WorldWideScience

Sample records for solvent based methods

  1. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  2. Method for Predicting Solubilities of Solids in Mixed Solvents

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O'Connell, J. P.

    2009-01-01

    A method is presented for predicting solubilities of solid solutes in mixed solvents, based on excess Henry's law constants. The basis is statistical mechanical fluctuation solution theory for composition derivatives of solute/solvent infinite dilution activity coefficients. Suitable approximatio...

  3. Preparation of Polysaccharide-Based Microspheres by a Water-in-Oil Emulsion Solvent Diffusion Method for Drug Carriers

    Directory of Open Access Journals (Sweden)

    Yodthong Baimark

    2013-01-01

    Full Text Available Polysaccharide-based microspheres of chitosan, starch, and alginate were prepared by the water-in-oil emulsion solvent diffusion method for use as drug carriers. Blue dextran was used as a water-soluble biomacromolecular drug model. Scanning electron microscopy showed sizes of the resultant microspheres that were approximately 100 μm or less. They were spherical in shape with a rough surface and good dispersibility. Microsphere matrices were shown as a sponge. Drug loading efficiencies of all the microspheres were higher than 80%, which suggested that this method has potential to prepare polysaccharide-based microspheres containing a biomacromolecular drug model for drug delivery applications.

  4. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Iodine removing method in organic solvent

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Sakurai, Manabu

    1988-01-01

    Purpose: To effectively remove iodine in an organic solvent to thereby remove iodine in the solvent that can be re-used or put to purning treatment. Method: Organic solvent formed from wastes of nuclear facilities is mixed with basic lead acetate, or silica gel or activated carbon incorporated with such a compound to adsorb iodine in the organic solvent to the basic lead acetate. Then, iodine in the organic solvent is removed by separating to eliminate the basic lead acetate adsorbing iodine from the organic solvent or by passing the organic solvent through a tower or column charged or pre-coated with silica gel or activated carbon incorporated with lead acetate. By using basic lead acetate as the adsorbents, iodine can effective by adsorbed and eliminated. Thus, the possibility of circumstantial release of iodine can be reduced upon reusing or burning treatment of the organic solvent. (Kamimura, M.)

  6. Aminosilicone solvent recovery methods and systems

    Science.gov (United States)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  7. Method for Selection of Solvents for Promotion of Organic Reactions

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Jiménez-González, Concepción; Constable, David J.C.

    2005-01-01

    is to produce, for a given reaction, a short list of chemicals that could be considered as potential solvents, to evaluate their performance in the reacting system, and, based on this, to rank them according to a scoring system. Several examples of application are given to illustrate the main features and steps......A method to select appropriate green solvents for the promotion of a class of organic reactions has been developed. The method combines knowledge from industrial practice and physical insights with computer-aided property estimation tools for selection/design of solvents. In particular, it employs...... estimates of thermodynamic properties to generate a knowledge base of reaction, solvent and environment related properties that directly or indirectly influence the rate and/or conversion of a given reaction. Solvents are selected using a rules-based procedure where the estimated reaction-solvent properties...

  8. Improved Purex solvent scrubbing methods

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-01-01

    Studies of hydrazine and hydroxylamine salts as solvent scrubbing agents that can be decomposed into gases are summarized. Results from testing of countercurrent scrubbers and solid sorber columns that produce lesser amounts of permanent salts are reported. The status of studies of the acid-degradation of paraffin diluent and the options for removal of long-chain organic acids is given

  9. Insect lipid profile: aqueous versus organic solvent-based extraction methods

    NARCIS (Netherlands)

    Tzompa Sosa, D.A.; Yi, L.; Valenberg, van H.J.F.; Boekel, van M.A.J.S.; Lakemond, C.M.M.

    2014-01-01

    In view of future expected industrial bio-fractionation of insects, we investigated the influence of extraction methods on chemical characteristics of insect lipids. Lipids from Tenebrio molitor, Alphitobius diaperinus, Acheta domesticus and Blaptica dubia, reared in the Netherlands, were extracted

  10. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  11. Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-10-01

    In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  13. Green and Bio-Based Solvents.

    Science.gov (United States)

    Calvo-Flores, Francisco G; Monteagudo-Arrebola, María José; Dobado, José A; Isac-García, Joaquín

    2018-04-24

    Chemical reactions and many of the procedures of separation and purification employed in industry, research or chemistry teaching utilize solvents massively. In the last decades, with the birth of Green Chemistry, concerns about the employment of solvents and the effects on human health, as well as its environmental impacts and its dependence on non-renewable raw materials for manufacturing most of them, has drawn the attention of the scientific community. In this work, we review the concept of green solvent and the properties and characteristics to be considered green. Additionally, we discuss the different possible routes to prepare many solvents from biomass, as an alternative way to those methods currently applied in the petrochemical industry.

  14. The development of a high-throughput measurement method of octanol/water distribution coefficient based on hollow fiber membrane solvent microextraction technique.

    Science.gov (United States)

    Bao, James J; Liu, Xiaojing; Zhang, Yong; Li, Youxin

    2014-09-15

    This paper describes the development of a novel high-throughput hollow fiber membrane solvent microextraction technique for the simultaneous measurement of the octanol/water distribution coefficient (logD) for organic compounds such as drugs. The method is based on a designed system, which consists of a 96-well plate modified with 96 hollow fiber membrane tubes and a matching lid with 96 center holes and 96 side holes distributing in 96 grids. Each center hole was glued with a sealed on one end hollow fiber membrane tube, which is used to separate the aqueous phase from the octanol phase. A needle, such as microsyringe or automatic sampler, can be directly inserted into the membrane tube to deposit octanol as the accepted phase or take out the mixture of the octanol and the drug. Each side hole is filled with aqueous phase and could freely take in/out solvent as the donor phase from the outside of the hollow fiber membranes. The logD can be calculated by measuring the drug concentration in each phase after extraction equilibrium. After a comprehensive comparison, the polytetrafluoroethylene hollow fiber with the thickness of 210 μm, an extraction time of 300 min, a temperature of 25 °C and atmospheric pressure without stirring are selected for the high throughput measurement. The correlation coefficient of the linear fit of the logD values of five drugs determined by our system to reference values is 0.9954, showed a nice accurate. The -8.9% intra-day and -4.4% inter-day precision of logD for metronidazole indicates a good precision. In addition, the logD values of eight drugs were simultaneously and successfully measured, which indicated that the 96 throughput measure method of logD value was accurate, precise, reliable and useful for high throughput screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Method of purifying phosphoric acid after solvent extraction

    International Nuclear Information System (INIS)

    Kouloheris, A.P.; Lefever, J.A.

    1979-01-01

    A method of purifying phosphoric acid after solvent extraction is described. The phosphoric acid is contacted with a sorbent which sorbs or takes up the residual amount of organic carrier and the phosphoric acid separated from the organic carrier-laden sorbent. The method is especially suitable for removing residual organic carrier from phosphoric acid after solvent extraction uranium recovery. (author)

  16. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  17. A solvent-dependent fluorescent detection method for Fe(3+) and Hg(2+) based on a rhodamine B derivative.

    Science.gov (United States)

    Li, Xutian; Yin, Yue; Deng, Junjie; Zhong, Huixian; Tang, Jian; Chen, Zhi; Yang, Liting; Ma, Li-Jun

    2016-07-01

    A new rhodamine B-benzofurazan based fluorescent probe (1) for Fe(3+) and Hg(2+) was synthesized. In aqueous solution containing 30% (v/v) ethanol, probe 1 shows a high selective fluorescent enhancement recognition to Fe(3+) with a binding ratio of 1:1 (probe 1: Fe(3+)), when the concentration of Fe(3+) is less than that of the probe. When the concentration of Fe(3+) is higher than that of the probe, it shows fluorescent "turn-on" response to Fe(3+) by opening the rhodamine spirolactam with a binding ratio of 1:2 (probe 1: Fe(3+)). Furthermore, probe 1 displays a high selectivity and a hypersensitivity (detection limit is 4.4nM) to Hg(2+) with a binding ratio of 1:1 in ethanol. NMR and UV-vis experiments indicate that the different fluorescent recognition signals to Fe(3+) and Hg(2+) are derived from different binding modes of 1-Fe(3+) and 1-Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Method of removing deterioration product in hydrocarbon type solvent

    International Nuclear Information System (INIS)

    Ito, Yoshifumi; Takashina, Toru; Murasawa, Kenji.

    1988-01-01

    Purpose: To remarkably reduce radioactive wastes by bringing adsorbents comprising titanium oxide and/or zirconium oxide into contact with hydrocarbon type solvents. Method: In a nuclear fuel re-processing step, an appropriate processing is applied to extraction solvents suffering from radioactive degradation, to separate the hydrocarbon solvents and store them in a solvent tank. Then, titanium oxide and/or zirconium oxide adsorbents are continuously mixed and agitated therewith to adsorb degradation products on the adsorbents. Then, they are introduced with adsorbent separators to recover purified hydrocarbon type solvents. Meanwhile, the separated adsorbents are discharged from pipeways. This enables to regenerate the hydrocarbon type solvents for reuse, as well as remarkably reduce the radioactive wastes. (Takahashi, M.)

  19. Prediction of Solvent Physical Properties using the Hierarchical Clustering Method

    Science.gov (United States)

    Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...

  20. Reverse Schreinemakers Method for Experimental Analysis of Mixed-Solvent Electrolyte Systems

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    the reverse Schreinemakers (RS) method. The method is based on simple mass balance principles similar to the wet residues method. It allows for accurate determination of the mixed-solvent phase composition even though part of the solvent may precipitate as complexes between solvent and salt. Discrepancies......A method based on Schreinemakers's tie-line theory of 1893 is derived for determining the composition and phase amounts in solubility experiments for multi-solvent electrolyte systems. The method uses the lever rule in reverse compared to Schreinemakers's wet residue method, and is therefore called...... from determining the composition of salt mixtures by pH titration are discussed, and the derived method significantly improves the obtained result from titration. Furthermore, the method reduces the required experimental work needed for analysis of phase composition. The method is applicable to multi...

  1. A novel digestion method based on a choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples

    Energy Technology Data Exchange (ETDEWEB)

    Habibi, Emadaldin [Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. BOX 669, Khorramshahr (Iran, Islamic Republic of); Ghanemi, Kamal, E-mail: Kamal.ghanemi@kmsu.ac.ir [Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. BOX 669, Khorramshahr (Iran, Islamic Republic of); Marine Science Research Institute, Khorramshahr University of Marine Science and Technology, Khorramshahr (Iran, Islamic Republic of); Fallah-Mehrjardi, Mehdi [Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. BOX 669, Khorramshahr (Iran, Islamic Republic of); Marine Science Research Institute, Khorramshahr University of Marine Science and Technology, Khorramshahr (Iran, Islamic Republic of); Dadolahi-Sohrab, Ali [Department of Marine Environment, Faculty of marine natural resources, Khorramshahr University of Marine Science and Technology, Khorramshahr (Iran, Islamic Republic of)

    2013-01-31

    Highlights: ► A novel digestion method: lack of concentrated acids or oxidizing reagents. ► First report of using choline chloride–oxalic acid (ChCl–Ox) for digestion. ► Complete dissolution of biological samples in ChCl–Ox for solubilization metals. ► Extraction recoveries greater than 95%: validated by the fish protein CRM. ► Successfully applied in different fish tissues (Muscle, Liver, and Gills). -- Abstract: A novel and efficient digestion method based on choline chloride–oxalic acid (ChCl–Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl–Ox (1:2, molar ratio) at 100 °C for 45 min. Then, 5.0 mL HNO{sub 3} (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P = 0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the

  2. A novel digestion method based on a choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples

    International Nuclear Information System (INIS)

    Habibi, Emadaldin; Ghanemi, Kamal; Fallah-Mehrjardi, Mehdi; Dadolahi-Sohrab, Ali

    2013-01-01

    Highlights: ► A novel digestion method: lack of concentrated acids or oxidizing reagents. ► First report of using choline chloride–oxalic acid (ChCl–Ox) for digestion. ► Complete dissolution of biological samples in ChCl–Ox for solubilization metals. ► Extraction recoveries greater than 95%: validated by the fish protein CRM. ► Successfully applied in different fish tissues (Muscle, Liver, and Gills). -- Abstract: A novel and efficient digestion method based on choline chloride–oxalic acid (ChCl–Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl–Ox (1:2, molar ratio) at 100 °C for 45 min. Then, 5.0 mL HNO 3 (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P = 0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the use of

  3. Comparative study of aqueous and solvent methods for cleaning metals

    International Nuclear Information System (INIS)

    Briggs, J.L.; Goad, H.A.

    1976-01-01

    Studies were performed to determine the comparative effectiveness of solvent and aqueous detergent methods for cleaning various metals. The metals investigated included 304L stainless steel, beryllium, uranium-6.5 wt percent niobium alloy, and unalloyed uranium ( 238 U). The studies were initiated in response to governmental regulations restricting the use of some chlorinated solvents. Results showed that aqueous detergent cleaning was more effective than solvents, i.e. trichloroethylene and methyl chloroform, for the removal of light industrial soils. The subsequent adoption of aqueous cleaning at this plant has facilitated waste disposal, which contributed to recorded economic savings. The controlled use of aqueous detergents is environmentally acceptable and has decreased the hazards of fire and toxicity that are generally associated with solvents. 8 tables, 15 figures

  4. Captive solvent methods for fast, simple carbon-11 radioalkylations

    International Nuclear Information System (INIS)

    Jewett, D.M.; Mangner, T.J.; Watkins, G.L.

    1991-01-01

    Carbon-11 labeled radiopharmaceuticals for receptor studies usually require final purification by high performance liquid chromatography (HPLC). A significant simplification of the apparatus is possible if the radiolabeling reaction can be done directly in the HPLC injection circuit. Captive solvent methods in which the reaction is done in a small volume of solvent absorbed in a porous solid matrix are a general approach to this problem. For N-methylations with [ 11 C] methyl iodide, a basic catalyst may be incorporated in the polymeric or alumina solid phase. Reaction volumes are from 20 to 100 ML. Often no heating or cooling of the reaction column is necessary. The syntheses of [ 11 C]PK11195 and [ 11 C] flumazenil are described to illustrate some of the advantages and limitations of captive solvent methods

  5. Characterization of Catalytic Fast Pyrolysis Oils: The Importance of Solvent Selection for Analytical Method Development

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, Jack R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ware, Anne E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-25

    Two catalytic fast pyrolysis (CFP) oils (bottom/heavy fraction) were analyzed in various solvents that are used in common analytical methods (nuclear magnetic resonance - NMR, gas chromatography - GC, gel permeation chromatography - GPC, thermogravimetric analysis - TGA) for oil characterization and speciation. A more accurate analysis of the CFP oils can be obtained by identification and exploitation of solvent miscibility characteristics. Acetone and tetrahydrofuran can be used to completely solubilize CFP oils for analysis by GC and tetrahydrofuran can be used for traditional organic GPC analysis of the oils. DMSO-d6 can be used to solubilize CFP oils for analysis by 13C NMR. The fractionation of oils into solvents that did not completely solubilize the whole oils showed that miscibility can be related to the oil properties. This allows for solvent selection based on physico-chemical properties of the oils. However, based on semi-quantitative comparisons of the GC chromatograms, the organic solvent fractionation schemes did not speciate the oils based on specific analyte type. On the other hand, chlorinated solvents did fractionate the oils based on analyte size to a certain degree. Unfortunately, like raw pyrolysis oil, the matrix of the CFP oils is complicated and is not amenable to simple liquid-liquid extraction (LLE) or solvent fractionation to separate the oils based on the chemical and/or physical properties of individual components. For reliable analyses, for each analytical method used, it is critical that the bio-oil sample is both completely soluble and also not likely to react with the chosen solvent. The adoption of the standardized solvent selection protocols presented here will allow for greater reproducibility of analysis across different users and facilities.

  6. Development of an in situ solvent formation microextraction and preconcentration method based on ionic liquids for the determination of trace cobalt (II in water samples by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Jamali

    2017-02-01

    Full Text Available A simple in situ solvent formation microextraction (ISFME methodology based on the application of ionic liquid (IL as an extractant solvent and sodium hexafluorophosphate (NaPF6 as an ion-pairing agent was proposed for the preconcentration of the trace levels of cobalt ions. In this method cobalt was complexed with 2-(5-bromo-2-pyridylazo-5-diethylaminophenol (5-Br-PADAP and extracted into an ionic liquid phase. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS. Some effective factors that influence the microextraction efficiency were investigated and optimized. Under the optimum experimental conditions, the limit of detection and the enrichment factor were 0.97 μg L−1 and 50, respectively. The relative standard deviation (R.S.D. was obtained as 2.4%. The proposed method was assessed through the analysis of certified reference water and recovery experiments.

  7. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2018-01-01

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring

  8. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  9. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Yabré

    2018-05-01

    Full Text Available The greening of analytical methods has gained increasing interest in the field of pharmaceutical analysis to reduce environmental impacts and improve the health safety of analysts. Reversed-phase high-performance liquid chromatography (RP-HPLC is the most widely used analytical technique involved in pharmaceutical drug development and manufacturing, such as the quality control of bulk drugs and pharmaceutical formulations, as well as the analysis of drugs in biological samples. However, RP-HPLC methods commonly use large amounts of organic solvents and generate high quantities of waste to be disposed, leading to some issues in terms of ecological impact and operator safety. In this context, greening HPLC methods is becoming highly desirable. One strategy to reduce the impact of hazardous solvents is to replace classically used organic solvents (i.e., acetonitrile and methanol with greener ones. So far, ethanol has been the most often used alternative organic solvent. Others strategies have followed, such as the use of totally aqueous mobile phases, micellar liquid chromatography, and ionic liquids. These approaches have been well developed, as they do not require equipment investments and are rather economical. This review describes and critically discusses the recent advances in greening RP-HPLC methods dedicated to pharmaceutical analysis based on the use of alternative solvents.

  10. A knowledge based advisory system for acid/base titrations in non-aqueous solvents

    NARCIS (Netherlands)

    Bos, M.; van der Linden, W.E.

    1996-01-01

    A computer program was developed that could advice on the choice of solvent and titrant for acid/base titrations in nonaqueous media. It is shown that the feasibility of a titration in a given solvent can be calculated from solvent properties and intrinsic acid/base properties of the sample

  11. Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal-Organic Framework.

    Science.gov (United States)

    Razavi, Sayed Ali Akbar; Masoomi, Mohammad Yaser; Morsali, Ali

    2017-08-21

    To design a robust, π-conjugated, low-cost, and easy to synthesize metal-organic framework (MOF) for cation sensing by the photoluminescence (PL) method, 4,4'-oxybis(benzoic acid) (H 2 OBA) has been used in combination with 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine (DPT) as a tetrazine-functionalized spacer to construct [Zn(OBA)(DPT) 0.5 ]·DMF (TMU-34(-2H)). The tetrazine motif is a π-conjugated, water-soluble/stable fluorophore with relatively weak σ-donating Lewis basic sites. These characteristics of tetrazine make TMU-34(-2H) a good candidate for cation sensing. Because of hydrogen bonding between tetrazine moieties and water molecules, TMU-34(-2H) shows different PL emissions in water and acetonitrile. Cation sensing in these two solvents revealed that TMU-34(-2H) can selectively detect Hg 2+ in water (by 243% enhancement) and in acetonitrile (by 90% quenching). The contribution of electron-donating/accepting characteristics along with solvation effects on secondary interactions of the tetrazine motifs inside the TMU-34(-2H) framework results in different signal transductions. Improved sensitivity and accuracy of detection were obtained using the double solvent sensing method (DSSM), in which different signal transductions of TMU-34(-2H) in water and acetonitrile were combined simultaneously to construct a double solvent sensing curve and formulate a sensitivity factor. Calculation of sensitivity factors for all of the tested cations demonstrated that it is possible to detect Hg 2+ by DSSM with ultrahigh sensitivity. Such a tremendous distinction in the Hg 2+ sensitivity factor is visualizable in the double solvent sensing curve. Thus, by application of DSSM instead of one-dimensional sensing, the interfering effects of other cations are completely eliminated and the sensitivity toward Hg(II) is highly improved. Strong interactions between Hg 2+ and the nitrogen atoms of the tetrazine groups along with easy accessibility of Hg 2+ to the tetrazine groups lead

  12. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Science.gov (United States)

    2010-07-01

    ...-base solvent wash paint subcategory. 446.10 Section 446.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent wash... production of oil-base paint where the tank cleaning is performed using solvents. When a plant is subject to...

  13. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Science.gov (United States)

    2010-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent wash ink...-base ink where the tank washing system uses solvents. When a plant is subject to effluent limitations...

  14. Nonhazardous solvent composition and method for cleaning metal surfaces

    International Nuclear Information System (INIS)

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material

  15. Solvent extraction of gold using ionic liquid based process

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  16. Application of an indirect method for determination of quality of spent solvent in a reprocessing plant

    International Nuclear Information System (INIS)

    Gupta, K.K.; Thomas, George; Varadarajan, N.

    1986-01-01

    In Purex process, the solvent tri-n-butyl phosphate with an inert diluent n-dodecane is employed for the separation of uranium and plutonium. Since the solvent undergoes degration, it is necessary to constantly monitor the quality of the spent solvent before it is reused. Uranium retention number for solvent as a measure of the presence of dibutyl phosphate in the solvent has been investigated. This paper describes an indirect method for the estimation of the quality of the spent solvent. (author)

  17. Effects of temperature and solvent concentration on the solvent crystallization of palm-based dihydroxystearic acid with isopropyl alcohol

    Institute of Scientific and Technical Information of China (English)

    Gregory F.L.Koay; Teong-Guan Chuah; Sumaiya Zainal-Abidin; Salmiah Ahmad; Thomas S.Y.Choong

    2012-01-01

    Palm-based dihydroxystearic acid of 69.55% purity was produced in a 500-kg-per-batch operation pilot plant and purified through solvent crystallization in a custom fabricated simultaneous batch crystallizer unit.The effects of temperature and solvent concentration on yield,particle size distribution and purity were studied.The purity was higher,while the yield and particle size were lower and smaller,respectively,at higher temperature and solvent concentration.The solvent crystallization process efficiency was rated at 66-69% when carried out with 70-80% isopropyl alcohol at 20 ℃.

  18. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO 3 , dibutyl phosphate (DBP), UO 2 2+ , Pu 4+ , various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO 3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  19. Biological Treatment of Solvent-Based Paint

    Science.gov (United States)

    2011-01-01

    yeast extract, bone meal, and 80 gallons of water. The acid and base containers should also be filled with sulfuric acid and sodium hydroxide...strength brewery wastewater using a membrane-aeration bioreactor. Water Environ. Res. 71:1197-1204. 19 Cicek, N., J. P. Franco, M. T. Suidan, V

  20. Optimal (Solvent) Mixture Design through a Decomposition Based CAMD methodology

    DEFF Research Database (Denmark)

    Achenie, L.; Karunanithi, Arunprakash T.; Gani, Rafiqul

    2004-01-01

    Computer Aided Molecular/Mixture design (CAMD) is one of the most promising techniques for solvent design and selection. A decomposition based CAMD methodology has been formulated where the mixture design problem is solved as a series of molecular and mixture design sub-problems. This approach is...

  1. Development of decomposition method for chlorofluorocarbon (CFC) solvent by irradiation

    International Nuclear Information System (INIS)

    Shimokawa, Toshinari; Nakagawa, Seiko

    1995-01-01

    CFC is chemically and thermally stable, and almost harmless to human body, therefore, it has been used widely for various industries, in particular as the heat media for air conditioners and the washing agent for semiconductors and printed circuit substrates. In 1974, it was pointed out that CFC causes the breakdown of ozone layer, and the ozone hole was found, consequently, it was decided to limit its use, and to prohibit the production of specific CFC. The development of the decomposition treatment technology for the CFC now in use, which is friendly to the global environment including mankind and ozone layer, is strongly desired. Recently, the authors have examined the decomposition treatment method for specific CFC solvents by irradiation, and obtained the interesting knowledge. For the experiment, the CFC 113 was used, and its chemical structure is shown. The experimental method is explained. As the results, the effect of hydroxide ions, the decomposition products such as CFC 123, and the presumption of the mechanism of the chain dechlorination reaction of CFC 113 are reported. The irradiation decomposition method was compared with various other methods, and the cost of treatment is high. The development for hereafter is mentioned. (K.I.)

  2. Photonic crystal based sensor for organic solvents and for solvent-water mixtures.

    Science.gov (United States)

    Fenzl, Christoph; Hirsch, Thomas; Wolfbeis, Otto S

    2012-12-12

    Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v) of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v) results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  3. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Otto S. Wolfbeis

    2012-12-01

    Full Text Available Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  4. DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING SUPPRESSOR CONCENTRATION IN THE MCU NEXT GENERATION SOLVENT (NGS)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Fondeur, F.; White, T.; Diprete, D.; Milliken, C.

    2013-07-31

    Savannah River National Laboratory (SRNL) was tasked with identifying and developing at least one, but preferably two methods for quantifying the suppressor in the Next Generation Solvent (NGS) system. The suppressor is a guanidine derivative, N,N',N"-tris(3,7-dimethyloctyl)guanidine (TiDG). A list of 10 possible methods was generated, and screening experiments were performed for 8 of the 10 methods. After completion of the screening experiments, the non-aqueous acid-base titration was determined to be the most promising, and was selected for further development as the primary method. {sup 1}H NMR also showed promising results from the screening experiments, and this method was selected for further development as the secondary method. Other methods, including {sup 36}Cl radiocounting and ion chromatography, also showed promise; however, due to the similarity to the primary method (titration) and the inability to differentiate between TiDG and TOA (tri-n-ocytlamine) in the blended solvent, {sup 1}H NMR was selected over these methods. Analysis of radioactive samples obtained from real waste ESS (extraction, scrub, strip) testing using the titration method showed good results. Based on these results, the titration method was selected as the method of choice for TiDG measurement. {sup 1}H NMR has been selected as the secondary (back-up) method, and additional work is planned to further develop this method and to verify the method using radioactive samples. Procedures for analyzing radioactive samples of both pure NGS and blended solvent were developed and issued for the both methods.

  5. Non-Aqueous Titration Method for Determining Suppressor Concentration in the MCU Next Generation Solvent (NGS)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, Daniel H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-23

    A non-aqueous titration method has been used for quantifying the suppressor concentration in the MCU solvent hold tank (SHT) monthly samples since the Next Generation Solvent (NGS) was implemented in 2013. The titration method measures the concentration of the NGS suppressor (TiDG) as well as the residual tri-n-octylamine (TOA) that is a carryover from the previous solvent. As the TOA concentration has decreased over time, it has become difficult to resolve the TiDG equivalence point as the TOA equivalence point has moved closer. In recent samples, the TiDG equivalence point could not be resolved, and therefore, the TiDG concentration was determined by subtracting the TOA concentration as measured by semi-volatile organic analysis (SVOA) from the total base concentration as measured by titration. In order to improve the titration method so that the TiDG concentration can be measured directly, without the need for the SVOA data, a new method has been developed that involves spiking of the sample with additional TOA to further separate the two equivalence points in the titration. This method has been demonstrated on four recent SHT samples and comparison to results obtained using the SVOA TOA subtraction method shows good agreement. Therefore, it is recommended that the titration procedure be revised to include the TOA spike addition, and this to become the primary method for quantifying the TiDG.

  6. Non-Aqueous Titration Method for Determining Suppressor Concentration in the MCU Next Generation Solvent (NGS)

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.; Jones, Daniel H.

    2017-01-01

    A non-aqueous titration method has been used for quantifying the suppressor concentration in the MCU solvent hold tank (SHT) monthly samples since the Next Generation Solvent (NGS) was implemented in 2013. The titration method measures the concentration of the NGS suppressor (TiDG) as well as the residual tri-n-octylamine (TOA) that is a carryover from the previous solvent. As the TOA concentration has decreased over time, it has become difficult to resolve the TiDG equivalence point as the TOA equivalence point has moved closer. In recent samples, the TiDG equivalence point could not be resolved, and therefore, the TiDG concentration was determined by subtracting the TOA concentration as measured by semi-volatile organic analysis (SVOA) from the total base concentration as measured by titration. In order to improve the titration method so that the TiDG concentration can be measured directly, without the need for the SVOA data, a new method has been developed that involves spiking of the sample with additional TOA to further separate the two equivalence points in the titration. This method has been demonstrated on four recent SHT samples and comparison to results obtained using the SVOA TOA subtraction method shows good agreement. Therefore, it is recommended that the titration procedure be revised to include the TOA spike addition, and this to become the primary method for quantifying the TiDG.

  7. A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography.

    Science.gov (United States)

    Sarafraz-Yazdi, A; Mofazzeli, F; Es'haghi, Z

    2009-07-15

    A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L(-1)) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 microL), then back-extracted into the 6 mL acidified aqueous solution (acceptor phase, HCl 0.5 mol L(-1)) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 microL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L(-1) NaOH with 10% NaCl; organic phase: 20 microL of toluene; acceptor phase: 6 microL of 0.5 mol L(-1) HCl and 600 mmol L(-1) 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 microg L(-1) (R>0.9991), and also the limits of detection were in the range of 0.01-0.1 micro gL(-1). The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.

  8. Solvent for urethane adhesives and coatings and method of use

    Science.gov (United States)

    Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.

    2010-08-03

    A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.

  9. Iron microencapsulation in gum tragacanth using solvent evaporation method.

    Science.gov (United States)

    Asghari-Varzaneh, Elham; Shahedi, Mohammad; Shekarchizadeh, Hajar

    2017-10-01

    In this study iron salt (FeSO 4 ·7H 2 O) was microencapsulated in gum tragacanth hydrogel using solvent evaporation method. Three significant parameters (ferrous sulfate content, content of gum tragacanth, and alcohol to mixture ratio) were optimized by response surface methodology to obtain maximum encapsulation efficiency. Ferrous sulfate content, 5%, content of gum tragacanth, 22%, and alcohol to mixture ratio, 11:1 was determined to be the optimum condition to reach maximum encapsulation efficiency. Microstructure of iron microcapsules was thoroughly monitored using scanning electron microscopy (SEM). The microphotographs indicated two distinct crystalline and amorphous structures in the microcapsules. This structure was confirmed by X-ray diffraction (XRD) pattern of microcapsules. Fourier transform infrared (FTIR) spectra of iron microcapsules identified the presence of iron in the tragacanth microcapsules. The average size of microcapsules was determined by particle size analyzer. Release assessment of iron in simulated gastric fluid showed its complete release in stomach which is necessary for its absorption in duodenum. However, the use of encapsulated iron in gum tragacanth in watery foods is rather recommended due to the fast release of iron in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A new method to describe two-phase solvent extraction based on net transport potential derived as linear combinations of forward and reverse constituents

    International Nuclear Information System (INIS)

    Nabeshima, Masahiro

    1998-01-01

    With the view to avoiding the difficulties encountered in estimating thermodynamic activities of the multiple chemical species in two-phase liquid system, a set of forward, reverse, net and total transport potentials are defined to represent the chemical state of a transferring solute during transient using bulk concentrations. The net transport potential corresponds to that in the conventional two-film model of diffusion-controlled processes. The overall driving forces of mass transport are redefined as the derivatives of the relevant transport potentials differentiated with respect to a state variable newly defined in terms of the bulk concentrations of the solute contained in both phases. Net and total quantities, i.e. transport potentials, overall driving forces and the molar fluxes are obtained as linear combinations of those for forward and reverse directions. The topical features presented by these quantities and their mutual relations are discussed in detail. The experimental new overall transport coefficient for U(VI) varied in accord with the changes in the theoretical net transport potential and overall driving force. The present method permits describing the extractive mass transport consistently both to forward and reverse directions of transport. (author)

  11. A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction.

    Science.gov (United States)

    Deng, Lei; Fan, Chao; Zeng, Zhiwen

    2017-12-28

    Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.

  12. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    Science.gov (United States)

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  13. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    Science.gov (United States)

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  14. An Expedient Method for the Synthesis of Thiosemicarbazones under Microwave Irradiation in Solvent-free Medium

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping; ZHENG, Peng-Zhi; ZHU, Jun-Ge; LIU, Rui-Jie; QU, Gui-Rong

    2006-01-01

    A simple, efficient and eco-friendly method for the synthesis of thiosemicarbazones from thiosemicarbazides and aldehyde under microwave irradiation has been reported, and no solvent and catalyst were used. And the technique of microwave irradiation coupled with solvent-free condition proved to be a quite valuable method in the organic synthesis.

  15. Hydrolysis constants of tetravalent neptunium by using solvent extraction method

    International Nuclear Information System (INIS)

    Fujiwara, K.; Kohara, Y.

    2008-01-01

    The hydrolysis constants of tetravalent neptunium (Np(IV)) were determined by solvent extraction method using thenoyltrifluoroacetone(TTA). In order to avoid colloid formation, a stock solution of carrier-free 239 Np(V) was from 243 Am milked. The valence of Np in the solution was then reduced to Np(IV) by using zinc amalgam. The hydrolysis constants (β m ) of the reactions, Np 4+ + mOH - = Np(OH) m (4-m)+ was evaluated by using distribution ratios at ionic strengths (I) = 0.1, 0.5 and 1.0. All experiments were performed in oxygen-free 0.5% H 2 -N 2 atmosphere (below 1.0 ppm of O 2 ) in a glove-box at room temperature (23 ± 2 C) to avoid oxidation of Np(IV). The β m values were extrapolated to the standard state (I = 0) by using the specific ion interaction theory (SIT), and the formation constants at I = 0 were determined to be log β 1 = 13.91 ± 0.23, log β 2 = 27.13 ± 0.15, log β 3 = 37.70 ± 0.30 and log β 4 = 46.16 ± 0.30. The ion interaction coefficients were also evaluated to be ε(NpOH 3+ , ClO 4 - ) = 0.49 ± 0.15, ε(Np(OH) 2 2+ , ClO 4 - ) = 0.35 ± 0.11, and ε(Np(OH) 3 + , ClO 4 - ) = 0.29 ± 0.15. (orig.)

  16. Hydrolysis constants of tetravalent neptunium by using solvent extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K. [Japan Atomic Energy Agency (JAEA), Naka-gun, Ibaraki-ken (Japan); Kohara, Y. [Inspection and Development Co., Naka-gun, Ibaraki-ken (Japan)

    2008-07-01

    The hydrolysis constants of tetravalent neptunium (Np(IV)) were determined by solvent extraction method using thenoyltrifluoroacetone(TTA). In order to avoid colloid formation, a stock solution of carrier-free {sup 239}Np(V) was from {sup 243}Am milked. The valence of Np in the solution was then reduced to Np(IV) by using zinc amalgam. The hydrolysis constants ({beta}{sub m}) of the reactions, Np{sup 4+} + mOH{sup -} = Np(OH){sub m}{sup (4-m)+} was evaluated by using distribution ratios at ionic strengths (I) = 0.1, 0.5 and 1.0. All experiments were performed in oxygen-free 0.5% H{sub 2}-N{sub 2} atmosphere (below 1.0 ppm of O{sub 2}) in a glove-box at room temperature (23 {+-} 2 C) to avoid oxidation of Np(IV). The {beta}{sub m} values were extrapolated to the standard state (I = 0) by using the specific ion interaction theory (SIT), and the formation constants at I = 0 were determined to be log {beta}{sub 1} = 13.91 {+-} 0.23, log {beta}{sub 2} = 27.13 {+-} 0.15, log {beta}{sub 3} = 37.70 {+-} 0.30 and log {beta}{sub 4} = 46.16 {+-} 0.30. The ion interaction coefficients were also evaluated to be {epsilon}(NpOH{sup 3+}, ClO{sub 4}{sup -}) = 0.49 {+-} 0.15, {epsilon}(Np(OH){sub 2}{sup 2+}, ClO{sub 4}{sup -}) = 0.35 {+-} 0.11, and {epsilon}(Np(OH){sub 3}{sup +}, ClO{sub 4}{sup -}) = 0.29 {+-} 0.15. (orig.)

  17. Validation of a UV Spectrometric Method for the Assay of Tolfenamic Acid in Organic Solvents

    Directory of Open Access Journals (Sweden)

    Sofia Ahmed

    2015-01-01

    Full Text Available The present study has been carried out to validate a UV spectrometric method for the assay of tolfenamic acid (TA in organic solvents. TA is insoluble in water; therefore, a total of thirteen commonly used organic solvents have been selected in which the drug is soluble. Fresh stock solutions of TA in each solvent in a concentration of 1 × 10−4 M (2.62 mg% were prepared for the assay. The method has been validated according to the guideline of International Conference on Harmonization and parameters like linearity, range, accuracy, precision, sensitivity, and robustness have been studied. Although the method was found to be efficient for the determination of TA in all solvents on the basis of statistical data 1-octanol, followed by ethanol and methanol, was found to be comparatively better than the other studied solvents. No change in the stock solution stability of TA has been observed in each solvent for 24 hours stored either at room (25±1°C or at refrigerated temperature (2–8°C. A shift in the absorption maxima has been observed for TA in various solvents indicating drug-solvent interactions. The studied method is simple, rapid, economical, accurate, and precise for the assay of TA in different organic solvents.

  18. Lithium current sources with an electrolyte based on aprotonic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shembel, Ye.M.; Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Sokolov, L.A.; Strizhko, A.S.

    1984-01-01

    Lithium current sources with an electrolyte based on aprotonic solvents are examined. The effect of the composition of the electrolyte solution on the solubility of SO2 and the excess pressure of the gas above the electrolyte solution is established. The temperature characteristics of the electrolyte are studied from the standpoint of salt solubility, the association between the discharge conditions, the macrostructure of the porous inert cathode and the degree of usage of the active cathode substance of the SO2 as the necessary aspects for solving the problems of optimizing a lithium and SO2 system.

  19. Solvent engineering and other reaction design methods for favouring enzyme-catalysed synthesis

    DEFF Research Database (Denmark)

    Zeuner, Birgitte

    . However, both FAEs catalysed the feruloylation and/or sinapoylation of solvent cation C2OHMIm+, thus underlining the broad acceptor specificity of FAEs and their potential for future solvent reactions. An engineered sialidase from Trypanosoma rangeli, Tr6, catalyses trans-sialylation but the yield......This thesis investigates different methods for improving reaction yields of enzyme-catalysed synthesis reactions. These methods include the use of non-conventional media such as ionic liquids (ILs) and organic solvents as main solvents or as co-solvents as well as the use of more classical reaction...... design methods, i.e. enzyme immobilization and the use of an enzymatic membrane reactor. Two different enzyme classes, namely feruloyl esterases (FAEs) and sialidases are employed. Using sinapoylation of glycerol as a model reaction it was shown that both the IL anion nature and the FAE structure were...

  20. Apparatus and methods for regeneration of precipitating solvent

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  1. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  2. Levels of lead in solvent and water-based paints manufactured in Pakistan

    International Nuclear Information System (INIS)

    Ikram, M.; Rauf, M.A.; Chotona, G.A.; Bukhari, N.

    2000-01-01

    The levels of lead in eight popular brands of solvent- and water-based paint manufactured locally in Pakistan are reported. The analysis was done using the flame Atomic Absorption Spectrophotometric method. The lead concentration was found to vary from 3.3 mg/kg to 13179 in different solvent-based brands, whereas the concentration of the metal was in the range of 1768 to less than 0.5mg/kg in water based paints. The lead concentrations were especially high in oil based green (maximum value of 13170 mg/kg) and yellow paints (maximum value of 84940 mg/kg). The corresponding higher concentration were observed in case of emerald (maximum value of 1768 mg/kg) and gray (maximum value of 542 mg/kg) paints in the water-based category. (author)

  3. Industrial rag cleaning process for the environmentally safe removal of petroleum-based solvents

    International Nuclear Information System (INIS)

    Fierro, J.V.

    1993-01-01

    A process for the cleaning of industrial rags contaminated with environmentally unsafe petroleum-based solvent is described, comprising the step of: (a) placing a load of the industrial rags in a mechanically driven rotary drum; (b) revolving the drum at a high speed sufficient to physically extract liquid petroleum-based solvent contaminate from the industrial rags; (c) routing the extracted petroleum-based solvent contaminate from the rotary drum to a waste solvent collection line for environmentally safe disposal; (d) revolving the rotary drum to cause a tumbling of the industrial rags while maintaining the temperature within the drum at below the flash point of the petroleum-based solvent; (e) intermittently forcing cold air and hot air through the rotary drum to vaporize solvent from the industrial rags; (f) routing the vaporized petroleum-based solvent contaminant from the rotary drum to a condenser wherein the petroleum-based solvent contaminate is condensed and thereafter further routing said condensed solvent to a waste collection line for environmentally safe disposal; and (g) cleaning the industrial rags in the presence of a dry cleaning solvent to remove residual petroleum-based solvents and soil

  4. Solvent selection methodology for pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Gani, Rafiqul

    2016-01-01

    A method for the selection of appropriate solvents for the solvent swap task in pharmaceutical processes has been developed. This solvent swap method is based on the solvent selection method of Gani et al. (2006) and considers additional selection criteria such as boiling point difference...... in pharmaceutical processes as well as new solvent swap alternatives. The method takes into account process considerations such as batch distillation and crystallization to achieve the swap task. Rigorous model based simulations of the swap operation are performed to evaluate and compare the performance...

  5. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2016-12-01

    Full Text Available Purpose: The quasi-emulsion solvent diffusion (QESD has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate. The solid state of obtained particles was investigated by differential scanning calorimetry (DSC and Fourier transform infrared (FT-IR spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  6. Solvent Flux Method (SFM): A Case Study of Water Access to Candida antarctica Lipase B.

    Science.gov (United States)

    Benson, Sven P; Pleiss, Jürgen

    2014-11-11

    The solvent flux method (SFM) was developed to comprehensively characterize the influx of solvent molecules from the solvent environment into the active site of a protein in the framework of molecular dynamics simulations. This was achieved by introducing a solvent concentration gradient as well as partially reorienting and rescaling the velocity vector of all solvent molecules contained within a spherical volume enclosing the protein, thus inducing an accelerated solvent influx toward the active site. In addition to the detection of solvent access pathway within the protein structure, it is hereby possible to identify potential amino acid positions relevant to solvent-related enzyme engineering with high statistical significance. The method is particularly aimed at improving the reverse hydrolysis reaction rates in nonaqueous media. Candida antarctica lipase B (CALB) binds to a triglyceride-water interface with its substrate entrance channel oriented toward the hydrophobic substrate interface. The lipase-triglyceride-water system served as a model system for SFM to evaluate the influx of water molecules to the active site. As a proof of principle for SFM, a previously known water access pathway in CALB was identified as the primary water channel. In addition, a secondary water channel and two pathways for water access which contribute to water leakage between the protein and the triglyceride-water interface were identified.

  7. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  8. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    Science.gov (United States)

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  9. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana

    2018-02-26

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring bio-polyphenol morin. For the manufacture of this type of OSN membrane a crosslinked PAN support was coated by interfacial polymerization using morin as the monomer of the aqueous phase and terephtaloyl chloride as the monomer of the organic phase. These membranes showed an exceptional performance and resistance to NMP by having a a permeance of 0.3L/m2 h bar in NMP with a rejection of 96% of Brilliant Blue dye which has a molecular weight of 825.97g/mol, making these membranes attractive for harsh industrial separation processes due to their ease of manufacture, low cost, and excellent performance.

  10. Encapsulation of azithromycin into polymeric microspheres by reduced pressure-solvent evaporation method

    DEFF Research Database (Denmark)

    Li, Xiujuan; Chang, Si; Du, Guangsheng

    2012-01-01

    Azithromycin loaded microspheres with blends of poly-l-lactide and ploy-D,L-lactide-co-glycolide as matrices were prepared by the atmosphere-solvent evaporation (ASE) and reduced pressure-solvent evaporation (RSE) method. Both the X-ray diffraction spectra and DSC thermographs demonstrated...... characteristics and release profiles of microspheres. In conclusion, the overall improvement of microspheres in appearance, encapsulation efficiency and controlled drug release through the RSE method could be easily fulfilled under optimal preparation conditions....

  11. Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms.

    Science.gov (United States)

    Hirshfield, Laura; Giridhar, Arun; Taylor, Lynne S; Harris, Michael T; Reklaitis, Gintaras V

    2014-02-01

    In recent years, the US Food and Drug Administration has encouraged pharmaceutical companies to develop more innovative and efficient manufacturing methods with improved online monitoring and control. Mini-manufacturing of medicine is one such method enabling the creation of individualized product forms for each patient. This work presents dropwise additive manufacturing of pharmaceutical products (DAMPP), an automated, controlled mini-manufacturing method that deposits active pharmaceutical ingredients (APIs) directly onto edible substrates using drop-on-demand (DoD) inkjet printing technology. The use of DoD technology allows for precise control over the material properties, drug solid state form, drop size, and drop dynamics and can be beneficial in the creation of high-potency drug forms, combination drugs with multiple APIs or individualized medicine products tailored to a specific patient. In this work, DAMPP was used to create dosage forms from solvent-based formulations consisting of API, polymer, and solvent carrier. The forms were then analyzed to determine the reproducibility of creating an on-target dosage form, the morphology of the API of the final form and the dissolution behavior of the drug over time. DAMPP is found to be a viable alternative to traditional mass-manufacturing methods for solvent-based oral dosage forms. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Solvent and extraction methods effects on the quality of eel ( Anguilla bicolor ) oil

    International Nuclear Information System (INIS)

    Sasongko, H; Efendi, N R; Farida, Y; Amartiwi, T; Rahmawati, A A; Wicaksono, A; Budihardjo, A; Sugiyarto

    2017-01-01

    Eel ( Anguilla bicolor) is a general fish consumption in many countries, especially Japan, China, Germany, and France. Besides its vitamin rich, eel oil is also known to contain fatty acids that are necessary for pharmaceutical purposes and as food a supplement. This research was aimed to evaluate the quality of eel oil by different solvent and extraction methods. In this study, fresh eels were extracted using maceration and reflux methods.Chloroform was used as the solvent in the maceration while water used in the reflux method. The oil quality was examined based on the Official Methods of Analysis of the Association of Official Analytical Chemist (AOAC).The result showed that the yield of eel oil using maceration method was 5.44% ± 0.64 with a specific gravity of 0.915 g/mL, while reflux method obtained the yield of 5.33 % ± 0.84 and specific gravity of 0.8575 g/mL. The physicochemical parameters of oil quality used in this study were acid, peroxide, saponification, and iodine value. The maceration method obtained the acid value of 17.389 mgKOH/g, the peroxide value of 7.021meqO 2 /kg, the saponification value of 111.16mgKOH/g, and the iodine value of 65.14 WIJS. While the reflux method produced the acid value of 9.116 mgKOH/g, the peroxide value of 6.088 meqO 2 /kg, the saponification value of 70 mgKOH/g, and the iodine value of 87.74 WIJS. (paper)

  13. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    International Nuclear Information System (INIS)

    Nurul Huda Mamat Ghani; Norashikin Sain; Rozita Osman; Zuraidah Abdullah Munir

    2007-01-01

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  14. Measurement of residual solvents in a drug substance by a purge-and-trap method.

