WorldWideScience

Sample records for solve problems improve

  1. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  2. Improving mathematical problem solving : A computerized approach

    NARCIS (Netherlands)

    Harskamp, EG; Suhre, CJM

    Mathematics teachers often experience difficulties in teaching students to become skilled problem solvers. This paper evaluates the effectiveness of two interactive computer programs for high school mathematics problem solving. Both programs present students with problems accompanied by instruction

  3. Instruction Emphasizing Effort Improves Physics Problem Solving

    Science.gov (United States)

    Li, Daoquan

    2012-01-01

    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  4. Self-affirmation improves problem-solving under stress.

    Science.gov (United States)

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  5. A problem-solving routine for improving hospital operations.

    Science.gov (United States)

    Ghosh, Manimay; Sobek Ii, Durward K

    2015-01-01

    The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.

  6. Self-affirmation improves problem-solving under stress.

    Directory of Open Access Journals (Sweden)

    J David Creswell

    Full Text Available High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  7. Improve Problem Solving Skills through Adapting Programming Tools

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  8. Improving mathematical problem solving skills through visual media

    Science.gov (United States)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  9. Using Problem-solving Therapy to Improve Problem-solving Orientation, Problem-solving Skills and Quality of Life in Older Hemodialysis Patients.

    Science.gov (United States)

    Erdley-Kass, Shiloh D; Kass, Darrin S; Gellis, Zvi D; Bogner, Hillary A; Berger, Andrea; Perkins, Robert M

    2017-08-24

    To determine the effectiveness of Problem-Solving Therapy (PST) in older hemodialysis (HD) patients by assessing changes in health-related quality of life and problem-solving skills. 33 HD patients in an outpatient hemodialysis center without active medical and psychiatric illness were enrolled. The intervention group (n = 15) received PST from a licensed social worker for 6 weeks, whereas the control group (n = 18) received usual care treatment. In comparison to the control group, patients receiving PST intervention reported improved perceptions of mental health, were more likely to view their problems with a positive orientation and were more likely to use functional problem-solving methods. Furthermore, this group was also more likely to view their overall health, activity limits, social activities and ability to accomplish desired tasks with a more positive mindset. The results demonstrate that PST may positively impact mental health components of quality of life and problem-solving coping among older HD patients. PST is an effective, efficient, and easy to implement intervention that can benefit problem-solving abilities and mental health-related quality of life in older HD patients. In turn, this will help patients manage their daily living activities related to their medical condition and reduce daily stressors.

  10. Young doctors' problem solving strategies on call may be improved

    DEFF Research Database (Denmark)

    Michelsen, Jens; Malchow-Møller, Axel; Charles, Peder

    2013-01-01

    The first year following graduation from medical school is challenging as learning from books changes to workplace-based learning. Analysis and reflection on experience may ease this transition. We used Significant Event Analysis (SEA) as a tool to explore what pre-registration house officers (PR...... (PRHOs) consider successful and problematic events, and to identify what problem-solving strategies they employ....

  11. Young doctors' problem solving strategies on call may be improved.

    Science.gov (United States)

    Michelsen, Jens; Malchow-Møller, Axel; Charles, Peder; Eika, Berit

    2013-03-01

    The first year following graduation from medical school is challenging as learning from books changes to workplace-based learning. Analysis and reflection on experience may ease this transition. We used Significant Event Analysis (SEA) as a tool to explore what pre-registration house officers (PRHOs) consider successful and problematic events, and to identify what problem-solving strategies they employ. A senior house officer systematically led the PRHO through the SEA of one successful and one problematic event following a night call. The PRHO wrote answers to questions about diagnosis, what happened, how he or she contributed and what knowledge-gaining activities the PRHO would prioritise before the next call. By using an inductive, thematic data analysis, we identified five problem-solving strategies: non-analytical reasoning, analytical reasoning, communication with patients, communication with colleagues and professional behaviour. On average, 1.5 strategies were used in the successful events and 1.2 strategies in the problematic events. Most PRHOs were unable to suggest activities other than reading textbooks. SEA was valuable for the identification of PRHOs' problem-solving strategies in a natural setting. PRHOs should be assisted in increasing their repertoire of strategies, and they should also be helped to "learn to learn" as they were largely unable to point to new learning strategies. not relevant. not relevant.

  12. Using Coaching to Improve the Teaching of Problem Solving to Year 8 Students in Mathematics

    Science.gov (United States)

    Kargas, Christine Anestis; Stephens, Max

    2014-01-01

    This study investigated how to improve the teaching of problem solving in a large Melbourne secondary school. Coaching was used to support and equip five teachers, some with limited experiences in teaching problem solving, with knowledge and strategies to build up students' problem solving and reasoning skills. The results showed increased…

  13. A randomized trial of teen online problem solving: efficacy in improving caregiver outcomes after brain injury.

    Science.gov (United States)

    Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2012-11-01

    To examine the results of a randomized clinical trial (RCT) of Teen Online Problem Solving (TOPS), an online problem solving therapy model, in increasing problem-solving skills and decreasing depressive symptoms and global distress for caregivers of adolescents with traumatic brain injury (TBI). Families of adolescents aged 11-18 who sustained a moderate to severe TBI between 3 and 19 months earlier were recruited from hospital trauma registries. Participants were assigned to receive a web-based, problem-solving intervention (TOPS, n = 20), or access to online resources pertaining to TBI (Internet Resource Comparison; IRC; n = 21). Parent report of problem solving skills, depressive symptoms, global distress, utilization, and satisfaction were assessed pre- and posttreatment. Groups were compared on follow-up scores after controlling for pretreatment levels. Family income was examined as a potential moderator of treatment efficacy. Improvement in problem solving was examined as a mediator of reductions in depression and distress. Forty-one participants provided consent and completed baseline assessments, with follow-up assessments completed on 35 participants (16 TOPS and 19 IRC). Parents in both groups reported a high level of satisfaction with both interventions. Improvements in problem solving skills and depression were moderated by family income, with caregivers of lower income in TOPS reporting greater improvements. Increases in problem solving partially mediated reductions in global distress. Findings suggest that TOPS may be effective in improving problem solving skills and reducing depressive symptoms for certain subsets of caregivers in families of adolescents with TBI.

  14. Scientific Approach to Improve Mathematical Problem Solving Skills Students of Grade V

    Science.gov (United States)

    Roheni; Herman, T.; Jupri, A.

    2017-09-01

    This study investigates the skills of elementary school students’ in problem solving through the Scientific Approach. The purpose of this study is to determine mathematical problem solving skills of students by using Scientific Approach is better than mathematical problem solving skills of students by using Direct Instruction. This study is using quasi-experimental method. Subject of this study is students in grade V in one of state elementary school in Cirebon Regency. Instrument that used in this study is mathematical problem solving skills. The result of this study showed that mathematical problem solving skills of students who learn by using Scientific Approach is more significant than using Direct Instruction. Base on result and analysis, the conclusion is that Scientific Approach can improve students’ mathematical problem solving skills.

  15. The role of problem solving method on the improvement of mathematical learning

    Directory of Open Access Journals (Sweden)

    Saeed Mokhtari-Hassanabad

    2012-10-01

    Full Text Available In history of education, problem solving is one of the important educational goals and teachers or parents have intended that their students have capacity of problem solving. In present research, it is tried that study the problem solving method for mathematical learning. This research is implemented via quasi-experimental method on 49 boy students at high school. The results of Leven test and T-test indicated that problem solving method has more effective on the improvement of mathematical learning than traditional instruction method. Therefore it seems that teachers of mathematics must apply the problem solving method in educational systems till students became self-efficiency in mathematical problem solving.

  16. Does Problem-Based Learning Improve Problem Solving Skills?--A Study among Business Undergraduates at Malaysian Premier Technical University

    Science.gov (United States)

    Kadir, Z. Abdul; Abdullah, N. H.; Anthony, E.; Salleh, B. Mohd; Kamarulzaman, R.

    2016-01-01

    Problem-based Learning (PBL) approach has been widely used in various disciplines since it is claimed to improve students' soft skills. However, empirical supports on the effect of PBL on problem solving skills have been lacking and anecdotal in nature. This study aimed to determine the effect of PBL approach on students' problem solving skills…

  17. Analysis of the Efficacy of an Intervention to Improve Parent-Adolescent Problem Solving.

    Science.gov (United States)

    Semeniuk, Yulia Yuriyivna; Brown, Roger L; Riesch, Susan K

    2016-07-01

    We conducted a two-group longitudinal partially nested randomized controlled trial to examine whether young adolescent youth-parent dyads participating in Mission Possible: Parents and Kids Who Listen, in contrast to a comparison group, would demonstrate improved problem-solving skill. The intervention is based on the Circumplex Model and Social Problem-Solving Theory. The Circumplex Model posits that families who are balanced, that is characterized by high cohesion and flexibility and open communication, function best. Social Problem-Solving Theory informs the process and skills of problem solving. The Conditional Latent Growth Modeling analysis revealed no statistically significant differences in problem solving among the final sample of 127 dyads in the intervention and comparison groups. Analyses of effect sizes indicated large magnitude group effects for selected scales for youth and dyads portraying a potential for efficacy and identifying for whom the intervention may be efficacious if study limitations and lessons learned were addressed. © The Author(s) 2016.

  18. The Improvement of Simple Explanation and Inferencetion Skills with Problem Solving

    OpenAIRE

    Dewanti, Fransiska Olivia; Diawati, Chansyanah; Fadiawati, Noor

    2013-01-01

    The learning process is strongly influenced by the ability and accuracy of teachers in selecting and applying the learning model. The model can be applied to improve of  simple explanation and inferencetion skill is a model of problem solving. The purpose of this study was to describe the model of problem solving that are effective in improving simple explanation and inferencetion skills on the material electrolyte and non-electrolyte solution. This research use a quasi-experimental methods ...

  19. Enhancing memory and imagination improves problem solving among individuals with depression.

    Science.gov (United States)

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  20. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    Science.gov (United States)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  1. Improving Students’ Scientific Reasoning and Problem-Solving Skills by The 5E Learning Model

    Directory of Open Access Journals (Sweden)

    Sri Mulyani Endang Susilowati

    2017-12-01

    Full Text Available Biology learning in MA (Madrasah Aliyah Khas Kempek was still dominated by teacher with low students’ involvement. This study would analyze the effectiveness of the 5E (Engagement, Exploration, Explanation, Elaboration, Evaluation learning model in improving scientific knowledge and problems solving. It also explained the relationship between students’ scientific reasoning with their problem-solving abilities. This was a pre-experimental research with one group pre-test post-test. Sixty students of MA Khas Kempek from XI MIA 3 and XI MIA 4 involved in this study. The learning outcome of the students was collected by the test of reasoning and problem-solving. The results showed that the rises of students’ scientific reasoning ability were 69.77% for XI MIA 3 and 66.27% for XI MIA 4, in the medium category. The problem-solving skills were 63.40% for XI MIA 3, 61.67% for XI MIA 4, and classified in the moderate category. The simple regression test found a linear correlation between students’ scientific reasoning and problem-solving ability. This study affirms that reasoning ability is needed in problem-solving. It is found that application of 5E learning model was effective to improve scientific reasoning and problem-solving ability of students.

  2. The Improvement of Basic Support and Advance Clarification Skill with Problem Solving

    OpenAIRE

    Safira, Novi Ayu; Diawati, Chansyanah; Rosilawati, Ila

    2013-01-01

    The low-creative critical thinking skill of the student is because many schools use low-level abilities in learning. The use of problem solving model in the learning is one of the efforts for practice the critical thinking skill students. This research aimed to describe the problem solving model that are effective in improving the basic support and advance clarification skill. This research using a quasi-experimental methods with Non Equivalent Control Group Design. The sampling technique use...

  3. The Improvement of Communication and Inference Skills in Colloid System Material by Problem Solving Learning Model

    OpenAIRE

    maisarera, yunita; diawati, chansyanah; fadiawati, noor

    2012-01-01

    The aim of this research is to describe the effectiveness of problem solving learning in improving communication and inference skills in colloid system material. Subjects in this research were students of XIIPA1 and XI IPA2 classrooms in Persada Junior High School in Bandar Lampung in academic year 2011-2012 where students of both classrooms had the same characteristics. This research used quasi experiment method and pretest-posttest control group design. Effectiveness of problem solving le...

  4. Analysis of the Efficacy of an Intervention to Improve Parent-Adolescent Problem Solving

    OpenAIRE

    Semeniuk, Yulia Yuriyivna; Brown, Roger L.; Riesch, Susan K.

    2016-01-01

    We conducted a two-group longitudinal partially nested randomized controlled trial to examine whether young adolescent youth-parent dyads participating in Mission Possible: Parents and Kids Who Listen, in contrast to a comparison group, would demonstrate improved problem solving skill. The intervention is based on the Circumplex Model and Social Problem Solving Theory. The Circumplex Model posits that families who are balanced, that is characterized by high cohesion and flexibility and open c...

  5. Improving mathematical problem solving ability through problem-based learning and authentic assessment for the students of Bali State Polytechnic

    Science.gov (United States)

    Darma, I. K.

    2018-01-01

    This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.

  6. Improving insight and non-insight problem solving with brief interventions.

    Science.gov (United States)

    Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma

    2013-02-01

    Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.

