Self-affirmation improves problem-solving under stress.
Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M
2013-01-01
High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.
The use of MACSYMA for solving elliptic boundary value problems
Thejll, Peter; Gilbert, Robert P.
1990-01-01
A boundary method is presented for the solution of elliptic boundary value problems. An approach based on the use of complete systems of solutions is emphasized. The discussion is limited to the Dirichlet problem, even though the present method can possibly be adapted to treat other boundary value problems.
Application of Monte Carlo method to solving boundary value problem of differential equations
International Nuclear Information System (INIS)
Zuo Yinghong; Wang Jianguo
2012-01-01
This paper introduces the foundation of the Monte Carlo method and the way how to generate the random numbers. Based on the basic thought of the Monte Carlo method and finite differential method, the stochastic model for solving the boundary value problem of differential equations is built. To investigate the application of the Monte Carlo method to solving the boundary value problem of differential equations, the model is used to solve Laplace's equations with the first boundary condition and the unsteady heat transfer equation with initial values and boundary conditions. The results show that the boundary value problem of differential equations can be effectively solved with the Monte Carlo method, and the differential equations with initial condition can also be calculated by using a stochastic probability model which is based on the time-domain finite differential equations. Both the simulation results and theoretical analyses show that the errors of numerical results are lowered as the number of simulation particles is increased. (authors)
Grain boundary cavitation under reversed constant stress
International Nuclear Information System (INIS)
Hales, R.
1978-06-01
The growth of grain boundary cavities by diffusion processes has been examined for cyclic stresses. It is found that the time required to grow a void by a predetermined amount (tsub(t)) is always longer than the time required to shrink the same defect to its original size (tsub(c)) under reversed stress. The ratio tsub(c)/tsub(t) is a function of the magnitude of the applied stress and tensile hold time. Similar calculations have been performed for gas filled bubbles. Similar results to those for voids are found at long hold times, but a significantly different ratio of tsub(c)/tsub(t) is obtained at short times. (author)
Self-affirmation improves problem-solving under stress.
Directory of Open Access Journals (Sweden)
J David Creswell
Full Text Available High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.
International Nuclear Information System (INIS)
Saitoh, Ayumu; Kamitani, Atsushi; Takayama, Teruou; Nakamura, Hiroaki
2016-01-01
The extended boundary-node method (X-BNM) with the hierarchical-matrix (H-matrix) method has been developed and its performance has been investigated numerically. The results of computations show that the solver speed of the X-BNM with the H-matrix method is much faster than that of the standard X-BNM for the case where the number of boundary nodes exceeds a certain limit. Furthermore, the accuracy of the X-BNM with the H-matrix method is almost equal to that of the standard X-BNM. From these results, it is found that the H-matrix method is useful as the acceleration technique of the X-BNM. (author)
Experimental Research on Boundary Shear Stress in Typical Meandering Channel
Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua
2018-06-01
A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.
Azis, Moh. Ivan; Kasbawati; Haddade, Amiruddin; Astuti Thamrin, Sri
2018-03-01
A boundary element method (BEM) is obtained for solving a boundary value problem of homogeneous anisotropic media governed by diffusion-convection equation. The application of the BEM is shown for two particular pollutant transport problems of Tello river and Unhas lake in Makassar Indonesia. For the two particular problems a variety of the coefficients of diffusion and the velocity components are taken. The results show that the solutions vary as the parameters change. And this suggests that one has to be careful in measuring or determining the values of the parameters.
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking
Energy Technology Data Exchange (ETDEWEB)
Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); McIlree, A.R. [Electric Power Research Institute, Palo Alto, CA (United States)
1995-12-31
The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistribution as a result of such a plastic deformation was discussed.
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.
Solving inverse two-point boundary value problems using collage coding
Kunze, H.; Murdock, S.
2006-08-01
The method of collage coding, with its roots in fractal imaging, is the central tool in a recently established rigorous framework for solving inverse initial value problems for ordinary differential equations (Kunze and Vrscay 1999 Inverse Problems 15 745-70). We extend these ideas to solve the following inverse problem: given a function u(x) on [A, B] (which may be the interpolation of data points), determine a two-point boundary value problem on [A, B] which admits u(x) as a solution as closely as desired. The solution of such inverse problems may be useful in parameter estimation or determination of potential functional forms of the underlying differential equation. We discuss ways to improve results, including the development of a partitioning scheme. Several examples are considered.
Boundary element and speckle photography method for solving elasto-plastic problems
International Nuclear Information System (INIS)
Hadjikov, L.; Kavardjikov, V.; Valeva, V.
1985-01-01
The stress-strain state of metal specimens in the vicinity of a stress concentrator (circular hole) is investigated in case of a quasistatic loading. The displacements are evaluated numerically by the Boundary Element Method (BEM) and they are estimated experimentally by speckle photography. The experimentally and theoretically obtained results are compared and considered. A unified method for a simultaneous employment of both techniques is suggested. The experimental and theoretical techniques complement each other which results in an enhanced capability of the method proposed. (orig.)
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.
Biala, T A; Jator, S N
2015-01-01
In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.
Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah
2016-06-01
This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.
Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions
Saurabh, S.; Harpalani, S.
2017-12-01
Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.
Flow stress anisotropy caused by geometrically necessary boundaries
DEFF Research Database (Denmark)
Hansen, N.; Juul Jensen, D.
1992-01-01
of dislocations. A model has been proposed for this microstructural anisotropy based on the assumptions that (i) the average slip plane is at an angle of 45-degrees to the direction of the applied stress and that (ii) a strengthening parameter is the mean distance in the slip plane between the geometrically...... necessary boundaries. For different macroscopic arrangements of such boundaries, the model predictions are in good qualitative and quantitative agreement with experiments....
Problem of the Moving Boundary in Continuous Casting Solved by The Analytic-Numerical Method
Directory of Open Access Journals (Sweden)
Grzymkowski R.
2013-03-01
Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase - liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.
Problem of the Moving Boundary in Continuous Casting Solved by the Analytic-Numerical Method
Directory of Open Access Journals (Sweden)
R. Grzymkowski
2013-01-01
Full Text Available Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.
Grain boundary cavity growth under applied stress and internal pressure
International Nuclear Information System (INIS)
Mancuso, J.F.
1977-08-01
The growth of grain boundary cavities under applied stress and internal gas pressure was investigated. Methane gas filled cavities were produced by the C + 4H reversible CH4 reaction in the grain boundaries of type 270 nickel by hydrogen charging in an autoclave at 500 0 C with a hydrogen pressure of either 3.4 or 14.5 MPa. Intergranular fracture of nickel was achieved at a charging temperature of 300 0 C and 10.3 MPa hydrogen pressure. Cavities on the grain boundaries were observed in the scanning electron microscope after fracture. Photomicrographs of the cavities were produced in stereo pairs which were analyzed so as to correct for perspective distortion and also to determine the orientational dependence of cavity growth under an applied tensile stress
Douillet-Grellier, Thomas; Pramanik, Ranjan; Pan, Kai; Albaiz, Abdulaziz; Jones, Bruce D.; Williams, John R.
2017-10-01
This paper develops a method for imposing stress boundary conditions in smoothed particle hydrodynamics (SPH) with and without the need for dummy particles. SPH has been used for simulating phenomena in a number of fields, such as astrophysics and fluid mechanics. More recently, the method has gained traction as a technique for simulation of deformation and fracture in solids, where the meshless property of SPH can be leveraged to represent arbitrary crack paths. Despite this interest, application of boundary conditions within the SPH framework is typically limited to imposed velocity or displacement using fictitious dummy particles to compensate for the lack of particles beyond the boundary interface. While this is enough for a large variety of problems, especially in the case of fluid flow, for problems in solid mechanics there is a clear need to impose stresses upon boundaries. In addition to this, the use of dummy particles to impose a boundary condition is not always suitable or even feasibly, especially for those problems which include internal boundaries. In order to overcome these difficulties, this paper first presents an improved method for applying stress boundary conditions in SPH with dummy particles. This is then followed by a proposal of a formulation which does not require dummy particles. These techniques are then validated against analytical solutions to two common problems in rock mechanics, the Brazilian test and the penny-shaped crack problem both in 2D and 3D. This study highlights the fact that SPH offers a good level of accuracy to solve these problems and that results are reliable. This validation work serves as a foundation for addressing more complex problems involving plasticity and fracture propagation.
Stress accumulation and release at complex transform plate boundaries
Energy Technology Data Exchange (ETDEWEB)
Verdonck, D.; Furlong, K.P. (Pennsylvania State Univ., University Park (United States))
1992-10-01
Finite element methods are used to model the dynamics of deformation along complex transform plate boundaries, specifically the San Andreas fault system, California. Effects of mantle rheology and fault geometry on the stress buildup and release are investigated. No prior knowledge of the earthquake cycle time or amount of fault slip is assumed that the results suggest that the San Andreas fault slips at low shear stress (about 15 MPa). Although the maximum stress on the fault is 15 MPa, models with an upper mantle shear zone deforming entirely by dislocation creep accumulate stresses that exceed 100 MPa, a stress level high enough to drive localized dynamic recrystallization and a shift in dominant deformation mechanism to diffusion creep. Models in which the mantle shear zone deform locally by diffusion creep reach a dynamic steady state where lithospheric shear stresses never exceed the specified fault stress anywhere in the model and indicate that the strength of the upper mantle is an important parameter in the dynamics of plate boundary deformation. 17 refs.
Modeling of grain boundary stresses in Alloy 600
Energy Technology Data Exchange (ETDEWEB)
Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); Mcllree, A.R. [Electric Power Research Inst., Palo Alto, CA (United States)
1995-04-01
Corrosive environments combined with high stress levels and susceptible microstructures can cause intergranular stress corrosion cracking (IGSCC) of Alloy 600 components on both primary and secondary sides of pressurized water reactors. One factor affecting the IGSCC is intergranular carbide precipitation controlled by heat treatment of Alloy 600. This study is concerned with analysis of elastic stress fields in vicinity of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbides precipitated in the matrix and at a grain boundary triple point. The local stress concentration which can lead to IGSCC initiation was studied using a two-dimensional finite element model. The intergranular precipitates are more effective stress raisers than the intragranular precipitates. The combination of the elastic property mismatch and the precipitate shape can result in a local stress field substantially different than the macroscopic stress. The maximum local stresses in the vicinity of the intergranular precipitate were almost twice as high as the applied stress.
International Nuclear Information System (INIS)
Chiba, Gou; Tsuji, Masashi; Shimazu, Yoichiro
2001-01-01
A hierarchical domain decomposition boundary element method (HDD-BEM) that was developed to solve a two-dimensional neutron diffusion equation has been modified to deal with three-dimensional problems. In the HDD-BEM, the domain is decomposed into homogeneous regions. The boundary conditions on the common inner boundaries between decomposed regions and the neutron multiplication factor are initially assumed. With these assumptions, the neutron diffusion equations defined in decomposed homogeneous regions can be solved respectively by applying the boundary element method. This part corresponds to the 'lower level' calculations. At the 'higher level' calculations, the assumed values, the inner boundary conditions and the neutron multiplication factor, are modified so as to satisfy the continuity conditions for the neutron flux and the neutron currents on the inner boundaries. These procedures of the lower and higher levels are executed alternately and iteratively until the continuity conditions are satisfied within a convergence tolerance. With the hierarchical domain decomposition, it is possible to deal with problems composing a large number of regions, something that has been difficult with the conventional BEM. In this paper, it is showed that a three-dimensional problem even with 722 regions can be solved with a fine accuracy and an acceptable computation time. (author)
Electromagnetic stress at the boundary: Photon pressure or tension?
Wang, Shubo; Ng, Jack; Xiao, Meng; Chan, Che Ting
2016-03-01
It is well known that incident photons carrying momentum ℏk exert a positive photon pressure. But if light is impinging from a negative refractive medium in which ℏk is directed toward the source of radiation, should light exert a photon "tension" instead of a photon pressure? Using an ab initio method that takes the underlying microstructure of a material into account, we find that when an electromagnetic wave propagates from one material into another, the electromagnetic stress at the boundary is, in fact, indeterminate if only the macroscopic parameters are specified. Light can either pull or push the boundary, depending not only on the macroscopic parameters but also on the microscopic lattice structure of the polarizable units that constitute the medium. Within the context of an effective-medium approach, the lattice effect is attributed to electrostriction and magnetostriction, which can be accounted for by the Helmholtz stress tensor if we use the macroscopic fields to calculate the boundary optical stress.
Sensor for Boundary Shear Stress in Fluid Flow
Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.
2012-01-01
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.
Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.
2018-01-01
The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.
Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.
2018-03-01
The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.
Solving fuzzy two-point boundary value problem using fuzzy Laplace transform
Ahmad, Latif; Farooq, Muhammad; Ullah, Saif; Abdullah, Saleem
2014-01-01
A natural way to model dynamic systems under uncertainty is to use fuzzy boundary value problems (FBVPs) and related uncertain systems. In this paper we use fuzzy Laplace transform to find the solution of two-point boundary value under generalized Hukuhara differentiability. We illustrate the method for the solution of the well known two-point boundary value problem Schrodinger equation, and homogeneous boundary value problem. Consequently, we investigate the solutions of FBVPs under as a ne...
International Nuclear Information System (INIS)
Itagaki, Masafumi; Sahashi, Naoki.
1997-01-01
The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)
Problem-solving skills and hardiness as protective factors against stress in Iranian nurses.
Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah
2014-02-01
Nursing is a stressful occupation, even when compared with other health professions; therefore, it is necessary to advance our knowledge about the protective factors that can help reduce stress among nurses. The present study sought to investigate the associations among problem-solving skills and hardiness with perceived stress in nurses. The participants, 252 nurses from six private hospitals in Tehran, completed the Personal Views Survey, the Perceived Stress Scale, and the Problem-Solving Inventory. Structural Equation Modeling (SEM) was used to analyse the data and answer the research hypotheses. As expected, greater hardiness was associated with low levels of perceived stress, and nurses low in perceived stress were more likely to be considered approachable, have a style that relied on their own sense of internal personal control, and demonstrate effective problem-solving confidence. These findings reinforce the importance of hardiness and problem-solving skills as protective factors against perceived stress among nurses, and could be important in training future nurses so that hardiness ability and problem-solving skills can be imparted, allowing nurses to have more ability to control their perceived stress.
Energy Technology Data Exchange (ETDEWEB)
Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)
2010-08-15
A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow
Energy Technology Data Exchange (ETDEWEB)
Aarao, J; Bradshaw-Hajek, B H; Miklavcic, S J; Ward, D A, E-mail: Stan.Miklavcic@unisa.edu.a [School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)
2010-05-07
Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. In this paper, we propose a solution technique wherein we embed the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain, is then the solution of the original boundary value problem. We call this the extended-domain-eigenfunction method. To illustrate the method's strength and scope, we apply it to Laplace's equation on an annular-like domain.
Solving free-plasma-boundary problems with the SIESTA MHD code
Sanchez, R.; Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M.
2017-10-01
SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for 3D magnetic configurations. It is an iterative code that uses the solution obtained by the VMEC code to provide a background coordinate system and an initial guess of the solution. The final solution that SIESTA finds can exhibit magnetic islands and stochastic regions. In its original implementation, SIESTA addressed only fixed-boundary problems. This fixed boundary condition somewhat restricts its possible applications. In this contribution we describe a recent extension of SIESTA that enables it to address free-plasma-boundary situations, opening up the possibility of investigating problems with SIESTA in which the plasma boundary is perturbed either externally or internally. As an illustration, the extended version of SIESTA is applied to a configuration of the W7-X stellarator.
van Horssen, Wim T.; Wang, Yandong; Cao, Guohua
2018-06-01
In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.
Kot, V. A.
2017-11-01
The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.
Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus
2014-01-01
In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.
Directory of Open Access Journals (Sweden)
Dang Quang A
2013-02-01
Full Text Available In this paper we consider a mixed boundary value problem for biharmonic equation of the Airy stress function which models a crack problem of a solid elastic plate. An iterative method for reducing the problem to a sequence of mixed problems for Poisson equations is proposed and investigated. The convergence of the method is established theoretically and illustrated on many numerical experiments.
Reich, Catherine M; Blackwell, Náthali; Simmons, Catherine A; Beck, J Gayle
2015-05-01
Social factors are often associated with the development or maintenance of posttraumatic stress disorder (PTSD) in the aftermath of interpersonal traumas. However, social problem solving strategies have received little attention. The current study explored the role of social problem solving styles (i.e., rational approaches, impulsive/careless strategies, or avoidance strategies) as intermediary variables between abuse exposure and PTSD severity among intimate partner violence survivors. Avoidance problem solving served as an intermediating variable for the relationship between three types of abuse and PTSD severity. Rational and impulsive/careless strategies were not associated with abuse exposure. These findings extend the current understanding of social problem solving among interpersonal trauma survivors and are consistent with more general avoidance coping research. Future research might examine whether avoidance problem solving tends to evolve in the aftermath of trauma or whether it represents a longstanding risk factor for PTSD development. Published by Elsevier Ltd.
Discrete maximum principle for Poisson equation with mixed boundary conditions solved by hp-FEM
Czech Academy of Sciences Publication Activity Database
Vejchodský, Tomáš; Šolín, P.
2009-01-01
Roč. 1, č. 2 (2009), s. 201-214 ISSN 2070-0733 R&D Projects: GA AV ČR IAA100760702; GA ČR(CZ) GA102/07/0496; GA ČR GA102/05/0629 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete maximum principle * hp-FEM * Poisson equation * mixed boundary conditions Subject RIV: BA - General Mathematics
Monotone methods for solving a boundary value problem of second order discrete system
Directory of Open Access Journals (Sweden)
Wang Yuan-Ming
1999-01-01
Full Text Available A new concept of a pair of upper and lower solutions is introduced for a boundary value problem of second order discrete system. A comparison result is given. An existence theorem for a solution is established in terms of upper and lower solutions. A monotone iterative scheme is proposed, and the monotone convergence rate of the iteration is compared and analyzed. The numerical results are given.
Functional geometric method for solving free boundary problems for harmonic functions
Energy Technology Data Exchange (ETDEWEB)
Demidov, Aleksander S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2010-01-01
A survey is given of results and approaches for a broad spectrum of free boundary problems for harmonic functions of two variables. The main results are obtained by the functional geometric method. The core of these methods is an interrelated analysis of the functional and geometric characteristics of the problems under consideration and of the corresponding non-linear Riemann-Hilbert problems. An extensive list of open questions is presented. Bibliography: 124 titles.
Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity
International Nuclear Information System (INIS)
Nepomechie, Rafael I.
2002-01-01
We consider the open XXZ quantum spin chain with nondiagonal boundary terms. For bulk anisotropy value η=((iπ)/(p+1)), p=1,2,..., we propose an exact (p+1)-order functional relation for the transfer matrix, which implies Bethe-ansatz-like equations for the corresponding eigenvalues. The key observation is that the fused spin-((p+1)/(2)) transfer matrix can be expressed in terms of a lower-spin transfer matrix, resulting in the truncation of the fusion hierarchy
Reducing Teacher Stress by Implementing Collaborative Problem Solving in a School Setting
Schaubman, Averi; Stetson, Erica; Plog, Amy
2011-01-01
Student behavior affects teacher stress levels and the student-teacher relationship. In this pilot study, teachers were trained in Collaborative Problem Solving (CPS), a cognitive-behavioral model that explains challenging behavior as the result of underlying deficits in the areas of flexibility/adaptability, frustration tolerance, and problem…
Solving 1D plasmas and 2D boundary problems using Jack polynomials and functional relations
International Nuclear Information System (INIS)
Fendley, P.; Saleur, H.; Lesage, F.
1995-01-01
The general one-dimensional open-quotes log-sineclose quotes gas is defined by restricting the positive and negative charges of a two-dimensional Coulomb gas to live on a circle. Depending on charge constraints, this problem is equivalent to different boundary field theories. We study the electrically neutral case, which is equivalent to a two-dimensional free boson with an impurity cosine potential. We use two different methods: a perturbative one based on Jack symmetric functions, and a non-perturbative one based on the thermodynamic Bethe ansatz and functional relations. The first method allows us to find an explicit series expression for all coefficients in the virial expansion of the free energy and the experimentally measurable conductance. Some results for correlation functions are also presented. The second method gives an expression for the full free energy, which yields a surprising fluctuation-dissipation relation between the conductance and the free energy
Solving Singular Two-Point Boundary Value Problems Using Continuous Genetic Algorithm
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2012-01-01
Full Text Available In this paper, the continuous genetic algorithm is applied for the solution of singular two-point boundary value problems, where smooth solution curves are used throughout the evolution of the algorithm to obtain the required nodal values. The proposed technique might be considered as a variation of the finite difference method in the sense that each of the derivatives is replaced by an appropriate difference quotient approximation. This novel approach possesses main advantages; it can be applied without any limitation on the nature of the problem, the type of singularity, and the number of mesh points. Numerical examples are included to demonstrate the accuracy, applicability, and generality of the presented technique. The results reveal that the algorithm is very effective, straightforward, and simple.
Concurrent grain boundary motion and grain rotation under an applied stress
International Nuclear Information System (INIS)
Gorkaya, Tatiana; Molodov, Konstantin D.; Molodov, Dmitri A.; Gottstein, Guenter
2011-01-01
Simultaneous shear coupling and grain rotation were observed experimentally during grain boundary migration in high-purity Al bicrystals subjected to an external mechanical stress at elevated temperatures. This behavior is interpreted in terms of the structure of the investigated planar 18.2 o non-tilt grain boundary with a 20 o twist component. For characterization of the grain rotation after annealing under stress the bicrystal surface topography across the boundary was measured by atomic force microscopy. The temperature dependence of the boundary migration rate was measured and the migration activation energy determined.
Directory of Open Access Journals (Sweden)
E.C. Biscaia Junior
2001-06-01
Full Text Available A dynamic kinetic-diffusive model for the extraction of metallic ions from aqueous liquors using liquid surfactant membranes is proposed. The model incorporates undesirable intrinsic phenomena such as swelling and breakage of the emulsion globules that have to be controlled during process operation. These phenomena change the spatial location of the chemical reaction during the course of extraction, resulting in a transient moving boundary problem. The orthogonal collocation method was used to transform the partial differential equations into an ordinary differential equation set that was solved by an implicit numerical routine. The model was found to be numerically stable and reliable in predicting the behaviour of zinc extraction with acidic extractant for long residence times.
Directory of Open Access Journals (Sweden)
Yurii M. Streliaiev
2016-06-01
Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.
Implementation of a boundary element method to solve for the near field effects of an array of WECs
Oskamp, J. A.; Ozkan-Haller, H. T.
2010-12-01
When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.
On Hydromagnetic Stresses in Accretion Disk Boundary Layers
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan
2012-01-01
Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity...
SIMULATION OF THE stress-strain state of excavation BOUNDARIES in fractured massifs
Directory of Open Access Journals (Sweden)
Nizomov Dzhahongir Nizomovich
2012-07-01
Any limiting process, namely, if or and any results are in line with the isotropic medium. The proposed algorithm and calculation pattern may be used to research the concentrated stresses alongside the boundaries of hydrotechnical engineering facilities.
Temperature and stress distribution in pressure vessel by the boundary element method
International Nuclear Information System (INIS)
Alujevic, A.; Apostolovic, D.
1990-01-01
The aim of this paper is to demonstrate the applicability of boundary element method for the solution of temperatures and thermal stresses in the body of reactor pressure vessel of the NPP Krsko . In addition to the theory of boundary elements for thermo-elastic continua (2D, 3D) results are given of a numerically evaluated meridional cross-section. (author)
Li, Xiaofan; Nie, Qing
2009-01-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...
Stress-constrained truss topology optimization problems that can be solved by linear programming
DEFF Research Database (Denmark)
Stolpe, Mathias; Svanberg, Krister
2004-01-01
We consider the problem of simultaneously selecting the material and determining the area of each bar in a truss structure in such a way that the cost of the structure is minimized subject to stress constraints under a single load condition. We show that such problems can be solved by linear...... programming to give the global optimum, and that two different materials are always sufficient in an optimal structure....
Stress engineering for the design of morphotropic phase boundary in piezoelectric material
Energy Technology Data Exchange (ETDEWEB)
Ohno, Tomoya, E-mail: ohno@mail.kitami-it.ac.jp [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)
2015-06-30
Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.
Directory of Open Access Journals (Sweden)
Marco Gonzalez
Full Text Available Abstract The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs. The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has become very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes.
Boundary Stress-Energy Tensor and Newton-Cartan Geometry in Lifshitz Holography
Christensen, M.H.; Hartong, J.; Obers, N.A.; Rollier, B.
2014-01-01
For a specific action supporting z = 2 Lifshitz geometries we identify the Lifshitz UV completion by solving for the most general solution near the Lifshitz boundary. We identify all the sources as leading components of bulk fields which requires a vielbein formalism. This includes two linear
International Nuclear Information System (INIS)
Yi, Won; Yu, Yeong Chul; Jeong, Eui Seob; Lee, Chang Ho
1995-01-01
It is very important to evaluate the bonding residual thermal stress in dissimilar materials such as LSI package. In this study, the bonding residual thermal stress was calculated using the boundary element method, varing with the sub-element, geometry of specimen and adhesive thickness. The present results reveal a stress singularity at the edge of the interface, therefore the bonding strength of metal/resin interface can be estimated by taking into account it.
Energy Technology Data Exchange (ETDEWEB)
Magnfält, D., E-mail: danma@ifm.liu.se; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Fillon, A.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Boyd, R. D.; Helmersson, U. [Plasma and Coatings Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)
2016-02-07
Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.
International Nuclear Information System (INIS)
Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.
2017-01-01
The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.
Influences of triple junctions on stress-assisted grain boundary motion in nanocrystalline materials
International Nuclear Information System (INIS)
Aramfard, Mohammad; Deng, Chuang
2014-01-01
Stress-assisted grain boundary motion is among the most studied modes of microstructural evolution in crystalline materials. In this study, molecular dynamics simulations were used to systematically investigate the influences of triple junctions on the stress-assisted motion of symmetric tilt grain boundaries in Cu by considering a honeycomb nanocrystalline model. It was found that the grain boundary motion in nanocrystalline models was highly sensitive to the loading mode, and a strong coupling effect which was prevalent in bicrystal models was only observed when simple shear was applied. In addition, the coupling factor extracted from the honeycomb model was found to be larger and more sensitive to temperature change than that from bicrystal models for the same type of grain boundary under the same loading conditions. Furthermore, the triple junctions seemed to exhibit unusual asymmetric pinning effects to the migrating grain boundary and the constraints by the triple junctions and neighboring grains led to remarkable non-linear grain boundary motion in directions both parallel and normal to the applied shear, which was in stark contrast to that observed in bicrystal models. In addition, dislocation nucleation and propagation, which were absent in the bicrystal model, were found to play an important role on shear-induced grain boundary motion when triple junctions were present. In the end, a generalized model for shear-assisted grain boundary motion was proposed based on the findings from this research. (paper)
Directory of Open Access Journals (Sweden)
Sukhendu Dey
1980-01-01
Full Text Available In the present paper the influence of the initial stress is shown on the reflection and transmission of P waves at the core-mantle boundary. Taking a particular value of the inherent initial stress, the variations of reflection and transmission coefficients with respect to the angle of emergence are represented by graphs. These graphs when compared with those having no initial stress show that the effect of the initial stress is to produce a reflected P and S waves with numerically higher amplitudes but a transmitted P wave with smaller amplitude. A method is also indicated in this paper to calculate the actual value of the initial stress near the core-mantle boundary by measuring the amplitudes of incident and reflected P waves.
Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries
Vasco, Enrique; Polop, Celia
2017-12-01
The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.
Boundary stress tensors for spherically-symmetric conformal Rindler observers
Energy Technology Data Exchange (ETDEWEB)
Culetu, Hristu [Ovidius University, Constanta (Romania)
2010-06-15
The boundary energy-momentum tensors for a static observer in the conformally flat Rindler geometry are considered. We find that the surface energy density is positive far from the Planck world, but that the transversal pressures are negative. The kinematical parameters associated with the nongeodesic congruence of static observers are computed. The entropy S corresponding to the degrees of freedom on the 2-surface of constant {rho} and t equals the horizon entropy of a black hole with a time-dependent mass, and the Padmanabhan expression E = 2ST is obeyed. The 2-surface shear tensor is vanishing, and the coefficient of the bulk viscosity {zeta} is 1/16 {pi}, so the negative pressure due to it acts as a surface tension.
Application of a 2-D approximation technique for solving stress analyses problem in FEM
Directory of Open Access Journals (Sweden)
H Khawaja
2016-10-01
Full Text Available With the advent of computational techniques and methods like finite element method, complex engineering problems are no longer difficult to solve. These methods have helped engineers and designers to simulate and solve engineering problems in much more details than possible with experimental techniques. However, applying these techniques is not a simple task and require lots of acumen, understanding, and experience in obtaining a solution that is as close to an exact solution as possible with minimum computer resources. In this work using the finite element (FE method, stress analyzes of the low-pressure turbine of a small turbofan engine is carried out by employing two different techniques. Initially, a complete solid model of the turbine is prepared which is then finite element modelled with the eight-node brick element. Stresses are calculated using this model. Subsequently, the same turbine is modelled with four-node shell element for calculation of stresses. Material properties, applied loads (inertial, aerodynamic, and thermal, and constraints were same for both the cases. Authors have developed a “2-D approximation technique” to approximate a 3-D problem into a 2-D problem to study the saving invaluable computational time and resources. In this statistics technique, the 3-D domain of variable thickness is divided into many small areas of constant thickness. It is ensured that the value of the thickness for each sub-area is the correct representative thickness of that sub area, and it is within three sigma limit. The results revealed that technique developed is accurate, less time consuming and computational effort saving; the stresses obtained by 2-D technique are within five percent of 3-D results. The solution is obtained in CPU time which is six times less than the 3-D model. Similarly, the number of nodes and elements are more than ten times less than that of the 3-D model. ANSYS ® was used in this work.
Anxiety, Depression, Problem Solving and Stress Management in Patients with Ankylosing Spondylitis
Directory of Open Access Journals (Sweden)
Yasemin Özkan
2018-04-01
Full Text Available Objective: This study aims to determine anxiety, depression, self-esteem, stress management and problem solving skills in ankylosing spondylitis (AS patients compared to healthy subjects. Materials and Methods: The study involves 33 patients with AS according to the Modified New York Criteria and 31 healthy subjects as control group. A socio-demographic data form, the Hospital Anxiety and Depression Scale (HADS, the Rosenberg Self-Esteem Scale (RSES, the Problem Solving Inventory (PSI and the Coping Orientation to Problems Experienced (COPE scale were used to evaluate participants. Results: The mean ages of the patients and the control were 36.3±10.9 and 33.6±6.2 years respectively with no significant difference between the two groups (p>0.05. On the HADS scale, AS patients showed significantly higher anxiety and depression scores (p<0.05. AS patients had significantly lower self-esteem as determined by the RSES scores (p<0.05. When the study groups were compared using the PSI, a significant difference was observed only in the “approach-avoidance style” subscale. A positive correlation between Bath Ankylosing Spondylitis Disease Activity Index (BASDAI and RSES was reported and there was a very strong negative correlation between BASDAI and overall PSI scores. A negative correlation was found between humor, mental disengagement and behavioral disengagement and BASDAI scores (p<0.05. Conclusion: Being a chronic rheumatic disease, AS not only limits daily living activities due to its physical manifestations but also causes psychological problems such as depression ve anxiety. However, it does not seem to impair problem solving skills and the ability to cope with stress significantly. It might be helpful to evaluate AS patients using a holistic approach and to be aware of the factors that are associated with difficulties in their social interactions.
Numerical evaluation of state boundary surface through rotation of principal stress axes in sand
International Nuclear Information System (INIS)
Sadrnejad, S. A.
2001-01-01
In applying shear stress to saturated soil with arbitrary stress paths, the prediction of the exact value of strains is difficult because of mainly its stress path dependent nature. Rotation of the principal stress axes during shearing of the soil is a feature of stress paths associated with many field loading situations. A proper understanding of the effects of principal stress rotation on soil behavior can be provided if the anisotropy existing prior to stress rotation and induced anisotropy due to plastic flow in soil are clearly understood and modeled. A multi laminate based model for soil is developed and used to compute and present the influence of rotation of principal stress axes on the plastic behavior of soil. This is fulfilled by distributing the effects of boundary condition changes into several predefined sampling orientations at one point and summing the micro-results up as the macro-result. The validity of the presented model examined by comparing numerical and test results showing the mentioned aspect. In this paper, the state boundary surface is numerically obtained by a multi laminate based model capable of predicting the behavior of sand under the influences of rotation of the direction of principal stress axes and induced anisotropy. the predicted numerical results are tally in agreement with experiments
International Nuclear Information System (INIS)
Zheng, Lei; Lejček, Pavel; Song, Shenhua; Schmitz, Guido; Meng, Ye
2015-01-01
Grain boundary (GB) segregation of P in 2.25Cr1Mo steel induced by elastic stress shows that the P equilibrium concentration, after reaching the non-equilibrium concentration maximum at critical time, returns to its initial thermal equilibrium level. This finding confirms the interesting phenomenon that the effect of elastic stress on GB segregation of P is significant in kinetics while slight in thermodynamics. Through extending the “pressure” in classical theory of chemical potential to the “elastic stress”, the thermodynamic effect of elastic stress on GB segregation is studied, and the relationship between elastic stress and segregation Gibbs energy is formulated. The formulas reveal that the difference in the segregation Gibbs energy between the elastically-stressed and non-stressed states depends on the excess molar volume of GB segregation and the magnitude of elastic stress. Model calculations in segregation Gibbs energy confirm that the effect of elastic stress on the thermodynamics of equilibrium GB segregation is slight, and the theoretical analyses considerably agree with the experimental results. The confirmation indicates that the nature of the thermodynamic effect is well captured. - Highlights: • GB segregation of P after stress aging returns to its initial thermal equilibrium level. • Relationship between elastic stress and segregation energy is formulated. • Thermodynamic effect relies on excess molar volume and magnitude of elastic stress. • Effect of elastic stress on Gibbs energy of GB segregation is estimated to be slight. • Complete theory of the effect of elastic stress on grain boundary segregation is setup
Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction
Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.
2018-01-01
Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.
Influence of plastic slip localization on grain boundary stress fields and microcrack nucleation
International Nuclear Information System (INIS)
Sauzay, Maxime; Vor, Kokleang
2013-01-01
Slip localization is widely observed in metallic polycrystals after tensile deformation, cyclic deformation (persistent slip bands) or pre-irradiation followed by tensile deformation (channels). Such strong deformation localized in thin slip bands induces local stress concentrations in the quasi-elastic matrix around, at the intersections between slip bands and grain boundaries where microcracks are often observed. Since the work of Stroh, such stress fields have been modeled using the dislocation pile-up theory which leads to stress singularities similar to the LEFM ones. The Griffith criterion has then been widely applied, leading usually to strong underestimations of the macroscopic stress for microcrack nucleation. In fact, slip band thickness is finite: 50-1000 nm depending on material, temperature and loading conditions. Then, many slip planes are plastically activated through the thickness. Stress fields have probably been overestimated using the pile-up theory which assumes that all dislocations are located on the same atomic plane. To evaluate more realistic stress fields, crystalline finite element (FE) computations are carried out using microstructure inputs (slip band aspect ratio and spacing). Slip bands (low critical resolved shear stress) are embedded in an elastic matrix. The following results are obtained concerning grain boundary normal stress fields: - strong influence of slip band thickness close to the slip band corner, which is not accounted for by the pile-up theory. But far away, the thickness has a negligible effect and the predicted stress fields are close to the one predicted by the pile-up theory, - analytical formulae are deduced from the numerous FE computation results which allows the prediction of surface/bulk slips as well as grain boundary stress fields. Slip band plasticity parameters, slip band length and thickness, Schmid factor and remote stress are taken into account. The dependence with respect to the various parameters can
Stress Wave Propagation in Soils Modelled by the Boundary Element Method
DEFF Research Database (Denmark)
Rasmussen, K. M.
This thesis deals with different aspects of the boundary element method (BEM) applied to stress wave propagation problems in soils. Among other things BEM formulations for coupled FEM and BEM, moving loads, direct BEM and indirect BEM are presented. For all the formulations both analytical...
Czech Academy of Sciences Publication Activity Database
Zheng, L.; Lejček, Pavel; Song, S.; Schmitz, G.; Meng, Y.
2015-01-01
Roč. 647, Oct (2015), s. 172-178 ISSN 0925-8388 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundaries * segregation * elastic stress * thermodynamics * chemical potential * molar volume Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.014, year: 2015
Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer
Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram
2015-11-01
Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.
Beshtokov, M. Kh.
2016-10-01
A nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.
Boundary element analysis of stress singularity in dissimilar metals by friction welding
International Nuclear Information System (INIS)
Chung, N. Y.; Park, C. H.
2012-01-01
Friction welded dissimilar metals are widely applied in automobiles, rolling stocks, machine tools, and various engineering fields. Dissimilar metals have several advantages over homogeneous metals, including high strength, material property, fatigue endurance, impact absorption, high reliability, and vibration reduction. Due to the increased use of these metals, understanding their behavior under stress conditions is necessary, especially the analysis of stress singularity on the interface of friction-welded dissimilar metals. To establish a strength evaluation method and a fracture criterion, it is necessary to analyze stress singularity on the interface of dissimilar metals with welded flashes by friction welding under various loads and temperature conditions. In this paper, a method analyzing stress singularity for the specimens with and without flashes set in friction welded dissimilar metals is introduced using the boundary element method. The stress singularity index (λ) and the stress singularity factor (Γ) at the interface edge are computed from the stress analysis results. The shape and flash thickness, interface length, residual stress, and load are considered in the computation. Based on these results, the variations of interface length (c) and the ratio of flash thickness (t2 t1) greatly influence the stress singularity factors at the interface edge of friction welded dissimilar metals. The stress singularity factors will be a useful fracture parameter that considers stress singularity on the interface of dissimilar metals
Analytical solutions of couple stress fluid flows with slip boundary conditions
Directory of Open Access Journals (Sweden)
Devakar M.
2014-09-01
Full Text Available In the present article, the exact solutions for fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible couple stress fluid between parallel plates are obtained using slip boundary conditions. The effect of various parameters on velocity for each problem is discussed. It is found that, for each of the problems, the solution in the limiting case as couple stresses approaches to zero is similar to that of classical viscous Newtonian fluid. The results indicate that, the presence of couple stresses decreases the velocity of the fluid.
A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2013-01-01
Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
International Nuclear Information System (INIS)
Hady, F. M.; Ibrahim, F. S.; Abdel-Gaied, S. M.; Eid, M. R.
2011-01-01
The effect of yield stress on the free convective heat transfer of dilute liquid suspensions of nanofluids flowing on a vertical plate saturated in porous medium under laminar conditions is investigated considering the nanofluid obeys the mathematical model of power-law. The model used for non-Newtonian nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing boundary- layer equations are cast into dimensionless system which is solved numerically using a deferred correction technique and Newton iteration. This solution depends on yield stress parameter Ω, a power-law index n, Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion number Nb, and a thermophoresis number Nt. Analyses of the results found that the reduced Nusselt and Sherwood numbers are decreasing functions of the higher yield stress parameter for each dimensionless numbers, n and Le, except the reduced Sherwood number is an increasing function of higher Nb for different values of yield stress parameter
Structure of high and low shear-stress events in a turbulent boundary layer
Gomit, G.; de Kat, R.; Ganapathisubramani, B.
2018-01-01
Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.
International Nuclear Information System (INIS)
Jeon, Woo Pyung; Shin, Sung Ho; Kang, Shin Hyoung
2000-01-01
The local wall shear stress in transitional boundary layer was estimated from the near-wall mean velocity data using the principle of Computational Preston tube Method(CPM). The previous DNS and experimental databases of transitional boundary layers were used to demonstrate the accuracy of the method and to provide the applicable range of wall unit y + . The skin friction coefficients predicted by the CPM agreed well with those from previous studies. To reexamine the applicability of the CPM, near-wall hot-wire measurements were conducted in developing transitional boundary layers on a flat plate with different freestream turbulence intensities. The intermittency profiles across the transitional boundary layers were reasonably obtained from the conditional sampling technique. An empirical correlation between the representative intermittency near the wall and the free parameter K 1 of the extended wall function of CPM has been newly proposed using the present and other experimental data. The CPM has been verified as a useful tool to measure the wall shear stress in transitional boundary layer with reasonable accuracy
Li, Xiaofan; Nie, Qing
2009-07-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.
Directory of Open Access Journals (Sweden)
Mohammad Siddique
2010-08-01
Full Text Available Parabolic partial differential equations with nonlocal boundary conditions arise in modeling of a wide range of important application areas such as chemical diffusion, thermoelasticity, heat conduction process, control theory and medicine science. In this paper, we present the implementation of positivity- preserving Padé numerical schemes to the two-dimensional diffusion equation with nonlocal time dependent boundary condition. We successfully implemented these numerical schemes for both Homogeneous and Inhomogeneous cases. The numerical results show that these Padé approximation based numerical schemes are quite accurate and easily implemented.
Sensor for direct measurement of the boundary shear stress in fluid flow
Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick
2011-04-01
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.
Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activation ...
Shear-coupled grain-boundary migration dependence on normal strain/stress
Combe, N.; Mompiou, F.; Legros, M.
2017-08-01
In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.
Kodavanti, Urmila P
2016-12-01
Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.
Sukhanov, Ivan I.; Ditenberg, Ivan A.
2017-12-01
The paper provides a theoretical analysis of elastic stresses and elastic energy distribution in nanostructured metal materials in the vicinity of nanograin boundaries with a high partial disclination density. The analysis demonstrates the stress field distribution in disclination grain boundary configurations as a function of nanograin size, taking into account the superposition of these stresses in screening the disclination pile-ups. It is found that the principal stress tensor components reach maximum values only in disclination planes P ≈ E/25 and that the stress gradients peak at nodal points ∂P/∂x ≈ 0.08E nm-1. The shear stress components are localized within the physical grain size, and the specific elastic energy distribution for such configurations reveals characteristic local maxima which can be the cause for physical broadening of nanograin boundaries.
Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer
DEFF Research Database (Denmark)
Berg, Jacob; Mann, Jakob; Patton, Edward G.
2013-01-01
This study demonstrates that a pulsed wind lidar is a reliable instrument for measuring angles between horizontal vectors of significance in the atmospheric boundary layer. Three different angles are considered: the wind turning, the angle between the stress vector and the mean wind direction......, and the angle between the stress vector and the vertical gradient of the mean velocity vector. The latter is assumed to be zero by the often applied turbulent-viscosity hypothesis, so that the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where...... the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only...
van Noort, R.
2008-01-01
Two of the three processes making up the deformation mechanism of intergranular pressure solution, being dissolution and diffusion, take place in the grain boundary fluid phase. Hence, the structure and physical properties of wet grain boundaries under stress can be expected to influence the
Thompson, T. B.; Meade, B. J.
2015-12-01
The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.
Directory of Open Access Journals (Sweden)
Adel A.K. Mohsen
2010-07-01
Full Text Available The problem of nonuniqueness (NU of the solution of exterior acoustic problems via boundary integral equations is discussed in this article. The efficient implementation of the CHIEF (Combined Helmholtz Integral Equations Formulation method to axisymmetric problems is studied. Interior axial fields are used to indicate the solution error and to select proper CHIEF points. The procedure makes full use of LU-decomposition as well as the forward solution derived in the solution. Implementations of the procedure for hard spheres are presented. Accurate results are obtained up to a normalised radius of ka = 20.983, using only one CHIEF point. The radiation from a uniformly vibrating sphere is also considered. Accurate results for ka up to 16.927 are obtained using two CHIEF points.
Lee, Byungjoon; Min, Chohong
2018-05-01
We introduce a stable method for solving the incompressible Navier-Stokes equations with variable density and viscosity. Our method is stable in the sense that it does not increase the total energy of dynamics that is the sum of kinetic energy and potential energy. Instead of velocity, a new state variable is taken so that the kinetic energy is formulated by the L2 norm of the new variable. Navier-Stokes equations are rephrased with respect to the new variable, and a stable time discretization for the rephrased equations is presented. Taking into consideration the incompressibility in the Marker-And-Cell (MAC) grid, we present a modified Lax-Friedrich method that is L2 stable. Utilizing the discrete integration-by-parts in MAC grid and the modified Lax-Friedrich method, the time discretization is fully discretized. An explicit CFL condition for the stability of the full discretization is given and mathematically proved.
International Nuclear Information System (INIS)
Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki
2010-01-01
The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)
Directory of Open Access Journals (Sweden)
Mohammad Reza Zarbakhsh Bahri
2013-08-01
Full Text Available Introduction: This study aims to evaluate the effectiveness of stress management training and problem-solving training on quality of life and life expectancy of infertile women was conducted.Material and Methods: The method of this study was experimental with pretest – posttest design with a control group. population of 400 infertile women who referred to infertility center in Rasht were randomized to 250 of them were selected and the quality of life and life expectancy of the study were the 45 members of the quality of life and life expectancy lower were more randomly in three groups of 15 people, including two experimental groups and one control group were replaced. Each experimental groups were trained for 10 sessions of 90 minutes, respectively, stress management and problem-solving. Upon completion of the training program, participants were assessed again.Results: The result of present study showed that there was a significant difference between the experimental groups and control group in the scores of quality of life and life expectancy (p0.05.Conclusion: Stress management and problem solving training were effective on life expectancy and quality of life of infertile women but there was no significant difference between the effectiveness of these two methods on life expectancy and quality of life of infertile women.
Park, Sun Ah; Sung, Kyung Mi
2016-08-01
The study was done to evaluate the effects a Stress Management Program (SMP) on stress, problem solving skills, and quality of life for hospitalized patients with Schizophrenia. A mixed method design was used: a combination of a repeated-measure design with a non-equivalent control group and qualitative data collection. The participants were 40 patients with schizophrenia admitted in three psychiatric hospitals. The experimental group (n=20) received the SMP twice a week for a total of 8 weeks. Study results revealed that the SMP was effective for stress (F=321.02, pproblem solving ability (F=246.28, peffective strategy to reduce patients' hospitalization stress, and improve problem solving skills and quality of life. Therefore, it is recommended that mental health nurses use this stress management program in clinical practice to assist adaptation to hospitalization for persons with schizophrenia.
Limkumnerd, Surachate; Sethna, James P.
We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose
Convection of wall shear stress events in a turbulent boundary layer
Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark
2017-11-01
The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Energy Technology Data Exchange (ETDEWEB)
Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom)
2010-10-25
Research highlights: {yields} Triaxial residual macro-stresses have been measured by neutron diffraction. {yields} Rates of stress relaxation are shown to be a function of the microstructure. {yields} Quantification of M{sub 23}C{sub 6} precipitation was undertaken by a novel approach. {yields} Intergranular M{sub 23}C{sub 6} precipitation promotes the potential to intergranular fracture. {yields} Phosphorous segregation further enhances the potential to intergranular fracture. - Abstract: The present work considers the role of thermo-mechanical history on the generation and relaxation of residual stresses, typical of those encountered in Type 316H austenitic stainless steel thick section weldments. A series of thermo-mechanical pre-treatments have been developed and applied to simulate the critical microstructures observed within the heat affected zone of the thick section parent material. The through thickness distributions of the residual macro-stresses in cylindrical specimens have been measured by neutron diffraction and then the rates of the relaxation are shown to be a function of microstructure. The susceptibility to intergranular brittle fracture at a temperature of -196 deg. C is shown to be a function of M{sub 23}C{sub 6} carbide precipitates and phosphorous segregation at the grain boundaries. Finally, the link of the present study to the understanding of the reheat cracking is briefly discussed.
Extremely high wall-shear stress events in a turbulent boundary layer
Pan, Chong; Kwon, Yongseok
2018-04-01
The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.
Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps
Maury, J.; Cornet, F. H.; Cara, M.
2014-11-01
In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.
Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel
International Nuclear Information System (INIS)
Naudin, C.; Frund, J.M.; Pineau, A.
1999-01-01
Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made
Directory of Open Access Journals (Sweden)
Marc H. Taylor
2013-04-01
Full Text Available Eastern Boundary Current systems (EBCSs are among the most productive fishing areas in the world. High primary and secondary productivity supports a large biomass of small planktivorous pelagic fish, “small pelagics”, which are important drivers of production to the entire system whereby they can influence both higher and lower trophic levels. Environmental variability causes changes in plankton (food quality and quantity, which can affect population sizes, distribution and domi-nance among small pelagics. This variability combined with impacts from the fishery complicate the development of management strategies. Consequently, much recent work has been in the development of multispecies trophic models to better understand interdependencies and system dynamics. Despite similarities in extent, structure and primary productivity between EBCSs, the Peruvian system greatly differs from the others in the magnitude of fish catches, due mainly to the incredible production of the anchovy Engraulis ringens. This paper reviews literature concerning EBCSs dynamics and the state-of-the-art in the trophic modeling of EBCSs. The objective is to critically analyze the potential of this approach for system understanding and management and to adapt existing steady-state models of the Peruvian system for use in (future dynamic simulations. A guideline for the construction of trophodynamic models is presented taking into account the important trophic and environmental interactions. In consideration of the importance of small pelagics for the system dynamics, emphasis is placed on developing appropriate model compartmentalization and spatial delineation that facilitates dynamic simulations. Methods of model validation to historical changes are presented to support hypotheses concerning EBCS dynamics and as a critical step to the development of predictive models. Finally, the identification of direct model links to easily obtainable abiotic parameters is
International Nuclear Information System (INIS)
Jacobs, A.J.; Wozadlo, G.P.; Nakata, K.
1994-01-01
Scanning transmission electron microscopy (STEM) analyses, in-reactor swelling mandrel tests, and laboratory constant extension rate tensile (CERT) tests were conducted on nine custom type 348 (UNS S34800) stainless steel (SS) alloys in an attempt to correlate grain boundary composition with irradiation-assisted stress corrosion cracking (IASCC) resistance. Phosphorus (P) enrichment showed the best correlation with in-reactor test results, and chromium (Cr) depletion showed the best correlation with laboratory results. Silicon (Si) and P enrichment were found to depend quantitatively on the bulk concentrations of these elements. The amount of Cr depletion seemed dependent at least partially on the amounts of Si and/or P enrichment. Si and P enrichment and Cr depletion were suppressed by higher carbon (C) contents, such as that present in commercial-purity type 348 SS
Murthy, V. S.; Rose, W. C.
1977-01-01
Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.
Liou, M. S.; Adamson, T. C., Jr.
1980-01-01
Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.
Fegerl, Michael; Wieden, Wilfried
2013-04-01
Increasingly people have to communicate knowledge across cultural and language boundaries. Even though recent technologies offer powerful communication facilities people often feel confronted with barriers which clearly reduce their chances of making their interaction a success. Concrete evidence concerning such problems derives from a number of projects, where generated knowledge often results in dead-end products. In the Alpine Space-project SILMAS (Sustainable Instruments for Lake Management in Alpine Space), in which both authors were involved, a special approach (syneris® ) was taken to avoid this problem and to manage project knowledge in sustainable form. Under this approach knowledge input and output are handled interactively: Relevant knowledge can be developed continuously and users can always access the latest state of expertise. Resort to the respective tools and procedures can also assist in closing knowledge gaps and in developing innovative responses to familiar or novel problems. This contribution intends to describe possible ways and means which have been found to increase the chances of success of knowledge communication across cultural boundaries. The process of trans-cultural discussions of experts to find a standardized solution is highlighted as well as the problem of dissemination of expert knowledge to variant stakeholders. Finally lessons learned are made accessible, where a main task lies in the creation of a tool box for conflict solving instruments, as a demonstrable result of the project and for the time thereafter. The interactive web-based toolbox enables lake managers to access best practice instruments in standardized, explicit and cross-linguistic form.
International Nuclear Information System (INIS)
Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya
2007-01-01
To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding accelerated by residual stress of multi pass welding and surface hardening. (author)
International Nuclear Information System (INIS)
Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya
2008-01-01
To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)
Directory of Open Access Journals (Sweden)
Daniel T.L. Shek
2006-01-01
Full Text Available This paper outlines the proposal for the development, implementation, and evaluation of a positive youth development program that attempts to promote the mental health of stressful Chinese adolescents using principles of Problem Solving Therapy (PST. There are two general aims of PST: to help clients identify life difficulties and resolve them, as well as to teach them skills on how to deal with future problems. The proposed project will utilize the principles of PST as the guiding framework to run two mental health promotion courses for adolescents who are experiencing disturbing stressful responses and students who want to improve their stress management style. Both objective and subjective outcome evaluation strategies will be carried out to assess the effectiveness of the intervention to promote the psychological well-being in adolescents who are experiencing stress. A related sample proposal is described that can give social workers some insight on how to prepare a proposal for developing the Tier 2 Program of the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programs.
Czech Academy of Sciences Publication Activity Database
Zheng, L.; Fu, Y.; Lejček, Pavel; Song, S.; Schmitz, G.; Meng, Y.
2016-01-01
Roč. 18, č. 4 (2016), 506-510 ISSN 1438-1656 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundary segregation, * stress effect, * phosphorus, * steel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.319, year: 2016
Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.
Zablocki, Daniela; Sadoshima, Junichi
2013-11-08
A series of studies conducted 20 years ago, documenting the cardiac hypertrophy phenotype and its underlying signaling mechanism induced by angiotensin II (Ang II) and mechanical stress, showed a remarkable similarity between the effect of the Gαq agonist and that of mechanical forces on cardiac hypertrophy. Subsequent studies confirmed the involvement of autocrine/paracrine mechanisms, including stretch-induced release of Ang II in load-induced cardiac hypertrophy. Recent studies showed that the Ang II type 1 (AT1) receptor is also directly activated by mechanical forces, suggesting that AT1 receptors play an important role in mediating load-induced cardiac hypertrophy through both ligand- and mechanical stress-dependent mechanisms.
A New View of the Dynamics of Reynolds Stress Generation in Turbulent Boundary Layers
Cantwell, Brian J.; Chacin, Juan M.