    Science.gov (United States)

    Lakatos, Miklós

    2008-08-05

    The purge-and-trap (P&T) gas extraction method combined with gas chromatography was studied for its suitability for quantitative residual solvents determination in a water-soluble active pharmaceutical ingredient (API). Some analytical method performance characteristics were investigated, namely, the repeatability, the accuracy and the detection limit of determination. The results show that the P&T technique is--as expected--more sensitive than the static headspace, thus it can be used for the determination of residual solvents pertaining to the ICH Class 1 group. It was found that it could be an alternative sample preparation method besides the static headspace (HS) method.

  15. Comparative exergy analyses of Jatropha curcas oil extraction methods: Solvent and mechanical extraction processes

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Keat Teong, Lee; JitKang, Lim

    2012-01-01

    Highlights: ► Exergy analysis detects locations of resource degradation within a process. ► Solvent extraction is six times exergetically destructive than mechanical extraction. ► Mechanical extraction of jatropha oil is 95.93% exergetically efficient. ► Solvent extraction of jatropha oil is 79.35% exergetically efficient. ► Exergy analysis of oil extraction processes allow room for improvements. - Abstract: Vegetable oil extraction processes are found to be energy intensive. Thermodynamically, any energy intensive process is considered to degrade the most useful part of energy that is available to produce work. This study uses literature values to compare the efficiencies and degradation of the useful energy within Jatropha curcas oil during oil extraction taking into account solvent and mechanical extraction methods. According to this study, J. curcas seeds on processing into J. curcas oil is upgraded with mechanical extraction but degraded with solvent extraction processes. For mechanical extraction, the total internal exergy destroyed is 3006 MJ which is about six times less than that for solvent extraction (18,072 MJ) for 1 ton J. curcas oil produced. The pretreatment processes of the J. curcas seeds recorded a total internal exergy destructions of 5768 MJ accounting for 24% of the total internal exergy destroyed for solvent extraction processes and 66% for mechanical extraction. The exergetic efficiencies recorded are 79.35% and 95.93% for solvent and mechanical extraction processes of J. curcas oil respectively. Hence, mechanical oil extraction processes are exergetically efficient than solvent extraction processes. Possible improvement methods are also elaborated in this study.

  16. A Solvent-Free Base Liberation of a Tertiary Aminoalkyl Halide by Flow Chemistry

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Skovby, Tommy; Mealy, Michael J.

    2016-01-01

    A flow setup for base liberation of 3-(N,N-dimethylamino)propyl chloride hydrochloride and solvent-free separation of the resulting free base has been developed. Production in flow profits from an on-demand approach, useful for labile aminoalkyl halides. The requirement for obtaining a dry product...... has been fulfilled by the simple use of a saturated NaOH solution, followed by isolation of the liquid phases by gravimetric separation. The flow setup has an E factor reduction of nearly 50%, and a distillation step has been avoided. The method exemplifies how flow chemistry can be exploited...

  17. Response Surface Optimization of Rotenone Using Natural Alcohol-Based Deep Eutectic Solvent as Additive in the Extraction Medium Cocktail

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2017-01-01

    Full Text Available Rotenone is a biopesticide with an amazing effect on aquatic life and insect pests. In Asia, it can be isolated from Derris species roots (Derris elliptica and Derris malaccensis. The previous study revealed the comparable efficiency of alcohol-based deep eutectic solvent (DES in extracting a high yield of rotenone (isoflavonoid to binary ionic liquid solvent system ([BMIM]OTf and organic solvent (acetone. Therefore, this study intends to analyze the optimum parameters (solvent ratio, extraction time, and agitation rate in extracting the highest yield of rotenone extract at a much lower cost and in a more environmental friendly method by using response surface methodology (RSM based on central composite rotatable design (CCRD. By using RSM, linear polynomial equations were obtained for predicting the concentration and yield of rotenone extracted. The verification experiment confirmed the validity of both of the predicted models. The results revealed that the optimum conditions for solvent ratio, extraction time, and agitation rate were 2 : 8 (DES : acetonitrile, 19.34 hours, and 199.32 rpm, respectively. At the optimum condition of the rotenone extraction process using DES binary solvent system, this resulted in a 3.5-fold increase in a rotenone concentration of 0.49 ± 0.07 mg/ml and yield of 0.35 ± 0.06 (%, w/w as compared to the control extract (acetonitrile only. In fact, the rotenone concentration and yield were significantly influenced by binary solvent ratio and extraction time (P<0.05 but not by means of agitation rate. For that reason, the optimal extraction condition using alcohol-based deep eutectic solvent (DES as a green additive in the extraction medium cocktail has increased the potential of enhancing the rotenone concentration and yield extracted.

  18. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    Science.gov (United States)

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    Science.gov (United States)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  20. Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions.

    Science.gov (United States)

    Dantan, N; Frenzel, W; Küppers, S

    2000-05-31

    Flow injection methods utilising the Karl Fischer (KF) reaction with spectrophotometric and potentiometric detection are described for the determination of the trace water content in various organic solvents. Optimisation of the methods resulted in an accessible (linear) working range of 0.01-0.2% water for many solvents studied with a typical precision of 1-2% R.S.D. Only 50 mul of organic solvent was injected and the sampling frequency was about 120 samples per h. Since the slopes of the calibration curves were different for different solvents appropriate calibration was required. Problems associated with spectrophotometric detection and caused by refractive index changes were pointed out and a nested-loop configuration was proposed to overcome this kind of interference. The potentiometric method with a novel flow-through detector cell was shown to surpass the performance of spectrophotometric detection in any respect. The characteristics of the procedures developed made them well applicable for on-line monitoring of technical solvent distillations in an industrial plant.

  1. Surface functionalization of SBA-15 by the solvent-free method

    International Nuclear Information System (INIS)

    Wang Yimeng; Zheng Yingwu; Zhu Jianhua

    2004-01-01

    A solvent-free technique was employed for fast modification of mesoporous materials. Copper, chromium and iron oxide species could be highly dispersed in SBA-15 by manually grinding the corresponding precursor salts and the host, followed by calcinations for the first time. This method is more effective to spontaneously disperse oxide species onto SBA-15 than impregnation, probably forming monolayer or submonolayer dispersion of salts or oxides. Besides, Cr(VI) species dominate in the mixing sample while Cr(III) species dominate in the impregnation one. In the temperature programmed surface reaction of nitrosamines, the sample prepared by solvent-free method showed a higher catalytic activity than the impregnation one

  2. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    Science.gov (United States)

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  3. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non

  4. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Science.gov (United States)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  5. Development of a Complex Geometry Standard Fixture and Solvent Evaluation Method fo Assessing Replacement Solvents for AK-225G

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental regulatory requirements dictate the need for NASA Stennis, and NASA as a whole to identify new solvents that conform to changing environmental impact...

  6. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    Science.gov (United States)

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    with a continuous, gap-free hybrid layer that was linked intimately with the dentin. The tags adhered well to the tubuli walls and were often joined by side branches. In the water-based solvent systems, a lack of contact was visible between the resin tags and the tubuli walls, with some incompletely filled tubuli and some gaps in the hybrid layer. The 2 observational methods used, optical and scanning electron microscopy, proved to be complementary. Within the limitations of this study, use of the acetone-based systems after phosphoric acid etching resulted in a continuous, thick hybrid layer with reverse-cone-shaped tags in close contact with the tubuli walls. Use of the water-based systems resulted in a thinner hybrid layer with some incompletely sealed dentinal tubules.

  7. The antioxidant activity test by using DPPH method from the white tea using different solvents

    Science.gov (United States)

    Darmajana, Doddy A.; Hadiansyah, Firman; Desnilasari, Dewi

    2017-11-01

    The solvents used in this study are: aquades, ethanol and glacial acetic acid. The raw material as the source of antioxidants is white tea. Pure Quercetin is used as a comparing antioxidant. The treatment design was the solvent type for extraction, while the antioxidant activity was tested using DPPH method, with IC50 as the reference of antioxidant activity value. The results of antioxidant activity tests with three different solvent types are IC50 of 22,499 µg/mL for aquades, IC50 of 13,317 µg/mL for Ethanol and IC50 of 60,555 µg/mL for Glacial Acetic Acid. As a control of the standard antioxidant activity value of Quercetin is 4,313 µg/mL.

  8. Extraction of basil leaves (ocimum canum) oleoresin with ethyl acetate solvent by using soxhletation method

    Science.gov (United States)

    Tambun, R.; Purba, R. R. H.; Ginting, H. K.

    2017-09-01

    The goal of this research is to produce oleoresin from basil leaves (Ocimum canum) by using soxhletation method and ethyl acetate as solvent. Basil commonly used in culinary as fresh vegetables. Basil contains essential oils and oleoresin that are used as flavouring agent in food, in cosmetic and ingredient in traditional medicine. The extraction method commonly used to obtain oleoresin is maceration. The problem of this method is many solvents necessary and need time to extract the raw material. To resolve the problem and to produce more oleoresin, we use soxhletation method with a combination of extraction time and ratio from the material with a solvent. The analysis consists of yield, density, refractive index, and essential oil content. The best treatment of basil leaves oleoresin extraction is at ratio of material and solvent 1:6 (w / v) for 6 hours extraction time. In this condition, the yield of basil oleoresin is 20.152%, 0.9688 g/cm3 of density, 1.502 of refractive index, 15.77% of essential oil content, and the colour of oleoresin product is dark-green.

  9. Soft wheat and flour products methods review: solvent retention capacity equation correction

    Science.gov (United States)

    This article discusses the results of a significant change to calculations made within AACCI Approved methods 56-10 and 56-11, the Alkaline Water Retention Capacity (AWRC) test and the Solvent Retention Capacity (SRC) test. The AACCI Soft Wheat and Flour Products Technical Committee reviewed propos...

  10. Heterocyclic Schiff bases as non toxic antioxidants: Solvent effect, structure activity relationship and mechanism of action

    Science.gov (United States)

    Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan

    2018-03-01

    Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.

  11. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    Science.gov (United States)

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  12. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    Science.gov (United States)

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  13. Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly

    Directory of Open Access Journals (Sweden)

    Clarisse Gravina Ricci

    2018-02-01

    Full Text Available Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes.

  14. Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly

    Science.gov (United States)

    Ricci, Clarisse Gravina; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew

    2018-01-01

    Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed) solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes. PMID:29484300

  15. Solvent-extraction methods applied to the chemical analysis of uranium. III. Study of the extraction with inert solvents

    International Nuclear Information System (INIS)

    Vera Palomino, J.; Palomares Delgado, F.; Petrement Eguiluz, J. C.

    1964-01-01

    The extraction of uranium on the trace level is studied by using tributylphosphate as active agent under conditions aiming the attainment of quantitative extraction by means of a single step process using a number of salting-out agents and keeping inside the general lines as reported in two precedent papers. Two inert solvents were investigated, benzene and cyclohexane, which allowed to derive the corresponding empirical equations describing the extraction process and the results obtained were compared with those previously reported for solvents which, like ethyl acetate and methylisobuthylketone, favour to a more or less extend the extraction of uranium. (Author) 4 refs

  16. Extraction and identification of cyclobutanones from irradiated cheese employing a rapid direct solvent extraction method.

    Science.gov (United States)

    Tewfik, Ihab

    2008-01-01

    2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.

  17. Resin purification from Dragons Blood by using sub critical solvent extraction method

    Science.gov (United States)

    Saifuddin; Nahar

    2018-04-01

    Jernang resin (dragon blood) is the world's most expensive sap. The resin obtained from jernang that grows only on the islands of Sumatra and Borneo. Jernang resin is in demand by the State of China, Hong Kong, and Singapore since they contain compounds that have the potential dracohordin as a medicinal ingredient in the biological and pharmacological activity such as antimicrobial, antiviral, antitumor and cytotoxic activity. The resin extracting process has conventionally been done by drizzly with maceration method as one way of processing jernang, which is done by people in Bireuen, Aceh. However, there are still significant obstacles, namely the quality of the yield that obtained lower than the jernang resin. The technological innovation carried out by forceful extraction process maceration by using methanol produced a yield that is higher than the extraction process maceration method carried out in Bireuen. Nevertheless, the use of methanol as a solvent would raise the production costs due to the price, which is relatively more expensive and non-environmentally friendly. To overcome the problem, this research proposed a process, which is known as subcritical solvent method. This process is cheap, and also abundant and environmentally friendly. The results show that the quality of jernang resins is better than the one that obtained by the processing group in Bireuen. The quality of the obtained jernang by maceration method is a class-A quality based on the quality specification requirements of jernang (SNI 1671: 2010) that has resin (b/b) 73%, water (w/w) of 6.8%, ash (w/b) 7%, impurity (w/w) 32%, the melting point of 88°C and red colours. While the two-stage treatment obtained a class between class-A and super quality, with the resin (b/b) 0.86%, water (w/w) of 6.5%, ash (w/w) of 2.8%, levels of impurities (w/w) of 9%, the melting point of 88 °C and dark-red colours.

  18. A generalized method for alignment of block copolymer films: solvent vapor annealing with soft shear.

    Science.gov (United States)

    Qiang, Zhe; Zhang, Yuanzhong; Groff, Jesse A; Cavicchi, Kevin A; Vogt, Bryan D

    2014-08-28

    One of the key issues associated with the utilization of block copolymer (BCP) thin films in nanoscience and nanotechnology is control of their alignment and orientation over macroscopic dimensions. We have recently reported a method, solvent vapor annealing with soft shear (SVA-SS), for fabricating unidirectional alignment of cylindrical nanostructures. This method is a simple extension of the common SVA process by adhering a flat, crosslinked poly(dimethylsiloxane) (PDMS) pad to the BCP thin film. The impact of processing parameters, including annealing time, solvent removal rate and the physical properties of the PDMS pad, on the quality of alignment quantified by the Herman's orientational factor (S) is systematically examined for a model system of polystyrene-block-polyisoprene-block-polystyrene (SIS). As annealing time increases, the SIS morphology transitions from isotropic rods to highly aligned cylinders. Decreasing the rate of solvent removal, which impacts the shear rate imposed by the contraction of the PDMS, improves the orientation factor of the cylindrical domains; this suggests the nanostructure alignment is primarily induced by contraction of PDMS during solvent removal. Moreover, the physical properties of the PDMS controlled by the crosslink density impact the orientation factor by tuning its swelling extent during SVA-SS and elastic modulus. Decreasing the PDMS crosslink density increases S; this effect appears to be primarily driven by the changes in the solubility of the SVA-SS solvent in the PDMS. With this understanding of the critical processing parameters, SVA-SS has been successfully applied to align a wide variety of BCPs including polystyrene-block-polybutadiene-block-polystyrene (SBS), polystyrene-block-poly(N,N-dimethyl-n-octadecylammonium p-styrenesulfonate) (PS-b-PSS-DMODA), polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP). These results suggest that SVA-SS is a generalizable

  19. Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J. [Department of Forest Ecology, Swedish University of Agricultural Sciences, Umeaa (Sweden); Dept. of Analytical Chemistry, Umeaa Univ. (Sweden); Skyllberg, U. [Department of Forest Ecology, Swedish University of Agricultural Sciences, Umeaa (Sweden); Tu, Q.; Frech, W. [Dept. of Analytical Chemistry, Umeaa Univ. (Sweden); Bleam, W.F. [Dept. of Soil Science, University of Wisconsin, Madison, WI (United States)

    2000-07-01

    Methyl mercury was determined by gas chromatography, microwave induced plasma, atomic emission spectrometry (GC-MIP-AES) using two different methods. One was based on extraction of mercury species into toluene, pre-concentration by evaporation and butylation of methyl mercury with a Grignard reagent followed by determination. With the other, methyl mercury was extracted into dichloromethane and back extracted into water followed by in situ ethylation, collection of ethylated mercury species on Tenax and determination. The accuracy of the entire procedure based on butylation was validated for the individual steps involved in the method. Methyl mercury added to various types of soil samples showed an overall average recovery of 87.5%. Reduced recovery was only caused by losses of methyl mercury during extraction into toluene and during pre-concentration by evaporation. The extraction of methyl mercury added to the soil was therefore quantitative. Since it is not possible to directly determine the extraction efficiency of incipient methyl mercury, the extraction efficiency of total mercury with an acidified solution containing CuSO{sub 4} and KBr was compared with high-pressure microwave acid digestion. The solvent extraction efficiency was 93%. For the IAEA 356 sediment certified reference material, mercury was less efficiently extracted and determined methyl mercury concentrations were below the certified value. Incomplete extraction could be explained by the presence of a large part of inorganic sulfides, as determined by x-ray absorption near-edge structure spectroscopy (XANES). Analyses of sediment reference material CRM 580 gave results in agreement with the certified value. The butylation method gave a detection limit for methyl mercury of 0.1 ng g{sup -1}, calculated as three times the standard deviation for repeated analysis of soil samples. Lower values were obtained with the ethylation method. The precision, expressed as RSD for concentrations 20 times

  20. An implicit boundary integral method for computing electric potential of macromolecules in solvent

    Science.gov (United States)

    Zhong, Yimin; Ren, Kui; Tsai, Richard

    2018-04-01

    A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.

  1. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    Science.gov (United States)

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  2. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    Science.gov (United States)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  3. Active Solvent Modulation: A Valve-Based Approach To Improve Separation Compatibility in Two-Dimensional Liquid Chromatography.

    Science.gov (United States)

    Stoll, Dwight R; Shoykhet, Konstantin; Petersson, Patrik; Buckenmaier, Stephan

    2017-09-05

    Two-dimensional liquid chromatography (2D-LC) is increasingly being viewed as a viable tool for solving difficult separation problems, ranging from targeted separations of structurally similar molecules to untargeted separations of highly complex mixtures. In spite of this performance potential, though, many users find method development challenging and most frequently cite the "incompatibility" between the solvent systems used in the first and second dimensions as a major obstacle. This solvent strength related incompatibility can lead to severe peak distortion and loss of resolution and sensitivity in the second dimension. In this paper, we describe a novel approach to address the incompatibility problem, which we refer to as Active Solvent Modulation (ASM). This valve-based approach enables dilution of 1 D effluent with weak solvent prior to transfer to the 2 D column but without the need for additional instrument hardware. ASM is related to the concept we refer to as Fixed Solvent Modulation (FSM), with the important difference being that ASM allows toggling of the diluent stream during each 2 D separation cycle. In this work, we show that ASM eliminates the major drawbacks of FSM including complex elution solvent profiles, baseline disturbances, and slow 2 D re-equilibration and demonstrate improvements in 2 D separation quality using both simple small molecule probes and degradants of heat-treated bovine insulin as case studies. We believe that ASM will significantly ease method development for 2D-LC, providing a path to practical methods that involve both highly complementary 1 D and 2 D separations and sensitive detection.

  4. Analytical Methods Development in Support of the Caustic Side Solvent Extraction System

    International Nuclear Information System (INIS)

    Maskarinec, M.P.

    2001-01-01

    The goal of the project reported herein was to develop and apply methods for the analysis of the major components of the solvent system used in the Caustic-Side Solvent Extraction Process (CSSX). These include the calix(4)arene, the modifier, 1-(2,2,3,3- tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol and tri-n-octylamine. In addition, it was an objective to develop methods that would allow visualization of other components under process conditions. These analyses would include quantitative laboratory methods for each of the components, quantitative analysis of expected breakdown products (4-see-butylphenol and di-n-octylamine), and qualitative investigations of possible additional breakdown products under a variety of process extremes. These methods would also provide a framework for process analysis should a pilot facility be developed. Two methods were implemented for sample preparation of aqueous phases. The first involves solid-phase extraction and produces quantitative recovery of the solvent components and degradation products from the various aqueous streams. This method can be automated and is suitable for use in radiation shielded facilities. The second is a variation of an established EPA liquid-liquid extraction procedure. This method is also quantitative and results in a final extract amenable to virtually any instrumental analysis. Two HPLC methods were developed for quantitative analysis. The first is a reverse-phase system with variable wavelength W detection. This method is excellent from a quantitative point of view. The second method is a size-exclusion method coupled with dual UV and evaporative light scattering detectors. This method is much faster than the reverse-phase method and allows for qualitative analysis of other components of the waste. For tri-n-octylamine and other degradation products, a GC method was developed and subsequently extended to GUMS. All methods have precision better than 5%. The combination of these methods

  5. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    Science.gov (United States)

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  6. Incorporating information on predicted solvent accessibility to the co-evolution-based study of protein interactions.

    Science.gov (United States)

    Ochoa, David; García-Gutiérrez, Ponciano; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2013-01-27

    A widespread family of methods for studying and predicting protein interactions using sequence information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the surface of the proteins or the internal layers close to it. In this work we study the effect of incorporating information on predicted solvent accessibility to three methods for predicting protein interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods in predicting different types of protein associations when trees based on positions with different characteristics of predicted accessibility are used as input. We found that predicted accessibility improves the results of two recent versions of the mirrortree methodology in predicting direct binary physical interactions, while it neither improves these methods, nor the original mirrortree method, in predicting other types of interactions. That improvement comes at no cost in terms of applicability since accessibility can be predicted for any sequence. We also found that predictions of protein-protein interactions are improved when multiple sequence alignments with a richer representation of sequences (including paralogs) are incorporated in the accessibility prediction.

  7. Solvent extraction as a method of promoting uranium enrichment by chemical exchange

    International Nuclear Information System (INIS)

    Fathurrachman.

    1995-01-01

    This thesis examines a chemical exchange process for uranium enrichment using solvent extraction. The system selected is the isotope exchange for uranium species in the form of uranous and uranyl chloride complexes. Solvent extraction has been studied before by French workers for this application but little was published on this. Much of this present work is therefore novel. The equilibrium data for the extraction of U(IV) as U 4+ and U(VI) as UO 2 2+ from hydrochloric media into an organic phase containing tri-n-octylamine (TOA) in benzene is given. Benzene is used to prevent third phase formation. In 4 M HCl U(VI) was found to be very soluble in the organic phase but U(IV) was virtually insoluble. Most of the equilibrium data has been correlated by the Langmuir isotherm. This thesis also outlines the methodology that has to be used to design a plant based on this process. (author)

  8. Strongly Iridescent Hybrid Photonic Sensors Based on Self-Assembled Nanoparticles for Hazardous Solvent Detection

    Directory of Open Access Journals (Sweden)

    Ayaka Sato

    2018-03-01

    Full Text Available Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water.

  9. Influence of the type of solvent on the development of superhydrophobicity from silane-based solution containing nanoparticles

    Science.gov (United States)

    Pantoja, M.; Abenojar, J.; Martinez, M. A.

    2017-03-01

    Superhydrophobic surfaces are very appealing for numerous industrial applications due to their self-cleaning capacity. Although there are different methods to manufacture superhydrophobic surfaces, some of them do not keep the aesthetic appearance of the neat surface. Sol-gel processes are a valid alternative when transparent coatings are desired. The main goal of this research is to study the viability of this method by making superhydrophobic coatings from silane-based solution containing SiO2 nanoparticles. The effect of using different solvents is investigated, as well as the role played by the different components of the solution (silane, nanoparticles and solvent). Solutions of methyltrimethoxisilane (MTS) and tetraethoxysilane (TEOS) and 1% of SiO2 (%wt) were prepared with different solvents (ethanol, ethanol/water and white spirit). The hydrophobicity of the developed coatings is studied using contact angle measurements, while the aesthetic appearance is evaluated with gloss and color measurements. Also, infrared spectroscopy, dynamic light scattering (DSL), and surface tension measurements are used to study the silane solutions. The results show that the capacity of solvents to promote the dispersion of the nanoparticles is crucial to ensuring superhydrophobicity, since these agglomerates provide the micro- and nano- surface roughness required to get a hierarchical structure. However, the combined use of silanes and nanoparticles is key to make a superhydrophobic surface because physical (the surface roughness provided by nanoparticles) and chemical characteristics (hydrophobicity provided by silanes) are coupled.

  10. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    Science.gov (United States)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  11. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.

    Science.gov (United States)

    Zhu, Zhiyuan; Snellings, Geert M B F; Koebel, Matthias M; Malfait, Wim J

    2017-05-31

    Polyisocyanate based aerogels combine ultralow thermal conductivities with better mechanical properties than silica aerogel, but these properties critically depend on the nature of the gelation solvent, perhaps more so than on any other parameter. Here, we present a systematic study of the relationship between the polyurethane-polyisocyanurate (PUR-PIR) aerogel microstructure, surface area, thermal conductivity, and density and the gelation solvent's Hansen solubility parameters for an industrially relevant PUR-PIR rigid foam formulation. We first investigated aerogels prepared in acetone-dimethyl sulfoxide (DMSO) blends and observed a minimum in thermal conductivity (λ) and maximum in specific surface area for an acetone:DMSO ratio of 85:15 v/v. We then prepared PUR-PIR aerogels in 32 different solvent blends, divided into three series with δ Dispersion , δ Polarity , and δ H-bonding fixed at 15.94, 11.30, and 7.48 MPa 1/2 , respectively, corresponding to the optimum parameters for the acetone:DMSO series. The aerogel properties display distinct dependencies on the various solubility parameters: aerogels with low thermal conductivity can be synthesized in solvents with a high δ H-bonding parameter (above 7.2) and δ Dispersion around 16.3 MPa 1/2 . In contrast, the δ Polarity parameter is of lesser importance. Our study highlights the importance of the gelation solvent, clarifies the influence of the different solvent properties, and provides a methodology for a targeted search across the solvent chemical space based on the Hansen solubility parameters.

  12. Conceptual design of a novel CO2 capture process based on precipitating amino acid solvents

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Heffernan, K.; Ham, L.V. van der; Linders, M.J.G.; Eggink, E.; Schrama, F.N.H.; Brilman, D.W.F.; Goetheer, E.L.V.; Vlugt, T.J.H.

    2013-01-01

    Amino acid salt based solvents can be used for CO2 removal from flue gas in a conventional absorption-thermal desorption process. Recently, new process concepts have been developed based on the precipitation of the amino acid zwitterion species during the absorption of CO2. In this work, a new

  13. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    Science.gov (United States)

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  14. Bulk heterojunction organic photovoltaic cell fabricated by the electrospray deposition method using mixed organic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takeshi; Takagi, Kenji; Asano, Takashi [Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); RIKEN, 2-1 Hirosawa, Wakou-shi, Saitama 351-0198 (Japan); Honda, Zentaro; Kamata, Norihiko; Ueno, Keiji; Shirai, Hajime [Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Ju, Jungmyoung; Yamagata, Yutaka; Tajima, Yusuke [RIKEN, 2-1 Hirosawa, Wakou-shi, Saitama 351-0198 (Japan)

    2011-07-15

    A high-efficiency bulk heterojunction organic photovoltaic cell (OPV) was achieved by the electrospray deposition method. The surface roughness of the P3HT:PCBM thin film can be reduced using the mixed solvent consisting of o-dichlorobenzene (o-DCB) and acetone. The effect of acetone concentration is related to its dielectric constant. Under an optimized concentration of acetone in o-DCB (20 vol%), the P3HT/PCBM active layer with a smooth surface can be formed, and the power conversion efficiency of the OPV was 1.9%. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. The potential applications in heavy oil EOR with the nanoparticle and surfactant stabilized solvent-based emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    The main challenges in developing the heavy oil reservoirs in the Alaska North Slope (ANS) include technical challenges regarding thermal recovery; sand control and disposal; high asphaltene content; and low in-situ permeability. A chemical enhanced oil recovery method may be possible for these reservoirs. Solvent based emulsion flooding provides mobility control; oil viscosity reduction; and in-situ emulsification of heavy oil. This study evaluated the potential application of nano-particle-stabilized solvent based emulsion injection to enhance heavy oil recovery in the ANS. The optimized micro-emulsion composition was determined using laboratory tests such as phase behaviour scanning, rheology studies and interfacial tension measurements. The optimized nano-emulsions were used in core flooding experiments to verify the recovery efficiency. The study revealed that the potential use of this kind of emulsion flooding is a promising enhanced oil recovery process for some heavy oil reservoirs in Alaska, Canada and Venezuela. 4 refs., 2 tabs., 10 figs.

  16. Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation

    International Nuclear Information System (INIS)

    Senol, Aynur

    2013-01-01

    Highlights: • Vapour pressures of (solvent + salt) systems have been estimated through a solvation-based model. • Two structural forms of the generalized solvation model using the Antoine equation have been performed. • A simplified concentration-dependent vapour pressure model has been also processed. • The model reliability analysis has been performed in terms of a log-ratio objective function. • The reliability of the models has been interpreted in terms of the statistical design factors. -- Abstract: This study deals with modelling the vapour pressure of a (solvent + salt) system on the basis of the principles of LSER. The solvation model framework clarifies the simultaneous impact of several physical variables such as the vapour pressure of a pure solvent estimated by the Antoine equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been analyzed independently the performance of two structural forms of the generalized model, i.e., a relation depending on an integration of the properties of the solvent and the ionic salt and a relation on a reduced property-basis. A simplified concentration-dependent vapour pressure model has been also explored and implemented on the relevant systems. The vapour pressure data of sixteen (solvent + salt) systems have been processed to analyze statistically the reliability of existing models in terms of a log–ratio objective function. The proposed vapour pressure models match relatively well the observed performance, yielding the overall design factors of 1.066 and 1.073 for the solvation-based models with the integrated and reduced properties, and 1.008 for the concentration-based model, respectively

  17. Deacidification of palm oil using betaine monohydrate-based natural deep eutectic solvents.

    Science.gov (United States)

    Zahrina, Ida; Nasikin, Mohammad; Krisanti, Elsa; Mulia, Kamarza

    2018-02-01

    In the palm oil industry, the deacidification process is performed by steam stripping which causes the loss of most of palm oil's natural antioxidants due to high temperature. The liquid-liquid extraction process which is carried out at low temperature is preferable in order to preserve these compounds. The use of hydrated ethanol can reduce the losses of antioxidants, but the ability of this solvent to extract free fatty acids also decreases. Betaine monohydrate-based natural deep eutectic solvents (NADES) have extensive potential for this process. The selectivity of these NADES was determined to select a preferable solvent. The betaine monohydrate-glycerol NADES in a molar ratio of 1:8 was determined to be the preferred solvent with the highest selectivity. This solvent has an efficiency of palmitic acid extraction of 34.14%, and the amount of antioxidants can be preserved in the refined palm oil up to 99%. The compounds are stable during extraction. Copyright © 2017. Published by Elsevier Ltd.

  18. Improved performance of mesostructured perovskite solar cells via an anti-solvent method

    Science.gov (United States)

    Hao, Jiabin; Hao, Huiying; Cheng, Feiyu; Li, Jianfeng; Zhang, Haiyu; Dong, Jingjing; Xing, Jie; Liu, Hao; Wu, Jian

    2018-06-01

    One-step solution process is a facile and widely used procedure to prepare organic-inorganic perovskite materials. However, the poor surface morphology of the films attributed to the uncontrollable nucleation and crystal growth in the process is unfavorable to solar cells. In this study, an anti-solvent treatment during the one-step solution process, in which ethyl acetate (EA) was dropped on the sample during spinning the precursor solution containing CH3NH3Cl, was adopted to fabricate perovskite materials and solar cells. It was found that the morphology of the perovskite film was significantly improved due to the rapid nucleation and slow crystal growth process. The modified process enabled us to fabricate the mesoporous solar cell with power conversion efficiency of 14%, showing an improvement of 40% over the efficiency of 9.7% of the device prepared by conventional one-step method. The controlling effect of annealing time on the morphology, crystal structure and transport properties of perovskite layer as well as the performance of device fabricated by the anti-solvent method were investigated and the possible mechanism was discussed.

  19. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    Science.gov (United States)

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. RSARF: Prediction of residue solvent accessibility from protein sequence using random forest method

    KAUST Repository

    Ganesan, Pugalenthi; Kandaswamy, Krishna Kumar Umar; Chou -, Kuochen; Vivekanandan, Saravanan; Kolatkar, Prasanna R.

    2012-01-01

    Prediction of protein structure from its amino acid sequence is still a challenging problem. The complete physicochemical understanding of protein folding is essential for the accurate structure prediction. Knowledge of residue solvent accessibility gives useful insights into protein structure prediction and function prediction. In this work, we propose a random forest method, RSARF, to predict residue accessible surface area from protein sequence information. The training and testing was performed using 120 proteins containing 22006 residues. For each residue, buried and exposed state was computed using five thresholds (0%, 5%, 10%, 25%, and 50%). The prediction accuracy for 0%, 5%, 10%, 25%, and 50% thresholds are 72.9%, 78.25%, 78.12%, 77.57% and 72.07% respectively. Further, comparison of RSARF with other methods using a benchmark dataset containing 20 proteins shows that our approach is useful for prediction of residue solvent accessibility from protein sequence without using structural information. The RSARF program, datasets and supplementary data are available at http://caps.ncbs.res.in/download/pugal/RSARF/. - See more at: http://www.eurekaselect.com/89216/article#sthash.pwVGFUjq.dpuf

  1. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME II: PROCESS OVERVIEW

    Science.gov (United States)

    This volume presents initial results of a study to identify the issues and barriers associated with retrofitting existing solvent-based equipment to accept waterbased adhesives as part of an EPA effort to improve equipment cleaning in the coated and laminated substrate manufactur...

  2. Air-assisted dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples.

    Science.gov (United States)

    Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin

    2018-04-01

    Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongfei; Jiang Sunmin [Nanjing Medical University, School of Pharmacy (China); Shen Hong [Nanjing Brain Hospital Affiliated to Nanjing Medical University, Neuro-Psychiatric Institute (China); Qin Shan; Liu Juanjuan; Zhang Qing; Li Rui, E-mail: chongloutougao@gmail.com; Xu Qunwei, E-mail: qunweixu@163.com [Nanjing Medical University, School of Pharmacy (China)

    2011-06-15

    The preparation of solid lipid nanoparticles (SLNs) suffers from the drawback of poor incorporation of water-soluble drugs. The aim of this study was therefore to assess various formulation and process parameters to enhance the incorporation of a water-soluble drug (diclofenac sodium, DS) into SLNs prepared by the emulsion/solvent evaporation method. Results showed that the entrapment efficiency (EE) of DS was increased to approximately 100% by lowering the pH of dispersed phase. The EE of DS-loaded SLNs (DS-SLNs) had been improved by the existence of cosurfactants and increment of PVA concentration. Stabilizers and their combination with PEG 400 in the dispersed phase also resulted in higher EE and drug loading (DL). EE increased and DL decreased as the phospholipid/DS ratio became greater, while the amount of DS had an opposite effect. Ethanol turned out to be the ideal solvent making DS-SLNs. EE and DL of DS-SLNs were not affected by either the stirring speed or the viscosity of aqueous and dispersed phase. According to the investigations, drug solubility in dispersion medium played the most important role in improving EE.

  4. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    Science.gov (United States)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  5. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-01-01

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins

  6. Solvent extraction method for rapid separation of strontium-90 in milk and food samples

    International Nuclear Information System (INIS)

    Hingorani, S.B.; Sathe, A.P.

    1991-01-01

    A solvent extraction method, using tributyl phosphate, for rapid separation of strontium-90 in milk and other food samples has been presented in this report in view of large number of samples recieved after Chernobyl accident for checking radioactive contamination. The earlier nitration method in use for the determination of 90 Sr through its daughter 90 Y takes over two weeks for analysis of a sample. While by this extraction method it takes only 4 to 5 hours for sample analysis. Complete estimation including initial counting can be done in a single day. The chemical recovery varies between 80-90% compared to nitration method which is 65-80%. The purity of the method has been established by following the decay of yttrium-90 separated. Some of the results obtained by adopting this chemical method for food analysis are included. The method is, thus, found to be rapid and convenient for accurate estimation of strontium-90 in milk and food samples. (author). 2 tabs., 1 fig

  7. Temporal variation of VOC emission from solvent and water based wood stains

    Science.gov (United States)

    de Gennaro, Gianluigi; Loiotile, Annamaria Demarinis; Fracchiolla, Roberta; Palmisani, Jolanda; Saracino, Maria Rosaria; Tutino, Maria

    2015-08-01

    Solvent- and water-based wood stains were monitored using a small test emission chamber in order to characterize their emission profiles in terms of Total and individual VOCs. The study of concentration-time profiles of individual VOCs enabled to identify the compounds emitted at higher concentration for each type of stain, to examine their decay curve and finally to estimate the concentration in a reference room. The solvent-based wood stain was characterized by the highest Total VOCs emission level (5.7 mg/m3) that decreased over time more slowly than those related to water-based ones. The same finding was observed for the main detected compounds: Benzene, Toluene, Ethylbenzene, Xylenes, Styrene, alpha-Pinene and Camphene. On the other hand, the highest level of Limonene was emitted by a water-based wood stain. However, the concentration-time profile showed that water-based product was characterized by a remarkable reduction of the time of maximum and minimum emission: Limonene concentration reached the minimum concentration in about half the time compared to the solvent-based product. According to AgBB evaluation scheme, only one of the investigated water-based wood stains can be classified as a low-emitting product whose use may not determine any potential adverse effect on human health.

  8. Multiclass mycotoxin analysis in edible oils using a simple solvent extraction method and liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Eom, Taeyong; Cho, Hyun-Deok; Kim, Junghyun; Park, Mihee; An, Jinyoung; Kim, Moosung; Kim, Sheen-Hee; Han, Sang Beom

    2017-11-01

    A simple and rapid method for the simultaneous determination of 11 mycotoxins - aflatoxins B 1 , B 2 , G 1 and G 2 ; fumonisins B 1 , B 2 and B 3 ; ochratoxin A; zearalenone; deoxynivalenol; and T-2 toxin - in edible oils was established using liquid chromatography tandem mass spectrometry (LC-MS/MS). In this study, QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe), QuEChERS with dispersive liquid-liquid microextraction, and solvent extraction were examined for sample preparation. Among these methods, solvent extraction with a mixture of formic acid/acetonitrile (5/95, v/v) successfully extracted all target mycotoxins. Subsequently, a defatting process using n-hexane was employed to remove the fats present in the edible oil samples. Mass spectrometry was carried out using electrospray ionisation in polarity switching mode with multiple reaction monitoring. The developed LC-MS/MS method was validated by assessing the specificity, linearity, recovery, limit of quantification (LOQ), accuracy and precision with reference to Commission Regulation (EC) 401/2006. Mycotoxin recoveries of 51.6-82.8% were achieved in addition to LOQs ranging from 0.025 ng/g to 1 ng/g. The edible oils proved to be relatively uncomplicated matrices and the developed method was applied to 9 edible oil samples, including soybean oil, corn oil and rice bran oil, to evaluate potential mycotoxin contamination. The levels of detection were significantly lower than the international regulatory standards. Therefore, we expect that our developed method, based on simple, two-step sample preparation process, will be suitable for the large-scale screening of mycotoxin contamination in edible oils.

  9. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals

    International Nuclear Information System (INIS)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2016-01-01

    In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation.

  10. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals

    Science.gov (United States)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2016-12-01

    In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation.

  11. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weihong [The University of Manchester, School of Materials (United Kingdom); Rigout, Muriel [University of Leeds, School of Design (United Kingdom); Owens, Huw, E-mail: Huw.Owens@manchester.ac.uk [The University of Manchester, School of Materials (United Kingdom)

    2016-12-15

    In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation.

  12. Nonaqueous Dispersion Formed by an Emulsion Solvent Evaporation Method Using Block-Random Copolymer Surfactant Synthesized by RAFT Polymerization.

    Science.gov (United States)

    Ezaki, Naofumi; Watanabe, Yoshifumi; Mori, Hideharu

    2015-10-27

    As surfactants for preparation of nonaqueous microcapsule dispersions by the emulsion solvent evaporation method, three copolymers composed of stearyl methacrylate (SMA) and glycidyl methacrylate (GMA) with different monomer sequences (i.e., random, block, and block-random) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite having the same comonomer composition, the copolymers exhibited different functionality as surfactants for creating emulsions with respective dispersed and continuous phases consisting of methanol and isoparaffin solvent. The optimal monomer sequence for the surfactant was determined based on the droplet sizes and the stabilities of the emulsions created using these copolymers. The block-random copolymer led to an emulsion with better stability than obtained using the random copolymer and a smaller droplet size than achieved with the block copolymer. Modification of the epoxy group of the GMA unit by diethanolamine (DEA) further decreased the droplet size, leading to higher stability of the emulsion. The DEA-modified block-random copolymer gave rise to nonaqueous microcapsule dispersions after evaporation of methanol from the emulsions containing colored dyes in their dispersed phases. These dispersions exhibited high stability, and the particle sizes were small enough for application to the inkjet printing process.

  13. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  14. Selective solvent extraction of oils

    Energy Technology Data Exchange (ETDEWEB)

    1938-04-09

    In the selective solvent extraction of naphthenic base oils, the solvent used consists of the extract obtained by treating a paraffinic base oil with a selective solvent. The extract, or partially spent solvent is less selective than the solvent itself. Selective solvents specified for the extraction of the paraffinic base oil are phenol, sulphur dioxide, cresylic acid, nitrobenzene, B:B/sup 1/-dichlorethyl ether, furfural, nitroaniline and benzaldehyde. Oils treated are Coastal lubricating oils, or naphthenic oils from the cracking, or destructive hydrogenation of coal, tar, lignite, peat, shale, bitumen, or petroleum. The extraction may be effected by a batch or counter-current method, and in the presence of (1) liquefied propane, or butane, or naphtha, or (2) agents which modify the solvent power such as, water, ammonia, acetonitrile, glycerine, glycol, caustic soda or potash. Treatment (2) may form a post-treatment effected on the extract phase. In counter-current treatment in a tower some pure selective solvent may be introduced near the raffinate outlet to wash out any extract therefrom.

  15. CO{sub 2}-based supercritical fluids as environmentally-friendly processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Pierce, T. [Los Alamos National Lab., NM (United States). Physical Organic Chemistry Group; Tiefert, K. [Hewlett-Packard Co., Inc., Santa Clara, CA (United States)

    1999-03-01

    The production of integrated circuits involves a number of discrete steps that utilize hazardous or regulated solvents. Environmental, safety and health considerations associated with these chemicals have prompted a search for alternative, more environmentally benign, solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Supercritical CO{sub 2} (SCCO{sub 2}) is an excellent choice for IC manufacturing processes since it is non-toxic, non-flammable, inexpensive, and is compatible with all substrate and metallizations systems. Also, conditions of temperature and pressure needed to achieve the supercritical state are easily achievable with existing process equipment. The authors first describe the general properties of supercritical fluids, with particular emphasis on their application as alternative solvents. Next, they review some of the work which has been published involving the use of supercritical fluids, and particularly CO{sub 2}, as they may be applied to the various steps of IC manufacture, including wafer cleaning, thin film deposition, etching, photoresist stripping, and waste treatment. Next, they describe the research work conducted at Los Alamos, on behalf of Hewlett-Packard, on the use of SCCO{sub 2} in a specific step of the IC manufacturing process: the stripping of hard-baked photoresist.

  16. Optimal Concentration of Organic Solvents to be Used in the Broth Microdilution Method to Determine the Antimicrobial Activity of Natural Products Against Paenibacillus Larvae

    Directory of Open Access Journals (Sweden)

    Cugnata Noelia Melina

    2017-06-01

    Full Text Available American Foulbrood (AFB is a bacterial disease, caused by Paenibacillus larvae, that affects honeybees (Apis mellifera. Alternative strategies to control AFB are based on the treatment of the beehives with antimicrobial natural substances such as extracts, essential oils and/or pure compounds from plants, honey by-products, bacteria and moulds. The broth microdilution method is currently one of the most widely used methods to determine the minimum inhibitory concentration (MIC of a substance. In this regard, the fact that most natural products, due to their lipophilic nature, must be dissolved in organic solvents or their aqueous mixtures is an issue of major concern because the organic solvent becomes part of the dilution in the incubation medium, and therefore, can interfere with bacterial viability depending on its nature and concentration. A systematic study was carried out to determine by the broth microdilution method the MIC and the maximum non inhibitory concentration (MNIC against P. larvae of the most common organic solvents used to extract or dissolve natural products, i.e. ethanol, methanol, acetonitrile, n-butanol, dimethylsulfoxide, and acidified hydromethanolic solutions. From the MIC and MNIC for each organic solvent, recommended maximum concentrations in contact with P. larvae were established: DMSO 5% (v/v, acetonitrile 7.5% (v/v, ethanol 7.5% (v/v, methanol 12% (v/v, n-butanol 1% (v/v, and methanol-water-acetic acid (1.25:98.71:0.04, v/v/v.

  17. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.

    Science.gov (United States)

    Juneidi, Ibrahim; Hayyan, Maan; Mohd Ali, Ozair

    2016-04-01

    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.

  18. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water.

    Science.gov (United States)

    García-Álvarez, Joaquín; Hevia, Eva; Capriati, Vito

    2018-06-19

    There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is surely stimulating in the perspective of the development of a sustainable organometallic chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of {sup 99m}Tc extraction-recovery by solvent extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Akihiro; Nishikata, Kaori; Izumo, Hironobu; Tsuchiya, Kunihiko; Ishihara, Masahiro [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Tanase, Masakazu; Fujisaki, Saburo; Shiina, Takayuki; Ohta, Akio; Takeuchi, Nobuhiro [Chiyoda Technol Corp., Tokyo (Japan)

    2012-03-15

    {sup 99m}Tc is used as a radiopharmaceutical in the medical field for the diagnosis, and manufactured from {sup 99}Mo, the parent nuclide. In this study, the solvent extraction with MEK was selected, and preliminary experiments were carried out using Re instead of {sup 99m}Tc. Two tests were carried out in the experiments; the one is the Re extraction test with MEK from Re-Mo solution, the other is the Re recovery test from the Re-MEK. As to the Re extraction test, and it was clear that the Re extraction yield was more than 90%. Two kinds of Re recovery tests, which are an evaporation method using the evaporator and an adsorption/elution method using the alumina column, were carried out. As to the evaporation method, the Re concentration in the collected solution increased more than 150 times. As to the adsorption/elution method, the Re concentration increased in the eluted solution more than 20 times. (author)

  20. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    Energy Technology Data Exchange (ETDEWEB)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dep. de Farmacia y Quimica Medicinal

    2011-07-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  1. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    International Nuclear Information System (INIS)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo

    2011-01-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  2. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  3. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    Science.gov (United States)

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular Thermodynamic Modeling of Mixed Solvent Solubility

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2010-01-01

    A method based on statistical mechanical fluctuation solution theory for composition derivatives of activity coefficients is employed for estimating dilute solubilities of 11 solid pharmaceutical solutes in nearly 70 mixed aqueous and nonaqueous solvent systems. The solvent mixtures range from...... nearly ideal to strongly nonideal. The database covers a temperature range from 293 to 323 K. Comparisons with available data and other existing solubility methods show that the method successfully describes a variety of observed mixed solvent solubility behaviors using solute−solvent parameters from...

