OpenAIRE

    Schulz, Volker; Siebenborn, Martin; Welker, Kathrin

    2014-01-01

    Often, the unknown diffusivity in diffusive processes is structured by piecewise constant patches. This paper is devoted to efficient methods for the determination of such structured diffusion parameters by exploiting shape calculus. A novel shape gradient is derived in parabolic processes. Furthermore quasi-Newton techniques are used in order to accelerate shape gradient based iterations in shape space. Numerical investigations support the theoretical results.

  7. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications.

    Directory of Open Access Journals (Sweden)

    Steven Kim

    Full Text Available Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD. However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up.

  8. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

    Science.gov (United States)

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  9. $^{31}$Si Self-Diffusion in Si-Ge Alloys and Si-(B-)C-N Ceramics and Diffusion Studies for Al and Si Beam Developments

    CERN Multimedia

    Nylandsted larsen, A; Voss, T L; Strohm, A

    2002-01-01

    An invaluable method for studying diffusion in solids is the radiotracer technique. However, its applicability had been restricted to radiotracer atoms with half-lives $t_{1/2}$ of about 1~d or longer. Within the framework of IS372 a facility was developed in which short-lived radiotracer atoms ( 5min $\\scriptstyle{\\lesssim}$ $t_{1/2}\\scriptstyle{\\lesssim}$1 d ) can be used. For the implantation of the short-lived tracers the facility is flanged to the ISOLDE beamline, and all post-implantation steps required in the radiotracer technique are done in situ.\\\\ After successful application of this novel technique in diffusion studies of $^{11}$C ($t_{1/2}$ = 20.3 min), this experiment aims at performing self-diffusion studies of $^{31}$Si ($t_{1/2}$ = 2.6~h) in Si--Ge alloys and in amorphous Si--(B--)C--N ceramics.\\\\ Our motivation for measuring diffusion in Si--Ge alloys is their recent technological renaissance as well as the purpose to test the prediction that in these alloys the self-diffusion mechanism chang...

  10. Conventional and dense gas techniques for the production of liposomes: a review.

    Science.gov (United States)

    Meure, Louise A; Foster, Neil R; Dehghani, Fariba

    2008-01-01

    The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.

  11. Mechanisms of impurity diffusion in rutile

    International Nuclear Information System (INIS)

    Peterson, N.L.; Sasaki, J.

    1984-01-01

    Tracer diffusion of 46 Sc, 51 Cr, 54 Mn, 59 Fe, 60 Co, 63 Ni, and 95 Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO 2 and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures

  12. Prediction of Corrosion of Alloys in Mixed-Solvent Environments

    Energy Technology Data Exchange (ETDEWEB)

    Anderko, Andrzej [OLI Systems Inc. Morris Plains (United States); Wang, Peiming [OLI Systems Inc. Morris Plains (United States); Young, Robert D. [OLI Systems Inc. Morris Plains (United States); Riemer, Douglas P. [OLI Systems Inc. Morris Plains (United States); McKenzie, Patrice [OLI Systems Inc. Morris Plains (United States); Lencka, Malgorzata M. [OLI Systems Inc. Morris Plains (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-06-05

    Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte

  13. Separate measurement of local diffusion coefficients in grain boundaries and in adjacent regions

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Kajgorodov, V.N.

    1994-01-01

    A new measuring technique is presented that allows one separate determination of grain boundary width and local diffusion coefficients. With the use of the technique presented phenomenological description is accompished for time and temperature dependences of relative and absolute level populations in a zone of preferential intercrystalline diffusion. Local diffusion coefficients obtained for the upper temperature limit of applicability of the technique proposed are in a good agreement with values calculated form coordinate distribution of atoic probes. Local diffusion coefficients determined at lower temperatures essentially differ from those calculated assuming that suction coefficient is equal to a coefficient of volume diffusion. Experimental dta are given for diffusion parameters in Ag, Pd and W polycrystals. 16 refs., 3 figs., 2 tabs

  14. Solvent Extraction of Furfural From Biomass

    Science.gov (United States)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  15. Development of Solvent Extraction Approach to Recycle Enriched Molybdenum Material

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brown, M. Alex [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Sen, Sujat [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Bowers, Delbert L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Wardle, Kent [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Pupek, Krzysztof Z. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Dzwiniel, Trevor L. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krumdick, Gregory K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory, in cooperation with Oak Ridge National Laboratory and NorthStar Medical Technologies, LLC, is developing a recycling process for a solution containing valuable Mo-100 or Mo-98 enriched material. Previously, Argonne had developed a recycle process using a precipitation technique. However, this process is labor intensive and can lead to production of large volumes of highly corrosive waste. This report discusses an alternative process to recover enriched Mo in the form of ammonium heptamolybdate by using solvent extraction. Small-scale experiments determined the optimal conditions for effective extraction of high Mo concentrations. Methods were developed for removal of ammonium chloride from the molybdenum product of the solvent extraction process. In large-scale experiments, very good purification from potassium and other elements was observed with very high recovery yields (~98%).

  16. Diffusion of I{sup -}, Cs{sup +}, and Sr{sup 2+} in compacted bentonite - Anion exclusion and surface diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, T.E.; Jansson, Mats [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear Chemistry

    1996-11-01

    The diffusion of I, Cs and Sr ions in bentonite compacted to a dry density of 1.8 gr/cm{sup 3} and saturated with two groundwaters of different ionic strength have been studied experimentally using the through diffusion technique. The I{sup -} diffusivity and diffusion porosity were found to be concentration independent in the concentration range exp(-8) to exp(-2) mol/dm{sup 3}. The diffusion porosity, being only a fraction of the water porosity for normal groundwaters, is strongly ionic strength dependent due to anion exclusion. The dependence of the diffusion of Cs{sup +} and Sr{sup 2+} on the sorption intensity is accommodated by a model encompassing diffusion of the sorbed cations within the electrical double layer next to the mineral surface in addition to diffusion in the pore water. 18 refs, 12 figs.