1998-01-01
The structure of a numerically simulated turbulent boundary layer over a flat plate at Re(theta) = 670 was studied using the invariants of the velocity gradient tensor (Q and R) and a related scalar quantity, the cubic discriminant (D = 27R(exp 2)/4 + Q(exp 3)). These invariants have previously been used to study the properties of the small-scale motions responsible for the dissipation of turbulent kinetic energy. In addition, these scalar quantities allow the local flow patterns to be unambiguously classified according to the terminology proposed by Chong et al. The use of the discriminant as a marker of coherent motions reveals complex, large-scale flow structures that are shown to be associated with the generation of Reynolds shear stress -u'v'(bar). These motions are characterized by high spatial gradients of the discriminant and are believed to be an important part of the mechanism that sustains turbulence in the near-wall region.
Voydanoff, Patricia
2005-10-01
Using work-family border theory, this article examines relationships between boundary-spanning demands and resources and work-to-family conflict and perceived stress. The analysis uses data from 2,109 respondents from the 2002 National Study of the Changing Workforce. The demands that were positively related to work-to-family conflict and perceived stress were commuting time, bringing work home, job contacts at home, and work-family multitasking. Work-family multitasking partially explained the effects of bringing work home and job contacts at home on conflict and stress. For resources, time off for family responsibilities and a supportive work-family culture showed negative associations with conflict and stress. Work-to-family conflict partially mediated relationships between several demands and resources and perceived stress. Copyright (c) 2005 APA, all rights reserved.
Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu
2017-12-01
A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2016-11-01
Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Hubbs-Tait, L; Blodgett, C J
1989-01-01
Self-esteem and coronary-prone behavior were identified as two personality constructs related to different stress responses. It was hypothesized that in the case of low self-esteem Type A subjects the conflicting stress responses would have a particularly adverse effect on problem-solving behavior, mood, and self-perception. Subjects were 32 Type A and 32 Type B males evenly divided into high and low self-esteem groups. Half of the subjects in each group solved 10 matrix problems under high stress, half under low stress. Compared with high self-esteem Type As, low self-esteem Type As under high stress became more hostile and perceived themselves as more tense and more hurried. They also tended to make more errors. Results are interpreted as implying that low and high self-esteem Type A subjects are not psychologically homogeneous. It is suggested that the two groups may differ substantially in terms of cardiovascular risk.
International Nuclear Information System (INIS)
Shoji, T.; Yamaki, K.; Ballinger, R.G.; Hwang, I.S.
1992-01-01
The effects of grain boundary segregation on intergranular stress corrosion cracking of austenitic stainless steels in high temperature water have been examined as a function of heat treatment. The materials investigated were: (1) two commercial purity Type 304; (2) low sulfur Type 304; (3) nuclear grade Type 304; (4) ultra high purity Type 304L; and (5) Type 316L and Type 347L. Specimens were solution treated at 1050 degrees C for 0.5 hour and given a sensitization heat treatment at 650 degrees C for 50 hours. Some of the specimens were then subjected to an aging heat treatment at 850 degrees C for from one to ten hours to cause Cr recovery at the grain boundaries. The effects of heat treatments on degree of sensitization and grain boundary segregation were evaluated by Electrochemical Potentiokinetic Reactivation (EPR) and Coriou tests, respectively. The susceptibility to stress corrosion (SCC) was evaluated using slow strain rate tests technique (SSRT) in high temperature water. SSRT tests were performed in an aerated pure water (8 ppm dissolved oxygen) at 288 degrees C at a strain rate of 1.33 x 10 -6 /sec. Susceptibility to intergranular stress corrosion cracking was compared with degree of sensitization and grain boundary segregation. The results of the investigation indicate that EPR is not always an accurate indicator of SCC susceptibility. The Coriou test provides a more reliable measure of SCC susceptibility especially for 304L, 304NG, 316L, and 347L stainless steels. The results also indicate that grain boundary segregation as well as degree of sensitization must be considered in the determination of SCC susceptibility
Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.
2018-04-01
Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage
International Nuclear Information System (INIS)
Xu, G.S.; Wan, B.N.; Li, J.
2005-01-01
The radial profiles of electrostatic and magnetic Reynolds stress (Maxwell stress) have been measured in the plasma boundary region of HT-7 tokamak. Experimental results show that the radial gradient of electrostatic Reynolds stress (ERS) changes sign across the last closed flux surface, and the neoclassical flow damping and the damping due to charge exchange processes are balanced by the radial gradient of ERS, which sustains the equilibrium sheared flow structure in a steady state. The contribution of magnetic Reynolds stress was found unimportant in a low β plasma. Detailed analyses indicate that the propagation properties of turbulence in radial and poloidal directions and the profiles of potential fluctuation level are responsible for the radial structure of ERS. (author)
Directory of Open Access Journals (Sweden)
Mikulich Olena
2017-09-01
Full Text Available This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of weak shock waves. For solution of the problem it uses the integral and discrete Fourier transforms. Calculation of transformed dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithm is based on the method of mechanical quadratures and collocation technique. For calculation of originals of the dynamic stresses it uses modified discrete Fourier transform. The algorithm is effective in the analysis of the dynamic stress state of defective plates.
Coker, Kendell L.; Ikpe, Uduakobong N.; Brooks, Jeannie S.; Page, Brian; Sobell, Mark B.
2014-01-01
This study examined the relationship between traumatic stress, social problem solving, and moral disengagement among African American inner-city high school students. Participants consisted of 45 (25 males and 20 females) African American students enrolled in grades 10 through 12. Mediation was assessed by testing for the indirect effect using the confidence interval derived from 10,000 bootstrapped resamples. The results revealed that social problem-solving skills have an indirect effect on the relationship between traumatic stress and moral disengagement. The findings suggest that African American youth that are negatively impacted by trauma evidence deficits in their social problem solving skills and are likely to be at an increased risk to morally disengage. Implications for culturally sensitive and trauma-based intervention programs are also provided. PMID:25071874
Coker, Kendell L; Ikpe, Uduakobong N; Brooks, Jeannie S; Page, Brian; Sobell, Mark B
2014-06-01
This study examined the relationship between traumatic stress, social problem solving, and moral disengagement among African American inner-city high school students. Participants consisted of 45 (25 males and 20 females) African American students enrolled in grades 10 through 12. Mediation was assessed by testing for the indirect effect using the confidence interval derived from 10,000 bootstrapped resamples. The results revealed that social problem-solving skills have an indirect effect on the relationship between traumatic stress and moral disengagement. The findings suggest that African American youth that are negatively impacted by trauma evidence deficits in their social problem solving skills and are likely to be at an increased risk to morally disengage. Implications for culturally sensitive and trauma-based intervention programs are also provided.
International Nuclear Information System (INIS)
Koutsokeras, L. E.; Abadias, G.
2012-01-01
Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stress evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.
International Nuclear Information System (INIS)
Kobayashi, Toshio; Adachi, Naohito; Masuda, Kiyoshi
1998-01-01
In a design of a thick RC slab such as a basemat of a nuclear reactor building, the design method as same as for RC column is usually used. In this method, bending moment and axial force which are obtained by linear Finite Element Method (FEM) for external force are considered. But the assumption for linear FEM in which concrete participates for tensile stress is different from that for reinforcement design in which concrete does not participate for tensile stress. This difference of the assumption results that in-plane tensile strain at the center of the slab depth in the reinforcement design is larger than that in linear FEM. Some effects will appear in stress distribution if this tensile strain is constrained by boundary condition. In this paper, a practical method to evaluate the boundary constrain effects for this in-plane tensile strain is proposed and a simulation analysis of a thick reinforced concrete slab with a large opening for out-of-plane force is also reported. (author)
Prancevic, Jeffrey P.; Lamb, Michael P.; Palucis, Marisa C.; Venditti, Jeremy G.
2018-01-01
The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size.
The Role of Work-Nonwork Boundary Management in Work Stress Recovery
Kinnunen, Ulla; Rantanen, Johanna; de Bloom, Jessica; Mauno, Saija; Feldt, Taru; Korpela, Kalevi
The aim of the present study conducted among 1,106 Finnish employees was to identify boundary management profiles based on cross-role interruption behaviors from work to nonwork and from nonwork to work. Adopting a person-oriented approach through latent profile analysis, 5 profiles were identified:
Kasckow, J; Brown, C; Morse, J; Begley, A; Bensasi, S; Reynolds, C F
2012-11-01
This study examined the rates of syndromal and subthreshold post-traumatic stress disorder (PTSD) and PTSD symptom scores in participants with symptoms of emotional distress, subsyndromal depression, and a history of traumatic exposure. Participants had been referred to a study of an indicated depression prevention intervention using problem-solving therapy in primary care. We hypothesized that higher severity of PTSD symptom scores would predict poorer problem-solving skills. In addition, some reports have suggested that there are higher rates of PTSD in minority populations relative to Caucasians; thus we hypothesized that race would also predict problem-solving skills in these individuals. We examined the rates of traumatic exposure, syndromal, and subthreshold PTSD. In those exposed to trauma, we performed a multiple linear regression to examine the effects of PTSD symptoms, depression symptoms, race, age, and gender on social problem-solving skills. Of the 244 participants, 64 (26.2%) reported a traumatic event; 6/234 (2.6%) had syndromal PTSD, and 14/234 (6.0%) had subthreshold PTSD. By way of regression analysis, higher PTSD symptom scores predicted poorer problem-solving skills. In addition, racial status (Caucasian vs. African American) predicted problem-solving skills; Caucasians exhibited lower levels of problem-solving skills. Individuals presenting with subsyndromal depressive symptoms may also have a history of traumatic exposure, subthreshold and syndromal PTSD. Thus, screening these individuals for PTSD symptoms is important and may inform clinical management decisions because problem-solving skills are lower in those with more severe PTSD symptoms (even after adjusting for race, age, gender, and depressive symptoms). Copyright © 2011 John Wiley & Sons, Ltd.
Sirenko, Kostyantyn; Liu, Meilin; Bagci, Hakan
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing
Energy Technology Data Exchange (ETDEWEB)
Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)
2014-01-15
Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that
Sirenko, Kostyantyn
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.
Development of mapped stress-field boundary conditions based on a Hill-type muscle model.
Cardiff, P; Karač, A; FitzPatrick, D; Flavin, R; Ivanković, A
2014-09-01
Forces generated in the muscles and tendons actuate the movement of the skeleton. Accurate estimation and application of these musculotendon forces in a continuum model is not a trivial matter. Frequently, musculotendon attachments are approximated as point forces; however, accurate estimation of local mechanics requires a more realistic application of musculotendon forces. This paper describes the development of mapped Hill-type muscle models as boundary conditions for a finite volume model of the hip joint, where the calculated muscle fibres map continuously between attachment sites. The applied muscle forces are calculated using active Hill-type models, where input electromyography signals are determined from gait analysis. Realistic muscle attachment sites are determined directly from tomography images. The mapped muscle boundary conditions, implemented in a finite volume structural OpenFOAM (ESI-OpenCFD, Bracknell, UK) solver, are employed to simulate the mid-stance phase of gait using a patient-specific natural hip joint, and a comparison is performed with the standard point load muscle approach. It is concluded that physiological joint loading is not accurately represented by simplistic muscle point loading conditions; however, when contact pressures are of sole interest, simplifying assumptions with regard to muscular forces may be valid. Copyright © 2014 John Wiley & Sons, Ltd.
Stress and Communication across Cultural Boundaries in the U.S. Location of a Chinese Business
Liang, Yuanying; Jecklin, Robert
2012-01-01
One of the ways in which corporations influence human health occurs when a global corporation brings workers from two or more cultures together in the workplace where they experience the stress of acculturation. Researchers asked workers from two cultures at one international worksite to tell about their work, intercultural communication, thoughts…
International Nuclear Information System (INIS)
Zong, Hongxiang; Ding, Xiangdong; Lookman, Turab; Li, Ju; Sun, Jun
2015-01-01
Stress-driven grain boundary (GB) migration has been evident as a dominant mechanism accounting for plastic deformation in crystalline solids. Using molecular dynamics (MD) simulations on a Ti bicrystal model, we show that a uniaxial stress-driven coupling is associated with the recently observed 90° GB reorientation in shock simulations and nanopillar compression measurements. This is not consistent with the theory of shear-induced coupled GB migration. In situ atomic configuration analysis reveals that this GB motion is accompanied by the glide of two sets of parallel dislocation arrays, and the uniaxial stress-driven coupling is explained through a composite action of symmetrically distributed dislocations and deformation twins. In addition, the coupling factor is calculated from MD simulations over a wide range of temperatures. We find that the coupled motion can be thermally damped (i.e., not thermally activated), probably due to the absence of the collective action of interface dislocations. This uniaxial coupled mechanism is believed to apply to other hexagonal close-packed metals
International Nuclear Information System (INIS)
Botto, D.; Zucca, S.; Gola, M.M.
2003-01-01
In the literature many works have been written dealing with the task of on-line calculation of temperature and thermal stress for machine components and structures, in order to evaluate fatigue damage accumulation and estimate residual life. One of the most widespread methodologies is the Green's function technique (GFT), by which machine parameters such as fluid temperatures, pressures and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used in the case of varying heat transfer coefficients. In the present work, a different methodology is proposed, based upon CMS for temperature transient calculation and upon the GFT for the related thermal stress evaluation. This new approach allows variable heat transfer coefficients to be accounted for. The methodology is applied for two different case studies, taken from the literature: a thick pipe and a nozzle connected to a spherical head, both subjected to multiple convective boundary conditions
National Research Council Canada - National Science Library
Eren, Hakan
2000-01-01
.... The objective of this study is, by using Boundary Element Method, to examine different shapes of reinforcement elements under unit traction and unit displacement boundary conditions in transversal...
Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point
International Nuclear Information System (INIS)
Giribet, Gaston; Goya, Andres; Leston, Mauricio
2011-01-01
Chiral gravity admits asymptotically AdS 3 solutions that are not locally equivalent to AdS 3 ; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS 3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS 3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS 3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS 3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.
Andrade, V.; Rajendran, K.
2010-12-01
The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at
Directory of Open Access Journals (Sweden)
Karl D. Malcolm
2014-12-01
Full Text Available Asiatic black bears (Ursus thibetanus are declining throughout much of their range. In China they are partially protected by a nature reserve system and rely heavily on hard mast as a food source prior to winter denning. Bears may compensate for mast shortages by raiding agricultural crops and killing livestock, mainly outside reserves where they are exposed to increased threats of poaching. We hypothesized that stress would vary with availability of high-quality refugia and fluctuations in mast abundance. We collected fecal samples from free-ranging bears in and around nature reserves in southwestern China, recorded habitat characteristics at each fecal sample location, and quantified abundance of hard mast. We used feces for genetic and endocrine analysis and identified 106 individuals. Feces collected outside reserves, or in agricultural fields within reserves, contained elevated concentrations of glucocorticoid metabolites compared to samples collected in intact, mast-producing forests within reserves. Relationships with habitat variables indicated that the hypothalamic–pituitary–adrenal (HPA axis of the Asiatic black bear is responsive to human activity, abundance of hard mast, extent of forest cover, and quality of diet. Our findings demonstrate biological reactions of a large mammal to variable forest quality, human threats, and foraging relative to boundaries of protected areas. Keywords: Agriculture, Fecal glucocorticoids, Mast, Poaching, Protected areas, Stress
International Nuclear Information System (INIS)
Guenin, G.
1995-01-01
The γ (f.c.c.) to ε (h.c.p.) martensitic transformation occurs through the Shockley a/6 left angle 211 right angle faulting every second {111} plane of the f.c.c. structure. A stress induced thin single variant corresponds to a single a/6 left angle 211 right angle faulting vector and leads to a large homogeneous shear (0.35) in amplitude. The tip of such a plate is composed of a set of identical Shockley partial dislocations with large mutual interactions. This work is a presentation of a model which describes the martensite morphology of stress induced ε martensite in shape memory Fe-Mn-Si based alloys. The model includes the formation mechanism of the plate (Seeger's like) and its growth inside a limited grain. The mutual interaction of Shockley dislocations and their interaction with the grain boundary is semi quantitatively described; it leads to a lenticular shape of ε martensite thin plates. The model is able to explain the behaviour of this kind of alloys concerning the superelastic effect and the shape memory. (orig.)
International Nuclear Information System (INIS)
McDonald, Russell J; Beaudoin, Armand J
2010-01-01
Aluminium–lithium alloys provide a lower density and higher stiffness alternative to other high strength aluminium alloys. However, many Al–Li alloys exhibit a non-traditional failure mechanism called delamination, which refers to the failure of the elongated grain boundary interface. In this investigation, delaminations were observed after cyclic deformation of both uniaxial and torsion experiments. A cyclically stable rate-independent crystal plasticity framework with kinematic hardening was developed to address many experimental trends of stabilized cyclic plasticity. Utilizing this framework, meso-scale grain boundary interface stresses were estimated with uniform deformation and bi-crystal models. These models are computationally amenable to investigate both orientation dependence and the statistical nature of the grain boundary stresses for a given bulk texture and nominal loading. A coupled shear-normal Findley-based damage parameter was formulated to quantitatively characterize the nucleation of delamination consistently with experimental trends
J. Singh (Jagdip); W.J.M.I. Verbeke (Willem); G.K. Rhoads (Gary)
1996-01-01
textabstractPrevious research and meta-analyses suggest that the influence of organizational variables on boundary role stress processes is weak and marginal. Using the emerging work in organizational practices and configurations, the authors reexamine this relationship by addressing three critical
International Nuclear Information System (INIS)
Hou, Juan; Peng, Qunjia; Takeda, Yoichi; Kuniya, Jiro; Shoji, Tetsuo
2010-01-01
Research highlights: → High-angle misorientation at FB, type-II and type-I boundaries. → Highest residual strain and hardness in the zone between FB and type-II boundary. → Type-II and type-I boundaries had lower resistance to SCC growth than the FB. → Crack growth blunted by pitting at the FB. → Reactivation of crack growth from the pitting by oxidation along the grain boundary. - Abstract: Stress corrosion cracking (SCC) in the fusion boundary (FB) region of an Alloy 182-A533B low alloy steel (LAS) dissimilar weld joint in high temperature water doped with sulfate was studied following a microstructure characterization of the FB region. The microstructure characterization suggested the type-II and type-I boundaries in the dilution zone (DZ) adjacent to the FB had lower resistance to SCC growth than the FB. Crack propagating perpendicular to the FB in the DZ was observed to be blunted by pitting at the FB, followed by the reactivation from the pitting by localized oxidation along the grain boundary in LAS.
Liu, Tingguang; Xia, Shuang; Bai, Qin; Zhou, Bangxin; Zhang, Lefu; Lu, Yonghao; Shoji, Tetsuo
2018-01-01
The intergranular cracks and grain boundary (GB) network of a GB-engineered 316 stainless steel after stress corrosion cracking (SCC) test in high temperature high pressure water of reactor environment were investigated by two-dimensional and three-dimensional (3D) characterization in order to expose the mechanism that GB-engineering mitigates intergranular SCC. The 3D microstructure shown that the essential characteristic of the GB-engineered microstructure is formation of many large twin-boundaries as a result of multiple-twinning, which results in the formation of large grain-clusters. The large grain-clusters played a key role to the improvement of intergranular SCC resistance by GB-engineering. The main intergranular cracks propagated in a zigzag along the outer boundaries of these large grain-clusters because all inner boundaries of the grain-clusters were twin-boundaries (∑3) or twin-related boundaries (∑3n) which had much lower susceptibility to SCC than random boundaries. These large grain-clusters had tree-ring-shaped topology structure and very complex morphology. They got tangled so that difficult to be separated during SCC, resulting in some large crack-bridges retained in the crack surface.
Si segregation at Fe grain boundaries analyzed by ab initio local energy and local stress
International Nuclear Information System (INIS)
Bhattacharya, Somesh Kr; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori
2014-01-01
Using density-functional theory calculations combined with recent local-energy and local-stress schemes, we studied the effects of Si segregation on the structural, mechanical and magnetic properties of the Σ3(1 1 1) and Σ11(3 3 2) Fe GBs formed by rotation around the [1 1 0] axis. The segregation mechanism was analyzed by the local-energy decomposition of the segregation energy, where the segregation energy is expressed as a sum of the following four terms: the local-energy change of Si atoms from the isolated state in bulk Fe to the GB segregated state, the stabilization of replaced Fe atoms from the GB to the bulk, the local-energy change of neighboring Fe atoms from the pure GB to the segregated GB and the local-energy change of neighboring Fe atoms from the system of an isolated Si atom in the bulk Fe to the pure bulk Fe. The segregation energy and value of each term greatly depends on the segregation site and Si concentration. The segregation at interface Fe sites with higher local energies in the original GB configurations naturally leads to higher segregation-energy gains, while interface sites with lower local energies can lead to larger energy gains if stronger Si–Fe interactions occur locally in the final segregated configurations. The high Si concentration reduces the segregation-energy gain per Si atom due to the local-energy increases of Si atoms neighboring to each other or through the reduction in the number of stabilized Fe atoms per Si atom as observed in a Si dimer in bulk Fe. In the Si-segregated GBs, Si–Fe bonds enhance local Young’s moduli and tend to suppress the interface weakening, while the GB adhesion is slightly reduced. And Fe atoms contacting Si atoms have reduced magnetic moments, due to Si–Fe sp-d hybridization interactions. (paper)
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Schreiber, D. K.
2018-02-01
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
Guglielmi, Dina; Simbula, Silvia; Vignoli, Michela; Bruni, Ilaria; Depolo, Marco; Bonfiglioli, Roberta; Tabanelli, Maria Carla; Violante, Francesco Saverio
2013-06-22
Stress evaluation is a field of strong interest and challenging due to several methodological aspects in the evaluation process. The aim of this study is to propose a study protocol to test a new method (i.e., the Stress Assessment and Research Toolkit) to assess psychosocial risk factors at work. This method addresses several methodological issues (e.g., subjective vs. objective, qualitative vs quantitative data) by assessing work-related stressors using different kinds of data: i) organisational archival data (organisational indicators sheet); ii) qualitative data (focus group); iii) worker perception (questionnaire); and iv) observational data (observational checklist) using mixed methods research. In addition, it allows positive and negative aspects of work to be considered conjointly, using an approach that considers at the same time job demands and job resources. The integration of these sources of data can reduce the theoretical and methodological bias related to stress research in the work setting, allows researchers and professionals to obtain a reliable description of workers' stress, providing a more articulate vision of psychosocial risks, and allows a large amount of data to be collected. Finally, the implementation of the method ensures in the long term a primary prevention for psychosocial risk management in that it aims to reduce or modify the intensity, frequency or duration of organisational demands.
Directory of Open Access Journals (Sweden)
Hadała B.
2016-12-01
Full Text Available The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners.
International Nuclear Information System (INIS)
Yamada, Takuyo; Terachi, Takumi; Arioka, Koji
2006-01-01
In order to evaluate the influence of grain boundary carbide on IGSCC susceptibility, crack growth rate tests were performed under deaerated and 0.3 ppm hydrogenated pure water environments at 320degC using half-inch compact tension specimens. To investigate various grain boundary carbide conditions, three kinds of SUS316 - non-sensitized, sensitized at 650degC for 1 hour or 48 hours - were prepared. To examine the influence of grain boundary carbide, the grain boundary conditions of those materials were investigated by transmission electron microscopy and energy dispersive x-ray spectroscopy. As a result, (1) IGSCC crack growth was observed on non sensitized and cold worked SUS316 under deaerated and 0.3 ppm hydrogenated water environments at 320degC; (2) Any trace of IGSCC crack growth was not observed on sensitized at 650degC for 48 hours and cold worked SUS316 under the same water environments; (3) The SUS316 sensitized at 650degC for 48 hours showed extensive M 23 C 6 precipitation as well as Cr depletion at grain boundaries. These differences in IGSCC crack growth rate indicate that grain boundary carbide has the beneficial effect of improving IGSCC susceptibility, at least under deaerated and 0.3 ppm hydrogenated water environments, despite chromium depletion at the grain boundary. (author)
Fundamental solutions and dual boundary element methods for fracture in plane Cosserat elasticity.
Atroshchenko, Elena; Bordas, Stéphane P A
2015-07-08
In this paper, both singular and hypersingular fundamental solutions of plane Cosserat elasticity are derived and given in a ready-to-use form. The hypersingular fundamental solutions allow to formulate the analogue of Somigliana stress identity, which can be used to obtain the stress and couple-stress fields inside the domain from the boundary values of the displacements, microrotation and stress and couple-stress tractions. Using these newly derived fundamental solutions, the boundary integral equations of both types are formulated and solved by the boundary element method. Simultaneous use of both types of equations (approach known as the dual boundary element method (BEM)) allows problems where parts of the boundary are overlapping, such as crack problems, to be treated and to do this for general geometry and loading conditions. The high accuracy of the boundary element method for both types of equations is demonstrated for a number of benchmark problems, including a Griffith crack problem and a plate with an edge crack. The detailed comparison of the BEM results and the analytical solution for a Griffith crack and an edge crack is given, particularly in terms of stress and couple-stress intensity factors, as well as the crack opening displacements and microrotations on the crack faces and the angular distributions of stresses and couple-stresses around the crack tip.
Oomori, H; Imura, S; Gesso, H
1992-04-01
To develop stem design achieving primary fixation of stems and effective load transfer to the femur, we studied stress analysis of stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer in stem-bone interface. The results of analyses of stem-bone interface stresses and von Mises stresses at the cortical bones indicated that ideal stem design features would be as follows: 1) Sufficient length, with the distal end extending beyond the isthmus region. 2) Maximum possible width, to contact the cortical bones in the isthmus region. 3) No collars but a lateral shoulder at the proximal portion. 4) A distal tip, to contact the cortical bones at the distal portion.
Ichihashi, K; Imura, S; Oomori, H; Gesso, H
1994-11-01
We compared the biomechanical characteristics of bipolar and unipolar hemiarthroplasty on the proximal migration of the outer head by determining the von Mises stress distribution and acetabular (outer head) displacement with clinical assessment of hemiarthroplasty in 75 patients. This analysis used the two-dimensional finite element method, which incorporated boundary friction layers on both the inner and outer bearings of the prosthesis. Acetabular reaming increased stress within the pelvic bone and migration of the outer head. A combination of the acetabular reaming and bone transplantation increased the stress within the pelvic bone and grafted bone, and caused outer head migration. These findings were supported by clinical results. Although the bipolar endoprosthesis was biomechanically superior to the unipolar endoprosthesis, migration of the outer head still occurred. The bipolar endoprosthesis appeared to be indicated in cases of a femoral neck fracture or of avascular necrosis in the femoral head, but its use in cases of osteoarthritis in the hip required caution.
Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein
2018-05-01
The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.
Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein
2018-04-01
The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.
Thermoplasticity of coupled bodies in the case of stress-dependent heat transfer
Kilikovskaya, O. A.
1987-01-01
The problem of the thermal stresses in coupled deformable bodies is formulated for the case where the heat-transfer coefficient at the common boundary depends on the stress-strain state of the bodies (e.g., is a function of the normal pressure at the common boundary). Several one-dimensional problems are solved in this formulation. Among these problems is the determination of the thermal stresses in an n-layer plate and in a two-layer cylinder.