  5. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    Science.gov (United States)

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  6. Solvent extraction of Sr2+ and Cs+ based on hydrophobic protic ionic liquids

    International Nuclear Information System (INIS)

    Luo, Huimin; Yu, Miao; Dai, Sheng

    2007-01-01

    A series of new hydrophobic and protic alkylammonium ionic liquids with bis(trifluoromethylsulfonyl) imide or bis(perfluoroethylsulfonyl)imide as conjugated anions was synthesized in a one-pot reaction with a high yield. In essence our synthesis method involves the combination of neutralization and metathesis reactions. Some of these hydrophobic and protic ionic liquids were liquids at room temperature and therefore investigated as new extraction media for separation of Sr 2+ and Cs + from aqueous solutions. An excellent extraction efficiency was found for some of these ionic liquids using dicyclohexano-18-crown-6 and calix[4]arene-bis(tert-octylbenzo-crown-6) as extractants. The observed enhancement in the extraction efficiency can be attributed to the greater hydrophilicity of the cations of the protic ionic liquids. The application of the protic ionic liquids as new solvent systems for solvent extraction opens up a new avenue in searching for simple and efficient ionic liquids for tailored separation processes. (orig.)

  7. Detailed solvent, structural, quantum chemical study and antimicrobial activity of isatin Schiff base

    Science.gov (United States)

    Brkić, Dominik R.; Božić, Aleksandra R.; Marinković, Aleksandar D.; Milčić, Miloš K.; Prlainović, Nevena Ž.; Assaleh, Fathi H.; Cvijetić, Ilija N.; Nikolić, Jasmina B.; Drmanić, Saša Ž.

    2018-05-01

    The ratios of E/Z isomers of sixteen synthesized 1,3-dihydro-3-(substituted phenylimino)-2H-indol-2-one were studied using experimental and theoretical methodology. Linear solvation energy relationships (LSER) rationalized solvent influence of the solvent-solute interactions on the UV-Vis absorption maxima shifts (νmax) of both geometrical isomers using the Kamlet-Taft equation. Linear free energy relationships (LFER) in the form of single substituent parameter equation (SSP) was used to analyze substituent effect on pKa, NMR chemical shifts and νmax values. Electron charge density was obtained by the use of Quantum Theory of Atoms in Molecules, i.e. Bader's analysis. The substituent and solvent effect on intramolecular charge transfer (ICT) were interpreted with the aid of time-dependent density functional (TD-DFT) method. Additionally, the results of TD-DFT calculations quantified the efficiency of ICT from the calculated charge-transfer distance (DCT) and amount of transferred charge (QCT). The antimicrobial activity was evaluated using broth microdilution method. 3D QSAR modeling was used to demonstrate the influence of substituents effect as well as molecule geometry on antimicrobial activity.

  8. Thermodynamic method for obtaining the solubilities of complex medium-sized chemicals in pure and mixed solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; O'Connell, J.P.

    2005-01-01

    This paper extends our previous simplified approach to using group contribution methods and limited data to determine differences in solubility of sparingly soluble complex chemicals as the solvent is changed. New applications include estimating temperature dependence and the effect of adding cos....... Though we present no new solution theory, the paper shows an especially efficient use of thermodynamic models for solvent and cosolvent selection for product formulations. Examples and discussion of applications are given. (c) 2004 Elsevier B.V. All rights reserved.......This paper extends our previous simplified approach to using group contribution methods and limited data to determine differences in solubility of sparingly soluble complex chemicals as the solvent is changed. New applications include estimating temperature dependence and the effect of adding...

  9. Determination of organic bases in non-aqueous solvents by catalytic thermometric titration.

    Science.gov (United States)

    Vajgand, V J; Kiss, T A; Gaál, F F; Zsigrai, I J

    1968-07-01

    Catalytic thermometric titrations have been developed for bases (brucine, diethylaniline, potassium acetate and triethylamine) in acetic acid by continuous and discontinuous addition of the standard solution and automatic temperature recording. The determination of weak bases, e.g., antipyrine, unsuccessful in acetic acid by catalytic thermometric titration, has been achieved by using nitromethane or acetic anhydride as solvent. Catalytic thermometric titrations were also performed by coulometric generation of hydrogen ions for the determination of micro amounts of weak bases in a mixture of acetic anhyride and acetic acid.

  10. Solvent Optimization for Efficient Enzymatic Monoacylglycerol Production Based on a Glycerolysis Reaction

    DEFF Research Database (Denmark)

    Damstrup, Marianne; Jensen, Tine; Sparsø, Flemming V.

    2005-01-01

    This study was aimed at screening solvent systems of varying polarities to identify suitable solvents for efficient and practical enzymatic glycerolysis. Several pure solvents and solvent mixtures were screened in a batch reaction system consisting of glycerol, sunflower oil, and Novozymo (R) 435...

  11. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    Science.gov (United States)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  12. Development and Physicochemical Characterization of Sirolimus Solid Dispersions Prepared by Solvent Evaporation Method

    Directory of Open Access Journals (Sweden)

    Shahram Emami

    2014-12-01

    Full Text Available Purpose: The aim of the present investigation was preparation and characterization of sirolimus solid dispersions by solvent evaporation technique to improve its dissolution properties. Methods: Polyvinylpyrrolidone (PVP, Poloxamer 188 and Cremophore RH40 were used to prepare the solid dispersions of sirolimus. In vitro dissolution study using USP type I apparatus, were performed in distilled water (containing SLS 0.4% for pure sirolimus, physical mixtures, Rapamune and prepared solid dispersions. The characterization of solid dispersions was performed using Fourier Transform Infrared (FTIR Spectroscopy and Differential Scanning Calorimetry (DSC. Results: More than 75% of sirolimus was released within 30 minutes from all prepared solid dispersions. The dissolution rate of all prepared solid dispersion powders were more than physical mixtures. The absence of sirolimus peak in the DSC spectrum of solid dispersions indicated the conversion of crystalline form of sirolimus into amorphous form. The results from FT-IR spectroscopy showed that there was no significant change in the FT-IR spectrum of solid dispersions indicating absence of well-defined interaction between drug and carriers. Conclusion: It was concluded that solid dispersion method, using PVP, Poloxamer 188 and Cremophore RH40 can improve dissolution rate of sirolimus.

  13. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    DEFF Research Database (Denmark)

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation ...

  14. Sustainable development of gree solvent separation process

    OpenAIRE

    Lisickov, Kiril; Fidancevska, Emilija; Grujic, Radoslav; Srebrenkoska, Vineta; Kuvendziev, Stefan

    2011-01-01

    Solvents defi ne a major part of the environmental performance of processes in the chemical industry and impact on cost, safety and health issues. The idea of green solvents expresses the goal to minimize the environmental impact resulting from the use of solvents in chemical production. In spite of conventional separation methods, precise process green technologies are based on the application of modern processes and process equipment as well as control and management...

  15. Doxycycline delivery from PLGA microspheres prepared by a modified solvent removal method.

    Science.gov (United States)

    Patel, Roshni S; Cho, Daniel Y; Tian, Cheng; Chang, Amy; Estrellas, Kenneth M; Lavin, Danya; Furtado, Stacia; Mathiowitz, Edith

    2012-01-01

    We report on the development of a modified solvent removal method for the encapsulation of hydrophilic drugs within poly(lactic-co-glycolic acid) (PLGA). Using a water/oil/oil double emulsion, hydrophilic doxycycline was encapsulated within PLGA spheres with particle diameters ranging from approximately 600 nm to 19 µm. Encapsulation efficiencies of up to 74% were achieved for theoretical loadings from 1% to 10% (w/w), with biphasic release over 85 days with nearly complete release at the end of this time course. About 1% salt was added to the formulations to examine its effects on doxycycline release; salt modulated release only by increasing the magnitude of initial release without altering kinetics. Fourier transform infrared spectroscopy indicated no characteristic differences between doxycycline-loaded and control spheres. Differential scanning calorimetry and X-ray diffraction suggest that there may be a molecular dispersion of the doxycycline within the spheres and the doxycycline may be in an amorphous state, which could explain the slow, prolonged release of the drug.

  16. Solid dispersion of dutasteride using the solvent evaporation method: Approaches to improve dissolution rate and oral bioavailability in rats.

    Science.gov (United States)

    Choi, Jin-Seok; Lee, Sang-Eun; Jang, Woo Suk; Byeon, Jong Chan; Park, Jeong-Sook

    2018-09-01

    The aim of this study was to develop a dutasteride (DUT) solid dispersion (SD) using hydrophilic substances to enhance its dissolution (%) and oral bioavailability in rats. DUT-SD formulations were prepared with various co-polymers using a solvent evaporation method. The physical properties of DUT-SD formulations were confirmed using field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. The toxicity and oral bioavailability of DUT-SD formulations were evaluated. Tocopheryl polyethylene glycol-1000-succinate (TPGS) was chosen as the solubilizer; and methylene chloride, and Aerosil® 200 or microcrystalline cellulose (MCC) were chosen as the solvent and carrier, respectively, based on a solubility test and pre-dissolution study. The dissolution levels of DUT-SD formulations were 86.3 ± 2.3% (F15) and 95.1 ± 1.9% (F16) after 1 h, which were higher than those of the commercial product, i.e., Avodart® (75.8 ± 1.5%) in 0.1 N HCl containing 1% (w/v) sodium lauryl sulfate (SLS). The F16 formulation was found to be stable, after assessing its dissolution (%) and drug content (%) for 6 months. The DUT-SD formulations resulted in relative bioavailability (BA) values of 126.4% (F15) and 132.1% (F16), which were enhanced compared to that of Avodart®. Dissolution (%) and relative BA values were both increased by hydrogen interaction between TPGS and DUT. This study might contribute to a new formulation (powder) whose oral bioavailability is greater than that of Avodart® (soft capsule), which could facilitate to the use of the SD system during the production process. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME III: LABEL MANUFACTURING CASE STUDY: NASHUA CORPORATION

    Science.gov (United States)

    This volume discusses Nashua Corporation's Omaha facility, a label and label stock manufacturing facility that no longer uses solvent-based adhesives. Information obtained includes issues related to the technical, economic, and environmental barriers and opportunities associated ...

  18. Preparation and Characterization of Estradiol-Loaded PLGA Nanoparticles Using Homogenization-Solvent Diffusion Method

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2008-09-01

    Full Text Available Background: The inherent shortcomings of conventional drug delivery systems containing estrogens and the potential of nanoparticles (NPs have offered tremendous scope for investigation. Although polymeric NPs have been used as drug carriers for many active agents, the use of appropriate polymer and method of NP preparation to overcome different challenges is very important. Materials and methods: Poly lactide-co-glycolide (PLGA NPs containing estradiol valerate were prepared by the modified spontaneous emulsification solvent diffusion method. Several parameters including the drug/polymer ratios in range of 2.5-10%, poly vinyl alcohol (PVA in concentration of 0-4% as stabilizer and internal phase volume and composition were examined to optimize formulation. The size distribution and morphology of the NPs, encapsulation efficacy and in vitro release profile in phosphate buffer medium (pH 7.4 during 12 hrs were then investigated. Results: The NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. By adjustment of the process parameters, the size and the drug encapsulation efficacy as well as the drug release kinetics can be optimally controlled. The mean particle size of the best formula with encapsulation efficiency of 100% was 175 ± 19, in which release profile was best fitted to Higuchi's model of release which showed that release mechanism was mainly controlled by diffusion of the drug to the release medium. Conclusion: According to the size and surface properties of the prepared particles, it may be concluded that they are a good formulation for non-parenteral routes of administration.

  19. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  20. Determination coefficient distribution rhenium and tungsten using method extraction with solvent methyl ethyl ketone

    International Nuclear Information System (INIS)

    Riftanio Natapratama Hidayat; Maria Christina Prihatiningsih; Duyeh Setiawan

    2015-01-01

    Determination of the distribution coefficient (K d ) of the rhenium and tungsten conducted for the purpose of knowing the value of K d of the two elements. K d value determination is applied to the process of separation rhenium-188 from target of tungsten-188 for the purposes purification of radioisotopes that are made to meet the radionuclide and radiochemical purity. The K d value determination using solvent extraction with methyl ethyl ketone (MEK). Prior to the determination of K d values, determined beforehand the optimum conditions of extraction process based on the effect of agitation time, the volume of MEK, and the pH of the solution. Confirmation the results of the extraction was conducted using UV-Vis spectrophotometer with a complexing KSCN under acidic conditions and reductant SnCl 2 . The results showed that the optimum condition extraction process to feed each of 10 ppm is when the agitation for 10 minutes, the volume of MEK in 20 ml, and the pH below 5. Obtained the maximum recovery of rhenium are drawn to the organic phase as much as 9.545 ppm. However, the condition of the extraction process does not affect the migration of tungsten to the organic phase. Then the maximum K d values obtained at 2.7566 rhenium and tungsten maximum K d is 0.0873. Optimum conditions of extraction process can be further tested on radioactive rhenium and tungsten as an alternative to the separation of radioisotopes. (author)

  1. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    International Nuclear Information System (INIS)

    Czaja, MaIgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech

    2005-01-01

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K a (HA), cationic acid, K a (BH + ), of anionic and cationic homoconjugation, K AHA - andK BHB + , respectively, and of molecular heteroconjugation, K AHB (K BHA ), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK a (HA) and pK a (BH + ), as well as lgK AHA - values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity

  2. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, MaIgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kozak, Anna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2005-08-15

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K{sub a}(HA), cationic acid, K{sub a}(BH{sup +}), of anionic and cationic homoconjugation, K{sub AHA{sup -}}andK{sub BHB{sup +}}, respectively, and of molecular heteroconjugation, K{sub AHB} (K{sub BHA}), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK{sub a}(HA) and pK{sub a}(BH{sup +}), as well as lgK{sub AHA{sup -}} values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity.

  3. Methods and instruments for the ecological assessment of the treatment of solvent wastes in the chemical industry; Methoden und Instrumente zur oekologischen Bewertung der Abfall-Loesungsmittelbehandlung in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Capello, Ch.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which looked at the treatment of solvent wastes in the chemical industry and its ecological impact. The development of a method based on the life-cycle-analysis (LCA) approach is described. The LCA methodology is to provide support for decision-making in the area of solvent waste disposal in the chemical industry. Various methods of disposal, such as distillation or incineration are looked at. The results of calculations using a software tool called 'ecosolvent' are presented and discussed. The 15 most important solvents and their quantities as used in the 6 facilities examined, are listed. The functioning of the ecosolvent software is discussed and illustrated in a flow-diagram. Along with detailed results, a few qualitative rules of thumb are quoted for the treatment of solvent wastes.

  4. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  5. Analytical Methods for Cs-137 and Other Radionuclides in Solvent Samples

    International Nuclear Information System (INIS)

    Pennebaker, F.M.

    2002-01-01

    Accurate characterization of individual waste components is critical to ensure design and operation of effective treatment processes and compliance with waste acceptance criteria. Current elemental analysis of organic matrices consists of conversion of the organic sample to aqueous by digesting the sample, which is inadequate in many cases. Direct analysis of the organic would increase sensitivity and decrease contamination and analysis time. For this project, we evaluated an Aridus membrane-desolvation sample introduction system for the direct analysis of organic solvents by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The desolvator-ICP-MS successfully analyzed solvent from the caustic-side solvent extraction (CSSX) process and tri-butyl phosphate (TBP) organic tank waste from F-canyon for a variety of elements. Detection limits for most elements were determined in the part per trillion (ppt) range. This technology should increase accuracy in support of SRTC activities involving CSSX and other site processes involving organic compounds

  6. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    Science.gov (United States)

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    Science.gov (United States)

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-12-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.

  9. Solvent-assisted dispersive solid-phase extraction: A sample preparation method for trace detection of diazinon in urine and environmental water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-09-02

    In this research, a sample preparation method termed solvent-assisted dispersive solid-phase extraction (SA-DSPE) was applied. The used sample preparation method was based on the dispersion of the sorbent into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was received by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the diazinon, the cloudy solution was centrifuged and diazinon in the sediment phase dissolved in ethanol and determined by gas chromatography-flame ionization detector. Under the optimized conditions (pH of solution=7.0, Sorbent: benzophenone, 2%, Disperser solvent: ethanol, 500μL, Centrifuge: centrifuged at 4000rpm for 3min), the method detection limit for diazinon was 0.2, 0.3, 0.3 and 0.3μgL(-1) for distilled water, lake water, waste water and urine sample, respectively. Furthermore, the pre-concentration factor was 363.8, 356.1, 360.7 and 353.38 in distilled water, waste water, lake water and urine sample, respectively. SA-DSPE was successfully used for trace monitoring of diazinon in urine, lake and waste water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Formulation and characterization of ketoprofen embedded polycaprolactone microspheres using solvent evaporation method

    Directory of Open Access Journals (Sweden)

    Pankaj Wagh

    2015-07-01

    Full Text Available The purpose of this study was to prepare polymeric microspheres containing Ketoprofen (KFN by single emulsion [oil-in-water (o/w] solvent evaporation method. Polycaprolactone (PCL, biocompatible polymer, was used for the preparation of sustained released microspheres of KFN. A Plackett–Burman design was employed by using the Design-Expert® software (Version- 9.0.3.1, Stat-Ease Inc., Minneapolis, MN. Eleven factors out of six processing factors were investigated in order to enhance the encapsulation efficiency (EE of the microspheres. The resultant microspheres were characterized for their size, morphology, EE, and drug release. Imaging of particles was performed by field emission scanning electron microscopy. Interaction between the drug and polymers were investigated by Fourier transform infrared (FTIR spectroscopy, X-ray powder diffractometry (XRPD and Differential Scanning Calorimetry (DSC. Graphical and mathematical analyses of the design showed that concentration of factor PCL (B and varying speed (F, revolution per minute, rpm were significant negative effect on the EE and identified as the significant factor determining the EE of the microspheres. The microspheres showed high % EE (31.18 % to 96.81 %. The microspheres were found to be discrete, oval with porous surface. The FTIR analysis confirmed no interaction of KFN with the polymer. The XRPD revealed the dispersion of drug within microspheres formulation. Sustained drug release profile over 12 h was achieved by PCL polymer. In conclusion, polymeric microspheres containing KFN can be successfully prepared using the technique of experimental design, and these results helped in finding the optimum formulation variables for EE of microspheres.

  11. Multianalytical Method Validation for Qualitative and Quantitative Analysis of Solvents of Abuse in Oral Fluid by HS-GC/MS

    Directory of Open Access Journals (Sweden)

    Bruna Claudia Coppe

    2016-01-01

    Full Text Available The use of oral fluid as a biological matrix to monitor the use of drugs of abuse is a global trend because it presents several advantages and good correlation to the blood level. Thus, the present work aimed to develop and validate an analytical method for quantification and detection of solvents used as inhalants of abuse in oral fluid (OF, using Quantisal™ as collector device by headspace and gas chromatography coupled with a mass detector (HS-GC/MS. Chromatographic separation was performed with a ZB-BAC1 column and the total time of analysis was 11.8 min. The method showed good linearity (correlation coefficient higher than 0.99 for all solvents. The limits of detection ranged from 0.05 to 5 mg/L, while the lower limits of quantification ranged from 2.5 to 12.5 mg/L. Accuracy, precision, matrix effect, and residual effect presented satisfactory results, meeting the criteria accepted for the validation of bioanalytical methods. The method showed good selectivity considering that, for solvents coeluting at the same retention time, resolution was performed by the mass detector. The method developed proved to be adequate when applied in OF samples from users of drugs and may be used to monitor the abuse of inhalants in routine forensic analyses.

  12. Steam and solvent injection as an advanced recovering method for heavy oil reservoirs; Injecao de vapor e solvente como um metodo de recuperacao avancada em reservatorios de oleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Edney Rafael V.P.; Rodrigues, Marcos Allyson F.; Barbosa, Janaina Medeiros D.; Barillas, Jennys Lourdes M.; Dutra Junior, Tarcilio V.; Mata, Wilson da [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Currently a resource more and more used by the petroleum industry to increase the efficiency of steam flood mechanism is the addition of solvents. The process can be understood as a combination of a thermal method (steam injection) with a miscible method (solvent injection), promoting, thus, the reduction of interfacial tensions and oil viscosity. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method, a numerical study of the process was driven contemplating the effects of some operational parameters (distance between wells, injection fluids rate, kind of solvent and injected solvent volume) on the accumulated production of oil and recovery factor. Semisynthetic models were used in this study but reservoir data can be extrapolated for practical applications situations on Potiguar Basin. Simulations were performed in STARS (CMG, 2007.11). It was found that injected solvent volumes increased oil recovery and oil rates. Further the majority of the injected solvent was produced and can be recycled. (author)

  13. A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings

    International Nuclear Information System (INIS)

    Ai, L; Chen, T C; Su, W K; Mau, J C; Liu, W F

    2008-01-01

    A fiber sensor based on a polyaniline (PANI) film that is coated on the surface of an etched superstructure fiber grating to detect volatile solvent vapors is experimentally demonstrated. This sensing mechanism is based on the interaction of the testing gas with the polyaniline coating film, which changes the film index, resulting in a shift in the Bragg wavelength. The sensitivity of this sensor to ammonia (NH 3 ) gas is about 0.073 pm ppm −1 , which depends on the optical characteristics of the fiber grating, the diameter of the fiber cladding and the constituents of the sensing film. Methanol concentrations can also be measured using this sensing scheme. The sensitivity of this sensor must be improved to provide a simple, reliable, repeatable and non-destructive method for sensing various chemical gases. (technical design note)

  14. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    Science.gov (United States)

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-05

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  15. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  16. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    Science.gov (United States)

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  17. Comparison of Different Solvents and Extraction Methods for Isolation of Phenolic Compounds from Horseradish Roots (Armoracia rusticana)

    OpenAIRE

    Lolita Tomsone; Zanda Kruma; Ruta Galoburda

    2012-01-01

    Horseradish (Armoracia rusticana) is a perennial herb belonging to the Brassicaceae family and contains biologically active substances. The aim of the current research was to determine best method for extraction of phenolic compounds from horseradish roots showing high antiradical activity. Three genotypes (No. 105; No. 106 and variety ‘Turku’) of horseradish roots were extracted with eight different solvents: n-hexane, ethyl acetate, diethyl ether, 2-propanol, acetone, ethanol (95%), ethanol...

  18. Enhanced removal of lead from contaminated soil by polyol-based deep eutectic solvents and saponin

    Science.gov (United States)

    Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hayyan, Adeeb; Hayyan, Maan; Hashim, Mohd Ali; Sen Gupta, Bhaskar

    2016-11-01

    Deep eutectic solvents (DESs) are a class of green solvents analogous to ionic liquids, but less costly and easier to prepare. The objective of this study is to remove lead (Pb) from a contaminated soil by using polyol based DESs mixed with a natural surfactant saponin for the first time. The DESs used in this study were prepared by mixing a quaternary ammonium salt choline chloride with polyols e.g. glycerol and ethylene glycol. A natural surfactant saponin obtained from soapnut fruit pericarp, was mixed with DESs to boost their efficiency. The DESs on their own did not perform satisfactory due to higher pH; however, they improved the performance of soapnut by up to 100%. Pb removal from contaminated soil using mixture of 40% DES-Gly and 1% saponin and mixture of 10% DES-Gly and 2% saponin were above 72% XRD and SEM studies did not detect any major corrosion in the soil texture. The environmental friendliness of both DESs and saponin and their affordable costs merit thorough investigation of their potential as soil washing agents.

  19. Tannin-based thin-film composite membranes for solvent nanofiltration

    KAUST Repository

    Perez Manriquez, Liliana

    2017-06-28

    The natural oligomer tannic acid was used as a reactant for an interfacial polymerisation on top of a crosslinked polyacrylonitrile (PAN) membrane. The PAN membrane was soaked with the aqueous tannic acid solution and contacted with a dilute solution of teraphtaloylchloride in hexane. Since both layers, the PAN support and the thin tannin-based layer, are highly crosslinked, the resulting thin film composite membrane is stable in harsh solvent environments such as N-Methyl-2-pyrrolidone (NMP). NMP permeances of up to 0.09L/m2 h bar with a molecular weight cut-off of approximately 800g/mol were obtained. The exceptional stability in NMP and the incorporation of natural compounds like tannic acid for the manufacture of organic solvent nanofiltration membranes provides a cost-effective alternative for industrial separations due to the simplicity of the interfacial reaction and the replacement of the commonly applied toxic aromatic amines. The scale up of the manufacturing process is not difficult; the low price of the natural tannic acid is another advantage.

  20. Measurement of 90Sr radioactivity in a rapid method of strontium estimation by solvent extraction with dicarbollides

    International Nuclear Information System (INIS)

    Svoboda, K.; Kyrs, M.

    1994-01-01

    The application of liquid scintillation counting to the measurement of 90 Sr radioactivity was studied, using a previously published rapid method of strontium separation, based on solvent extraction with a solution of cobalt dicarbollide and Slovafol 909 in a nitrobenzene-carbon tetrachloride mixture and subsequent stripping of strontium with a 0.15 M Chelaton IV (CDTA) solution at pH 10.2. With liquid scintillation counting, a more efficient elimination of the effect of 90 Y β-activity on 90 Sr counting is possible than when measuring the evaporated aliquot with the use of a solid scintillator. The adverse effect of traces of dicarbollide, nitrobenzene, and CCl 4 passed over in the aqueous 90 Sr solution prepared for counting, is caused by the (poorly reproducible) shift of the 90 Sr + 90 Y β-radiation spectral curve towards lower energies, the so-called quenching. The shift is independent of the aqueous phase concentration of the organic compounds mentioned. They can be removed by shaking the aqueous reextract with an equal volume of octanol or amyl acetate so that the undesirable spectral shift does not occur. No loss of strontium was found in this washing procedure. (author) 2 tabs., 6 figs., 5 refs

  1. Solvent exposure and malignant lymphoma: a population-based case-control study in Germany

    Directory of Open Access Journals (Sweden)

    Deeg Evelin

    2007-04-01

    Full Text Available Abstract Aims To analyze the relationship between exposure to chlorinated and aromatic organic solvents and malignant lymphoma in a multi-centre, population-based case-control study. Methods Male and female patients with malignant lymphoma (n = 710 between 18 and 80 years of age were prospectively recruited in six study regions in Germany (Ludwigshafen/Upper Palatinate, Heidelberg/Rhine-Neckar-County, Würzburg/Lower Frankonia, Hamburg, Bielefeld/Gütersloh, and Munich. For each newly recruited lymphoma case, a gender, region and age-matched (± 1 year of birth population control was drawn from the population registers. In a structured personal interview, we elicited a complete occupational history, including every occupational period that lasted at least one year. On the basis of job task-specific supplementary questionnaires, a trained occupational physician assessed the exposure to chlorinated hydrocarbons (trichloroethylene, tetrachloroethylene, dichloromethane, carbon tetrachloride and aromatic hydrocarbons (benzene, toluene, xylene, styrene. Odds ratios (OR and 95% confidence intervals (CI were calculated using conditional logistic regression analysis, adjusted for smoking (in pack years and alcohol consumption. To increase the statistical power, patients with specific lymphoma subentities were additionally compared with the entire control group using unconditional logistic regression analysis. Results We observed a statistically significant association between high exposure to chlorinated hydrocarbons and malignant lymphoma (Odds ratio = 2.1; 95% confidence interval 1.1–4.3. In the analysis of lymphoma subentities, a pronounced risk elevation was found for follicular lymphoma and marginal zone lymphoma. When specific substances were considered, the association between trichloroethylene and malignant lymphoma was of borderline statistical significance. Aromatic hydrocarbons were not significantly associated with the lymphoma diagnosis

  2. Binary Solvents Dispersive Liquid-Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography.

    Science.gov (United States)

    Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri

    2014-02-03

    Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.

  3. Binary Solvents Dispersive Liquid—Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography

    Science.gov (United States)

    2014-01-01

    Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475

  4. The influence of solvent processing on polyester bioabsorbable polymers.

    Science.gov (United States)

    Manson, Joanne; Dixon, Dorian

    2012-01-01

    Solvent-based methods are commonly employed for the production of polyester-based samples and coatings in both medical device production and research. The influence of solvent casting and subsequent drying time was studied using thermal analysis, spectroscopy and weight measurement for four grades of 50 : 50 poly(lactic-co-glycolic acid) (PLGA) produced by using chloroform, dichloromethane, and acetone. The results demonstrate that solvent choice and PLGA molecular weight are critical factors in terms of solvent removal rate and maintaining sample integrity, respectively. The protocols widely employed result in high levels of residual solvent and a new protocol is presented together with solutions to commonly encountered problems.

  5. Effect of Solvent Type and Drying Method on Protein Retention in ...

    African Journals Online (AJOL)

    There appears to be a link between the pKa of the acids and the degree of chitosan–solvent interaction on the one hand, and protein retention on the other hand. Increase in elution pH from 1.2 to 5.0 did not significantly (P>0.05) affect protein retention. Furthermore, there was no significant difference (p>0.05) between the ...

  6. Evaluating the complexation behavior and regeneration of boron selective glucaminium-based ionic liquids when used as extraction solvents

    International Nuclear Information System (INIS)

    Joshi, Manishkumar D.; Steyer, Daniel J.; Anderson, Jared L.

    2012-01-01

    Highlights: ► Glucaminium-based ILs exhibit high selectivity for boron species using DLLME. ► The concentration of glucaminium-based IL affects type of boron complex formed. ► Use of 0.1 M HCl allows for regeneration of the IL solvent following extraction. ► Selectivity of the glucaminium-based ILs for boron species in seawater is similar to Milli-Q water. - Abstract: Glucaminium-based ionic liquids are a new class of solvents capable of extracting boron-species from water with high efficiency. The complexation behavior of these ILs with borate was thoroughly studied using 11 B NMR. Two different complexes, namely, monochelate complex and bischelate complex, were observed. 11 B NMR was used extensively to determine the formation constants for monochelate and bischelate complexes. The IL concentration was observed to have a significant effect on the IL–borate complexes. Using an in situ dispersive liquid–liquid microextraction (in situ DLLME) method, the extraction efficiency for boron species was increased dramatically when lithium bis[(trifluoromethyl)sulfonyl]imide (LiNTf 2 ) was used as the metathesis salt in an aqueous solution containing 0.1 M sodium chloride. IL regeneration after extraction was achieved using 0.1 M hydrochloric acid. The extraction efficiency of boron species was consistent when the IL was employed after three regeneration cycles. The selectivity of the IL for boron species in synthetic seawater samples was similar to performing the same extraction from Milli-Q water samples.

  7. Application of method of organizational congruences to substitution of organic solvents with vegetable agents for cleaning offset printing machine

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, S [ENEA, Casaccia (Italy). Area Energia Ambiente e Salute; Tartaglia, R [Unita Sanitaria Locale 10/D, Firenze (Italy); Garzi, S; Biagioni, A [Istituto tecnico Leonardo da Vinci, Firenze (Italy)

    1995-06-01

    The aim of this research is the application of the method of organizational congruences before and after the substitution of organic solvents with vegetable agents for the cleaning offset printing machine in order to assess the organizational changes. A solvent free process is the goal of the SUBSPRINT project (Technology Transfer Program of the European Community). In this study it is shown how human and environmental health is improved by using vegetable agents through this change may lead to some other organizational constraints such as the time needed, the monotony and repetitiveness of the technical actions involved. The authors underline that the knowledge of the new technology impact of health help for a better understanding of the resistance to the change and help for a further amelioration of it.

  8. Multiple responses optimization in the development of a headspace gas chromatography method for the determination of residual solvents in pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Carla M. Teglia

    2015-10-01

    Full Text Available An efficient generic static headspace gas chromatography (HSGC method was developed, optimized and validated for the routine determination of several residual solvents (RS in drug substance, using a strategy with two sets of calibration. Dimethylsulfoxide (DMSO was selected as the sample diluent and internal standards were used to minimize signal variations due to the preparative step. A gas chromatograph from Agilent Model 6890 equipped with flame ionization detector (FID and a DB-624 (30 m×0.53 mm i.d., 3.00 µm film thickness column was used. The inlet split ratio was 5:1. The influencing factors in the chromatographic separation of the analytes were determined through a fractional factorial experimental design. Significant variables: the initial temperature (IT, the final temperature (FT of the oven and the carrier gas flow rate (F were optimized using a central composite design. Response transformation and desirability function were applied to find out the optimal combination of the chromatographic variables to achieve an adequate resolution of the analytes and short analysis time. These conditions were 30 °C for IT, 158 °C for FT and 1.90 mL/min for F. The method was proven to be accurate, linear in a wide range and very sensitive for the analyzed solvents through a comprehensive validation according to the ICH guidelines. Keywords: Headspace gas chromatography, Residual solvents, Pharmaceuticals, Surface response methodology, Desirability function

  9. Analysis of Biological Samples Using Paper Spray Mass Spectrometry: An Investigation of Impacts by the Substrates, Solvents and Elution Methods.

    Science.gov (United States)

    Ren, Yue; Wang, He; Liu, Jiangjiang; Zhang, Zhiping; McLuckey, Morgan N; Ouyang, Zheng

    2013-10-01

    Paper spray has been developed as a fast sampling ionization method for direct analysis of raw biological and chemical samples using mass spectrometry (MS). Quantitation of therapeutic drugs in blood samples at high accuracy has also been achieved using paper spray MS without traditional sample preparation or chromatographic separation. The paper spray ionization is a process integrated with a fast extraction of the analyte from the raw sample by a solvent, the transport of the extracted analytes on the paper, and a spray ionization at the tip of the paper substrate with a high voltage applied. In this study, the influence on the analytical performance by the solvent-substrate systems and the selection of the elution methods was investigated. The protein hemoglobin could be observed from fresh blood samples on silanized paper or from dried blood spots on silica-coated paper. The on-paper separation of the chemicals during the paper spray was characterized through the analysis of a mixture of the methyl violet 2B and methylene blue. The mode of applying the spray solvent was found to have a significant impact on the separation. The results in this study led to a better understanding of the analyte elution, on-paper separation, as well as the ionization processes of the paper spray. This study also help to establish a guideline for optimizing the analytical performance of paper spray for direct analysis of target analytes using mass spectrometry.

  10. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    International Nuclear Information System (INIS)

    Efafi, B.; Majles Ara, M.H.; Mousavi, S.S.

    2016-01-01

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  11. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    Energy Technology Data Exchange (ETDEWEB)

    Efafi, B. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Departments of Physics, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Majles Ara, M.H., E-mail: majlesara@gmail.com [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, S.S. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  12. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  13. Recovery of MA using a CyMe4-BTBP based SANEX solvent

    Energy Technology Data Exchange (ETDEWEB)

    Malmbeck, R.; Magnusson, D.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2009-06-15

    Efficient recovery of minor actinides from a genuine spent fuel solution has been successfully demonstrated by the CyMe4-BTBP/DMDOHEMA extractant mixture dissolved in octanol. The continuous counter current process, in which actinides(III) were separated from lanthanides(III), was carried out in laboratory centrifugal contactors using an optimised flowsheet involving a total of 16 stages. The process was divided into 9 stages for extraction from a 2 M nitric acid feed solution, 3 stages for lanthanide scrubbing and 4 stages for actinide back-extraction. Excellent feed decontamination factors for Am (7000) and Cm (1000) were obtained and the recoveries of these elements were higher than 99.9 %. More than 99.9 % of the lanthanides were directed to the raffinate except Gd for which 0.32 % was recovered in the product. In addition the the radiolytic degradation of the CyMe4-BTBP based SANEX solvent has been investigated. As the solvent used in the extraction process is designed to separate trivalent actinides from lanthanides, the radiolytic degradation is mainly due to alpha decay of extracted minor actinide isotopes. A calculation of dose-rates was done by estimating the concentration of minor actinides in the solvent by fuel burn-up calculations and assumptions on dilutions in the subsequent reprocessing steps. Several radiolysis experiments were carried out in order to compare the effect of low LET external gamma radiation (0.2 kGy/h) and internal alpha radiation with different dose-rates (0.05, 0.2 and 1.0 kGy/h). Significant radiolytic degradation was shown in the gamma radiolysis and in the alpha radiolysis experiment at a dose-rate of 1 kGy/h. These experiments were continued up to an absorbed dose {approx}1200 kGy and >300 kGy, respectively. Comparing the alpha radiolysis results for 0.2 kGy/h and 1.0 kGy/h, up to an absorbed dose of {approx}120 kGy, no significant difference in the degradation for the different dose rates could be seen. (authors)

  14. Argon direct analysis in real time mass spectrometry in conjunction with makeup solvents: a method for analysis of labile compounds.

    Science.gov (United States)

    Yang, Hongmei; Wan, Debin; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2013-02-05

    Helium direct analysis in real time (He-DART) mass spectrometry (MS) analysis of labile compounds usually tends to be challenging because of the occurrence of prominent fragmentation, which obscures the assigning of an ion to an independent species or merely a fragment in a mixture. In the present work, argon DART (Ar-DART) MS in conjunction with makeup solvents has been demonstrated to analyze a variety of labile compounds including nucleosides, alkaloids, glucose, and other small molecules. The results presented here confirm that Ar-DART can generate significantly less energetic ions than conventional He-DART and is able to produce the intact molecular ions with little or no fragmentation in both positive and negative ion modes. Adding a makeup solvent (absolute ethyl alcohol, methanol, fluorobenzene, or acetone) to the argon gas stream at the exit of the DART ion source can result in 1-2 orders of magnitude increase in detection signals. The sensitivity attainable by Ar-DART was found to be comparable to that by He-DART. The investigation of influence of solvents improves our understanding of the fundamental desorption and ionization processes in DART. The practical application of this rapid and high throughput method is demonstrated by the successful analysis of a natural product (Crude Kusnezoff Monkshood) extract, demonstrating the great potential in mixture research.

  15. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods.

    Science.gov (United States)

    Celik, Saliha Esin; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2010-06-15

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g., fats, lipids, proteins, and DNA) from the damage of reactive oxygen species (ROS). Solvent effect is a crucial parameter on the chemical behaviour of antioxidant compounds but there has been limited information regarding its role on antioxidant capacity and its assays. Therefore, the present study was undertaken to investigate the total antioxidant capacity (TAC) of some certain lipophilic and hydrophilic antioxidants, measured in different solvent media such as ethanol (EtOH) (100%), methanol (MeOH) (100%), methanol/water (4:1, v/v), methanol/water (1:1, v/v), dichloromethane (DCM)/EtOH (9:1, v/v). The cupric reducing antioxidant capacity (CUPRAC) values of selected antioxidants were experimentally reported in this work as trolox equivalent antioxidant capacity (TEAC), and compared to those found by reference TAC assays, i.e., 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)/persulphate (ABTS/persulphate) and ferric reducing antioxidant power (FRAP) methods. The TAC values of synthetic mixtures of antioxidants were experimentally measured as trolox equivalents and compared to those theoretically found by making use of the principle of additivity of absorbances assuming no chemical interaction between the mixture constituents. Possible synergistic (e.g., BHT and BHA in DCM/EtOH) or antagonistic behaviours of these synthetic mixtures were investigated in relation to solvent selection.

  16. Role of iron catalyst impregnated by solvent swelling method in pyrolytic removal of coal nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, J.; Kusakabe, K.; Morooka, S.; Nielsen, M.; Furimsky, E. [Kyushu University, Fukuoka (Japan). Dept. of Chemical Science and Technology

    1995-11-01

    Organometallic iron precursors, ferrocene and ferric acetate, were impregnated into Illinois No. 6 (IL), Wyoming (WY) and Yallourn (YL) coals by solvent swelling technique in THF, ethanol, and a THF/ethanol binary solvent. Then iron-impregnated coals were pyrolyzed in a flow of helium at atmospheric pressure in a fixed bed and a thermobalance. Conversion of coal nitrogen to N{sub 2} was 20, 38 and 30% respectively, for original IL, WY, and YL coals. Iron formed from both precursors lowered the onset temperature of N{sub 2} evolution by 20-100{degree}C. When ferrocene was impregnated in coals at a concentration of 1.7-1.8 wt% as Fe, nitrogen conversion was increased to 52, 71 and 68% for IL, WY and YL coals, respectively. Ferric acetate impregnated into IL coal from THF/ethanol solution increased the nitrogen conversion much more than that from ethanol solution. The expansion of microporous coal structure by the swelling was essential for better dispersion of the catalyst precursor. The evolution of HCN as well as NH{sub 3} was effectively suppressed above 600{degree}C by the presence of iron but not influenced significantly by combinations of catalyst precursors and solvents. The increase in N{sub 2} yield was compensated by the decrease in nitrogen emitted as HCN and NH{sub 3} and in tar and char. The increase in CO evolution from the iron-impregnated IL coal at 600-800{degree}C was explained by catalytic rearrangement of aromatic structure of char, accompanying the removal of nitrogen as N{sub 2}. In a range of 600-750{degree}C, the evolution of CO as well as N{sub 2} from the other coals increased remarkably with a significant decrease in CO{sub 2} gasification in char microproes. 32 refs., 9 figs., 3 tabs.

  17. Metal retention in human transferrin: consequences of solvent composition in analytical sample preparation methods.

    Science.gov (United States)

    Quarles, C Derrick; Randunu, K Manoj; Brumaghim, Julia L; Marcus, R Kenneth

    2011-10-01

    The analysis of metal-binding proteins requires careful sample manipulation to ensure that the metal-protein complex remains in its native state and the metal retention is preserved during sample preparation or analysis. Chemical analysis for the metal content in proteins typically involves some type of liquid chromatography/electrophoresis separation step coupled with an atomic (i.e., inductively coupled plasma-optical emission spectroscopy or -mass spectrometry) or molecular (i.e., electrospray ionization-mass spectrometry) analysis step that requires altered-solvent introduction techniques. UV-VIS absorbance is employed here to monitor the iron content in human holo-transferrin (Tf) under various solvent conditions, changing polarity, pH, ionic strength, and the ionic and hydrophobic environment of the protein. Iron loading percentages (i.e. 100% loading equates to 2 Fe(3+):1 Tf) were quantitatively determined to evaluate the effect of solvent composition on the retention of Fe(3+) in Tf. Maximum retention of Fe(3+) was found in buffered (20 mM Tris) solutions (96 ± 1%). Exposure to organic solvents and deionized H(2)O caused release of ~23-36% of the Fe(3+) from the binding pocket(s) at physiological pH (7.4). Salt concentrations similar to separation conditions used for ion exchange had little to no effect on Fe(3+) retention in holo-Tf. Unsurprisingly, changes in ionic strength caused by additions of guanidine HCl (0-10 M) to holo-Tf resulted in unfolding of the protein and loss of Fe(3+) from Tf; however, denaturing and metal loss was found not to be an instantaneous process for additions of 1-5 M guanidinium to Tf. In contrast, complete denaturing and loss of Fe(3+) was instantaneous with ≥6 M additions of guanidinium, and denaturing and loss of iron from Tf occurred in parallel proportions. Changes to the hydrophobicity of Tf (via addition of 0-14 M urea) had less effect on denaturing and release of Fe(3+) from the Tf binding pocket compared to changes

  18. Acid-base titrations in solvents of relatively low dielectric constant

    NARCIS (Netherlands)

    Bos, M.; Dahmen, E.A.M.F.

    1973-01-01

    From a comparison of the pKa values of various compounds in the solvent 1,2-dichloroethane, m-cresol, acetic acid and pyridine, the differences in basicity of these solvents could be determined. If the basicity of 1,2-dichloroethane is taken as 0 pK units, the basicities of m-cresol, acetic acid and

  19. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Kontogeorgis, Georgios; Riisager, Anders

    2012-01-01

    as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening......-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher...... of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems...

  20. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    Science.gov (United States)

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.

  1. Assessment of Purex solvent cleanup methods using a mixer-settler system

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-11-01

    A test system consisting of three mixer-settlers in series has been used to determine the usefulness of several possible aqueous scrub solutions for cleanup of TBP solvent in fuel reprocessing plants. The simulated solvent that was treated was nominally 0.1 mM zirconium, 0.2 mM uranium, 0.4 mM dibutyl phosphate, and 0.3 mM HNO 3 . Five aqueous scrub solutions - sodium carbonate/tartrate, hydroxylamine/tartaric acid, hydroxylamine/citric acid, hydrazine/oxalic acid, and LiOH/sucrose - were evaluated. The order of effectiveness of these solutions for removal of contaminants was: sodium carbonate/tartrate, hydrazine/oxalic acid, LiOH/sucrose, and the two hydroxylamine solutions. Interfacial crud, which was related to the presence of zirconium and DBP, was observed in all cases except the LiOH/sucrose solution. The recommended system would use sodium carbonate/tartrate. If sodium usage must be minimized, a hydroxylamine-containing scrub followed by a sodium carbonate/tartrate scrub is recommended. 13 references, 11 figures, 21 tables

  2. Solvent extraction of aromatics from middle distillates: equilibria prediction method by group contribution

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.; Mikitenko, P.; Asselineau, L.

    1984-01-01

    A method of calculating liquid-liquid aromatics extraction of a middle distillate is described. The group contribution models of the ASOG and UNIFAC type are investigated. Four vapor liquid equilibrium (VLE), two solid-liquid equilibrium (SLE), three binary and six ternary liquid-liquid equilibrium (LLE) have been measured. The parameters of the models are based mainly on the data of the systems having 10-20 carbon number. VLE, SLE, and infinite dilution activity coefficient data (17-245/sup 0/C) have been used for calculating interaction parameters between hydrocarbon groups and LLE data (20-80/sup 0/C) for interaction parameters of dimethylformamide-hydrocarbon groups. Middle distillate representation is based on mass spectrometric and gas chromatographic analysis and on limited data of middle distillate-DMF liquid-liquid equilibrium. It is shown that the performance of ASOG and UNIFAC models are sufficiently valid in representation of data base and in extraction calculations. Considering the predictive character and the rapidity of its application this method can be useful in the preliminary study of extraction processes. 34 references, 2 figures, 10 tables.