  17. A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS/multi-walled carbon nanotube (MWCNT nanocomposites: Effect of modified MWCNT content

    Directory of Open Access Journals (Sweden)

    Payel Sen

    2016-09-01

    Full Text Available The influence of carboxylic acid functionalized multi-walled carbon nanotubes (cMWCNTs content on the properties of polystyrene (PS nanocomposite (NC films was investigated. The NC films were produced by a simple sonication assisted solvent blending technique. The interaction between the matrix (PS and well dispersed filler (cMWCNT was evaluated by different techniques involving Fourier transform infrared spectroscopy, Raman spectroscopy and X-Ray diffraction. Morphological images of the NCs were collected from Transmission electron microscopy. The thermal characteristics of the PS were found to be improved by the incorporation of the cMWCNTs, which was evident from the Thermogravimetric analysis (TGA data. The thermal degradation activation energy evaluated by Coats-Redfern method and integral procedural decomposition temperature determined by Doyle's method supported the thermal stability proposed by TGA of the NCs. The reaction mechanism of thermal degradation of neat PS and respective NCs was successfully predicted using Criado method. The rheological properties and hardness were found to be upgraded by the inclusion of nanotubes to the PS matrix.

  18. "Chemistry in a spinneret" to fabricate hollow fibers for organic solvent filtration

    NARCIS (Netherlands)

    Dutczak, S.M.; Tanardi, Cheryl; Kopec, K.K.; Wessling, Matthias; Stamatialis, Dimitrios

    2012-01-01

    Organic solvent filtration (OSF) is a very efficient separation technique with high potential in many branches of industry. Currently the choice of the commercial membranes is limited only to a few flat sheet membranes and spiral wound modules. It is generally known that a membrane in hollow fiber

  19. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    Science.gov (United States)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  20. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  1. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Computer-aided tool for solvent selection in pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; K. Tula, Anjan; Gernaey, Krist V.

    -liquid equilibria). The application of the developed model-based framework is highlighted through several cases studies published in the literature. In the current state, the framework is suitable for problems where the original solvent is exchanged by distillation. A solvent selection guide for fast of suitable......-aided framework with the objective to assist the pharmaceutical industry in gaining better process understanding. A software interface to improve the usability of the tool has been created also....

  3. Sorption behaviour of uranium and thorium on hydrous tin oxide from aqueous and mixed-solvent HNO3 media

    International Nuclear Information System (INIS)

    Misak, N.Z.; Salama, H.N.; El-Naggar, I.M.

    1983-01-01

    In aqueous nitric acid, uranyl and thorium ions seem to be sorbed on hydrous tin oxide mainly by a cation exchange mechanism. In 10 - 3 M aqueous solutions, the hydrous oxide prefers thorium to uranium at the relative low pH values, while the reverse is true at the higher pH values. The exchange of uranium is particle diffusion controlled while that of thorium is chemically controlled, and the isotherms point to the presence of different-energy sites in the hydrous oxide. Except for the solutions containing 80% of methanol, ethanol, or acetone, cation exchange is probably still the main mechanism of sorption of uranium. Anionic sorption of thorium seems to occur in all the mixed-solvent solutions and is perhaps the main mechanism in 80% ethanol. The equilibrium distribution coefficient K sub (d) increases almost in all cases with organic solvent content, probably due to dehydration of sorbed ions and to increasing superposition on anionic sorption. Unlike the aqueous medium, large U/Th separation factors are achieved in many of the mixed-solvent solutions and separation schemes are suggested. (Authors)

  4. Analysis of a gas absorption system with soluble carrier gas and volatile solvent

    International Nuclear Information System (INIS)

    Kanak, B.E.

    1980-01-01

    The effects of column diameter, carrier gas coabsorption, and solvent vaporization on the performance of a packed gas absorption column are examined. The system investigated employs dichlorodifluoromethane as a solvent to remove krypton from a nitrogen stream and is characterized by substantial nitrogen coabsorption. Three columns with diameters of 2, 3, and 4 inches were constructed and packed with 34.5 inches of Goodloe packing. In addition to the more conventional data, the experimental evaluation of these columns included the use of a radioisotope and a gamma scanning technique which provided direct measurement of the columns' molar krypton profiles. A multicomponent gas absorption model was developed, based on the two-film mass transfer theory, that allows the fluxes of all species to interact. Verification of this model was achieved through comparison of the calculated results with experimental data. With the feed gas flow rate between 6 and 36 lb moles/hr-ft 2 and the solvent feed rate between 40 and 400 lb moles/hr-ft 2 , column diameter was found to have no significant impact on the mass transfer efficiency of this system when carried out in columns with diameters of 2 inches or greater. The absorption of krypton was found to be enhanced and inhibited, respectively, by carrier gas coabsorption and solvent vaporization. An injector system to add gaseous solvent to the feed gas stream prior to its introduction into the packed bed was proposed to eliminate the detrimental effects of solvent vaporization.Using this injector to supersaturate the feed gas stream with solvent enhanced absorber performance in the same manner as carrier gas coabsorption

  5. Determination and correlation of the solubility for diosgenin in alcohol solvents

    International Nuclear Information System (INIS)

    Chen Feixiong; Zhao Mingrui; Liu Chuochuo; Peng Feifei; Ren Baozeng

    2012-01-01

    Highlights: ► The solubilities of diosgenin in different alcohols solvents have been obtained. ► The solubility decreases with the increase of the polarity of the alcohols solvents. ► The results show that the three models agree well with the experimental data. - Abstract: Using a laser monitoring technique, the solubility of diosgenin in ethanol, 1-propanol, 1-butanol, isobutyl alcohol, tert-butanol, 1-pentanol, and iso-octyl alcohol was measured over the temperature range from (290.15 to 330.15) K at atmospheric pressure. Its corresponding (solid + liquid) equilibrium data will provide essential support for industrial design and further theoretical studies. From the experimental results, the solubility of diosgenin in ethanol, 1-propanol, 1-butanol, isobutyl alcohol, tert-butanol, 1-pentanol, and iso-octyl alcohol was found to increase with increasing temperature and decrease with the increase of the polarity of the alcohols solvents. The Apelblat equation, the ideal model and the λh equation were used to correlate the solubility values. The results showed that the three models mentioned above agreed well with the experimental data.

  6. High angular resolution diffusion imaging : processing & visualization

    NARCIS (Netherlands)

    Prckovska, V.