Directory of Open Access Journals (Sweden)
Natal'ya V. Burmasheva
2017-12-01
Full Text Available In this paper a new exact solution of an overdetermined system of Oberbeck–Boussinesq equations that describes a stationary shear flow of a viscous incompressible fluid in an infinite layer is under study. The given exact solution is a generalization of the Ostroumov–Birich class for a layered unidirectional flow. In the proposed solution, the horizontal velocities depend only on the transverse coordinate z. The temperature field and the pressure field are three-dimensional. In contradistinction to the Ostroumov–Birich solution, in the solution presented in the paper the horizontal temperature gradients are linear functions of the $z$ coordinate. This structure of the exact solution allows us to find a nontrivial solution of the Oberbeck–Boussinesq equations by means of the identity zero of the incompressibility equation. This exact solution is suitable for investigating large-scale flows of a viscous incompressible fluid by quasi-two-dimensional equations. Convective fluid motion is caused by the setting of tangential stresses on the free boundary of the layer. Inhomogeneous thermal sources are given on both boundaries. The pressure in the fluid at the upper boundary coincides with the atmospheric pressure. The paper focuses on the study of temperature and pressure fields, which are described by polynomials of three variables. The features of the distribution of the temperature and pressure profiles, which are polynomials of the seventh and eighth degree, respectively, are discussed in detail. To analyze the properties of temperature and pressure, algebraic methods are used to study the number of roots on a segment. It is shown that the background temperature and the background pressure are nonmonotonic functions. The temperature field is stratified into zones that form the thermocline and the thermal boundary layer near the boundaries of the fluid layer. Investigation of the properties of the pressure field showed that it is stratified
Directory of Open Access Journals (Sweden)
Iakov A. Lyashenko
2017-09-01
Full Text Available This article presents an investigation of the dynamical contact between two atomically flat surfaces separated by an ultrathin lubricant film. Using a thermodynamic approach we describe the second-order phase transition between two structural states of the lubricant which leads to the stick–slip mode of boundary friction. An analytical description and numerical simulation with radial distributions of the order parameter, stress and strain were performed to investigate the spatial inhomogeneity. It is shown that in the case when the driving device is connected to the upper part of the friction block through an elastic spring, the frequency of the melting/solidification phase transitions increases with time.
Liou, M. S.; Adamson, T. C., Jr.
1979-01-01
An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.
Mkhitaryan, S. M.
2018-04-01
A class of mixed boundary-value problems of mathematical theory of elasticity dealing with interaction between stress concentrators of different types (such as cracks, absolutely rigid thin inclusions, punches, and stringers) and an elastic semi-infinite plate is considered. The method of Mellin integral transformation is used to reduce solving these problems to solving singular integral equations (SIE). After the governing SIE are solved, the following characteristics of the problem are determined: tangential contact stresses under stringers, dislocation density on the crack edges, breaking stresses outside the cracks on their line of location, the stress intensity factor (SIF), crack openings, jumps of contact stresses on the edges of inclusions.
International Nuclear Information System (INIS)
Hardy, M.P.; Mitchell, S.J.
1983-12-01
This report presents the results from a numerical modeling study which was performed in support of the analysis of data from the Near-Surface Test Facility Block Test. The objective of the work was to investigate the potential for features of the test geometry and construction to influence the uniformity of the stress distribution across the test block and generate anomalous deformational response characteristics during loading. The analysis results indicated that the components of the test set-up can modify the imposed boundary conditions and affect the stress distribution in the block. However, the influence of these conditions was not sufficient to generate the anomalous conditions observed in actual field data. 5 refs
International Nuclear Information System (INIS)
Yuuki, R.; Ejima, K.
1991-01-01
In this study, three-dimensional boundary element elastostatic analysis is carried out on various surface crack problems. The present BEM uses a Mindlin's solution as well as a Kelvin's solution as a fundamental solution. So we can obtain accurate solutions for a surface crack just before or after a penetration. The obtained solutions for various shapes of surface cracks are stored as the data base, based on the influence function method. We develop the surface crack extension analysis system using the stress intensity factor data base and also the fatigue crack growth law. Our system seems to be useful especially for the analysis of the surface crack just before or after the penetration and also under the residual stresses
Serpieri, Roberto; Travascio, Francesco
2016-03-01
In poroelasticity, the effective stress law relates the external stress applied to the medium to the macroscopic strain of the solid phase and the interstitial pressure of the fluid saturating the mixture. Such relationship has been formerly introduced by Terzaghi in form of a principle. To date, no poroelastic theory is capable of recovering a stress partitioning law in agreement with Terzaghi's postulated one in the absence of ad hoc constitutive assumptions on the medium. We recently proposed a variational macroscopic continuum description of two-phase poroelasticity to derive a general biphasic formulation at finite deformations, termed variational macroscopic theory of porous media (VMTPM). Such approach proceeds from the inclusion of the intrinsic volumetric strain among the kinematic descriptors aside to macroscopic displacements, and as a variational theory, uses the Hamilton least-action principle as the unique primitive concept of mechanics invoked to derive momentum balance equations. In a previous related work it was shown that, for the subclass of undrained problems, VMTPM predicts that stress is partitioned in the two phases in strict compliance with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. In the present contribution, we further develop the linearized framework of VMTPM to arrive at a general operative formula that allows the quantitative determination of stress partitioning in a jacketed test over a generic isotropic biphasic specimen. This formula is quantitative and general, in that it relates the partial phase stresses to the externally applied stress as function of partitioning coefficients that are all derived by strictly following a purely variational and purely macroscopic approach, and in the absence of any specific hypothesis on the microstructural or constitutive features of a given medium. To achieve this result, the stiffness coefficients of the theory are derived by using
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
Energy Technology Data Exchange (ETDEWEB)
Kramberger, J; Potrc, I [Tehniska fakulteta, Maribor (Yugoslavia)
1989-07-01
Apart from being exposed to the primary loading of internal pressure and steady temperature field, the reactor pressure vessel is also subject to various thermal transients (thermal shocks). Theoretical and experimental stress analyses show that severe material stresses occur in the nozzle area of the pressure vessel which may lead to defects (cracks). It has been our aim to evaluate these stresses by the use of the Boundary Element method. (author)
Sheng, J.; Malkiel, E.; Katz, J.
2008-12-01
A digital holographic microscope is used to simultaneously measure the instantaneous 3D flow structure in the inner part of a turbulent boundary layer over a smooth wall, and the spatial distribution of wall shear stresses. The measurements are performed in a fully developed turbulent channel flow within square duct, at a moderately high Reynolds number. The sample volume size is 90 × 145 × 90 wall units, and the spatial resolution of the measurements is 3 8 wall units in streamwise and spanwise directions and one wall unit in the wall-normal direction. The paper describes the data acquisition and analysis procedures, including the particle tracking method and associated method for matching of particle pairs. The uncertainty in velocity is estimated to be better than 1 mm/s, less than 0.05% of the free stream velocity, by comparing the statistics of the normalized velocity divergence to divergence obtained by randomly adding an error of 1 mm/s to the data. Spatial distributions of wall shear stresses are approximated with the least square fit of velocity measurements in the viscous sublayer. Mean flow profiles and statistics of velocity fluctuations agree very well with expectations. Joint probability density distributions of instantaneous spanwise and streamwise wall shear stresses demonstrate the significance of near-wall coherent structures. The near wall 3D flow structures are classified into three groups, the first containing a pair of counter-rotating, quasi streamwise vortices and high streak-like shear stresses; the second group is characterized by multiple streamwise vortices and little variations in wall stress; and the third group has no buffer layer structures.
Directory of Open Access Journals (Sweden)
Shouetsu Itou
2012-01-01
Full Text Available Stresses around two parallel cracks of equal length in an infinite elastic medium are evaluated based on the linearized couple-stress theory under uniform tension normal to the cracks. Fourier transformations are used to reduce the boundary conditions with respect to the upper crack to dual integral equations. In order to solve these equations, the differences in the displacements and in the rotation at the upper crack are expanded through a series of functions that are zero valued outside the crack. The unknown coefficients in each series are solved in order to satisfy the boundary conditions inside the crack using the Schmidt method. The stresses are expressed in terms of infinite integrals, and the stress intensity factors can be determined using the characteristics of the integrands for an infinite value of the variable of integration. Numerical calculations are carried out for selected crack configurations, and the effect of the couple stresses on the stress intensity factors is revealed.
International Nuclear Information System (INIS)
Nguyen, Thien Duy; Wells, John Craig; Nguyen, Chuong Vinh
2010-01-01
In investigations of laminar or turbulent flows, wall shear is often important. Nevertheless, conventional particle image velocimetry (PIV) is difficult in near-wall regions. A near-wall measurement technique, named interfacial PIV (IPIV) [Nguyen, C., Nguyen, T., Wells, J., Nakayama, A., 2008. Proposals for PIV of near-wall flow over curved boundaries. In: Proceedings of 14th International Symposium on Applications of Laser Technique to Fluid Mechanics], handles curved boundaries by means of conformal transformation, directly measures the wall gradient, and yields the near-wall tangential velocity profile at one-pixel resolution. In this paper, we show the feasibility of extending IPIV to measure wall gradients by stereo reconstruction. First, we perform a test on synthetic images generated from a direct numerical simulation (DNS) snapshot of turbulent flow over sinusoidal bed. Comparative assessment of wall gradients derived by IPIV, stereo-IPIV and particle image distortion (PID) [Huang, H.T., Fiedler, H.E., Wang, J.J., 1993. Limitation and improvement of PIV. Experiments in Fluids 15(4), 263-273] is evaluated with DNS data. Also, the sensitivity of IPIV and stereo-IPIV results to the uncertainty of identified wall position is examined. As a practical application of IPIV and stereo-IPIV to experimental images, results from turbulent open channel flow over a backward-facing step are discussed in detail.
Czech Academy of Sciences Publication Activity Database
Orlová, Alena; Dobeš, Ferdinand
2008-01-01
Roč. 567-568, - (2008), s. 173-176 ISSN 0255-5476. [MSMF /5./. Brno, 27.06.2007-29.06.2007] R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : creep * internal stress * subgrain * dislocation density Subject RIV: BM - Solid Matter Physics ; Magnetism
... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...
International Nuclear Information System (INIS)
Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori
2013-01-01
We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)
Computation of airfoil buffet boundaries
Levy, L. L., Jr.; Bailey, H. E.
1981-01-01
The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.
Townsend, Alan R.; Porder, Stephen
2011-03-01
can (and ultimately must) learn to capture and re-use P in human and animal wastes. And, as Carpenter and Bennett highlight, inequities in P availability across world regions are not just a problem, they are an opportunity: transfers from P-rich to P-poor regions could simultaneously reduce environmental and food security risks. Above all, Carpenter and Bennett's analyses highlight the need for new management strategies that better target not only P's environmental risks, but also recognize the element's standing as an irreplaceable resource. Human society has been built from the massive alteration of four global biogeochemical cycles (C, N, H2O and P). We can replace carbon-based fuels, plant legumes in lieu of Haber-Bosch-based N fixation, and the rain will still fall. But for P, there is neither substitute nor renewal. Without an almost closed loop between fertilizer application, food consumption, and waste management, society could solve the remainder of the environmental threats Rockström and colleagues identify, and still be facing a bleak future. References Carpenter S R and Bennett E M 2011 Reconsideration of the planetary boundary for phosphorus Environ. Res. Lett. 6 014009 Childers C L, Corman J, Edwards M and Elser J J 2011 Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle BioScience 61 117-24 Cordell D, Drangert J-O and White S 2009 The story of phosphorus: Global food security and food for thought global Environmental Change 19 292-305 Diamond J 2005 Collapse: How Societies Choose to Fail or Succeed (New York: Viking) Engelhardt H T and Caplan A L (ed) 1987 Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology (New York: Cambridge University Press) Filippelli G M 2008 The global phosphorus cycle: Past, present, and future Elements 4 89-95 Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P and Sutton M
Effect of interfacial stresses in an elastic body with a nanoinclusion
Vakaeva, Aleksandra B.; Grekov, Mikhail A.
2018-05-01
The 2-D problem of an infinite elastic solid with a nanoinclusion of a different from circular shape is solved. The interfacial stresses are acting at the interface. Contact of the inclusion with the matrix satisfies the ideal conditions of cohesion. The generalized Laplace - Young law defines conditions at the interface. To solve the problem, Gurtin - Murdoch surface elasticity model, Goursat - Kolosov complex potentials and the boundary perturbation method are used. The problem is reduced to the solution of two independent Riemann - Hilbert's boundary problems. For the circular inclusion, hypersingular integral equation in an unknown interfacial stress is derived. The algorithm of solving this equation is constructed. The influence of the interfacial stress and the dimension of the circular inclusion on the stress distribution and stress concentration at the interface are analyzed.
Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity
International Nuclear Information System (INIS)
Kao, B.G.
1979-11-01
Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials
International Nuclear Information System (INIS)
Alexeyeva, L.A.
2001-01-01
Investigation of diffraction processes of seismic waves on underground tunnels and pipelines with use of mathematical methods is related to solving boundary value problems (BVP) for hyperbolic system of differential equations in domains with cylindrical cavities when seismic disturbances propagate along boundaries with subsonic or transonic speeds. Also such classes of problems appear when it's necessary to study the behavior of underground constructions and Stress-strain State of environment. But in this case the velocities of running loads are less than velocities of wave propagation in surrounding medium. At present similar problems were solved only for constructions of circular cylindrical form with use of methods of full and not full dividing of variables. For cylindrical constructions of complex cross section strong mathematical theories for solving these problems were absent.(author)
Energy Technology Data Exchange (ETDEWEB)
Bal, G. [Departement MMN, Service IMA, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)
1995-10-01
Neutron transport in nuclear reactors is quite well modelled by the linear Boltzmann transport equation. Its solution is relatively easy, but unfortunately too expensive to achieve whole core computations. Thus, we have to simplify it, for example by homogenizing some physical characteristics. However, the solution may then be inaccurate. Moreover, in strongly homogeneous areas, the error may be too big. Then we would like to deal with such an inconvenient by solving the equation accurately on this area, but more coarsely away from it, so that the computation is not too expensive. This problem is the subject of a thesis. We present here some results obtained for slab geometry. The couplings between the fine and coarse discretization regions could be conceived in a number of approaches. Here, we only deal with the coupling at crossing the interface between two sub-domains. In the first section, we present the coupling of discrete ordinate methods for solving the homogeneous, isotropic and mono-kinetic equation. Coupling operators are defined and shown to be optimal. The second and the third sections are devoted to an extension of the previous results when the equation is non-homogeneous, anisotropic and multigroup (under some restrictive assumptions). Some numerical results are given in the case of isotropic and mono-kinetic equations. (author) 15 refs.
... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...
Interactive problem solving using LOGO
Boecker, Heinz-Dieter; Fischer, Gerhard
2014-01-01
This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more
Nucleation of small angle boundaries
CSIR Research Space (South Africa)
Nabarro, FRN
1996-12-01
Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...
DEFF Research Database (Denmark)
Løvschal, Mette
2014-01-01
of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...
DEFF Research Database (Denmark)
Brodkin, Evelyn; Larsen, Flemming
2013-01-01
project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...
DEFF Research Database (Denmark)
Aarhus, Rikke; Ballegaard, Stinne Aaløkke
2010-01-01
to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...
Directory of Open Access Journals (Sweden)
Murat Ünal
2002-03-01
Full Text Available In this study, a two-dimensional software was developed by using the boundary element method, in order to model and solve the rock mechanics problems encountered in surface and underground excavations. Stability of rock wedges formed at the roof of underground excavations were investigated in detail by using this software. The behaviour of the symmetric wedge on different joint stiffnesses was studied using a modified boundary element software. Then the results obtained were discussed and compared with the analytical solution, considering the surface tractions, shear stresses (developed along the discontinuity, wedge displacements and strains (along the wedge height.
Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates
Kitahara, M
1985-01-01
The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It pro
Moving Griffith crack in an orthotropic strip with punches at boundary faces
Directory of Open Access Journals (Sweden)
S. Mukherjee
2005-01-01
Full Text Available Integral transform technique is employed to solve the elastodynamic problem of steady-state propagation of a Griffith crack centrally situated along the midplane of orthotropic strip of finite thickness 2h and subjected to point loading with centrally situated moving punches under constant pressure along the boundaries of the layer. The problem is reduced to the solution of a pair of simultaneous singular integral equations with Cauchy-type singularities which have finally been solved through the finite Hilbert transform technique. For large h, analytical expression for the stress intensity factor at the crack tip is obtained. Graphical plots of the numerical results are also presented.
Integral Method of Boundary Characteristics: Neumann Condition
Kot, V. A.
2018-05-01
A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.
On the stress investigation at the edges of the fixed elastic semi-strip
Directory of Open Access Journals (Sweden)
N. Vaysfeld
2016-10-01
Full Text Available The stress state of the elastic fixed semi-strip with the regarding of the singularities at its edge is investigated in the article. The initial boundary problem is reduced to a vector boundary problem in the transformation’s domain by the use of integral Fourier transformation. The one-dimensional vector boundary problem is solved exactly with the help of matrix differential calculations and Green’s matrix apparatus. The problem’s solving was focused at the solving of the singular integral equation (SIE with the two fixed singularities at the ends of the integration’s interval. The symbol of SIE was constructed and the generalized method of the SIE solving was applied. The stress’ distributions of the semi-strip are investigated
DEFF Research Database (Denmark)
Zølner, Mette
The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....
The Boundary Function Method. Fundamentals
Kot, V. A.
2017-03-01
The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.
Directory of Open Access Journals (Sweden)
Yu-chuan Yang
2016-01-01
Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.
Tricritical Ising model with a boundary
International Nuclear Information System (INIS)
De Martino, A.; Moriconi, M.
1998-03-01
We study the integrable and supersymmetric massive φ (1,3) deformation of the tricritical Ising model in the presence of a boundary. We use constraints from supersymmetry in order to compute the exact boundary S-matrices, which turn out to depend explicitly on the topological charge of the supersymmetry algebra. We also solve the general boundary Yang-Baxter equation and show that in appropriate limits the general reflection matrices go over the supersymmetry preserving solutions. Finally, we briefly discuss the possible connection between our reflection matrices and boundary perturbations within the framework of perturbed boundary conformal field theory. (author)
DEFF Research Database (Denmark)
Keller, Hanne Dauer
2015-01-01
Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....
Fledderus, M.
2012-01-01
Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.
DEFF Research Database (Denmark)
Neergaard, Ulla; Nielsen, Ruth
2010-01-01
of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....
Finite-volume discretizations and immersed boundaries
Y.J. Hassen (Yunus); B. Koren (Barry)
2009-01-01
htmlabstractIn this chapter, an accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. As is standard in immersed-boundary methods, moving bodies are embedded in a fixed `Cartesian' grid. The essence of the present method
Finite-volume discretizations and immersed boundaries
Y.J. Hassen (Yunus); B. Koren (Barry)
2010-01-01
textabstractIn this chapter, an accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. As is standard in immersed-boundary methods, moving bodies are embedded in a fixed Cartesian grid. The essence of the present method is
Polyakov's quantized string with boundary terms
International Nuclear Information System (INIS)
Durhuus, B.; Olesen, P.; Petersen, J.L.
1981-11-01
The authors compute the boundary terms needed in Polyakov's method for calculating averages of functionals defined on surfaces. The method used is due to Seeley, who found recursive relations yielding the boundary terms. These relations are solved for a general second order elliptic differential operator. This solution is then applied to Polyakov's problem. (Auth.)
Polyakov's quantized string with boundary terms
International Nuclear Information System (INIS)
Durhuus, B.; Olesen, P.; Petersen, J.L.
1982-01-01
We compute the boundary terms due to the conformal anomaly which are needed in Polyakov's method of calculating averages of functionals defined on surfaces. The method we use is due to Seeley, who found recursive relations yielding the boundary terms. We solve these relations for a general second-order elliptic differential operator. This solution is then applied to Polyakov's problem. (orig.)
Solving potential field problems in composite media with complicated geometries
International Nuclear Information System (INIS)
Yeh, H.
1977-01-01
Recently, Yeh developed a method of solving potential field problems for complicated geometries and theorems of piecewise continuous eigenfunctions which can be used to solve boundary-value problems in composite media by the separation of variables. This paper shows that by a proper arrangement of matching conditions and boundary conditions, this method and these theorems can be applied simultaneously so that the problems in composite media with complicated geometries can be solved. To illustrate this, a heat-conduction problem in a composite cylinder with an abrupt change in cross-section area is solved. Also presented in this paper are the method of handling the nonhomogeneous boundary conditions for composite media and the extension of one of the above-mentioned theorems to include imperfect contact on material boundaries
Boundary value problems and partial differential equations
Powers, David L
2005-01-01
Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples
An approximate moving boundary method for American option pricing
Chockalingam, A.; Muthuraman, K.
2015-01-01
We present a method to solve the free-boundary problem that arises in the pricing of classical American options. Such free-boundary problems arise when one attempts to solve optimal-stopping problems set in continuous time. American option pricing is one of the most popular optimal-stopping problems
Fledderus, M.
2012-01-01
Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.
Data completion problems solved as Nash games
International Nuclear Information System (INIS)
Habbal, A; Kallel, M
2012-01-01
The Cauchy problem for an elliptic operator is formulated as a two-player Nash game. Player (1) is given the known Dirichlet data, and uses as strategy variable the Neumann condition prescribed over the inaccessible part of the boundary. Player (2) is given the known Neumann data, and plays with the Dirichlet condition prescribed over the inaccessible boundary. The two players solve in parallel the associated Boundary Value Problems. Their respective objectives involve the gap between the non used Neumann/Dirichlet known data and the traces of the BVP's solutions over the accessible boundary, and are coupled through a difference term. We prove the existence of a unique Nash equilibrium, which turns out to be the reconstructed data when the Cauchy problem has a solution. We also prove that the completion algorithm is stable with respect to noise, and present two 3D experiments which illustrate the efficiency and stability of our algorithm.
Direct approach for solving nonlinear evolution and two-point
Indian Academy of Sciences (India)
Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples ...
Prediction of dislocation boundary characteristics
DEFF Research Database (Denmark)
Winther, Grethe
Plastic deformation of both fcc and bcc metals of medium to high stacking fault energy is known to result in dislocation patterning in the form of cells and extended planar dislocation boundaries. The latter align with specific crystallographic planes, which depend on the crystallographic......) and it is found that to a large extent the dislocations screen each other’s elastic stress fields [3]. The present contribution aims at advancing the previous theoretical analysis of a boundary on a known crystallographic plane to actual prediction of this plane as well as other boundary characteristics....... Crystal plasticity calculations combined with the hypothesis that these boundaries separate domains with local differences in the slip system activity are introduced to address precise prediction of the experimentally observed boundaries. The presentation will focus on two cases from fcc metals...
Stress tensor of a quark moving through N=4 thermal plasma
International Nuclear Information System (INIS)
Friess, Joshua J.; Gubser, Steven S.; Michalogiorgakis, Georgios; Pufu, Silviu S.
2007-01-01
We develop the linear equations that describe graviton perturbations of AdS 5 -Schwarzschild generated by a string trailing behind an external quark moving with constant velocity. Solving these equations allows us to evaluate the stress tensor in the boundary gauge theory. Components of the stress tensor exhibit directional structures in Fourier space at both large and small momenta. We comment on the possible relevance of our results to relativistic heavy-ion collisions
Lavrikov, SV; Mikenina, OA; Revuzhenko, AF
2018-03-01
A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.
Boundary element method for modelling creep behaviour
International Nuclear Information System (INIS)
Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora
2002-01-01
A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)
International Nuclear Information System (INIS)
Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji
2007-01-01
In order to evaluate the influence of grain boundary carbide on IGSCC susceptibility of stainless steel, crack growth rate tests were performed under deaerated or 0.3 ppm hydrogenated pure water environments at 320degC using half-inch compact tension (CT) specimens. In our previous report, CT testing showed that the susceptibility of CW316 to IGSCC was inhibited by the precipitation of grain boundary carbide under these environments. The result suggested quite different behavior from that in an oxygenated high-temperature water environment. In this study, the influence of (1) Mo and (2) Cr content in alloys, and (3) Cr depletion at the grain boundary on the IGSCC growth behavior in stainless steel was studied at 320degC under a 0.3-ppm hydrogenated pure-water environment. As a result, (1) IGSCC growth was observed on non-sensitized CW20%316, CW20%304, CW20%20Cr316, and CW20%20Cr304 under a 0.3-ppm hydrogenated pure-water environment at 320degC. (2) IGSCC growth was not observed for sensitized CW20%316 and CW20%304 (at 650degC x 48 or 24 h) and healing heat-treated CW20%316 (at 650degC x 48 h + 900degC x 0.5 h) under the same water environment. (3) The susceptibility of high Cr content materials (CW20%20Cr316 and CW20% 20Cr304) to IGSCC resistance was improved that of conventional CW316 and CW304 under the same water environment. The higher Cr content is effective in inhibiting susceptibility to IGSCC, but the inhibiting effect of Cr content is smaller than the effect of the grain boundary carbide. (4) These differences in IGSCC suggest that grain boundary carbide has a beneficial effect in improving IGSCC resistance, at least in a 0.3-ppm hydrogenated pure-water environment, despite the Mo content and Cr depletion at grain boundary. (author)
Analysis of residual stresses in a long hollow cylinder
International Nuclear Information System (INIS)
Tokovyy, Yuriy V.; Ma, Chien-Ching
2011-01-01
This paper presents an analytical method for solving the axisymmetric stress problem for a long hollow cylinder subjected to locally-distributed residual (incompatible) strains. This method is based on direct integration of the equilibrium and compatibility equations, which thereby have been reduced to the set of two governing equations for two key functions with corresponding boundary and integral conditions. The governing equations were solved by making use of the Fourier integral transformation. Application of the method is illustrated with an analysis of the welding residual stresses in a butt-welded thick-walled pipe. - Highlights: → A solution to the axisymmetric stress problem for a hollow cylinder is constructed. → The cylinder is subjected to a field of locally-distributed residual strains. → The method is based on direct integration of the equilibrium equations. → An application of our solution to analysis of welding residual stresses is considered.
Problem solving skills for schizophrenia.
Xia, J; Li, Chunbo
2007-04-18
The severe and long-lasting symptoms of schizophrenia are often the cause of severe disability. Environmental stress such as life events and the practical problems people face in their daily can worsen the symptoms of schizophrenia. Deficits in problem solving skills in people with schizophrenia affect their independent and interpersonal functioning and impair their quality of life. As a result, therapies such as problem solving therapy have been developed to improve problem solving skills for people with schizophrenia. To review the effectiveness of problem solving therapy compared with other comparable therapies or routine care for those with schizophrenia. We searched the Cochrane Schizophrenia Group's Register (September 2006), which is based on regular searches of BIOSIS, CENTRAL, CINAHL, EMBASE, MEDLINE and PsycINFO. We inspected references of all identified studies for further trials. We included all clinical randomised trials comparing problem solving therapy with other comparable therapies or routine care. We extracted data independently. For homogenous dichotomous data we calculated random effects, relative risk (RR), 95% confidence intervals (CI) and, where appropriate, numbers needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated weighted mean differences (WMD) using a random effects statistical model. We included only three small trials (n=52) that evaluated problem solving versus routine care, coping skills training or non-specific interaction. Inadequate reporting of data rendered many outcomes unusable. We were unable to undertake meta-analysis. Overall results were limited and inconclusive with no significant differences between treatment groups for hospital admission, mental state, behaviour, social skills or leaving the study early. No data were presented for global state, quality of life or satisfaction. We found insufficient evidence to confirm or refute the benefits of problem solving therapy as an additional
Directory of Open Access Journals (Sweden)
Mehmet Camurdan
1998-01-01
are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.