  3. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method

    DEFF Research Database (Denmark)

    Cui, Fude; Yang, Mingshi; Jiang, Yanyan

    2003-01-01

    crystallization technique, i.e. quasi-emulsion solvent diffusion method. The factors of effect on micromeritic properties and release profiles of the resultant microspheres were investigated. And the bioavailability of nitrendipine microspheres was evaluated in six healthy dogs. The results showed...... that the particle size of microspheres was determined mainly by the agitation speed. The dissolution rate of nitrendipine from microspheres was enhanced significantly with increasing the amount of dispersing agents, and sustained by adding retarding agents. The release rate of microspheres could be controlled...

  4. Apparent formation constants of Pu(IV) and Th(IV) with humic acids determined by solvent extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Aoyama, S.; Yoshida, H.; Kobayashi, T.; Takagi, I. [Tokyo Univ. (Japan). Dept. of Nuclear Engineering; Kulyako, Y.; Samsonov, M.; Miyasoedov, B. [Russian Academy of Sciences, Moscow (Russian Federation). V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI); Moriyama, H. [Kyoto Univ. (Japan). Research Reactor Inst.

    2012-07-01

    Apparent formation constants of Pu(IV) and Th(IV) with two kinds of humic acids were determined in 0.1 M NaClO{sub 4} at 25 C using a solvent extraction method with thenoyltrifluoroacetone in xylene. The acid dissociation constants of humic acids were also measured by potentiometric titration and used as the degree of dissociation for calculating the formation constants. The effect of solution conditions, such as the pH, the initial metal and humic acid concentrations, and the ionic strength, on the formation constants was examined. The obtained data were compared with the ones in the literature. (orig.)

  5. Steady State and Time-Resolved Fluorescence Dynamics of Triphenylamine Based Oligomers with Phenylene/Thiophene/Furan in Solvents

    International Nuclear Information System (INIS)

    Qi, Zeng; Ying-Liang, Liu; Kang, Meng; Xiang-Jie, Zhao; Shu-Feng, Wang; Qi-Huang, Gong

    2009-01-01

    We investigate the photo-physical properties of a series of triphenylamine-based oligomers by steady-state and picosecond transient fluorescence measurements in solvents. The oligomers are composed alternatively with triphenylamine and phenylene/thiophene/furan group, bridged by vinyl group (PNB/PNT/PNF). Their fluorescence spectra show bathochromic phenomenon with solvent polarity and viscosity increasing. The fluorescence decays are bi-exponential for PNB and PNT, and tri-exponential for PNF in THF and aniline. The strong viscosity dependence suggests conformational relaxation along the PNF chain after photo excitation. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  6. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Science.gov (United States)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2017-08-08

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  7. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction

    NARCIS (Netherlands)

    Rodriguez, N.R.; Ferré Güell, J.; Kroon, M.C.

    2016-01-01

    Four different glycerol-based deep eutectic solvents (DESs) were tested as extracting agents for the separation of the azeotropic mixture {methyl ethyl ketone + ethanol} via liquid-liquid extraction. The selected DESs for this work were: glycerol/choline chloride with molar ratios (4:1) and (2:1),

  8. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  9. Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids.

    Science.gov (United States)

    Fang, Y K; Osama, M; Rashmi, W; Shahbaz, K; Khalid, M; Mjalli, F S; Farid, M M

    2016-02-19

    This study introduces a new class of heat transfer fluids by dispersing functionalised graphene oxide nanoparticles (GNPs) in ammonium and phosphonium-based deep eutectic solvents (DESs) without the aid of a surfactant. Different molar ratios of salts and hydrogen bond donors (HBD) were used to synthesise DESs for the preparation of different concentrations of graphene nanofluids (GNFs). The concentrations of GNPs were 0.01 wt%, 0.02 wt% and 0.05 wt %. Homogeneous and stable suspensions of nanofluids were obtained by high speed homogenisation and an ultrasonication process. The stability of the GNFs was determined through visual observation for 4 weeks followed by a centrifugal process (5000-20,000 rpm) for 30 min in addition to zeta potential studies. Dispersion of the GNPs in DES was observed using an optical microscope. The synthesised DES-based GNFs showed no particle agglomeration and formation of sediments in the nanofluids. Thermo-physical properties such as thermal conductivity and specific heat of the nanofluids were also investigated in this research. The highest thermal conductivity enhancement of 177% was observed. The findings of this research provide a new class of engineered fluid for heat transfer applications as a function of temperature, type and composition DESs as well as the GNPs concentration.

  10. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    Energy Technology Data Exchange (ETDEWEB)

    D Banerjee; J Finkelstein; A Smirnov; P Forster; L Borkowski; S Teat; J Parise

    2011-12-31

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg{sub 4}(3,5-PDC){sub 4}(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite

  11. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  12. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents.

    Science.gov (United States)

    Zdanowicz, Magdalena; Johansson, Caisa

    2016-10-20

    The aim of this work was to prepare two- and three-components deep eutectic solvents (DES) and investigate their potential as starch plasticizers. Starch/DES films were prepared via casting method. Mechanical properties, water vapor- and oxygen transmission rates were measured; additionally contact angle and moisture sorption were determined and FTIR analysis was applied on the films. Native potato starch and hydroxypropylated and oxidized starch (HOPS) with common plasticizers (e.g. polyols, urea) and DES were studied. Moreover, influence of three methods of DES introduction and concentration of plasticizer on the films properties were compared. HOPS films were prepared by two methods: as non-cured and cured samples. Some of DESs containing citrate anion exhibited crosslinking ability of polysaccharide matrix. Non-cured HOPS/DES films exhibited more favourable mechanical and barrier properties than cured analogue films. Samples prepared with unmodified potato starch had higher mechanical and barrier properties than films made with HOPS. Starch-based films plasticized with novel DESs with parallel crosslinking activity exhibited satisfactory mechanical and barrier properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid

    International Nuclear Information System (INIS)

    Li, Guizhen; Zhu, Tao; Lei, Yingjie

    2015-01-01

    A series of deep eutectic solvents (DESs) were prepared using glycerol and choline chloride (ChCl), and Fourier transform infrared spectrometer (FT-IR) was used to analyze the spectra of glycerol, choline chloride and DESs based on glycerol and choline chloride. Then DESs were used as the additives of mobile phase to optimize chromatographic behavior of caffeic acid in high performance liquid chromatography (HPLC). A 17-run Box-Behnken design (BBD) was employed to evaluate effect of DESs as additives by analyzing the maximum theoretical plate number. Three factors, reaction temperature (60 .deg. C, 80 .deg. C, 100 .deg. C), molar ratio of glycerol and choline chloride (2 : 1, 3 : 1, 4 : 1, n/n), and volume percent of additives (0.05%, 0.10%, 0.15%, v/v), were investigated in BBD. The optimum experiment condition was that of reaction temperature (80 .deg. C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additive (0.10%, v/v). The mean chromatographic theoretical plate number of the caffeic acid this condition was 1567.5, and DESs as additives shorten the retention time and modify the chromatogram shape, proving DESs as additives for effective theoretical plate number and column efficiency in HPLC.

  14. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guizhen; Zhu, Tao; Lei, Yingjie [Tianjin University of Technology, Tianjin (China)

    2015-10-15

    A series of deep eutectic solvents (DESs) were prepared using glycerol and choline chloride (ChCl), and Fourier transform infrared spectrometer (FT-IR) was used to analyze the spectra of glycerol, choline chloride and DESs based on glycerol and choline chloride. Then DESs were used as the additives of mobile phase to optimize chromatographic behavior of caffeic acid in high performance liquid chromatography (HPLC). A 17-run Box-Behnken design (BBD) was employed to evaluate effect of DESs as additives by analyzing the maximum theoretical plate number. Three factors, reaction temperature (60 .deg. C, 80 .deg. C, 100 .deg. C), molar ratio of glycerol and choline chloride (2 : 1, 3 : 1, 4 : 1, n/n), and volume percent of additives (0.05%, 0.10%, 0.15%, v/v), were investigated in BBD. The optimum experiment condition was that of reaction temperature (80 .deg. C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additive (0.10%, v/v). The mean chromatographic theoretical plate number of the caffeic acid this condition was 1567.5, and DESs as additives shorten the retention time and modify the chromatogram shape, proving DESs as additives for effective theoretical plate number and column efficiency in HPLC.

  15. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  16. Eco-friendly all-carbon paper electronics fabricated by a solvent-free drawing method

    International Nuclear Information System (INIS)

    Kanaparthi, Srinivasulu; Badhulika, Sushmee

    2016-01-01

    Here we report the fabrication of high-performance all-carbon temperature and infrared (IR) sensors with a solvent-free multiwalled carbon nanotube (MWCNT) trace as the sensing element and commercial graphite pencil trace as the electrical contact on recyclable and biodegradable cellulose filter paper without using any toxic materials or complex procedures. The temperature sensor shows a large negative temperature coefficient of resistance (TCR) in the range of −3100 ppm K −1 to −4900 ppm K −1 , which is comparable to available commercial temperature sensors, and an activation energy of 34.85 meV. The IR sensor shows a high responsivity of 58.5 V W −1 , which is greater than reported IR sensors with similar dimensions. A detailed study of the conduction mechanism in MWCNTs with temperature and the photo response with IR illumination was done and it was found that the conduction is due to thermally assisted hopping in band tails and the photo response is bolometric in nature. The successful fabrication of these sensors on cellulose filter paper with a comparable performance to existing components indicates that it is possible to fabricate high-performance electronics using low-cost, eco-friendly materials without the need for expensive clean-room processing techniques or harmful chemicals. (paper)

  17. The uranium separation from Ru using Tbp solvent by membrane emulsion method

    International Nuclear Information System (INIS)

    Bintarti, A. N.; Bambang, EHB. J.; Pramono, J.

    1998-01-01

    An extraction process for uranium (U) separation from ruthenium (Ru) by tributyl phosphate (Tbp) as a solvent with kerosene as a diluent and surfactant the Span-80 as emulator has been performed. A sodium carbonate solution having ph 10-11 was used as the internal phase. the feed contained U and Ru in HNO 3 solution, while butanol was used as the membrane sp liter. the membrane used for extraction had a composition of 5% vol surfactant, 10% vol Tbp, 35% vol kerosene and 50% vol Na 2 CO 3 solution. The mixing time and speed were varied in value, so were the acidity levels, ranging from 0.5 M, 0.75 M up to 1 M. The result of the experimental separation of a mixture containing 5000 ppm U and 325 ppm Ru showed that a molarity of 0.5 M HNO 3 in the feed, 15 minutes mixing time, and 800 rpm mixing speed were found to be the best conditions for the extraction. Such condition had resulted in achieving the value of stripping distribution coefficient K d for U= 0.5660 with 49.73% U recovery efficiency and a practically zero separation factor from Ru

  18. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  19. Determination of migration of phosphorus-based additives from food packaging material into food-simulating solvents by neutron activation/Cerenkov counting

    International Nuclear Information System (INIS)

    Lickly, T.D.; Quinn, T.; Blanchard, F.A.; Murphy, P.G.

    1988-01-01

    Samples of food-simulating solvents exposed to food-packaging materials that contain phosphorus-based additives have been examined for migration of phosphorus-containing compounds from the packaging material, using neutron activation/Cerenkov counting. This method has the advantage that commercially produced packaging materials can be used (no elaborate sample preparation as with other radiotracer methods) and no elaborate sample processing techniques are needed to reach the desired levels (low ng/mL) as is usual with most chromatographic or spectroscopic techniques. (author)

  20. Validation of an accelerated solvent extraction liquid chromatography-tandem mass spectrometry method for Pacific ciguatoxin-1 in fish flesh and comparison with the mouse neuroblastoma assay.

    Science.gov (United States)

    Wu, Jia Jun; Mak, Yim Ling; Murphy, Margaret B; Lam, James C W; Chan, Wing Hei; Wang, Mingfu; Chan, Leo L; Lam, Paul K S

    2011-07-01

    Ciguatera fish poisoning (CFP) is a global foodborne illness caused by consumption of seafood containing ciguatoxins (CTXs) originating from dinoflagellates such as Gambierdiscus toxicus. P-CTX-1 has been suggested to be the most toxic CTX, causing ciguatera at 0.1 μg/kg in the flesh of carnivorous fish. CTXs are structurally complex and difficult to quantify, but there is a need for analytical methods for CFP toxins in coral reef fishes to protect human health. In this paper, we describe a sensitive and rapid extraction method using accelerated solvent extraction combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the detection and quantification of P-CTX-1 in fish flesh. By the use of a more sensitive MS system (5500 QTRAP), the validated method has a limit of quantification (LOQ) of 0.01 μg/kg, linearity correlation coefficients above 0.99 for both solvent- and matrix-based standard solutions as well as matrix spike recoveries ranging from 49% to 85% in 17 coral reef fish species. Compared with previous methods, this method has better overall recovery, extraction efficiency and LOQ. Fish flesh from 12 blue-spotted groupers (Cephalopholis argus) was assessed for the presence of CTXs using HPLC-MS/MS analysis and the commonly used mouse neuroblastoma assay, and the results of the two methods were strongly correlated. This method is capable of detecting low concentrations of P-CTX-1 in fish at levels that are relevant to human health, making it suitable for monitoring of suspected ciguateric fish both in the environment and in the marketplace.

  1. Performance of thermal solvent process in Athabasca reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan [Marathon Oil (Canada)

    2011-07-01

    In the petroleum industry, due to depletion of conventional resources and high demand operators are looking into heavy oil and bitumen production. Different recovery methods exist, some of them based on heating the reservoir and others on the use of solvent. Thermal solvent process is a combination of both: a small amount of heat is used to maintain a solvent vapor phase in the reservoir. This process has advantages, solvent is mostly recycled which increases bitumen recovery efficiency and reduces the need for fresh solvent, but it also poses challenges, such as maintaining a vapor chamber and the fact that solvent solubility might be affected by heating. The aim of this paper is to discuss these issues. Simulations and field tests were conducted on bitumen in the the Athabasca region. This paper presented a thermal solvent process and its application's results in Athabasca reservoir.

  2. A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts.

    Science.gov (United States)

    Mao, Wei; Ma, Hongzhu; Wang, Bo

    2009-08-15

    A mild simple method for nitration of aromatic compounds, various solid acids as catalysts, the air treated with the corona discharge generator as nitrating agent, the liquid-phase nitration of toluene, at ambient temperature and atmospheric pressure without solvent has been investigated. The results show that SO(4)(2-)/TiO(2) (ST) and SO(4)(2-)/TiO(2) doped with CeO(2) (STC) catalysts displayed good nitration activity in the experiments. It is an attractive method for the environmentally friendly synthesis of nitroaromatic compounds. Moreover, only mononitrotoluenes were detected in the products, and the ratio of para-nitrotoluene and ortho-nitrotoluene was approximately 1:1 with various catalysts. A maximum yield of about 11.4% was achieved for mononitrotoluenes in STC reaction system in 3h.

  3. Anisotropy in Ba2Cu3O4Cl2 single crystals grown by the traveling solvent floating zone method

    International Nuclear Information System (INIS)

    Yamada, Shigeki; Iwagaki, Yohei; Noro, Sumiko

    2007-01-01

    Magnetic and electrical properties of layered copper oxychloride Ba 2 Cu 3 O 4 Cl 2 single crystals are measured. Single crystal growth of Ba 2 Cu 3 O 4 Cl 2 by the traveling solvent floating zone method is attempted using Ba 3 Cu 2 O 4 Cl 2 as solvent. By optimization of the growth conditions, large single crystals of (φ5mmx30mm) of Ba 2 Cu 3 O 4 Cl 2 are grown. The resistivity with the current parallel to the c-axis is 10 2 -10 3 times larger than that with the current perpendicular to the a-axis. The temperature dependence of the dielectric spectrum for each direction is measured and analyzed by using the Debye model. The spectrum width, which is related to the effective number of electrons (n/m), does not show an appreciable dependence on temperature. The characteristic frequencies at which the dielectric constant changes, which are related to the dissipation (γ), increase with warming. The temperature dependence is almost the same as the resistivity curve. This indicates that the hopping process dominates both DC- and AC-type electrical transport. The spectrum width with the electric field parallel to the a-axis is 30 times larger than that with the electric field parallel to the c-axis. On the other hand, the characteristic frequencies do not show an appreciable dependence on electric field direction

  4. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation

    Science.gov (United States)

    Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Nair, R. R.

    2017-12-01

    Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation. However, their use is limited to aqueous solutions because GO membranes appear impermeable to organic solvents, a phenomenon not yet fully understood. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from large (10-20 μm) flakes. Without modification of sieving characteristics, these membranes can be made exceptionally thin, down to ~10 nm, which translates into fast water and organic solvent permeation. We attribute organic solvent permeation and sieving properties to randomly distributed pinholes interconnected by short graphene channels with a width of 1 nm. With increasing membrane thickness, organic solvent permeation rates decay exponentially but water continues to permeate quickly, in agreement with previous reports. The potential of ultrathin GO laminates for organic solvent nanofiltration is demonstrated by showing >99.9% rejection of small molecular weight organic dyes dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification and filtration technologies.

  5. The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents

    Directory of Open Access Journals (Sweden)

    Troter Dragan Z.

    2017-01-01

    Full Text Available This paper reports the physicochemical (density, dynamic viscosity, electrical conductivity and refractive index and the thermodynamic (thermal expansion coefficient, molecular volume, lattice energy and heat capacity properties of several choline chloride (ChCl based deep eutectic solvents (DESs, with 1:2 mole ratio, respectively: ChCl:propylene glycol, ChCl:1,3-dimethylurea and ChCl:thiourea, at atmospheric pressure as a function of temperature over the range of 293.15–363.15 K. Their properties were also compared with those of some already characterized ChCl-based DESs, namely ChCl:ethylene glycol, ChCl:glycerol and ChCl:urea (1:2 mole ratio. Density, viscosity and refractive index of all DESs decrease with the increasing temperature while the electrical conductivity increases. Viscosity and conductivity of the tested DESs were fitted by both Arrhenius-type and Vogel–Tamman–Fulcher equations. The changes of molar enthalpy, entropy and Gibbs energy of activation, determined using the Eyring theory, demonstrated the interactional factor as predominant over the structural factor for all DES systems. The fractional Walden rule, used to correlate molar conductivity and viscosity, showed an excellent linear behaviour. It was shown that ChCl:propylene glycol DES had properties similar to ChCl:ethylene glycol and ChCl:glycerol DESs. However, the properties (density, viscosity and electrical conductivity of ChCl:1,3-dimethylurea and ChCl: :thiourea DESs were inferior to those of the ChCl:urea DES. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45001

  6. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  7. Obtaining bixin from semi-defatted annatto seeds by a mechanical method and solvent extraction: Process integration and economic evaluation.

    Science.gov (United States)

    Alcázar-Alay, Sylvia C; Osorio-Tobón, J Felipe; Forster-Carneiro, Tânia; Meireles, M Angela A

    2017-09-01

    This work involves the application of physical separation methods to concentrate the pigment of semi-defatted annatto seeds, a noble vegetal biomass rich in bixin pigments. Semi-defatted annatto seeds are the residue produced after the extraction of the lipid fraction from annatto seeds using supercritical fluid extraction (SFE). Semi-defatted annatto seeds are use in this work due to three important reasons: i) previous lipid extraction is necessary to recovery the tocotrienol-rich oil present in the annatto seeds, ii) an initial removal of the oil via SFE process favors bixin separation and iii) the cost of raw material is null. Physical methods including i) the mechanical fractionation method and ii) an integrated process of mechanical fractionation method and low-pressure solvent extraction (LPSE) were studied. The integrated process was proposed for processing two different semi-defatted annatto materials denoted Batches 1 and 2. The cost of manufacture (COM) was calculated for two different production scales (5 and 50L) considering the integrated process vs. only the mechanical fractionation method. The integrated process showed a significantly higher COM than mechanical fractionation method. This work suggests that mechanical fractionation method is an adequate and low-cost process to obtain a rich-pigment product from semi-defatted annatto seeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A novel method for determining the solubility of small molecules in aqueous media and polymer solvent systems using solution calorimetry.

    Science.gov (United States)

    Fadda, Hala M; Chen, Xin; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo

    2014-07-01

    To explore the application of solution calorimetry for measuring drug solubility in experimentally challenging situations while providing additional information on the physical properties of the solute material. A semi-adiabatic solution calorimeter was used to measure the heat of dissolution of prednisolone and chlorpropamide in aqueous solvents and of griseofulvin and ritonavir in viscous solutions containing polyvinylpyrrolidone and N-ethylpyrrolidone. Dissolution end point was clearly ascertained when heat generation stopped. The heat of solution was a linear function of dissolved mass for all drugs (solution of 9.8 ± 0.8, 28.8 ± 0.6, 45.7 ± 1.6 and 159.8 ± 20.1 J/g were obtained for griseofulvin, ritonavir, prednisolone and chlorpropamide, respectively. Saturation was identifiable by a plateau in the heat signal and the crossing of the two linear segments corresponds to the solubility limit. The solubilities of prednisolone and chlopropamide in water by the calorimetric method were 0.23 and 0.158 mg/mL, respectively, in agreement with the shake-flask/HPLC-UV determined values of 0.212 ± 0.013 and 0.169 ± 0.015 mg/mL, respectively. For the higher solubility and high viscosity systems of griseofulvin and ritonavir in NEP/PVP mixtures, respectively, solubility values of 65 and 594 mg/g, respectively, were obtained. Solution calorimetry offers a reliable method for measuring drug solubility in organic and aqueous solvents. The approach is complementary to the traditional shake-flask method, providing information on the solid properties of the solute. For highly viscous solutions, the calorimetric approach is advantageous.

  9. Alcohols as hydrogen-donor solvents for treatment of coal

    Science.gov (United States)

    Ross, David S.; Blessing, James E.

    1981-01-01

    A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

  10. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride.

    Science.gov (United States)

    Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; McKenzie, Katy J; Ryder, Karl S

    2009-06-07

    Here we describe for the first time the electrolytic deposition of copper and copper composites from a solution of the metal chloride salt in either urea-choline chloride, or ethylene glycol-choline chloride based eutectics. We show that the deposition kinetics and thermodynamics are quite unlike those in aqueous solution under comparable conditions and that the copper ion complexation is also different. The mechanism of copper nucleation is studied using chronoamperometry and it is shown that progressive nucleation leads to a bright nano-structured deposit. In contrast, instantaneous nucleation, at lower concentrations of copper ions, leads to a dull deposit. This work also pioneers the use of the electrochemical quartz crystal microbalance (EQCM) to monitor both current efficiency and the inclusion of inert particulates into the copper coatings. This technique allows the first in situ quantification or particulate inclusion. It was found that the composition of composite material was strongly dependent on the amount of species suspended in solution. It was also shown that the majority of material was dragged onto the surface rather than settling on to it. The distribution of the composite material was found to be even throughout the coating. This technology is important because it facilitates deposition of bright copper coatings without co-ligands such as cyanide. The incorporation of micron-sized particulates into ionic liquids has resulted, in one case, in a decrease in viscosity. This observation is both unusual and surprising; we explain this here in terms of an increase in the free volume of the liquid and local solvent perturbation.

  11. Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska North Slope area

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F.; Mamora, D. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    This study examined the feasibility of using a chemical enhanced oil recovery method to overcome some of the technical challenges associated with thermal recovery in the Alaska North Slope (ANS). This paper described the second stage research of an experimental study on nano-particle and surfactant-stabilized solvent-based emulsions for the ANS area. Four successful core flood experiments were performed using heavy ANS oil. The runs included water flooding followed by emulsion flooding; and pure emulsion injection core flooding. The injection rate and core flooding temperature remained constant and only 1 PV micro-emulsion was injected after breakthrough under water flooding or emulsion flooding. Oil recovery increased by 26.4 percent from 56.2 percent original oil in place (OOIP) with waterflooding to 82.6 percent OOIP with injection of emulsion following water flooding. Oil recovery was slightly higher with pure emulsion flooding, at 85.8 percent OOIP. The study showed that low permeability generally resulted in a higher shear rate, which is favourable for in-situ emulsification and higher displacement efficiency. 11 refs., 4 tabs., 20 figs.

  12. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  13. Determination of basicity of neutral organic phosphorus extractants in nonpolar solvents by the 31P NMR method

    International Nuclear Information System (INIS)

    Yakshin, V.V.; Meshcheryakov, N.M.; Il'in, E.G.; Ignatov, M.E.; Laskorin, B.N.

    1984-01-01

    The variant of the NMR method application is developed for quantitative description of acidic-basic properties of neutral organic phosphorus extractants, R 3 P--O (NPE), in non-polar organic solvents. For the NPE basicity determination the dependence of the chemical shift value in NMR 31 P spectra of 0.1 M NPE solutions in the dodecane on sulfuric acid acitivity in aqueous phase at 0-12 M acidity is studied. The linear equation relating NPE basicity and electronic structure of these compounds expressed through the sum: of Kabachnik reaction constants is derived. Linear dependences between the NPE basicity value in dodecane and NPE basicity in nitromethane as well as enthalpies of complexes formation with charge transport with standard acid-iodine in heptane, enthalpies of hydrogen complexes formation with phenol and water have been found

  14. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  15. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  16. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    Science.gov (United States)

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  17. Carbon dioxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents

    NARCIS (Netherlands)

    Zubeir, Lawien F.; Van Osch, Dannie J.G.P.; Rocha, Marisa A.A.; Banat, Fawzi; Kroon, Maaike C.

    2018-01-01

    The solubility of CO2 in hydrophobic deep eutectic solvents (DESs) has been measured for the first time. Six different hydrophobic DESs are studied in the temperature range from 298 to 323 K and at CO2 pressures up to 2 MPa. The results are evaluated by comparing the solubility data with existing

  18. A Tetrahydrofuran-selective Optical Solvent Sensor Based on Solvatochromic Polydiacetylene

    International Nuclear Information System (INIS)

    Park, Dong-Hoon; Kim, Bubsung; Kim, Jong-Man

    2016-01-01

    Polydiacetylene (PDAs) have received great attention as colorimetric sensors since these conjugated polymers undergo a blue-to-red color change upon various chemical/biochemical and physical stimuli. PDAs have been reported to display thermochromism (heat), solvatochromism (solvent), mechanochromism (mechanical strain) as well as magnetochromism (magnetic force) electrochromism (electric current), and affinochromism (ligand-receptor interaction). The solvent induced color change of PDA is generally non-specific and irreversible. For instance, the PDA derived from 10,12-pentacosadiynoic acid (PCDA) undergoes a blue-to-red (or purple) color change upon exposure to many common organic solvents including tetrahydrofuran (THF), chloroform, dichloromethane, acetone, methanol (MeOH), ethyl acetate (EA), and diethyl ether. The results obtained from Raman spectral analysis suggests that exposure to THF causes the distortion of the backbone of the polymer main chain and some conformational changes in the aliphatic side chain. Solvatochromism of a PDA is closely related to the solubility of a diacetylene monomer. PDA undergoes a color change when the dissolution of unpolymerized monomers causes some void in the PDA supramolecules. Since PCDA-mBzA has a good solubility only in THF, colorimetric transition of PDA occurs only in response to THF. Since solubility of a diacetylene monomer can be manipulated by structural change of the monomer, we believe the strategy described in current investigation should be useful for the development of solvent-specific PDA sensor systems

  19. Tannin-based thin-film composite membranes for solvent nanofiltration

    KAUST Repository

    Perez Manriquez, Liliana; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2017-01-01

    ). NMP permeances of up to 0.09L/m2 h bar with a molecular weight cut-off of approximately 800g/mol were obtained. The exceptional stability in NMP and the incorporation of natural compounds like tannic acid for the manufacture of organic solvent

  20. A Tetrahydrofuran-selective Optical Solvent Sensor Based on Solvatochromic Polydiacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong-Hoon; Kim, Bubsung; Kim, Jong-Man [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    Polydiacetylene (PDAs) have received great attention as colorimetric sensors since these conjugated polymers undergo a blue-to-red color change upon various chemical/biochemical and physical stimuli. PDAs have been reported to display thermochromism (heat), solvatochromism (solvent), mechanochromism (mechanical strain) as well as magnetochromism (magnetic force) electrochromism (electric current), and affinochromism (ligand-receptor interaction). The solvent induced color change of PDA is generally non-specific and irreversible. For instance, the PDA derived from 10,12-pentacosadiynoic acid (PCDA) undergoes a blue-to-red (or purple) color change upon exposure to many common organic solvents including tetrahydrofuran (THF), chloroform, dichloromethane, acetone, methanol (MeOH), ethyl acetate (EA), and diethyl ether. The results obtained from Raman spectral analysis suggests that exposure to THF causes the distortion of the backbone of the polymer main chain and some conformational changes in the aliphatic side chain. Solvatochromism of a PDA is closely related to the solubility of a diacetylene monomer. PDA undergoes a color change when the dissolution of unpolymerized monomers causes some void in the PDA supramolecules. Since PCDA-mBzA has a good solubility only in THF, colorimetric transition of PDA occurs only in response to THF. Since solubility of a diacetylene monomer can be manipulated by structural change of the monomer, we believe the strategy described in current investigation should be useful for the development of solvent-specific PDA sensor systems.

  1. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy

    Science.gov (United States)

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan

    2014-01-01

    Liquefaction of bamboo was performed in glycerol–methanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...

  2. Facile hydrothermal method for synthesizing nitrogen-doped graphene nanoplatelets using aqueous ammonia: dispersion, stability in solvents and thermophysical performances

    Science.gov (United States)

    Shafiah Shazali, Siti; Amiri, Ahmad; Zubir, Mohd. Nashrul Mohd; Rozali, Shaifulazuar; Zakuan Zabri, Mohd; Sabri, Mohd Faizul Mohd

    2018-03-01

    A simple and green approach has been developed to synthesize nitrogen-doped graphene nanoplatelets (N-doped GNPs) for mass production with a very high stability in different solvents e.g. water, ethylene glycol, methanol, ethanol, and 1-hexanol. The strategy is based on mild oxidation of GNPs using hydrogen peroxide and doping with nitrogen using hydrothermal process. The modification of N-doped GNPs was demonstrated by FTIR, TGA, XPS, Raman spectroscopy and high resolution-transmission electron microscope (HRTEM). Further study was carried out by using N-doped GNPs as an additive to prepare different colloidal dispersions. Water-based N-doped GNPs, methanol-based N-doped GNPs, ethanol-based N-doped GNPs, ethylene-glycol based N-doped GNPs and 1-hexanol-based N-doped GNPs dispersions at 0.01 wt.% shown great colloidal stabilities, indicating 17%, 29%, 33%, 18%, and 43% sedimentations after a 15-days period, respectively. The thermophysical properties e.g., viscosity and thermal conductivity of water-based N-doped GNP nanofluids were also evaluated for different weight concentrations of 0.100, 0.075, 0.050, and 0.025 wt.%. Through this, it is found that the obtained dispersions have great potential to be used as working fluids for industrial thermal systems.

  3. Impact of drying methods and extraction solvents on the steroidal saponians content of tibullus terresteris grown in the peshawar valley of khyberpakhtunkhwa, pakistan

    International Nuclear Information System (INIS)

    Hanif, M.; Khattak, M.K.; Rehman, M.U.; Ramzan, M.; Ali, S.A.

    2017-01-01

    The experiments were conducted to see the impact of drying methods and extraction solvents on the yield of steroidal saponins of Tribulus terrestris. The plant was dried by three different drying methods namely, solar collector drying, open sun drying and shade drying. After drying different levels (25-100%) of extracting solvent in the form of ethanol, methanol and distilled water were used for extraction. Soxhlet apparatus was used for extraction, while the gas chromatography apparatus was used in the experiment for detecting steroidal saponins in Tribulus terrestris. After extraction, four saponins identified were Tigogenin, Gitogenin, Hecogenin and Neohecogenin. The maximum yield of 61.2% was recorded for flat plate solar drying with 75% ethanol solution, followed 49.5% in shade drying with the same extraction solvent level. The lowest value of 3.1% yield was recorded for distilled water with open sun drying method. It was concluded that Both the drying methods and extraction solvent have a direct effect on the yield of steroidal saponins extracted from Tribulus terrestris. A maximum yield of almost 60% saponins may be achieved, if Tribulus terrestris is dried using a flat plate solar collector and extorted with 75% ethanol solution using GC-MS technique. Open sun drying minimizes saponins in Tribulus terrestris, while distilled water is the worse extracting solvent for extraction of steroidal saponins from Tribulus terrestris. (author)

  4. Synthesis of (E-2-Styrylchromones and Flavones by Base-Catalyzed Cyclodehydration of the Appropriate β-Diketones Using Water as Solvent

    Directory of Open Access Journals (Sweden)

    Joana Pinto

    2015-06-01

    Full Text Available A low cost, safe, clean and environmentally benign base-catalyzed cyclodehydration of appropriate β-diketones affording (E-2-styrylchromones and flavones in good yields is disclosed. Water was used as solvent and the reactions were heated using classical and microwave heating methods, under open and closed vessel conditions. β-Diketones having electron-donating and withdrawing substituents were used to evaluate the reaction scope. The reaction products were isolated in high purity by simple filtration and recrystallization from ethanol, when using 800 mg of the starting diketone under classical reflux heating conditions.

  5. A generic method for assignment of reliability scores applied to solvent accessibility predictions

    DEFF Research Database (Denmark)

    Petersen, Bent; Petersen, Thomas Nordahl; Andersen, Pernille

    2009-01-01

    : The performance of the neural networks was evaluated on a commonly used set of sequences known as the CB513 set. An overall Pearson's correlation coefficient of 0.72 was obtained, which is comparable to the performance of the currently best public available method, Real-SPINE. Both methods associate a reliability...... comparing the Pearson's correlation coefficient for the upper 20% of predictions sorted according to reliability. For this subset, values of 0.79 and 0.74 are obtained using our and the compared method, respectively. This tendency is true for any selected subset....

  6. Study in the behavior of several heavy elements in solvents with hydrofluoric acid base

    International Nuclear Information System (INIS)

    Tarnero, M.

    1988-01-01

    Initial goal was the study of two nonaqueous solvents with an HF base, one with an oxidizing character, N 2 O 4 -HF, the other with an acid character, SbF 5 -HF. For the N 2 O 4 -HF mixtures, nitric acid and NO 2 + ions exist in these media, nitric acid is dissociated for concentrations of N 2 O 4 2 + ions. Results for the dissolution of metals agree with those of Brookhaven. For uranium, the speed did not increase in clear fashion from 60-70/degree/C, but that it obeyed Arrhenius' law between 40 and 115/degree/C. UF 4 was more soluble than ZrF 4 . U(IV) passed to U(V) after dissolution. The compound obtained from UF 4 was the same as that obtained from the metal uranium, i.e., NOUF 6 . U(VI)appeared to be poorly soluble, the uranium passes into solution particularly at valence 5. For SbF 5 -HF mixtures, the corrosion speeds were much lower than in N 2 O 4 -HF mixtures. For Zr, rates of dissolution are very low, while they are very high with N 2 O 4 -HF. Th is practically not corroded at all. Al was not corroded at all up to 90/degree/C. Only U was dissolved at higher rates than Th and Zr; however, the corrosion speeds at 90/degree/C are equal to those with the N 2 O 4 -HF mixtures at 50/degree/C. This shows that U passed into solution in the trivalent state, and that the product was U(SbF 6 ) 3 . The trivalent uranium compounds were more soluble than the others. Addition of N 2 O 4 to SbF 5 -HF induces acid-base reactions between the NO + and NO 2 /sup /minus// on the one hand, and SbF 6 /sup /minus// on the other hand, reactions accompanying the formation of a precipitate, probably a NOSbF 6 and NO 2 SbF 6 mixture. 66 refs., 34 figs., 23 tabs

  7. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Science.gov (United States)

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  8. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Li, Yixue; Lin, Yunxuan; Zhang, Haibao; Zhou, Yigang

    2016-01-01

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe 3 O 4 @SiO 2 -MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe 3 O 4 @SiO 2 -MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe 3 O 4 @SiO 2 -MPS, Fe 3 O 4 @SiO 2 -MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe 3 O 4 @SiO 2 -MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe 3 O 4 @SiO 2 -MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica microspheres. • Fe 3 O 4 @SiO 2 -MPS@PDES showed higher extraction capacity

  9. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijia [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Li, Yixue; Lin, Yunxuan; Zhang, Haibao [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Zhou, Yigang [Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083 (China)

    2016-11-23

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica

  10. 19F NMR spectroscopy in monitoring fluorinated-solvent regeneration

    International Nuclear Information System (INIS)

    Ogorodnikov, V.D.; Bordunov, V.V.

    1987-01-01

    Extensive use is made of solvents such as trichloroethylene, freon-133, and perchloroethylene because they are good solvents for inorganic, plant, and animal greases, while the solvents can be recovered and there is no fire hazard. In this paper, the authors examined methods to monitor spent solution regeneration rapidly and with high accuracy. The authors tested perfluorinated telomeric alcohols as solvents for cleaning engineering components which have melting points of 60-120 degrees celsius. The higher working temperatures and the increased energy consumption are disadvantages of these solvents, but these are compensated for by the scope for using them virtually in the solid, liquid, and vapor states. The authors' proposed technology is based on solvents with melting points over 40 degrees celsius which produce virtually no wastes. The telomeric alcohols are recovered after cooling to normal conditions by separation from the oil by filtration and centrifugation, and they can be used in the next purification cycle. When the solvents have been regenerated, the petroleum products such as industrial oils can be reused for their original purpose. However, quantitative data are required on the solvent contents in the oil and the oil contents in the solvent in order to determine the degree of regeneration and the modes to be used. The authors have also proposed a quantitative method of determining traces of these alcohols in oils and residual oils in the solvent by fluorine NMR. All measurements were made with a BS497 NMR spectrometer

  11. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  12. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures

    DEFF Research Database (Denmark)

    Karunanithi, A.T.; Achenie, L.E.K.; Gani, Rafiqul

    2005-01-01

    This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective is to be optim......This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective...... is to be optimized subject to structural, property, and process constraints. The general molecular/mixture design problem is divided into two parts. For optimal single-compound design, the first part is solved. For mixture design, the single-compound design is first carried out to identify candidates...... and then the second part is solved to determine the optimal mixture. The decomposition of the CAMD MINLP model into relatively easy to solve subproblems is essentially a partitioning of the constraints from the original set. This approach is illustrated through two case studies. The first case study involves...

  13. Extraction of acetanilides in rice using ionic liquid-based matrix solid phase dispersion-solvent flotation.

    Science.gov (United States)

    Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie

    2018-04-15

    Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Attribute-Based Methods

    Science.gov (United States)

    Thomas P. Holmes; Wiktor L. Adamowicz

    2003-01-01

    Stated preference methods of environmental valuation have been used by economists for decades where behavioral data have limitations. The contingent valuation method (Chapter 5) is the oldest stated preference approach, and hundreds of contingent valuation studies have been conducted. More recently, and especially over the last decade, a class of stated preference...

  15. A new analytical method for 32P. Liquid scintillation counting with solvent extraction

    International Nuclear Information System (INIS)

    Liyanage, J.A.; Yonezawa, C.

    2003-01-01

    Trace determination of phosphorus has been studied using neutron activation analysis. Radioactivity of 32 P in tri-n-octylamine phosphomolybdate complex was measured using liquid scintillation counting by extracting the complex into xylene. Phosphorus can be quantitatively determined from 16.7 to 600 μg/10 ml by using the radiochemical analysis method described. (author)

  16. A generic method for assignment of reliability scores applied to solvent accessibility predictions

    Directory of Open Access Journals (Sweden)

    Nielsen Morten

    2009-07-01

    Full Text Available Abstract Background Estimation of the reliability of specific real value predictions is nontrivial and the efficacy of this is often questionable. It is important to know if you can trust a given prediction and therefore the best methods associate a prediction with a reliability score or index. For discrete qualitative predictions, the reliability is conventionally estimated as the difference between output scores of selected classes. Such an approach is not feasible for methods that predict a biological feature as a single real value rather than a classification. As a solution to this challenge, we have implemented a method that predicts the relative surface accessibility of an amino acid and simultaneously predicts the reliability for each prediction, in the form of a Z-score. Results An ensemble of artificial neural networks has been trained on a set of experimentally solved protein structures to predict the relative exposure of the amino acids. The method assigns a reliability score to each surface accessibility prediction as an inherent part of the training process. This is in contrast to the most commonly used procedures where reliabilities are obtained by post-processing the output. Conclusion The performance of the neural networks was evaluated on a commonly used set of sequences known as the CB513 set. An overall Pearson's correlation coefficient of 0.72 was obtained, which is comparable to the performance of the currently best public available method, Real-SPINE. Both methods associate a reliability score with the individual predictions. However, our implementation of reliability scores in the form of a Z-score is shown to be the more informative measure for discriminating good predictions from bad ones in the entire range from completely buried to fully exposed amino acids. This is evident when comparing the Pearson's correlation coefficient for the upper 20% of predictions sorted according to reliability. For this subset, values of 0

  17. A method for the solvent extraction of low-boiling-point plant volatiles.

    Science.gov (United States)

    Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne

    2005-01-01

    A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.

  18. A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model.

    Science.gov (United States)

    Dantsker, David; Samuni, Uri; Friedman, Joel M; Agmon, Noam

    2005-06-01

    Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.

  19. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Caldas, Sergiane Souza; Rombaldi, Caroline; Arias, Jean Lucas de Oliveira; Marube, Liziane Cardoso; Primel, Ednei Gilberto

    2016-01-01

    A rapid and efficient sample pretreatment using solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was studied for the extraction of 58 pharmaceuticals and personal care products (PPCPs) and pesticides from water samples. Type and volume of extraction and disperser solvents, pH, salt addition, amount of salt and type of demulsification solvent were evaluated. Limits of quantification (LOQ) in the range from 0.0125 to 1.25 µg L(-1) were reached, and linearity was in the range from the LOQ of each compound to 25 μg L(-1). Recoveries ranged from 60% to 120% for 84% of the compounds, with relative standard deviations lower than 29%. The proposed method demonstrated, for the first time, that sample preparation by SD-DLLME with determination by LC-MS/MS can be successfully used for the simultaneous extraction of 32 pesticides and 26 PPCPs from water samples. The entire procedure, including the extraction of 58 organic compounds from the aqueous sample solution and the breaking up of the emulsion after extraction with water, rather than with an organic solvent, was environmentally friendly. In addition, this technique was less expensive and faster than traditional techniques. Finally, the analytical method under study was successfully applied to the analysis of all 58 pesticides and PPCPs in surface water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Measurement and correlation of solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Jinxiu; Xie, Chuang; Yin, Qiuxiang; Tao, Linggang; Lv, Jun; Wang, Yongli; He, Fang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of cefmenoxime hydrochloride in pure and binary solvents was determined. • The experimental solubility data were correlated by thermodynamic models. • A model was employed to calculate the melting temperature of cefmenoxime hydrochloride. • Mixing thermodynamic properties of cefmenoxime hydrochloride were calculated. - Abstract: The solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures was measured at temperatures from (283.15 to 313.15) K by using the UV spectroscopic method. The results reveal that the solubility of cefmenoxime hydrochloride increases with increasing temperature in all solvent selected. The solubility of cefmenoxime hydrochloride reaches its maximum value when the mole fraction of isopropanol is 0.2 in the binary solvent mixtures of (isopropanol + water). The modified Apelblat equation and the NRTL model were successfully used to correlate the experimental solubility in pure solvents while the modified Apelblat equation, the CNIBS/R–K model and the Jouyban–Acree model were applied to correlate the solubility in binary solvent mixtures. In addition, the mixing thermodynamic properties of cefmenoxime hydrochloride in different solvents were also calculated based on the NRTL model and experimental solubility data.

  1. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    Directory of Open Access Journals (Sweden)

    Anne-Gaëlle Sicaire

    2015-04-01

    Full Text Available The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil and non-food (bio fuel applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols. Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF as alternative solvent compared to hexane as petroleum solvent.

  2. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents

    Science.gov (United States)

    Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.

  3. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    Science.gov (United States)

    Causa, Andrea; Salerno, Aurelio; Domingo, Concepción; Acierno, Domenico; Filippone, Giovanni

    2014-05-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ɛ-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and "green" solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO2. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  4. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    International Nuclear Information System (INIS)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni; Salerno, Aurelio; Domingo, Concepción

    2014-01-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and “green” solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO 2 . The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films

  5. Impact of solvents and supercritical CO{sub 2} drying on the morphology and structure of polymer-based biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Salerno, Aurelio; Domingo, Concepción [Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2014-05-15

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and “green” solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO{sub 2}. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  6. Protein-Based Nanoparticle Preparation via Nanoprecipitation Method

    Directory of Open Access Journals (Sweden)

    Mohamad Tarhini

    2018-03-01

    Full Text Available Nanoparticles are nowadays largely investigated in the field of drug delivery. Among nanoparticles, protein-based particles are of paramount importance since they are natural, biodegradable, biocompatible, and nontoxic. There are several methods to prepare proteins containing nanoparticles, but only a few studies have been dedicated to the preparation of protein- based nanoparticles. Then, the aim of this work was to report on the preparation of bovine serum albumin (BSA-based nanoparticles using a well-defined nanoprecipitation process. Special attention has been dedicated to a systematic study in order to understand separately the effect of each operating parameter of the method (such as protein concentration, solvent/non-solvent volume ratio, non-solvent injection rate, ionic strength of the buffer solution, pH, and cross-linking on the colloidal properties of the obtained nanoparticles. In addition, the mixing processes (batch or drop-wise were also investigated. Using a well-defined formulation, submicron protein-based nanoparticles have been obtained. All prepared particles have been characterized in terms of size, size distribution, morphology, and electrokinetic properties. In addition, the stability of nanoparticles was investigated using Ultraviolet (UV scan and electrophoresis, and the optimal conditions for preparing BSA nanoparticles by the nanoprecipitation method were concluded.

  7. Study of complexation process between 4'-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

    Science.gov (United States)

    Habibi, N.; Rounaghi, G. H.; Mohajeri, M.

    2012-12-01

    The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

  8. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method

    Science.gov (United States)

    Siregar, S. S.; Awaluddin, A.

    2018-04-01

    Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.