  7. Developing Instructional Mathematical Physics Book Based on Inquiry Approach to Improve Students’ Mathematical Problem Solving Ability

    Directory of Open Access Journals (Sweden)

    Syarifah Fadillah

    2017-03-01

    Full Text Available The problem in this research is to know how the process of developing mathematics physics instructional book based on inquiry approach and its supporting documents to improve students' mathematical problem-solving ability. The purpose of this research is to provide mathematical physics instruction based on inquiry approach and its supporting documents (semester learning activity plan, lesson plan and mathematical problem-solving test to improve students' mathematical problem-solving ability. The development of textbook refers to the ADDIE model, including analysis, design, development, implementation, and evaluation. The validation result from the expert team shows that the textbook and its supporting documents are valid. The test results of the mathematical problem-solving skills show that all test questions are valid and reliable. The result of the incorporation of the textbook in teaching and learning process revealed that students' mathematical problem-solving ability using mathematical physics instruction based on inquiry approach book was better than the students who use the regular book.

  8. An Experimental Investigation of Improving Human Problem-Solving Performance by Guiding Attention and Adaptively Proving Details on Information Displays

    National Research Council Canada - National Science Library

    Narayanan, N. H

    2007-01-01

    .... Results showed that various display strategies for augmenting information presented based on knowledge about both the viewer's gaze patterns and the problem solving procedure he or she is employing could indeed improve problem-solving performance.

  9. An Experimental Investigation of Improving Human Problem-Solving Performance by Guiding Attention and Adaptively Providing Details on Information Displays

    National Research Council Canada - National Science Library

    Narayanan, N. H

    2007-01-01

    .... Results showed that various display strategies for augmenting information presented based on knowledge about both the viewer's gaze patterns and the problem solving procedure he or she is employing could indeed improve problem-solving performance.

  10. A Flowchart-Based Intelligent Tutoring System for Improving Problem-Solving Skills of Novice Programmers

    Science.gov (United States)

    Hooshyar, D.; Ahmad, R. B.; Yousefi, M.; Yusop, F. D.; Horng, S.-J.

    2015-01-01

    Intelligent tutoring and personalization are considered as the two most important factors in the research of learning systems and environments. An effective tool that can be used to improve problem-solving ability is an Intelligent Tutoring System which is capable of mimicking a human tutor's actions in implementing a one-to-one personalized and…

  11. Students Use Graphic Organizers to Improve Mathematical Problem-Solving Communications

    Science.gov (United States)

    Zollman, Alan

    2009-01-01

    Improving students' problem-solving abilities is a major, if not the major, goal of middle grades mathematics. To address this goal, the author, who is a university mathematics educator, and nine inner-city middle school teachers developed a math/science action research project. This article describes their unique approach to mathematical problem…

  12. An Improved Particle Swarm Optimization for Solving Bilevel Multiobjective Programming Problem

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2012-01-01

    Full Text Available An improved particle swarm optimization (PSO algorithm is proposed for solving bilevel multiobjective programming problem (BLMPP. For such problems, the proposed algorithm directly simulates the decision process of bilevel programming, which is different from most traditional algorithms designed for specific versions or based on specific assumptions. The BLMPP is transformed to solve multiobjective optimization problems in the upper level and the lower level interactively by an improved PSO. And a set of approximate Pareto optimal solutions for BLMPP is obtained using the elite strategy. This interactive procedure is repeated until the accurate Pareto optimal solutions of the original problem are found. Finally, some numerical examples are given to illustrate the feasibility of the proposed algorithm.

  13. An improved cut-and-solve algorithm for the single-source capacitated facility location problem

    DEFF Research Database (Denmark)

    Gadegaard, Sune Lauth; Klose, Andreas; Nielsen, Lars Relund

    2018-01-01

    In this paper, we present an improved cut-and-solve algorithm for the single-source capacitated facility location problem. The algorithm consists of three phases. The first phase strengthens the integer program by a cutting plane algorithm to obtain a tight lower bound. The second phase uses a two......-level local branching heuristic to find an upper bound, and if optimality has not yet been established, the third phase uses the cut-and-solve framework to close the optimality gap. Extensive computational results are reported, showing that the proposed algorithm runs 10–80 times faster on average compared...

  14. An improved computational version of the LTSN method to solve transport problems in a slab

    International Nuclear Information System (INIS)

    Cardona, Augusto V.; Oliveira, Jose Vanderlei P. de; Vilhena, Marco Tullio de; Segatto, Cynthia F.

    2008-01-01

    In this work, we present an improved computational version of the LTS N method to solve transport problems in a slab. The key feature relies on the reordering of the set of S N equations. This procedure reduces by a factor of two the task of evaluating the eigenvalues of the matrix associated to SN approximations. We present numerical simulations and comparisons with the ones of the classical LTS N approach. (author)

  15. Using creative problem solving (CPS) to improve leadership in a non-profit organization

    OpenAIRE

    Sousa, Fernando; Castelão, Paula; Monteiro, Ileana Pardal; Pellissier, René

    2013-01-01

    The purpose of this study was to evaluate the effectiveness of the Creative Problem Solving (CPS) method in improving the leadership process in a non-profit organization. The research was designed around an intervention and structured in three stages (pre-consult, intervention and follow-up), with a team designated by management, in order to bring leadership cohesion to both departments of the organization and also between the board and executive management. The results, expressed in the task...

  16. Using Metacognitive Strategies to Improve Reading Comprehension and Solve a Word Problem

    Directory of Open Access Journals (Sweden)

    Tomo Djudin

    2017-03-01

    Full Text Available This article describes briefly the theories of metacognition and the impacts of metacognitive skills on learning. The differences between cognitive strategy and metacognitive strategy were mentioned. Some strategies to improve students’ meta cognition skills in the classroom explored as well. Based on the theories, two models of metacognitive strategies instruction for deeply understanding in reading textbook and for finding a solution of words physics problem solving were developed. These models will enable students to be independent and strategic learners.

  17. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Science.gov (United States)

    Surya, Edy; Sabandar, Jozua; Kusumah, Yaya S.; Darhim

    2013-01-01

    The students' difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal mathematical understanding, and mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was…

  18. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  19. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  20. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    Science.gov (United States)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  1. Improving Histopathology Laboratory Productivity: Process Consultancy and A3 Problem Solving

    Directory of Open Access Journals (Sweden)

    Kutsal YÖRÜKOĞLU

    2017-01-01

    Full Text Available Objective: The ISO 17020 quality program has been run in our pathology laboratory for four years to establish an action plan for correction and prevention of identified errors. In this study, we aimed to evaluate the errors that we could not identify through ISO 17020 and/or solve by means of process consulting. Process consulting is carefully intervening in a group or team to help it to accomplish its goals. Material and Method: The A3 problem solving process was run under the leadership of a ‘workflow, IT and consultancy manager’. An action team was established consisting of technical staff. A root cause analysis was applied for target conditions, and the 6-S method was implemented for solution proposals. Applicable proposals were activated and the results were rated by six-sigma analysis. Non-applicable proposals were reported to the laboratory administrator. Results: A mislabelling error was the most complained issue triggering all pre-analytical errors. There were 21 non-value added steps grouped in 8 main targets on the fish bone graphic (transporting, recording, moving, individual, waiting, over-processing, over-transaction and errors. Unnecessary redundant requests, missing slides, archiving issues, redundant activities, and mislabelling errors were proposed to be solved by improving visibility and fixing spaghetti problems. Spatial re-organization, organizational marking, re-defining some operations, and labeling activities raised the six sigma score from 24% to 68% for all phases. Operational transactions such as implementation of a pathology laboratory system was suggested for long-term improvement. Conclusion: Laboratory management is a complex process. Quality control is an effective method to improve productivity. Systematic checking in a quality program may not always find and/or solve the problems. External observation may reveal crucial indicators about the system failures providing very simple solutions.

  2. Improving Histopathology Laboratory Productivity: Process Consultancy and A3 Problem Solving.

    Science.gov (United States)

    Yörükoğlu, Kutsal; Özer, Erdener; Alptekin, Birsen; Öcal, Cem

    2017-01-01

    The ISO 17020 quality program has been run in our pathology laboratory for four years to establish an action plan for correction and prevention of identified errors. In this study, we aimed to evaluate the errors that we could not identify through ISO 17020 and/or solve by means of process consulting. Process consulting is carefully intervening in a group or team to help it to accomplish its goals. The A3 problem solving process was run under the leadership of a 'workflow, IT and consultancy manager'. An action team was established consisting of technical staff. A root cause analysis was applied for target conditions, and the 6-S method was implemented for solution proposals. Applicable proposals were activated and the results were rated by six-sigma analysis. Non-applicable proposals were reported to the laboratory administrator. A mislabelling error was the most complained issue triggering all pre-analytical errors. There were 21 non-value added steps grouped in 8 main targets on the fish bone graphic (transporting, recording, moving, individual, waiting, over-processing, over-transaction and errors). Unnecessary redundant requests, missing slides, archiving issues, redundant activities, and mislabelling errors were proposed to be solved by improving visibility and fixing spaghetti problems. Spatial re-organization, organizational marking, re-defining some operations, and labeling activities raised the six sigma score from 24% to 68% for all phases. Operational transactions such as implementation of a pathology laboratory system was suggested for long-term improvement. Laboratory management is a complex process. Quality control is an effective method to improve productivity. Systematic checking in a quality program may not always find and/or solve the problems. External observation may reveal crucial indicators about the system failures providing very simple solutions.

  3. Teaching Creative Problem Solving.

    Science.gov (United States)

    Christensen, Kip W.; Martin, Loren

    1992-01-01

    Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)

  4. Modifying a Research-Based Problem-Solving Intervention to Improve the Problem-Solving Performance of Fifth and Sixth Graders With and Without Learning Disabilities.

    Science.gov (United States)

    Krawec, Jennifer; Huang, Jia

    The purpose of the present study was to test the efficacy of a modified cognitive strategy instructional intervention originally developed to improve the mathematical problem solving of middle and high school students with learning disabilities (LD). Fifth and sixth grade general education mathematics teachers and their students of varying ability (i.e., average-achieving [AA] students, low-achieving [LA] students, and students with LD) participated in the research study. Several features of the intervention were modified, including (a) explicitness of instruction, (b) emphasis on meta-cognition, (c) focus on problem-solving prerequisites, (d) extended duration of initial intervention, and (e) addition of visual supports. General education math teachers taught all instructional sessions to their inclusive classrooms. Curriculum-based measures (CBMs) of math problem solving were administered five times over the course of the year. A multilevel model (repeated measures nested within students and students nested within schools) was used to analyze student progress on CBMs. Though CBM scores in the intervention group were initially lower than that of the comparison group, intervention students improved significantly more in the first phase, with no differences in the second phase. Implications for instruction are discussed as well as directions for future research.

  5. Problem Solving with General Semantics.

    Science.gov (United States)

    Hewson, David

    1996-01-01

    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  6. Organizational/Memory Tools: A Technique for Improving Problem Solving Skills.

    Science.gov (United States)

    Steinberg, Esther R.; And Others

    1986-01-01

    This study was conducted to determine whether students would use a computer-presented organizational/memory tool as an aid in problem solving, and whether and how locus of control would affect tool use and problem-solving performance. Learners did use the tools, which were most effective in the learner control with feedback condition. (MBR)

  7. Motivation in Construction Innovation: Commercial Opportunities, Problem-Solving and Passion for Improvement

    Directory of Open Access Journals (Sweden)

    Fang Chang Yean

    2016-01-01

    Full Text Available This article analyses motivations for innovation in construction using the service sector adaptation of the Sectoral System of Innovation (SSI framework. Interviews and site visits were conducted with four Malaysian firms. Innovation in construction is similar to the service sector. There is evidence of technology-push, capability-push and demand-pull; capability push is the most important. Construction firms innovate to gain commercial opportunities, to solve project-related problems and to improve processes. By simplifying construction work, process innovation saves time and costs, increasing efficiency and productivity, and providing increased competitiveness. Innovation is also motivated by committed and passionate actors within construction firm.

  8. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  9. Self-directed questions to improve students' ability in solving chemical problems

    Science.gov (United States)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  10. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Directory of Open Access Journals (Sweden)

    Edy Surya

    2013-01-01

    Full Text Available The students’  difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal  mathematical understanding, and  mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem solving approach  with  contextual learning. The research instrument was a test, observation and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches. Keywords: Visual Thinking Representation, Mathematical  Problem Solving, Contextual Teaching Learning Approach DOI: http://dx.doi.org/10.22342/jme.4.1.568.113-126

  11. Solving Environmental Problems

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph

    2017-01-01

    for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...

  12. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2006-01-01

    as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  13. Toward Solving the Problem of Problem Solving: An Analysis Framework

    Science.gov (United States)

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  14. Introspection in Problem Solving

    Science.gov (United States)

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  15. Problem Solving in Practice

    Science.gov (United States)

    Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia

    2017-01-01

    Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…

  16. Improved method for solving the neutron transport problem by discretization of space and energy variables

    International Nuclear Information System (INIS)

    Bosevski, T.