    2010-01-01

    Diffusion tensor imaging (DTI) is a recent magnetic resonance imaging (MRI) technique that can map the orientation architecture of neural tissues in a completely non-invasive way by measuring the directional specificity (anisotropy) of the local water diffusion. However, in areas of complex fiber

  7. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  8. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  9. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  10. Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters

    Energy Technology Data Exchange (ETDEWEB)

    Panther, Jared G.; Stillwell, Kathryn P.; Powell, Kipton J. [Chemistry Department, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Downard, Alison J. [Chemistry Department, University of Canterbury, Private Bag 4800, Christchurch (New Zealand)], E-mail: alison.downard@canterbury.ac.nz

    2008-08-01

    The diffusive gradients in thin films (DGT) technique, utilizing an iron-hydroxide adsorbent, has been investigated for the in situ accumulation of total dissolved inorganic As in natural waters. Diffusion coefficients of the inorganic As{sup V} and As{sup III} species in the polyacrylamide gel were measured using a diffusion cell and DGT devices and a variety of factors that may affect the adsorption of the As species to the iron-hydroxide adsorbent, or the diffusion of the individual As species, were investigated. Under conditions commonly encountered in environmental samples, solution pH and the presence of anions, cations, fulvic acid, Fe{sup III}-fulvic acid complexes and colloidal iron-hydroxide were demonstrated not to affect uptake of dissolved As. To evaluate DGT as a method for accumulation and pre-concentration of total dissolved inorganic As in natural waters, DGT was applied to two well waters and a river water that was spiked with As. For each sample, the concentration obtained with use of DGT followed by measurement by hydride generation atomic absorption spectrometry with a Pd modifier (HG-AAS) was compared with the concentration of As measured directly by HG-AAS. The results confirmed that DGT is a reliable method for pre-concentration of total dissolved As.

  11. Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters

    International Nuclear Information System (INIS)

    Panther, Jared G.; Stillwell, Kathryn P.; Powell, Kipton J.; Downard, Alison J.

    2008-01-01

    The diffusive gradients in thin films (DGT) technique, utilizing an iron-hydroxide adsorbent, has been investigated for the in situ accumulation of total dissolved inorganic As in natural waters. Diffusion coefficients of the inorganic As V and As III species in the polyacrylamide gel were measured using a diffusion cell and DGT devices and a variety of factors that may affect the adsorption of the As species to the iron-hydroxide adsorbent, or the diffusion of the individual As species, were investigated. Under conditions commonly encountered in environmental samples, solution pH and the presence of anions, cations, fulvic acid, Fe III -fulvic acid complexes and colloidal iron-hydroxide were demonstrated not to affect uptake of dissolved As. To evaluate DGT as a method for accumulation and pre-concentration of total dissolved inorganic As in natural waters, DGT was applied to two well waters and a river water that was spiked with As. For each sample, the concentration obtained with use of DGT followed by measurement by hydride generation atomic absorption spectrometry with a Pd modifier (HG-AAS) was compared with the concentration of As measured directly by HG-AAS. The results confirmed that DGT is a reliable method for pre-concentration of total dissolved As

  12. The diffusion bonding of advanced material

    International Nuclear Information System (INIS)

    Khan, T.I.

    2001-01-01

    As a joining process diffusion bonding has been used since early periods, and artifacts have been found which date back to 3000 years. However, over the last 20 years this joining process has been rediscovered and research has been carried out to understand the mechanisms of the process, and the application of the technique to advanced materials. This paper will review some of the reasons to why diffusion bonding may be preferred over other more conventional welding processes to join advanced alloy systems. It also describes in brief the different types of bonding processes, namely, solid-state and liquid phase bonding techniques. The paper demonstrates the application of diffusion bonding processes to join a range of dissimilar materials for instance: oxide dispersion strengthened superalloys, titanium to duplex stainless steels and engineering ceramics such as Si/sub 3/N/sub 4/ to metal alloys. The research work highlights the success and limitations of the diffusion bonding process and is based on the experience of the author and his colleagues. (author)

  13. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  14. The influence of ultrasonic waves on molecular structure of high impact polystyrene solutions in different solvents

    International Nuclear Information System (INIS)

    Al-Asaly, S.I.

    1991-01-01

    The aim of the this research is to study some physical properties of polymer solutions of high-impact polystyrene (HIPS) solutions in two different solvents (carbon tetrachloride, xylene) by using ultrasonic technique. Absorption coefficient and velocity of ultrasonic waves through different concentrations of these solutions were measured using ultrasonic pulsed generator at constant frequency (800) KHz. The result implies that there is no chemical interaction between (HIPS) molecules and the solvents. 5 tabs.; 18 figs.; 59 refs

  15. 29 CFR 1915.32 - Toxic cleaning solvents.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Toxic cleaning solvents. 1915.32 Section 1915.32 Labor... Preservation § 1915.32 Toxic cleaning solvents. (a) When toxic solvents are used, the employer shall employ one or more of the following measures to safeguard the health of employees exposed to these solvents. (1...

  16. Extensive experimental investigation of the effect of drainage height and solvent type on the stabilized drainage rate in vapour extraction (VAPEX) process

    OpenAIRE

    Mehdi Mohammadpoor; Farshid Torabi

    2015-01-01

    The low cost of the injected solvent, which can be also recovered and recycled, and the applicability of VAPEX technique in thin reservoirs are among the main advantages of VAPEX process compared to thermal heavy oil recovery techniques. In this research, an extensive experimental investigation is carried out to first evaluate the technical feasibility of utilization of various solvents for VAPEX process. Then the effect of drainage height on the stabilized drainage rate in VAPEX process was ...

  17. Analysis of recovered solvents from coal liquefaction in a flowing-solvent reactor by SEC and UV-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Y.; Feng, J.; Xie, K.C.; Kandiyoti, R. [Taiyuan University of Technology, Taiyuan (China)

    2005-08-01

    Point of Ayr coal has been extracted using three solvents: tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP); at two temperatures: 350 {sup o}C and 450{sup o}C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. These solvents differ in solvent power and the ability to donate hydrogen atoms to stabilize free radicals produced by pyrolysis of the coal. Analysis of the fresh solvents and recovered solvents from coal liquefaction was achieved by size exclusion chromatography and UV-fluorescence spectroscopy. In the blank run, it was testified that the filling material sand and the steel powder did not react with solvent with increasing reaction temperature. The role of hydrogen donation in the tetralin extracts was to increase the proportion of large molecules with increasing extraction temperature. Quinoline and NMP both have the powerful extracting capability to get more materials out of coal with increasing extraction temperature.

  18. Analysis of recovered solvents from coal liquefaction in a flowing-solvent reactor by SEC and UV-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Ying Li; Jie Feng; Ke-Chang Xie; R. Kandiyoti [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology for Ministry of Education and Shanxi Province

    2005-08-01

    Point of Ayr coal has been extracted using three solvents: tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP); at two temperatures: 350{sup o}C and 450{sup o}C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. These solvents differ in solvent power and the ability to donate hydrogen atoms to stabilize free radicals produced by pyrolysis of the coal. Analysis of the fresh solvents and recovered solvents from coal liquefaction was achieved by size exclusion chromatography and UV-fluorescence spectroscopy. In the blank run, it was testified that the filling material sand and the steel powder did not react with solvent with increasing reaction temperature. The role of hydrogen donation in the tetralin extracts was to increase the proportion of large molecules with increasing extraction temperature. Quinoline and NMP both have the powerful extracting capability to get more materials out of coal with increasing extraction temperature.