  9. Solvent substitutes

    International Nuclear Information System (INIS)

    Evanoff, S.P.

    1995-01-01

    The environmental and industrial hygiene regulations promulgated since 1980, most notably the Superfund Amendments and Reauthorization Act (SARA), the Hazardous and Solid Waste Amendments to the Resources Conservation and Recovery Act (RCRA), and the Clean Air Act Amendments of 1990, have brought about an increased emphasis on user exposure, hazardous waste generation, and air emissions. As a result, industry is performing a fundamental reassessment of cleaning solvents, processes, and procedures. The more progressive organizations have made their goal the elimination of solvents that may pose significant potential human health and environmental hazards. This chapter discusses solvent cleaning in metal-finishing, metal-manufacturing, and industrial maintenance applications; precision cleaning; and electronics manufacturing. Nonmetallic cleaning, adhesives, coatings, inks, and aerosols also will be addressed, but in a more cursory manner

  10. Aqueous biphasic systems containing PEG-based deep eutectic solvents for high-performance partitioning of RNA.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Yuzhi; Zhou, Yigang; Xu, Kaijia; Li, Na; Wen, Qian; Yang, Qin

    2017-08-01

    In this work, 16 kinds of novel deep eutectic solvents (DESs) composed of polyethylene glycol (PEG) and quaternary ammonium salts, were coupled with Aqueous Biphasic Systems (ABSs) to extract RNA. The phase forming ability of ABSs were comprehensively evaluated, involving the effects of various proportions of DESs' components, carbon chain length and anions species of quaternary ammonium salts, average molecular weights of PEG and inorganic salts nature. Then the systems were applied in RNA extraction, and the results revealed that the extraction efficiency values were distinctly enhanced by relatively lower PEG content in DESs, smaller PEG molecular weights, longer carbon chain of quaternary ammonium salts and more hydrophobic inorganic salts. Then the systems composed of [TBAB][PEG600] and Na 2 SO 4 were utilized in the influence factor experiments, proving that the electrostatic interaction was the dominant force for RNA extraction. Therefore, back-extraction efficiency values ranging between 85.19% and 90.78% were obtained by adjusting the ionic strength. Besides, the selective separation of RNA and tryptophane (Trp) was successfully accomplished. It was found that 86.19% RNA was distributed in the bottom phase, while 72.02% Trp was enriched in the top phase in the novel ABSs. Finally, dynamic light scattering (DLS) and transmission electron microscope (TEM) were used to further investigate the extraction mechanism. The proposed method reveals the outstanding feasibility of the newly developed ABSs formed by PEG-based DESs and inorganic salts for the green extraction of RNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Growth of (CH$_3$)$_2$NH$_2$CuCl$_3$ single crystals using evaporation method with different temperatures and solvents

    OpenAIRE

    Chen, L. M.; Tao, W.; Zhao, Z. Y.; Li, Q. J.; Ke, W. P.; Wang, X. M.; Liu, X. G.; Fan, C.; Sun, X. F.

    2013-01-01

    The bulk single crystals of of low-dimensional magnet (CH$_3$)$_2$NH$_2$CuCl$_3$ (DMACuCl$_3$ or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals because of its structural similarity to the raw materials and suitable evaporation rate. The bes...

  12. The influence of anharmonic and solvent effects on the theoretical vibrational spectra of the guanine-cytosine base pairs in Watson-Crick and Hoogsteen configurations.

    Science.gov (United States)

    Bende, Attila; Muntean, Cristina M

    2014-03-01

    The theoretical IR and Raman spectra of the guanine-cytosine DNA base pairs in Watson-Crick and Hoogsteen configurations were computed using DFT method with M06-2X meta-hybrid GGA exchange-correlation functional, including the anharmonic corrections and solvent effects. The results for harmonic frequencies and their anharmonic corrections were compared with our previously calculated values obtained with the B3PW91 hybrid GGA functional. Significant differences were obtained for the anharmonic corrections calculated with the two different DFT functionals, especially for the stretching modes, while the corresponding harmonic frequencies did not differ considerable. For the Hoogtseen case the H⁺ vibration between the G-C base pair can be characterized as an asymmetric Duffing oscillator and therefore unrealistic anharmonic corrections for normal modes where this proton vibration is involved have been obtained. The spectral modification due to the anharmonic corrections, solvent effects and the influence of sugar-phosphate group for the Watson-Crick and Hoogsteen base pair configurations, respectively, were also discussed. For the Watson-Crick case also the influence of the stacking interaction on the theoretical IR and Raman spectra was analyzed. Including the anharmonic correction in our normal mode analysis is essential if one wants to obtain correct assignments of the theoretical frequency values as compared with the experimental spectra.

  13. Catalyst-free and solvent-free Michael addition of 1,3-dicarbonyl compounds to nitroalkenes by a grinding method

    Science.gov (United States)

    Xie, Zong-Bo; Wu, Ming-Yu; He, Ting; Le, Zhang-Gao

    2012-01-01

    Summary An environmentally benign, fast and convenient protocol has been developed for the Michael addition of 1,3-dicarbonyl compounds to β-nitroalkenes in good to excellent yields by a grinding method under catalyst- and solvent-free conditions. PMID:22563352

  14. Reliable, rapid and simple method for the analysis of phthalates in sediments by ultrasonic solvent extraction followed by head space-solid phase microextraction gas chromatography mass spectrometry determination.

    Science.gov (United States)

    Fernández-González, V; Moscoso-Pérez, C; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2017-01-01

    In this work, a new reliable, simple and fast method for the determination of six PAEs in sediments, based on ultrasonic solvent extraction (USE) followed by head space solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry determination (GC-MS), is proposed. The extraction parameters were studied, and the most favourable conditions were selected. The analytical features of the method were calculated: matrix effect, accuracy (ranged from 90% to 111%), repeatability and intermediate precision (RSD <10%), detection and quantification limits of the method (ranged from 0.001µgg -1 (DOP) to 0.142µgg -1 (DEP)), and satisfactory results were obtained. Major advantages of this approach are low consumption of reagents and solvents, no clean-up or evaporation steps were required and minimum sample manipulation. In addition, cross contamination from glassware, solvents and samples is minimized, thus procedural blanks are keeping to a minimum.. The applicability of the proposed method was demonstrated analysing sediment samples from Galician coast (NW Spain). The proposed method allows the application in routine laboratory conditions and its implementation in environmental monitoring studies under the European Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Solvent - solute interaction

    International Nuclear Information System (INIS)

    Urbanczyk, A.; Kalinowski, M.K.

    1983-01-01

    The electronic absorption spectrum of vanadyl acetylacetonate has been studied in 15 organic solvents. It has been found that wavenumbers and molar absorptivities of the long-wavelength bands (d-d transitions) can be well described by a complementary Lewis acid-base model including Gutmann's donor number [Gutmann V., Wychera E., Inorg. Nucl. Chem. Letters 2, 257 (1966)] and acceptor number [Mayer U., Gutmann V., Gerger W., Monatsh. Chem. 106, 1235 (1975)] of a solvent. This model describes also the solvent effect of the hyperfine splitting constant, Asub(iso)( 51 V), from e.s.r. spectra of VOacac 2 . These observations are discussed in terms of the donor-acceptor concept for solvent-solute interactions. (Author)

  16. Devulcanization of Waste Tire Rubber Using Amine Based Solvents and Ultrasonic Energy

    OpenAIRE

    Walvekar Rashmi; Afiq Zulkefly Mohammad.; Ramarad Suganti; Khalid Siddiqui

    2018-01-01

    This research project focuses on an alternative pathway of devulcanizing waste tire rubber by using amine based chemicals. Waste tire rubbers are known to be as toxic, non-degradable material due to their vulcanized crosslink carbon structure, and disposing of such waste could impose hazardous impacts on the environment. The current rubber recycling methods that are practiced today are rather uneconomical, non-environmentally friendly, and also producing recycled rubber with low quality due t...

  17. Measuring solvent barrier properties of paper

    International Nuclear Information System (INIS)

    Bollström, Roger; Saarinen, Jarkko J; Toivakka, Martti; Räty, Jukka

    2012-01-01

    New methods for measuring barrier properties against solvents, acids and bases on dispersion coated paper were developed and investigated. Usability, reliability and repeatability were compared both between the new methods and with the standardized method for measuring barrier properties against water vapor. Barrier properties could be measured with all methods and the results obtained by the different methods were in correlation with each other. A qualitative method based on a trace color provided an indicative result, whereas further developed methods also took into account the durability. The effective barrier lifetime could be measured by measuring the conductivity through the substrate as a function of time, or by utilizing a glass prism where the change in refractive index caused by penetrated liquid was monitored, also as a function of time. Barrier properties against water and humidity were also measured and were found not to be predictors for barrier properties against either solvents, or acids or bases, which supports the need to develop new methods

  18. A Diazonium Salt-Based Ionic Liquid for Solvent-FreeModification of Carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu [ORNL; Huang, Jing-Fang [ORNL; Li, Zuojiang [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2006-01-01

    A novel ionic liquid that consists of p-butylbenzenediazonium ions and bis(trifluoromethanesulfonyl)amidates (Tf{sub 2}N{sup -}) has been synthesized as a task-specific ionic liquid for the solvent-free modification of carbon materials. The use of anions Tf{sub 2}N{sup =} is the key to rendering the hydrophobicity, low liquidus temperature, and ionicity to this novel molten salt. This diazonium salt has a melting point of 7.2 C and a moderate electric conductivity of 527 {micro} s/cm at 25 C. The thermal stability of this diazonium ionic liquid has been investigated by high-resolution thermogravimetric analysis (HRTGA). The compound is stable up to about 90 C in nitrogen, which is only 10 C less than its solid tetrafluoroborate counterpart. The modification of carbon materials has been carried out through both thermal and electrochemical activations of diazonium ions to generate free radical intermediates without the use of any solvent. The surface-coverage loadings of 3.38 {micro} mol/m{sup 2} and 6.07 {micro} mol/m{sup 2} for covalently attached organic functionalities have been achieved by the thermally induced functionalization and electrochemically assisted reaction, respectively.

  19. Thermodynamic constrains for life based on non-aqueous polar solvents on free-floating planets.

    Science.gov (United States)

    Badescu, Viorel

    2011-02-01

    Free-floating planets (FFPs) might originate either around a star or in solitary fashion. These bodies can retain molecular gases atmospheres which, upon cooling, have basal pressures of tens of bars or more. Pressure-induced opacity of these gases prevents such a body from eliminating its internal radioactive heat and its surface temperature can exceed for a long term the melting temperature of a life-supporting solvent. In this paper two non-aqueous but still polar solvents are considered: hydrogen sulfide and ammonia. Thermodynamic requirements to be fulfilled by a hypothetic gas constituent of a life-supporting FFP's atmosphere are studied. The three gases analyzed here (nitrogen, methane and ethane) are candidates. We show that bodies with ammonia oceans are possible in interstellar space. This may happen on FFPs of (significantly) smaller or larger mass than the Earth. Generally, in case of FFP smaller in size than the Earth, the atmosphere exhibits a convective layer near the surface and a radiative layer at higher altitudes while the atmosphere of FFPs larger in size than Earth does not exhibit a convective layer. The atmosphere mass of a life-hosting FFP of Earth size is two or three orders of magnitude larger than the mass of Earth atmosphere. For FFPs larger than the Earth and specific values of surface pressure and temperature, there are conditions for condensation (in the ethane atmosphere). Some arguments induce the conclusion than the associated surface pressures and temperatures should be treated with caution as appropriate life conditions.

  20. Synthesis and luminescence properties of YVO4:Eu3+ cobblestone - like microcrystalline phosphors obtained from the mixed solvent - thermal method

    International Nuclear Information System (INIS)

    Xiao Xiuzhen; Lu Guanzhong; Shen Shaodian; Mao Dongsen; Guo Yun; Wang Yanqin

    2011-01-01

    The mixed solvent-thermal method has been developed for the synthesis of YVO 4 :Eu 3+ luminescent materials in the N, N-dimethylformamide (DMF)/ de-ionized water (DIW) solution. The samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscope (TEM), UV/vis absorption and photoluminescence spectroscopies. The results demonstrate that we have obtained the uniform YVO 4 :Eu 3+ cobblestone - like microcrystalline phosphors in the mixed solution of DMF and DIW, which are different to the as-obtained YVO 4 :Eu 3+ nanoparticles in pure DIW. And the as - prepared YVO 4 :Eu 3+ microcrystalline particles are composed of numerous nanoparticles. The assembling phenomenon of the nanoparticles is strongly affected by the pH value of the solution and the volume ratio of DMF/DIW. Under UV excitation, the samples can emit the bright red light. While, the photoluminescence (PL) intensities of YVO 4 :Eu 3+ show some difference for samples obtained under the different reaction conditions. This is because that different microstructures of samples result in different combinative abilities between the surface and the adsorbed species so as to produce the different quenching abilities to the emission from Eu 3+ ions.

  1. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber

    International Nuclear Information System (INIS)

    Yeon, Youngju; Lee, Jihoon; In, Insik; Lee, Mi Yeon; Kim, Sang Youl; Kim, Bongsoo; Park, Byoungnam

    2015-01-01

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL"−"1 was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 10"4 Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials. (paper)

  2. Effect of solvent on the structure of a protein (H3.1) with a coarse-grained model with knowledge-based interactions

    Science.gov (United States)

    Pandey, Ras; Farmer, Barry

    2013-03-01

    Quality of solvent plays a critical role in modulating the structure of a protein along with the temperature. Using a coarse-grained Monte Carlo simulation based on three knowledge-based contact potentials (MJ, BT, BFKV) we examine the structure and dynamics of a histone (H3.1). The empty lattice sites constitute the effective solvent medium in which the protein is embedded. Residue-solvent characteristic interaction is based on the hydropathy index while the residue-residue interaction is used from the knowledge-based contact matrices derived from ensembles of protein structures in the protein data bank. Large scale simulations are performed to analyze the structure of protein for a range of residue-solvent interaction strength, a measure of the solvent quality with each potential. Unlike the monotonic thermal response, the radius of gyration of the protein exhibits non-monotonic dependence of the solvent strength. Quantitative comparison of the structure and dynamics emerging from three knowledge-based potentials will be presented in this talk. This work is supported by Air Force Research Laboratory.

  3. Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers

    KAUST Repository

    Kim, Hyeongjun; Han, A. Reum; Cho, Chulhee; Kang, Hyunbum; Cho, Hanhee; Lee, Mooyeol; Frechet, Jean; Oh, Joonhak; Kim, Bumjoon

    2012-01-01

    organic electronics with air stability, solvent resistance, and thermal stability. Herein, we have developed a simple but powerful approach to achieve solvent-resistant and thermally stable organic electronic devices with a remarkably improved air

  4. Radiation-induced grafting of styrene onto poly-vinylidene fluoride) film by simultaneous method with two different solvents

    International Nuclear Information System (INIS)

    Ferreira, H.P.; Parra, D.F.; Lugao, A.B.

    2011-01-01

    Complete text of publication follows. Radiation-induced grafting to create membranes with ion exchange capacity in fluorinated polymers has been studied for applications such as fuel cells, filtration and waste treatment and polymeric actuators due to their good physical and chemical properties. In this work, radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses of 1 and 2.5 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and at doses of 20, 40 and 80 kGy in presence of a styrene/toluene solution (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere and at room temperature, using gamma-rays form a Co-60. The films were characterized before and after modification by the grafting yield (GY), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose, and it was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. Results showed that the system allows the homogeneous grafting of styrene into PVDF using gamma irradiation at doses as low as 1 kGy when DMF is used and heterogeneous grafting when toluene is used, showing the importance of the solvent nature during the simultaneous method.

  5. Synthesis, Characterization and Printing Application of Solvent Dyes Based on 2-Hydroxy-4-n-octyloxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2011-01-01

    Full Text Available Solvent dyes have been prepared by the coupling of diazo solution of different aromatic amines with 2-hydroxy-4-n-octyloxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-Visible spectral data have also been discussed in terms of structure property relationship. The printing of all the dyes on cotton fiber was monitored. The result shows that better hue was obtained on printing on cotton fiber and it is resulted in yellow to reddish brown colorations which showed a good fastness to light, with poor to good fastness to washing, perspiration and sublimation, however it shows poor rubbing fastness.

  6. Mutual diffusion coefficient models for polymer-solvent systems based on the Chapman-Enskog theory

    Directory of Open Access Journals (Sweden)

    R. A. Reis

    2004-12-01

    Full Text Available There are numerous examples of the importance of small molecule migration in polymeric materials, such as in drying polymeric packing, controlled drug delivery, formation of films, and membrane separation, etc. The Chapman-Enskog kinetic theory of hard-sphere fluids with the Weeks-Chandler-Andersen effective hard-sphere diameter (Enskog-WCA has been the most fruitful in diffusion studies of simple fluids and mixtures. In this work, the ability of the Enskog-WCA model to describe the temperature and concentration dependence of the mutual diffusion coefficient, D, for a polystyrene-toluene system was evaluated. Using experimental diffusion data, two polymer model approaches and three mixing rules for the effective hard-sphere diameter were tested. Some procedures tested resulted in models that are capable of correlating the experimental data with the refereed system well for a solvent mass fraction greater than 0.3.

  7. Vertical detachment energy of hydrated electron based on a modified form of solvent reorganization energy.

    Science.gov (United States)

    Wang, Xing-Jian; Zhu, Quan; Li, Yun-Kui; Cheng, Xue-Min; Li, Xiang-Yuan; Fu, Ke-Xiang; He, Fu-Cheng

    2010-02-18

    In this work, the constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation free energy and solvent reorganization energy in the process of removing the hydrated electron. Within the framework of the continuum model, a modified expression of the vertical detachment energy (VDE) of a hydrated electron in water is formulated. Making use of the approximation of spherical cavity and point charge, the variation tendency of VDE accompanying the size increase of the water cluster has been inspected. Discussions comparing the present form of the VDE and the traditional one and the influence of the cavity radius in either the fixed pattern or the varying pattern on the VDE have been made.

  8. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect

    Science.gov (United States)

    Bongiovanni Abel, Silvestre; Yslas, Edith I.; Rivarola, Claudia R.; Barbero, Cesar A.

    2018-03-01

    Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer’s nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.

  9. Supramolecular solvent-based extraction of benzimidazolic fungicides from natural waters prior to their liquid chromatographic/fluorimetric determination.

    Science.gov (United States)

    Moral, Antonia; Sicilia, María Dolores; Rubio, Soledad

    2009-05-01

    A supramolecular solvent made up of vesicles of decanoic acid in the nano- and microscale regimes dispersed in a continuous aqueous phase is proposed for the extraction/preconcentration of benzimidazolic fungicides (BFs) from river and underground water samples prior to their determination by liquid chromatography (LC)/fluorimetry. The solvent is produced from the coacervation of decanoic acid aqueous vesicles by the action of tetrabutylammonium (Bu(4)N(+)). Carbendazim (CB), thiabendazole (TB) and fuberidazole (FB) are extracted on the basis of hydrophobic and pi-cation interactions and the formation of hydrogen bonds. The extraction provides high preconcentration factors (160 for CB and 190 for TB and FB), requires a short time (the procedure takes less than 20 min and several samples can be simultaneously processed) and a low sample volume (20 mL), and avoids the use of toxic organic solvents. Because of the absence of matrix interferences and the low viscosity of the extracts, these can be directly injected into the chromatographic system without the need of cleaning-up or diluting them. Recoveries are not influenced by the presence of salt concentrations up to 1 M. The proposed method provides detection limits for the determination of CB, TB and FB in natural waters of 32, 4 and 0.1 ng L(-1), respectively, and a precision, expressed as relative standard deviation (n=11) of 5.5% for CB (100 ng L(-1)), 4.0% for TB (80 ng L(-1)) and 2.5% for FB (30 ng L(-1)). Recoveries obtained by applying this approach to the analysis of river and underground water samples fortified at the ng L(-1) level are in the intervals 75-83, 95-102 and 97-101% for CB, TB and FB, respectively.

  10. Application of non-ionic surfactant as a developed method for the enhancement of two-phase solvent bar microextraction for the simultaneous determination of three phthalate esters from water samples.

    Science.gov (United States)

    Bandforuzi, Samereh Ranjbar; Hadjmohammadi, Mohammad Reza

    2018-08-03

    The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). Under the optimum conditions, linearity was observed in the range of 1-800 ng mL -1 for dimethylphthalate (DMP) and 0.5-800 ng mL -1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL -1 and 0.04-0.1 ng mL -1 , respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL -1 of PEs were 1.8-2.1% and 2.1-2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples. Copyright © 2018. Published by Elsevier B.V.

  11. How do evaporating thin films evolve? Unravelling phase-separation mechanisms during solvent-based fabrication of polymer blends

    KAUST Repository

    Wodo, Olga

    2014-10-13

    © 2014 AIP Publishing LLC. Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin and propagation characteristics of each of these modes. Finally, we construct a mode diagram that maps processing conditions with individual modes. The idea introduced here enables choosing processing conditions to tailor film morphology characteristics and paves the ground for a deeper understanding of morphology control with the ultimate goal of precise, yet affordable, morphology manipulation for a large spectrum of applications.

  12. How do evaporating thin films evolve? Unravelling phase-separation mechanisms during solvent-based fabrication of polymer blends

    KAUST Repository

    Wodo, Olga; Ganapathysubramanian, Baskar

    2014-01-01

    © 2014 AIP Publishing LLC. Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin and propagation characteristics of each of these modes. Finally, we construct a mode diagram that maps processing conditions with individual modes. The idea introduced here enables choosing processing conditions to tailor film morphology characteristics and paves the ground for a deeper understanding of morphology control with the ultimate goal of precise, yet affordable, morphology manipulation for a large spectrum of applications.

  13. Study of acid-base properties in various water-salt and water-organic solvent mixtures

    International Nuclear Information System (INIS)

    Lucas, M.

    1969-01-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H + + B ↔ HB + in salt-water mixtures and found a relation between the pK A value, the solubility of the base and water activity. The reaction HO - + H + ↔ H 2 O has been investigated and a relation been found between pK i values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [fr

  14. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel.

    Science.gov (United States)

    Hao, Lingwan; Wang, Meiri; Shan, Wenjuan; Deng, Changliang; Ren, Wanzhong; Shi, Zhouzhou; Lü, Hongying

    2017-10-05

    A series of L-proline-based DESs was prepared through an atom economic reaction between L-proline (L-Pro) and four different kinds of organic acids. The DESs were characterized by Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic resonance ( 1 HNMR), cyclic voltammogram (CV) and the Hammett method. The synthesized DESs were used for the oxidative desulfurization and the L-Pro/p-toluenesultonic acid (L-Pro/p-TsOH) system shows the highest catalytic activity that the removal of dibenzothiophene (DBT) reached 99% at 60°C in 2h, which may involve the dual activation of the L-Pro/p-TsOH. The acidity of four different L-proline-based DESs was measured and the results show that it could not simply conclude that the correlation between the acidity of DESs and desulfurization capability was positive or negative. The electrochemical measurements evidences and recycling experiment indicate a good stability performance of L-Pro/p-TsOH in desulfurization. This work will provide a novel and potential method for the deep oxidation desulfurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  16. Effect of Extraction Solvents and Drying Methods on the Physicochemical and Antioxidant Properties of Helicteres hirsuta Lour. Leaves

    Directory of Open Access Journals (Sweden)

    Hong Ngoc Thuy Pham

    2015-12-01

    Full Text Available Helicteres hirsuta Lour. (H. hirsuta L. is widely distributed in southeast Asian countries and has been used traditionally as a medicinal plant. However, optimal conditions for preparation of dried materials for further processing and suitable solvents for the extraction of bioactive compounds have not been investigated. The objective of this study was to evaluate the effects of different extraction solvents and different drying conditions on the physicochemical properties and antioxidant capacity of the H. hirsuta L. leaves. The results showed that both extraction solvents and drying conditions had a significant impact on physicochemical and antioxidant properties of H. hirsuta L. leaves. Among the five solvents investigated, water could extract the highest level of solid content and phenolic compounds, whereas methanol was more effective for obtaining flavonoids and saponins than other solvents. The leaves dried under either hot-air drying at 80 °C (HAD80, or vacuum drying at 50 °C (VD50 yielded the highest amount of total phenolic compounds (7.77 and 8.33 mg GAE/g, respectively and total flavonoid content (5.79 and 4.62 mg CE/g, respectively, and possessed the strongest antioxidant power, while leaves dried using infrared drying at 30 °C had the lowest levels of bioactive compounds. Phenolic compounds including flavonoids had a strong correlation with antioxidant capacity. Therefore, HAD80 and VD50 are recommended for the preparation of dried H. hirsuta L. leaves. Water and methanol are suggested solvents to be used for extraction of phenolic compounds and saponins from H. hirsuta L. leaves for the potential application in the nutraceutical and pharmaceutical industries.

  17. Activity based costing (ABC Method

    Directory of Open Access Journals (Sweden)

    Prof. Ph.D. Saveta Tudorache

    2008-05-01

    Full Text Available In the present paper the need and advantages are presented of using the Activity BasedCosting method, need arising from the need of solving the information pertinence issue. This issue has occurreddue to the limitation of classic methods in this field, limitation also reflected by the disadvantages ofsuch classic methods in establishing complete costs.

  18. A refined method for the calculation of the Non-Methane Volatile Organic Compound emission estimate from Domestic Solvent Usage in Ireland from 1992 to 2014 - A case study for Ireland

    Science.gov (United States)

    Barry, Stephen; O'Regan, Bernadette

    2016-08-01

    This study describes a new methodology to calculate Non-Methane Volatile Organic Compounds from Domestic Solvent Use including Fungicides over the period 1992-2014. Improved emissions data compiled at a much more refined level can help policy-makers develop more effective policy's to address environmental issues. However, a number of problems were found when member states attempt to use national statistics for Domestic Solvent Use including Fungicides. For instance, EMEP/EEA (2013) provides no guidance regarding which activity data should be used, resulting in emission estimates being potentially inconsistent and un-comparable. Also, previous methods and emission factors described in the EMEP/EEA (2013) guidebook do not exactly match data collected by state agencies. This makes using national statistics difficult. In addition, EMEP/EEA (2013) use broader categories than necessary (e.g. Cosmetics Aerosol/Non Aerosol) to estimate emissions while activity data is available at a more refined level scale (e.g. Personal Cleaning Products, Hair Products, Cosmetics, Deodorants and Perfumes). This can make identifying the drivers of emissions unclear. This study builds upon Tzanidakis et al. (2012) whereby it provides a method for collecting activity data from state statistics, developed country specific emission factors based on a survey of 177 Irish products and importantly, used a new method to account for the volatility of organic compounds found in commonly available domestic solvent containing products. This is the first study to account for volatility based on the characteristics of organic compounds and therefore is considered a more accurate method of accounting for emissions from this emission source. The results of this study can also be used to provide a simple method for other member parties to account for the volatility of organic compounds using sectorial adjustment factors described here. For comparison purposes, emission estimates were calculated using the

  19. Determination of atenolol in human plasma using ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography.

    Science.gov (United States)

    Zeeb, Mohsen; Farahani, Hadi; Papan, Mohammad Kazem

    2016-06-01

    An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to a sample solution containing an ion-pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2-750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90-96.7% and satisfactory intra-assay (4.8-5.1%, n = 6) and interassay (5.0-5.6%, n = 9) precision along with a substantial sample clean-up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  1. A novel akermanite/poly (lactic-co-glycolic acid) porous composite scaffold fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process.

    Science.gov (United States)

    Deng, Yao; Zhang, Mengjiao; Chen, Xianchun; Pu, Ximing; Liao, Xiaoming; Huang, Zhongbing; Yin, Guangfu

    2017-08-01

    Desirable scaffolds for tissue engineering should be biodegradable carriers to supply suitable microenvironments mimicked the extracellular matrices for desired cellular interactions and to provide supports for the formation of new tissues. In this work, a kind of slightly soluble bioactive ceramic akermanite (AKT) powders were aboratively selected and introduced in the PLGA matrix, a novel l-lactide modified AKT/poly (lactic- co -glycolic acid) (m-AKT/PLGA) composite scaffold was fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process. The effects of m-AKT contents on properties of composite scaffolds and on MC3T3-E1 cellular behaviors in vitro have been primarily investigated. The fabricated scaffolds exhibited three-dimensional porous networks, in which homogenously distributed cavities in size of 300-400 μm were interconnected by some smaller holes in a size of 100-200 μm. Meanwhile, the mechanical structure of scaffolds was reinforced by the introduction of m-AKT. Moreover, alkaline ionic products released by m-AKT could neutralize the acidic degradation products of PLGA, and the apatite-mineralization ability of scaffolds could be largely improved. More valuably, significant promotions on adhesion, proliferation, and differentiation of MC3T3-E1 have been observed, which implied the calcium, magnesium and especially silidous ions released sustainably from composite scaffolds could regulate the behaviors of osteogenesis-related cells.

  2. A systematic approach to solvent selection based on cohesive energy densities in a molecular bulk heterojunction system

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bright; Duong, Duc T.; Dang, Xuan-Dung; Kim, Chunki; Granstrom, Jimmy; Nguyen, Thuc-Quyen [Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106 (United States); Tamayo, Arnold [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401 (United States)

    2011-03-18

    The solubilities of 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP(TBFu){sub 2}) and [6,6]-phenyl-C{sub 71}-butyric acid methyl ester (PC{sub 71}BM) in a series of solvents are measured, and this data is used to calculate the Hansen solubility parameters of the two materials. The dispersion, polar, and H-bonding parameters of DPP(TBFu){sub 2} and PC{sub 71}BM were found to be (19.3, 4.8, 6.3) and (20.2, 5.4, 4.5) MPa{sup 1/2}, respectively, with an error of {+-} 0.8 MPa{sup 1/2}. Based on the solubility properties of the two materials, three new solvents (thiophene, trichloroethylene and carbon disulfide) were utilized for the DPP(TBFu){sub 2}:PC{sub 71}BM system which, after device optimization, led to power conversion efficiencies up to 4.3%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material

    International Nuclear Information System (INIS)

    Jo, Byeongnam; Banerjee, Debjyoti

    2014-01-01

    This study investigated the effect of nanoparticle dispersion on the specific heat capacity for carbonate salt mixtures doped with graphite nanoparticles. The effect of the solvent material was also examined. Binary carbonate salt mixtures consisting of lithium carbonate and potassium carbonate were used as the base material for the graphite nanomaterial. The different dispersion uniformity of the nanoparticles was created by employing two distinct synthesis protocols for the nanomaterial. Different scanning calorimetry was employed to measure the specific heat capacity in both solid and liquid phases. The results showed that doping the molten salt mixture with the graphite nanoparticles significantly raised the specific heat capacity, even in minute concentrations of graphite nanoparticles. Moreover, greater enhancement in the specific heat capacity was observed from the nanomaterial samples with more homogeneous dispersion of the nanoparticles. A molecular dynamics simulation was also performed for the nanomaterials used in the specific heat capacity measurements to explain the possible mechanisms for the enhanced specific heat capacity, including the compressed layering and the species concentration of liquid solvent molecules

  4. Large-scale solvent-swelling-based amplification of microstructured sharkskin

    International Nuclear Information System (INIS)

    Pan, Junfeng; Chen, Huawei; Zhang, Deyuan; Zhang, Xin; Yuan, Liming; Aobo, Li

    2013-01-01

    Sophisticated biomimetic microstructures/nanostructures have attracted attention worldwide, but their fabrication technique significantly restricts their application. This study uses natural sharkskin to investigate amplification (i.e., the bioscaling forming process) and thus acquire a complex microstructure that cannot be fabricated by traditional micromachining techniques. The bioscaling forming process adjusts the optimal function region of natural surfaces by utilizing the solvent-swelling effect of polydimethylsiloxane. To accurately replicate amplified sharkskin, the swelling ratio and rate in gaseous and liquid n-hexane were investigated. Epoxy resin was used to produce a positive sharkskin mold. A comparison between the microstructure of the original and amplified sharkskin shows that the swelling ratio can reach a maximum of 34% with gaseous n-hexane and 39% with liquid n-hexane. The accuracy of bioscaling forming was higher than 95%. The drag-reducing effect was also tested. When the sharkskin was amplified 1.34 times, the optimal velocity range of the drag reduction moved from 5.0 to 3.5 m s −1 . (paper)

  5. Tuning Microparticle Porosity during Single Needle Electrospraying Synthesis via a Non-Solvent-Based Physicochemical Approach

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2015-12-01

    Full Text Available Porous materials, especially microparticles (MP, are utilized in almost every field of engineering and science, ranging from healthcare materials (drug delivery to tissue engineering to environmental engineering (biosensing to catalysis. Here, we utilize the single needle electrospraying technique (as opposed to complex systems currently in development to prepare a variety of poly(ε-caprolactone (PCL MPs with diverse surface morphologies (variation in pore size from 220 nm to 1.35 µm and architectural features (e.g., ellipsoidal, surface lamellar, Janus lotus seedpods and spherical. This is achieved by using an unconventional approach (exploiting physicochemical properties of a series of non-solvents as the collection media via a single step. Sub-micron pores presented on MPs were visualized by electron microscopy (demonstrating a mean MP size range of 7–20 μm. The present approach enables modulation in morphology and size requirements for specific applications (e.g., pulmonary delivery, biological scaffolds, multi-stage drug delivery and biomaterial topography enhancement. Differences in static water contact angles were observed between smooth and porous MP-coated surfaces. This reflects the hydrophilic/hydrophobic properties of these materials.

  6. Model studies for evaluating the acute neurobehavioral effects of complex hydrocarbon solvents. I. Validation of methods with ethanol

    NARCIS (Netherlands)

    McKee, R.H.; Lammers, J.H.C.M.; Hoogendijk, E.M.G.; Emmen, H.H.; Muijser, H.; Barsotti, D.A.; Owen, D.E.; Kulig, B.M.

    2006-01-01

    As a preliminary step to evaluating the acute neurobehavioral effects of hydrocarbon solvents and to establish a working model for extrapolating animal test data to humans, joint neurobehavioral/toxicokinetic studies were conducted which involved administering ethanol to rats and volunteers. The

  7. Highly stable ni-m f6-nh2o/onpyrazine2(solvent)x metal organic frameworks and methods of use

    KAUST Repository

    Eddaoudi, Mohamed

    2016-10-13

    Provided herein are metal organic frameworks comprising metal nodes and N-donor organic ligands. Methods for capturing chemical species from fluid compositions comprise contacting a metal organic framework characterized by the formula [MaMbF6-n(O/H2O)w(Ligand)x(solvent)y]z with a fluid composition and capturing one or more chemical species from the fluid composition.

  8. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents.

    Science.gov (United States)

    Prasad, Kamalesh; Mondal, Dibyendu; Sharma, Mukesh; Freire, Mara G; Mukesh, Chandrakant; Bhatt, Jitkumar

    2018-01-15

    Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection pr...

  10. Method to convert biomass to 5-(hydroxymethyl)-furfural (HMF) and furfural using lactones, furans, and pyrans as solvents

    Science.gov (United States)

    Dumesic, James A.; Ribeiro Gallo, Jean Marcel; Alonso, David

    2014-07-08

    Described is a process to produce hydroxymethyl furfural (HMF) from biomass-derived sugars. The process includes the steps of reacting a C5 and/or C6 sugar-containing reactant derived from biomass in a monophasic or biphasic reaction solution comprising water and a co-solvent. The co-solvent can be beta-, gamma-, and/or delta-lactones derived from biomass, tetrahydrofuran (THF) derived from biomass, and/or methyltetrahydrofuran (MTHF) derived from biomass. The reaction takes place in the presence of an acid catalyst and a dehydration catalyst for a time and under conditions such that at least a portion of glucose or fructose present in the reactant is converted to HMF.

  11. Clarification of Solvent Effects on Discharge Products in Li-O2 Batteries through a Titration Method.

    Science.gov (United States)

    Lee, Young Joo; Kwak, Won-Jin; Sun, Yang-Kook; Lee, Yun Jung

    2018-01-10

    As a substitute for the current lithium-ion batteries, rechargeable lithium oxygen batteries have attracted much attention because of their theoretically high energy density, but many challenges continue to exist. For the development of these batteries, understanding and controlling the main discharge product Li 2 O 2 (lithium peroxide) are of paramount importance. Here, we comparatively analyzed the amount of Li 2 O 2 in the cathodes discharged at various discharge capacities and current densities in dimethyl sulfoxide (DMSO) and tetraethylene glycol dimethyl ether (TEGDME) solvents. The precise assessment entailed revisiting and revising the UV-vis titration analysis. The amount of Li 2 O 2 electrochemically formed in DMSO was less than that formed in TEGDME at the same capacity and even at a much higher full discharge capacity in DMSO than in TEGDME. On the basis of our analytical experimental results, this unexpected result was ascribed to the presence of soluble LiO 2 -like intermediates that remained in the DMSO solvent and the chemical transformation of Li 2 O 2 to LiOH, both of which originated from the inherent properties of the DMSO solvent.

  12. Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction.

    Science.gov (United States)

    Han, Baisui; Altansukh, Batnasan; Haga, Kazutoshi; Stevanović, Zoran; Jonović, Radojka; Avramović, Ljiljana; Urosević, Daniela; Takasaki, Yasushi; Masuda, Nobuyuki; Ishiyama, Daizo; Shibayama, Atsushi

    2018-06-15

    Sulfide copper mineral, typically Chalcopyrite (CuFeS 2 ), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of un‒recovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of low‒grade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using high‒pressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS 2 as main copper mineral) by HPL in a H 2 O media in the presence of pyrite, whereas the iron was co‒dissolved with copper according to an equation given as C Cu  = 38.40 × C Fe . To avoid co‒dissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPL‒solvent extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Computing pKa Values in Different Solvents by Electrostatic Transformation.

    Science.gov (United States)

    Rossini, Emanuele; Netz, Roland R; Knapp, Ernst-Walter

    2016-07-12

    We introduce a method that requires only moderate computational effort to compute pKa values of small molecules in different solvents with an average accuracy of better than 0.7 pH units. With a known pKa value in one solvent, the electrostatic transform method computes the pKa value in any other solvent if the proton solvation energy is known in both considered solvents. To apply the electrostatic transform method to a molecule, the electrostatic solvation energies of the protonated and deprotonated molecular species are computed in the two considered solvents using a dielectric continuum to describe the solvent. This is demonstrated for 30 molecules belonging to 10 different molecular families by considering 77 measured pKa values in 4 different solvents: water, acetonitrile, dimethyl sulfoxide, and methanol. The electrostatic transform method can be applied to any other solvent if the proton solvation energy is known. It is exclusively based on physicochemical principles, not using any empirical fetch factors or explicit solvent molecules, to obtain agreement with measured pKa values and is therefore ready to be generalized to other solute molecules and solvents. From the computed pKa values, we obtained relative proton solvation energies, which agree very well with the proton solvation energies computed recently by ab initio methods, and used these energies in the present study.

  14. Formation of thin film like assembly of exfoliated C3N4 nanoflakes by solvent non-evaporative method using centrifuge

    Science.gov (United States)

    Tejasvi, Ravi; Basu, Suddhasatwa

    2017-12-01

    A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.

  15. Growth of (CH 3) 2NH 2CuCl 3 single crystals using evaporation method with different temperatures and solvents

    Science.gov (United States)

    Chen, L. M.; Tao, W.; Zhao, Z. Y.; Li, Q. J.; Ke, W. P.; Wang, X. M.; Liu, X. G.; Fan, C.; Sun, X. F.

    2010-10-01

    The bulk single crystals of low-dimensional magnet (CH 3) 2NH 2CuCl 3 (DMACuCl 3 or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals because of its structural similarity to the raw materials and suitable evaporation rate. The best growth temperature is in the vicinity of 35 °C. The problem of the crystals deliquescing in air has been solved through recrystallization process. The crystals are characterized by means of X-ray diffraction, specific heat and magnetic susceptibility.

  16. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    Science.gov (United States)

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  17. Devulcanization of Waste Tire Rubber Using Amine Based Solvents and Ultrasonic Energy

    Directory of Open Access Journals (Sweden)

    Walvekar Rashmi

    2018-01-01

    Full Text Available This research project focuses on an alternative pathway of devulcanizing waste tire rubber by using amine based chemicals. Waste tire rubbers are known to be as toxic, non-degradable material due to their vulcanized crosslink carbon structure, and disposing of such waste could impose hazardous impacts on the environment. The current rubber recycling methods that are practiced today are rather uneconomical, non-environmentally friendly, and also producing recycled rubber with low quality due to the alteration in the main polymeric chains of waste rubber. This project aims to answer the question of whether the usage of amine can produce high quality rubber, where the properties of recycled rubber is almost the same as new/virgin rubber. With known potential of amine, it is a challenge for the chemical to selectively cleave the sulfur bonds without affecting the main carbon backbone chain in the rubber structure and diminishing much of the rubber properties. To study this research, amine-treated rubber must undergo devulcanisation process by applying heat and sonication energy. Then, the properties of the amine-treated rubber were determined through a set of characterization tests and analysis which are: gel content test to determine the weight of rubber before and after devulcanization, the thermogravimetric analysis (TGA to determine the thermal degradation and stability of rubber, and Fourier Transform Infrared Spectroscopy (FTIR to determine any structural change of the rubber. In this research so far, the first two preliminary analysis tests have been performed. The gel content test has shown that tertiary amine samples possessed a lower gel content (% of (77 – 63 %, compared to primary amine samples (falls within the range of 80%, as well as the TGA test in which tertiary amine samples degrade faster than primary amine samples (suggesting a higher degree of rubber structure breakdown. For each type of amine, the concertation of amine did

  18. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water

    International Nuclear Information System (INIS)

    Ma, Chunyan; Guo, Yanhua; Li, Dongxue; Zong, Jianpeng; Ji, Xiaoyan; Liu, Chang

    2017-01-01

    Highlights: • Molar enthalpy of mixing and refractive indices for binary mixtures of different deep eutectic solvents with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The NRTL model with fitted parameters were used to predict the vapour pressure and compared with experimental data. - Abstract: The molar enthalpies of mixing were measured for binary systems of choline chloride-based deep eutectic solvents (glycerol, ethylene glycol and malonic acid) with water at 298.15 K and 308.15 K, and atmospheric pressure with an isothermal calorimeter. Refractive indices were also measured at 303.15 K and atmospheric pressure. The binary mixtures of {chcl/glycerol (1:2) + water, chcl/ethylene glycol (1:2) + water} showed exothermic behaviour over the entire range of composition, while the binary mixture of {chcl/malonic acid (1:1) + water} showed endothermic behaviour at first and then changed to be exothermic with the increasing content of chcl/malonic acid (1:1). Experimental refractive indices were fitted with the Redlich–Kister equation, and experimental molar enthalpies of mixing were correlated with the Redlich–Kister equation and the non-random two-liquid (NRTL) model. The NRTL model with the fitted parameters was used to predict the vapour pressures of these three mixtures. For mixtures of {chcl/glycerol (1:2) + water} and {chcl/ethylene glycol (1:2) + water}, the predicted vapour pressures agreed well with the experimental results from the literature. While for mixture of {chcl/malonic acid (1:1) + water}, the predicted vapour pressures showed deviation at the high concentration of chcl/malonic acid (1:1), and this was probably because of the complex molecular interaction between chcl/malonic acid (1:1) and water.

  19. Centrifuge-less dispersive liquid-liquid microextraction base on the solidification of switchable solvent for rapid on-site extraction of four pyrethroid insecticides in water samples.

    Science.gov (United States)

    Hu, Lu; Wang, Huazi; Qian, Heng; Liu, Chaoran; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang; Xu, Donghui

    2016-11-11

    An on-site dispersive liquid liquid microextraction base on the solidification of switchable solvent has been developed as a simple, rapid and eco-friendly sample extraction method for the fast determination of pyrethroid insecticides in aqueous samples using high-performance liquid chromatography with ultraviolet detection. In this extraction method, medium-chain saturated fatty acids (n≥10), which can rapidly solidify at low temperatures (centrifugation. The microextraction process was performed in a 10mL syringe and the pretreatment process could thus be finished in 5min. No external energy resources were required in this method, which makes it a potential method for on-site extraction. The optimal experimental parameters were as follows: 350μL of decanoic acid (1mol/L) was used as the extraction solvent, 150μL of sulfuric acid (2mol/L) was used to decrease the pH of the samples, no salt was added, and the temperature of the samples was in the range of 20-40°C. Finally, the sample was cooled in an ice bath for three minutes. Under these optimal conditions, good responses for four pyrethroid insecticides were obtained in the concentration ranges of 1-500μg/L, with coefficients of determination greater than 0.9993. The recoveries of the four pyrethroid insecticides ranged from 84.7 to 95.3%, with relative standard deviations ranging from 1.6 to 4.6%. The limits of detection based on a signal-to-noise ratio of 3 were in the range of 0.24-0.68μg/L, and the enrichment factors were in the range of 121-136. The results demonstrate that this method was successfully applied to determine pyrethroid insecticides in real water samples. No centrifugation or any special apparatus are required, make this a promising method for rapid field-sampling procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Solvent effects on hydrogen bonds in Watson-Crick, mismatched, and modified DNA base pairs

    NARCIS (Netherlands)

    Poater, Jordi; Swart, Marcel; Guerra, Celia Fonseca; Bickelhaupt, F. Matthias

    2012-01-01

    We have theoretically analyzed a complete series of Watson–Crick and mismatched DNA base pairs, both in gas phase and in solution. Solvation causes a weakening and lengthening of the hydrogen bonds between the DNA bases because of the stabilization of the lone pairs involved in these bonds. We have

  1. A multiple hollow fibre liquid-phase microextraction method for the determination of halogenated solvent residues in olive oil.

    Science.gov (United States)

    Manso, J; García-Barrera, T; Gómez-Ariza, J L; González, A G

    2014-02-01

    The present paper describes a method based on the extraction of analytes by multiple hollow fibre liquid-phase microextraction and detection by ion-trap mass spectrometry and electron capture detectors after gas chromatographic separation. The limits of detection are in the range of 0.13-0.67 μg kg(-1), five orders of magnitude lower than those reached with the European Commission Official method of analysis, with three orders of magnitude of linear range (from the quantification limits to 400 μg kg(-1) for all the analytes) and recoveries in fortified olive oils in the range of 78-104 %. The main advantages of the analytical method are the absence of sample carryover (due to the disposable nature of the membranes), high enrichment factors in the range of 79-488, high throughput and low cost. The repeatability of the analytical method ranged from 8 to 15 % for all the analytes, showing a good performance.