    1971-01-01

    The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results

  17. An Improved Ant Colony Algorithm for Solving the Path Planning Problem of the Omnidirectional Mobile Vehicle

    Directory of Open Access Journals (Sweden)

    Jiang Zhao

    2016-01-01

    Full Text Available This paper presents an improved ant colony algorithm for the path planning of the omnidirectional mobile vehicle. The purpose of the improved ant colony algorithm is to design an appropriate route to connect the starting point and ending point of the environment with obstacles. Ant colony algorithm, which is used to solve the path planning problem, is improved according to the characteristics of the omnidirectional mobile vehicle. And in the improved algorithm, the nonuniform distribution of the initial pheromone and the selection strategy with direction play a very positive role in the path search. The coverage and updating strategy of pheromone is introduced to avoid repeated search reducing the effect of the number of ants on the performance of the algorithm. In addition, the pheromone evaporation coefficient is segmented and adjusted, which can effectively balance the convergence speed and search ability. Finally, this paper provides a theoretical basis for the improved ant colony algorithm by strict mathematical derivation, and some numerical simulations are also given to illustrate the effectiveness of the theoretical results.

  18. Solved problems in electrochemistry

    International Nuclear Information System (INIS)

    Piron, D.L.

    2004-01-01

    This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems

  19. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  20. Creativity and problem Solving

    Directory of Open Access Journals (Sweden)

    René Victor Valqui Vidal

    2004-12-01

    Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.

  1. Perceptual Learning in Early Mathematics: Interacting with Problem Structure Improves Mapping, Solving and Fluency

    Science.gov (United States)

    Thai, Khanh-Phuong; Son, Ji Y.; Hoffman, Jessica; Devers, Christopher; Kellman, Philip J.

    2014-01-01

    Mathematics is the study of structure but students think of math as solving problems according to rules. Students can learn procedures, but they often have trouble knowing when to apply learned procedures, especially to problems unlike those they trained with. In this study, the authors rely on the psychological mechanism of perceptual learning…

  2. Using creative problem solving (TRIZ) in improving the quality of hospital services.

    Science.gov (United States)

    LariSemnani, Behrouz; Mohebbi Far, Rafat; Shalipoor, Elham; Mohseni, Mohammad

    2014-08-14

    TRIZ is an initiative and SERVQUAL is a structured methodology for quality improvement. Using these tools, inventive problem solving can be applied for quality improvement, and the highest quality can be reached using creative quality improvement methodology. The present study seeks to determine the priority of quality aspects of services provided for patients in the hospital as well as how TRIZ can help in improving the quality of those services. This Study is an applied research which used a dynamic qualitative descriptive survey method during year 2011. Statistical population includes every patient who visited in one of the University Hospitals from March 2011. There existed a big gap between patients' expectations from what seemingly is seen (the design of the hospital) and timely provision of services with their perceptions. Also, quality aspects of services were prioritized as follows: keeping the appearance of hospital (the design), accountability, assurance, credibility and having empathy. Thus, the only thing which mattered most for all staff and managers of studied hospital was the appearance of hospital as well as its staff look. This can grasp a high percentage of patients' satisfaction. By referring to contradiction matrix, the most important principles of TRIZ model were related to tangible factors including principles No. 13 (discarding and recovering), 25 (self-service), 35 (parameter changes), and 2 (taking out). Furthermore, in addition to these four principles, principle No. 24 (intermediary) was repeated most among the others. By utilizing TRIZ, hospital problems can be examined with a more open view, Go beyond The conceptual framework of the organization and responded more quickly to patients ' needs.

  3. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  4. Appreciative Problem Solving

    DEFF Research Database (Denmark)

    Hansen, David

    2012-01-01

    Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...

  5. Planning and Problem Solving

    Science.gov (United States)

    1982-10-01

    Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and ProblemSolving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R

  6. Community leaders can improve problem-solving skills at Virginia Tech Institute Feb. 10-12

    OpenAIRE

    Felker, Susan B.

    2007-01-01

    Development of better community problem-solving skills is the goal of the LeadershipPlenty¨ Institute to be hosted by Virginia Tech's Center for Organizational and Technological Advancement Feb. 10-12, 2008, at The Hotel Roanoke and Conference Center in Roanoke, Va.

  7. Improving Classroom Learning by Collaboratively Observing Human Tutoring Videos while Problem Solving

    Science.gov (United States)

    Craig, Scotty D.; Chi, Michelene T. H.; VanLehn, Kurt

    2009-01-01

    Collaboratively observing tutoring is a promising method for observational learning (also referred to as vicarious learning). This method was tested in the Pittsburgh Science of Learning Center's Physics LearnLab, where students were introduced to physics topics by observing videos while problem solving in Andes, a physics tutoring system.…

  8. Improving Critical Thinking Skills Using Learning Model Logan Avenue Problem Solving (LAPS)-Heuristic

    Science.gov (United States)

    Anggrianto, Desi; Churiyah, Madziatul; Arief, Mohammad

    2016-01-01

    This research was conducted in order to know the effect of Logan Avenue Problem Solving (LAPS)-Heuristic learning model towards critical thinking skills of students of class X Office Administration (APK) in SMK Negeri 1 Ngawi, East Java, Indonesia on material curve and equilibrium of demand and supply, subject Introduction to Economics and…

  9. Concept mapping improves academic performance in problem solving questions in biochemistry subject.

    Science.gov (United States)

    Baig, Mukhtiar; Tariq, Saba; Rehman, Rehana; Ali, Sobia; Gazzaz, Zohair J

    2016-01-01

    To assess the effectiveness of concept mapping (CM) on the academic performance of medical students' in problem-solving as well as in declarative knowledge questions and their perception regarding CM. The present analytical and questionnaire-based study was carried out at Bahria University Medical and Dental College (BUMDC), Karachi, Pakistan. In this analytical study, students were assessed with problem-solving questions (A-type MCQs), and declarative knowledge questions (short essay questions), and 50% of the questions were from the topics learned by CM. Students also filled a 10-item, 3-point Likert scale questionnaire about their perception regarding the effectiveness of the CM approach, and two open-ended questions were also asked. There was a significant difference in the marks obtained in those problem-solving questions, which were learned by CM as compared to those topics which were taught by the traditional lectures (pacademic performance in problem solving but not in declarative knowledge questions. Students' perception about the effectiveness of CM was overwhelmingly positive.

  10. Improving Creative Problem-Solving in a Sample of Third Culture Kids

    Science.gov (United States)

    Lee, Young Ju; Bain, Sherry K.; McCallum, R. Steve

    2007-01-01

    We investigated the effects of divergent thinking training (with explicit instruction) on problem-solving tasks in a sample of Third Culture Kids (Useem and Downie, 1976). We were specifically interested in whether the children's originality and fluency in responding increased following instruction, not only on classroom-based worksheets and the…

  11. Solving Real Community Problems to Improve the Teaching of Public Affairs

    Science.gov (United States)

    Yaghi, Abdulfattah; Alibeli, Madalla

    2014-01-01

    In order to achieve their course learning outcomes, public affairs instructors can train students to solve real community problems (SRCP). This approach focuses on the learners themselves and aims to transform the role of college professors from traditional teaching (lecturing) to facilitating and coaching students' learning activities. This study…

  12. Write Is Right: Using Graphic Organizers to Improve Student Mathematical Problem Solving

    Science.gov (United States)

    Zollman, Alan

    2012-01-01

    Teachers have used graphic organizers successfully in teaching the writing process. This paper describes graphic organizers and their potential mathematics benefits for both students and teachers, elucidates a specific graphic organizer adaptation for mathematical problem solving, and discusses results using the "four-corners-and-a-diamond"…

  13. Using an Interactive Web-Based Learning NMR Spectroscopy as a Means to Improve Problem Solving Skills for Undergraduates

    International Nuclear Information System (INIS)

    Supasorn, Saksri; Vibuljun, Sunantha; Panijpan, Bhinyo; Rajviroongit, Shuleewan

    2005-10-01

    An Interactive Web-Based Learning NMR Spectroscopy course is developed to improve and facilitate student ' s learning as well as achievement of learning objectives in the concepts of multiplicity, chemical shift, and problem solving. This web-based learning course is emphasized on NMR problem solving, therefore, the concepts of multiplicity and chemical shift, basic concepts for practice problem solving, are also emphasized. Most of animations and pictures in this web-based learning are new created and simplified to explain processes and principles in NMR spectroscopy. With meaningful animations and pictures, simplified English language used, step-by-step problem solving, and interactive test, it can be self-learning web site and best on the student ' s convenience

  14. Do problem-solving interventions improve psychosocial outcomes in vision impaired adults: a systematic review and meta-analysis.

    Science.gov (United States)

    Holloway, Edith E; Xie, Jing; Sturrock, Bonnie A; Lamoureux, Ecosse L; Rees, Gwyneth

    2015-05-01

    To evaluate the effectiveness of problem-solving interventions on psychosocial outcomes in vision impaired adults. A systematic search of randomised controlled trials (RCTs), published between 1990 and 2013, that investigated the impact of problem-solving interventions on depressive symptoms, emotional distress, quality of life (QoL) and functioning was conducted. Two reviewers independently selected and appraised study quality. Data permitting, intervention effects were statistically pooled and meta-analyses were performed, otherwise summarised descriptively. Eleven studies (reporting on eight trials) met inclusion criteria. Pooled analysis showed problem-solving interventions improved vision-related functioning (standardised mean change [SMC]: 0.15; 95% CI: 0.04-0.27) and emotional distress (SMC: -0.36; 95% CI: -0.54 to -0.19). There was no evidence to support improvements in depressive symptoms (SMC: -0.27, 95% CI: -0.66 to 0.12) and insufficient evidence to determine the effectiveness of problem-solving interventions on QoL. The small number of well-designed studies and narrow inclusion criteria limit the conclusions drawn from this review. However, problem-solving skills may be important for nurturing daily functioning and reducing emotional distress for adults with vision impairment. Given the empirical support for the importance of effective problem-solving skills in managing chronic illness, more well-designed RCTs are needed with diverse vision impaired samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. One Improvement Method of Reducing Duration Directly to Solve Time-Cost Tradeoff Problem

    Science.gov (United States)

    Jian-xun, Qi; Dedong, Sun

    Time and cost are two of the most important factors for project plan and schedule management, and specially, time-cost tradeoff problem is one classical problem in project scheduling, which is also a difficult problem. Methods of solving the problem mainly contain method of network flow and method of mending the minimal cost. Thereinto, for the method of mending the minimal cost is intuitionistic, convenient and lesser computation, these advantages make the method being used widely in practice. But disadvantage of the method is that the result of each step is optimal but the terminal result maybe not optimal. In this paper, firstly, method of confirming the maximal effective quantity of reducing duration is designed; secondly, on the basis of above method and the method of mending the minimal cost, the main method of reducing duration directly is designed to solve time-cost tradeoff problem, and by analyzing validity of the method, the method could obtain more optimal result for the problem.

  16. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities.

    Science.gov (United States)

    Swanson, H Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures.

  17. Integrating marker passing and problem solving a spreading activation approach to improved choice in planning

    CERN Document Server

    Hendler, James A

    2014-01-01

    A recent area of interest in the Artificial Intelligence community has been the application of massively parallel algorithms to enhance the choice mechanism in traditional AI problems. This volume provides a detailed description of how marker-passing -- a parallel, non-deductive, spreading activation algorithm -- is a powerful approach to refining the choice mechanisms in an AI problem-solving system. The author scrutinizes the design of both the algorithm and the system, and then reviews the current literature and research in planning and marker passing. Also included: a comparison of this

  18. IMPROVING THE EFFICIENCY OF SPRAY TYPE DEVICES WHEN SOLVING PROBLEMS IN INDUSTRIAL ECOLOGY

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. This carried out work is aimed enhancing the efficiency of the spray scrubber by combining processes and improving hydraulic conditions in the device. The problem of treating waste gases is often characterized by unique features and the significant factor that makes it difficult to find a solution to the problem of treatment is the low and/or variable concentration of the pollutant. With a removal efficiency of up to 98 %, wet treatment technology in scrubber type devices is the only practical method advantageous to the treatment of waste gases. The set objective is solved by developing a two-stage treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. A drift eliminator of the developed device is located on the case unit and a chain is suspended from a clamp mounted on the lower part of the tube neck by pins and two detachable joints. The operation of the scrubber was checked in compliance with the absorption gas treatment of sulfur dioxide. A chemical sorbent, calcium carbonate which is produced as a by-product in the manufacture of nitroammophos at JSC “Minudobrenia” factory is used. Preliminary results indicate that the stiochiometric inlet ratio of Ca/S equals about 2.0 and SO2 emissions reduce by 80-90 %, significantly larger than the planned 70 % and subsequently corresponds to the residue concentration of less than 30 mg/m3 . This is explained by the greater degree of capture and deposition of the sorbent on the chain curtain (not more than 20 mg/m3 . The proposed device for treating gases enables: improvement in the efficiency of gas treatment; increased reliability; increase in the degree of treatment of the gas flow without the use of additional equipment; reduction in metal and design complexity; reduction on the cost of the treatment process and simplification in the device design.