DEFF Research Database (Denmark)
Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu
2009-01-01
currents or undertow). The effects from each of the four components are isolated and quantified using a standard set of bed shear stress quantities, allowing their easy comparison. For conditions representing large shallow-water waves on steep slopes, the results suggest that converging-diverging effects......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega model for turbulence closure, is used to systematically compare the relative strength of bed shear stress quantities and boundary layer streaming under wave motions from four...... from beach slope may make a significant onshore bed load contribution. Generally, however, the results suggest wave skewness (in addition to conventional steady streaming) as the most important onshore contribution outside the surf zone. Streaming induced within the wave boundary layer is also...
Chambers, David W
2008-01-01
We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.
Solution of moving boundary problems with implicit boundary condition
International Nuclear Information System (INIS)
Moyano, E.A.
1990-01-01
An algorithm that solves numerically a model for studying one dimensional moving boundary problems, with implicit boundary condition, is described. Landau's transformation is used, in order to work with a fixed number of nodes at each instant. Then, it is necessary to deal with a parabolic partial differential equation, whose diffusive and convective terms have variable coefficients. The partial differential equation is implicitly discretized, using Laasonen's scheme, always stable, instead of employing Crank-Nicholson sheme, as it has been done by Ferris and Hill. Fixed time and space steps (Δt, Δξ) are used, and the iteration is made with variable positions of the interface, i.e. varying δs until a boundary condition is satisfied. The model has the same features of the oxygen diffusion in absorbing tissue. It would be capable of estimating time variant radiation treatments of cancerous tumors. (Author) [es
Application of He's variational iteration method to the fifth-order boundary value problems
International Nuclear Information System (INIS)
Shen, S
2008-01-01
Variational iteration method is introduced to solve the fifth-order boundary value problems. This method provides an efficient approach to solve this type of problems without discretization and the computation of the Adomian polynomials. Numerical results demonstrate that this method is a promising and powerful tool for solving the fifth-order boundary value problems
Singh, Chandralekha
2009-07-01
One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.
Teaching Creative Problem Solving.
Christensen, Kip W.; Martin, Loren
1992-01-01
Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)
Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow
International Nuclear Information System (INIS)
Herrmann-Priesnitz, Benjamín; Torres, Diego A.; Calderón-Muñoz, Williams R.; Salas, Eduardo A.; Vargas-Uscategui, Alejandro; Duarte-Mermoud, Manuel A.
2016-01-01
A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U_o. Results show that boundary layers merge for Re > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U_o. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.
Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow
Energy Technology Data Exchange (ETDEWEB)
Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Calderón-Muñoz, Williams R. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Energy Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Salas, Eduardo A. [CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Vargas-Uscategui, Alejandro [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Duarte-Mermoud, Manuel A. [Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago (Chile)
2016-03-15
A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.
Dudchenko, A. A.; Elpat'evskii, A. N.
1995-07-01
Reinforced panels are the basic load-bearing elements of various structures. Optimization of massive structures requires consideration of deformation of the panel cross-sections. This is particularly important in determining the bearing strength at buckling. The load scheme, conditions for fixation of the panel cross-section, and bend-torsional stiffness taking account of the deformation of the rod cross-section affect the buckling load in real structures. The stress distribution prior to buckling must be known to solve the buckling problem properly. The stress in the panel is proportional to the active load. The stress distribution is assumed to be known according to our previous method [1]. The load scheme and panel dimensions are shown in Fig. 1. The stress distribution in the panel prior to buckling can be found using Eqs. (1)-(3). A view of the cross-section is given in Fig. 1. The displacements in the panel at buckling for the boundary area are found using Eqs. (4)-(6), while the stresses in the skin and stiffness are found using Eq. (7). Roots k1 and k2 are those of the characteristic equation and β is a dimensionless coordinate. The problem was solved using variational theory. The potential energy is given by Eqs. (8) and (9) by orihogonalization of Eqs. (5). The basic equations are converted to Eqs. (10) by evaluation of the components in Eqs. (8) and (9). Its calculation (11) gives the compression load. Optimization of parameter α gives the critical strength P1 = 6.93 kN (without taking account of the boundary area) and P2 = 5.31 kN (taking account of the boundary area).
Graf von der Pahlen, J.; Tsiklauri, D.
2015-12-01
Magnetic X-point collapse is investigated using a 2.5D fully relativistic particle-in-cell simulation, with varying strengths of guide-field as well as open and closed boundary conditions. In the zero guide-field case we discover a new signature of Hall-reconnection in the out-of-plane magnetic field, namely an octupolar pattern, as opposed to the well-studied quadrupolar out-of-plane field of reconnection. The emergence of the octupolar components was found to be caused by ion currents and is a general feature of X-point collapse. In a comparative study of tearing-mode reconnection, signatures of octupolar components are found only in the out-flow region. It is argued that space-craft observations of magnetic fields at reconnection sites may be used accordingly to identify the type of reconnection [1][2]. Further, initial oscillatory reconnection is observed, prior to reconnection onset, generating electro-magnetic waves at the upper-hybrid frequency, matching solar flare progenitor emission. When applying a guide-field, in both open and closed boundary conditions, thinner dissipation regions are obtained and the onset of reconnection is increasingly delayed. Investigations with open boundary conditions show that, for guide-fields close to the strength of the in-plane field, shear flows emerge, leading to the formation of electron flow vortices and magnetic islands [3]. Asymmetries in the components of the generalised Ohm's law across the dissipation region are observed. Extended in 3D geometry, it is shown that locations of magnetic islands and vortices are not constant along the height of the current-sheet. Vortices formed on opposite sites of the current-sheet travel in opposite directions along it, leading to a criss-cross vortex pattern. Possible instabilities resulting from this specific structure formation are to be investigated [4].[1] J. Graf von der Pahlen and D. Tsiklauri, Phys. Plasmas 21, 060705 (2014), [2] J. Graf von der Pahlen and D. Tsiklauri
Suction of MHD boundary layer flows
International Nuclear Information System (INIS)
Rao, B.N.
1985-01-01
The boundary layer growth with tensor electrical conductivity and the transpiration number has been examined using local nonsimilarity solutions method. It is found that suction will cause the increase in wall shearing stress and decrease in thicknesses of the boundary layer. (Auth.)
Analytic Solution to Shell Boundary – Value Problems
Directory of Open Access Journals (Sweden)
Yu. I. Vinogradov
2015-01-01
Full Text Available Object of research is to find analytical solution to the shell boundary – value problems, i.e. to consider the solution for a class of problems concerning the mechanics of hoop closed shells strain.The objective of work is to create an analytical method to define a stress – strain state of shells under non-axisymmetric loading. Thus, a main goal is to derive the formulas – solutions of the linear ordinary differential equations with variable continuous coefficients.The partial derivative differential equations of mechanics of shells strain by Fourier's method of variables division are reduced to the system of the differential equations with ordinary derivatives. The paper presents the obtained formulas to define solutions of the uniform differential equations and received on their basis formulas to define a particular solution depending on a type of the right parts of the differential equations.The analytical algorithm of the solution of a boundary task uses an approach to transfer the boundary conditions to the randomly chosen point of an interval of changing independent variable through the solution of the canonical matrix ordinary differential equation with the subsequent solution of system of algebraic equations for compatibility of boundary conditions at this point. Efficiency of algorithm is based on the fact that the solution of the ordinary differential equations is defined as the values of Cauchy – Krylova functions, which meet initial arbitrary conditions.The results of researches presented in work are useful to experts in the field of calculus mathematics, dealing with solution of systems of linear ordinary differential equations and creation of effective analytical computing methods to solve shell boundary – value problems.
A variable K - planetary boundary layer model
International Nuclear Information System (INIS)
Misra, P.K.
1976-07-01
The steady-state, homogeneous and barotropic equations of motion within the planetary boundary layer are solved with the assumption that the coefficient of eddy viscosity varies as K(Z) = K 0 (1-Z/h)sup(p), where h is the height of the boundary layer and p a parameter which depends on the atmospheric stability. The solutions are compared with the observed velocity profiles based on the Wangara data. They compare favourably. (author)
Janssen, G.C.A.M.; Kamminga, J.D.
2004-01-01
In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
DEFF Research Database (Denmark)
Chemi, Tatiana
2016-01-01
This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...
A numerical solution of a singular boundary value problem arising in boundary layer theory.
Hu, Jiancheng
2016-01-01
In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.
Solving Environmental Problems
DEFF Research Database (Denmark)
Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph
2017-01-01
for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...
International Nuclear Information System (INIS)
Bradford, R.A.W.; Ure, J.; Chen, H.F.
2014-01-01
The ratchet boundaries and ratchet strains are derived for the Bree problem and an elastic-perfectly plastic material with different yield stresses on-load and off-load. The Bree problem consists of a constant uniaxial primary membrane stress and a cycling thermal bending stress. The ratchet problem with differing yield stresses is also solved for a modified loading in which both the primary membrane and thermal bending stresses cycle in-phase. The analytic solutions for the ratchet boundaries are compared with the results of deploying the linear matching method (LMM) and excellent agreement is found. Whilst these results are of potential utility for purely elastic–plastic behaviour, since yield stresses will often differ at the two ends of the cycle, the solution is also proposed as a means of assessing creep ratcheting via a creep ductility exhaustion approach. -- Highlights: • The Bree problem is solved for differing yield stresses on and off load. • The modified Bree problem with cycling primary load is also solved. • These solutions can be applied to creep ratcheting using a pseudo-yield stress
International Nuclear Information System (INIS)
Tabachnikov, S.I.; Aleksandrovskij, Yu.A.; Shcherbina, E.A.; Roslyakov, V.S.; Cherenkov, V.N.; Bero, M.P.; Mukhamadieva, R.A.; Rymar', I.B.; Polonskij, V.G.; Dubritij, L.S.
1989-01-01
Dynamics of different psychogenetic impacts on the great number of people turned out under hazardous conditions for life was presented. Psychogenetic disorders in the personnel and human population following the Chernobyl' accident were studied. Personnel taking part in the emergency response and having no signs of radiation disease were found to have nervous-mental adaptation disorders at all stages of accident. Combination of measures on the preventive and therapeutic-reabilitative procedures was presented. Obtained results have shown that the proposed preventive and psychotherapeutic measures are the most effective and effications ones under chronic stress conditions. tab. 1
DEFF Research Database (Denmark)
Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina
2003-01-01
.After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....
Parallel Fast Multipole Boundary Element Method for crustal dynamics
International Nuclear Information System (INIS)
Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar
2010-01-01
Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.
Hu, Xue-Lan; Zhao, Ruo-Xi; Deng, Jiang-Ge; Hu, Yan-Min; Song, Qing-Gong
2018-03-01
In this paper, we employ the first-principle total energy method to investigate the effect of P impurity on mechanical properties of NiAl grain boundary (GB). According to “energy”, the segregation of P atom in NiAlΣ5 GB reduces the cleavage energy and embrittlement potential, demonstrating that P impurity embrittles NiAlΣ5 GB. The first-principle computational tensile test is conducted to determine the theoretical tensile strength of NiAlΣ5 GB. It is demonstrated that the maximum ideal tensile strength of NiAlΣ5 GB with P atom segregation is 144.5 GPa, which is lower than that of the pure NiAlΣ5 GB (164.7 GPa). It is indicated that the segregation of P weakens the theoretical strength of NiAlΣ5 GB. The analysis of atomic configuration shows that the GB fracture is caused by the interfacial bond breaking. Moreover, P is identified to weaken the interactions between Al–Al bonds and enhance Ni–Ni bonds. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404396 and 51201181) and the Subject Construction Fund of Civil Aviation University of China (Grant No. 000032041102).
Introspection in Problem Solving
Jäkel, Frank; Schreiber, Cornell
2013-01-01
Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…
Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia
2017-01-01
Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…
Solving Linear Differential Equations
Nguyen, K.A.; Put, M. van der
2010-01-01
The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend
Utomo, P.H.; Makarim, R.H.
2017-01-01
A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each
Ayrinhac, Simon
2014-01-01
We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…
Transport equation solving methods
International Nuclear Information System (INIS)
Granjean, P.M.
1984-06-01
This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
Identifying Phase Space Boundaries with Voronoi Tessellations
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2016-11-24
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.
Toward Solving the Problem of Problem Solving: An Analysis Framework
Roesler, Rebecca A.
2016-01-01
Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…
Determination of free boundary problem of flow through porous media
International Nuclear Information System (INIS)
Tavares Junior, H.M.; Souza, A.J. de
1989-01-01
This paper deals with a free boundary problem of flow through porous media, which is solved by simplicial method conbined with mesh refinement. Variational method on fixed domain is utilized. (author)
APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS
Directory of Open Access Journals (Sweden)
Vorona Yu.V.
2015-12-01
Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.
Domain decomposition method for solving elliptic problems in unbounded domains
International Nuclear Information System (INIS)
Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.
1991-01-01
Computational aspects of the box domain decomposition (DD) method for solving boundary value problems in an unbounded domain are discussed. A new variant of the DD-method for elliptic problems in unbounded domains is suggested. It is based on the partitioning of an unbounded domain adapted to the given asymptotic decay of an unknown function at infinity. The comparison of computational expenditures is given for boundary integral method and the suggested DD-algorithm. 29 refs.; 2 figs.; 2 tabs
DESIGN AND EXAMINATION OF ALGORITHMS FOR SOLVING THE KNAPSACK PROBLEM
Directory of Open Access Journals (Sweden)
S. Kantsedal
2015-07-01
Full Text Available The use of methods of branches and boundaries as well as the methods of dynamic programming at solving the problem of «knapsack» is grounded. The main concepts are expounded. The methods and algorithms development for solving the above specified problem are described. Recommendations on practical application of constructed algorithms based on their experimental investigation and carrying out charactheristics comparison are presented.
International Nuclear Information System (INIS)
Sadeghy, K.; Sharifi, M.
2002-01-01
The effect of a fluid's elasticity on the characteristics of its boundary layer was investigated in this work. A viscoelastic fluid of Maxwellian type was selected for this purpose and the flow induced in this fluid by a plate withdrawing at a constant velocity was studied. Conventional boundary layer assumptions were invoked to reduce the equations of motion to a simple form incorporating an elastic term in addition to the familiar inertial, viscous and pressure terms. It was shown that for elastic effects to be of an importance in a boundary layer, the fluid's relaxation time should be of an order much larger than its kinematic viscosity. By introducing a stream function, the governing equation was transformed into a nonlinear ODE with x-coordinate still appearing in the equation demonstrating that no similarity solution existed for this flow. The resulting equation was then solved numerically for Deborah numbers as large as 1.0. The results showed a marked formation of boundary layer adjacent to a moving wall for a Maxwellian fluid. The boundary layer thickness and the wall shear stress were found to scale with fluid's elasticity - both decreasing the higher the fluid's elasticity. It is thus anticipated that in free coating processes, the force required to impart a constant velocity to a withdrawing belt or plate would be lower if fluid's elasticity is significant. (author)
Modified Differential Transform Method for Two Singular Boundary Values Problems
Directory of Open Access Journals (Sweden)
Yinwei Lin
2014-01-01
Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.
Natural convection flow between moving boundaries | Chepkwony ...
African Journals Online (AJOL)
The two-point boundary value problem governing the flow is characterized by a non-dimensional parameter K. It is solved numerically using shooting method and the Newton-Raphson method to locate the missing initial conditions. The numerical results reveal that no solution exists beyond a critical value of K and that dual ...
Introducing the Boundary Element Method with MATLAB
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
Creativity and Problem Solving
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui
2004-01-01
This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....
Creativity and problem Solving
Directory of Open Access Journals (Sweden)
René Victor Valqui Vidal
2004-12-01
Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.
On flows of viscoelastic fluids under threshold-slip boundary conditions
Baranovskii, E. S.
2018-03-01
We investigate a boundary-value problem for the steady isothermal flow of an incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove an existence theorem for the corresponding slip problem in the framework of weak solutions. The proof uses methods for solving variational inequalities with pseudo-monotone operators and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and compactness arguments. Also, some properties and estimates of weak solutions are established.
Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer
Sekhar, Susheel; Mansour, Nagi N.
2015-01-01
A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.
Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate
Directory of Open Access Journals (Sweden)
Mohammad Reza Safaei
2016-09-01
Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.
Solving hyperbolic heat conduction using electrical simulation
International Nuclear Information System (INIS)
Gheitaghy, A. M.; Talaee, M. R.
2013-01-01
In the present study, the electrical network simulation method is proposed to solve the hyperbolic and parabolic heat conduction problem considering Cattaneo-Vernoute (C.V) constitutive relation. Using this new proposed numerical model and the electrical circuit simulation program HSPICE, transient temperature and heat flux profiles at slab can be obtained easily and quickly. To verify the proposed method, the obtained numerical results for cases of one dimensional two-layer slab under periodic boundary temperature with perfect and imperfect thermal contact are compared with the published results. Comparisons show the proposed technique might be considered as a useful tool in the analysis of parabolic and hyperbolic thermal problems.
International Nuclear Information System (INIS)
Jat, R.N.; Chaudhary, Santosh
2009-01-01
The flow of an electrically conducting fluid past a porous substrate attached to the flat plate with Beavers-Joseph boundary condition under the influence of a uniform transverse magnetic field has been studied. Taking suitable similar variables, the momentum equation is transformed to ordinary differential equation and solved by standard techniques. The energy equation is solved by considering two boundary layers, one in the porous substrate and the other above the porous substrate. The velocity and temperature distributions along with Nusselt number are discussed numerically and presented through graphs. (author)
DEFF Research Database (Denmark)
Hansen, David
2012-01-01
Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...
DEFF Research Database (Denmark)
Foss, Kirsten; Foss, Nicolai Juul
2006-01-01
as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...
1982-10-01
Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and Problem ’Solving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R
Maras Michal; Hatala Jozef; Marasová Daniela
1997-01-01
Solving problems connected with damaging a conveyor belt at the transfer points is conditioned by knowing laws of this phenomenon. Acquiring the knowledge on this phenomen is possible to be gained either by experimental research or by the numerical model GEM 22, which enables to determine the distribution of stresses and strains in a suitably selected cross-section of a conveyor belt. The paper begins by defining the problem, determining the boundary model conditions and continues by modellin...
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
Solving Differential Equations in R: Package deSolve
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...
Solving Differential Equations in R: Package deSolve
Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.
2010-01-01
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The
Sinc-collocation method for solving the Blasius equation
International Nuclear Information System (INIS)
Parand, K.; Dehghan, Mehdi; Pirkhedri, A.
2009-01-01
Sinc-collocation method is applied for solving Blasius equation which comes from boundary layer equations. It is well known that sinc procedure converges to the solution at an exponential rate. Comparison with Howarth and Asaithambi's numerical solutions reveals that the proposed method is of high accuracy and reduces the solution of Blasius' equation to the solution of a system of algebraic equations.
Shooting method for solution of boundary-layer flows with massive blowing
Liu, T.-M.; Nachtsheim, P. R.
1973-01-01
A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.
A Reynolds stress model for near-wall turbulence
Durbin, P. A.
1993-01-01
The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.
Miyake, Y.; Noda, H.
2017-12-01
Earthquake sequences involve many processes in a wide range of time scales, from quasistatic loading to dynamic rupture. At a depth of brittle-plastic transitional and deeper, rock behaves as a viscous fluid in a long timescale, but as an elastic material in a short timescale. Viscoelastic stress relaxation may be important in the interseismic periods at the depth, near the deeper limit of the seismogenic layer or the region of slow slip events (SSEs) [Namiki et al., 2014 and references therein]. In the present study, we implemented the viscoelastic effect (Maxwell material) in fully-dynamic earthquake sequence simulations using a spectral boundary integral equation method (SBIEM) [e.g., Lapusta et al., 2000]. SBIEM is efficient in calculation of convolutional terms for dynamic stress transfer, and the problem size is limited by the amount of memory available. Linear viscoelasticity could be implemented by convolution of slip rate history and Green's function, but this method requires additional memory and thus not suitable for the implementation to the present code. Instead, we integrated the evolution of "effective slip" distribution, which gives static stress distribution when convolved with static elastic Green's function. This method works only for simple viscoelastic property distributions, but such models are suitable for numerical experiments aiming basic understanding of the system behavior because of the virtue of SBIEM, the ability of fine on-fault spatial resolution and efficient computation utilizing the fast Fourier transformation. In the present study, we examined the effect of viscoelasticity on earthquake sequences of a fault with a rate-weakening patch. A series of simulations with various relaxation time tc revealed that as decreasing tc, recurrence intervals of earthquakes increases and seismicity ultimately disappears. As long as studied, this transition to aseismic behavior is NOT associated with SSEs. In a case where the rate-weakening patch
Solved problems in electromagnetics
Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco
2017-01-01
This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .
Solved problems in electrochemistry
International Nuclear Information System (INIS)
Piron, D.L.
2004-01-01
This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems
Directory of Open Access Journals (Sweden)
Mostafa A. A. Mahmoud
2006-01-01
Full Text Available We have studied the effects of radiation on the boundary layer flow and heat transfer of an electrically conducting micropolar fluid over a continuously moving stretching surface embedded in a non-Darcian porous medium with a uniform magnetic field. The transformed coupled nonlinear ordinary differential equations are solved numerically. The velocity, the angular velocity, and the temperature are shown graphically. The numerical values of the skin friction coefficient, the wall couple stress, and the wall heat transfer rate are computed and discussed for various values of parameters.
MPFA algorithm for solving stokes-brinkman equations on quadrilateral grids
Iliev, Oleg; Kirsch, Ralf; Lakdawala, Zahra; Printsypar, Galina
2014-01-01
This work is concerned with the development of a robust and accurate numerical method for solving the Stokes-Brinkman system of equations, which describes a free fluid flow coupled with a flow in porous media. Quadrilateral boundary fitted grid
On the role of infiltration and exfiltration in swash zone boundary layer dynamics
Pintado-Patiño, José Carlos; Torres-Freyermuth, Alec; Puleo, Jack A.; Pokrajac, Dubravka
2015-09-01
Boundary layer dynamics are investigated using a 2-D numerical model that solves the Volume-Averaged Reynolds-Averaged Navier-Stokes equations, with a VOF-tracking scheme and a k - ɛ turbulence closure. The model is validated with highly resolved data of dam break driven swash flows over gravel impermeable and permeable beds. The spatial gradients of the velocity, bed shear stress, and turbulence intensity terms are investigated with reference to bottom boundary layer (BL) dynamics. Numerical results show that the mean vorticity responds to flow divergence/convergence at the surface that result from accelerating/decelerating portions of the flow, bed shear stress, and sinking/injection of turbulence due to infiltration/exfiltration. Hence, the zero up-crossing of the vorticity is employed as a proxy of the BL thickness inside the shallow swash zone flows. During the uprush phase, the BL develops almost instantaneously with bore arrival and fluctuates below the surface due to flow instabilities and related horizontal straining. In contrast, during the backwash phase, the BL grows quasi-linearly with less influence of surface-induced forces. However, the infiltration produces a reduction of the maximum excursion and duration of the swash event. These effects have important implications for the BL development. The numerical results suggest that the BL growth rate deviates rapidly from a quasi-linear trend if the infiltration is dominant during the initial backwash phase and the flat plate boundary layer theory may no longer be applicable under these conditions.
DEFF Research Database (Denmark)
Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu
2009-01-01
measurements for steady streaming induced by a skewed free stream velocity signal is also provided. We then simulate a series of experiments involving oscillatory flow in a convergent-divergent smooth tunnel, and a good match with respect to bed shear stresses and streaming velocities is achieved......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega turbulence closure, is used to study converging-diverging effects from a sloping bed on turbulent (oscillatory) wave boundary layers. Bed shear stresses from the numerical model....... The streaming is conceptually explained using analogies from steady converging and diffuser flows. A parametric study is undertaken to assess both the peak and time-averaged bed shear stresses in converging and diverging half periods under rough-turbulent conditions. The results are presented as friction factor...
Political State Boundary (National)
Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...
Allegheny County Municipal Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...
Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...
State Agency Administrative Boundaries
Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...
THE CALCULATION OF STRESS-STRAIN STATE OF THREE-LAYER BEAM TAKING INTO ACCOUNT EDGE EFFECTS
Directory of Open Access Journals (Sweden)
Kh. M. Muselemov
2015-01-01
Full Text Available The work is dedicated to the calculation of the stress-strain state (SSS of the three-layer beam (TLB subject to boundary effects.In this paper, a system of differential equations of equilibrium of the threelayer beam. To solve these equations, it is necessary to know the 12 boundary conditions, co-which depend on support conditions and loading of sandwich beams under study. This system of equations is solved by the application package of mathematical modeling "Maple 5.4." The solution of this system we obtain expressions for determining de-formations and stress all components (bearing layers and filler, a three-layer beam anywhere under specified conditions of fastening the ends of the beam and its loading.
International Nuclear Information System (INIS)
Doikou, Anastasia
2010-01-01
We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.
Magnetohydrodynamic boundary layer on a wedge
International Nuclear Information System (INIS)
Rao, B.N.; Mittal, M.L.
1981-01-01
The effects of the Hall and ionslip currents on the gas-dynamic boundary layer are investigated in view of the increasing prospects for using the MHD principle in electric power generation. The currents are included in the analysis using the generalized Ohm's law (Sherman and Sutton, 1964), and the resulting two nonlinear coupled equations are solved using a modification in the method suggested by Nachtsheim and Swigert (1965), Dewey and Gross (1967), and Steinheuer (1968). Solutions are presented for the incompressible laminar boundary-layer equations in the absence and the presence of the load parameter, and for the pressure gradient parameter for flow separation
Acoustic scattering on spheroidal shapes near boundaries
Miloh, Touvia
2016-11-01
A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an "ultimate" singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.
Stress gradients in CrN coatings
Janssen, G.C.A.M.; Tichelaar, F.D.; Visser, C.C.G.
2006-01-01
Stress in hard films is the net sum of tensile stress generated at the grain boundaries, compressive stress due to ion peening, and thermal stress due to the difference in thermal expansion of the coating and substrate. The tensile part due to grain boundaries is thickness dependent. The other two
Requisite for Honing the Problem Solving Skill of Early Adolescents in the Digital Era
Sumitha, S.; Jose, Rexlin
2016-01-01
Problems can be the cause of stress, tension, emotional instability and physical strain. Especially, adolescents should have the skill of solving a problem in order to reach his/her desired ambitions in life. The problem solving skill requires some abstract thinking to arrive at a clear solution. Problem solving ability helps them to meet their…
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions can be expressed in terms of the Jacobi elliptic functions. The boundary conditions determine the modulus of the Jacobi elliptic functions. The boundary conditions can not be solved analytically...
A finite-volume method for convection problems with embedded moving boundaries
Y.J. Hassen (Yunus); B. Koren (Barry)
2009-01-01
htmlabstractAn accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. Moving interior boundary conditions are embedded in the fixed-grid fluxes in the direct neighborhood of the moving boundaries. Tailor-made limiters are
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2013-01-01
are solved using extended boundary conditions that account for: i) negligible temperature fluctuations at the boundary, and ii) normal and tangential matching of the boundary’s particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers...
Omori, S.
1973-01-01
The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.
Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis
International Nuclear Information System (INIS)
Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta
2014-01-01
Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices
A Numerical Model of Anisotropic Mass Transport Through Grain Boundary Networks
Wang, Yibo
Tin (Sn) thin films are commonly used in electronic circuit applications as coatings on contacts and solders for joining components. It is widely observed, for some such system, that whiskers---long, thin crystalline structures---emerge and grow from the film. The Sn whisker phenomenon has become a highly active research area since Sn whiskers have caused a large amount of damage and loss in manufacturing, military, medical and power industries. Though lead (Pb) addition to Sn has been used to solve this problem for over five decades, the adverse environmental and health effects of Pb have motivated legislation to severely constrain Pb use in society. People are researching and seeking the reasons which cause whiskers and corresponding methods to solve the problem. The contributing factors to cause a Sn whisker are potentially many and much still remains unknown. Better understanding of fundamental driving forces should point toward strategies to improve (a) the accuracy with which we can predict whisker formation, and (b) our ability to mitigate the phenomenon. This thesis summarizes recent important research achievements in understanding Sn whisker formation and growth, both experimentally and theoretically. Focus is then placed on examining the role that anisotropy in grain boundary diffusivity plays in determining whisker characteristics (specifically, whether they form and, if so, where on a surface). To study this aspect of the problem and to enable future studies on stress driven grain boundary diffusion, this thesis presents a numerical anisotropic mass transport model. In addition to presenting details of the model and implementation, model predictions for a set of increasingly complex grain boundary networks are discussed. Preliminary results from the model provide evidence that anisotropic grain boundary diffusion may be a primary driving mechanism in whisker formation.
Separable boundary-value problems in physics
Willatzen, Morten
2011-01-01
Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations i
Three dimensional grain boundary modeling in polycrystalline plasticity
Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman
2018-05-01
At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.
Directory of Open Access Journals (Sweden)
Kravchuk Aleksandr Stepanovich
2015-10-01
Full Text Available For the first time with the help of the theory of analytic functions and Kolosov-Muskhelishvili formulas the problem of the two-dimensional theory of elasticity for a thickwalled ring with the uneven pressures, acting on its borders, was solved. The pressure on the inner and outer boundaries is represented by Fourier series. The authors represent the two complex functions which solve boundary problem in the form of Laurent series. The logarithmic terms in these series are absent because the boundary problem has the self-balancing loads on each boundary of ring. The coefficients in the Laurent series are calculated by the boundary conditions. Firstly, the equations were obtained in the general form. But the hypothesis about even distributions of pressures at borders of ring was used for constructing an example. It leads to the fact that all coefficients of analytic functions represented in Laurent series have to be only real. As a solving example, the representation of pressures in equivalent hypotrochoids was used. The application of the computer algebra system Mathematica greatly simplifies the calculation of the distribution of stresses and displacements in ring. It does not require manual formal separation of real and imaginary parts in terms of Kolosov-Muskhelishvili to display the distribution of the physical parameters. It separates them only for calculated numbers with the help of built-in functions.
Ludu, Andrei
2016-01-01
The central theme of this book is the extent to which the structure of the free dynamical boundaries of a system controls the evolution of the system as a whole. Applying three orthogonal types of thinking - mathematical, constructivist and morphological, it illustrates these concepts using applications to selected problems from the social and life sciences, as well as economics. In a broader context, it introduces and reviews some modern mathematical approaches to the science of complex systems. Standard modeling approaches (based on non-linear differential equations, dynamic systems, graph theory, cellular automata, stochastic processes, or information theory) are suitable for studying local problems. However they cannot simultaneously take into account all the different facets and phenomena of a complex system, and new approaches are required to solve the challenging problem of correlations between phenomena at different levels and hierarchies, their self-organization and memory-evolutive aspects, the grow...
The coordination of boundary tones and its interaction with prominence.
Katsika, Argyro; Krivokapić, Jelena; Mooshammer, Christine; Tiede, Mark; Goldstein, Louis
2014-05-01
This study investigates the coordination of boundary tones as a function of stress and pitch accent. Boundary tone coordination has not been experimentally investigated previously, and the effect of prominence on this coordination, and whether it is lexical (stress-driven) or phrasal (pitch accent-driven) in nature is unclear. We assess these issues using a variety of syntactic constructions to elicit different boundary tones in an Electromagnetic Articulography (EMA) study of Greek. The results indicate that the onset of boundary tones co-occurs with the articulatory target of the final vowel. This timing is further modified by stress, but not by pitch accent: boundary tones are initiated earlier in words with non-final stress than in words with final stress regardless of accentual status. Visual data inspection reveals that phrase-final words are followed by acoustic pauses during which specific articulatory postures occur. Additional analyses show that these postures reach their achievement point at a stable temporal distance from boundary tone onsets regardless of stress position. Based on these results and parallel findings on boundary lengthening reported elsewhere, a novel approach to prosody is proposed within the context of Articulatory Phonology: rather than seeing prosodic (lexical and phrasal) events as independent entities, a set of coordination relations between them is suggested. The implications of this account for prosodic architecture are discussed.
Solving PDEs in Python the FEniCS tutorial I
Langtangen, Hans Petter
2016-01-01
This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.
Difficulties in Genetics Problem Solving.
Tolman, Richard R.
1982-01-01
Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)
Problem Solving, Scaffolding and Learning
Lin, Shih-Yin
2012-01-01
Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…
Problem Solving on a Monorail.
Barrow, Lloyd H.; And Others
1994-01-01
This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)
Solving complex fisheries management problems
DEFF Research Database (Denmark)
Petter Johnsen, Jahn; Eliasen, Søren Qvist
2011-01-01
A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related...
A Boundary Property for Upper Domination
AbouEisha, Hassan M.
2016-08-08
An upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality.The problem of finding an upper dominating set is generally NP-hard, but can be solved in polynomial time in some restricted graph classes, such as P4-free graphs or 2K2-free graphs.For classes defined by finitely many forbidden induced subgraphs, the boundary separating difficult instances of the problem from polynomially solvable ones consists of the so called boundary classes.However, none of such classes has been identified so far for the upper dominating set problem.In the present paper, we discover the first boundary class for this problem.
International Nuclear Information System (INIS)
Dimitrov, O.
1975-01-01
Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...
Thermal stresses investigation of a gas turbine blade
Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.
2012-06-01
The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.
How do Economic Crises Impact Firm Boundaries?
DEFF Research Database (Denmark)
Foss, Kirsten
2010-01-01
How economic crises impact the boundaries of firms has been offered virtually no attention in the literature on the theory of the firm. I review the best-known theories of the firm and identify the variables that matter for the explanation of firm boundaries. I then examine how an economic crisis...... may impact these variables and change efficient firm boundaries. The various theories of the firm have difficulties explaining how firms efficiently adapt their boundaries to such prominent characteristics of economic crisis as declining demand and increased costs of external finance. However, all...... these theories stress uncertainty as an antecedent of firm organization, and as uncertainty is also an important characteristic of an economic crisis I examine how uncertainty is allowed to play out in the various theories in order to identify what predictions we can derive from the theory regarding changes...
Slip patterns and preferred dislocation boundary planes
DEFF Research Database (Denmark)
Winther, G.
2003-01-01
The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...
Directory of Open Access Journals (Sweden)
Олена Валентинівна Лупаренко
2015-03-01
Full Text Available When the wave processes in bounded elastic bodies are examined, we are faced with a significant complication of the structure of the wave field compared to the case of infinite bodies. This is due to the complex nature of the reflection of elastic waves from the boundaries of the body because the direction of the general flow of energy is changed. Even more complicated the structure of the wave field is, if there are inner boundaries between fields with different elastic properties. This entails the emergence of new wave effects associated with the dynamic stress concentration in the vicinity of the internal and external boundaries of the field. The nature of edge effects is changed too. They will depend not only from the size of the field but also from the geometric and elastic parameters defining the nature of heterogeneity. At the forefront are the questions of systematization of the results for the purpose of extradition of practical recommendations for optimal design of heterogeneous section details in particular conditions of its operation. Urgent enough is the question of the possibility of neglecting of structural heterogeneity and anisotropy of the section of the body in strengthening calculations and evaluation of possible errors. The mathematical basis for the study will be the expressions for particular solutions of equations of motion, constructed for infinite layers, which are sets of plane standing waves. When choosing the form of partial solutions, we must take into account not only the opportunity to satisfy the boundary conditions at the exterior boundary of the field, but also the mechanical properties at the interface of the sphere. This entails the complication of numerical-analytical algorithm of solving the problem
A comparative study on stress and compliance based structural topology optimization
Hailu Shimels, G.; Dereje Engida, W.; Fakhruldin Mohd, H.
2017-10-01
Most of structural topology optimization problems have been formulated and solved to either minimize compliance or weight of a structure under volume or stress constraints, respectively. Even if, a lot of researches are conducted on these two formulation techniques separately, there is no clear comparative study between the two approaches. This paper intends to compare these formulation techniques, so that an end user or designer can choose the best one based on the problems they have. Benchmark problems under the same boundary and loading conditions are defined, solved and results are compared based on these formulations. Simulation results shows that the two formulation techniques are dependent on the type of loading and boundary conditions defined. Maximum stress induced in the design domain is higher when the design domains are formulated using compliance based formulations. Optimal layouts from compliance minimization formulation has complex layout than stress based ones which may lead the manufacturing of the optimal layouts to be challenging. Optimal layouts from compliance based formulations are dependent on the material to be distributed. On the other hand, optimal layouts from stress based formulation are dependent on the type of material used to define the design domain. High computational time for stress based topology optimization is still a challenge because of the definition of stress constraints at element level. Results also shows that adjustment of convergence criterions can be an alternative solution to minimize the maximum stress developed in optimal layouts. Therefore, a designer or end user should choose a method of formulation based on the design domain defined and boundary conditions considered.
Solving the Stokes problem on a massively parallel computer
DEFF Research Database (Denmark)
Axelsson, Owe; Barker, Vincent A.; Neytcheva, Maya
2001-01-01
boundary value problem for each velocity component, are solved by the conjugate gradient method with a preconditioning based on the algebraic multi‐level iteration (AMLI) technique. The velocity is found from the computed pressure. The method is optimal in the sense that the computational work...... is proportional to the number of unknowns. Further, it is designed to exploit a massively parallel computer with distributed memory architecture. Numerical experiments on a Cray T3E computer illustrate the parallel performance of the method....
Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods
Eom, Hyo J
2004-01-01
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The
Directory of Open Access Journals (Sweden)
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
Existence of solutions to boundary value problem of fractional differential equations with impulsive
Directory of Open Access Journals (Sweden)
Weihua JIANG
2016-12-01
Full Text Available In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.
Development of boundary layers
International Nuclear Information System (INIS)
Herbst, R.
1980-01-01
Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de
A finite difference method for free boundary problems
Fornberg, Bengt
2010-04-01
Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.
Elastic crack-tip stress field in a semi-strip
Directory of Open Access Journals (Sweden)
Victor Reut
2018-04-01
Full Text Available In this article the plain elasticity problem for a semi-strip with a transverse crack is investigated in the different cases of the boundary conditions at the semi-strips end. Unlike many works dedicated to this subject, the fixed singularities in the singular integral equation�s kernel are considered. The integral transformations� method is applied by the generalized scheme to reduce the initial problem to a one-dimensional problem. The one-dimensional problem is formulated as the vector boundary value problem which is solved with the help of matrix differential calculations and Green�s matrix apparatus. The solution of the problem is reduced to the solving of the system of three singular integral equations. Depending on the conditions given on the short edge of the semi-strip, the constructed singular integral equation can have one, or two fixed singularities. A special method is applied to solve this equation in regard of the singularities existence. Hence the system of the singular integral equations (SSIE is solved with the help of the generalized method. The stress intensity factors (SIF are investigated for different lengths of crack. The novelty of this work is in the application of new approach allowing the consideration of the fixed singularities in the problem about a transverse crack in the elastic semi-strip. The comparison of the numerical results� accuracy during the usage of the different approaches to the solving of SSIE is worked out
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun
2012-01-01
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun
2011-08-01
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.
Directory of Open Access Journals (Sweden)
Norfifah Bachok
Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
Directory of Open Access Journals (Sweden)
Kamal Raslan
2018-05-01
Full Text Available This work provides a mathematical model for the cooling process of a moving surface, in the presence of a uniform external magnetic field and thermal radiation, through a porous medium by using a weak concentration micropolar nanofluid. The model—based on the conservation equations of the unsteady case in the momentum and thermal boundary layer—takes into consideration the effect of the suction process. The conservation equations were transformed into ordinary differential equations using similar transformation techniques. The equations were solved numerically for the general case and analytically for the steady case. The rate of heat transfer, couple shear stress, and surface shear stress are deduced. We discuss the impact of these physical characteristics on the mechanical properties of the surface that will be cooled.
Li, Qiang; Popov, Valentin L.
2018-03-01
Recently proposed formulation of the boundary element method for adhesive contacts has been generalized for contacts of power-law graded materials with and without adhesion. Proceeding from the fundamental solution for single force acting on the surface of an elastic half space, first the influence matrix is obtained for a rectangular grid. The inverse problem for the calculation of required stress in the contact area from a known surface displacement is solved using the conjugate-gradient technique. For the transformation between the stresses and displacements, the Fast Fourier Transformation is used. For the adhesive contact of graded material, the detachment criterion based on the energy balance is proposed. The method is validated by comparison with known exact analytical solutions as well as by proving the independence of the mesh size and the grid orientation.
Problem Solving with General Semantics.
Hewson, David
1996-01-01
Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)
How to solve mathematical problems
Wickelgren, Wayne A
1995-01-01
Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.
Interactive Problem-Solving Interventions
African Journals Online (AJOL)
Frew Demeke Alemu
concerted efforts of unofficial actors to establish unofficial communication ... Frew Demeke Alemu (LLB, LLM in International Human Rights Law from Lund ..... 24 Tamra Pearson d'Estrée (2009), “Problem-Solving Approaches”, (in The SAGE ...
Review on solving the forward problem in EEG source analysis
Directory of Open Access Journals (Sweden)
Vergult Anneleen
2007-11-01
Full Text Available Abstract Background The aim of electroencephalogram (EEG source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter. In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM, the finite element method (FEM and the finite difference method (FDM. In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative
Directory of Open Access Journals (Sweden)
Jintao Song
2015-01-01
Full Text Available The foundation boundaries of numerical simulation models of hydraulic structures dominated by a vertical load are investigated. The method used is based on the stress formula for fundamental solutions to semi-infinite space body elastic mechanics under a vertical concentrated force. The limit method is introduced into the original formula, which is then partitioned and analyzed according to the direction of the depth extension of the foundation. The point load will be changed to a linear load with a length of 2a. Inverse proportion function assumptions are proposed at parameter a and depth l of the calculation points to solve the singularity questions of elastic stress in a semi-infinite space near the ground. Compared with the original formula, changing the point load to a linear load with a length of 2a is more reasonable. Finally, the boundary depth criterion of a hydraulic numerical simulation model is derived and applied to determine the depth boundary formula for gravity dam numerical simulations.
Boundary effects in quantum field theory
International Nuclear Information System (INIS)
Deutsch, D.; Candelas, P.
1979-01-01
Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the ''renormalized mode sum energy,'' a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary
A "feasible direction" search for Lineal Programming problem solving
Directory of Open Access Journals (Sweden)
Jaime U Malpica Angarita
2003-07-01
Full Text Available The study presents an approach to solve linear programming problems with no artificial variables. A primal linear minimization problem is standard form and its associated dual linear maximization problem are used. Initially, the dual (or a partial dual program is solved by a "feasible direction" search, where the Karush-Kuhn-Tucker conditions help to verify its optimality and then its feasibility. The "feasible direction" search exploits the characteristics of the convex polyhedron (or prototype formed by the dual program constraints to find a starting point and then follows line segments, whose directions are found in afine subspaces defined by boundary hyperplanes of polyhedral faces, to find next points up to the (an optimal one. Them, the remaining dual constraints not satisfaced at that optimal dual point, if there are any, are handled as nonbasic variables of the primal program, which is to be solved by such "feasible direction" search.
Closed-form solution for piezoelectric layer with two collinear cracks parallel to the boundaries
Directory of Open Access Journals (Sweden)
B. M. Singh
2006-01-01
Full Text Available We consider the problem of determining the stress distribution in an infinitely long piezoelectric layer of finite width, with two collinear cracks of equal length and parallel to the layer boundaries. Within the framework of reigning piezoelectric theory under mode III, the cracked piezoelectric layer subjected to combined electromechanical loading is analyzed. The faces of the layers are subjected to electromechanical loading. The collinear cracks are located at the middle plane of the layer parallel to its face. By the use of Fourier transforms we reduce the problem to solving a set of triple integral equations with cosine kernel and a weight function. The triple integral equations are solved exactly. Closed form analytical expressions for stress intensity factors, electric displacement intensity factors, and shape of crack and energy release rate are derived. As the limiting case, the solution of the problem with one crack in the layer is derived. Some numerical results for the physical quantities are obtained and displayed graphically.
Boundaries immersed in a scalar quantum field
International Nuclear Information System (INIS)
Actor, A.A.; Bender, I.
1996-01-01
We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)
Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.
Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu
2012-01-01
Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.
Stress in piezoelectric hollow sphere with thermal gradient
International Nuclear Information System (INIS)
Saadatfar, M.; Rastgoo, A.
2008-01-01
The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart structures technology have led to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary value problems. In this paper, we develop an analytic solution to the axisymmetric problem of a radially polarized, spherically isotropic piezoelectric hollow sphere. The sphere is subjected to uniform internal pressure, or uniform external pressure, or both and thermal gradient. There is a constant thermal difference between its inner and outer surfaces. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. Finally, the stress distributions in the sphere are obtained numerically for two piezoceramics
Administrative Area Boundaries 2 (State Boundaries), Region 9, 2010, NAVTEQ
U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 2 (State Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...
Administrative Area Boundaries 4 (City Boundaries), Region 9, 2010, NAVTEQ
U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 4 (City Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...
Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.
2016-05-01
This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.
International Nuclear Information System (INIS)
Zhang, J; Shen, Y P; Du, J K
2008-01-01
The effect of inhomogeneous initial stress on Love wave propagation in layered magneto-electro-elastic structures is investigated in this paper. The coupled magneto-electro-elastic field equations are solved by adopting the Wentzel–Kramers–Brillouin (WKB) approximate approach. Then the phase velocity can be calculated by applying boundary and continuity conditions. A specific example of a structure consisting of a CoFe 2 O 4 layer and a BaTiO 3 substrate is used to illustrate the influence of inhomogeneous initial stress on the phase velocity, corresponding coupled magneto-electric factor and stress fields. The different influence between constant initial stress and inhomogeneous initial stress is discussed and the results are expected to be helpful for the preparation and application of Love wave sensors
Boundary-layer effects in droplet splashing
Riboux, Guillaume; Gordillo, Jose Manuel
2017-11-01
A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity exceeds the so called critical velocity for splashing. Under these circumstances, the very thin liquid sheet ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it and finally breaks into smaller droplets, violently ejected radially outwards, provoking the splash. Here, the tangential deceleration experienced by the fluid entering the thin liquid sheet is investigated making use of boundary layer theory. The velocity component tangent to the solid, computed using potential flow theory provides the far field boundary condition as well as the pressure gradient for the boundary layer equations. The structure of the flow permits to find a self similar solution of the boundary layer equations. This solution is then used to calculate the boundary layer thickness at the root of the lamella as well as the shear stress at the wall. The splash model presented in, which is slightly modified to account for the results obtained from the boundary layer analysis, provides a very good agreement between the measurements and the predicted values of the critical velocity for the splash.
Large Eddy Simulation of the ventilated wave boundary layer
DEFF Research Database (Denmark)
Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu
2006-01-01
A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...
Axisymmetric MHD stability of sharp-boundary Tokamaks
International Nuclear Information System (INIS)
Rebhan, E.; Salat, A.
1976-09-01
For a sharp-boundary, constant pressure plasma model of axisymmetric equilibria the MHD stability problem of axisymmetric perturbations is solved by analytic reduction to a one-dimensional problem on the boundary and subsequent numerical treatment, using the energy principle. The stability boundaries are determined for arbitrary aspect ratio, arbitrary βsub(p) and elliptical, triangular and rectangular plasma cross-sections, wall stabilization not being taken into account. It is found that the axisymmetric stability strongly depends on the plasma shape and is almost independent of the safety factor q. (orig.) [de
Perturbed solutions of fixed boundary MHD equilibria
International Nuclear Information System (INIS)
Portone, A.
2004-01-01
In this study, the fixed boundary plasma MHD equilibrium problem is solved by the finite element method; then, by perturbing the flux at the plasma boundary nodes, linear formulae are derived linking the variation of several plasma parameters of interest to the variation of the currents flowing in the external circuits. On the basis of these formulae it is shown how it is possible to efficiently solve two central problems in plasma engineering, namely (1) the optimization of the currents in a given set of coils necessary to maintain a specified equilibrium configuration and (2) the derivation of a linear dynamic model describing the plasma axisymmetric displacement (n = 0 mode) about a given magnetic configuration. A case study-based on the ITER reference equilibrium magnetic configuration at burn-is analysed both in terms of equilibrium currents optimality as well as axisymmetric stability features. The results obtained by these formulae are also compared with the predictions of a non-linear free boundary code and of a linear, dynamic model. As shown, the formulae derived here are in good agreement with such predictions, confirming the validity of the present approach. (author)
Adaptive boundary conditions for exterior flow problems
Boenisch, V; Wittwer, S
2003-01-01
We consider the problem of solving numerically the stationary incompressible Navier-Stokes equations in an exterior domain in two dimensions. This corresponds to studying the stationary fluid flow past a body. The necessity to truncate for numerical purposes the infinite exterior domain to a finite domain leads to the problem of finding appropriate boundary conditions on the surface of the truncated domain. We solve this problem by providing a vector field describing the leading asymptotic behavior of the solution. This vector field is given in the form of an explicit expression depending on a real parameter. We show that this parameter can be determined from the total drag exerted on the body. Using this fact we set up a self-consistent numerical scheme that determines the parameter, and hence the boundary conditions and the drag, as part of the solution process. We compare the values of the drag obtained with our adaptive scheme with the results from using traditional constant boundary conditions. Computati...
Kansas Data Access and Support Center — The Statewide GIS Tax Unit boundary file was created through a collaborative partnership between the State of Kansas Department of Revenue Property Valuation...
U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...
Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...
Allegheny County Parcel Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...
Boundary representation modelling techniques
2006-01-01
Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.
Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...
U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...
Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...
State Park Statutory Boundaries
Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...
The causal boundary of wave-type spacetimes
International Nuclear Information System (INIS)
Flores, J.L.; Sanchez, M.
2008-01-01
A complete and systematic approach to compute the causal boundary of wave-type spacetimes is carried out. The case of a 1-dimensional boundary is specially analyzed and its critical appearance in pp-wave type spacetimes is emphasized. In particular, the corresponding results obtained in the framework of the AdS/CFT correspondence for holography on the boundary, are reinterpreted and very widely generalized. Technically, a recent new definition of causal boundary is used and stressed. Moreover, a set of mathematical tools is introduced (analytical functional approach, Sturm-Liouville theory, Fermat-type arrival time, Busemann-type functions)
Guo, Xiao; Wei, Peijun
2016-03-01
The dispersion relations of elastic waves in a one-dimensional phononic crystal formed by periodically repeating of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are studied in this paper. The influences of initial stress on the dispersive relation are considered based on the incremental stress theory. First, the incremental stress theory of elastic solid is extended to the magneto-electro-elasto solid. The governing equations, constitutive equations, and boundary conditions of the incremental stresses in a magneto-electro-elasto solid are derived with consideration of the existence of initial stresses. Then, the transfer matrices of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are formulated, respectively. The total transfer matrix of a single cell in the phononic crystal is obtained by the multiplication of two transfer matrixes related with two adjacent slabs. Furthermore, the Bloch theorem is used to obtain the dispersive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved numerically and the numerical results are shown graphically. The oblique propagation and the normal propagation situations are both considered. In the case of normal propagation of elastic waves, the analytical expressions of the dispersion equation are derived and compared with other literatures. The influences of initial stresses, including the normal initial stresses and shear initial stresses, on the dispersive relations are both discussed based on the numerical results. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.
1995-01-01
A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis
RECTC/RECTCF, 2. Order Elliptical Partial Differential Equation, Arbitrary Boundary Conditions
International Nuclear Information System (INIS)
Hackbusch, W.
1983-01-01
1 - Description of problem or function: A general linear elliptical second order partial differential equation on a rectangle with arbitrary boundary conditions is solved. 2 - Method of solution: Multi-grid iteration
Directory of Open Access Journals (Sweden)
Vasily A. Belyaev
2017-01-01
Full Text Available The new versions of the collocations and least residuals (CLR method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for PDE in the convex quadrangular domains. Their implementation and numerical experiments are performed by the examples of solving the biharmonic and Poisson equations. The solution of the biharmonic equation is used for simulation of the stress-strain state of an isotropic plate under the action of the transverse load. Differential problems are projected into the space of fourth-degree polynomials by the CLR method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLR method are implemented on the grids, which are constructed by two different ways. In the first version, a “quasiregular” grid is constructed in the domain, the extreme lines of this grid coincide with the boundaries of the domain. In the second version, the domain is initially covered by a regular grid with rectangular cells. Herewith, the collocation and matching points that are situated outside the domain are used for approximation of the differential equations in the boundary cells that had been crossed by the boundary. In addition the “small” irregular triangular cells that had been cut off by the domain boundary from rectangular cells of the initial regular grid are joined to adjacent quadrangular cells. This technique allowed to essentially reduce the conditionality of the system of linear algebraic equations of the approximate problem in comparison with the case when small irregular cells together with other cells were used as independent ones for constructing an approximate solution of the problem. It is shown that the approximate solution of problems converges with high order and matches with high accuracy with the analytical solution of the test problems in the case of the known solution in
Customer-centered problem solving.
Samelson, Q B
1999-11-01
If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.
DEFF Research Database (Denmark)
Foss, Kirsten; Foss, Nicolai Juul
as a general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...... Simon, problem-solving, new organizational forms. JEL Code: D23, D83......Two of Herbert Simon's best-known papers are "The Architecture of Complexity" and "The Structure of Ill-Structured Problems." We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...
Inference rule and problem solving
Energy Technology Data Exchange (ETDEWEB)
Goto, S
1982-04-01
Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.
Hybrid immersed boundary method for airfoils with a trailing-edge flap
DEFF Research Database (Denmark)
Zhu, Wei Jun; Behrens, Tim; Shen, Wen Zhong
2013-01-01
In this paper, a hybrid immersed boundary technique has been developed for simulating turbulent flows past airfoils with moving trailing-edge flaps. Over the main fixed part of the airfoil, the equations are solved using a standard body-fitted finite volume technique, whereas the moving trailing......-edge flap is simulated using the immersed boundary method on a curvilinear mesh. An existing in-house-developed flow solver is employed to solve the incompressible Reynolds-Averaged Navier-Stokes equations together with the k-ω turbulence model. To achieve consistent wall boundary conditions at the immersed...... boundaries the k-ωturbulence model is modified and adapted to the local conditions associated with the immersed boundary method. The obtained results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing-edge flap and that flow control...