  2. Production of Biodiesel from Candlenut Oil Using a Two-step Co-solvent Method and Evaluation of Its Gaseous Emissions.

    Science.gov (United States)

    Pham, Lan Ngoc; Luu, Boi Van; Phuoc, Hung Duong; Le, Hanh Ngoc Thi; Truong, Hoa Thi; Luu, Phuong Duc; Furuta, Masakazu; Imamura, Kiyoshi; Maeda, Yasuaki

    2018-05-01

    Candlenut oil (CNO) is a potentially new feedstock for biodiesel (BDF) production. In this paper, a two-step co-solvent method for BDF production from CNO was examined. Firstly, esterification of free fatty acids (FFAs) (7 wt%) present in CNO was carried out using a co-solvent of acetonitrile (30 wt%) and H 2 SO 4 as a catalyst. The content of FFAs was reduced to 0.8 wt% in 1 h at 65°C. Subsequent transesterification of the crude oil produced was carried out using a co-solvent of acetone (20 wt%) and 1 wt% potassium hydroxide (KOH). Ester content of 99.3% was obtained at 40°C in 45 min. The water content in BDF was 0.023% upon purification using vacuum distillation at 5 kPa. The components of CNO BDF were characterized using a Fourier-transform infrared spectrometry and gas chromatography-flame ionization detector. The physicochemical properties of BDF satisfied the ASTM D6751-02 standard. The gaseous exhaust emissions from the diesel engine upon combustion of the BDF blends (B0-B100) with petrodiesel were examined. The emissions of carbon monoxide and hydrocarbons were clearly lower, but that of nitrogen oxides was higher in comparison to those from petro-diesel.

  3. Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ungula, J., E-mail: ungulaj@qwa.ufs.ac.za; Dejene, B.F.

    2016-01-01

    ZnO nanoparticles were synthesized using a sol–gel method. The effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL), UV–vis spectroscopy (UV–vis) and Energy-dispersive X-ray spectroscopy ( EDS). The XRD patterns showed single phase hexagonal structure. The crystallite size of as prepared ZnO nanoparticles was found to decrease from 28.1 nm to 10.8 nm with the increase in volume ratio of ethanol in the solvent as peak intensities and sharpness increase with corresponding increase in volume ratio of water. SEM micrographs showed that samples prepared in water medium are fairly spherical which turned to tiny rods with increasing volume ratios of ethanol. A sharp ultraviolet (UV) emission peak centred about 385 nm and a broad green–yellow emission at about 550 nm are observed with PL measurements. The band gap of ZnO decreased from 3.31 to 3.17 eV with an increase in the ethanol composition in the solvent, implying that the optical properties of these materials are clearly affected by the synthesis medium.

  4. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells.

    Science.gov (United States)

    Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2017-06-07

    We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.

  5. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent.

    Science.gov (United States)

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid

    2013-01-01

    A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    Science.gov (United States)

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  7. Entropy-based benchmarking methods

    NARCIS (Netherlands)

    Temurshoev, Umed

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth

  8. Synthesis of 1-amidoalkyl-2-naphthols based on a three-component reaction catalyzed by boric acid as a solid heterogeneous catalyst under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Zahed Karimi-Jaberi

    2012-12-01

    Full Text Available An efficient method for the preparation of 1-amidoalkyl-2-naphthols has been described using a multi-component, one-pot condensation reaction of 2-naphthol, aldehydes and amides in the presence of boric acid under solvent-free conditions.DOI: http://dx.doi.org/10.4314/bcse.v26i3.18

  9. Excited-state inter- and intramolecular proton transfer in methyl 3-hydroxy-2-quinoxalinate: effects of solvent and acid or base concentrations

    International Nuclear Information System (INIS)

    Dogra, S.K.

    2005-01-01

    Absorption, fluorescence excitation and fluorescence spectroscopy, combined with time-dependent spectroscopy and semi-empirical (AM1) and density functional theory using Gaussian 98 program calculations have been used to study the effects of solvent and acid or base concentration on the spectral characteristics of methyl 3-hydroxy-2-quinoxalinate (M3HQ). M3HQ is present as enol in less polar solvents and as keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to the phototautomer, formed by the excited-state intramolecular proton transfer, whereas fluorescence is only observed from keto in the polar solvents. In aqueous and polar solvents the monocation (MC5/MC6) is formed by protonating the carbonyl oxygen atom in the ground (S 0 ) and the first excited singlet states (S 1 ). Dication is formed by protonating one of ?N- atom of MC5/MC6. Monoanion is formed by deprotonating the phenolic proton of enol in the basic solution. pK a values for different prototropic equilibriums were determined in S 0 and S 1 states and discussed

  10. A Novel Mechanism for Chemical Sensing Based on Solvent-Fluorophore-Substrate Interaction: Highly Selective Alcohol and Water Sensor with Large Fluorescence Signal Contrast.

    Science.gov (United States)

    Chung, Kyeongwoon; Yang, Da Seul; Jung, Jaehun; Seo, Deokwon; Kwon, Min Sang; Kim, Jinsang

    2016-10-06

    Differentiation of solvents having similar physicochemical properties, such as ethanol and methanol, is an important issue of interest. However, without performing chemical analyses, discrimination between methanol and ethanol is highly challenging due to their similarity in chemical structure as well as properties. Here, we present a novel type of alcohol and water sensor based on the subtle differences in interaction among solvent analytes, fluorescent organic molecules, and a mesoporous silica gel substrate. A gradual change in the chemical structure of the fluorescent diketopyrrolopyrrole (DPP) derivatives alters their interaction with the substrate and solvent analyte, which creates a distinct intermolecular aggregation of the DPP derivatives on the silica gel substrate depending on the solvent environment and produces a change in the fluorescence color and intensity as a sensory signal. The devised sensor device, which is fabricated with simple drop-casting of the DPP derivative solutions onto a silica gel substrate, exhibited a completely reversible fluorescence signal change with large fluorescence signal contrast, which allows selective solvent detection by simple optical observation with the naked eye under UV light. Superior selectivity of the alcohol and water sensor system, which can clearly distinguish among ethanol, methanol, ethylene glycol, and water, is demonstrated.

  11. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhua; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian

    2015-06-02

    Highlights: • A strategy for extraction of protein based on DES-coated magnetic graphene oxide. • The deep eutectic solvents were based on choline chloride. • Bovine serum albumin was used as the analyte. • The material prepared works for the acidic but not the basic or the neutral proteins. - Abstract: Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe{sub 3}O{sub 4}@GO) to form Fe{sub 3}O{sub 4}@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe{sub 3}O{sub 4}@GO-DES, and the results indicated the successful preparation of Fe{sub 3}O{sub 4}@GO-DES. The UV–vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe{sub 3}O{sub 4}@GO-DES. Comparison of Fe{sub 3}O{sub 4}@GO and Fe{sub 3}O{sub 4}@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe{sub 3}O{sub 4}@GO-DES performs better than Fe{sub 3}O{sub 4}@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L{sup −1} Na{sub 2}HPO{sub 4} contained 1 mol L{sup −1} NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled.

  12. Determining an Efficient Solvent Extraction Parameters for Re-Refining of Waste Lubricating Oils

    Directory of Open Access Journals (Sweden)

    Hassan Ali Durrani

    2012-04-01

    Full Text Available Re-refining of vehicle waste lubricating oil by solvent extraction is one of the efficient and cheapest methods. Three extracting solvents MEK (Methyl-Ethyl-Ketone, 1-butanol, 2-propanol were determined experimentally for their performance based on the parameters i.e. solvent type, solvent oil ratio and extraction temperature. From the experimental results it was observed the MEK performance was highest based on the lowest oil percent losses and highest sludge removal. Further, when temperature of extraction increased the oil losses percent also decreased. This is due to the solvent ability that dissolves the base oil in waste lubricating oil and determines the best SOR (Solvent Oil Ratio and extraction temperatures.

  13. Operator care and eco-concerned development of a fast, facile and economical assay for basic nitrogenous drugs based on simplified ion-pair mini-scale extraction using safer solvent combined with drop-based spectrophotometry.

    Science.gov (United States)

    Plianwong, Samarwadee; Sripattanaporn, Areerut; Waewsa-nga, Kwanrutai; Buacheen, Parin; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak

    2012-08-30

    A fast, facile, and economical assay for basic nitrogenous drugs has been developed based on the mini-scale extraction of the drug-dye ion pair complex combined with the use of safe-for-analyst and eco-friendlier organic extractant and drop-based micro-spectrophotometry. Instead of using large volume devices, the extraction was simply carried out in typical 1.5 mL microcentrifuge tubes along with the use of micropipettes for accurate transfer of liquids, vortex mixer for efficient partitioning of solutes and benchtop centrifuge for rapid phase separation. In the last step, back-extraction was performed by using the microvolume of acidic solution in order to concentrate the colored species into a confined aqueous microdrop and to keep the analyst away from unwanted contact and inhalation of organic solvents during the quantitation step which was achieved by using cuvetteless UV-vis micro-spectrophotometry without any prior dilutions. Using chlorpheniramine maleate as a representative analyte and n-butyl acetate as a less toxic and non-ozone depleting extractant, the miniaturized method was less laborious and much faster. It was accurate, precise and insensitive to the interferences from common excipients. Notably, it gave the assay results of drug in tablets and oral solution comparable to the large-scale pharmacopeial method while the consumption of organic solvents and the release of wastes were lowered by 200-400 folds. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent.

    Science.gov (United States)

    Wikmark, Ylva; Svedendahl Humble, Maria; Bäckvall, Jan-E

    2015-03-27

    A method for determining lipase enantioselectivity in the transacylation of sec-alcohols in organic solvent was developed. The method was applied to a model library of Candida antarctica lipase A (CalA) variants for improved enantioselectivity (E values) in the kinetic resolution of 1-phenylethanol in isooctane. A focused combinatorial gene library simultaneously targeting seven positions in the enzyme active site was designed. Enzyme variants were immobilized on nickel-coated 96-well microtiter plates through a histidine tag (His6-tag), screened for transacylation of 1-phenylethanol in isooctane, and analyzed by GC. The highest enantioselectivity was shown by the double mutant Y93L/L367I. This enzyme variant gave an E value of 100 (R), which is a dramatic improvement on the wild-type CalA (E=3). This variant also showed high to excellent enantioselectivity for other secondary alcohols tested. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  15. Solvent-Controlled Assembly of ionic Metal-Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties

    KAUST Repository

    Zheng, Bing

    2016-07-15

    Four Metal-Organic Frameworks (MOFs) based on Indium and tetracarboxylate ligand have been synthesized through regulation of the solvent conditions, the resulted compounds not only exhibited rich structural topologies (pts, soc and unique topologies), but also interesting charge reversal framework features. By regulating the solvent, different building units (indium monomer, trimer) have been generated in situ, and they are connected with the ligand to form ionic frameworks 1-4, respectively. Among the synthesized four ionic frameworks, compounds 3 and 4 could keep their crystallinity upon heating temperature up to 300oC after fully removal of solvent guest molecules, they also exhibit the charge reversal framework features (3 adopts an overall cationic framework, while 4 has an anionic framework). Both compounds 3 and 4 exhibit significant uptake capacity for CO2 and H2, besides that, compounds 3 and 4 also present excellent selective adsorption of CO2 over N2 and CH4.

  16. Solvent-Controlled Assembly of ionic Metal-Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties

    KAUST Repository

    Zheng, Bing; Sun, Xiaodong; Li, Guanghua; Cairns, Amy; Kravtsov, Victor; Huo, Qisheng; Liu, Yunling; Eddaoudi, Mohamed

    2016-01-01

    Four Metal-Organic Frameworks (MOFs) based on Indium and tetracarboxylate ligand have been synthesized through regulation of the solvent conditions, the resulted compounds not only exhibited rich structural topologies (pts, soc and unique topologies), but also interesting charge reversal framework features. By regulating the solvent, different building units (indium monomer, trimer) have been generated in situ, and they are connected with the ligand to form ionic frameworks 1-4, respectively. Among the synthesized four ionic frameworks, compounds 3 and 4 could keep their crystallinity upon heating temperature up to 300oC after fully removal of solvent guest molecules, they also exhibit the charge reversal framework features (3 adopts an overall cationic framework, while 4 has an anionic framework). Both compounds 3 and 4 exhibit significant uptake capacity for CO2 and H2, besides that, compounds 3 and 4 also present excellent selective adsorption of CO2 over N2 and CH4.

  17. Selection and design of solvents

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    and design of solvents will be presented together with application examples. The selection problem is defined as finding known chemicals that match the desired functions of a solvent for a specified set of applications. The design problem is defined as finding the molecular structure (or mixture of molecules....... With increasing interest on issues such as waste, sustainability, environmental impact and green chemistry, the selection and design of solvents have become important problems that need to be addressed during chemical product-process design and development. Systematic methods and tools suitable for selection......) that match the desired functions of a solvent for a specified set of applications. Use of organic chemicals and ionic liquids as solvents will be covered....

  18. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    Science.gov (United States)

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-07

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels.

  19. Pulmonary Toxicity of Perfluorinated Silane-Based Nanofilm Spray Products: Solvent Dependency

    DEFF Research Database (Denmark)

    Nørgaard, Asger Wisti; Hansen, Jitka S.; Sørli, Jorid Birkelund

    2014-01-01

    A number of cases of pulmonary injury by use of aerosolized surface coating products have been reported worldwide. The aerosol from a commercial alcohol-based nanofilm product (NFP) for coating of nonabsorbing surfaces was found to induce severe lung damage in a recent mouse bioassay. The NFP con...

  20. Multiple testing issues in discriminating compound-related peaks and chromatograms from high frequency noise, spikes and solvent-based nois in LC-MS data sets

    NARCIS (Netherlands)

    Nyangoma, S.O.; Van Kampen, A.A.; Reijmers, T.H.; Govorukhina, N.I; van der Zee, A.G.; Billingham, I.J; Bischoff, Rainer; Jansen, R.C.

    2007-01-01

    Multiple testing issues in discriminating compound-related peaks and chromatograms from high frequency noise, spikes and solvent-based noise in LC-MS data sets.Nyangoma SO, van Kampen AA, Reijmers TH, Govorukhina NI, van der Zee AG, Billingham LJ, Bischoff R, Jansen RC. University of Birmingham.

  1. Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Li, Yahui; Fang, Fei; Cui, Xian; Yao, Youwei; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2017-09-27

    High-quality perovskite films can be fabricated from Lewis acid-base adducts through molecule exchange. Substantial work is needed to fully understand the formation mechanism of the perovskite films, which helps to further improve their quality. Here, we study the formation of CH 3 NH 3 PbI 3 perovskite films by introducing some dimethylacetamide into the PbI 2 /N,N-dimethylformamide solution. We reveal that there are three key processes during the formation of perovskite films through the Lewis acid-base adduct approach: molecule intercalation of solvent into the PbI 2 lattice, molecule exchange between the solvent and CH 3 NH 3 I, and dissolution-recrystallization of the perovskite grains during annealing. The Lewis base solvents play multiple functions in the above processes. The properties of the solvent, including Lewis basicity and boiling point, play key roles in forming smooth perovskite films with large grains. We also provide some rules for choosing Lewis base additives to prepare high-quality perovskite films through the Lewis adduct approach.

  2. Solvent Extraction of Furfural From Biomass

    Science.gov (United States)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  3. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents.

    Directory of Open Access Journals (Sweden)

    Laleh Bahadori

    Full Text Available The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs containing ammonium-based salts and hydrogen bond donvnors (polyol type are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden's rule. The oxidation of ferrocene (Fc/Fc+ and reduction of cobaltocenium (Cc+/Cc at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5 appears suitable for further testing in electrochemical energy storage devices.

  4. Solvent extraction of base oil from used lubricant oil: a study on the performance of zeolite adsorption

    International Nuclear Information System (INIS)

    Lim Lee Ping; Rosli Mohd Yunus; Adnan Ripin

    2001-01-01

    Solvent extraction is known as one of the potential techniques for recycling used lubricant oil. The recovered oil is identical to the virgin oil, but the oil maintains its darkish color and some odor. This paper is to study the performance of zeolite in removing color and odor. A part from the study, factorial design analysis indicated that the concentration of zeolite exerts to be the most influenced on the adsorption process in which the increase of zeolite concentration resulted in an average increase of 2.22% adsorption response. The number of contact stage appeared to be the second most influential effects, which brought an average increase of 1.38% adsorption response. Further more, it was found that the interaction between the concentration of zeolite and the number of contact stage was the most significant of all interactions under study, at 2.71%. Thus, the additions of 10 g zeolite in 50 ml base oil of 3 rd stage color removal produces the best color removal from the recovered base oil. (Author)

  5. Interaction of Fe(II) with Polyacrylic Acid as a Simplification of Humic Acid: Comparison of Ion Exchange and Solvent Extraction Methods

    International Nuclear Information System (INIS)

    Budi Setiawan

    2007-01-01

    To estimate the safety assessment around the disposal facility, the interaction behavior of radionuclides/metal ions into organic material (such as humic acids) exist in natural water becomes an important study. To avoid the effect of heterogeneous composition of humic acid, polyacrylic acids (abbrev. APA) was used as are representative of homogeneous polymeric weak acid. The experiments have been carried out by solvent extraction and ion exchange methods to find out the suitable method for the study of complex formation of Fe(II) with humic acid(AH) and APA. The solvent extraction experiment has been done by using diphenylthiocarbazone (dithizone) in CCl 4 and C Fe(II) were 10 -8 M to 10 -5 M, pH around 5 and I=0.1M NaCI. In ionic exchange experiment, C Fe(II) were 10 -8 to 10 -4 M, pH from 4.8 to 5.5 in I=0.1M NaCl. The apparent complex formation constant is defined as β α = [ML]/([M][R]), where [M] and [ML] are concentration of free and bound of Fe(II) and [R] is the concentration of dissociated carboxylic group in macromolecules of PAA. The results shown that, for solvent extraction experiments, variable concentration of Fe(II) had no appreciable influence on the distribution ratio of Fe(II)-polyacrylate at the tracer concentration with the log D to be 1.32 ± 0.03 (pcH 5.25). At macro concentration, the distribution ratio of Fe(II) becomes smaller due to oxidation and obtained log D value to be 1.04 ± 0.07 (pcH 5.34). An interest kind was observed at higher PAA concentration, the distribution ratio curve becomes higher presumably due to the problem on redox sensitive characteristic of Fe(II) and/or coagulation of Fe(II)-polyacrylate at the interface of aqueous-organic phases. In case of ionic exchange method, the plot of I/Kd versus [R] gives a straight line result indicating this method is appropriate and more superior compare than solvent extraction method to determine the complex formation constant. (author)

  6. Effects of sample drying and storage, and choice of extraction solvent and analysis method on the yield of birch leaf hydrolyzable tannins.

    Science.gov (United States)

    Salminen, Juha-Pekka

    2003-06-01

    In this study, I investigated the effects of different methods of sample drying and storage, and the choice of extraction solvent and analysis method on the concentrations of 14 individual hydrolyzable tannins (HTs), and insoluble ellagitannins in birch (Betula pubescens) leaves. Freeze- and vacuum-drying of birch leaves were found to provide more reliable results than air- or oven-drying. Storage of leaves at -20 degrees C for 3 months before freeze-drying did not cause major changes in tannin content, although levels of 1,2,3,4,6-penta-O-galloylglucose and isostrictinin were altered. Storage of dried leaf material at -20 degrees C is preferred because 1 year storage of freeze-dried leaves at 4 degrees C and at room temperature decreased the concentration of the pedunculagin derivative, one of the main ellagitannins of birch. Furthermore, storage at room temperature increased the levels of isostrictinin and 2,3-(S)-HHDP-glucose, indicating possible HT catabolism. Of the extraction solvents tested, aqueous acetone was superior to pure acetone, or aqueous or pure methanol. The addition of 0.1% ascorbic acid into 70% acetone significantly increased the yield of ellagitannins. presumably by preventing their oxidation. By comparing the conventional rhodanine assay and the HPLC-ESI-MS assay for quantification of leaf galloylglucoses, the former tends to underestimate total concentrations of galloylglucoses in birch leaf extract. On the basis of the outcomes of all the method and solvent comparisons, their suitability for qualitative and quantitative analysis of plant HTs is discussed, emphasizing that each plant species, with its presumably unique HT composition, is likely to have a unique combination of ideal conditions for tissue preservation and extraction.

  7. Electroplated Fe-Co-Ni films prepared from deep-eutectic-solvent-based plating baths

    Directory of Open Access Journals (Sweden)

    Takeshi Yanai

    2016-05-01

    Full Text Available We fabricated soft magnetic films from DES-based plating baths, and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2 ⋅ 4H2O, NiCl2 ⋅ 6H2O and CoCl2 ⋅ 6H2O. The composition of the electroplated film depended on the amount of the reagent in the plating bath, and we consequently obtained the films with various composition. The current efficiency of the plating process shows high values (> 88 % in the wide composition range. The soft magnetic films with low coercivity were obtained at the Fe compositions of ≈ 30 at.% and > 80 at.%, and we found that low coercivity could be realized by the control of the film composition. We also found that the Fe-rich films prepared from DES-based plating bath have some advantages as a soft magnetic phase for a nanocomposite magnet due to their high saturation magnetization and very fine crystal structure.

  8. A Selenium-Based Ionic Liquid as a Recyclable Solvent for the Catalyst-Free Synthesis of 3-Selenylindoles

    Directory of Open Access Journals (Sweden)

    Eder J. Lenardão

    2013-04-01

    Full Text Available The ionic liquid 1-butyl-3-methylimidazolium methylselenite, [bmim][SeO2(OCH3], was successfully used as solvent in the catalyst-free preparation of 3-arylselenylindoles by the reaction of indole with ArSeCl at room temperature. The products were obtained selectively in good yields without the need of any additive and the solvent was easily reused for several cycles with good results.

  9. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Yan, Pengfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kim, Sun Tai [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Engelhard, Mark H. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Sun, Xiuliang [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Cho, Jaephil [Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Wang, Chong-Min [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2017-03-08

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.

  10. Ru Nanoparticles Supported on MIL-101 by Double Solvents Method as High-Performance Catalysts for Catalytic Hydrolysis of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Tong Liu

    2015-01-01

    Full Text Available Highly dispersed crystalline Ru nanoparticles (NPs were successfully immobilized inside the pores of MIL-101 by a double solvents method (DSM. HRTEM clearly demonstrated the uniform distribution of the ultrafine Ru NPs throughout the interior cavities of MIL-101. The synthesized Ru@MIL-101 catalyst was also characterized by X-ray diffraction (XRD, N2 adsorption desorption, and ICP-AES. The catalytic test indicated that the Ru NPs supported MIL-101 material exhibited exceedingly high activity and excellent durability for hydrogen generation from the catalytic hydrolysis of amine boranes.

  11. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study.

    Science.gov (United States)

    Romero, Eduardo E; Hernandez, Florencio E

    2018-01-03

    Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.

  12. Recent solvent extraction experience at Savannah River

    International Nuclear Information System (INIS)

    Gray, L.W.; Burney, G.A.; Gray, J.H.; Hodges, M.E.; Holt, D.L.; Macafee, I.M.; Reif, D.J.; Shook, H.E.

    1986-01-01

    Tributyl phosphate-based solvent extraction processes have been used at Savannah River for more than 30 years to separate and purify thorium, uranium, neptunium, plutonium, americium, and curium isotopes. This report summarizes the advancement of solvent extraction technology at Savannah River during the 1980's. Topics that are discussed include equipment improvements, solvent treatment, waste reduction, and an improved understanding of the various chemistries in the process streams entering, within, and leaving the solvent extraction processes

  13. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  14. Fabrication of starch-based microparticles by an emulsification-crosslinking method

    Science.gov (United States)

    Starch-based microparticles (MPs) fabricated by a water-in-water (w/w) emulsification-crosslinking method could be used as a controlled-release delivery vehicle for food bioactives. Due to the processing route without the use of toxic organic solvents, it is expected that these microparticles can be...

  15. An ICP-AES method for the determination of trace metals in uranium by solvent extraction using KSM-17

    International Nuclear Information System (INIS)

    Jacob, Mary; Radhakrishnan, K.; Dhami, P.S.; Kulkarni, V.T.; Joshi, M.V.; Patwardhan, A.B.; Ramanujam, A.; Mathur, J.N.

    1994-01-01

    This paper describes the studies carried out for the determination of trace metallic impurities in uranium solutions. Uranium matrix is separated from the impurity elements by its selective extraction using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (KSM-17, equivalent to PC88A). The aqueous phase is analysed for trace impurities by inductively coupled argon plasma atomic emission spectrometry. The studies also include recovery of impurities at various acidities and spectral interferences of uranium over the analyte element channels. Based on the above studies, a method has been standardised for the analysis of nineteen elements in uranium solutions. The relative standard deviation of the method for various elements is in the range of +- 1-5%. (author). 7 refs., 8 tabs., 1 fig

  16. Application of model based predictive control to a solvent extraction plant

    International Nuclear Information System (INIS)

    Harper, W.J.

    1995-01-01

    British Nuclear Fuels plc. (BNFL) is the most experienced nuclear fuel company in the world, having supplied nuclear fuel cycle services in the UK and overseas for over forty years. BNFL is one of only two companies in the world that is able to offer nuclear fuel manufacture, enrichment, reprocessing and waste management services. In addition to its work for the UK Nuclear Power Programme, BNFL has developed a substantial export business with nuclear power plant operators in Western Europe, Japan and North America, which now accounts for 18% of the annual turnover. BNFL's plants re situated in North West England and Southern Scotland. Nuclear fuel and fuel products are manufactured at Springfields near Preston; uranium enrichment by the centrifuge process is carried out at Capenhurst, near Chester; reprocessing and waste management services are provided at Sellafield, West Cumbria. The Company's headquarters and engineering design facilities are based at Risley, near Warrington. BNFL also owns and operates two (MAGNOX) nuclear power stations-Calder Hall, on the Sellafield site, the Chapelcross, near Dumfries in Southern Scotland

  17. Polyacrylonitrile nanofiber as polar solvent N,N-dimethyl formamide sensor based on quartz crystal microbalance technique

    Science.gov (United States)

    Rianjanu, A.; Julian, T.; Hidayat, S. N.; Suyono, E. A.; Kusumaatmaja, A.; Triyana, K.

    2018-04-01

    Here, we describe an N,N-dimethyl formamide (DMF) vapour sensor fabricated by coating polyacrylonitrile (PAN) nanofiber structured on quartz crystal microbalance (QCM). The PAN nanofiber sensors with an average diameter of 225 nm to 310 nm were fabricated via electrospinning process with different mass deposition on QCM substrate. The nanostructured of PAN nanofiber offers a high specific surface area that improved the sensing performance of nanofiber sensors. Benefiting from that fine structure, and high polymer-solvent affinity between PAN and DMF, the development of DMF sensors presented good response at ambient temperature. Since there is no chemical reaction between PAN nanofiber and DMF vapour, weak physical interaction such absorption and swelling were responsible for the sensing behavior. The results are indicating that the response of PAN nanofiber sensors has more dependency on the nanofiber structure (specific surface area) rather than its mass deposition. The sensor also showed good stability after a few days sensing. These findings have significant implications for developing DMF vapour sensor based on QCM coated polymer nanofibers.

  18. Morphology control between microspheres and nanofibers by solvent-induced approach based on crosslinked phosphazene-containing materials

    International Nuclear Information System (INIS)

    Zhu Yan; Huang Xiaobin; Fu Jianwei; Wang Gang; Tang Xiaozhen

    2008-01-01

    Multi-morphology control between monodisperse microspheres and uniform nanofibers was successfully achieved by adjusting the ratio of solvent composition. Through the condensation polymerization between hexachlorocyclotriphosphazene and 4,4'-sulfonyldiphenol, the corresponding hybrid inorganic-organic materials appeared. The morphology of both microspheres and nanofibers contained excellent size and shape: the monodisperse microspheres with 0.7-0.9 μm in diameter and the uniform nanofibers with 60 nm in outer diameter. We applied the concept of three-dimensional Hansen solubility parameters for the initial explanation. The activity of the primary colloid particles and the solubility of triethylamine-hydrogen chloride crystal were considered as two factors for the mechanism explanation. This interesting research shows that the nano- and micro-materials with high crosslinked molecule structure and prepared by condensation polymerization can also achieve the morphology transition. It fills the blank in nano-morphology transition research and will provide great information for the research about the control of different morphology preparations based on polymer nanomaterials

  19. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    Energy Technology Data Exchange (ETDEWEB)

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  20. Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing.

    Science.gov (United States)

    Deng, Wanyuan; Gao, Ke; Yan, Jun; Liang, Quanbin; Xie, Yuan; He, Zhicai; Wu, Hongbin; Peng, Xiaobin; Cao, Yong

    2018-03-07

    In this study, we demonstrate that remarkably reduced open-circuit voltage in highly efficient organic solar cells (OSCs) from a blend of phenyl-C 61 -butyric acid methyl ester and a recently developed conjugated small molecule (DPPEZnP-THD) upon solvent vapor annealing (SVA) is due to two independent sources: increased radiative recombination and increased nonradiative recombination. Through the measurements of electroluminescence due to the emission of the charge-transfer state and photovoltaic external quantum efficiency measurement, we can quantify that the open-circuit voltage losses in a device with SVA due to the radiative recombination and nonradiative recombination are 0.23 and 0.31 V, respectively, which are 0.04 and 0.07 V higher than those of the as-cast device. Despite of the reduced open-circuit voltage, the device with SVA exhibited enhanced dissociation of charge-transfer excitons, leading to an improved short-circuit current density and a remarkable power conversion efficiency (PCE) of 9.41%, one of the best for solution-processed OSCs based on small-molecule donor materials. Our study also clearly shows that removing the nonradiative recombination pathways and/or suppressing energetic disorder in the active layer would result in more long-lived charge carriers and enhanced open-circuit voltage, which are prerequisites for further improving the PCE.

  1. Spectral characteristics of 2-(4'-amino-3-pyridyl)benzimidazole: Effects of solvent and acid or base concentration

    International Nuclear Information System (INIS)

    Dogra, Sneh K.

    2006-01-01

    Spectral characteristics of 2-(4'-amino-3-pyridyl)benzimidazole (4-A3PyBI) have been studied in different solvents, as well as at different acid or base concentrations using absorption, fluorescence excitation and fluorescence spectroscopy. Excited singlet state (S 1 ) lifetimes for each species were measured using nanosecond time-dependent spectrofluorimeter. AM1 semi-empirical and density functional theoretical (DFT) calculations were performed on each species for the spectral assignment. From the above results it is concluded that 4-A3PyBI exists only in the amine form. First protonation occurs at pyridine=N- atom and second protonation at the benzimidazole (BI)=N- atom. When dication (DC) species is excited, two emission bands are observed, having the same fluorescence excitation spectra, suggesting the same ground state (S ) precursor. Short wavelength (SW) emission band is assigned to the π-π* transition and long wavelength (LW) emission to the charge transfer transition. First deprotonation in S state occurs from >N-H moiety, whereas in S 1 state it is from -NH 2 group. Monoanion (MA) so formed in S 1 state is non-fluorescent. Dianion (DA) is formed by further deprotonating >N-H moiety in S 1 state and it is fluorescent. pK a values were determined and discussed

  2. Computer Aided Solvent Selection and Design Framework

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Conte, Elisa; Abildskov, Jens

    and computer-aided tools and methods for property prediction and computer-aided molecular design (CAMD) principles. This framework is applicable for solvent selection and design in product design as well as process design. The first module of the framework is dedicated to the solvent selection and design...... in terms of: physical and chemical properties (solvent-pure properties); Environment, Health and Safety (EHS) characteristic (solvent-EHS properties); operational properties (solvent–solute properties). 3. Performing the search. The search step consists of two stages. The first is a generation and property...... identification of solvent candidates using special software ProCAMD and ProPred, which are the implementations of computer-aided molecular techniques. The second consists of assigning the RS-indices following the reaction–solvent and then consulting the known solvent database and identifying the set of solvents...

  3. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    Science.gov (United States)

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  4. Determination and correlation of solubility and thermodynamic properties of pyraclostrobin in pure and binary solvents

    International Nuclear Information System (INIS)

    Yang, Peng; Du, Shichao; Qin, Yujia; Zhao, Kaifei; Li, Kangli; Hou, Baohong; Gong, Junbo

    2016-01-01

    Highlights: • The solubility data of pyraclostrobin in pure and binary solvents were determined and correlated. • The theory of solubility parameter was used to explain the cosolvency in binary solvents. • A modified mixing rule was proposed to calculate the solubility parameter of binary solvents. • The dissolution thermodynamic properties were calculated and discussed. - Abstract: The solubility of pyraclostrobin in five pure solvents and two binary solvent mixtures was measured from 283.15 K to 308.15 K using a static analytical method. Solubility in five pure solvents was well correlated by the modified Apelblat equation and Wilson model. While the CNIBS/R–K model was applied to correlate the solubility in two binary solvent mixtures, the correlation showed good agreement with experimental results. The solubility of pyraclostrobin reaches its maximum value at a certain cyclohexane mole fraction in the two binary solvent mixtures. The solubility parameter of pyraclostrobin was calculated by the Fedors method and a new modified mixing rule with preferable applicability was proposed to determine the solubility parameter of solvents. Then the co-solvency in the binary solvent mixtures can be explained based on the obtained solubility parameters. In a addition, the dissolution thermodynamic properties were calculated from the experimental values using the Wilson model.

  5. Activity – based costing method

    Directory of Open Access Journals (Sweden)

    Èuchranová Katarína

    2001-06-01

    Full Text Available Activity based costing is a method of identifying and tracking the operating costs directly associated with processing items. It is the practice of focusing on some unit of output, such as a purchase order or an assembled automobile and attempting to determine its total as precisely as poccible based on the fixed and variable costs of the inputs.You use ABC to identify, quantify and analyze the various cost drivers (such as labor, materials, administrative overhead, rework. and to determine which ones are candidates for reduction.A processes any activity that accepts inputs, adds value to these inputs for customers and produces outputs for these customers. The customer may be either internal or external to the organization. Every activity within an organization comprimes one or more processes. Inputs, controls and resources are all supplied to the process.A process owner is the person responsible for performing and or controlling the activity.The direction of cost through their contact to partial activity and processes is a new modern theme today. Beginning of this method is connected with very important changes in the firm processes.ABC method is a instrument , that bring a competitive advantages for the firm.

  6. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    Science.gov (United States)

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers

    KAUST Repository

    Kim, Hyeongjun

    2012-01-10

    Conjugated polymers, in general, are unstable when exposed to air, solvent, or thermal treatment, and these challenges limit their practical applications. Therefore, it is of great importance to develop new materials or methodologies that can enable organic electronics with air stability, solvent resistance, and thermal stability. Herein, we have developed a simple but powerful approach to achieve solvent-resistant and thermally stable organic electronic devices with a remarkably improved air stability, by introducing an azide cross-linkable group into a conjugated polymer. To demonstrate this concept, we have synthesized polythiophene with azide groups attached to end of the alkyl chain (P3HT-azide). Photo-cross-linking of P3HT-azide copolymers dramatically improves the solvent resistance of the active layer without disrupting the molecular ordering and charge transport. This is the first demonstration of solvent-resistant organic transistors. Furthermore, the bulk-heterojunction organic photovoltaics (BHJ OPVs) containing P3HT-azide copolymers show an average efficiency higher than 3.3% after 40 h annealing at an elevated temperature of 150 °C, which represents one of the most thermally stable OPV devices reported to date. This enhanced stability is due to an in situ compatibilizer that forms at the P3HT/PCBM interface and suppresses macrophase separation. Our approach paves a way toward organic electronics with robust and stable operations. © 2011 American Chemical Society.

  8. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn,Fe)-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Ran, E-mail: liran@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Xiao, Ruijuan [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Gang [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Jianfeng [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-02-25

    A family of Mn-rich bulk metallic glasses (BMGs) was developed through the similar solvent elements (SSE) substitution of Mn for Fe in (Mn{sub x}Fe{sub 80−x})P{sub 10}B{sub 7}C{sub 3} alloys. The effect of the SSE substitution on glass formation, thermal stability, elastic constants, mechanical properties, fracture morphologies, Weibull modulus and indentation fracture toughness was discussed. A thermodynamics analysis provided by Battezzati et al. (L. Battezzati, E. Garrone, Z. Metallkd. 75 (1984) 305–310) was adopted to explain the compositional dependence of the glass-forming ability (GFA). The elastic moduli follow roughly linear correlations with the substitution concentration of Mn in (Mn{sub x}Fe{sub 80−x})P{sub 10}B{sub 7}C{sub 3} BMGs. The introduction of Mn to replace Fe significantly decreases the plasticity of the resulting BMGs and the Weibull modulus of the fracture strength. A super-brittle Mn-based BMGs of (Mn{sub 55}Fe{sub 25})P{sub 10}B{sub 7}C{sub 3} BMGs were found with the indentation fracture toughness (K{sub c}) of 1.91±0.04 MPa m{sup 1/2}, the lowest value among all kinds of BMGs so far. The atomic and electronic structure of the selected BMGs were simulated by the first principles molecular dynamics calculations based on density functional theory, which provided a possible understanding of the brittleness caused by the similar chemical element replacement of Mn for Fe.

  9. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents

    Directory of Open Access Journals (Sweden)

    Cassandra Breil

    2017-03-01

    Full Text Available Bligh and Dyer (B & D or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS, we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29 and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  10. Enhancing Low-Temperature and Pressureless Sintering of Micron Silver Paste Based on an Ether-Type Solvent

    Science.gov (United States)

    Zhang, Hao; Li, Wanli; Gao, Yue; Zhang, Hao; Jiu, Jinting; Suganuma, Katsuaki

    2017-08-01

    Micron silver paste enables a low-temperature and pressureless sintering process by using an ether-type solvent CELTOL-IA (C x H y O z , x > 10, boiling point of approximately 200°C) for the die attachment of high-powered devices. The conductive patterns formed by the silver paste had a low electrical resistivity of 8.45 μΩ cm at 180°C. The paste also achieved a high bonding strength above 30 MPa at 180°C without the assistance of pressures. These superior performance indicators result from the favorable removal of the solvent, its thermal behavior, and its good wetting on the silver layer. The results suggest that the micron silver paste with a suitable solvent can promote the further spreading of next-generation power devices owing to its marked cost advantage and excellent performance.

  11. Measurement of Activity Coefficients of Solvents in Poly ( ethylene oxide ) Using Gas-Chromatographic Method and Correlation by Polymer-ASOG; Poriechirenokishido chu no yobai katsuryo keisu no gasukuromatogurafu ho ni yoru sokutei to Polymer-ASOG ni yoru sokan

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kurita, S.; Ohashi, M. [Yuki Gosei Kogyo Co. LTd., (Japan); Kojima, K. [Nihon University, Tokyo (Japan). Department of Industrial Chemistry

    1997-09-01

    Infinite dilution activity coefficients (353.15-393.15 K) of six solvents (benzene, toluene, p-xylene, cyclohexane, acetone and methylethylketone) and activity coefficient at finite concentrations (353.15 K, 373.15 K) of these solvents in poly (ethylene oxide) are measured using gas-chromatographic method. The experimental data are then correlated by a polymer-ASOG model. 18 refs., 2 figs., 3 tabs.

  12. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Li, Yixue; Lin, Yunxuan; Zhang, Haibao; Zhou, Yigang

    2016-11-23

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe 3 O 4 @SiO 2 -MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe 3 O 4 @SiO 2 -MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV-vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe 3 O 4 @SiO 2 -MPS, Fe 3 O 4 @SiO 2 -MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe 3 O 4 @SiO 2 -MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe 3 O 4 @SiO 2 -MPS@PDES-MSPE method in separation of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Science.gov (United States)

    Çabuk, Hasan; Köktürk, Mustafa

    2013-01-01

    A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535

  14. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Hasan Çabuk

    2013-01-01

    Full Text Available A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries.

  15. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein.

    Science.gov (United States)

    Huang, Yanhua; Wang, Yuzhi; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian

    2015-06-02

    Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV-vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L(-1) Na2HPO4 contained 1 mol L(-1) NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Thermodynamic equilibrium of hydroxyacetic acid in pure and binary solvent systems

    International Nuclear Information System (INIS)

    Huang, Qiaoyin; Xie, Chuang; Li, Yang; Su, Nannan; Lou, Yajing; Hu, Xiaoxue; Wang, Yongli; Bao, Ying; Hou, Baohong

    2017-01-01

    Highlights: • Solubility of hydroxyacetic acid in mono-solvents and binary solvent mixtures was measured. • Modified Apelblat, NRTL and Wilson model were used to correlate the solubility data in pure solvents. • CNIBS/R-K and Jouyban-Acree model were used to correlate the solubility in binary solvent mixtures. • The mixing properties were calculated based on the NRTL model. - Abstract: The solubility of hydroxyacetic acid in five pure organic solvents and two binary solvent mixtures were experimentally measured from 273.15 K to 313.15 K at atmospheric pressure (p = 0.1 MPa) by using a dynamic method. The order of solubility in pure organic solvents is ethanol > isopropanol > n-butanol > acetonitrile > ethyl acetate within the investigated temperature range, except for temperature lower than 278 K where the solubility of HA in ethyl acetate is slightly larger than that in acetonitrile. Furthermore, the solubility data in pure solvents were correlated with the modified Apelblat model, NRTL model, and Wilson model and that in the binary solvents mixtures were fitted to the CNIBS/R-K model and Jouyban-Acree model. Finally, the mixing thermodynamic properties of hydroxyacetic acid in pure and binary solvent systems were calculated and discussed.

  17. Cost-Benefit Analysis of Nanoparticle Albumin-Bound Paclitaxel versus Solvent-Based Paclitaxel for the Treatment of Metastatic Breast Cancer in the United States

    Science.gov (United States)

    Vichansavakul, Kittaya

    Breast cancer is the second leading cause of death among women in the US. Although early detection and treatment help to increase survival rates, some unfortunate patients develop metastatic breast cancer that has no cure. Palliative treatment is the main objective in this group of patients in order to prolong life and reduce toxicities from interventions. In the advancement of treatment for metastatic breast cancer, solvent-based paclitaxel has been widely used. However, solvent-based paclitaxel often causes adverse reactions. Therefore, researchers have developed a new chemotherapy based on nanotechnology. One of these drugs is the Nanoparticle albumin-bound Paclitaxel. This nanodrug aims to increase therapeutic index by reducing adverse reactions from solvents and to improve efficacy of conventional cytotoxic chemotherapy. Breast cancer is a disease with high epidemiological and economic burden. The treatment of metastatic breast cancer has not only high direct costs but also high indirect costs. Breast cancer affects mass populations, especially women younger than 50 years of age. It relates to high indirect costs due to lost productivity and premature death because the majority of these patients are in the workforce. Because of the high cost of breast cancer therapies and short survival rates, the question is raised whether the costs and benefits are worth paying or not. Due to the rising costs in healthcare and new financing policies that have been developed to address this issue, economic evaluation is an important aspect of the development and use of any new interventions. To guide policy makers on how to allocate limited healthcare resources in the most efficient and effective manner, many economic evaluation methods can be used to measure the costs, benefits, and impacts of healthcare innovations. Currently, economic evaluation and health outcomes studies have focused greatly on cost-effectiveness and cost-utility analysis. However, the previous studies

  18. Solvent-extraction methods applied to the chemical analysis of uranium. III. Study of the extraction with inert solvents; Metodos de extraccion con disolventes aplicados al analisis quimico del uranio. III. Estudio de la extraccion con disolvente inertes

    Energy Technology Data Exchange (ETDEWEB)

    Vera Palomino, J; Palomares Delgado, F; Petrement Eguiluz, J C

    1964-07-01

    The extraction of uranium on the trace level is studied by using tributylphosphate as active agent under conditions aiming the attainment of quantitative extraction by means of a single step process using a number of salting-out agents and keeping inside the general lines as reported in two precedent papers. Two inert solvents were investigated, benzene and cyclohexane, which allowed to derive the corresponding empirical equations describing the extraction process and the results obtained were compared with those previously reported for solvents which, like ethyl acetate and methylisobuthylketone, favour to a more or less extend the extraction of uranium. (Author) 4 refs.

  19. Organic solvents in electromembrane extraction: recent insights

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2016-01-01

    the introduction. Under the influence of an electrical field, EME is based on electrokinetic migration of the analytes through a supported liquid membrane (SLM), which is an organic solvent immobilized in the pores of the polymeric membrane, and into the acceptor solution. Up to date, close to 150 research...... articles with focus on EME have been published. The current review summarizes the performance of EME with different organic solvents and discusses several criteria for efficient solvents in EME. In addition, the authors highlight their personal perspective about the most promising organic solvents for EME...... and have indicated that more fundamental work is required to investigate and discover new organic solvents for EME....

  20. Enhanced photovoltaic performance of CH3NH3PbBrXI3-X-based perovskite solar cells via anti-solvent extraction

    Science.gov (United States)

    Jiang, Zhaoyi; Zhang, Weijia; Lu, Chaoqun; Ma, Denghao; Liu, Haixu; Yu, Wei; Zhang, Yu; Ma, Qiang; Zhang, Yulong

    2018-06-01

    In this paper, the two-step sequential deposition method was used to prepare the CH3NH3PbBrXI3-X films by introducing CH3NH3Br in the precursors. The surface morphology of the PbI2 films was controlled by anti-solvent extraction (ASE) to improve the microstructure and photo-physical properties of the perovskite films. It was noteworthy that, compared to the compact PbI2 films, the porous PbI2 films facilitated the growth of crystals and bromine incorporation in films, and the prepared perovskite films exhibited enlarged grain size, increased light absorption, enhanced Br incorporation and prolonged carrier lifetime, which resulted in excellent photo-electrical properties of the CH3NH3PbBrXI3-X films. With porous PbI2 templates, the inverted planar perovskite solar cells based on films with appropriate Br incorporation (CH3NH3Br/CH3NH3I mole ratio = 3/7) showed a photovoltaic conversion efficiency (PCE) of 14.9%, and the stability of the devices in air was elevated. Consequently, the high-quality CH3NH3PbBrXI3-X films can be obtained with porous PbI2 templates for improving the performance of the perovskite solar cells.

  1. Morphologies and separation characteristics of polyphenyl sulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition

    International Nuclear Information System (INIS)

    Sani, Nur Aimie Abdullah; Lau, Woei Jye; Ismail, Ahmad Fauzi

    2015-01-01

    The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity

  2. Morphologies and separation characteristics of polyphenyl sulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Nur Aimie Abdullah; Lau, Woei Jye; Ismail, Ahmad Fauzi [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-04-15

    The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity.