  19. Study of radon diffusion from RHA-modified ordinary Portland cement using SSNTD technique

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Chauhan, R.P.; Chakarvarti, S.K.

    2013-01-01

    The diffusion coefficient of radon is a very important factor in estimating the rate of indoor radon inflow. The aim of this work is to develop and assess the potential of radon resistant construction materials in residential buildings. Of late, rice husk ash (RHA) has been used as a component in cement. The X-ray diffraction of RHA indicates that the RHA contains mainly amorphous materials while the X-ray fluorescence analysis shows that the major percentage of it is composed of silica. The amorphous silica present in the RHA is responsible for the pozzolonic activity of the ash. The results of the present study indicate that the RHA when mixed with cement initially reduces radon diffusion coefficient, followed by enhancement when the percentage of RHA is increased above 30% by weight. - Highlights: ► Radon diffusion coefficient has been measured in Portland cement with different percentage of rice husk ash (RHA). ► The mixing of RHA to cement changes the radon diffusion coefficient. ► The mixture of cement and RHA can be used to make building materials more resistant to radon entry through diffusion

  20. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  1. Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Maria Konstantakou

    2017-09-01

    Full Text Available Solution-processed organic-inorganic halide perovskites are currently established as the hottest area of interest in the world of photovoltaics, ensuring low manufacturing cost and high conversion efficiencies. Even though various fabrication/deposition approaches and device architectures have been tested, researchers quickly realized that the key for the excellent solar cell operation was the quality of the crystallization of the perovskite film, employed to assure efficient photogeneration of carriers, charge separation and transport of the separated carriers at the contacts. One of the most typical methods in chemistry to crystallize a material is anti-solvent precipitation. Indeed, this classical precipitation method worked really well for the growth of single crystals of perovskite. Fortunately, the method was also effective for the preparation of perovskite films by adopting an anti-solvent dripping technique during spin-coating the perovskite precursor solution on the substrate. With this, polycrystalline perovskite films with pure and stable crystal phases accompanied with excellent surface coverage were prepared, leading to highly reproducible efficiencies close to 22%. In this review, we discuss recent results on highly efficient solar cells, obtained by the anti-solvent dripping method, always in the presence of Lewis base adducts of lead(II iodide. We present all the anti-solvents that can be used and what is the impact of them on device efficiencies. Finally, we analyze the critical challenges that currently limit the efficacy/reproducibility of this crystallization method and propose prospects for future directions.

  2. Sensitivity analysis of an experimental methodology to determine radionuclide diffusion coefficients in granite

    International Nuclear Information System (INIS)

    Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Rigato, V.

    2005-01-01

    Full text of publication follows: The long-term quantitative analysis of the migration behaviour of the relevant radionuclides (RN) within the geological barrier of a radioactive waste repository requires, amongst other data, the introduction of reliable transport parameters, as diffusion coefficients. Since the determination of diffusion coefficients within crystalline rocks is complex and requires long experimental times even for non-sorbing radionuclides, the data available in the literature are very scarce. The nuclear ion beam technique RBS (Rutherford Backscattering Spectrometry) that is successfully used to determine diffusion profiles in thin film science is here examined as possible suitable technique to determine the diffusion coefficients of different RN within granite. As first step, the technique sensitivity and limitations to analyse diffusion coefficients in granite samples is evaluated, considering that the technique is especially sensitive to heavy elements. The required experimental conditions in terms of experimental times, concentration and methodology of analysis are discussed. The diffusants were selected accounting the RBS sensitivity but also trying to cover different behaviours of critical RN and a wide range of possible oxidation states. In particular, Cs(I) was chosen as representative fission product, while as relevant actinides or homologues, the diffusion of Th(IV), U(IV) and Eu (III) was studied. The diffusion of these above-mentioned cations is compared to the diffusion of Re, and I as representative of anionic species. The methodology allowed evaluating diffusion coefficients in the granite samples and, for most of the elements, the values obtained are in agreement with the values found in the literature. The diffusion coefficients calculated ranged from 10 -13 to 10 -16 m 2 /s. It is remarkable that the RBS technique is especially promising to determine diffusion coefficients of high-sorbing RN and it is applicable to a wide range

  3. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  4. Basic principles of diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Bammer, Roland.

    2003-01-01

    In diffusion-weighted MRI (DWI), image contrast is determined by the random microscopic motion of water protons. During the last years, DWI has become an important modality in the diagnostic work-up of acute ischemia in the CNS. There are also a few promising reports about the application of DWI to other regions in the human body, such as the vertebral column or the abdomen. This manuscript provides an introduction into the basics of DWI and Diffusion Tensor imaging. The potential of various MR sequences in concert with diffusion preparation are discussed with respect to acquisition speed, spatial resolution, and sensitivity to bulk physiologic motion. More advanced diffusion measurement techniques, such as high angular resolution diffusion imaging, are also addressed

  5. Organic solvent topical report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    1999-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed

  6. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  7. Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques

    Science.gov (United States)

    Connelly, Blair C.

    In order to reduce the emission of pollutants such as soot and NO x from combustion systems, a detailed understanding of pollutant formation is required. In addition to environmental concerns, this is important for a fundamental understanding of flame behavior as significant quantities of soot lower local flame temperatures, increase overall flame length and affect the formation of such temperature-dependent species as NOx. This problem is investigated by carrying out coupled computational and experimental studies of steady and time-varying sooting, coflow diffusion flames. Optical diagnostic techniques are a powerful tool for characterizing combustion systems, as they provide a noninvasive method of probing the environment. Laser diagnostic techniques have added advantages, as systems can be probed with high spectral, temporal and spatial resolution, and with species selectivity. Experimental soot volume fractions were determined by using two-dimensional laser-induced incandescence (LII), calibrated with an on-line extinction measurement, and soot pyrometry. Measurements of soot particle size distributions are made using time-resolved LII (TR-LII). Laser-induced fluorescence measurements are made of NO and formaldehyde. These experimental measurements, and others, are compared with computational results in an effort to understand and model soot formation and to examine the coupled relationship of soot and NO x formation.