International Nuclear Information System (INIS)
Robertson, I.M.; Lee, T.C.; Subramanian, R.; Birnbaum, H.K.
1992-01-01
This paper reports on the conditions established in disordered FCC systems for predicting the slip system that will be activated by a grain boundary to relieve a local stress concentration that have been applied to the ordered FCC alloy Ni 3 Al. The slip transfer behavior in hypo-stoichiometric Ni 3 Al with (0.2 at. %B) and without boron was directly observed by performing the deformation experiments in situ in the transmission electron microscope. In the boron-free and boron-doped alloys, lattice dislocations were incorporated in the grain boundary, but did not show evidence of dissociation to grain boundary dislocations or of movement in the grain boundary plane. The stress concentration associated with the dislocation pileup at the grain boundary are relieved by the emission of dislocations from the grain boundary in the boron-doped alloy. The slip system initiated in the adjoining grain obeyed the conditions established for disordered FCC systems. In the boron-free alloy, the primary stress relief mechanism was grain-boundary cracking, although dislocation emission from the grain boundary also occurred and accompanied intergranular crack advance
Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-02-15
The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.
On a stochastic Burgers equation with Dirichlet boundary conditions
Directory of Open Access Journals (Sweden)
Ekaterina T. Kolkovska
2003-01-01
Full Text Available We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.
Inverse boundary element calculations based on structural modes
DEFF Research Database (Denmark)
Juhl, Peter Møller
2007-01-01
The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...
Three-dimensional wake field analysis by boundary element method
International Nuclear Information System (INIS)
Miyata, K.
1987-01-01
A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity
Boundary value problems for multi-term fractional differential equations
Daftardar-Gejji, Varsha; Bhalekar, Sachin
2008-09-01
Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.
Zhang, Yin; Chu, Samuel K. W.
2016-01-01
In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…
Couple stresses and the fracture of rock.
Atkinson, Colin; Coman, Ciprian D; Aldazabal, Javier
2015-03-28
An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Grain boundary structure and properties
International Nuclear Information System (INIS)
Balluffi, R.W.
1979-01-01
An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries
Boundary Plasma Turbulence Simulations for Tokamaks
International Nuclear Information System (INIS)
Xu, X.; Umansky, M.; Dudson, B.; Snyder, P.
2008-05-01
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T e ; T i ) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics
9th International Conference on Boundary Elements
Wendland, W; Kuhn, G
1987-01-01
This book contains the edited versions of most of the papers presented at the 9th International Conference on Boundary Elements held at the University of Stuttgart, Germany from August 31st to September 4th, 1987, which was organized in co-operation with the Computational Mechanics Institute and GAMM (Society for Applied Mathematics and Mechanics). This Conference, as the previous ones, aimed to review the latest developments in technique and theory and point out new advanced future trends. The emphasis of the meeting was on the engineering advances versus mathematical formulations, in an effort to consolidate the basis of many new applications. Recently engineers have proposed different techniques to solve non-linear and time dependent problems and many of these formulations needed a better mathematical understanding. Furthermore, new approximate formulations have been proposed for boundary elements which appeared to work in engineering practice, but did not have a proper theoretical background. The Conferen...
Parallel algorithms for boundary value problems
Lin, Avi
1991-01-01
A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are twofold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.
Funke, Joachim
2013-01-01
This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…
Solved problems in classical electromagnetism
Franklin, Jerrold
2018-01-01
This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.
Error Patterns in Problem Solving.
Babbitt, Beatrice C.
Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…
Quantitative Reasoning in Problem Solving
Ramful, Ajay; Ho, Siew Yin
2015-01-01
In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.
Students' Problem Solving and Justification
Glass, Barbara; Maher, Carolyn A.
2004-01-01
This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…
Solving Differential Equations in R: Package deSolve
Directory of Open Access Journals (Sweden)
Karline Soetaert
2010-02-01
Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in
Boundary conditions in rational conformal field theories
International Nuclear Information System (INIS)
Behrend, Roger E.; Pearce, Paul A.; Petkova, Valentina B.; Zuber, Jean-Bernard
2000-01-01
We develop further the theory of Rational Conformal Field Theories (RCFTs) on a cylinder with specified boundary conditions emphasizing the role of a triplet of algebras: the Verlinde, graph fusion and Pasquier algebras. We show that solving Cardy's equation, expressing consistency of a RCFT on a cylinder, is equivalent to finding integer valued matrix representations of the Verlinde algebra. These matrices allow us to naturally associate a graph G to each RCFT such that the conformal boundary conditions are labelled by the nodes of G. This approach is carried to completion for sl(2) theories leading to complete sets of conformal boundary conditions, their associated cylinder partition functions and the A-D-E classification. We also review the current status for WZW sl(3) theories. Finally, a systematic generalisation of the formalism of Cardy-Lewellen is developed to allow for multiplicities arising from more general representations of the Verlinde algebra. We obtain information on the bulk-boundary coefficients and reproduce the relevant algebraic structures from the sewing constraints
Boundary element methods for electrical engineers
POLJAK, D
2005-01-01
In the last couple of decades the Boundary Element Method (BEM) has become a well-established technique that is widely used for solving various problems in electrical engineering and electromagnetics. Although there are many excellent research papers published in the relevant literature that describe various BEM applications in electrical engineering and electromagnetics, there has been a lack of suitable textbooks and monographs on the subject. This book presents BEM in a simple fashion in order to help the beginner to understand the very basic principles of the method. It initially derives B
Asymptotic boundary value problems for evolution inclusions
Directory of Open Access Journals (Sweden)
Fürst Tomáš
2006-01-01
Full Text Available When solving boundary value problems on infinite intervals, it is possible to use continuation principles. Some of these principles take advantage of equipping the considered function spaces with topologies of uniform convergence on compact subintervals. This makes the representing solution operators compact (or condensing, but, on the other hand, spaces equipped with such topologies become more complicated. This paper shows interesting applications that use the strength of continuation principles and also presents a possible extension of such continuation principles to partial differential inclusions.
Asymptotic boundary value problems for evolution inclusions
Directory of Open Access Journals (Sweden)
Tomáš Fürst
2006-02-01
Full Text Available When solving boundary value problems on infinite intervals, it is possible to use continuation principles. Some of these principles take advantage of equipping the considered function spaces with topologies of uniform convergence on compact subintervals. This makes the representing solution operators compact (or condensing, but, on the other hand, spaces equipped with such topologies become more complicated. This paper shows interesting applications that use the strength of continuation principles and also presents a possible extension of such continuation principles to partial differential inclusions.
Genetics problem solving and worldview
Dale, Esther
The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.
The homogeneous boundary value problem of the thick spherical shell
International Nuclear Information System (INIS)
Linder, F.
1975-01-01
With the aim to solve boundary value problems in the same manner as it is attained at thin shell theory (Superposition of Membrane solution to solution of boundary values), one has to search solutions of the equations of equilibrium of the three dimensional thick shell which produce tensions at the cut edge and are zero on the whole shell surface inside and outside. This problem was solved with the premissions of the linear theory of Elasticity. The gained solution is exact and contains the symmetric and non-symmetric behaviour and is described in relatively short analytical expressions for the deformations and tensions, after the problem of the coupled system had been solved. The static condition of the two surfaces (zero tension) leads to a homogeneous system of complex equations with the index of the Legendre spherical function as Eigenvalue. One symmetrical case is calculated numerically and is compared with the method of finite elements. This comparison results in good accordance. (Auth.)
Trowbridge, John H; Lentz, Steven J
2018-01-03
The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.
Trowbridge, John H.; Lentz, Steven J.
2018-01-01
The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.
A method of solution of the elastic-plastic thermal stress problem
International Nuclear Information System (INIS)
Rafalski, P.
1975-01-01
The purpose of the work is an improvement of the numerical technique for calculating the thermal stress distribution in an elastic-plastic structural element. The work consists of two parts. In the first a new method of solution of the thermal stress problem for the elastic-plastic body is presented. In the second a particular numerical technique, based on the above method, for calculating the stress and strain fields is proposed. A new mathematical approach consists in treating the stress and strain fields as mathematical objects defined in the space-time domain. The methods commonly applied use the stress and strain fields defined in the space domain and establish the relations between them at a given instant t. They reduce the problem to the system of ordinary differential equations with respect to time, which are usually solved with a step-by-step technique. The new method reduces the problem to the system of nonlinear algebraic equations. In the work the Hilbert space of admissible tensor fields is constructed. This space is the orthogonal sum of two subspaces: of statically admissible and kinematically admissible fields. Two alternative orthogonality conditions, which correspond to the equilibrium and compatibility equations with the appropriate boundary conditions, are derived. The results of the work are to be used for construction of the computer program for calculation the stress and strain fields in the elastic-plastic body with a prescribed temperature field in the interior and appropriate displacement and force conditions on the boundary
MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate
International Nuclear Information System (INIS)
Bhattacharyya, Krishnendu; Mukhopadhyay, Swati; Layek, G. C.
2011-01-01
An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate. (fundamental areas of phenomenology(including applications))
Stress-deformed state of cylindrical specimens during indirect tensile strength testing
Directory of Open Access Journals (Sweden)
Levan Japaridze
2015-10-01
Full Text Available In this study, the interaction between cylindrical specimen made of homogeneous, isotropic, and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses. The frictional contact stresses between the specimen and platens are neglected. The analytical solution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen. The contact width, corresponding loading angle (2θ0, and elliptical stresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili's method. In this method, the displacements and stresses are represented in terms of two analytical functions of a complex variable. In the main approaches, the nonlinear interaction between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account. Numerical examples are solved using MATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter. Derived equations also allow calculating the modulus of elasticity, total deformation modulus and creep parameters of the specimen material based on the experimental data of radial contraction of the specimen.
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
A Contingency View of Problem Solving in Schools: A Case Analysis.
Hanson, E. Mark; Brown, Michael E.
Patterns of problem-solving activity in one middle-class urban high school are examined and a problem solving model rooted in a conceptual framework of contingency theory is presented. Contingency theory stresses that as political, economic, and social conditions in an organization's environment become problematic, the internal structures of the…
Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals
DEFF Research Database (Denmark)
Kuroda, Mitsutoshi; Tvergaard, Viggo
2009-01-01
The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...
Heat conduction in a plate-type fuel element with time-dependent boundary conditions
International Nuclear Information System (INIS)
Faya, A.J.G.; Maiorino, J.R.
1981-01-01
A method for the solution of boundary-value problems with variable boundary conditions is applied to solve a heat conduction problem in a plate-type fuel element with time dependent film coefficient. The numerical results show the feasibility of the method in the solution of this class of problems. (Author) [pt
Eigenstates of a particle in an array of hexagons with periodic boundary condition
Directory of Open Access Journals (Sweden)
A Nemati
2013-10-01
Full Text Available In this paper the problem of a particle in an array of hexagons with periodic boundary condition is solved. Using the projection operators, we categorize eigenfunctions corresponding to each of the irreducible representations of the symmetry group . Based on these results, the Dirichlet and Neumann boundary conditions are discussed.
Efficient modelling of aerodynamic flows in the boundary layer for high performance computing
CSIR Research Space (South Africa)
Smith, L
2011-01-01
Full Text Available A unique technique to couple boundary-layer solutions with an inviscid solver is introduced. The boundary-layer solution is obtained using the two-integral method to solve displacement thickness with Newton’s method, at a fraction of the cost of a...
A coupled boundary element-finite difference solution of the elliptic modified mild slope equation
DEFF Research Database (Denmark)
Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.
2011-01-01
The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...
CSIR Research Space (South Africa)
Motara, YM
2017-09-01
Full Text Available the intersection between the SHA-1 preimage problem, the encoding of that problem for SAT-solving, and SAT-solving. The results demonstrate that SAT-solving is not yet a viable approach to take to solve the preimage problem, and also indicate that some...
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Methods of solving nonstandard problems
Grigorieva, Ellina
2015-01-01
This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas. It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions. The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem. Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems. Over 360 problems are included with hints, ...
Revisit boundary conditions for the self-adjoint angular flux formulation
Energy Technology Data Exchange (ETDEWEB)
Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-03-01
We revisit the boundary conditions for SAAF. We derived the equivalent parity variational form ready for coding up. The more rigorous approach of evaluating odd parity should be solving the odd parity equation coupled with the even parity. We proposed a symmetric reflecting boundary condition although neither positive definiteness nor even-odd decoupling is achieved. A simple numerical test verifies the validity of these boundary conditions.
Confluent-Functional solving systems
Directory of Open Access Journals (Sweden)
V.N. Koval
2001-08-01
Full Text Available The paper proposes a statistical knowledge-acquision approach. The solving systems are considered, which are able to find unknown structural dependences between situational and transforming variables on the basis of statistically analyzed input information. Situational variables describe features, states and relations between environment objects. Transforming variables describe transforming influences, exerted by a goal-oriented system onto an environment. Unknown environment rules are simulated by a structural equations system, associating situational and transforming variables.
Minnesota County Boundaries - lines
Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....
DEFF Research Database (Denmark)
Bossen, Claus; Jensen, Lotte Groth; Udsen, Flemming Witt
2014-01-01
implementation, which also coupled the work of medical secretaries more tightly to that of other staff, and led to task drift among professions. Medical secretaries have been relatively invisible to health informatics and CSCW, and we propose the term ‘boundary-object trimming’ to foreground and conceptualize...
Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....
Glasby, John S
2013-01-01
The boundaries of space exploration are being pushed back constantly, but the realm of the partially understood and the totally unknown is as great as ever. Among other things this book deals with astronomical instruments and their application, recent discoveries in the solar system, stellar evolution, the exploding starts, the galaxies, quasars, pulsars, the possibilities of extraterrestrial life and relativity.
On the wave equation with semilinear porous acoustic boundary conditions
Graber, Philip Jameson; Said-Houari, Belkacem
2012-01-01
The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.
On the wave equation with semilinear porous acoustic boundary conditions
Graber, Philip Jameson
2012-05-01
The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.
International Nuclear Information System (INIS)
Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn
2012-01-01
This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)
Conformal boundary loop models
International Nuclear Information System (INIS)
Jacobsen, Jesper Lykke; Saleur, Hubert
2008-01-01
We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling
Elasticity problems in domains with nonsmooth boundaries
International Nuclear Information System (INIS)
Esparza, David
2001-01-01
In the present work we study the behaviour of elastic stress fields in domains with non-regular boundaries. We consider three-dimensional problems in elastic media with thin conical defects (inclusions or cavities) and analyse the stress singularity at their vertices. To construct asymptotic expansions for the stress and displacement fields in terms of a small parameter ε related to the 'thickness' of the defect, we employ a technique based on the work by Kondrat'ev, Maz'ya, Nazarov and Plamenevskii. We first study the stress distribution in an elastic body with a thin conical notch. We derive an asymptotic representation for the stress singularity exponent by reducing the original problem to a spectral problem for a 9x9 matrix. The elements of this matrix are found to depend upon the geometry of the cross-section of the notch and the elastic properties of the medium. We specify the sets of eigenvalues and the corresponding eigenvectors for a circular, elliptical, 'triangular' and 'square' cross-section, and show that the strongest singularity is associated with the 'triangular' cross-section, and is generated by a non-axisymmetric load. We then analyse the stress distribution near a thin conical inclusion which is allowed to slide freely along its axis. We derive the representation for the stress singularity exponent for the case of a circular conical inclusion whose elastic properties differ from those of the medium. In the last chapter we study the stress distribution in the vicinity of a thin 'coated' conical inclusion. We show that a soft thin coating (perfectly bonded to the inclusion and the surrounding material) can be replaced by a so-called linear interface at which the normal displacement is discontinuous, and the stresses are proportional to the 'jump' in the normal displacement across the coating. We analyse the effect of the properties of the coating on the stress singularity exponent and compare the results with those for a perfectly bonded
Combined conduction and radiation in a two-layer planar medium with flux boundary condition
International Nuclear Information System (INIS)
Ho, C.H.; Ozisik, M.N.
1987-01-01
The interaction of conduction and radiation is investigated under both transient and steady-state conditions for an absorbing, emitting, and isotropically scattering two-layer slab having opaque coverings at both boundaries. The slab is subjected to an externally applied constant heat flux at one boundary surface and dissipates heat by radiation into external ambients from both boundary surfaces. An analytic approach is applied to solve the radiation part of the problem, and a finite-difference scheme is used to solve the conduction part. The effects of the conduction-to-radiation parameter, the single scattering albedo, the optical thickness, and the surface emissivity on the temperature distribution are examined
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Three dimensional, thermal stress analysis of a welded plate
International Nuclear Information System (INIS)
Koening, H.A.; Lai, C.K.-F.; Morral, J.E.
1985-01-01
A general finite element thermal stress analysis has been developed. The analysis can be uncoupled to solve either the heat transfer problem or the stress problem independently and it can accommodate non-linear material behavior, initial states of stress and strain, and moving boundary conditions. A unique feature of the model it that it properly accounts for the latent heat effect during phase changes. Applying the moving heat flux boundary condition to simulate arc welding, the model has been used to predict the transient thermal mechanical response of a welded plate. It is the absorption and liberation of latent heat in the fusion zone of a weld which complicates numerical methods of treating welding. For pure materials and eutectic alloys the latent heat effect is less of a problem because phase changes take place at a specific temperature. But for most alloys, phase changes take place over a range of temperatures bounded by the solidus, T S , and liquidus, T L , and the latent heat effect occurs continuously over the temperature range. (author)
Second-order wave diffraction by a circular cylinder using scaled boundary finite element method
International Nuclear Information System (INIS)
Song, H; Tao, L
2010-01-01
The scaled boundary finite element method (SBFEM) has achieved remarkable success in structural mechanics and fluid mechanics, combing the advantage of both FEM and BEM. Most of the previous works focus on linear problems, in which superposition principle is applicable. However, many physical problems in the real world are nonlinear and are described by nonlinear equations, challenging the application of the existing SBFEM model. A popular idea to solve a nonlinear problem is decomposing the nonlinear equation to a number of linear equations, and then solves them individually. In this paper, second-order wave diffraction by a circular cylinder is solved by SBFEM. By splitting the forcing term into two parts, the physical problem is described as two second-order boundary-value problems with different asymptotic behaviour at infinity. Expressing the velocity potentials as a series of depth-eigenfunctions, both of the 3D boundary-value problems are decomposed to a number of 2D boundary-value sub-problems, which are solved semi-analytically by SBFEM. Only the cylinder boundary is discretised with 1D curved finite-elements on the circumference of the cylinder, while the radial differential equation is solved completely analytically. The method can be extended to solve more complex wave-structure interaction problems resulting in direct engineering applications.
Theoretical Analysis of Stress Distribution in Bonded Single Strap and Stiffened Joints
Directory of Open Access Journals (Sweden)
Behnam Ghoddous
Full Text Available Abstract In this paper, distribution of peeling stress in two types of adhesively-bonded joints is investigated. The joints are a single strap and a stiffened joint. Theses joints are under uniform tensile load and materials are assumed orthotropic. Layers can be identical or different in mechanical or geometrical properties. A two-dimensional elasticity theory that includes the complete stress-strain and the complete strain-displacement relations for adhesive and adherends is used in this analysis. The displacement is assumed to be linear in the adhesive layer. A set of differential equations was derived and solved by using appropriate boundary conditions. Results revealed that the peak peeling stress developed within the adhesive layer is a function of geometrical and mechanical properties. FEM solution is used as the second method to verify the analytical results. A good agreement is observed between analytical and FEM solutions.
Deformation of a geo-medium with considering for internal self-balancing stresses
Lavrikov, S. V.; Revuzhenko, A. F.
2016-11-01
Based on the general concept of rock as a medium with inner sources and sinks of energy, the authors consider an approach to mathematical modeling of a geo-medium with account for internal self-balancing stresses. The description of stresses and strains at the level of microstructural elements and macrovolume of the medium uses methods of non-Archimedean analysis. The model allows describing the accumulation of elastic energy in the form of internal self-balancing stresses. A finite element algorithm and a software program for solving plane boundary-value problems have been developed. The calculated data on rock specimen compression are given. It is shown that the behavior of plastic deformation zones depends on the pre-assigned initial microstresses.
Real-time simulation of thermal stresses and creep in plates subjected to transient heat input
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Jacobsen, Torben Krogsdal; Hansen, P.N.
1997-01-01
-difference approach. It applies a general formulation which takes into account nonconstant material properties (e.g. temperature, material, or time dependency), heat-transfer coefficients, and creep. The temperature calculation applies a one-dimensional numerical model, whereas the stress analysis is semi......This paper presents a novel numerical technique for solving the temperature and stress fields in a plate subjected to arbitrarily varying transient boundary conditions (transient temperature and heat-flux variations) on a surface. The numerical method is based on the control-volume finite......-two-dimensional. Both plane stress and plane strain conditions are considered as extreme cases. It is shown that, by using the developed numerical technique, very fast real-time simulations can be performed. The method has proved its applicability in e.g. high-pressure die-casting, and applications to this industrial...
Effective stress coefficient for uniaxial strain condition
DEFF Research Database (Denmark)
Alam, M.M.; Fabricius, I.L.
2012-01-01
one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...... determined under uniaxial strain condition will be more relevant in reservoir studies. Copyright 2012 ARMA, American Rock Mechanics Association....
Grain Boundary Segregation in Metals
Lejcek, Pavel
2010-01-01
Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Intergranular and inter-phased boundaries in the materials
International Nuclear Information System (INIS)
Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.
2000-01-01
This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)
Reactor pressure boundary materials
International Nuclear Information System (INIS)
Hong, Jun Hwa; Chi, S. H.; Lee, B. S.
2002-04-01
With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database
Problem solving through recreational mathematics
Averbach, Bonnie
1999-01-01
Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga
Problem solving and inference mechanisms
Energy Technology Data Exchange (ETDEWEB)
Furukawa, K; Nakajima, R; Yonezawa, A; Goto, S; Aoyama, A
1982-01-01
The heart of the fifth generation computer will be powerful mechanisms for problem solving and inference. A deduction-oriented language is to be designed, which will form the core of the whole computing system. The language is based on predicate logic with the extended features of structuring facilities, meta structures and relational data base interfaces. Parallel computation mechanisms and specialized hardware architectures are being investigated to make possible efficient realization of the language features. The project includes research into an intelligent programming system, a knowledge representation language and system, and a meta inference system to be built on the core. 30 references.
2014-05-01
Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science
Schlichting (Deceased), Hermann
2017-01-01
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Coherent structures in wave boundary layers. Part 1. Oscillatory motion
DEFF Research Database (Denmark)
Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen
2010-01-01
This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal...
Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid
2018-06-01
This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.
The Atmospheric Boundary Layer
Garratt, J. R.
1994-05-01
A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.
International Nuclear Information System (INIS)
Zavatsky, S.; Phaneuf, P.; Topaz, D.; Ward, D.
1978-02-01
The NRC Office of Inspection and Enforcement (IE) has elected to evaluate the effectiveness and efficiency of its existing regional boundary alignment because of the anticipated future growth of nuclear power generating facilities and corresponding inspection requirements. This report documents a management study designed to identify, analyze, and evaluate alternative regional boundary configurations for the NRC/IE regions. Eight boundary configurations were chosen for evaluation. These configurations offered alternatives ranging from two to ten regions, and some included the concepts of subregional or satellite offices. Each alternative configuration was evaluated according to three major criteria: project workload, cost, and office location. Each major criterion included elements such as management control, program uniformity, disruption, costs, and coordination with other agencies. The conclusion reached was that regional configurations with regions of equal and relatively large workloads, combined with the concepts of subregional or satellite offices, may offer a significant benefit to the Office of Inspection and Enforcement and the Commission and are worthy of further study. A phased implementation plan, which is suitable to some configurations, may help mitigate the disruption created by realignment
DEFF Research Database (Denmark)
Winthereik, Brit Ross
2008-01-01
Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science and techno......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...... and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary......, IT designers and project managers should attend to the specific ways in which boundaries are inevitably enacted and to the ways in which care is already shared. This will provide them with opportunities to use the potentials of new identities and concerns that emerge from changing the organisation...
International Nuclear Information System (INIS)
Nemoto, Y.; Ueda, K.
1998-01-01
Vanadium alloys are considered as candidate structural materials for fusion reactor system. When vanadium alloys are used in fusion reactor system, joining with ceramics for insulating is one of material issues to be solved to make component of fusion reactor. In the application of ceramics/metal jointing and coating, residual stress caused by difference of thermal expansion rate between ceramics and metals is an important factor in obtaining good bonding strength and soundness of coating. In this work, residual stress distribution in direct diffusion bonded vanadium/alumina joint (jointing temperature: 1400 C) was measured by small area X-ray diffraction method. And the comparison of finite element method (FEM) analysis and actual stress distribution was carried out. Tensile stress concentration at the edge of the boundary of the joint in alumina was observed. The residual stress concentration may cause cracks in alumina, or failure of bonding. Actually, cracks in alumina caused by thermal stress after bonding at 1500 C was observed. The stress concentration of the joint must be reduced to obtain good bonded joint. Lower bonding temperature or to devise the shape of the outer surface of the joint will reduce the stress concentration. (orig.)
Jetto a free boundary plasma transport code
International Nuclear Information System (INIS)
Cenacchi, G.; Taroni, A.
1988-01-01
JETTO is a one-and-a-half-dimensional transport code calculating the evolution of plasma parameters in a time dependent axisymmetric MHD equilibrium configuration. A splitting technique gives a consistent solution of coupled equilibrium and transport equations. The plasma boundary is free and defined either by its contact with a limiter (wall) or by a separatrix or by the toroidal magnetic flux. The Grad's approach to the equilibrium problem with adiabatic (or similar) constraints is adopted. This method consists of iterating by alternately solving the Grad-Schluter-Shafranov equation (PDE) and the ODE obtained by averaging the PDE over the magnetic surfaces. The bidimensional equation of the poloidal flux is solved by a finite difference scheme, whereas a Runge-Kutta method is chosen for the averaged equilibrium equation. The 1D transport equations (averaged over the magnetic surfaces) for the electron and ion densities and energies and for the rotational transform are written in terms of a coordinate (ρ) related to the toroidal flux. Impurity transport is also considered, under the hypothesis of coronal equilibrium. The transport equations are solved by an implicit scheme in time and by a finite difference scheme in space. The centering of the source terms and transport coefficients is performed using a Predictor-Corrector scheme. The basic version of the code is described here in detail; input and output parameters are also listed
Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.
2017-10-01
The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.
Directory of Open Access Journals (Sweden)
Mihai-Victor PRICOP
2010-09-01
Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.
International Nuclear Information System (INIS)
Carmo, E.G.D. do; Galeao, A.C.N.R.
1986-01-01
A new method specially designed to solve highly convective transport problems is proposed. Using a variational approach it is shown that this weighted residual method belongs to a class of Petrov-Galerkin's approximation. Some examples are presented in order to demonstrate the adequacy of this method in predicting internal or external boundary layers. (Author) [pt
Effect of couple-stress on the pure bending of a prismatic bar
International Nuclear Information System (INIS)
Tzung, F.; Kao, B.; Ho, F.; Tang, P.
1981-02-01
An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite
Change of Surface Roughness and Planetary Boundary Layer
DEFF Research Database (Denmark)
Jensen, Niels Otto
1978-01-01
The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value...
Effect of externally generated turbulence on wave boundary layer
DEFF Research Database (Denmark)
Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.