  19. Improved Genetic and Simulating Annealing Algorithms to Solve the Traveling Salesman Problem Using Constraint Programming

    Directory of Open Access Journals (Sweden)

    M. Abdul-Niby

    2016-04-01

    Full Text Available The Traveling Salesman Problem (TSP is an integer programming problem that falls into the category of NP-Hard problems. As the problem become larger, there is no guarantee that optimal tours will be found within reasonable computation time. Heuristics techniques, like genetic algorithm and simulating annealing, can solve TSP instances with different levels of accuracy. Choosing which algorithm to use in order to get a best solution is still considered as a hard choice. This paper suggests domain reduction as a tool to be combined with any meta-heuristic so that the obtained results will be almost the same. The hybrid approach of combining domain reduction with any meta-heuristic encountered the challenge of choosing an algorithm that matches the TSP instance in order to get the best results.

  20. Problem solving skills for schizophrenia.

    Science.gov (United States)

    Xia, J; Li, Chunbo

    2007-04-18

    The severe and long-lasting symptoms of schizophrenia are often the cause of severe disability. Environmental stress such as life events and the practical problems people face in their daily can worsen the symptoms of schizophrenia. Deficits in problem solving skills in people with schizophrenia affect their independent and interpersonal functioning and impair their quality of life. As a result, therapies such as problem solving therapy have been developed to improve problem solving skills for people with schizophrenia. To review the effectiveness of problem solving therapy compared with other comparable therapies or routine care for those with schizophrenia. We searched the Cochrane Schizophrenia Group's Register (September 2006), which is based on regular searches of BIOSIS, CENTRAL, CINAHL, EMBASE, MEDLINE and PsycINFO. We inspected references of all identified studies for further trials. We included all clinical randomised trials comparing problem solving therapy with other comparable therapies or routine care. We extracted data independently. For homogenous dichotomous data we calculated random effects, relative risk (RR), 95% confidence intervals (CI) and, where appropriate, numbers needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated weighted mean differences (WMD) using a random effects statistical model. We included only three small trials (n=52) that evaluated problem solving versus routine care, coping skills training or non-specific interaction. Inadequate reporting of data rendered many outcomes unusable. We were unable to undertake meta-analysis. Overall results were limited and inconclusive with no significant differences between treatment groups for hospital admission, mental state, behaviour, social skills or leaving the study early. No data were presented for global state, quality of life or satisfaction. We found insufficient evidence to confirm or refute the benefits of problem solving therapy as an additional

  1. Improving extreme-scale problem solving: assessing electronic brainstorming effectiveness in an industrial setting.

    Science.gov (United States)

    Dornburg, Courtney C; Stevens, Susan M; Hendrickson, Stacey M L; Davidson, George S

    2009-08-01

    An experiment was conducted to compare the effectiveness of individual versus group electronic brainstorming to address difficult, real-world challenges. Although industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges during the course of 4 days. Employees and contractors at a national laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a real-world problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p industrial reliance on electronic problem-solving groups should be tempered, and large nominal groups may be more appropriate corporate problem-solving vehicles.

  2. The implementation of multiple intelligences based teaching model to improve mathematical problem solving ability for student of junior high school

    Science.gov (United States)

    Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli

    2017-05-01

    This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.

  3. How to solve mathematical problems

    CERN Document Server

    Wickelgren, Wayne A

    1995-01-01

    Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.

  4. Solving complex fisheries management problems

    DEFF Research Database (Denmark)

    Petter Johnsen, Jahn; Eliasen, Søren Qvist

    2011-01-01

    A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related...

  5. Counselor-Assisted Problem Solving (CAPS) Improves Behavioral Outcomes in Older Adolescents with Complicated Mild to Severe TBI

    Science.gov (United States)

    Wade, Shari L.; Stancin, Terry; Kirkwood, Michael; Brown, Tanya Maines; Rochester, Mayo Clinic; McMullen, Kendra M.; Taylor, H. Gerry

    2013-01-01

    Objective To test the efficacy of Counselor-Assisted Problem Solving (CAPS) versus an internet resources comparison (IRC) condition in reducing behavior problems in adolescents following traumatic brain injury (TBI). Design Randomized clinical trial with interviewers naïve to treatment condition. Setting Three large tertiary children's hospitals and two general hospitals with pediatric commitment. Participants 132 children ages 12-17 years hospitalized during the previous 6 months for moderate to severe TBI. Interventions Participants in CAPS (n = 65) completed 8-12 online modules providing training in problem solving, communication skills, and self-regulation and subsequent synchronous videoconferences with a therapist. Participants in the IRC group (n = 67) received links to internet resources about pediatric TBI. Main Outcome Measures Child Behavior Checklist (CBCL) administered before and after completion of treatment (i.e., approximately six months after treatment initiation). Results Post hoc analysis of covariance (ANCOVA), controlling for pre-treatment scores, was used to examine group differences in behavior problems in the entire sample and among older (n=59) and younger adolescents (n=53). Among older but not younger adolescents, CAPS resulted in greater improvements on multiple dimensions of externalizing behavior problems than did IRC. Conclusion Online problem-solving therapy may be effective in reducing behavior problems in older adolescent survivors of moderate-severe TBI. PMID:23640543

  6. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    Science.gov (United States)

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  7. Difficulties in Genetics Problem Solving.

    Science.gov (United States)

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  8. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  9. Problem Solving on a Monorail.

    Science.gov (United States)

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  10. Adaptive Problem Solving

    Science.gov (United States)

    2017-03-01

    Borrajo and Raquel Fuentetaja, Universidad Carlos III de Madrid on the meta-level search architecture for finding good combinations of representations and...heuristics on a problem-by-problem basis. The other is with Carlos Linares also from Universidad Carlos III de Madrid on developing effective

  11. Solving radwaste problems

    International Nuclear Information System (INIS)

    Oyen, L.C.

    1976-01-01

    The combination of regulatory changes and increased waste volume has resulted in design changes in waste processing systems. Problems resulting from waste segregation as a basis for design philosophy are considered, and solutions to the problems are suggested. The importance of operator training, maintenance procedures, good housekeeping, water management, and offsite shipment of solids is discussed. Flowsheets for radioactive waste processing systems for boiling water reactors and pressurized water reactors are included

  12. Effects of a Research-Based Intervention to Improve Seventh-Grade Students' Proportional Problem Solving: A Cluster Randomized Trial

    Science.gov (United States)

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.

    2015-01-01

    This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem-solving and metacognitive…

  13. Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory.

    Science.gov (United States)

    Cornoldi, Cesare; Carretti, Barbara; Drusi, Silvia; Tencati, Chiara

    2015-09-01

    Despite doubts voiced on their efficacy, a series of studies has been carried out on the capacity of training programmes to improve academic and reasoning skills by focusing on underlying cognitive abilities and working memory in particular. No systematic efforts have been made, however, to test training programmes that involve both general and specific underlying abilities. If effective, these programmes could help to increase students' motivation and competence. This study examined the feasibility of improving problem-solving skills in school children by means of a training programme that addresses general and specific abilities involved in problem solving, focusing on metacognition and working memory. The project involved a sample of 135 primary school children attending eight classes in the third, fourth, and fifth grades (age range 8-10 years). The classes were assigned to two groups, one attending the training programme in the first 3 months of the study (Training Group 1) and the other serving as a waiting-list control group (Training Group 2). In the second phase of the study, the role of the two groups was reversed, with Training Group 2 attending the training instead of Training Group 1. The training programme led to improvements in both metacognitive and working memory tasks, with positive-related effects on the ability to solve problems. The gains seen in Training Group 1 were also maintained at the second post-test (after 3 months). Specific activities focusing on metacognition and working memory may contribute to modifying arithmetical problem-solving performance in primary school children. © 2015 The British Psychological Society.

  14. Measuring Problem Solving Skills in "Portal 2"

    Science.gov (United States)

    Shute, Valerie J.; Wang, Lubin

    2013-01-01

    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  15. An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem

    Directory of Open Access Journals (Sweden)

    Meriem Ait Mehdi

    2014-01-01

    Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.

  16. Improving Problem Solving Skill and Self Regulated Learning of Senior High School Students through Scientific Approach using Quantum Learning strategy

    Directory of Open Access Journals (Sweden)

    M Sudirman

    2017-12-01

    Full Text Available This research is quasi experiment with control group pretest-postest design. The sampel in this research using the techique of purposive sampling so the samples used were two classes of the 11th grade students of SMAN 14 Bandung in the academic year 2017/2018. The experiment group uses saintific approach using Quantum Learning strategy and control group uses saintific approach. In collecting the data the researcher will use the test of problem solving ability and self regulated learning as the instrument. The aims of this research are to:1find out the improvement of students mathematical problem solving through scientific approach using Quantum Learning study, 2 find out students self regulated learning through scientific approach using Quantum Learning.

  17. Improving Teaching Quality and Problem Solving Ability through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach

    Science.gov (United States)

    Khotimah, Rita Pramujiyanti; Masduki

    2016-01-01

    Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…

  18. An improved superconducting neural circuit and its application for a neural network solving a combinatorial optimization problem

    International Nuclear Information System (INIS)

    Onomi, T; Nakajima, K

    2014-01-01

    We have proposed a superconducting Hopfield-type neural network for solving the N-Queens problem which is one of combinatorial optimization problems. The sigmoid-shape function of a neuron output is represented by the output of coupled SQUIDs gate consisting of a single-junction and a double-junction SQUIDs. One of the important factors for an improvement of the network performance is an improvement of a threshold characteristic of a neuron circuit. In this paper, we report an improved design of coupled SQUID gates for a superconducting neural network. A step-like function with a steep threshold at a rising edge is desirable for a neuron circuit to solve a combinatorial optimization problem. A neuron circuit is composed of two coupled SQUIDs gates with a cascade connection in order to obtain such characteristics. The designed neuron circuit is fabricated by a 2.5 kA/cm 2 Nb/AlOx/Nb process. The operation of a fabricated neuron circuit is experimentally demonstrated. Moreover, we discuss about the performance of the neural network using the improved neuron circuits and delayed negative self-connections.

  19. Simon on Problem-Solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    as a general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...... Simon, problem-solving, new organizational forms. JEL Code: D23, D83......Two of Herbert Simon's best-known papers are "The Architecture of Complexity" and "The Structure of Ill-Structured Problems." We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  20. A comparison between the effectiveness of PBL and LBL on improving problem-solving abilities of medical students using questioning

    DEFF Research Database (Denmark)

    He, Yunfeng; Du, Xiangyun; Toft, Egon

    2018-01-01

    of problem-based learning (PBL) and lecture-based learning in improving the questioning abilities of medical students (N = 104) was assessed by a modified 20-question task. In this task, the participants were asked to identify target pictures by asking questions, the problem-solving process of which......In daily patient-history taking and diagnosis practice, doctors ask questions to gather information from patients and narrow down diagnostic hypotheses. Training medical students to be efficient problem solvers through the use of questioning is therefore important. In this study, the effectiveness....... This finding suggests that PBL curricula may help improve the questioning strategies of medical students and help them diagnose more efficiently in future diagnosis practice....

  1. Problem-Solving Therapy During Outpatient Stroke Rehabilitation Improves Coping and Health-Related Quality of Life: Randomized Controlled Trial.

    Science.gov (United States)

    Visser, Marieke M; Heijenbrok-Kal, Majanka H; Van't Spijker, Adriaan; Lannoo, Engelien; Busschbach, Jan J V; Ribbers, Gerard M

    2016-01-01

    This study investigated whether problem-solving therapy (PST) is an effective group intervention for improving coping strategy and health-related quality of life (HRQoL) in patients with stroke. In this multicenter randomized controlled trial, the intervention group received PST as add-on to standard outpatient rehabilitation, the control group received outpatient rehabilitation only. Measurements were performed at baseline, directly after the intervention, and 6 and 12 months later. Data were analyzed using linear-mixed models. Primary outcomes were task-oriented coping as measured by the Coping Inventory for Stressful Situations and psychosocial HRQoL as measured by the Stroke-Specific Quality of Life Scale. Secondary outcomes were the EuroQol EQ-5D-5L utility score, emotion-oriented and avoidant coping as measured by the Coping Inventory for Stressful Situations, problem-solving skills as measured by the Social Problem Solving Inventory-Revised, and depression as measured by the Center for Epidemiological Studies Depression Scale. Included were 166 patients with stroke, mean age 53.06 years (SD, 10.19), 53% men, median time poststroke 7.29 months (interquartile range, 4.90-10.61 months). Six months post intervention, the PST group showed significant improvement when compared with the control group in task-oriented coping (P=0.008), but not stroke-specific psychosocial HRQoL. Furthermore, avoidant coping (P=0.039) and the utility value for general HRQoL (P=0.034) improved more in the PST group than in the control after 6 months. PST seems to improve task-oriented coping but not disease-specific psychosocial HRQoL after stroke >6-month follow-up. Furthermore, we found indications that PST may improve generic HRQoL recovery and avoidant coping. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2509. Unique identifier: CNTR2509. © 2015 American Heart Association, Inc.

  2. Interactive Problem-Solving Interventions

    African Journals Online (AJOL)

    Frew Demeke Alemu

    concerted efforts of unofficial actors to establish unofficial communication ... Frew Demeke Alemu (LLB, LLM in International Human Rights Law from Lund ..... 24 Tamra Pearson d'Estrée (2009), “Problem-Solving Approaches”, (in The SAGE ...

  3. The a3 problem solving report: a 10-step scientific method to execute performance improvements in an academic research vivarium.