  8. Comparative Evaluation of Different Extraction Techniques and Solvents for the Assay of Phytochemicals and Antioxidant Activity of Hashemi Rice Bran.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Juraimi, Abdul Shukor; Tayebi-Meigooni, Amin

    2015-06-11

    Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.

  9. Fibreoptic diffuse-light irradiators of biological tissues

    International Nuclear Information System (INIS)

    Volkov, Vladimir V; Loshchenov, V B; Konov, Vitalii I; Kononenko, Vitalii V

    2010-01-01

    We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 - 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ∼10 % in their middle part. The maximum length of the diffusers produced by this method is 20 - 25 mm. (laser applications and other topics in quantum electronics)

  10. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    Science.gov (United States)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  11. Characteristics and mechanism of explosive reactions of Purex solvents with Nitric Acid at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Teijiro [Radiation Application Development Association, Tokai, Ibaraki (Japan); Takada, Junichi; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Ida, Masaaki [JGC PLANTECH CO., LTD (Japan); Nakagiri, Naotaka [JGC Corp., Tokyo (Japan); Nishio, Gunji [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan)

    2000-03-01

    This investigation was undertaken to make clear the energetic properties and mechanism of explosive decomposition of Purex solvent systems (TBP/n-Dodecane/HNO{sub 3}) by Nitric Acid at elevated temperatures using a calorimetric technique (DSC, ARC) and a chromatographic technique (GC, GC/MS). The measurement of exothermic events of solvent-HNO{sub 3} reactions using DSC with a stainless steel sealed cell showed distinct two peaks with maxima at around 170 and 320degC, respectively. The peak at around 170degC was mainly attributed to the reactions of dealkylation products (n-butyl nitrate) of TBP and the solvent with nitric acid, and the peak at around 320degC was attributed to the exothermic decomposition of nitrated dodecanes formed in the foregoing exothermic reaction of dodecane with nitric acid. By using the data obtained in ARC experiments, activation energies of 123.2 and 152.5 kJ/mol were determined for the exothermic reaction of TBP with nitric acid and for the exothermic pyrolysis of n-butyl nitrate, respectively. Some possible pathways were considered for the explosive decomposition of TBP by nitric acid at elevated temperatures. (author)

  12. Implicit solvent simulations of DNA and DNA-protein complexes: Agreement with explicit solvent vs experiment

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Feig, M.

    2006-01-01

    Roč. 110, č. 34 (2006), s. 17240-17251 ISSN 1520-6106 Keywords : implicit solvent * explicit solvent * protein DNA complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  13. Use of tracer techniques for studying the influence of addition elements and crystallographic parameters on intergranular diffusion in austenitic stainless steels

    International Nuclear Information System (INIS)

    Assassa, Wafaa.

    1975-01-01

    16% chromium, 14% nickel stainless steel, austenitic at all temperatures, covers a wide field of industrial use. Its behavior was studied in order to find out more about how impurities affect the three basic elements forming the solid solution. After a review of some general properties (segregation, precipitation, migration, structure and energy of boundaries) the physico-chemical aspect of the grain boundaries was investigated. The atomic diffusion rates of the three basic elements forming the solid-solution were compared in order to evaluate their mutual kinetics and the effects of impurities such as C, Si or addition elements such as Ni were studied. The radiotracer technique was used ( 59 Fe, 51 Cr, 63 Ni). The structural aspect of the grain boundaries of this type of steel was then examined by analyzing the self-diffusion of iron in preoriented bicrystals and considering the properties of the boundaries parallel with and perpendicular to the (001) bending axis. A study was devoted to the effect of a new structural parameter, asymmetry of the grain boundaries, little analyzed in diffusion [fr

  14. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    Science.gov (United States)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.

  15. Scanning ion micro-beam techniques for measuring diffusion in heterogeneous materials

    International Nuclear Information System (INIS)

    Jenneson, P.M.; Clough, A.S.

    1998-01-01

    A raster scanning MeV micro-beam of 1 H + or 3 He + ions was used to study the diffusion of small molecules in heterogeneous materials. The location of elemental contaminants (heavier than Lithium) in polymer insulated cables was studied with 1 H micro-Particle Induced X-ray Emission (μPIXE). Concentration profiles of a deuterated molecule in a hair fibre were determined with 3 He micro-Nuclear Reaction Analysis (μNRA). Chlorine and heavy water (D 2 0) diffusion into cement pastes were profiled using a combination of 3 He μPIXE and μNRA. (authors)

  16. Biomolecular-solvent stereodynamic coupling probed by deuteration

    International Nuclear Information System (INIS)

    Fornili, S.L.; Leone, M.; Madonia, F.; Migliore, M.; Palma-Vittorelli, M.B.; Palma, M.U.; San Biagio, P.L.

    1983-01-01

    Thermodynamic interpretation of experiments with isotopically perturbed solvent supports the view that solvent stereodynamics is directly relevant to thermodynamic stability of biomolecules. According with the current understanding of the structure of the aqueous solvent, in any stereodynamic configuration of the latter, connectivity pathways are identifiable for their topologic and order properties. Perturbing the solvent by isotopic substitution or, e.g., by addition of co-solvents, can therefore be viewed as reinforcing or otherwise perturbing these topologic structures. This microscopic model readily visualizes thermodynamic interpretation. In conclusion, the topologic stereodynamic structures of connectivity pathways in the solvent, as modified by interaction with solutes, acquire a specific thermodynamic and biological significance, and the problem of thermodynamic and functional stability of biomolecules is seen in its full pertinent phase space

  17. Development and analysis of diffusion bonding techniques for LBE-cooled spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.T., E-mail: atnelson@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hosemann, P. [University of California - Berkeley, Berkeley, CA 94720 (United States); Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-12-15

    Spallation sources incorporating solid targets may be driven to utilize liquid metal coolants by neutronics or temperature concerns. If tungsten is chosen as the target material, it will require cladding given its poor performance under irradiation. One option to meet this need are ferritic/martensitic stainless steel alloys. This study investigates possible diffusion bonding techniques suitable to clad tungsten targets with HT9, a high chromium stainless steel familiar to the nuclear industry. A test bonding matrix was performed to identify bonding conditions and process parameters suitable for the three material systems of interest (HT9/Ta, HT9/W, and HT9/HT9). Temperatures of 900 and 1060 Degree-Sign C were investigated along with bonding pressures of 7 and 70 MPa. A nominal soak time of 3 h was used for all tests. Three interlayers were investigated: pure nickel, Ni-6P, and vanadium. Finally, different surface preparation techniques for the tungsten were explored in order to gage their effect on the bond quality. Following joining, the bonds were characterized using an array of microscopy and micromechanical techniques to determine the resulting interface character. The nickel and NiP coatings were found to stabilize austenite at the HT9 surface during bonding, while the vanadium remained generally inert given good solubility in each of the three systems. Intermetallic formation is also a significant concern at elevated bonding temperatures as FeTa, FeW, NiTa, and NiW each rapidly form during interdiffusion. Multiple failures were observed through crack propagation parallel to the interface along the intermetallic phases. Differing contraction rates among the base materials also resulted in brittle fracture within the tungsten during cooling from bonding temperatures. Bonding performed at 900 Degree-Sign C under 70 MPa for 3 h with the inclusion of a vanadium interlayer was found to be superior of the conditions explored in this work.