  3. Characterization of solvents containing CyMe4-BTPhen in selected cyclohexanone-based diluents after irradiation by accelerated electrons

    Czech Academy of Sciences Publication Activity Database

    Distler, P.; Kondé, J.; John, J.; Hájková, Zuzana; Švehla, Jaroslav; Grüner, Bohumír

    2015-01-01

    Roč. 60, č. 4 (2015), s. 885-891 ISSN 0029-5922 R&D Projects: GA MŠk(CZ) 7G13003 EU Projects: European Commission(XE) 323282 - SACSESS Institutional support: RVO:61388980 Keywords : accelerated electrons * CyMe4-BTPhen * irradiation * radiation stability * solvent extraction Subject RIV: CA - Inorganic Chemistry Impact factor: 0.546, year: 2015

  4. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Mobasseri, Rezvan [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Karimi, Mahdi [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tian, Lingling, E-mail: lingling_tian@nus.edu.sg [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ramakrishna, Seeram [Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China)

    2017-05-01

    Dextran sulfate-chitosan (DS-CS) nanoparticles, which possesses properties such as nontoxicity, biocompatibility and biodegradability have been employed as drug carriers in cancer therapy. In this study, DS-CS nanoparticles were synthesized and their sizes were controlled by a modification of the divalent cations cross-linkers (Ca{sup 2+}, Zn{sup 2+} or Mg{sup 2+}). Based on the optimized processing parameters, lapatinib encapsulated nanoparticles were developed and characterized by Dynamics Light Scattering (DLS) measurements, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Calcium chloride (CaCl{sub 2}) facilitated the formation of bare (100.3 ± 0.80 nm) and drug-loaded nanoparticles (134.3 ± 1.3 nm) with narrow size distributions being the best cross-linker. The surface potential of drug-loaded nanoparticles was − 16.8 ± 0.47 mV and its entrapment and loading efficiency were 76.74 ± 1.73% and 47.36 ± 1.27%, respectively. Cellular internalization of nanoparticles was observed by fluorescence microscopy and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay was used to determine cytotoxicity of bare and drug-loaded nanoparticles in comparison to the free drug lapatinib. The MTT assay showed that drug-loaded nanoparticles had comparable anticancer activity to free drug within a duration of 48 h. The aforementioned results showed that the DS-CS nanoparticles were able to entrap, protect and release the hydrophobic drug, lapatinib in a controlled pattern and could further serve as a suitable drug carrier for cancer therapy. - Highlights: • The best condition to prepare best size (about 100 nm) dextran-chitosan nanoparticles is proposed. • Divalent cationic cross-linker can act as hardener and compress the particles. • Drug/dextran mixing in a toxic solvent free method provides hydrophobic drug encapsulation within a hydrophilic system. • High entrapment efficiency of Lapatinib in polymeric

  5. Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process

    International Nuclear Information System (INIS)

    Qadir, Abdul; Sharma, Manish; Parvareh, Forough; Khalilpour, Rajab; Abbas, Ali

    2015-01-01

    Highlights: • Flexible operation of power and PCC plant may significantly increase operational revenue. • Higher optimal carbon capture rates observed with solar thermal energy input. • Solar thermal repowering of the power plant provides highest net revenue. • Constant optimal capture rate observed for one of the flexible operation cases. • Up to 42% higher revenue generation observed between two cases with solar input. - Abstract: This paper examines flexible operation of solvent-based post-combustion carbon capture (PCC) for the reduction of power plant carbon emissions while minimizing revenue loss due to the reduced power plant electricity output. The study is conducted using a model superstructure enveloping three plants; a power plant, a PCC plant and a solar thermal field where the power plant and PCC plant are operated flexibly under the influence of hourly electricity market and weather conditions. Reduced (surrogate) models for the reboiler duty and auxiliary power requirement for the carbon capture plant are generated and applied to simulate and compare four cases, (A) power plant with PCC, (B) power plant with solar assisted PCC, (C) power plant with PCC and solar repowering – variable net electricity output and (D) power plant with PCC and solar repowering – fixed net electricity output. Such analyses are conducted under dynamic conditions including power plant part-load operation while varying the capture rate to optimize the revenue of the power plant. Each case was simulated with a lower carbon price of $25/tonne-CO 2 and a higher price of $50/tonne-CO 2 . The comparison of cases B–D found that optimal revenue generation for case C can be up to 42% higher than that of solar-assisted PCC (case B). Case C is found to be the most profitable with the lowest carbon emissions intensity and is found to exhibit a constant capture rate for both carbon prices. The optimal revenue for case D is slightly lower than case C for the lower carbon

  6. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    Science.gov (United States)

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  7. Quantification of residual solvents in antibody drug conjugates using gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Medley, Colin D., E-mail: medley.colin@gene.com [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States); Kay, Jacob [Research Pharmaceutical Services, 520 Virginia Dr. Fort, Washington, PA (United States); Li, Yi; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P. [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States)

    2014-11-19

    Highlights: • Sensitive residual solvents detection in ADCs. • 125 ppm QL for common conjugation solvents. • Generic and validatable method. - Abstract: The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.

  8. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  9. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  10. A solvent induced crystallisation method to imbue bioactive ingredients of neem oil into the compact structure of poly (ethylene terephthalate) polyester

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Wazed [Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Sultana, Parveen [Department of Physics, Jadavpur University, Kolkata 700032 (India); Joshi, Mangala [Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Rajendran, Subbiyan, E-mail: sr2@bolton.ac.uk [Institute for Materials Research and Innovation, The University of Bolton, Bolton BL3 5AB (United Kingdom)

    2016-07-01

    Neem oil, a natural antibacterial agent from neem tree (Azadarichtaindica) has been used to impart antibacterial activity to polyester fabrics. Solvent induced polymer modification method was used and that facilitated the easy entry of neem molecules into the compact structure of polyethylene terephthalate (PET) polyester. The polyester fabric was treated with trichloroacetic acid-methylene chloride (TCAMC) solvent system at room temperature prior to treatment with neem oil. The concentration of TCAMC and the treatment time were optimised. XRD and SEM results showed that the TCAMC treatment causes polymer modification and morphological changes in the PET polyester. Antibacterial activity of TCAMC pre-treated and neem-oil-treated polyester fabric was tested using AATCC qualitative and quantitative methods. Both Gram-positive and Gram-negative organisms were used to determine the antimicrobial activity. It was observed that the treated fabric registers substantial antimicrobial activity against both the Staphylococcus aureus (Gram-positive) and the Escherichia coli (Gram-negative) and the effect increases with the increase in concentration of TCAMC treatment. The antibacterial effect remains substantial even after 25 launderings. A kinetic growth study involving the effect of antibacterial activity at various incubation times was carried out. - Highlights: • A novel technique whereby the antibacterial components of neem oil are imbued into the compact structure of PET polyester • Trichloroacetic acid-Methylene Chloride treatment facilitated the easy entry of neem ingredients into the PET structure • Neem oil treated PET registered substantial antibacterial efficacy • Antibacterial effect is retained even after multiple use-wash cycles.

  11. Accurate pKa Calculation of the Conjugate Acids of Alkanolamines, Alkaloids and Nucleotide Bases by Quantum Chemical Methods

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum

  12. Hydrocarbon solvent exposure data: compilation and analysis of the literature.

    Science.gov (United States)

    Caldwell, D J; Armstrong, T W; Barone, N J; Suder, J A; Evans, M J

    2000-01-01

    An occupational exposure database for hydrocarbon solvent end-use applications was constructed from the published literature. The database provides exposure assessment information for such purposes as regulatory risk assessments, support of industry product stewardship initiatives, and identification of applications in which limited exposure data are available. It is quantitative, documented, and based on credible data. Approximately 350 articles containing quantitative hydrocarbon solvent exposure data were identified using a search of computer databases of published literature. Many articles did not report sufficient details of the exposure data for inclusion in the database (e.g., full-shift exposure or task-based exposure data). Others were excluded because only limited summary statistics were provided, which precluded statistical analysis of the data (e.g., arithmetic mean concentration presented, but no sample number). Following evaluation, 16,880 hydrocarbon solvent exposure measurements from 99 articles were entered into a database for analysis. Methods used to identify and evaluate published solvent exposure data are described along with more detailed analysis of worker exposure to hydrocarbon solvents in three major end-use applications: painting and coating, printing, and adhesives. Solvent exposures were evaluated against current ACGIH threshold limit values (TLVs) and trends were identified. Limited quantitative data are available prior to 1970. In general, reported hydrocarbon solvent exposures decreased fourfold from 1960 to 1998, were below the TLVs applicable to specific hydrocarbon solvents at the time, and on average have been below 40% of the TLV since 1980. The database already has proved valuable; however, the utility of published exposure data could be further improved if authors consistently reported essential data elements and supporting information.

  13. Literature Review: Crud Formation at the Liquid/Liquid Interface of TBP-Based Solvent-Extraction Processes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Casella, Amanda J.

    2016-09-30

    This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.

  14. Influence of alkyl chain length and temperature on thermophysical properties of ammonium-based ionic liquids with molecular solvent.

    Science.gov (United States)

    Kavitha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama; Hofman, T

    2012-04-19

    Mixing of ionic liquids (ILs) with molecular solvent can expand the range of structural properties and the scope of molecular interactions between the molecules of the solvents. Exploiting of these phenomena essentially require a basic fundamental understanding of mixing behavior of ILs with molecular solvents. In this context, a series of protic ILs possessing tetra-alkyl ammonium cation [R(4)N](+) with commonly used anion hydroxide [OH](-) were synthesized and characterized by temperature dependent thermophysical properties. The ILs [R(4)N](+)[OH](-) are varying only in the length of alkyl chain (R is methyl, ethyl, propyl, or butyl) of tetra-alkyl ammonium on the cationic part. The ILs used for the present study included tetramethyl ammonium hydroxide [(CH(3))(4)N](+)[OH](-) (TMAH), tetraethyl ammonium hydroxide [(C(2)H(5))(4)N](+)[OH](-) (TEAH), tetrapropyl ammonium hydroxide [(C(3)H(7))(4)N](+)[OH](-) (TPAH) and tetrabutyl ammonium hydroxide [(C(4)H(9))(4)N](+)[OH](-) (TBAH). The alkyl chain length effect has been analyzed by precise measurements such as densities (ρ), ultrasonic sound velocity (u), and viscosity (η) of these ILs with polar solvent, N-methyl-2-pyrrolidone (NMP), over the full composition range as a function of temperature. The excess molar volume (V(E)), the deviation in isentropic compressibility (Δκ(s)) and deviation in viscosity (Δη) were predicted using these properties as a function of the concentration of ILs. Redlich-Kister polynomial was used to correlate the results. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and NMP molecules. Later, the hydrogen bonding features between ILs and NMP were also analyzed using a molecular modeling program with the help of HyperChem 7.

  15. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981 for development of a solvent extraction and liquefaction technology. Development of a brown coal based solvent extraction plant (Research on a primary hydrogenation technology, research on a deliming technology, research on a secondary hydrogenation technology, research on a dehydrogenation technology, and research on liquefaction from catalytic aspect); 1981 nendo sekitan ekika gijutsu no kenkyu kaihatsu seika hokokusho. Yozai chushutsu ekika gijutsu no kaihatsu (kattankei yozai chushutsu plant no kaihatsu (ichiji suiten gijutsu no kenkyu, dakkai gijutsu no kenkyu, niji suiten gijutsu no kenkyu, shokubaimen kara no ekika kenkyu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper describes the achievements in development of brown coal based solvent extraction in the Sunshine Project in fiscal 1981. Element researches were performed to complement and support the development of a liquefaction technology for brown coal produced in Victoria, Australia by using a 50-T/D pilot plant. For the primary hydrogenation technology, a manufacturing experiment was completed by means of nine cycles using a brown coal balancing solvent in a 0.1-t/day bench scale test. Distribution of the formed materials, the solvent properties, and the SRC properties have become nearly constant after 5 to 6 cycles. A test using a batch type device was performed to derive the relationship among dissolution parameters, SRC recovery rates, and deliming rates by using different solvents. For the secondary hydrogenation technology, SRC being the heavy fraction in a primary hydrogenation system (+420 degrees C) was hydrogenated by using an Ni{center_dot}Mo based catalyst at 360 degrees C and 250 kg/cm{sup 2}. A prospect was attained that the processing is possible by using a fixed bed reactor. A test using a small continuous dehydration testing device was carried out by using creosote oil as the solvent and by varying the evaporator operating conditions. Dehydration rate of 90 to 95% was obtained. Discussions were given on selecting catalysts for the secondary hydrogenation of the fixed bed method, and on factors of activity deterioration. A secondary hydrogenation test reactor of the suspended bed method was completed. (NEDO)

  16. Effect of casting solvents and filler quantity on the preparation and physiochemical properties of PVC-bentonite based composite polymeric membranes

    International Nuclear Information System (INIS)

    Hamid, A.; Mukhtar, A.; Ghauri, M. S.; Ali, A.

    2013-01-01

    Two series of Composite Polymeric Membranes (CPMs) based on Poly (Vinyl Chloride) (PVC) and inorganic filler were prepared by solvent casting method, using Tetrahydrofuran (THF) and a mixture of THF and Dimethylsulfoxide (DMSO). The different percentages (5-35 %) of Bentonite clay (79-89 mesh, ASTM) filler were used. The physicochemical parameters of the CPMs i.e. degree of perpendicular swelling, liquid uptake (water, methanol and ethanol), density, ion adsorption capacity (IAC), porosities, electrical resistivity and conductivities were evaluated. The Type-B CPMs cast with THF and DMSO mixture have greater values of the above parameters except density than the Type-A CPMs cast with THF only. The CPMs having more filler show more liquid uptake. The uptake of Water, ethyl alcohol (EtOH), 5M methanol and methanol (MeOH) in Type-B CPMs was found 8-11, 10.12-12.83, 3.40-10.88 and 11.37-15.25 times more than Type-A CPMs. Proton ion adsorption capacity of Type-B CPMs was calculated 2.83 to 8.4 times more than Type-A CPMs. The porosity range of Type-A CPMs was observed 0.0377 to 0.093, 0.0227 to 0.0909, 0.02 to 0.0408 and 0.0476 to 0.1112; whereas porosity range in Type-B CPMs were noted 0.1955 to 0.4919, 0.1477 to 0.4835, 0.115 to 0.2554 and 0.1177 to 0.4447 in deionized water, EtOH, 5M MeOH and MeOH respectively. The conductivity of Type-B CPMs was 150-333 times greater than Type-A CPMs. These all characteristics were compared with pure Poly (Vinyl Chloride) membrane (prepared and studied by same method) cast with DMSO and without DMSO. (author)

  17. Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations

    Directory of Open Access Journals (Sweden)

    Serena Traboni

    2016-12-01

    Full Text Available tert-Butyldimethylsilyl (TBDMS and tert-butyldiphenylsilyl (TBDPS are alcohol protecting groups widely employed in organic synthesis in view of their compatibility with a wide range of conditions. Their regioselective installation on polyols generally requires lengthy reactions and the use of high boiling solvents. In the first part of this paper we demonstrate that regioselective silylation of sugar polyols can be conducted in short times with the requisite silyl chloride and a very limited excess of pyridine (2–3 equivalents. Under these conditions, that can be regarded as solvent-free conditions in view of the insolubility of the polyol substrates, the reactions are faster than in most examples reported in the literature, and can even be further accelerated with a catalytic amount of tetrabutylammonium bromide (TBAB. The strategy proved also useful for either the selective TBDMS protection of secondary alcohols or the fast per-O-trimethylsilylation of saccharide polyols. In the second part of the paper the scope of the silylation approach was significantly extended with the development of unprecedented “one-pot” and “solvent-free” sequences allowing the regioselective silylation/alkylation (or the reverse sequence of saccharide polyols in short times. The developed methodologies represent a very useful and experimentally simple tool for the straightforward access to saccharide building-blocks useful in organic synthesis.

  18. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method.

    Science.gov (United States)

    Zu, Yuangang; Wu, Weiwei; Zhao, Xiuhua; Li, Yong; Zhong, Chen; Zhang, Yin

    2014-12-30

    This study selected γ-cyclodextrin (γ-CD) as the inclusion material and prepared inclusion complex of taxifolin-γ-CD by the emulsion solvent evaporation and the freeze drying combination method to achieve the improvement of the solubility and oral bioavailability of taxifolin. We selected ethyl acetate as the oil phase, deionized water as the water phase. The taxifolin emulsion was prepared using adjustable speed homogenate machine in the process of this experiment, whose particle size was related to the concentration of taxifolin solution, the volume ratio of water phase to oil phase, the speed and time of homogenate. We knew through the single-factor test that, the optimum conditions were: the concentration of taxifolin solution was 40 mg/ml, the volume ratio of water phase to oil phase was 1.5, the speed of homogenate was 5,000 rpm, the homogenate time was 11 min. Taxifolin emulsion with a MPS of 142.5 nm was obtained under the optimum conditions, then the high-concentration taxifolin solution (3mg/ml) was obtained by the rotary evaporation process. Finally, the inclusion complex of taxifolin-γ-CD was prepared by vacuum freeze-dry. The characteristics of the inclusion complex of taxifolin-γ-CD were analyzed using SEM, FTIR, XRD, DSC, and TG. The FTIR results analyzed the interaction of taxifolin and γ-CD and determined the molecular structure of the inclusion complex of taxifolin-γ-CD. The analysis results of XRD, DSC and TG indicated that the inclusion complex of taxifolin-γ-CD was obtained and showed significantly different characteristics with taxifolin. In addition, dissolving capability test, antioxidant capacity test, solvent residue test were also carried out. The experimental datas showed that the solubility of inclusion complex of taxifolin-γ-CD at 25°C and 37°C were about 18.5 times and 19.8 times of raw taxifolin, the dissolution rate of inclusion complex of taxifolin-γ-CD were about 2.84 times of raw taxifolin, the bioavailability of

  19. Organic Solvent Tropical Report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    2000-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines

  20. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  1. Detection and identification of Cu2+ and Hg2+ based on the cross-reactive fluorescence responses of a dansyl-functionalized film in different solvents.

    Science.gov (United States)

    Cao, Yuan; Ding, Liping; Wang, Shihuai; Liu, Yuan; Fan, Junmei; Hu, Wenting; Liu, Ping; Fang, Yu

    2014-01-08

    A dansyl-functionalized fluorescent film sensor was specially designed and prepared by assembling dansyl on a glass plate surface via a long flexible spacer containing oligo(oxyethylene) and amine units. The chemical attachment of dansyl moieties on the surface was verified by contact angle, XPS, and fluorescence measurements. Solvent effect examination revealed that the polarity-sensitivity was retained for the surface-confined dansyl moieties. Fluorescence quenching studies in water declared that the dansyl-functionalized SAM possesses a higher sensitivity towards Hg(2+) and Cu(2+) than the other tested divalent metal ions including Zn(2+), Cd(2+), Co(2+), and Pb(2+). Further measurements of the fluorescence responses of the film towards Cu(2+) and Hg(2+) in three solvents including water, acetonitrile, and THF evidenced that the present film exhibits cross-reactive responses to these two metal ions. The combined signals from the three solvents provide a recognition pattern for both metal ions at a certain concentration and realize the identification between Hg(2+) and Cu(2+). Moreover, using principle component analysis, this method can be extended to identify metal ions that are hard to detect by the film sensor in water such as Co(2+) and Ni(2+).

  2. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  3. Improving the Performances of Random Copolymer Based Organic Solar Cells by Adjusting the Film Features of Active Layers Using Mixed Solvents

    Directory of Open Access Journals (Sweden)

    Xiangwei Zhu

    2015-12-01

    Full Text Available A novel random copolymer based on donor–acceptor type polymers containing benzodithiophene and dithienosilole as donors and benzothiazole and diketopyrrolopyrrole as acceptors was designed and synthesized by Stille copolymerization, and their optical, electrochemical, charge transport, and photovoltaic properties were investigated. This copolymer with high molecular weight exhibited broad and strong absorption covering the spectra range from 500 to 800 nm with absorption maxima at around 750 nm, which would be very conducive to obtaining large short-circuits current densities. Unlike the general approach using single solvent to prepare the active layer film, mixed solvents were introduced to change the film feature and improve the morphology of the active layer, which lead to a significant improvement of the power conversion efficiency. These results indicate that constructing random copolymer with multiple donor and acceptor monomers and choosing proper mixed solvents to change the characteristics of the film is a very promising way for manufacturing organic solar cells with large current density and high power conversion efficiency.

  4. D-A type sensor array for differentiation and identification of white wine varieties based on specific solvent effect activated by CT-LE transition

    Science.gov (United States)

    Han, Jingqi; Zhang, Xin; Li, Hao; Hou, Yue; Hou, Jingdan; Li, Zhongfeng; Yang, Feng; Liu, Yang; Han, Tianyu

    2018-02-01

    In this work, we synthesize a series of compounds with electron donor (D) and acceptor (A) units. They show general solvent effect in aprotic solvents, suggesting a charge transfer (CT) process. While in protic solvents including water, ethanol and methanol, the spectra exert no polarity-dependence but a remarkable hypochromatic shift together with the fading of CT band. Dynamic analysis implies that intermolecular hydrogen bond will be formed between carboxylic acid and protic solvent, boosting another deactivation pathway that jumps off a bigger energy gap, in other words, favoring the locally excited (LE) state emission. The CT-LE transition involves variations in both absorption and emission spectra, and further poses competition with other mechanisms including activated/restricted intramolecular rotation (IR/RIR). Inspired by the cross-reactivity, we turn our attention to the development of sensor array, in order to identify white wine varieties. The differential spectral responses are recorded, generating multiple factors including absorption wavelength (λab), emission wavelength (λem), absorbance (Abs.) and emission intensity (Int.). These factors are processed with principal component analysis (PCA), creating a three-dimensional fingerprint data base for white wines. The data points in the coordinate system are clustered into 10 different groups, demonstrating a clear differentiation of all the white wines. More importantly, as our final test for whether the sensor array can identify the counterfeits, an adulterated liquor sample, which is provided by police officers, is fingerprinted on the three-dimensional diagram. Its canonical factors fall into an area distinct from the adulterated wine, indicating a clear identification.

  5. The effect of macromolecular crowding on the electrostatic component of barnase-barstar binding: a computational, implicit solvent-based study.

    Directory of Open Access Journals (Sweden)

    Helena W Qi

    Full Text Available Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder-protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein-protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase-barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders, this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered "effective" solvent dielectric to account for crowding, although the "best" effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the

  6. A nodal method based on matrix-response method

    International Nuclear Information System (INIS)

    Rocamora Junior, F.D.; Menezes, A.

    1982-01-01

    A nodal method based in the matrix-response method, is presented, and its application to spatial gradient problems, such as those that exist in fast reactors, near the core - blanket interface, is investigated. (E.G.) [pt

  7. The disposal of radioactive solvent waste

    International Nuclear Information System (INIS)

    Dean, B.; Baker, W.T.

    1976-01-01

    As the use of radioisotope techniques increases, laboratories are faced with the problem of disposing of considerable quantities of organic solvent and aqueous liquid wastes. Incineration or collection by a waste contractor both raise problems. Since most of the radiochemicals are preferentially water soluble, an apparatus for washing the radiochemicals out into water and discharging into the normal drainage system in a high diluted form is described. Despite the disadvantages (low efficiency, high water usuage, loss of solvent in presence of surface active agents, precipitation of phosphors from dioxan based liquids) it is felt that the method has some merit if a suitably improved apparatus can be designed at reasonable cost. (U.K.)

  8. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Canyon solvent cleaning with activated alumina

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    This paper presents recent work at SRL concerning the cleaning of solvent extraction solvent used at SRP. The paper explains why we undertook the work, and some laboratory studies on two approaches to solvent cleaning, namely extended carbonate washing and use of solid adsorbents. The paper then discusses scale-up of the preferred method and the results of the full-scale cleaning. 19 figs

  10. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, T. D. [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Schnieders, M. J. [Department of Chemistry, Stanford, California (United States); Brunger, A. T., E-mail: brunger@stanford.edu [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford, California (United States)

    2010-09-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R{sub free} and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography.

  11. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    International Nuclear Information System (INIS)

    Fenn, T. D.; Schnieders, M. J.; Brunger, A. T.

    2010-01-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R free and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography

  12. [Bases and methods of suturing].

    Science.gov (United States)

    Vogt, P M; Altintas, M A; Radtke, C; Meyer-Marcotty, M

    2009-05-01

    If pharmaceutic modulation of scar formation does not improve the quality of the healing process over conventional healing, the surgeon must rely on personal skill and experience. Therefore a profound knowledge of wound healing based on experimental and clinical studies supplemented by postsurgical means of scar management and basic techniques of planning incisions, careful tissue handling, and thorough knowledge of suturing remain the most important ways to avoid abnormal scarring. This review summarizes the current experimental and clinical bases of surgical scar management.

  13. Some regularities in formation and solvent extraction of complexes in metal-salicylic acid or its derivative- organic base systems

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Fadeeva, V.I.; Tikhomirova, T.I.

    1982-01-01

    The influence of concentrations of the reagents, pH and solvent on the conditions for the formation and extraction of Sc, Ti, Zr, Hf, Th complexes has been examined in salicylic acid (H 2 Sal)-heterocyclic amine systems. The extraction chemism and factors, which affect the reactions between the metal ions and the ligands, are discussed. It has been shown that Zr, Hf, Ti form species of ion associate type, Sc and Th form different-ligand complexes under conditions for interphase equilibrium in a Me-H 2 Sal-heterocyclic amine system

  14. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  15. Distribution of radioisotopes between some solvents and filter papers, 1- principle of the method and a study on Sb(V) isotopes. Vol. 3

    International Nuclear Information System (INIS)

    Zakareia, N.; Nofal, M.; El-Sweify, F.; Alian, A.

    1996-01-01

    A procedure was described for the separation of thorium-234 (UX1) from uranyl nitrate by dissolving the latter in diethyl ether and placing the solution in a beaker containing filter paper at its bottom. UX1 was almost completely absorbed on the filter paper and could be eluted therefrom by a dilute acid solution. This idea was generalized to involve other isotopes and solvents. In the present work, a study is conducted on the distribution of the radioisotopes of antimony ( 122 Sb and 1 24 Sb) in the trivalent and pentavalent states between nonpolar solvents (benzene, toluene, xylene, chloroform or carbon tetrachloride), and filter papers. Antimony in each oxidation state was first extracted as antimony chloride (Sb Cl 3 or Sb Cl 5 ) from a strong sulphuric acid solution by any of the above mentioned solvents. Two equal aliquots (20 M1) of each loaded solvent were then placed in two similar beakers, one of them having at its bottom a filter paper of the same inner diameter of the beaker. Adsorption of antimony was followed by measuring 1 m1 portions of the two solvent solutions at various intervals of time. It has been found from the activity of the solvent solution-time that appreciable adsorption on the filter paper takes place within few hours. The adsorption rate varies with the solvent. The results are discussed in the light of known theories of adsorption; and also the possibility of separation of the two oxidation states of antimony. 6 figs

  16. Based on Penalty Function Method

    Directory of Open Access Journals (Sweden)

    Ishaq Baba

    2015-01-01

    Full Text Available The dual response surface for simultaneously optimizing the mean and variance models as separate functions suffers some deficiencies in handling the tradeoffs between bias and variance components of mean squared error (MSE. In this paper, the accuracy of the predicted response is given a serious attention in the determination of the optimum setting conditions. We consider four different objective functions for the dual response surface optimization approach. The essence of the proposed method is to reduce the influence of variance of the predicted response by minimizing the variability relative to the quality characteristics of interest and at the same time achieving the specific target output. The basic idea is to convert the constraint optimization function into an unconstraint problem by adding the constraint to the original objective function. Numerical examples and simulations study are carried out to compare performance of the proposed method with some existing procedures. Numerical results show that the performance of the proposed method is encouraging and has exhibited clear improvement over the existing approaches.

  17. Comparison of the production of solvent based on fossil and renewable raw material with regard to their VOC-emissions

    International Nuclear Information System (INIS)

    Moederl, U.

    1993-10-01

    There are three principle ways for the treatment of phytogenic raw materials: biotechnological processes, pyrolysis and gasification, and the utilisation of phytogenic oils and resins. Because of the last possibility the evaporation times of these compounds were modelled to be able to classify these emissions either natural or not. A rough estimation shows that α-Pinen as the main component of Austrian turpentine oil evaporates within one month - which is much faster than the minimum time for rot. The consequence is that the use of these solvents does not effect the total VOC-emissions because they may be considered as delayed biogenic emissions at different locations. The comparison of the biotechnological processes is done for the following solvents which are also most important basic chemicals for other organic technologies: methanol, ethanol, and methane. The emissions of the production of acetone and butanol can only be estimated in comparison to ethanol. The least amount of VOC-emissions for the production of ethanol is released by using sugar-beet as raw material. The emissions are only insignificantly higher by starting from crude-oil and setting the balance boundaries to Austria. Using wheat is worse and calculating all emissions of the crude-oil processes - including the emissions abroad - is worst. There is no significant difference between conventional and organic farming. (Suda)

  18. COMPANY VALUATION METHODS BASED ON PATRIMONY

    Directory of Open Access Journals (Sweden)

    SUCIU GHEORGHE

    2013-02-01

    Full Text Available The methods used for the company valuation can be divided into 3 main groups: methods based on patrimony,methods based on financial performance, methods based both on patrimony and on performance. The companyvaluation methods based on patrimony are implemented taking into account the balance sheet or the financialstatement. The financial statement refers to that type of balance in which the assets are arranged according to liquidity,and the liabilities according to their financial maturity date. The patrimonial methods are based on the principle thatthe value of the company equals that of the patrimony it owns. From a legal point of view, the patrimony refers to allthe rights and obligations of a company. The valuation of companies based on their financial performance can be donein 3 ways: the return value, the yield value, the present value of the cash flows. The mixed methods depend both onpatrimony and on financial performance or can make use of other methods.

  19. High-throughput determination of octanol/water partition coefficients using a shake-flask method and novel two-phase solvent system.

    Science.gov (United States)

    Morikawa, Go; Suzuka, Chihiro; Shoji, Atsushi; Shibusawa, Yoichi; Yanagida, Akio

    2016-01-05

    A high-throughput method for determining the octanol/water partition coefficient (P(o/w)) of a large variety of compounds exhibiting a wide range in hydrophobicity was established. The method combines a simple shake-flask method with a novel two-phase solvent system comprising an acetonitrile-phosphate buffer (0.1 M, pH 7.4)-1-octanol (25:25:4, v/v/v; AN system). The AN system partition coefficients (K(AN)) of 51 standard compounds for which log P(o/w) (at pH 7.4; log D) values had been reported were determined by single two-phase partitioning in test tubes, followed by measurement of the solute concentration in both phases using an automatic flow injection-ultraviolet detection system. The log K(AN) values were closely related to reported log D values, and the relationship could be expressed by the following linear regression equation: log D=2.8630 log K(AN) -0.1497(n=51). The relationship reveals that log D values (+8 to -8) for a large variety of highly hydrophobic and/or hydrophilic compounds can be estimated indirectly from the narrow range of log K(AN) values (+3 to -3) determined using the present method. Furthermore, log K(AN) values for highly polar compounds for which no log D values have been reported, such as amino acids, peptides, proteins, nucleosides, and nucleotides, can be estimated using the present method. The wide-ranging log D values (+5.9 to -7.5) of these molecules were estimated for the first time from their log K(AN) values and the above regression equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    Science.gov (United States)

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  1. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    To control chemical hazards in work places, substitution of harmful substances with less harmful or non-toxic products is now a method used in many countries and in many companies. It has previously been demonstrated that it is desirable and possible to use non-volatile, low-toxic vegetable...... cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  2. Experimental and theoretical analysis of the rate of solvent equilibration in the hanging drop method of protein crystal growth

    Science.gov (United States)

    Fowlis, William W.; Delucas, Lawrence J.; Twigg, Pamela J.; Howard, Sandra B.; Meehan, Edward J.

    1988-01-01

    The principles of the hanging-drop method of crystal growth are discussed, and the rate of water evaporation in a water droplet (containing protein, buffer, and a precipitating agent) suspended above a well containing a double concentration of precipitating agent is investigated theoretically. It is shown that, on earth, the rate of evaporation may be determined from diffusion theory and the colligative properties of solutions. The parameters affecting the rate of evaporation include the temperature, the vapor pressure of water, the ionization constant of the salt, the volume of the drop, the contact angle between the droplet and the coverslip, the number of moles of salt in the droplet, the number of moles of water and salt in the well, the molar volumes of water and salt, the distance from the droplet to the well, and the coefficient of diffusion of water vapor through air. To test the theoretical equations, hanging-drop experiments were conducted using various reagent concentrations in 25-microliter droplets and measuring the evaporation times at 4 C and 25 C. The results showed good agreement with the theory.

  3. Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience

    Directory of Open Access Journals (Sweden)

    Sanjana Dhingra

    2017-05-01

    Full Text Available Oxidative degradation is a serious concern for upscaling of amine-based carbon capture technology. Different kinetic models have been proposed based on laboratory experiments, however the kinetic parameters included are limited to those relevant for a lab-scale system and not a capture plant. Besides, most of the models fail to recognize the catalytic effect of metals. The objective of this work is to develop a representative kinetic model based on an apparent auto-catalytic reaction mechanism between solvent degradation, corrosion and ammonia emissions. Measurements from four different pilot plants: (i EnBW’s plant at Heilbronn, Germany (ii TNO’s plant at Maasvlakte, The Netherlands; (iii CSIRO’s plants at Loy Yang and Tarong, Australia and (iv DONG Energy’s plant at Esbjerg, Denmark are utilized to propose a degradation kinetic model for 30 wt % ethanolamine (MEA as the capture solvent. The kinetic parameters of the model were regressed based on the pilot plant campaign at EnBW. The kinetic model was validated by comparing it with the measurements at the remaining pilot campaigns. The model predicted the trends of ammonia emissions and metal concentration within the same order of magnitude. This study provides a methodology to establish a quantitative approach for predicting the onset of unacceptable degradation levels which can be further used to devise counter-measure strategies such as reclaiming and metal removal.

  4. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    Science.gov (United States)

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Emulsion-Based RIR-MAPLE Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance.

    Science.gov (United States)

    Ge, Wangyao; Li, Nan K; McCormick, Ryan D; Lichtenberg, Eli; Yingling, Yaroslava G; Stiff-Roberts, Adrienne D

    2016-08-03

    Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.

  6. Thermodynamic properties of L-Theanine in different solvents

    International Nuclear Information System (INIS)

    Zhou, Fuli; Hou, Baohong; Tao, Xiaolong; Hu, Xiaoxue; Huang, Qiaoyin; Zhang, Zaixiang; Wang, Yongli; Hao, Hongxun

    2017-01-01

    Highlights: • The solubility data of L-Theanine in different solvents were measured by using an equilibrium method. • Several models were used to correlate the experimental solubility data. • The mixing thermodynamic properties were calculated. - Abstract: The solubility data of L-Theanine in pure water and three kinds of water + organic solvent mxitures were measured in temperature ranges from (278.15 to 13.15) K by using an equilibrium method. The results show that the solubility of L-Theanine increases with the increasing of temperature in all selected solvents. The modified Apelblat equation and the λ-h model were applied to correlate the solubility data in pure water, while the modified Apelblat equation, the λ-h model, the NRTL model and the Jouyban–Acree model were applied to correlate the solubility data in binary solvent mixtures. Furthermore, the mixing thermodynamic properties of L-Theanine in different solvents were also calculated based on the NRTL model and experimental solubility data.

  7. Prediction of the solubility in lipidic solvent mixture: Investigation of the modeling approach and thermodynamic analysis of solubility.

    Science.gov (United States)

    Patel, Shruti V; Patel, Sarsvatkumar

    2015-09-18

    Self-micro emulsifying drug delivery system (SMEDDS) is one of the methods to improve solubility and bioavailability of poorly soluble drug(s). The knowledge of the solubility of pharmaceuticals in pure lipidic solvents and solvent mixtures is crucial for designing the SMEDDS of poorly soluble drug substances. Since, experiments are very time consuming, a model, which allows for solubility predictions in solvent mixtures based on less experimental data is desirable for efficiency. Solvents employed were Labrafil® M1944CS and Labrasol® as lipidic solvents; Capryol-90®, Capryol-PGMC® and Tween®-80 as surfactants; Transcutol® and PEG-400 as co-solvents. Solubilities of both drugs were determined in single solvent systems at temperature (T) range of 283-333K. In present study, we investigated the applicability of the thermodynamic model to understand the solubility behavior of drugs in the lipiodic solvents. By using the Van't Hoff and general solubility theory, the thermodynamic functions like Gibbs free energy, enthalpy and entropy of solution, mixing and solvation for drug in single and mixed solvents were understood. The thermodynamic parameters were understood in the framework of drug-solvent interaction based on their chemical similarity and dissimilarity. Clotrimazole and Fluconazole were used as active ingredients whose solubility was measured in single solvent as a function of temperature and the data obtained were used to derive mathematical models which can predict solubility in multi-component solvent mixtures. Model dependent parameters for each drug were calculated at each temperature. The experimental solubility data of solute in mixed solvent system were measured experimentally and further correlated with the calculates values obtained from exponent model and log-linear model of Yalkowsky. The good correlation was observed between experimental solubility and predicted solubility. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. In situ analysis of negative-tone resist pattern formation using organic-solvent-based developer process

    Science.gov (United States)

    Santillan, Julius Joseph; Yamada, Keisaku; Itani, Toshiro

    2014-01-01

    In situ resist “pattern formation” analysis during the development process using high-speed atomic force microscopy has been improved for application not only for conventional aqueous 0.26 N tetramethylammonium hydroxide (aq. TMAH), but also organic solvent n-butyl acetate (nBA) developers. Comparative investigations of resist dissolution in these developers, using the same resist material (hybrid of polyhydroxystyrene and methacrylate), showed a grainlike, uniform dissolution of the “unexposed resist film” in nBA development and uneven dissolution of the “exposed resist film” in aq. TMAH development. These results suggest the importance of dissolution uniformity in further improving the resulting pattern line width roughness.

  9. Risk assessment for halogenated solvents

    International Nuclear Information System (INIS)

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area

  10. Advances in the sample preparation and the detector for a combined solvent extraction-liquid scintillation method of low-level plutonium measurement

    International Nuclear Information System (INIS)

    Perdue, P.T.; Christian, D.J.; Thorngate, J.H.; McDowell, W.J.; Case, G.N.

    1976-07-01

    A combined solvent extraction-liquid scintillation technique, developed at Oak Ridge National Laboratory (ORNL), has many possible applications to the determination of low levels of plutonium and other alpha-emitting nuclides. Using these procedures, plutonium can be extracted from biological or environmental samples and introduced directly into a liquid scintillator. Quenching of the scintillator is thus minimized so that spectroscopic techniques may be employed. Existing chemical procedures and counting equipment were reviewed and improved. Purification of the di(2-ethylhexyl)phosphoric acid (used as the actinide extractant) was found necessary. Destruction of organic material in the sample and control of the valence state of plutonium were found to be major sources of irreproducibility. Methods were developed to allow samples separated with commonly used ion exchange techniques to be extracted into the scintillator. Comparisons were made of a wide variety of the components and parameters of the detector system to find the best combination of pulse-height resolution and pulse-shape discrimination. When a single phototube was used, optimum performance was obtained using a hemispherical reflector-sample holder viewed sideways by an RCA 8575 photomultiplier tube used in conjunction with a special integrating preamplifier and a good quality linear amplifier that used delay lines to shape the pulses

  11. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity

    Directory of Open Access Journals (Sweden)

    Flávia L. M. Jesus

    2017-01-01

    Full Text Available Andiroba (Carapa guianensis seeds are the source of an oil with a wide range of biological activities and ethnopharmacological uses. However, few studies have devoted attention to innovative formulations, including nanoemulsions. The present study aimed to obtain a colloidal system with the andiroba oil using a low-energy and organic-solvent-free method. Moreover, the preliminary residual larvicidal activity of the nanoemulsion against Aedes aegypti was evaluated. Oleic and palmitic acids were the major fatty acids, in addition to the phytosterol β-sitosterol and limonoids (tetranortriterpenoids. The required hydrophile-lipophile was around 11.0 and the optimal nanoemulsion was obtained using polysorbate 85. The particle size distribution suggested the presence of small droplets (mean diameter around 150 nm and low polydispersity index (around 0.150. The effect of temperature on particle size distribution revealed that no major droplet size increase occurred. The preliminary residual larvicidal assay suggested that the mortality increased as a function of time. The present study allowed achievement of a potential bioactive oil in water nanoemulsion that may be a promising controlled release system. Moreover, the ecofriendly approach involved in the preparation associated with the great bioactive potential of C. guianensis makes this nanoemulsion very promising for valorization of this Amazon raw material.

  12. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    Science.gov (United States)

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

  13. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    Energy Technology Data Exchange (ETDEWEB)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  14. Review of recent ORNL studies in solvent cleanup and diluent degradation. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1982-01-01

    Testing of solvent cleanup methods to replace the use of sodium carbonate in the Purex process has been ongoing for several years in order to reduce the quantity of waste sodium nitrate generated and to improve phase separation. Alternate solvent cleanup methods include the use of packed columns of base-treated silica gel or solvent scrubbing with hydrazine oxalate. Degradation of the diluent was shown to generate long-chain organic acids which appear to be the major culprits in the phase separation problems encountered in sodium carbonate scrubbers. Solvent scrubbing with hydrazine oxalate gives improved phase separations. Solvent cleanup in columns packed with base-treated silica gel avoids the phase separation problem since a dispersable aqueous phase is not present. Removals of TBP degradation products and metal-ion complexes by sodium carbonate, hydrazine salts, or by packed beds of base-treated silica gel are all satisfactory. Solvent scrubbing by hydrazine oxalate solutions is the prime candidate for solvent cleanup in fuel reprocessing plants

  15. Effects of polar protic solvents on dual emissions of 3 ...

    Indian Academy of Sciences (India)

    TECS

    Figure 1. Scheme of the ESIPT reaction of 3-hydroxy- chromone, 1. Chart 1. Chemical structures of the studied ... Materials and methods. Absorption and ... 85. Table 1. Spectroscopic properties of 3HC dyes in different polar solvents.a. Solvent.

  16. 90Y and 90Sr separation from hydrochloric acid solutions using TODGA as the extractant by solvent extraction and SLM methods

    International Nuclear Information System (INIS)

    Dutta, S.; Raut, D.R.; Mohapatra, P.K.; Manchanda, V.K.

    2010-01-01

    Yttrium-90 is an important radionuclide known for its therapeutic application in nuclear medicine. It is a pure β-emitter with no associated gamma rays and decays to stable daughter 90 Zr. Suitability of this isotope is because of its short half-life (t 1/2 = 64.2 hrs) and high β emissions (E max = 2.28 MeV. An important source of 90 Y is through the decay of 90 Sr, which produces carrier free isotope. 90 Sr (t 1/2 28 yrs) attains secular equilibrium with 90 Y in a short period and can serve as a long term source for the latter isotope because of relatively long half-life of the parent isotope. Solvent extraction studies with N,N,N',N'-tetra-octyldiglycolamide (TODGA) has shown that Y(III) is well extracted in 6 M HCI while at the same time, extraction of Sr(II) is very low leading to a separation factor (D Y /D Sr = 60,000). This property of TODGA can be exploited for the separation of Y from Sr. In the present work, Supported Liquid Membrane (SLM) based separation of Y and Sr has been explored using TODGA as the carrier

  17. Extensive Evaluation of the Conductor-like Screening Model for Real Solvents Method in Predicting Liquid-Liquid Equilibria in Ternary Systems of Ionic Liquids with Molecular Compounds.

    Science.gov (United States)

    Paduszyński, Kamil

    2018-04-12

    A conductor-like screening model for real solvents (COSMO-RS) is nowadays one of the most popular and commonly applied tools for the estimation of thermodynamic properties of complex fluids. The goal of this work is to provide a comprehensive review and analysis of the performance of this approach in calculating liquid-liquid equilibrium (LLE) phase diagrams in ternary systems composed of ionic liquid and two molecular compounds belonging to diverse families of chemicals (alkanes, aromatics, S/N-compounds, alcohols, ketones, ethers, carboxylic acid, esters, and water). The predictions are presented for extensive experimental database, including 930 LLE data sets and more than 9000 data points (LLE tie lines) reported for 779 unique ternary mixtures. An impact of the type of molecular binary subsystem on the accuracy of predictions is demonstrated and discussed on the basis of representative examples. The model's capability of capturing qualitative trends in the LLE distribution ratio and selectivity is also checked for a number of structural effects. Comparative analysis of two levels of quantum chemical theory (BP-TZVP-COSMO vs BP-TZVPD-FINE) for the input molecular data for COSMO-RS is presented. Finally, some general recommendations for the applicability of the model are indicated based on the analysis of the global performance as well as on the results obtained for systems relevant from the point of view of important separation problems.

  18. Benchmarking Continuum Solvent Models for Keto-Enol Tautomerizations.

    Science.gov (United States)

    McCann, Billy W; McFarland, Stuart; Acevedo, Orlando

    2015-08-13

    Experimental free energies of tautomerization, ΔGT, were used to benchmark the gas-phase predictions of 17 different quantum mechanical methods and eight basis sets for seven keto-enol tautomer pairs dominated by their enolic form. The G4 method and M06/6-31+G(d,p) yielded the most accurate results, with mean absolute errors (MAE's) of 0.95 and 0.71 kcal/mol, respectively. Using these two theory levels, the solution-phase ΔGT values for 23 unique tautomer pairs composed of aliphatic ketones, β-dicarbonyls, and heterocycles were computed in multiple protic and aprotic solvents. The continuum solvation models, namely, polarizable continuum model (PCM), polarizable conductor calculation model (CPCM), and universal solvation model (SMD), gave relatively similar MAE's of ∼1.6-1.7 kcal/mol for G4 and ∼1.9-2.0 kcal/mol with M06/6-31+G(d,p). Partitioning the tautomer pairs into their respective molecular types, that is, aliphatic ketones, β-dicarbonyls, and heterocycles, and separating out the aqueous versus nonaqueous results finds G4/PCM utilizing the UA0 cavity to be the overall most accurate combination. Free energies of activation, ΔG(‡), for the base-catalyzed keto-enol interconversion of 2-nitrocyclohexanone were also computed using six bases and five solvents. The M06/6-31+G(d,p) reproduced the ΔG(‡) with MAE's of 1.5 and 1.8 kcal/mol using CPCM and SMD, respectively, for all combinations of base and solvent. That specific enolization was previously proposed to proceed via a concerted mechanism in less polar solvents but shift to a stepwise mechanism in more polar solvents. However, the current calculations suggest that the stepwise mechanism operates in all solvents.