    Science.gov (United States)

    Bassuk, James A; Washington, Ida M

    2013-01-01

    The purpose of this study was to illustrate the application of A3 Problem Solving Reports of the Toyota Production System to our research vivarium through the methodology of Continuous Performance Improvement, a lean approach to healthcare management at Seattle Children's (Hospital, Research Institute, Foundation). The Report format is described within the perspective of a 10-step scientific method designed to realize measurable improvements of Issues identified by the Report's Author, Sponsor and Coach. The 10-step method (Issue, Background, Current Condition, Goal, Root Cause, Target Condition, Countermeasures, Implementation Plan, Test, and Follow-up) was shown to align with Shewhart's Plan-Do-Check-Act process improvement cycle in a manner that allowed for quantitative analysis of the Countermeasure's outcomes and of Testing results. During fiscal year 2012, 9 A3 Problem Solving Reports were completed in the vivarium under the teaching and coaching system implemented by the Research Institute. Two of the 9 reports are described herein. Report #1 addressed the issue of the vivarium's veterinarian not being able to provide input into sick animal cases during the work day, while report #7 tackled the lack of a standard in keeping track of weekend/holiday animal health inspections. In each Report, a measurable Goal that established the basis for improvement recognition was present. A Five Whys analysis identified the Root Cause for Report #1 as historical work patterns that existed before the veterinarian was hired on and that modern electronic communication tools had not been implemented. The same analysis identified the Root Cause for Report #7 as the vivarium had never standardized the process for weekend/holiday checks. Successful outcomes for both Reports were obtained and validated by robust audit plans. The collective data indicate that vivarium staff acquired a disciplined way of reporting on, as well as solving, problems in a manner consistent with high

  4. The a3 problem solving report: a 10-step scientific method to execute performance improvements in an academic research vivarium.

    Directory of Open Access Journals (Sweden)

    James A Bassuk

    Full Text Available The purpose of this study was to illustrate the application of A3 Problem Solving Reports of the Toyota Production System to our research vivarium through the methodology of Continuous Performance Improvement, a lean approach to healthcare management at Seattle Children's (Hospital, Research Institute, Foundation. The Report format is described within the perspective of a 10-step scientific method designed to realize measurable improvements of Issues identified by the Report's Author, Sponsor and Coach. The 10-step method (Issue, Background, Current Condition, Goal, Root Cause, Target Condition, Countermeasures, Implementation Plan, Test, and Follow-up was shown to align with Shewhart's Plan-Do-Check-Act process improvement cycle in a manner that allowed for quantitative analysis of the Countermeasure's outcomes and of Testing results. During fiscal year 2012, 9 A3 Problem Solving Reports were completed in the vivarium under the teaching and coaching system implemented by the Research Institute. Two of the 9 reports are described herein. Report #1 addressed the issue of the vivarium's veterinarian not being able to provide input into sick animal cases during the work day, while report #7 tackled the lack of a standard in keeping track of weekend/holiday animal health inspections. In each Report, a measurable Goal that established the basis for improvement recognition was present. A Five Whys analysis identified the Root Cause for Report #1 as historical work patterns that existed before the veterinarian was hired on and that modern electronic communication tools had not been implemented. The same analysis identified the Root Cause for Report #7 as the vivarium had never standardized the process for weekend/holiday checks. Successful outcomes for both Reports were obtained and validated by robust audit plans. The collective data indicate that vivarium staff acquired a disciplined way of reporting on, as well as solving, problems in a manner

  5. Solved problems in classical electromagnetism

    CERN Document Server

    Franklin, Jerrold

    2018-01-01

    This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.

  6. Quantitative Reasoning in Problem Solving

    Science.gov (United States)

    Ramful, Ajay; Ho, Siew Yin

    2015-01-01

    In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.

  7. Students' Problem Solving and Justification

    Science.gov (United States)

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  8. Customer-centered problem solving.

    Science.gov (United States)

    Samelson, Q B

    1999-11-01

    If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.

  9. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S

    1982-04-01

    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  10. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    Science.gov (United States)

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  11. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    Science.gov (United States)

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  12. Does chess instruction improve mathematical problem-solving ability? Two experimental studies with an active control group.

    Science.gov (United States)

    Sala, Giovanni; Gobet, Fernand

    2017-12-01

    It has been proposed that playing chess enables children to improve their ability in mathematics. These claims have been recently evaluated in a meta-analysis (Sala & Gobet, 2016, Educational Research Review, 18, 46-57), which indicated a significant effect in favor of the groups playing chess. However, the meta-analysis also showed that most of the reviewed studies used a poor experimental design (in particular, they lacked an active control group). We ran two experiments that used a three-group design including both an active and a passive control group, with a focus on mathematical ability. In the first experiment (N = 233), a group of third and fourth graders was taught chess for 25 hours and tested on mathematical problem-solving tasks. Participants also filled in a questionnaire assessing their meta-cognitive ability for mathematics problems. The group playing chess was compared to an active control group (playing checkers) and a passive control group. The three groups showed no statistically significant difference in mathematical problem-solving or metacognitive abilities in the posttest. The second experiment (N = 52) broadly used the same design, but the Oriental game of Go replaced checkers in the active control group. While the chess-treated group and the passive control group slightly outperformed the active control group with mathematical problem solving, the differences were not statistically significant. No differences were found with respect to metacognitive ability. These results suggest that the effects (if any) of chess instruction, when rigorously tested, are modest and that such interventions should not replace the traditional curriculum in mathematics.

  13. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    Science.gov (United States)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  14. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  15. Interactive problem solving using LOGO

    CERN Document Server

    Boecker, Heinz-Dieter; Fischer, Gerhard

    2014-01-01

    This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more

  16. Improving Problem-Solving Skills with the Help of Plane-Space Analogies

    Science.gov (United States)

    Budai, László

    2013-01-01

    We live our lives in three-dimensional space and encounter geometrical problems (equipment instructions, maps, etc.) every day. Yet there are not sufficient opportunities for high school students to learn geometry. New teaching methods can help remedy this. Specifically our experience indicates that there is great promise for use of geometry…

  17. THE APPLICATION OF QRQC METHOD TO SOLVE PROBLEMS AND TO IMPROVE THE PRODUCTION FLUX (2

    Directory of Open Access Journals (Sweden)

    Ancuta BALTEANU

    2016-05-01

    Full Text Available The subject proposed was developed over two parts. In the first written work it was presented the initial situation within a production flow that is sensed in the appearance of defects and nonconformities in obtain the final products. In this second paper - respectively this - we will show the use of this method in a situation that requires elimination of a technological problem appeared in the production flux and in relieving its positive consequence.

  18. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  19. An improved Pattern Search based algorithm to solve the Dynamic Economic Dispatch problem with valve-point effect

    International Nuclear Information System (INIS)

    Alsumait, J.S.; Qasem, M.; Sykulski, J.K.; Al-Othman, A.K.

    2010-01-01

    In this paper, an improved algorithm based on Pattern Search method (PS) to solve the Dynamic Economic Dispatch is proposed. The algorithm maintains the essential unit ramp rate constraint, along with all other necessary constraints, not only for the time horizon of operation (24 h), but it preserves these constraints through the transaction period to the next time horizon (next day) in order to avoid the discontinuity of the power system operation. The Dynamic Economic and Emission Dispatch problem (DEED) is also considered. The load balance constraints, operating limits, valve-point loading and network losses are included in the models of both DED and DEED. The numerical results clarify the significance of the improved algorithm and verify its performance.

  20. Improvement in Generic Problem-Solving Abilities of Students by Use of Tutor-less Problem-Based Learning in a Large Classroom Setting

    Science.gov (United States)

    Klegeris, Andis; Bahniwal, Manpreet; Hurren, Heather

    2013-01-01

    Problem-based learning (PBL) was originally introduced in medical education programs as a form of small-group learning, but its use has now spread to large undergraduate classrooms in various other disciplines. Introduction of new teaching techniques, including PBL-based methods, needs to be justified by demonstrating the benefits of such techniques over classical teaching styles. Previously, we demonstrated that introduction of tutor-less PBL in a large third-year biochemistry undergraduate class increased student satisfaction and attendance. The current study assessed the generic problem-solving abilities of students from the same class at the beginning and end of the term, and compared student scores with similar data obtained in three classes not using PBL. Two generic problem-solving tests of equal difficulty were administered such that students took different tests at the beginning and the end of the term. Blinded marking showed a statistically significant 13% increase in the test scores of the biochemistry students exposed to PBL, while no trend toward significant change in scores was observed in any of the control groups not using PBL. Our study is among the first to demonstrate that use of tutor-less PBL in a large classroom leads to statistically significant improvement in generic problem-solving skills of students. PMID:23463230

  1. THE APPLICATION OF QRQC METHOD TO SOLVE PROBLEMS AND TO IMPROVE THE PRODUCTION FLUX (1

    Directory of Open Access Journals (Sweden)

    Ancuţa BĂLTEANU

    2015-05-01

    Full Text Available ORQC is a quality management system which aims customer satisfaction through immediate action. The subject proposed will be developed over two parts. The first written work – respectively this - will presented initial situation within a production flow that is sensed in the appearance of defects and nonconformities in obtain the final products. In this second paper we will show the use of this method in a situation that requires elimination of a technological problem appeared in the production flux and in relieving its positive consequence.

  2. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie

    1999-01-01

    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  3. A Practical Approach To Identify and Solve Problems: Continuous Improvement Strategies.

    Science.gov (United States)

    Burgess, Michael; And Others

    The current pressures of reduced government funding, lower enrollments, and greater scrutiny by governing boards require institutions of higher education to redesign processes and systems to survive. Despite resistance to Total Quality Management (TQM) in academia, it can provide the tools to implement systemic change and quality improvement.…

  4. Analysis of expert validation on developing integrated science worksheet to improve problem solving skills of natural science prospective teachers

    Science.gov (United States)

    Widodo, W.; Sudibyo, E.; Sari, D. A. P.

    2018-04-01

    This study aims to develop student worksheets for higher education that apply integrated science learning in discussing issues about motion in humans. These worksheets will guide students to solve the problem about human movement. They must integrate their knowledge about biology, physics, and chemistry to solve the problem. The worksheet was validated by three experts in Natural Science Integrated Science, especially in Human Movement topic. The aspects of the validation were feasibility of the content, the construction, and the language. This research used the Likert scale to measure the validity of each aspect, which is 4.00 for very good validity criteria, 3.00 for good validity criteria, 2.00 for more or less validity criteria, and 1.00 for not good validity criteria. Data showed that the validity for each aspect were in the range of good validity and very good validity criteria (3.33 to 3.67 for the content aspect, 2.33 to 4.00 for the construction aspect, and 3.33 to 4.00 for language aspect). However, there was a part of construction aspect that needed to improve. Overall, this students’ worksheet can be applied in classroom after some revisions based on suggestions from the validators.

  5. Using a Standardized Patient to Improve Collaboration and Problem Solving Skills With CPAP Usage in the Home.

    Science.gov (United States)

    Williams, Margaret G; Ruhs, Joan

    2017-06-01

    A review of literature revealed a lack of research pertaining to nurses' or student nurses' knowledge of continuous positive airway pressure (CPAP) and the ability to troubleshoot CPAP malfunction. This study sought to answer the following questions: What are associate degree nursing (ADN) students' knowledge, interdisciplinary communication, and problem-solving skills regarding patients' home use of CPAP? Is there a change after participation in a simulation with a patient on CPAP in home setting? Twenty-one ADN students enrolled in small Midwest college participated. A preexperimental design of one group pretest posttest was used. Each student completed a demographic questionnaire, Mayo High Performance Teamwork Scale, Interprofessional collaborative simulation experience survey, and a CPAP knowledge base survey before and upon completion of the simulation. There were no changes in students' comfort, baseline knowledge, and basic understanding regarding CPAP. However, after the simulation, students described more detailed problem-solving skills, which included using respiratory therapists, durable medical equipment providers, and community resources. On the Mayo High Performance Teamwork Scale, all 16 items demonstrated improved scores (baseline mean = 21.65 and postsimulation mean = 25.6).

  6. Human Problem Solving in 2012

    Science.gov (United States)

    Funke, Joachim

    2013-01-01

    This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…

  7. Error Patterns in Problem Solving.

    Science.gov (United States)

    Babbitt, Beatrice C.

    Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…

  8. Daily Readiness Huddles in Radiology-Improving Communication, Coordination, and Problem-Solving Reliability.

    Science.gov (United States)

    Donnelly, Lane F

    Deploying an intentional daily management process is a key part to create high-reliability culture. Key components described in the literature for a successfully daily management process include leadership standard work, visual controls, daily accountability processes, and the discipline to stick to the process over the long term. We believe that the institution of a daily readiness huddle has helped us better coordinate and communicate as a department and improved our ability to deliver imaging services on a daily basis. The daily readiness huddle has enabled us to more rapidly identify issues and has brought accountability to seeing solutions to those issues brought to fruition. In addition, it has helped with team building, including between the radiologists and the nonphysician staff. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Genetics problem solving and worldview

    Science.gov (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  10. A randomized trial of teen online problem solving for improving executive function deficits following pediatric traumatic brain injury.