  18. Carbon diffusion paths and segregation at high-angle tilt grain boundaries in α-Fe studied by using a kinetic activation-relation technique

    Science.gov (United States)

    Restrepo, Oscar A.; Mousseau, Normand; Trochet, Mickaël; El-Mellouhi, Fedwa; Bouhali, Othmane; Becquart, Charlotte S.

    2018-02-01

    Carbon diffusion and segregation in iron is fundamental to steel production but is also associated with corrosion. Using the kinetic activation-relaxation technique (k-ART), a kinetic Monte Carlo (KMC) algorithm with an on-the-fly catalog that allows to obtain diffusion properties over large time scales taking into account long-range elastic effects coupled with an EAM force field, we study the motion of a carbon impurity in four Fe systems with high-angle grain boundaries (GB), focusing on the impact of these extended defects on the long-time diffusion of C. Short and long-time stability of the various GBs is first analyzed, which allows us to conclude that the Σ 3 (1 1 1 ) θ =109 .53∘ GB is unstable, with Fe migration barriers of ˜0.1 eV or less, and C acts as a pinning center. Focusing on three stable GBs, in all cases, these extended defects trap C in energy states lower than found in the crystal. Yet, contrary to general understanding, we show, through simulations extending to 0.1 s, that even tough C diffusion takes place predominantly in the GB, it is not necessarily faster than in the bulk and can even be slower by one to two orders of magnitude depending on the GB type. Analysis of the energy landscape provided by k-ART also shows that the free cavity volume around the impurity is not a strong predictor of diffusion barrier height. Overall, results show rather complex diffusion kinetics intimately dependent on the local environment.

  19. An introduction to visualization of diffusion tensor imaging and its applications

    NARCIS (Netherlands)

    Vilanova, A.; Zhang, S.; Kindlmann, G.; Laidlaw, D.H.; Weickert, J.; Hagen, H.

    2005-01-01

    Summary. Water diffusion is anisotropic in organized tissues such as white matter and muscle. Diffusion tensor imaging (DTI), a non-invasive MR technique, measures water self-diffusion rates and thus gives an indication of the underlying tissue microstructure. The diffusion rate is often expressed

  20. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    International Nuclear Information System (INIS)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio

    2002-01-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  1. What's new in the proton transfer reaction from pyranine to water? A femtosecond study of the proton transfer dynamics

    International Nuclear Information System (INIS)

    Prayer, C.; Gustavsson, T.; Tran-Thi, T.-H.

    1996-01-01

    The proton transfer from excited pyranine to water is studied by the femtosecond fluorescence upconversion technique. It is shown for the first time that the proton transfer reaction in water proceeds by three successive steps: the solvent cage relaxation, the specific solute-solvent hydrogen-bond formation and finally the ion pair dissociation/diffusion

  2. Structural transition of a homopolymer in solvents mixture

    International Nuclear Information System (INIS)

    Guettari, Moez; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh

    2008-01-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M w = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X A is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X A = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture

  3. Effect of solvent polarity and temperature on the spectral and thermodynamic properties of exciplexes of 1-cyanonaphthalene with hexamethylbenzene in organic solvents

    International Nuclear Information System (INIS)

    Asim, Sadia; Mansha, Asim; Grampp, Günter; Landgraf, Stephan; Zahid, Muhammad; Bhatti, Ijaz Ahmad

    2014-01-01

    Study of the effect of solvent polarity and temperature is done on the exciplex emission spectra of 1-cyanonaphthalene with hexamethylbenzene. Exciplex system is studied in the range of partially polar solvents and in solvent mixture of propyl acetate and butyronitrile. The unique feature of this solvent mixture is that only the solvent polarity changes (6.0≤ε s ≤24.7) with the change in the mole fraction of solvents whereas the solvent viscosity and refractive index remains unaffected. Thermodynamic properties are calculated according to the models developed by Weller and Kuzmin. Fluorescence lifetimes for both the fluorophore as well as the exciplex are evaluated in all used solvents. Exciplex energetics as a function of solvent polarity and temperature are also discussed. Kuzmin model of self-consistent polarization is used for the explanation of the exciplex emission spectra. The effects of solvent polarity and temperature on energy of zero–zero transitions (hv 0 / ), Huang–Rhys factor (S), Gauss broadening of vibronic level (σ) and the dominant high-frequency vibration (hν ν ) are investigated. The strong dependence of exciplex stability and energetics upon the solvent polarity and temperature are observed. Full charge transfer exciplexes were observed in solvents of all polarities and stronger exciplex with large emission intensities were found in solvents of low polarities but with the increase in solvent polarity the exciplex becomes weak and they dissociate fastly into radical ion pairs. The kinetic model of Kuzmin was observed to reduce into the Weller kinetic model for this exciplex system with ∆G ET = −0.22 eV and the spectral shift, h∆ν>0.2 eV. - Highlights: • Exciplex formed as a result of mixing of charge transfer and locally excited states. • Effect of solvents polarity and temperature on the exciplex stability and thermodynamics. • Solvent polarity will decide the formation of contact radical ion pair or solvent separated

  4. Aminosilicone solvent recovery methods and systems

    Science.gov (United States)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  5. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  6. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  7. Work ability score of solvent-exposed workers.