  19. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  20. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL

    2012-06-01

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

  1. Principles of Developing Multi-Pesticide Methods Based on HPLC Determination

    Energy Technology Data Exchange (ETDEWEB)

    Dudar, E. [Plant Protection & Soil Conservation Service of Budapest, Budapest (Hungary)

    2009-07-15

    Principles for the development of multi-pesticide methods based on HPLC determination are outlined. Flow charts and block diagrams give guidance on how to proceed stepwise in the set-up of respective analytical methods. Detailed information is provided on what to take into consideration for setting up a pesticide formulation analysis method. HPLC variables like the types of column, solvents and their strength, pH value, eluent modifiers, column temperature, etc, and the influence on the separation and resolution of chromatographic peaks are discussed as well as the necessity and benefits of internal standardization. Examples of system suitability testing experiments are given for illustration. (author)

  2. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    This article is an overview of efforts at INEL to reduce the generation of hazardous wastes through the elimination of hazardous solvents. To aid in their efforts, a number of databases have been developed and will become a part of an Integrated Solvent Substitution Data System. This latter data system will be accessible through Internet

  3. The hybrid MPC-MINLP algorithm for optimal operation of coal-fired power plants with solvent based post-combustion CO2 capture

    Directory of Open Access Journals (Sweden)

    Norhuda Abdul Manaf

    2017-03-01

    Full Text Available This paper presents an algorithm that combines model predictive control (MPC with MINLP optimization and demonstrates its application for coal-fired power plants retrofitted with solvent based post-combustion CO2 capture (PCC plant. The objective function of the optimization algorithm works at a primary level to maximize plant economic revenue while considering an optimal carbon capture profile. At a secondary level, the MPC algorithm is used to control the performance of the PCC plant. Two techno-economic scenarios based on fixed (capture rate is constant and flexible (capture rate is variable operation modes are developed using actual electricity prices (2011 with fixed carbon prices ($AUD 5, 25, 50/tonne-CO2 for 24 h periods. Results show that fixed operation mode can bring about a ratio of net operating revenue deficit at an average of 6% against the superior flexible operation mode.

  4. Nab-paclitaxel, docetaxel, or solvent-based paclitaxel in metastatic breast cancer: a cost-utility analysis from a Chinese health care perspective

    Directory of Open Access Journals (Sweden)

    Dranitsaris G

    2015-05-01

    Full Text Available George Dranitsaris,1 Bo Yu,2 Jennifer King,3 Satyin Kaura,3 Adams Zhang3 1Augmentium Pharma Consulting Inc., Toronto, ON, Canada; 2Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; 3Celgene Corporation, Summit, NJ, USA Background: Paclitaxel and docetaxel are commonly used for metastatic breast cancer in the People’s Republic of China. To improve the safety and efficacy of paclitaxel, an albumin-bound formulation (nab is now available in the People's Republic of China (Abraxane®. To provide health economic data for the key stakeholders, a cost-utility analysis comparing nab-paclitaxel to docetaxel, both as alternatives to paclitaxel, was conducted. Methods: A meta-analysis of clinical outcomes Phase III trials comparing nab-paclitaxel (260 mg/m2 every [q] 3 weeks or branded docetaxel (100 mg/m2 q 3 weeks, to solvent-based branded paclitaxel (175 mg/m2 q 3 weeks was undertaken to provide safety and clinical data. Resource use data for the delivery of anticancer therapy and for the treatment of grade 3/4 toxicity was collected from a time and motion study conducted in three Chinese cancer centers and from a survey of clinicians. Using the Time Trade-Off technique, health utility estimates were derived from interviewing 28 breast cancer patients from one cancer center in the People's Republic of China. All costs were reported in 2014 US dollars. Results: Nab-paclitaxel had the most favorable safety profile, characterized with the lowest incidence of grade 3/4 neutropenia, febrile neutropenia, anemia, and stomatitis. When the median number of cycles delivered from the clinical trials was applied, nab-paclitaxel had a cost per course of $19,752 compared with $8,940 and $13,741 for paclitaxel and docetaxel, respectively. As an alternative to paclitaxel, the cost per quality-adjusted life-year (QALY gained with nab-paclitaxel suggested better value than with docetaxel ($57,900 vs $130,600. Conclusion: Nab

  5. Fabrication of Fucoxanthin-Loaded Microsphere(F-LM) By Two Steps Double-Emulsion Solvent Evaporation Method and Characterization of Fucoxanthin before and after Microencapsulation.

    Science.gov (United States)

    Noviendri, Dedi; Jaswir, Irwandi; Taher, Muhammad; Mohamed, Farahidah; Salleh, Hamzah Mohd; Noorbatcha, Ibrahim Ali; Octavianti, Fitri; Lestari, Widya; Hendri, Ridar; Ahmad, Hasna; Miyashita, Kazuo; Abdullah, Alias

    2016-08-01

    Microencapsulation is a promising approach in drug delivery to protect the drug from degradation and allow controlled release of the drug in the body. Fucoxanthin-loaded microsphere (F-LM) was fabricated by two step w/o/w double emulsion solvent evaporation method with poly (L-lactic-coglycolic acid) (PLGA) as carrier. The effect of four types of surfactants (PVA, Tween-20, Span-20 and SDS), homogenization speed, and concentration of PLGA polymer and surfactant (PVA), respectively, on particle size and morphology of F-LM were investigated. Among the surfactants tested, PVA showed the best results with smallest particle size (9.18 µm) and a smooth spherical surface. Increasing the homogenization speed resulted in a smaller mean F-LM particle size [d(0.50)] from 17.12 to 9.18 µm. Best particle size results and good morphology were attained at homogenization speed of 20 500 rpm. Meanwhile, increased PLGA concentration from 1.5 to 11.0 (% w/v) resulted in increased F-LM particle size. The mean particle size [d(0.5)] of F-LM increased from 3.93 to 11.88 µm. At 6.0 (% w/v) PLGA, F-LM showed the best structure and external morphology. Finally, increasing PVA concentration from 0.5 to 3.5 (% w/v) resulted in decreased particle size from 9.18 to 4.86 µm. Fucoxanthin characterization before and after microencapsulation was carried out to assess the success of the microencapsulation procedure. Thermo gravimetry analysis (TGA), glass transition (Tg) temperature of F-LM and fucoxanthin measured using DSC, ATR-FTIR and XRD indicated that fucoxanthin was successfully encapsulated into the PLGA matrix, while maintaining the structural and chemical integrity of fucoxanthin.

  6. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.

    Science.gov (United States)

    Goyal, Bhupesh; Srivastava, Kinshuk Raj; Durani, Susheel

    2017-06-01

    Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine-based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N-terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine-based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac-Pro-Pro-Ala-Lys-Ala-Lys-Ala-Lys-Ala-NH 2 ) is designed to assess the effect of N-terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac-Pro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) and A3 (Ac-dPro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) with N-terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i, i + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1, A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature-dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β-strand conformation, which is consistent with the previous studies. The results illuminate the effect of N-terminal diproline and charged side chains in dictating the preferences for extended-β, semi-extended PPII and helical conformation in alanine-based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide

  7. Study on Yen Phu rare earth ore concentrate treatment technology and separation of major heavy rare earth elements by solvent extraction method

    International Nuclear Information System (INIS)

    Le Ba Thuan; Pham Quang Trung; Vu Lap Lai

    2003-01-01

    1. Yenphu rare earth ore concentrate treatment by alkali under pressure: On the base of studying mineral and chemical compositions of Yenphu rare earth ore concentrate containing 28% TREO and conditions for digestion of ore concentrate by alkali under pressure such as ore concentrate/ NaOH ratio, alkali concentration, pressure and temperature at bench scale (100 gram and 5 kg per batch), the optimal conditions for decomposition of REE ore concentrate have been determined. The yield of the decomposition stage is about 90%. The studies on alkali washing, REE leaching by HCl, pH for leaching process, and iron and radioactive impurities removing by Na 2 S + Na 2 PO 4 have been carried out. The obtained results show that mixture of Na 2 S 5% + Na2PO 4 1% is effective in iron and radioactive impurities removing. The obtained REE oxides get purity of > 99% and meet the need of solvent extraction (SX) individual separation of rare earth elements. The schema for recovery of REEs from Yenphu REE ore concentrate by alkali decomposition under high pressure has been proposed. 2. Fractionation of Yenphu rare earth mixture into subgroups by solvent extraction with PC88A: On the base of simulation program, the parameters for fractional process of rare earths mixture into subgroups by solvent extraction with PC88A have been proposed and determined by experimental verification on mixer-settler set. According to this process, rare earths mixture fractionated into yttrium and light subgroups. In their turn, the light subgroup was separated into light (La, Ce, Pr, Nd) and middle (Sm, Eu, Gd) subgroups. The average yield of the process reached value > 95%. The composition of light subgroup meets the needs for individual separation of Gd, Eu, and Sm. 3. Separation and purification of yttrium: The process for recovery of yttrium consists of two stages: upgrade to get high quality Y concentrate by PC88A and purification by Aliquat 336 in NH 4 SCN-NH 4 Cl medium. The process parameter for

  8. Azole-Anion-Based Aprotic Ionic Liquids: Functional Solvents for Atmospheric CO2 Transformation into Various Heterocyclic Compounds.

    Science.gov (United States)

    Zhao, Yanfei; Wu, Yunyan; Yuan, Guangfeng; Hao, Leiduan; Gao, Xiang; Yang, Zhenzhen; Yu, Bo; Zhang, Hongye; Liu, Zhimin

    2016-10-06

    The chemical transformation of atmospheric CO 2 is of great significance yet still poses a great challenge. Herein, azole-anion-based aprotic ionic liquids (ILs) were synthesized by the deprotonation of weak proton donors (e.g., 2-methylimidazole, 4-methylimidazole, and 2,4-dimethylimidazole) with tetrabutylphosphonium hydroxide, [Bu 4 P][OH]. We found that these ILs, such as [Bu 4 P][2-MIm], could activate atmospheric CO 2 through the formation of carbamates. The resultant carbamate intermediates could further react with various types of substrate, including propargylic alcohols, 2-aminobenzonitriles, ortho-phenylenediamines, and 2-aminothiophenol, thereby producing α-alkylidene cyclic carbonates, quinazoline-2,4(1 H,3 H)-diones, benzimidazolones, and benzothiazoline, respectively, in moderate-to-good yields. Thus, we have achieved the transformation of CO 2 at atmospheric pressure, and we expect this method to open up new routes for the synthesis of various oxygen-containing heterocyclic compounds under metal-free conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lewis basicity of relevant monoanions in a non-protogenic organic solvent using a zinc(ii) Schiff-base complex as a reference Lewis acid.

    Science.gov (United States)

    Oliveri, Ivan Pietro; Di Bella, Santo

    2017-09-12

    Anions are ubiquitous species playing a primary role in chemistry, whose reactivity is essentially dominated by their Lewis basicity. However, no Lewis basicity data, in terms of Gibbs energy, are reported in the literature. We report here the first Lewis basicity of relevant monoanions through the determination of binding constants for the formation of stable 1 : 1 adducts, using a Zn II Schiff-base complex, 1, as a reference Lewis acid. Binding constants for equilibrium reactions were achieved through a nonlinear regression analysis of the binding isotherms from spectrophotometric titration data. The Lewis acidic complex 1 is a proper reference species because it forms stable adducts with both neutral and charged Lewis bases, thus allowing ranking their Lewis basicity. Binding constants indicate generally a strong Lewis basicity for all involved anions, rivalling or exceeding that of the stronger neutral bases, such as primary amines or pyridine. The cyanide anion results to be the strongest Lewis base, while the nitrate is the weaker base within the present anion series. Moreover, even the weaker base anions behave as stronger bases than the most common non-protogenic coordinating solvents.

  10. Recent advances in the development of a cobalt dicarbollide based solvent extraction process for the separation of Cs and Sr from spent fuel

    International Nuclear Information System (INIS)

    Law, Jack D.; Todd, Terry A.; Peterman, D.R.; Herbst, R.S.; Tillotson, R.D.

    2004-01-01

    As part of the Advanced Fuel Cycle Initiative (AFCI), a chlorinated cobalt dicarbollide (CCD)/polyethylene glycol (PEG) based solvent extraction process is being developed for the separation of Cs and Sr from leached spent light water reactor (LWR) fuel. The separation of Cs and Sr would significantly reduce the short-term heat generation of spent nuclear fuel requiring geological disposal. Recent advances in the development of a CCD/PEG process will be presented. The data presented will include acid dependency data, results of batch contact testing using simulant feeds traced with 137 Cs, 90 Sr and 241 Am as well as results of testing to evaluate extractant composition. The impacts of other separation process in an advanced aqueous separation flow sheet on the effectiveness of the CCD/PEG process will be detailed. (authors)

  11. A nodal method based on the response-matrix method

    International Nuclear Information System (INIS)

    Cunha Menezes Filho, A. da; Rocamora Junior, F.D.

    1983-02-01

    A nodal approach based on the Response-Matrix method is presented with the purpose of investigating the possibility of mixing two different allocations in the same problem. It is found that the use of allocation of albedo combined with allocation of direct reflection produces good results for homogeneous fast reactor configurations. (Author) [pt

  12. Microalgae based biorefinery: evaluation of oil extraction methods in terms of efficiency, costs, toxicity and energy in lab-scale

    Directory of Open Access Journals (Sweden)

    Ángel Darío González-Delgado

    2013-06-01

    Full Text Available Several alternatives of microalgal metabolites extraction and transformation are being studied for achieving the total utilization of this energy crop of great interest worldwide. Microalgae oil extraction is a key stage in microalgal biodiesel production chains and their efficiency affects significantly the global process efficiency. In this study, a comparison of five oil extraction methods in lab-scale was made taking as additional parameters, besides extraction efficiency, the costs of method performing, energy requirements, and toxicity of solvents used, in order to elucidate the convenience of their incorporation to a microalgae-based topology of biorefinery. Methods analyzed were Solvent extraction assisted with high speed homogenization (SHE, Continuous reflux solvent extraction (CSE, Hexane based extraction (HBE, Cyclohexane based extraction (CBE and Ethanol-hexane extraction (EHE, for this evaluation were used the microalgae strains Nannochloropsis sp., Guinardia sp., Closterium sp., Amphiprora sp. and Navicula sp., obtained from a Colombian microalgae bioprospecting. In addition, morphological response of strains to oil extraction methods was also evaluated by optic microscopy. Results shows that although there is not a unique oil extraction method which excels in all parameters evaluated, CSE, SHE and HBE appears as promising alternatives, while HBE method is shown as the more convenient for using in lab-scale and potentially scalable for implementation in a microalgae based biorefinery

  13. Study of complex formation process between 4′-nitrobenzo-18-crown-6 and yttrium(III cation in some binary mixed non-aqueous solvents using the conductometry method

    Directory of Open Access Journals (Sweden)

    Mahboobeh Vafi

    2017-07-01

    Full Text Available The complexation reaction between Y3+ cation and macrocyclic ligand, 4′-nitrobenzo-18-crown-6 (4′NB18C6, was studied in acetonitrile–methanol (AN–MeOH, acetonitrile–1,2-dichloroethane (AN–DCE, acetonitrile–dimethylformamide (AN–DMF and acetonitrile–ethylacetate (AN–EtOAc binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that in most cases, the stoichiometry of the complex formed between 4′NB18C6 and Y3+ cation is 1:1 [M:L], but in the case of AN-DCE binary solution (mol% DCE = 50 at 15, 25 and 35 °C, a 2:1 [M2:L] and also a 2:2 [M2:L2] complexes are formed in solution. The results show that the stoichiometry of the complex formed between 4′NB18C6 and Y3+ cation changes with the composition of the mixed solvents and even with temperature. The stability constant of the 1:1 complex was determined using a computer program, GENPLOT. The stability order of (4′NB18C6.Y3+ complex in pure studied solvents at 25 °C was found to be: EtOAc > AN > MeOH > DMF and in the case of the mixed solvent solutions with 25 mol percent of AN at 25 °C was: AN-DCE > AN-EtOAc > AN-MeOH ∼ AN-DMF. The values of stability constant (logKf of (4′NB18C6.Y3+ complex which were obtained from conductometric data, show that the stability of the complex is not only affected by the nature and composition of the solvent system, but it is also influenced by the temperature. In all cases, a non-linear behavior is observed for changes of logKf of the (4′NB18C6.Y3+ complex versus the composition of the binary mixed solvents. The values of standard thermodynamic quantities (ΔH°c and ΔS°c for the complexation process which were obtained from temperature dependence of the stability constant of (4′NB18C6.Y3+ complex, show that depending on the solvent system, in most cases, the complex is enthalpy and also entropy stabilized, but in some cases, it is stabilized or

  14. Color image definition evaluation method based on deep learning method

    Science.gov (United States)

    Liu, Di; Li, YingChun

    2018-01-01

    In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.

  15. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    International Nuclear Information System (INIS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-01-01

    Three new coordination polymers [Mn(hip)(phen) (H_2O)]_n (1), [Co(hip)(phen) (H_2O)]_n (2), and [Cd(hip) (phen) (H_2O)]_n (3) (H_2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H_2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl_2·4H_2O / CoCl_2·6H_2O / Cd(NO_3)_2·6H_2O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  16. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  17. Modeling of Salt Solubilities in Mixed Solvents

    DEFF Research Database (Denmark)

    Chiavone-Filho, O.; Rasmussen, Peter

    2000-01-01

    A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...

  18. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing.

    Science.gov (United States)

    Groskreutz, Stephen R; Horner, Anthony R; Weber, Stephen G

    2015-07-31

    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of pre-column dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from precolumn dispersion and volume overload when used alone or with solvent-based focusing

    Science.gov (United States)

    Groskreutz, Stephen R.; Horner, Anthony R.; Weber, Stephen G.

    2015-01-01

    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30 nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of precolumn dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis. PMID:26091787

  20. History based batch method preserving tally means

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Choi, Sung Hoon

    2012-01-01

    In the Monte Carlo (MC) eigenvalue calculations, the sample variance of a tally mean calculated from its cycle-wise estimates is biased because of the inter-cycle correlations of the fission source distribution (FSD). Recently, we proposed a new real variance estimation method named the history-based batch method in which a MC run is treated as multiple runs with small number of histories per cycle to generate independent tally estimates. In this paper, the history-based batch method based on the weight correction is presented to preserve the tally mean from the original MC run. The effectiveness of the new method is examined for the weakly coupled fissile array problem as a function of the dominance ratio and the batch size, in comparison with other schemes available

  1. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  2. Solvent-mediated secondary building units (SBUs) diversification in a series of MnII-based metal-organic frameworks (MOFs)

    Science.gov (United States)

    Niu, Yan-Fei; Cui, Li-Ting; Han, Jie; Zhao, Xiao-Li

    2016-09-01

    The role of auxiliary solvents in the formation of MOFs has been investigated for a series of MnII-based framework systems. Reactions of 4,4‧,4″-nitrilotribenzoic acid (H3L) with MnII through varying auxiliary solvents of the medium resulted in the formation of diversified multinuclear MnII subunits in four new coordination polymers: [Mn3(L)(HCOO)3(DEF)3] (1), [Mn3(L)2(EtOH)2]·DMF (2), [Mn5(L)4(H2O)2]·2(H2NMe2)+·4DMF·2H2O (3), and [Mn3(L)2(py)4(H2O)]·H2O (4) (H3L=4,4‧,4‧-nitrilotribenzoic acid, DMF=dimethylformamide, DEF=N,N-diethylformamide, py=pyridine). These four compounds were fully characterized by single-crystal X-ray diffraction, showing interesting SBUs variations. For compound 1, it displays a (3,6)-connected kgd net with wheel [Mn6] cluster serving as SBU, whereas in 2, the sequence of Mn3(COO)9(EtOH)2 is repeated by inversion centers located between Mn1 and Mn3 to form an infinite Mn-carboxylate chain, which are further interlinked by L3- ligands to form a 3D architecture. In 3, the pentanuclear Mn5(CO2)12 clusters are interlinked to form a layer, which are further pillared by L3- to generate a 3D network. Compound 4 has a (3,6)-connected network in which the SBU is a linear trimeric Mn3(COO)6(py)4(H2O) cluster. In addition, the thermal stabilities, X-ray powder diffraction of all the compounds were studied, photoluminescence behaviors of compounds 1, 3 and 4 are discussed.

  3. Ultrasound-assisted phase-transfer catalysis method in an aqueous medium to promote the Knoevenagel reaction: advantages over the conventional and microwave-assisted solvent-free/catalyst-free method.

    Science.gov (United States)

    De-la-Torre, Pedro; Osorio, Edison; Alzate-Morales, Jans H; Caballero, Julio; Trilleras, Jorge; Astudillo-Saavedra, Luis; Brito, Iván; Cárdenas, Alejandro; Quiroga, Jairo; Gutiérrez, Margarita

    2014-09-01

    Given the broad spectrum of uses of acrylonitrile derivatives as fluorescent probes, AChE inhibitors, and others, it is necessary to find easy, efficient and simple methods to synthesize and diversify these compounds. We report the results of a comparative study of the effects of three techniques on the reactions between heterocyclic aldehydes and 2-(benzo[d]thiazol-2-yl)acetonitrile: stirring; ultrasound coupled to PTC conditions (US-PTC); and MW irradiation (MWI) under solvent and catalyst-free conditions. The effects of conditions on reaction parameters were evaluated and compared in terms of reaction time, yield, purity and outcomes. The US-PTC method is more efficient than the MWI and conventional methods. The reaction times were considerably shorter, with high yields (>90%) and good levels of purity. In addition, X-ray diffraction analysis and quantum mechanical calculations, at the level of density functional theory (DFT), ratify obtaining acrylonitrile isomers with E configurations. The crystal structure of 3c is stabilized by weak C-Ho⋯N intermolecular interactions (Ho⋯NC=2.45 Å, Co⋯NC=3.348(3) Å, Ho⋯NC=162°), forming centrosymmetric ring R2(2) (20) along the crystallographic a axis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  5. Modified Dispersive Liquid-Liquid Micro Extraction Using Green Solvent for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Vegetable Samples

    International Nuclear Information System (INIS)

    Kin, C.M.; Shing, W.L.

    2016-01-01

    According to International Agency for Research on Cancer (IARC), most of Polycyclic Aromatic Hydrocarbons (PAHs) known as genotoxic human carcinogen and mutagenic. PAHs represent as poorly degradable pollutants that exist in soils, sediments, surface water and atmosphere. A simple, rapid and sensitive extraction method termed modified Dispersive Liquid-Liquid Micro extraction (DLLME) using green solvent was developed to determine PAHs in vegetable samples namely radish, cabbage and cucumber prior to Gas Chromatography Flame Ionization Detection (GC-FID). The extraction method is based on replacing chlorinated organic extraction solvent in the conventional DLLME with low toxic solvent, 1-bromo-3-methylbutane without using dispersive solvent. Several experimental factors such as type and volume of extraction solvents, extraction time, confirmation of 12 PAHs by GC-MS, recovery percentages on vegetable samples and the comparative analysis with conventional DLLME were carried out. Both DLLME were successfully extracted 12 types of PAHs. In modified DLLME, the recoveries of the analytes obtained were in a range of 72.72 - 88.07 % with RSD value below 7.5 % which is comparable to the conventional DLLME. The use of microliter of low toxic extraction solvent without addition of dispersive solvent caused the method is economic and environmental friendly which is fulfill the current requirement, green chemistry based analytical method. (author)

  6. Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-11-01

    Full Text Available The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.

  7. Optimal Concentration of Organic Solvents to be Used in the Broth Microdilution Method to Determine the Antimicrobial Activity of Natural Products Against Paenibacillus Larvae

    OpenAIRE

    Cugnata Noelia Melina; Guaspari Elisa; Pellegrini Maria Celeste; Fuselli Sandra Rosa; Alonso-Salces Rosa Maria

    2017-01-01

    American Foulbrood (AFB) is a bacterial disease, caused by Paenibacillus larvae, that affects honeybees (Apis mellifera). Alternative strategies to control AFB are based on the treatment of the beehives with antimicrobial natural substances such as extracts, essential oils and/or pure compounds from plants, honey by-products, bacteria and moulds. The broth microdilution method is currently one of the most widely used methods to determine the minimum inhibitory concentration (MIC) of a substan...

  8. Fast and efficient method for reduction of carbonyl compounds with NaBH{sub 4} /wet SiO{sub 2} under solvent free condition

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Bahyar, Tarifeh [Urmia University, Urmia (Iran, Islamic Republic of). Faculty of Sciences. Dept. of Chemistry]. E-mail: b.zeynizadeh@mail.urmia.ac.ir

    2005-11-15

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, {alpha},{beta}-unsaturated enals and enones, {alpha}-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO{sub 2} (30% m/m) under solvent free condition. The reactions were performed at room tempere or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  9. Fast and efficient method for reduction of carbonyl compounds with NaBH4 /wet SiO2 under solvent free condition

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Bahyar, Tarifeh

    2005-01-01

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, α,β-unsaturated enals and enones, α-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO 2 (30% m/m) under solvent free condition. The reactions were performed at room temperature or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  10. Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples.

    Science.gov (United States)

    Zarei, Ali Reza; Nedaei, Maryam; Ghorbanian, Sohrab Ali

    2018-06-08

    In this work, for the first time, ferrofluid of magnetic montmorillonite nanoclay and deep eutectic solvent was prepared and coupled with directly suspended droplet microextraction. Incorporation of ferrofluid in a miniaturized sample preparation technique resulted in achieving high extraction efficiency while developing a green analytical method. The prepared ferrofluid has strong sorbing properties and hydrophobic characteristics. In this method, a micro-droplet of ferrofluid was suspended into the vortex of a stirring aqueous solution and after completing the extraction process, was easily separated from the solution by a magnetic rod without any operational problems. The predominant experimental variables affecting the extraction efficiency of explosives were evaluated. Under optimal conditions, the limits of detection were in the range 0.22-0.91 μg L -1 . The enrichment factors were between 23 and 93 and the relative standard deviations were <10%. The relative recoveries were ranged from 88 to 104%. This method was successfully applied for the extraction and preconcentration of explosives in water and soil samples, followed their determination by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  12. Effect of Various Solvent on the Synthesis of NiO Nanopowders by Simple Sol-Gel Methods and Its Characterization

    Directory of Open Access Journals (Sweden)

    Sherly Kasuma Warda Ningsih

    2015-03-01

    Full Text Available Synthesis of nickel oxide (NiO with various solvents by simple sol-gel process has been done. NiO nanopowders were obtained by using nickel nitrate hexahydrate and sodium hydroxide 5 M were used as precursor and agent precipitator, respectively. The addition of various solvents that used in this research were aquadest, methanol and isopropanol. The powders were formed by drying in the temperature of 100-110 °C for 1 h and after heating at ±450 °C for 1 h. The products were obtained black powders. The products were characterized by Energy Dispersive X-Ray Fluorescence (ED-XRF, X-Ray Diffraction (XRD and Scanning Electron Microscopy (SEM. The ED-XRF pattern show that composition of NiO produced was 96.9%. The XRD patterns showed NiO forms were in monoclinic structure with aquadest solvent and cubic structure with methanol and isopropanol used. Crystal sizes of NiO particles produced with aquadest, methanol, isopropanol were obtained in the range 37.05; 72.16; 66.04 nm respectively. SEM micrograph clearly showed that powder had a spherical shape with uniform distribution size is 0.1-1.0 µm approximately.

  13. Solvent-mediated secondary building units (SBUs) diversification in a series of Mn{sup II}-based metal-organic frameworks (MOFs)

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Yan-Fei; Cui, Li-Ting [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Han, Jie, E-mail: chan@ouhk.edu.hk [School of Science & Technology, The Open University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Zhao, Xiao-Li, E-mail: xlzhao@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-09-15

    The role of auxiliary solvents in the formation of MOFs has been investigated for a series of Mn{sup II}-based framework systems. Reactions of 4,4′,4″-nitrilotribenzoic acid (H{sub 3}L) with Mn{sup II} through varying auxiliary solvents of the medium resulted in the formation of diversified multinuclear Mn{sup II} subunits in four new coordination polymers: [Mn{sub 3}(L)(HCOO){sub 3}(DEF){sub 3}] (1), [Mn{sub 3}(L){sub 2}(EtOH){sub 2}]·DMF (2), [Mn{sub 5}(L){sub 4}(H{sub 2}O){sub 2}]·2(H{sub 2}NMe{sub 2}){sup +}·4DMF·2H{sub 2}O (3), and [Mn{sub 3}(L){sub 2}(py){sub 4}(H{sub 2}O)]·H{sub 2}O (4) (H{sub 3}L=4,4′,4′-nitrilotribenzoic acid, DMF=dimethylformamide, DEF=N,N-diethylformamide, py=pyridine). These four compounds were fully characterized by single-crystal X-ray diffraction, showing interesting SBUs variations. For compound 1, it displays a (3,6)-connected kgd net with wheel [Mn{sub 6}] cluster serving as SBU, whereas in 2, the sequence of Mn{sub 3}(COO){sub 9}(EtOH){sub 2} is repeated by inversion centers located between Mn1 and Mn3 to form an infinite Mn-carboxylate chain, which are further interlinked by L{sup 3−} ligands to form a 3D architecture. In 3, the pentanuclear Mn{sub 5}(CO{sub 2}){sub 12} clusters are interlinked to form a layer, which are further pillared by L{sup 3−} to generate a 3D network. Compound 4 has a (3,6)-connected network in which the SBU is a linear trimeric Mn{sub 3}(COO){sub 6}(py){sub 4}(H{sub 2}O) cluster. In addition, the thermal stabilities, X-ray powder diffraction of all the compounds were studied, photoluminescence behaviors of compounds 1, 3 and 4 are discussed. - Graphical abstract: Supramolecular assembly of C{sub 3}-symmetric ligand 4,4′,4″-nitrilotribenzoic acid (H{sub 3}L) with Mn{sup II} through varying auxiliary solvents of the medium resulted in the formation of diversified multinuclear Mn{sup II} subunits in four new coordination polymers. The results exhibit the structures of Mn-SBUs in these

  14. Spectrum estimation method based on marginal spectrum

    International Nuclear Information System (INIS)

    Cai Jianhua; Hu Weiwen; Wang Xianchun

    2011-01-01

    FFT method can not meet the basic requirements of power spectrum for non-stationary signal and short signal. A new spectrum estimation method based on marginal spectrum from Hilbert-Huang transform (HHT) was proposed. The procession of obtaining marginal spectrum in HHT method was given and the linear property of marginal spectrum was demonstrated. Compared with the FFT method, the physical meaning and the frequency resolution of marginal spectrum were further analyzed. Then the Hilbert spectrum estimation algorithm was discussed in detail, and the simulation results were given at last. The theory and simulation shows that under the condition of short data signal and non-stationary signal, the frequency resolution and estimation precision of HHT method is better than that of FFT method. (authors)

  15. Computer-Aided Solvent Screening for Biocatalysis

    DEFF Research Database (Denmark)

    Abildskov, Jens; Leeuwen, M.B. van; Boeriu, C.G.

    2013-01-01

    constrained properties related to chemical reaction equilibrium, substrate and product solubility, water solubility, boiling points, toxicity and others. Two examples are provided, covering the screening of solvents for lipase-catalyzed transesterification of octanol and inulin with vinyl laurate....... Esterification of acrylic acid with octanol is also addressed. Solvents are screened and candidates identified, confirming existing experimental results. Although the examples involve lipases, the method is quite general, so there seems to be no preclusion against application to other biocatalysts....

  16. Purex process solvent: literature review

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables.

  17. Purex process solvent: literature review

    International Nuclear Information System (INIS)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables

  18. Electrochemical Properties and Speciation in Mg(HMDS)2-Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature.

    Science.gov (United States)

    Merrill, Laura C; Schaefer, Jennifer L

    2017-09-19

    Magnesium batteries are a promising alternative to lithium-ion batteries due to the widespread abundance of magnesium and its high specific volumetric energy capacity. Ethereal solvents such as tetrahydrofuran (THF) are commonly used for magnesium-ion electrolytes due to their chemical compatibility with magnesium metal, but the volatile nature of THF is a concern for practical application. Herein, we investigate magnesium bis(hexamethyldisilazide) plus aluminum chloride (Mg(HMDS) 2 -AlCl 3 ) electrolytes in THF, diglyme, and tetraglyme at varying temperature. We find that, despite the higher thermal stability of the glyme-based electrolytes, THF-based electrolytes have better reversibility at room temperature. Deposition/stripping efficiency is found to be a strong function of temperature. Diglyme-based Mg(HMDS) 2 -AlCl 3 electrolytes are found to not exchange as quickly as THF and tetraglyme, stabilizing AlCl 2 + and facilitating undesired aluminum deposition. Raman spectroscopy, 27 Al NMR, and mass spectrometry are used to identify solution speciation.

  19. Interchange Recognition Method Based on CNN

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2018-03-01

    Full Text Available The identification and classification of interchange structures in OSM data can provide important information for the construction of multi-scale model, navigation and location services, congestion analysis, etc. The traditional method of interchange identification relies on the low-level characteristics of artificial design, and cannot distinguish the complex interchange structure with interference section effectively. In this paper, a new method based on convolutional neural network for identification of the interchange is proposed. The method combines vector data with raster image, and uses neural network to learn the fuzzy characteristics of the interchange, and classifies the complex interchange structure in OSM. Experiments show that this method has strong anti-interference, and has achieved good results in the classification of complex interchange shape, and there is room for further improvement with the expansion of the case base and the optimization of neural network model.

  20. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent

    Science.gov (United States)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.

  1. Recommendation advertising method based on behavior retargeting

    Science.gov (United States)

    Zhao, Yao; YIN, Xin-Chun; CHEN, Zhi-Min

    2011-10-01

    Online advertising has become an important business in e-commerce. Ad recommended algorithms are the most critical part in recommendation systems. We propose a recommendation advertising method based on behavior retargeting which can avoid leakage click of advertising due to objective reasons and can observe the changes of the user's interest in time. Experiments show that our new method can have a significant effect and can be further to apply to online system.

  2. Personnel Selection Based on Fuzzy Methods

    Directory of Open Access Journals (Sweden)

    Lourdes Cañós

    2011-03-01

    Full Text Available The decisions of managers regarding the selection of staff strongly determine the success of the company. A correct choice of employees is a source of competitive advantage. We propose a fuzzy method for staff selection, based on competence management and the comparison with the valuation that the company considers the best in each competence (ideal candidate. Our method is based on the Hamming distance and a Matching Level Index. The algorithms, implemented in the software StaffDesigner, allow us to rank the candidates, even when the competences of the ideal candidate have been evaluated only in part. Our approach is applied in a numerical example.

  3. Green solvents and technologies for oil extraction from oilseeds.

    Science.gov (United States)

    Kumar, S P Jeevan; Prasad, S Rajendra; Banerjee, Rintu; Agarwal, Dinesh K; Kulkarni, Kalyani S; Ramesh, K V

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n -hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330 kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to look for alternative options. To circumvent the problem, green solvents could be a promising approach to replace solvent extraction. In this review, green solvents and technology like aqueous assisted enzyme extraction are better solution for oil extraction from oilseeds. Enzyme mediated extraction is eco-friendly, can obtain higher yields, cost-effective and aids in obtaining co-products without any damage. Enzyme technology has great potential for oil extraction in oilseed industry. Similarly, green solvents such as terpenes and ionic liquids have tremendous solvent properties that enable to extract the oil in eco-friendly manner. These green solvents and technologies are considered green owing to the attributes of energy reduction, eco-friendliness, non-toxicity and non-harmfulness. Hence, the review is mainly focussed on the prospects and challenges of green solvents and technology as the best option to replace the conventional methods without compromising the quality of the extracted products.

  4. Gas chromatographic analysis of extractive solvent in reprocessing plants

    International Nuclear Information System (INIS)

    Marlet, B.

    1984-01-01

    Operation of a reprocessing plant using the Purex process is recalled and analytical controls for optimum performance are specified. The aim of this thesis is the development of analytical methods using gas chromatography required to follow the evolution of the extraction solvent during spent fuel reprocessing. The solvent at different concentrations, is analysed along the reprocessing lines in organic or aqueous phases. Solvent degradation interferes with extraction and decomposition products are analysed. The solvent becomes less and less efficient, also it is distilled and quality is checked. Traces of solvent should also be checked in waste water. Analysis are made as simple as possible to facilitate handling of radioactive samples [fr

  5. Solvent-free nanofluid with three structure models based on the composition of MWCNTs/SiO2 core and its adsorption capacity of CO2.

    Science.gov (United States)

    Yang, Ruilu; Zheng, Yaping; Wang, Tianyu; Li, Peipei; Wang, Yudeng; Yao, Dongdong; Chen, Lixin

    2017-11-26

    A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO2) as the core had been synthesized. The NOHMs displays a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in core, named power strip model, critical model and collapse model. The capture capacities of these NOHMs for CO2 were investigated at 298 K and CO2 pressures ranging from 0 to 5 MPa. Compared with NOHM having neat MWCNTs core, it had been revealed that NOHMs with power strip model show better adsorption capacity toward CO2, due to its lower viscosity and more reactive groups that can react with CO2. In addition, the capture capacities of NOHMs with critical model were relatively worse than neat MWCNTs-based NOHM. The result is attributed to the aggregation of SiO2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHM with collapse model was the worst in all NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. Besides, it presented non-interference of MWCNTs and SiO2 without aggregation state. © 2017 IOP Publishing Ltd.

  6. Solvent-free nanofluid with three structure models based on the composition of a MWCNT/SiO2 core and its adsorption capacity of CO2.

    Science.gov (United States)

    Yang, R L; Zheng, Y P; Wang, T Y; Li, P P; Wang, Y D; Yao, D D; Chen, L X

    2017-12-15

    A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO 2 ) as the core were synthesized. The NOHMs display a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in the core, named the power strip model, the critical model and the collapse model. The capture capacities of these NOHMs for CO 2 were investigated at 298 K and CO 2 pressures ranging from 0 to 5 MPa. Compared with NOHMs having a neat MWCNT core, it was revealed that NOHMs with the power strip model show better adsorption capacity toward CO 2 due to its lower viscosity and more reactive groups that can react with CO 2 . In addition, the capture capacities of NOHMs with the critical model were relatively worse than the neat MWCNT-based NOHM. The result is attributed to the aggregation of SiO 2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHMs with the collapse model was the worst of all the NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. In addition, they presented non-interference of MWCNTs and SiO 2 without aggregation state.

  7. Separation by solvent extraction

    International Nuclear Information System (INIS)

    Holt, C.H. Jr.

    1976-01-01

    In a process for separating fission product values from U and Pu values contained in an aqueous solution, an oxidizing agent is added to the solution to secure U and Pu in their hexavalent state. The aqueous solution is contacted with a substantially water-immiscible organic solvent with agitation while the temperature is maintained at from -1 to -2 0 C until the major part of the water present is frozen. The solid ice phase is continuously separated as it is formed and a remaining aqueous liquid phase containing fission product values and a solvent phase containing Pu and U values are separated from each other. The last obtained part of the ice phase is melted and added to the separated liquid phase. The resulting liquid is treated with a new supply of solvent whereby it is practically depleted of U and Pu

  8. A spray based method for biofilm removal

    NARCIS (Netherlands)

    Cense, A.W.

    2005-01-01

    Biofilm growth on human teeth is the cause of oral diseases such as caries (tooth decay), gingivitis (inflammation of the gums) and periodontitis (inflammation of the tooth bone). In this thesis, a water based cleaning method is designed for removal of oral biofilms, or dental plaque. The first part

  9. Arts-Based Methods in Education

    DEFF Research Database (Denmark)

    Chemi, Tatiana; Du, Xiangyun

    2017-01-01

    This chapter introduces the field of arts-based methods in education with a general theoretical perspective, reviewing the journey of learning in connection to the arts, and the contribution of the arts to societies from an educational perspective. Also presented is the rationale and structure...

  10. Determining the better solvent and time for extracting soil by soxhlet in TPH (Total Petroleum Hydrocarbon) gravimetric method; A determinacao de qual o melhor solvente e o melhor tempo de extracao de sedimento em aparato Soxhlet na metodologia do TPH (Total Petroleum Hydrocarbon) gravimetrico

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Renato S.; Lima, Guilherme; Baisch, Paulo R. [Fundacao Universidade Federal do Rio Grande (FURG), RS (Brazil)

    2004-07-01

    There are several methods of TPH (Total Petroleum Hydrocarbons) analysis of petroleum hydrocarbons contaminants in sediment. The TPH gravimetric has been widely used in many studies and in oil spill monitoring case. The present work examined three different solvents (DCM, DCM/N-HEX and N-HEX), in three different times, to the purpose to optimize the contaminants extraction using USEPA 9071 and 3540 reference method. Then was realized analysis of Total Organic Carbon (TOC) for monitoring the reproducible extracts. The sediments used in this experiment was collected in the Cavalos Island, localized in the city of Rio Grande, RS-Brasil. The sediment was 'washed' and after then contaminated with petroleum. The extracts were realized in Soxhlet apparatus, in three different times (4, 8 and 12 hours), and TOC analysis were realized before and after the extraction. The result demonstrated that eight hours with DCM/N-HEX solvent is more indicated for TPH gravimetric in sediment analysis with high concentration of petroleum hydrocarbons. TOC analysis demonstrated inappropriate for monitoring extract reproducibility. (author)

  11. Computer Animation Based on Particle Methods

    Directory of Open Access Journals (Sweden)

    Rafal Wcislo

    1999-01-01

    Full Text Available The paper presents the main issues of a computer animation of a set of elastic macroscopic objects based on the particle method. The main assumption of the generated animations is to achieve very realistic movements in a scene observed on the computer display. The objects (solid bodies interact mechanically with each other, The movements and deformations of solids are calculated using the particle method. Phenomena connected with the behaviour of solids in the gravitational field, their defomtations caused by collisions and interactions with the optional liquid medium are simulated. The simulation ofthe liquid is performed using the cellular automata method. The paper presents both simulation schemes (particle method and cellular automata rules an the method of combining them in the single animation program. ln order to speed up the execution of the program the parallel version based on the network of workstation was developed. The paper describes the methods of the parallelization and it considers problems of load-balancing, collision detection, process synchronization and distributed control of the animation.

  12. A FUNDAMENTAL STUDY ON SOLUBILITY OF HEAVY METAL OXIDES IN AMMONIUM AND PHOSPHONIUM BASED DEEP EUTECTIC SOLVENTS

    Directory of Open Access Journals (Sweden)

    SHANGGARY RAJENDRAN

    2016-02-01

    Full Text Available Water pollution has become increasingly prevalent in our daily lives and has caused a serious threat at a global level. Among the various pollutants that exist,heavy metal pollution has become an issue of great concern due to their high toxicity, greater bioaccumulation in human body and food chain, nonbiodegradability nature, and carcinogenic effects to humans. This study aims to address the heavy metal ion contamination in wastewater by providing a low cost and efficient removal technique using DESs. In this investigation, the solubility of CuO and ZnO heavy metal oxide ions with concentration of 20g/L was studied in ammonium and phosphonium based DESs. The samples were left to stir at 250 rpm at 28, 45 and 65°C respectively for four hours in an incubator orbital shaker and the solubility of the heavy metal ions were analysed using Atomic Absorption Spectrometer (AAS using serial dilution technique. Phosphonium based DES which contain Methyl Triphenyl Phosphonium Bromide (MTPB showed higher solubility of CuO and ZnO ions. Based on the results obtained, DES 6 (MTPB: Glycerol has the highest solubility of CuO, 0.197 mg/L at 65°C and the solubility of ZnO was found to be the highest in DES 7 (MTPB: Glycerol, 1.225 mg/L at 65°C. Higher solubility was observed in samples containing ZnO as they are more ionic compared to CuO.

  13. Effect of solvent on crystallization behavior of xylitol

    Science.gov (United States)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  14. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    Science.gov (United States)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  15. Determination of a cleaning and decontamination process using solvents; Determination d'une methode de nettoyage et de decontamination par solvant

    Energy Technology Data Exchange (ETDEWEB)

    Boutot, P; Schipfer, P [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1967-03-15

    This work has been carried out on samples of the white cotton serge material of which most of the working overalls of the Nuclear Research Centre are made. The aims are: - to determine,from the decontamination and cleaning points of view, the efficiency of various solvents (white-spirit, trichloroethylene, perchlorethylene and tri-chloro-trifluoroethane) and the role of additives likely to improve the treatment; - to control the textile from the wear and shrinkage points of view; - to try to develop a basic cleaning and decontamination process as a function of the possibilities of each solvent considered. (authors) [French] Cette experimentation pratiquee sur des echantillons de tissu en serge de coton blanc, tissu dans lequel est confectionnee la majorite des tenues de travail du Centre, a pour but: - de determiner, sous l'angle decontamination et nettoyage, l'efficacite de differents solvants (white-spirit, trichlorethylene, perchlorethylene et trichlorotrifluoroethane) ainsi que le role des adjuvants susceptibles d'ameliorer le traitement; - de controler le textile du point de vue usure et retrecissement; - d'essayer de mettre au point un procede de nettoyage et de decontamination type en fonction des possibilites d'emploi de chacun des solvants consideres. (auteurs)

  16. Quantification of fenoxaprop-p-ethyl herbicide in soil and vegetable samples by microwave-assisted solvent extraction and HPLC method

    International Nuclear Information System (INIS)

    Shahzad, F.U.N.; Shah, J.; Jan, M.R.; Muhammad, M.

    2012-01-01

    A simple HPLC procedure for the determination of fenoxaprop-p-ethyl herbicide in environmental samples is described. The chromatographic analysis was carried out by HPLC, on a C18 packed capillary column (4x4 mm,4.6 X 150 mm, 5mm particle size) with 20 macro l injection volume and UV detector at 280 nm. HPLC-grade acetonitrile and methanol were used as mobile phase with flow rate of 1mL min-1. Samples were spiked with amount between 5 - 20 micro g g-1 of herbicide and were isolated from samples by applying microwave assisted extraction (MASE) at ambient temperature. Percent recoveries were improved by optimizing solvent types, solvent volume, extraction temperature a