2003-01-01
This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...
Coherent structures in wave boundary layers. Part 2. Solitary motion
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.
2010-01-01
This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces...
Cell boundary fault detection system
Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN
2009-05-05
A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.
Directory of Open Access Journals (Sweden)
Zhao-Xia Tong
2013-01-01
Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.
International Nuclear Information System (INIS)
Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P.E.
2017-01-01
This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet.
International Nuclear Information System (INIS)
Ootao, Yoshihiro; Kawamura, Ryuusuke; Tanigawa, Yoshinobu; Imamura, Ryuutarou
1998-01-01
In this study, a neural network is applied to optimization problems of material compositions for a nonhomogeneous plate with arbitrarily distributed and continuously varied material properties such as Functionally Graded Material. Unsteady temperature distribution for such nonhomogeneous plate is evaluated by taking into account the bounds of the number of the layers. Furthermore, the thermal stress components for an infinitely long nonhomogeneous plate are formulated under the mechanical condition of being traction free. As a numerical example, the plate composed of zirconium oxide and titanium alloy is considered. And, as the optimization problem of minimizing the thermal stress distribution, the numerical calculations are carried out making use of neural network, and the optimum material composition is determined taking into account the effect of temperature-dependency of material properties. Furthermore, the results obtained by neural network and ordinary nonlinear programming method are compared. (author)
A Method for Solving Combinatoral Optimization Problems
National Research Council Canada - National Science Library
Ruffa, Anthony A
2008-01-01
.... The method discloses that when the boundaries create zones with boundary vertices confined to the adjacent zones, the sets of candidate HPs are found by advancing one zone at a time, considering...
International Nuclear Information System (INIS)
Nishimura, M.
1998-04-01
To predict thermal-hydraulic phenomena in actual plant under various conditions accurately, adequate simulation of laminar-turbulent flow transition is of importance. A low Reynolds number turbulence model is commonly used for a numerical simulation of the laminar-turbulent transition. The existing low Reynolds number turbulence models generally demands very thin mesh width between a wall and a first computational node from the wall, to keep accuracy and stability of numerical analyses. There is a criterion for the distance between the wall and the first computational node in which non-dimensional distance y + must be less than 0.5. Due to this criterion the suitable distance depends on Reynolds number. A liquid metal sodium is used for a coolant in first reactors therefore, Reynolds number is usually one or two order higher than that of the usual plants in which air and water are used for the work fluid. This makes the load of thermal-hydraulic numerical simulation of the liquid sodium relatively heavier. From above context, a new method is proposed for providing wall boundary condition of turbulent kinetic energy dissipation rate ε. The present method enables the wall-first node distance 10 times larger compared to the existing models. A function of the ε wall boundary condition has been constructed aided by a direct numerical simulation (DNS) data base. The method was validated through calculations of a turbulent Couette flow and a fully developed pipe flow and its laminar-turbulent transition. Thus the present method and modeling are capable of predicting the laminar-turbulent transition with less mesh numbers i.e. lighter computational loads. (J.P.N.)
New deformation model of grain boundary strengthening in polycrystalline metals
International Nuclear Information System (INIS)
Trefilov, V.I.; Moiseev, V.F.; Pechkovskij, Eh.P.
1988-01-01
A new model explaining grain boundary strengthening in polycrystalline metals and alloys by strain hardening due to localization of plastic deformation in narrow bands near grain boundaries is suggested. Occurrence of localized deformation is caused by different flow stresses in grains of different orientation. A new model takes into account the active role of stress concentrator, independence of the strengthening coefficient on deformation, influence of segregations. Successful use of the model suggested for explanation of rhenium effect in molybdenum and tungsten is alloys pointed out
Conference on Boundary and Interior Layers : Computational and Asymptotic Methods
2015-01-01
This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers. .
Solving rational expectations models using Excel
DEFF Research Database (Denmark)
Strulik, Holger
2004-01-01
Problems of discrete time optimal control can be solved using backward iteration and Microsoft Excel. The author explains the method in general and shows how the basic models of neoclassical growth and real business cycles are solved......Problems of discrete time optimal control can be solved using backward iteration and Microsoft Excel. The author explains the method in general and shows how the basic models of neoclassical growth and real business cycles are solved...
Granular Gases: Probing the Boundaries of Hydrodynamics
International Nuclear Information System (INIS)
Goldhirsch, I.
1999-01-01
The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond
Grain boundary engineering of highly deformable ceramics
International Nuclear Information System (INIS)
Mecartney, M.L.
2000-01-01
Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature
Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2014-01-01
Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.
LEGO Robotics: An Authentic Problem Solving Tool?
Castledine, Alanah-Rei; Chalmers, Chris
2011-01-01
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…
Perspectives on Problem Solving and Instruction
van Merrienboer, Jeroen J. G.
2013-01-01
Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…
Coping with organizational stress among hospital nurses in Southern Ontario.
Tyson, Paul D; Pongruengphant, Rana; Aggarwal, Bela
2002-05-01
Government cutbacks and anticipated staff reductions were hypothesized to be a unique source of organizational stress. The study focused on how nurses coped with stress and whether any strategy effectively reduced occupational stress. A sample of 107 nurses were asked to rate their occupational stress, job satisfaction, and coping strategies. Avoidance and social support were found to be significantly correlated with stress, but neither of these coping strategies appeared to reduce nurses' level of organizational stress. However, an interaction between problem solving and job satisfaction was found to be highly significant and it added 42% to predicting stress levels. Supporting the stress-buffering hypothesis, nurses with lower intrinsic job satisfaction seemed to benefit from employing problem solving as a coping strategy whereas dissatisfied nurses who infrequently use problem solving reported the highest levels of organizational stress. Paradoxically, intrinsically satisfied nurses who most frequently utilize problem solving experienced heightened organizational stress.
International Nuclear Information System (INIS)
Semenova, V.N.
2016-01-01
A boundary value problem for a nonlinear second order differential equation has been considered. A numerical method has been proposed to solve this problem using power series. Results of numerical experiments have been presented in the paper [ru
DEFF Research Database (Denmark)
Li-Ying, Jason
2016-01-01
The extant literature runs short in understanding openness of innovation regarding and the different pathways along which internal and external knowledge resources can be combined. This study proposes a unique typology for outside-in innovations based on two distinct ways of boundary spanning......: whether an innovation idea is created internally or externally and whether an innovation process relies on external knowledge resources. This yields four possible types of innovation, which represent the nuanced variation of outside-in innovations. Using historical data from Canada for 1945...
Directory of Open Access Journals (Sweden)
G. Bergström
2017-05-01
Full Text Available Abstract Background Common mental disorders (CMDs are among the leading causes of sick leave in Sweden and other OECD countries. They result in suffering for the individual and considerable financial costs for the employer and for society at large. The occupational health service (OHS can offer interventions in which both the individual and the work situation are taken into account. The aim of this paper is to describe the design of a study evaluating the effectiveness of an intervention given at the OHS to employees with CMDs or stress-related symptoms at work. In addition, intervention fidelity and its relation to the outcome will be assessed in a process analysis. Methods The study is designed as a cluster randomized trial in which the participating OHS consultants are randomized into either delivering the intervention or performing care as usual. Employees with CMDs or stress-related symptoms at work are recruited consecutively by the OHS consultants. The intervention aims to improve the match between the employee and the job situation. Interviews are held individually with the employee and the nearest supervisor, after which a joint meeting with both the employee and the supervisor takes place. A participatory approach is applied by which the supervisor and the employee are guided by the OHS consultant and encouraged to actively take part in problem solving concerning the work situation. Outcomes will be assessed at baseline and at six and 12 months. A long-term follow-up at 3 years will also be performed. The primary outcome is registered sickness absence during a 1-year period after study inclusion. Secondary outcomes are mental health and work ability. The intervention’s cost effectiveness, compared to treatment as usual, both for society and for the employer will be evaluated. A process evaluation by both the OHS consultants and the employee will be carried out. Discussion The study includes analyses of the effectiveness of the
Bergström, G; Lohela-Karlsson, M; Kwak, L; Bodin, L; Jensen, I; Torgén, M; Nybergh, L
2017-05-12
Common mental disorders (CMDs) are among the leading causes of sick leave in Sweden and other OECD countries. They result in suffering for the individual and considerable financial costs for the employer and for society at large. The occupational health service (OHS) can offer interventions in which both the individual and the work situation are taken into account. The aim of this paper is to describe the design of a study evaluating the effectiveness of an intervention given at the OHS to employees with CMDs or stress-related symptoms at work. In addition, intervention fidelity and its relation to the outcome will be assessed in a process analysis. The study is designed as a cluster randomized trial in which the participating OHS consultants are randomized into either delivering the intervention or performing care as usual. Employees with CMDs or stress-related symptoms at work are recruited consecutively by the OHS consultants. The intervention aims to improve the match between the employee and the job situation. Interviews are held individually with the employee and the nearest supervisor, after which a joint meeting with both the employee and the supervisor takes place. A participatory approach is applied by which the supervisor and the employee are guided by the OHS consultant and encouraged to actively take part in problem solving concerning the work situation. Outcomes will be assessed at baseline and at six and 12 months. A long-term follow-up at 3 years will also be performed. The primary outcome is registered sickness absence during a 1-year period after study inclusion. Secondary outcomes are mental health and work ability. The intervention's cost effectiveness, compared to treatment as usual, both for society and for the employer will be evaluated. A process evaluation by both the OHS consultants and the employee will be carried out. The study includes analyses of the effectiveness of the intervention (clinical and economic) as well as an analysis of
Making Sure you Solve the Right Problem
Directory of Open Access Journals (Sweden)
Kim Cartledge
2009-12-01
Full Text Available Macleod et al. have given us an admirable case study and argued that "... there is an urgent need to create stronger and more transparent, integrated, and adaptive linkages between opening-up and closing down mechanisms at the science-policy interface." Two questions must be addressed: what sorts of managerial reform would be required to achieve this? and Is this likely to happen? A natural subsidiarity makes large institutions more inclined to "closing down" (specification actions and smaller ones more inclined to open problems up. The method of boundary judgments developed in integrative research could be applied to the science-policy interface but there are political and sociological reasons why this is unlikely to happen. Receptiveness to opening up actions is a prerequisite of innovation. Innovations are suppressed in times of geopolitical and economic stress. The result is often an ill-structured, co-evolutionary dynamic in which the actions of one species or population reduce the fitness of another.
Numerical Simulations of Hypersonic Boundary Layer Transition
Bartkowicz, Matthew David
Numerical schemes for supersonic flows tend to use large amounts of artificial viscosity for stability. This tends to damp out the small scale structures in the flow. Recently some low-dissipation methods have been proposed which selectively eliminate the artificial viscosity in regions which do not require it. This work builds upon the low-dissipation method of Subbareddy and Candler which uses the flux vector splitting method of Steger and Warming but identifies the dissipation portion to eliminate it. Computing accurate fluxes typically relies on large grid stencils or coupled linear systems that become computationally expensive to solve. Unstructured grids allow for CFD solutions to be obtained on complex geometries, unfortunately, it then becomes difficult to create a large stencil or the coupled linear system. Accurate solutions require grids that quickly become too large to be feasible. In this thesis a method is proposed to obtain more accurate solutions using relatively local data, making it suitable for unstructured grids composed of hexahedral elements. Fluxes are reconstructed using local gradients to extend the range of data used. The method is then validated on several test problems. Simulations of boundary layer transition are then performed. An elliptic cone at Mach 8 is simulated based on an experiment at the Princeton Gasdynamics Laboratory. A simulated acoustic noise boundary condition is imposed to model the noisy conditions of the wind tunnel and the transitioning boundary layer observed. A computation of an isolated roughness element is done based on an experiment in Purdue's Mach 6 quiet wind tunnel. The mechanism for transition is identified as an instability in the upstream separation region and a comparison is made to experimental data. In the CFD a fully turbulent boundary layer is observed downstream.
Information dynamics of boundary perception
DEFF Research Database (Denmark)
Kragness, Haley; Hansen, Niels Christian; Vuust, Peter
It has long been noted that expert musicians lengthen notes at phrase boundaries in expressive performance. Recently, we have extended research on this phenomenon by showing that undergraduates with no formal musical training and children as young as 3 years lengthen phrase boundaries during self...... uncertain than low-entropy contexts. Because phrase boundaries tend to afford high-entropy continuations, thus generating uncertain expectations in the listener, one possibility is that boundary perception is directly related to entropy. In other words, it may be hypothesized that entropy underlies...... on predictive uncertainty to the timing domain, as well as potentially answer key questions relating to boundary perception in musical listening....
Belfiore, Laurence A; Floren, Michael L; Paulino, Alexandre T; Belfiore, Carol J
2011-09-01
This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials. The Boltzmann superposition integral is employed to calculate time-dependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials. Copyright © 2011 Elsevier B.V. All rights reserved.
Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2011-01-01
The present work considers incompressible flow over a 2D airfoil with a deformable trailing edge. The aerodynamic characteristics of an airfoil with a trailing edge flap is numerically investigated using computational fluid dynamics. A novel hybrid immersed boundary (IB) technique is applied...... to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...... results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing edge flap and flow control using trailing edge flap is an efficient way to regulate the aerodynamic loading on airfoils....
The effect of couple-stresses on the stress concentration around a moving crack
Directory of Open Access Journals (Sweden)
S. Itou
1981-01-01
Full Text Available The problem of a uniformly propagating finite crack in an infinite medium is solved within the linearized couple-stress theory. The self-equilibrated system of pressure is applied to the crack surfaces. The problem is reduced to dual integral equations and solved by a series-expansion method. The dynamic stress-intensity factor is computed numerically.
Improved algorithm for solving nonlinear parabolized stability equations
Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng
2016-08-01
Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).
Improved algorithm for solving nonlinear parabolized stability equations
International Nuclear Information System (INIS)
Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng
2016-01-01
Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)
Construction of elasto-plastic boundaries using conservation laws
Senashov, S.; Filyushina, E.; Gomonova, O.
2015-01-01
The solution of elasto-plastic problems is one of the most complicated and actual problems of solid mechanics. Traditionally, these problems are solved by the methods of complex analysis, calculus of variations or semi-inverse methods. Unfortunately, all these methods can be applied to a limited number of problems only. In this paper, a technique of conservation laws is used. This technique allows constructing analytical formulas to determine the elasto-plastic boundary for a wide class of pr...
Yan, Yan
2015-01-01
We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial
International Nuclear Information System (INIS)
Zhu, C L; Li, J B; Lin, G; Zhong, H
2010-01-01
The J integral and the stress intensity factor (SIF) K are both important research objects of fracture mechanics, and are often employed to establish criteria for crackpropagation. The relationship between them has always been a research hotspot. In this paper, the SIF can be obtained conveniently by the scaled boundary finite element method (SBFEM) due to the fact that analytical solution can be obtained along the radial direction for stress singularity problems. The J integral can be solved analytically using the formulae between J and K for mixed mode crack with arbitrary inclination in elastic materials. Moreover, the J integral values obtained by this method are more accurate and convenient than by its definition. Factors that affect the accuracy of SIF and J integral, such as the distance between the crack and outer boundary, size of the discretized elements and partition of the domain into super-elements, are examined.
Community-powered problem solving.
Gouillart, Francis; Billings, Douglas
2013-04-01
Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections.
DEFF Research Database (Denmark)
Nørgaard, Nina
2004-01-01
To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...... to explore in the study and teaching of foreign languages. Not only may linguistics and literature be employed to shed light on each other, the insights gained may furthermore prove useful in a broader context in our foreign language studies. The article begins with a brief introduction to literary...... linguistics in general and to Hallidayan linguistics in particular. The theoretical framework thus laid out, it is exemplified how Halliday's theory of language may be employed in the analysis of literature. The article concludes by considering the possible status of literary linguistics in a broader...
Negotiating Cluster Boundaries
DEFF Research Database (Denmark)
Giacomin, Valeria
2017-01-01
Palm oil was introduced to Malay(si)a as an alternative to natural rubber, inheriting its cluster organizational structure. In the late 1960s, Malaysia became the world’s largest palm oil exporter. Based on archival material from British colonial institutions and agency houses, this paper focuses...... on the governance dynamics that drove institutional change within this cluster during decolonization. The analysis presents three main findings: (i) cluster boundaries are defined by continuous tug-of-war style negotiations between public and private actors; (ii) this interaction produces institutional change...... within the cluster, in the form of cumulative ‘institutional rounds’ – the correction or disruption of existing institutions or the creation of new ones; and (iii) this process leads to a broader inclusion of local actors in the original cluster configuration. The paper challenges the prevalent argument...
Transcending Organizational Boundaries
DEFF Research Database (Denmark)
Kringelum, Louise Tina Brøns
by applying the engaged scholarship approach, thereby providing a methodological contribution to both port and business model research. Emphasizing the interplay of intra- and inter-organizational business model innovation, the thesis adds insight into the roles of port authorities, business model trends......This thesis explores how processes of business model innovation can unfold in a port authority by transcending organizational boundaries through inter-organizational collaboration. The findings contribute to two fields of academic inquiry: the study of business model innovation and the study of how...... the roles of port authorities evolve. This contribution is made by combining the two fields, where the study of business model innovation is used as an analytical concept for understanding the evolution of port authorities, and where the study of port authorities is used as a contextual setting...
Stagg, G W; Parker, N G; Barenghi, C F
2017-03-31
We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.
Sewing constraints for conformal field theories on surfaces with boundaries
International Nuclear Information System (INIS)
Lewellen, D.C.
1992-01-01
In a conformal field theory, correlation functions on any Riemann surface are in principle unambiguously defined by sewing together three-point functions on the sphere, provided that the four-point functions on the sphere are crossing symmetric, and the one-point functions on the torus are modular covariant. In this work we extend Sonoda's proof of this result to conformal field theories defined on surfaces with boundaries. Four additional sewing constraints arise; three on the half-plane and one on the cylinder. These relate the various OPE coefficients in the theory (bulk, boundary, and bulk-boundary) to one another. In rational theories these relations can be expressed in terms of data arising solely within the bulk theory: The matrix S which implements modular transformations on the characters, and the matrices implementing duality transformations on the four-point conformal-block functions. As an example we solve these relations for the boundary and bulk-boundary structure constants in the Ising model with all possible conformally invariant boundary conditions. The role of the basic sewing constraints in the construction of open string theories is discussed. (orig.)
The Plasmasphere Boundary Layer
Directory of Open Access Journals (Sweden)
D. L. Carpenter
2004-12-01
Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.
Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities
The Plasmasphere Boundary Layer
Directory of Open Access Journals (Sweden)
D. L. Carpenter
2004-12-01
Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities
Directory of Open Access Journals (Sweden)
Alexander N. Kvitko
2017-01-01
Full Text Available An algorithm for constructing a control function that transfers a wide class of stationary nonlinear systems of ordinary differential equations from an initial state to a final state under certain control restrictions is proposed. The algorithm is designed to be convenient for numerical implementation. A constructive criterion of the desired transfer possibility is presented. The problem of an interorbital flight is considered as a test example and it is simulated numerically with the presented method.
The coordination of boundary tones and its interaction with prominence1
Katsika, Argyro; Krivokapić, Jelena; Mooshammer, Christine; Tiede, Mark; Goldstein, Louis
2014-01-01
This study investigates the coordination of boundary tones as a function of stress and pitch accent. Boundary tone coordination has not been experimentally investigated previously, and the effect of prominence on this coordination, and whether it is lexical (stress-driven) or phrasal (pitch accent-driven) in nature is unclear. We assess these issues using a variety of syntactic constructions to elicit different boundary tones in an Electromagnetic Articulography (EMA) study of Greek. The results indicate that the onset of boundary tones co-occurs with the articulatory target of the final vowel. This timing is further modified by stress, but not by pitch accent: boundary tones are initiated earlier in words with non-final stress than in words with final stress regardless of accentual status. Visual data inspection reveals that phrase-final words are followed by acoustic pauses during which specific articulatory postures occur. Additional analyses show that these postures reach their achievement point at a stable temporal distance from boundary tone onsets regardless of stress position. Based on these results and parallel findings on boundary lengthening reported elsewhere, a novel approach to prosody is proposed within the context of Articulatory Phonology: rather than seeing prosodic (lexical and phrasal) events as independent entities, a set of coordination relations between them is suggested. The implications of this account for prosodic architecture are discussed. PMID:25300341
Students’ difficulties in probabilistic problem-solving
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
IDEAL Problem Solving dalam Pembelajaran Matematika
Directory of Open Access Journals (Sweden)
Eny Susiana
2012-01-01
Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make studentâ€™s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polyaâ€™s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.
Stress analysis of fuel claddings with axial fins including creep effects
International Nuclear Information System (INIS)
Krieg, R.
1977-01-01
For LMFBR fuel claddings with axial fins the stress and strain fields are calculated which may be caused by internal pressure, differential thermal expansion and irradiation induced differential swelling. To provide an appropriate description of the cladding material it is assumed that the total strain is the sum of a linear elastic and a creep term, where the latter one includes the thermal as well as the irradiation induced creep. First the linear elastic problem is treated by a semi-analytical method leading to a bipotential equation for Airys' stress function. Solving this equation analytically means that the field equations valid within the cladding are satisfied exactly. By applying a combined point matching- least square-method the boundary conditions could be satisfied approximately such that in most cases the remaining error is within the uncertainty range of the loading conditions. Then the nonlinear problem which includes creep is approximated by a sequence of linear elastic solutions with time as parameter. The accumulated creep strain is treated here as an imposed strain field. To study the influence of different effects such as fin shape, temperature region, irradiation induced creep and swelling or internal pressure, a total of eleven cases with various parameter variations are investigated. The results are presented graphically in the following forms: stress and strain distributions over the cladding cross section for end of life conditions and boundary stresses and strains versus time. (Auth.)
Boundary element simulation of petroleum reservoirs with hydraulically fractured wells
Pecher, Radek
The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced
A mathematical model of turbulence for turbulent boundary layers
International Nuclear Information System (INIS)
Pereira Filho, H.D.V.
1977-01-01
Equations to the so called Reynolds stress-tensor (kinetic turbulent energy) and dissipation rate are developed and a turbulence flux approximation used. Our ideia here is to use those equations in order to develop an economical and fast numeircal procedure for computation of turbulent boundary layer. (author) [pt
From discrete particles to continuum fields near a boundary
Weinhart, Thomas; Thornton, Anthony Richard; Luding, Stefan; Bokhove, Onno
An expression for the stress tensor near an external boundary of a discrete mechanical system is derived explicitly in terms of the constituents’ degrees of freedom and interaction forces. Starting point is the exact and general coarse graining formulation presented by Goldhirsch in [I.Goldhirsch,
Mild wear modeling in the boundary lubrication regime
Bosman, Rob
2011-01-01
Currently, the increasing demand for smaller and more efficient systems is increasing the stress put on interacting components. This forces components to operate in the boundary lubrication regime. In this lubrication regime, the normal load put on the components is no longer carried by the
Identifying phase-space boundaries with Voronoi tessellations
International Nuclear Information System (INIS)
Debnath, Dipsikha; Matchev, Konstantin T.; Gainer, James S.; Kilic, Can; Yang, Yuan-Pao; Kim, Doojin
2016-01-01
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)
Identifying phase-space boundaries with Voronoi tessellations
Energy Technology Data Exchange (ETDEWEB)
Debnath, Dipsikha; Matchev, Konstantin T. [University of Florida, Physics Department, Gainesville, FL (United States); Gainer, James S. [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Kilic, Can; Yang, Yuan-Pao [The University of Texas at Austin, Theory Group, Department of Physics and Texas Cosmology Center, Austin, TX (United States); Kim, Doojin [University of Florida, Physics Department, Gainesville, FL (United States); CERN, Theory Division, Geneva 23 (Switzerland)
2016-11-15
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)
Present state of the controversy about the grain boundary relaxation
International Nuclear Information System (INIS)
Povolo, F.; Molinas, B.J.
1990-04-01
An analysis of the internal friction produced by grain boundary relaxation in metals, alloys and ceramics is presented. The different interpretations given in the literature to relaxation phenomena occurring at temperatures above about half the melting point which include the influence of grain boundaries and their interaction with solutes and precipitates are discussed in detail. A complete set of the experimental data disposable in this field since 1972 until today is reviewed. Finally, some recent experiments are discussed and new ones are suggested. They might solve the actual controversy about the real origin of the relaxation phenomena observed. If this is the case, a considerable amount of information already published can be taken into account with a good degree of confidence. This information contributes to the description of the structure and behaviour of grain boundaries, both being important topics for materials science. (author). 119 refs, 21 figs, 1 tab
Y.J. Hassen (Yunus); B. Koren (Barry)
2008-01-01
textabstractIn this paper, an accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. As is standard in immersed-boundary methods, moving bodies are embedded in a fixed Cartesian grid. The essence of the present method is
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Diversified boundaries of the firm
Kimura, Koichiro
2012-01-01
We analyze diversification of boundaries of local firms in developing countries under the economic globalization. The globalization has an aspect of homogenization of the world economy, but also has another aspect of diversification through international economic activities. Focusing on boundary-level of the firm, this article shows that the diversification from a comparison with boundaries of foreign firms in developed countries is brought by a disadvantage of technology deficit and a home a...
Conformal boundaries of warped products
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2006-01-01
In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....
International Nuclear Information System (INIS)
Sugiyama, Hitoshi; Akiyama, Mitsunobu; Shinohara, Yasunori; Hitomi, Daisuke
1997-01-01
A numerical analysis has been performed for three dimensional developing turbulent flow in a 90deg bent tube with straight inlet and outlet sections by an algebraic Reynolds stress model. To our knowledge, very little has been reported about detailed comparison between calculated results and experimental data containing Reynolds stresses. In calculation, an algebraic Reynolds stress model together with a boundary-fitted coordinate system is applied to a 90deg bent tube in order to solve anisotropic turbulent flow precisely. The calculated results display comparatively good agreement with the experimental data of time averaged velocity and secondary vectors. In addition, the present method predicts as a characteristic feature that the intensity of secondary flow near the inner wall is increased immediately downstream from the bend outlet by the pressure gradient. With regard to comparison of Reynolds stresses, the present method is able to reproduce well the distributions of streamwise normal stress and shear stress defined streamwise and radial velocity fluctuation except for the shear stress defined streamwise and circumferential velocity fluctuation. The present calculation has been found to simulate many features of the developing flow in bent tube satisfactorily, but it has a tendency to underpredict the Reynolds stresses. (author)
Analysis of specific factors causing RCS pressure boundary cracking
International Nuclear Information System (INIS)
Song, Taek-Ho; Jeong, Il-Seok
2007-01-01
As nuclear power plants become aged, pressure boundary integrity has become so important issue in domestic and foreign nuclear industry that many related research projects are on-going. KEPRI is going to embark a new research project for managing and preventing these kinds of cracks in nuclear power plants (NPPs). Many nuclear power plants experienced pressure boundary stress corrosion cracking (SCC) and shut downed because of it. In USA, V.C. Summer plant experienced reactor coolant pipe SCC near reactor outlet nozzle and Davis Vesse plant experienced reactor head crack around penetration pipe which is used to control rod drive mechanism. In this paper, RCS pressure boundary cracking cases and corrosion potential have been studied to find out what are the specific factors that have affected crack initiations in the reactor coolant pressure boundaries