    Science.gov (United States)

    Furu, Heidi; Sainio, Markku; Hyvärinen, Hanna-Kaisa; Kaukiainen, Ari

    2018-03-28

    Occupational chronic solvent encephalopathy (CSE), characterized by neurocognitive dysfunction, often leads to early retirement. However, only the more severe cases are diagnosed with CSE, and little is known about the work ability of solvent-exposed workers in general. The aim was to study memory and concentration symptoms, work ability and the effect of both solvent-related and non-occupational factors on work ability, in an actively working solvent-exposed population. A questionnaire on exposure and health was sent to 3640 workers in four solvent-exposed fields, i.e. painters and floor-layers, boat builders, printers, and metal workers. The total number of responses was 1730. We determined the work ability score (WAS), a single question item of the Work Ability Index, and studied solvent exposure, demographic factors, Euroquest memory and concentration symptoms, chronic diseases, and employment status using univariate and multivariate analyses. The findings were compared to those of a corresponding national blue-collar reference population (n = 221), and a small cohort of workers with CSE (n = 18). The proportion of workers with memory and concentration symptoms was significantly associated with solvent exposure. The WAS of solvent-exposed workers was lower than that of the national blue-collar reference group, and the difference was significant in the oldest age group (those aged over 60). Solvent-exposed worker's WAS were higher than those of workers diagnosed with CSE. The WAS were lowest among painters and floor-layers, followed by metal workers and printers, and highest among boat builders. The strongest explanatory factors for poor work ability were the number of chronic diseases, age and employment status. Solvent exposure was a weak independent risk factor for reduced WAS, comparable to a level of high alcohol consumption. Even if memory and concentration symptoms were associated with higher solvent exposure, the effect of solvents on self

  8. Measurement of residual solvents in a drug substance by a purge-and-trap method.

    Science.gov (United States)

    Lakatos, Miklós

    2008-08-05

    The purge-and-trap (P&T) gas extraction method combined with gas chromatography was studied for its suitability for quantitative residual solvents determination in a water-soluble active pharmaceutical ingredient (API). Some analytical method performance characteristics were investigated, namely, the repeatability, the accuracy and the detection limit of determination. The results show that the P&T technique is--as expected--more sensitive than the static headspace, thus it can be used for the determination of residual solvents pertaining to the ICH Class 1 group. It was found that it could be an alternative sample preparation method besides the static headspace (HS) method.

  9. An Efficient, Solvent-Free Process for Synthesizing Anhydrous MgCl2

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Vemuri, Venkata Rama S.; Barpaga, Dushyant; Schaef, Herbert T.; Loring, John S.; Martin, Paul F.; Lao, David; Nune, Satish K.; McGrail, Bernard P.

    2018-01-02

    A new efficient and solvent-free method for the synthesis of anhydrous MgCl2 from its hexahydrate is proposed. Fluidized dehydration of MgCl2·6H2O feedstock at 200 °C in a porous bed reactor yields MgCl2·nH2O (0 < n < 1), which has a similar diffraction pattern as activated MgCl2. The MgCl2·nH2O is then ammoniated directly using liquefied NH3 in the absence of solvent to form MgCl2·6NH3. Calcination of the hexammoniate complex at 300 °C then yields anhydrous MgCl2. Both dehydration and deammoniation were thoroughly studied using in situ as well as ex situ characterization techniques. Specifically, a detailed understanding of the dehydration process was monitored by in situ PXRD and in situ FTIR techniques where formation of salt with nH2O (n = 4, 2, 1, <1) was characterized. Given the reduction in thermal energy required to produce dehydrated feedstock with this method compared with current strategies, significant cost benefits are expected. Overall, the combined effect of activation, macroporosity, and coordinated water depletion allows the formation of hexammoniate without using solvent, thus minimizing waste formation.

  10. DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE

    Science.gov (United States)

    An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...

  11. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    International Nuclear Information System (INIS)

    Park, Youngjune; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa; Petit, Camille

    2015-01-01

    CO 2 capture by amine scrubbing, which has a high CO 2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO 2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO 2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO 2 capture solvents including high volatility and corrosiveness of the amine solutions as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO 2 capture solvents, which are often anhydrous, have been developed as the third-generation CO 2 capture solvents. These novel classes of liquid materials include ionic liquids, CO 2 -triggered switchable solvents (i.e., CO 2 -binding organic liquids, reversible ionic liquids), and nanoparticle organic hybrid materials. This paper provides a review of these various anhydrous solvents and their potential for CO 2 capture. Particular attention is given to the mechanisms of CO 2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO 2 capture media.

  12. Structural transition of a homopolymer in solvents mixture

    Energy Technology Data Exchange (ETDEWEB)

    Guettari, Moez [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)], E-mail: gtarimoez@yahoo.fr; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)

    2008-07-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M{sub w} = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X{sub A} is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X{sub A} = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture.

  13. Developing new chemical tools for solvent extraction

    International Nuclear Information System (INIS)

    Moyer, B.A.; Baes, C.F.; Burns, J.H.; Case, G.N.; Sachleben, R.A.; Bryan, S.A.; Lumetta, G.J.; McDowell, W.J.; Sachleben, R.A.

    1993-01-01

    Prospects for innovation and for greater technological impact in the field of solvent extraction (SX) seem as bright as ever, despite the maturation of SX as an economically significant separation method and as an important technique in the laboratory. New industrial, environmental, and analytical problems provide compelling motivation for diversifying the application of SX, developing new solvent systems, and seeking improved properties. Toward this end, basic research must be dedicated to enhancing the tools of SX: physical tools for probing the basis of extraction and molecular tools for developing new SX chemistries. In this paper, the authors describe their progress in developing and applying the general tools of equilibrium analysis and of ion recognition in SX. Nearly half a century after the field of SX began in earnest, coordination chemistry continues to provide the impetus for important advancements in understanding SX systems and in controlling SX chemistry. In particular, the physical tools of equilibrium analysis, X-ray crystallography, and spectroscopy are elucidating the molecular basis of SX in unprecedented detail. Moreover, the principles of ion recognition are providing the molecular tools with which to achieve new selectivities and new applications

  14. Development and evaluation of a diffusive gradients in a thin film technique for measuring ammonium in freshwaters

    DEFF Research Database (Denmark)

    Huang, Jianyin; Bennett, William W.; Welsh, David T.

    2016-01-01

    A new diffusive gradients in a thin film (DGT) technique, using Microlite PrCH cation exchange resin, was developed and evaluated for measuring NH4-N in freshwaters. Microlite PrCH had high uptake (>92.5%) and elution efficiencies (87.2% using 2 mol L-1 NaCl). Mass vs. time validation experiments...... over 24 h demonstrated excellent linearity (R2 ≥ 0.996). PrCH-DGT binding layers had an extremely high intrinsic binding capacity for NH4-N (~3000 μg). NH4-N uptake was quantitative over pH ranges 3.5-8.5 and ionic strength (up to 0.012 mol L-1 as NaCl) typical of freshwater systems. Several cations...... (Na+, K+, Ca2+ and Mg2+) were found to compete with NH4-N for uptake by PrCH-DGT, but NH4-N uptake was quantitative over concentration ranges typical of freshwater (up to 0.012 mol L-1 Na+, 0.006 mol L-1 K+, 0.003 mol L-1 Ca2+ and 0.004 mol L-1 Mg2+). Effective diffusion coefficients determined from...