    Science.gov (United States)

    Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; Williams, Kendra M; Cass, Jennifer; Herren, Luke; Mark, Erin; Yeates, Keith Owen

    2010-01-01

    To examine the efficacy of teen online problem solving (TOPS) in improving executive function (EF) deficits following traumatic brain injury (TBI) in adolescence. Families of adolescents (aged 11-18 years) with moderate to severe TBI were recruited from the trauma registry of 2 tertiary-care children's hospitals and then randomly assigned to receive TOPS (n = 20), a cognitive-behavioral, skill-building intervention, or access to online resources regarding TBI (Internet resource comparison; n = 21). Parent and teen reports of EF were assessed at baseline and a posttreatment follow-up (mean = 7.88 months later). Improvements in self-reported EF skills were moderated by TBI severity, with teens with severe TBI in the TOPS treatment reporting significantly greater improvements than did those with severe TBI in the Internet resource comparison. The treatment groups did not differ on parent ratings of EF at the follow up. Findings suggest that TOPS may be effective in improving EF skills among teens with severe TBI.

  11. On Teaching Problem Solving in School Mathematics

    Directory of Open Access Journals (Sweden)

    Erkki Pehkonen

    2013-12-01

    Full Text Available The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open problems (i.e., problem fields. Next we discuss the objectives of the Finnish curriculum that are connected with problem solving. Some examples and research results are taken from a Finnish–Chilean research project that monitors the development of problem-solving skills in third grade pupils. Finally, some ideas on “teacher change” are put forward. It is not possible to change teachers, but only to provide hints for possible change routes: the teachers themselves should work out the ideas and their implementation.

  12. Effects of Concept Mapping and Problem Solving Instructional ...

    African Journals Online (AJOL)

    Administrator

    (iii). lack of organizational skill in solving quantitative problems. (Onwu, 1982, Onwu ... improved in terms of conceptual thinking, intuitive knowledge and insightful ... Problem Solving: This is a cognitive learning strategy which has to do with ...

  13. Problem solving and inference mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, K; Nakajima, R; Yonezawa, A; Goto, S; Aoyama, A

    1982-01-01

    The heart of the fifth generation computer will be powerful mechanisms for problem solving and inference. A deduction-oriented language is to be designed, which will form the core of the whole computing system. The language is based on predicate logic with the extended features of structuring facilities, meta structures and relational data base interfaces. Parallel computation mechanisms and specialized hardware architectures are being investigated to make possible efficient realization of the language features. The project includes research into an intelligent programming system, a knowledge representation language and system, and a meta inference system to be built on the core. 30 references.

  14. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu

    2008-01-01

    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  15. Using Digital Mapping Tool in Ill-Structured Problem Solving

    Science.gov (United States)

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  16. Internet Computer Coaches for Introductory Physics Problem Solving

    Science.gov (United States)

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  17. The feasibility of using conversational agent technology to improve problem-solving and coping skills of young adults with cancer

    Directory of Open Access Journals (Sweden)

    von Friederichs-Fitzwater M

    2011-04-01

    Full Text Available Marlene M von Friederichs-Fitzwater1, Frederick J Meyers21Division of Hematology/Oncology, Internal Medicine, 2School of Medicine, University of California Davis, Sacramento, CA, USAObjective: Young adults with cancer have unique psychosocial needs and often lack the problem-solving and coping skills for effective resolution. We conducted a study to clarify these needs and then developed and tested an educational intervention to coach young adults with cancer in problem-solving and coping skills using a new conversational agent technology that uses a multi-media format to simulate face-to-face encounters.Methods: We qualitatively assessed online focus groups and chat rooms with 45 young adults with cancer and used the results to develop and test an online 15-minute educational prototype using a new conversational agent technology with 49 young adults (18–35 years of age with cancer.Results: Young adults with cancer are most concerned about reproductive issues, emotional issues, communicating with healthcare providers, and the risks and benefits of treatments. The study participants found the I-COPE prototype to be useful, easy to use, and worth recommending to others. They wanted to have more video segments about the experiences of other young adults with cancer; more video segments of actual procedures and treatments; more Internet links to information and resources; and more opportunities to interact with the conversational agent.Conclusion: New conversational agent technology is useful in coaching problem-solving and coping skills to empower young adults with cancer.Practice implications: New conversational agent technology is a useful tool in patient education and skill development, particularly among young adults.Keywords: young adult cancer patients, conversational agent technology, problem-solving, coping, self-efficacy, survivorship

  18. An Online Game Approach for Improving Students' Learning Performance in Web-Based Problem-Solving Activities

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Po-Han; Chen, Chi-Chang

    2012-01-01

    In this paper, an online game was developed in the form of a competitive board game for conducting web-based problem-solving activities. The participants of the game determined their move by throwing a dice. Each location of the game board corresponds to a gaming task, which could be a web-based information-searching question or a mini-game; the…

  19. Contextualized teaching on the problem solving performance of students

    Directory of Open Access Journals (Sweden)

    Rolando V. Obiedo

    2017-12-01

    Full Text Available This study investigated the effect of contextualized teaching on students’ problem solving skills in physics through a quasi-experimental approach. Problem solving performance of students was described quantitatively through their mean problem solving scores and problem solving skills level. A unit plan patterned from the cognitive apprenticeship approach and contextualized using maritime context of ship stability was implemented on the experimental group while the control group had the conventional lecture method. Pre and post assessment, which is a researcher-developed word problem assessment, was administered to both groups. Results indicated increased problem solving mean scores (p < 0.001, problem solving skill level (p < 0.001 of the experimental group while the control group increased only their problem solving skill level (p = 0.008. Thus, contextualized teaching can improve the problem solving performance of students. This study recommends using contextualization using other physics topics where other contexts can be applied.

  20. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  1. Community-powered problem solving.

    Science.gov (United States)

    Gouillart, Francis; Billings, Douglas

    2013-04-01

    Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections.

  2. LEGO Robotics: An Authentic Problem Solving Tool?

    Science.gov (United States)

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  3. Perspectives on Problem Solving and Instruction

    Science.gov (United States)

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  4. An Integrated Architecture for Engineering Problem Solving

    National Research Council Canada - National Science Library

    Pisan, Yusuf

    1998-01-01

    .... This thesis describes the Integrated Problem Solving Architecture (IPSA) that combines qualitative, quantitative and diagrammatic reasoning skills to produce annotated solutions to engineering problems...

  5. Problem Solving Reasoning and Problem Based Instruction in Geometry Learning

    Science.gov (United States)

    Sulistyowati, F.; Budiyono, B.; Slamet, I.

    2017-09-01

    This research aims to analyze the comparison Problem Solving Reasoning (PSR) and Problem Based Instruction (PBI) on problem solving and mathematical communication abilities viewed from Self-Regulated Learning (SRL). Learning was given to grade 8th junior high school students. This research uses quasi experimental method, and then with descriptive analysis. Data were analyzed using two-ways multivariate analysis of variance (MANOVA) and one-way analysis of variance (ANOVA) with different cells. The result of data analysis were learning model gives different effect, level of SRL gives the same effect, and there is no interaction between the learning model with the SRL on the problem solving and mathematical communication abilities. The t-test statistic was used to find out more effective learning model. Based on the test, regardless of the level of SRL, PSR is more effective than PBI for problemsolving ability. The result of descriptive analysis was PSR had the advantage in creating learning that optimizing the ability of learners in reasoning to solve a mathematical problem. Consequently, the PSR is the right learning model to be applied in the classroom to improve problem solving ability of learners.

  6. Using M and S to Improve Human Decision Making and Achieve Effective Problem Solving in an International Environment

    Science.gov (United States)

    Christie, Vanessa L.; Landess, David J.

    2012-01-01

    In the international arena, decision makers are often swayed away from fact-based analysis by their own individual cultural and political bias. Modeling and Simulation-based training can raise awareness of individual predisposition and improve the quality of decision making by focusing solely on fact vice perception. This improved decision making methodology will support the multinational collaborative efforts of military and civilian leaders to solve challenges more effectively. The intent of this experimental research is to create a framework that allows decision makers to "come to the table" with the latest and most significant facts necessary to determine an appropriate solution for any given contingency.

  7. A Problem-Solving Intervention Using iPads to Improve Transition-Related Task Performance of Students with Autism Spectrum Disorder

    Science.gov (United States)

    Yakubova, Gulnoza; Zeleke, Waganesh A.

    2016-01-01

    In this study, the effectiveness of teaching problem-solving to improve transition-related task performance of three students with autism spectrum disorder (ASD) was examined using a multiple probe across students design. Target behaviors included various transition-related tasks individualized for each student based on their individual…

  8. Students’ difficulties in probabilistic problem-solving

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  9. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana

    2012-01-01

    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  10. Local Strategy Improvement for Parity Game Solving

    OpenAIRE

    Friedmann, Oliver; Lange, Martin

    2010-01-01

    The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may...

  11. Problem solving using soft systems methodology.

    Science.gov (United States)

    Land, L

    This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.

  12. Solving computationally expensive engineering problems

    CERN Document Server

    Leifsson, Leifur; Yang, Xin-She

    2014-01-01

    Computational complexity is a serious bottleneck for the design process in virtually any engineering area. While migration from prototyping and experimental-based design validation to verification using computer simulation models is inevitable and has a number of advantages, high computational costs of accurate, high-fidelity simulations can be a major issue that slows down the development of computer-aided design methodologies, particularly those exploiting automated design improvement procedures, e.g., numerical optimization. The continuous increase of available computational resources does not always translate into shortening of the design cycle because of the growing demand for higher accuracy and necessity to simulate larger and more complex systems. Accurate simulation of a single design of a given system may be as long as several hours, days or even weeks, which often makes design automation using conventional methods impractical or even prohibitive. Additional problems include numerical noise often pr...

  13. Assertiveness and problem solving in midwives.

    Science.gov (United States)

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  14. Strategy Keys as Tools for Problem Solving

    Science.gov (United States)

    Herold-Blasius, Raja

    2017-01-01

    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  15. Teaching Effective Problem Solving Strategies for Interns

    Science.gov (United States)

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  16. Mathematical problem solving in primary school

    NARCIS (Netherlands)

    Kolovou, A.

    2011-01-01

    A student is engaged in (non-routine) problem solving when there is no clear pathway to the solution. In contrast to routine problems, non-routine ones cannot be solved through the direct application of a standard procedure. Consider the following problem: In a quiz you get two points for each

  17. Conceptual problem solving in high school physics

    OpenAIRE

    Jennifer L. Docktor; Natalie E. Strand; José P. Mestre; Brian H. Ross

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in w...

  18. A Flipped Pedagogy for Expert Problem Solving

    Science.gov (United States)

    Pritchard, David

    The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).

  19. PROBLEM SOLVING IN SCHOOL MATHEMATICS BASED ON HEURISTIC STRATEGIES

    Directory of Open Access Journals (Sweden)

    NOVOTNÁ, Jarmila

    2014-03-01

    Full Text Available The paper describes one of the ways of developing pupils’ creative approach to problem solving. The described experiment is a part of a longitudinal research focusing on improvement of culture of problem solving by pupils. It deals with solving of problems using the following heuristic strategies: Analogy, Guess – check – revise, Systematic experimentation, Problem reformulation, Solution drawing, Way back and Use of graphs of functions. Most attention is paid to the question whether short-term work, in this case only over the period of three months, can result in improvement of pupils’ abilities to solve problems whose solving algorithms are easily accessible. It also answers the question which strategies pupils will prefer and with what results. The experiment shows that even short-term work can bear positive results as far as pupils’ approach to problem solving is concerned.

  20. Improving Transportation Services for the University of the Thai Chamber of Commerce: A Case Study on Solving the Mixed-Fleet Vehicle Routing Problem with Split Deliveries

    Science.gov (United States)

    Suthikarnnarunai, N.; Olinick, E.

    2009-01-01

    We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.

  1. Local Strategy Improvement for Parity Game Solving

    Directory of Open Access Journals (Sweden)

    Oliver Friedmann

    2010-06-01

    Full Text Available The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may cover only a fractional part of the entire game graph. We present a local strategy improvement algorithm which explores the game graph on-the-fly whilst performing the improvement steps. We also compare it empirically with existing global strategy improvement algorithms and the currently only other local algorithm for solving parity games. It turns out that local strategy improvement can outperform these others by several orders of magnitude.

  2. Indoor Air Quality Problem Solving Tool

    Science.gov (United States)

    Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.

  3. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    Science.gov (United States)

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  4. Solving global optimization problems on GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)

    2016-06-08

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  5. Creativity and Insight in Problem Solving

    Science.gov (United States)

    Golnabi, Laura

    2016-01-01

    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  6. Metacognition: Student Reflections on Problem Solving

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  7. Conceptual Problem Solving in High School Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  8. Concept mapping instrumental support for problem solving

    NARCIS (Netherlands)

    Stoyanov, S.; Stoyanov, Slavi; Kommers, Petrus A.M.