  15. Quantitation of buried contamination by use of solvents. [degradation of silicone polymers by amine solvents

    Science.gov (United States)

    Pappas, S. P.; Hsiao, Y. C.; Hill, L. W.

    1973-01-01

    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided.

  16. Study of uranium-titanium diffusion; Etude de la diffusion uranium-titane

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Philibert, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)

    1959-07-01

    In the overall scheme of research on the chemical diffusion of uranium and the transition metals we have studied the uranium-titanium system. The diffusion couples are prepared by welding together small plates of uranium and titanium under pressure, using a technique already described by us. After diffusion under vacuum, polished sections of the samples were micro-graphically examined. This inspection showed that intergranular diffusion occurred at temperatures below 650 deg. C. At higher temperatures, the diffusion occurred uniquely throughout the volume of the metal, and the diffusion zone appeared as a succession of micro-graphically distinguishable bands. Study of the rate of increase of these corresponding 'penetration coefficients'. In addition, we have observed important variations in microhardness within the diffusion zone, we have tried to relate these variations to the variation of concentration. This is measured with the Castaing microprobe. We have thus accurately established the concentration-penetration curves for temperatures between 950 and 1075 deg. C. From these curves, we have calculated the diffusion coefficient D as a function of the concentration using Matano's method. At all temperatures, D(c) curve has a U form as for the U-Zr system. The activation energy has a maximum value of 42 kcal/g atom at an atomic concentration of 0,5. Even though we have rarely seen pores in the diffusion zone, we have nevertheless observed an important Kirkendall-effect by studying the displacements x{sub i} of the interface using tungsten wires as markers. These displacements can be expressed as a function of time and temperature by the equation: x{sub i} = 0,9 t {sup 1/2} exp ( - 14600/(RT)). Finally, using Darken's equations we calculated the intrinsic diffusion coefficients Du and Dti as well as the corresponding activation energies. These energies are similar (QU = 38,5 and QTi = 40 kcal/at. g) and also almost the same as those found for the U-Zr system

  17. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  18. A strongly nonlinear reaction-diffusion model for a deterministic diffusive epidemic

    International Nuclear Information System (INIS)

    Kirane, M.; Kouachi, S.

    1992-10-01

    In the present paper the mathematical validity of a model on the spread of an infectious disease is proved. This model was proposed by Bailey. The mathematical validity is proved by means of a positivity, uniqueness and existence theorem. In spite of the apparent simplicity of the problem, the solution requires a delicate set of techniques. It seems very difficult to extend these techniques to a model in more than one dimension without imposing conditions on the diffusivities. (author). 7 refs

  19. Diluent effects in solvent extraction. The Effects of Diluents in Solvent Extraction - a literature study

    International Nuclear Information System (INIS)

    Loefstroem-Engdahl, Elin; Aneheim, Emma; Ekberg, Christian; Foreman, Mark; Skarnemark, Gunnar

    2010-01-01

    The fact that the choice of organic diluent is important for a solvent extraction process goes without saying. Several factors, such as e.g. price, flash point, viscosity, polarity etc. each have their place in the planning of a solvent extraction system. This high number of variables makes the lack of compilations concerning diluent effects to an interesting topic. Often the interest for the research concerning a specific extraction system focuses on the extractant used and the complexes built up during an extraction. The diluents used are often classical ones, even if it has been shown that choice of diluent can affect extraction as well as separation in an extraction system. An attempt to point out important steps in the understanding of diluent effects in solvent extraction is here presented. This large field is, of course, not summarized in this article, but an attempt is made to present important steps in the understanding of diluents effects in solvent extraction. Trying to make the information concerning diluent effects and applications more easily accessible this review offers a selected summarizing of literature concerning diluents effects in solvent extraction. (authors)

  20. Effect of solvent polarity and temperature on the spectral and thermodynamic properties of exciplexes of 1-cyanonaphthalene with hexamethylbenzene in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Asim, Sadia [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan); Mansha, Asim [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Department of Chemistry, Government College University, Faisalabad (Pakistan); Grampp, Günter, E-mail: grampp@tugraz.at [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Landgraf, Stephan [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Zahid, Muhammad [Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremaryrgasse 9, A-8010 Graz (Austria); Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan); Bhatti, Ijaz Ahmad [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan)

    2014-09-15

    Study of the effect of solvent polarity and temperature is done on the exciplex emission spectra of 1-cyanonaphthalene with hexamethylbenzene. Exciplex system is studied in the range of partially polar solvents and in solvent mixture of propyl acetate and butyronitrile. The unique feature of this solvent mixture is that only the solvent polarity changes (6.0≤ε{sub s}≤24.7) with the change in the mole fraction of solvents whereas the solvent viscosity and refractive index remains unaffected. Thermodynamic properties are calculated according to the models developed by Weller and Kuzmin. Fluorescence lifetimes for both the fluorophore as well as the exciplex are evaluated in all used solvents. Exciplex energetics as a function of solvent polarity and temperature are also discussed. Kuzmin model of self-consistent polarization is used for the explanation of the exciplex emission spectra. The effects of solvent polarity and temperature on energy of zero–zero transitions (hv{sub 0}{sup /}), Huang–Rhys factor (S), Gauss broadening of vibronic level (σ) and the dominant high-frequency vibration (hν{sub ν}) are investigated. The strong dependence of exciplex stability and energetics upon the solvent polarity and temperature are observed. Full charge transfer exciplexes were observed in solvents of all polarities and stronger exciplex with large emission intensities were found in solvents of low polarities but with the increase in solvent polarity the exciplex becomes weak and they dissociate fastly into radical ion pairs. The kinetic model of Kuzmin was observed to reduce into the Weller kinetic model for this exciplex system with ∆G{sub ET} = −0.22 eV and the spectral shift, h∆ν>0.2 eV. - Highlights: • Exciplex formed as a result of mixing of charge transfer and locally excited states. • Effect of solvents polarity and temperature on the exciplex stability and thermodynamics. • Solvent polarity will decide the formation of contact radical ion pair