    2008-01-01

    The main theoretical position of this paper is that it is the explicit problem-solving support in concept mapping software that produces a stronger effect in problem-solving performance than the implicit support afforded by the graphical functionality of concept mapping software. Explicit

  9. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  10. The Process of Solving Complex Problems

    Science.gov (United States)

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  11. Problem Solving Strategies among Primary School Teachers

    Science.gov (United States)

    Yew, Wun Thiam; Lian, Lim Hooi; Meng, Chew Cheng

    2017-01-01

    The purpose of this article was to examine problem solving strategies among primary school teachers. The researchers employed survey research design to examine their problem solving strategies. The participants of this study consisted of 120 primary school teachers from a public university in Peninsula Malaysia who enrolled in a 4-year Graduating…

  12. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  13. Readiness for Solving Story Problems.

    Science.gov (United States)

    Dunlap, William F.

    1982-01-01

    Readiness activities are described which are designed to help learning disabled (LD) students learn to perform computations in story problems. Activities proceed from concrete objects to numbers and involve the students in devising story problems. The language experience approach is incorporated with the enactive, iconic, and symbolic levels of…

  14. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  15. Diagrams benefit symbolic problem-solving.

    Science.gov (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  16. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi

    2013-12-01

    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  17. Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools

    Science.gov (United States)

    Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah

    2017-01-01

    Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…

  18. Problem Solving in Technology Education: A Taoist Perspective.

    Science.gov (United States)

    Flowers, Jim

    1998-01-01

    Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)

  19. Solving the wrong hierarchy problem

    International Nuclear Information System (INIS)

    Blinov, Nikita; Hook, Anson

    2016-01-01

    Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z_2-symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z_2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs mass by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. Lastly, we show this mechanism postdicts the top Yukawa to be within 1σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV

  20. Environmental problem-solving: Psychosocial factors

    Science.gov (United States)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  1. Education for complex problem solving

    DEFF Research Database (Denmark)

    Kjær-Rasmussen, Lone Krogh

    The Problem-Based Learning model as it is practiced at Aalborg University grew out of expectations for future graduates in the 1970s. Many changes and developments have taken place since then in the ways the principles and methodologies are practiced, due to changes in society and governmental...... regulations. However, the basic educational principles and methodologies are still the same and seem to meet expectations from society and academic work places today. This is what surveys and research, done regularly, document. (see for instance Krogh, 2013)....

  2. Solving complex problems a handbook

    CERN Document Server

    Schönwandt, Walter; Grunau, Jens; Utz, Jürgen; Voermanek, Katrin

    2014-01-01

    When you're planning something big, problems appear rather quickly. We hear of them on a daily basis. The bigger or more complex a task, the more we have to deal with complicated, multidisciplinary task formulations. In many cases it is architecture, including urban and spatial planning, but also politics and all types of organizational forms, irrespective of whether they are public authorities or private enterprises, which are expected to deliver functional solutions for such challenges. This is precisely where this book is helpful. It introduces a methodology for developing target-specific,

  3. Effects of performance feedback and coaching on the problem-solving process: Improving the integrity of implementation and enhancing student outcomes

    Science.gov (United States)

    Lundahl, Allison A.

    Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.

  4. Solving inversion problems with neural networks

    Science.gov (United States)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  5. Conceptual problem solving in high school physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  6. Conceptual problem solving in high school physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2015-09-01

    Full Text Available Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers’ implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  7. Solving Problems with the Percentage Bar

    Science.gov (United States)

    van Galen, Frans; van Eerde, Dolly

    2013-01-01

    At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…

  8. Three-M in Word Problem Solving

    Science.gov (United States)

    Hajra, Sayonita Ghosh; Kofman, Victoria

    2018-01-01

    We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…

  9. How to solve applied mathematics problems

    CERN Document Server

    Moiseiwitsch, B L

    2011-01-01

    This workbook bridges the gap between lectures and practical applications, offering students of mathematics, engineering, and physics the chance to practice solving problems from a wide variety of fields. 2011 edition.

  10. Physics: Quantum problems solved through games

    Science.gov (United States)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  11. Photoreactors for Solving Problems of Environmental Pollution

    Science.gov (United States)

    Tchaikovskaya, O. N.; Sokolova, I. V.

    2015-04-01

    Designs and physical aspects of photoreactors, their capabilities for a study of kinetics and mechanisms of processes proceeding under illumination with light, as well as application of photoreactors for solving various applied problem are discussed.

  12. Molecular science solving global problems

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Stults, B.R.

    1995-01-01

    From the late 1940s to the late 1980s, the Department of Energy (DOE) had a critical role in the Cold War. Many sites were built to contribute to the nation's nuclear weapons effort. However, not enough attention was paid to how the waste generated at these facilities should be handled. As a result, a number of sites fouled the soil around them or dumped low-level radioactive waste into nearby rivers. A DOE laboratory is under construction with a charter to help. Called the Environmental Molecular Sciences Laboratory (EMSL), this national user facility will be located at DOE's Pacific Northwest Laboratory (PNL) in Richland, WA. This laboratory has been funded by DOE and Congress to play a major role as the nation confronts the enormous challenge of reducing environmental and human risks from hundreds of government and industrial waste sites in an economically viable manner. The original proposal for the EMSL took a number of twists and turns on its way to its present form, but one thing remained constant: the belief that safe, permanent, cost-effective solutions to many of the country's environmental problems could be achieved only by multidisciplinary teams working to understand and control molecular processes. The processes of most concern are those that govern the transport and transformation of contaminants, the treatment and storage of high-level mixed wastes, and the risks those contaminants ultimately pose to workers and the public

  13. Methods of solving sequence and series problems

    CERN Document Server

    Grigorieva, Ellina

    2016-01-01

    This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions,Met...

  14. The art and science of problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2005-01-01

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...... solving facilitation both as science and art will be presented. A case study related to examination's planning will be discussed to illustrate the main concepts in practice. In addition, other cases studies will also be shortly presented....

  15. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    Science.gov (United States)

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  16. Innovative problem solving by wild spotted hyenas

    Science.gov (United States)

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  17. Fostering information problem solving skills through completion problems and prompts

    NARCIS (Netherlands)

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, November). Fostering information problem solving skills through completion problems and prompts. Poster presented at the ICO Fall School 2012, Girona, Spain.

  18. Fostering Information Problem Solving Skills Through Completion Problems and Prompts

    NARCIS (Netherlands)

    Frerejean, Jimmy; Brand-Gruwel, Saskia; Kirschner, Paul A.

    2012-01-01

    Frerejean, J., Brand-Gruwel, S., & Kirschner, P. A. (2012, September). Fostering Information Problem Solving Skills Through Completion Problems and Prompts. Poster presented at the EARLI SIG 6 & 7 "Instructional Design" and "Learning and Instruction with Computers", Bari, Italy.

  19. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    Science.gov (United States)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  20. Collaborative problem solving with a total quality model.

    Science.gov (United States)

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  1. Effectiveness of discovery learning model on mathematical problem solving

    Science.gov (United States)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn

    2017-08-01

    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  2. Problem solving and problem strategies in the teaching and learning ...

    African Journals Online (AJOL)

    Perennial poor performance recorded annually in both internal and external examinations in Mathematics has been a great concern for the Mathematics Educators in Nigeria. This paper discusses problem-solving and influence of problem-solving strategies on students' performance in mathematics. The concept of ...

  3. A Comparison between the Effectiveness of PBL and LBL on Improving Problem-Solving Abilities of Medical Students Using Questioning

    Science.gov (United States)

    He, Yunfeng; Du, Xiangyun; Toft, Egon; Zhang, Xingli; Qu, Bo; Shi, Jiannong; Zhang, Huan; Zhang, Hui

    2018-01-01

    In daily patient-history taking and diagnosis practice, doctors ask questions to gather information from patients and narrow down diagnostic hypotheses. Training medical students to be efficient problem solvers through the use of questioning is therefore important. In this study, the effectiveness of problem-based learning (PBL) and lecture-based…

  4. Lesion mapping of social problem solving.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

  5. A Microgenetic Study of Insightful Problem Solving

    Science.gov (United States)

    Luwel, Koen; Siegler, Robert S.; Verschaffel, Lieven

    2008-01-01

    An eight-session microgenetic study of acquisition of an insightful problem-solving strategy was conducted. A total of 35 second graders who did not use this insightful strategy initially were assigned to two groups that differed in the frequency of problems likely to facilitate discovery and generalization of the strategy. Children in the…

  6. Problem-Solving: Scaling the "Brick Wall"

    Science.gov (United States)

    Benson, Dave

    2011-01-01

    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  7. Pose and Solve Varignon Converse Problems

    Science.gov (United States)

    Contreras, José N.

    2014-01-01

    The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

  8. Using Computer Simulations in Chemistry Problem Solving

    Science.gov (United States)

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  9. Discovering Steiner Triple Systems through Problem Solving

    Science.gov (United States)

    Sriraman, Bharath

    2004-01-01

    An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.

  10. Using CAS to Solve Classical Mathematics Problems

    Science.gov (United States)

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  11. A reflexive perspective in problem solving

    OpenAIRE

    Chio, José Angel; Álvarez, Aida; López, Margarita

    2013-01-01

    The objective of this paper is to favour the methodological process of reflexive analysis in problem solving in the general teaching methods that concentrates in strengthening the dimensional analysis, to gain a greater preparation of the students for the solution of mathematical problems.

  12. Language and mathematical problem solving among bilinguals.

    Science.gov (United States)

    Bernardo, Allan B I

    2002-05-01

    Does using a bilingual's 1st or 2nd language have an effect on problem solving in semantically rich domains like school mathematics? The author conducted a study to determine whether Filipino-English bilingual students' understanding and solving of word problems in arithmetic differed when the problems were in the students' 1st and 2nd languages. Two groups participated-students whose 1st language was Filipino and students whose 1st language was English-and easy and difficult arithmetic problems were used. The author used a recall paradigm to assess how students understood the word problems and coded the solution accuracy to assess problem solving. The results indicated a 1st-language advantage; that is, the students were better able to understand and solve problems in their 1st language, whether the 1st language was English or Filipino. Moreover, the advantage was more marked with the easy problems. The theoretical and practical implications of the results are discussed.

  13. New method for solving multidimensional scattering problem

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1991-01-01

    A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed

  14. Dreams and creative problem-solving.

    Science.gov (United States)

    Barrett, Deirdre

    2017-10-01

    Dreams have produced art, music, novels, films, mathematical proofs, designs for architecture, telescopes, and computers. Dreaming is essentially our brain thinking in another neurophysiologic state-and therefore it is likely to solve some problems on which our waking minds have become stuck. This neurophysiologic state is characterized by high activity in brain areas associated with imagery, so problems requiring vivid visualization are also more likely to get help from dreaming. This article reviews great historical dreams and modern laboratory research to suggest how dreams can aid creativity and problem-solving. © 2017 New York Academy of Sciences.

  15. Student Obstacles in Solving Algebraic Thinking Problems

    Science.gov (United States)

    Andini, W.; Suryadi, D.

    2017-09-01

    The aim of this research is to analize the student obstacles on solving algebraic thinking problems in low grades elementary school. This research is a preliminary qualitative research, and involved 66 students of grade 3 elementary school. From the analysis student test results, most of student experience difficulty in solving algebraic thinking problems. The main obstacle is the student’s difficulty in understanding the problem of generalizing the pattern because the students are not accustomed to see the rules that exist in generalize the pattern.

  16. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    Science.gov (United States)

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  17. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    Science.gov (United States)

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  18. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    Science.gov (United States)

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  19. RUPS: Research Utilizing Problem Solving. Classroom Version. Leader's Manual.

    Science.gov (United States)

    Jung, Charles; And Others

    This training manual is for teachers participating in the Research Utilizing Problem Solving (RUPS) workshops. The workshops last for four and one-half days and are designed to improve the school setting and to increase teamwork skills. The teachers participate in simulation exercises in which they help a fictitious teacher or principal solve a…

  20. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    Science.gov (United States)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  1. Processes involved in solving mathematical problems

    Science.gov (United States)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  2. Rational approximatons for solving cauchy problems

    Directory of Open Access Journals (Sweden)

    Veyis Turut

    2016-08-01

    Full Text Available In this letter, numerical solutions of Cauchy problems are considered by multivariate Padé approximations (MPA. Multivariate Padé approximations (MPA were applied to power series solutions of Cauchy problems that solved by using He’s variational iteration method (VIM. Then, numerical results obtained by using multivariate Padé approximations were compared with the exact solutions of Cauchy problems.

  3. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  4. AI tools in computer based problem solving

    Science.gov (United States)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  5. Using systems analysis to improve decision making in solving mixed waste problems at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.; Osborne-Lee, I.W.; Nehls, J.W. Jr.

    1995-01-01

    Systems analysis methods and tools have been developed and applied to the problem of selecting treatment technologies for mixed wastes. The approach, which is based on decision analysis, process modeling, and process simulation with a tool developed in-house, provides a one-of-a-kind resource for waste treatment alternatives evaluation and has played a key role in developing mandated treatment plans for Oak Ridge Reservation mixed waste

  6. Problem solving with genetic algorithms and Splicer

    Science.gov (United States)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  7. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  8. How States Can Promote Local Innovation, Options, and Problem-Solving in Public Education. Linking State and Local School Improvement

    Science.gov (United States)

    Posamentier, Jordan; Lake, Robin; Hill, Paul

    2017-01-01

    State policy plays a critical role in determining whether and how well local education improvement strategies can be implemented. As states rework their education policies under the Every Student Succeeds Act (ESSA), state and local leaders need a way to assess their current policy environment and identify the changes needed to encourage local…

  9. Modeling visual problem solving as analogical reasoning.

    Science.gov (United States)

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Insightful problem solving in an Asian elephant.

    Directory of Open Access Journals (Sweden)

    Preston Foerder

    Full Text Available The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  11. Insightful problem solving in an Asian elephant.

    Science.gov (United States)

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  12. Solving multiconstraint assignment problems using learning automata.

    Science.gov (United States)

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the

  13. Solving the SAT problem using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Arunava Bhattacharjee

    2017-08-01

    Full Text Available In this paper we propose our genetic algorithm for solving the SAT problem. We introduce various crossover and mutation techniques and then make a comparative analysis between them in order to find out which techniques are the best suited for solving a SAT instance. Before the genetic algorithm is applied to an instance it is better to seek for unit and pure literals in the given formula and then try to eradicate them. This can considerably reduce the search space, and to demonstrate this we tested our algorithm on some random SAT instances. However, to analyse the various crossover and mutation techniques and also to evaluate the optimality of our algorithm we performed extensive experiments on benchmark instances of the SAT problem. We also estimated the ideal crossover length that would maximise the chances to solve a given SAT instance.

  14. What is physics problem solving competency?

    DEFF Research Database (Denmark)

    Niss, Martin

    2018-01-01

    on the nature of physics problem- solving competency. The first, Sommerfeld’s, is a “theory first, phenomenon second” approach. Here the relevant problems originate in one of the theories of physics and the job goal of the problem- solver is to make a mathematical analysis of the suitable equation......A central goal of physics education is to teach problem-solving competency, but the nature of this competency is not well-described in the literature. The present paperarticle uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions......(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi’s position is a “phenomenon first, theory second” approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions...

  15. Solving manufacturing problems for L-carnitine-L-tartrate to improve the likelihood of successful product scale-up

    Directory of Open Access Journals (Sweden)

    Badawi Aliaa A.

    2017-12-01

    Full Text Available L-carnitine-L-tartrate, a non-essential amino acid, is hygroscopic. This causes a problem in tablet production due to pronounced adhesion of tablets to punches. A 33 full factorial design was adopted to suggest a tablet formulation. Three adsorbents were suggested (Aerosil 200, Aerosil R972, talc to reduce stickiness at three concentrations (1, 3 and 5 %, and three fillers (mannitol, Avicel PH 101, Dibasic calcium phosphate were chosen to prepare 27 formulations. Micromeritic properties of formulations were studied, and tablets were prepared by wet granulation. Absence of picking, sticking or capping, recording of sufficient hardness, acceptable friability and tablet ejection force indicated formulation success. The resulting formulation prepared using Avicel PH 101 and 1 % Aerosil 200 was submitted to further investigation in order to choose the most suitable compression conditions using a 33 full factorial design. Variables included compression force, tableting rate and magnesium stearate (lubricant concentration. The formulation prepared at compression force of 25 kN, using 2 % magnesium stearate, at a production rate of 30 tablets/ minute, was found to be the most appropriate scale up candidate.

  16. Perceptual Salience and Children's Multidimensional Problem Solving

    Science.gov (United States)

    Odom, Richard D.; Corbin, David W.

    1973-01-01

    Uni- and multidimensional processing of 6- to 9-year olds was studied using recall tasks in which an array of stimuli was reconstructed to match a model array. Results indicated that both age groups were able to solve multidimensional problems, but that solution rate was retarded by the unidimensional processing of highly salient dimensions.…

  17. Problem Solving in the Early Years

    Science.gov (United States)

    Diamond, Lindsay Lile

    2018-01-01

    Problem solving is recognized as a critical component to becoming a self-determined individual. The development of this skill should be fostered in the early years through the use of age-appropriate direct and embedded activities. However, many early childhood teachers may not be providing adequate instruction in this area. This column provides a…

  18. Young Children's Drawings in Problem Solving

    Science.gov (United States)

    Bakar, Kamariah Abu; Way, Jennifer; Bobis, Janette

    2016-01-01

    This paper explores young children's drawings (6 years old) in early number and addition activities in Malaysia. Observation, informal interviews and analysis of drawings revealed two types of drawing, and gave insight into the transitional process required for children to utilise drawings in problem solving. We argue the importance of valuing and…

  19. Solving Mathematical Problems A Personal Perspective

    CERN Document Server

    Tao, Terence

    2006-01-01

    Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.

  20. Problem-Solving Strategies for Career Planning.

    Science.gov (United States)

    McBryde, Merry J.; Karr-Kidwell, PJ

    The need for new expertise in problem solving in the work setting has emerged as a woman's issue because work outside the home has become a primary means for personal goal attainment for about half the women in the United States and because traditional career patterns and norms are ineffective. Career planning is the process of individual career…

  1. Collaborative Problem Solving Methods towards Critical Thinking

    Science.gov (United States)

    Yin, Khoo Yin; Abdullah, Abdul Ghani Kanesan; Alazidiyeen, Naser Jamil

    2011-01-01

    This research attempts to examine the collaborative problem solving methods towards critical thinking based on economy (AE) and non economy (TE) in the SPM level among students in the lower sixth form. The quasi experiment method that uses the modal of 3X2 factorial is applied. 294 lower sixth form students from ten schools are distributed…

  2. Supporting Organizational Problem Solving with a Workstation.

    Science.gov (United States)

    1982-07-01

    G. [., and Sussman, G. J. AMORD: Explicit Control or Reasoning. In Proceedings of the Symposium on Artificial Intellignece and Programming Languagues...0505 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS 545...extending ideas from the field of Artificial Intelligence (A), we describ office work as a problem solving activity. A knowledge embedding language called

  3. Mental Imagery in Creative Problem Solving.

    Science.gov (United States)

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  4. Problem solving environment for distributed interactive applications

    NARCIS (Netherlands)

    Rycerz, K.; Bubak, M.; Sloot, P.; Getov, V.; Gorlatch, S.; Bubak, M.; Priol, T.

    2008-01-01

    Interactive Problem Solving Environments (PSEs) offer an integrated approach for constructing and running complex systems, such as distributed simulation systems. To achieve efficient execution of High Level Architecture (HLA)-based distributed interactive simulations on the Grid, we introduce a PSE

  5. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  6. Solving Wicked Problems through Action Learning

    Science.gov (United States)

    Crul, Liselore

    2014-01-01

    This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…

  7. Quickfire Challenges to Inspire Problem Solving

    Science.gov (United States)

    Harper, Suzanne R.; Cox, Dana C.

    2017-01-01

    In the authors' attempts to incorporate problem solving into their mathematics courses, they have found that student ambition and creativity are often hampered by feelings of risk, as many students are conditioned to value a produced solution over the actual process of building one. Eliminating risk is neither possible nor desired. The challenge,…

  8. [Problem-solving strategies and marital satisfaction].

    Science.gov (United States)

    Kriegelewicz, Olga

    2006-01-01

    This study investigated the relation between problem-solving strategies in the marital conflict and marital satisfaction. Four problem-solving strategies (Dialogue, Loyalty, Escalation of conflict and Withdrawal) were measured by the Problem-Solving Strategies Inventory, in two versions: self-report and report of partners' perceived behaviour. This measure refers to the concept of Rusbult, Johnson and Morrow, and meets high standards of reliability (alpha Cronbach from alpha = 0.78 to alpha = 0.94) and validity. Marital satisfaction was measured by Marriage Success Scale. The sample was composed of 147 marital couples. The study revealed that satisfied couples, in comparison with non-satisfied couples, tend to use constructive problem-solving strategies (Dialogue and Loyalty). They rarely use destructive strategies like Escalation of conflict or Withdrawal. Dialogue is the strategy connected with satisfaction in a most positive manner. These might be very important guidelines to couples' psychotherapy. Loyalty to oneself is a significant positive predictor of male satisfaction is also own Loyalty. The study shows that constructive attitudes are the most significant predictors of marriage satisfaction. It is therefore worth concentrating mostly on them in the psychotherapeutic process instead of eliminating destructive attitudes.

  9. Nanomedicine: Problem Solving to Treat Cancer

    Science.gov (United States)

    Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.

    2006-01-01

    Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…

  10. Cooperative learning, problem solving and mediating artifacts

    African Journals Online (AJOL)

    PROF.MIREKU

    10, 2012. 39. Cooperative learning, problem solving and mediating artifacts. F. Bahmaei6 & N. ... out cooperative learning in the end, post-test was done and by analyzing the tests it was concluded that ... Johnson et al, 1991 b, Reynolds et al. 1995, Vidakovic .... connection of mental constructs (Hiebert, Carpenter, 1992).

  11. Behaviors of Problem-Solving Groups

    National Research Council Canada - National Science Library

    Bennis, Warren G

    1958-01-01

    The results of two studies are contained in this report in summary form. They represent the first parts of a program of research designed to study the effects of change and history on the on the behaviors of problem-solving Groups...

  12. Problem solving stages in the five square problem

    Directory of Open Access Journals (Sweden)

    Anna eFedor

    2015-08-01

    Full Text Available According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviourally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. 101 participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and 67 of them also had the possibility of reporting impasse while working on the task. We have found that 49% (19 out of 39 of the solvers and 13% (8 out of 62 of the non-solvers followed the classic four-stage model of insight. The rest of the participants had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model must be extended to explain variability on the individual level. We provide a model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviourally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behaviour to verify insight theory.

  13. Problem solving stages in the five square problem.

    Science.gov (United States)

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

  14. Characteristics of students in comparative problem solving

    Science.gov (United States)

    Irfan, M.; Sudirman; Rahardi, R.

    2018-01-01

    Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.

  15. Algorithms for solving common fixed point problems

    CERN Document Server

    Zaslavski, Alexander J

    2018-01-01

    This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter ...

  16. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    Science.gov (United States)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  17. Students’ Covariational Reasoning in Solving Integrals’ Problems

    Science.gov (United States)

    Harini, N. V.; Fuad, Y.; Ekawati, R.

    2018-01-01

    Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.

  18. impact of the curriculum reform on problem solving ability in ...

    African Journals Online (AJOL)

    unesco

    that “learning is problem solving”. Therefore, teaching problem solving is teaching people how to learn, so is problem solving in chemistry education. Kalbag (4) states that problem solving orientation in chemistry education has an importance in that problem solving converts information into knowledge. Kalbag further states.

  19. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human

    2009-09-01

    Full Text Available Three forms of mathematics education at school level are distinguished: direct expository teaching with an emphasis on procedures, with the expectation that learners will at some later stage make logical and functional sense of what they have learnt and practised (the prevalent form, mathematically rigorous teaching in terms of fundamental mathematical concepts, as in the so-called “modern mathematics” programmes of the sixties, teaching and learning in the context of engaging with meaningful problems and focused both on learning to become good problem solvers (teaching for problem solving andutilising problems as vehicles for the development of mathematical knowledge andproficiency by learners (problem-centred learning, in conjunction with substantialteacher-led social interaction and mathematical discourse in classrooms.Direct expository teaching of mathematical procedures dominated in school systems after World War II, and was augmented by the “modern mathematics” movement in the period 1960-1970. The latter was experienced as a major failure, and was soon abandoned. Persistent poor outcomes of direct expository procedural teaching of mathematics for the majority of learners, as are still being experienced in South Africa, triggered a world-wide movement promoting teaching mathematics for and via problem solving in the seventies and eighties of the previous century. This movement took the form of a variety of curriculum experiments in which problem solving was the dominant classroom activity, mainly in the USA, Netherlands, France and South Africa. While initially focusing on basic arithmetic (computation with whole numbers and elementary calculus, the problem-solving movement started to address other mathematical topics (for example, elementary statistics, algebra, differential equations around the turn of the century. The movement also spread rapidly to other countries, including Japan, Singapore and Australia. Parallel with the

  20. Counterfactual Problem Solving and Situated Cognition

    Directory of Open Access Journals (Sweden)

    Glebkin V.V.,

    2017-08-01

    Full Text Available The paper describes and interprets data of a study on counterfactual problem solving in representatives of modern industrial culture. The study was inspired by similar experiments carried out by A.R. Luria during his expedition to Central Asia. The hypothesis of our study was that representatives of modern industrial culture would solve counterfactual puzzles at a slower rate and with higher numbers of mistakes than similar non-counterfactual tasks. The experiments we conducted supported this hypothesis as well as provided us with some insights as to how to further develop it. For instance, we found no significant differences in time lag in solving counterfactual and ‘realistic’ tasks between the subjects with mathematical and the ones with liberal arts education. As an interpretation of the obtained data, we suggest a two-stage model of counterfactual problem solving: on the first stage, where situated cognition dominates, the realistic situation is transferred into the system of symbols unrelated to this very situation; on the second stage, operations are carried out within the framework of this new system of symbols.

  1. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    Science.gov (United States)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  2. Problem solving: How can we help students overcome cognitive difficulties

    Directory of Open Access Journals (Sweden)

    Liberato Cardellini

    2014-12-01

    Full Text Available The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in a consistent manner. Topics such as atoms, molecules, and the mole concept are fundamental in chemistry and instructors may think that, for our students, should be easy to learn these concepts and to use them in solving problems, but it is not always so. If teachers do not put emphasis on the logical process during solving problems, students are at risk to become more proficient at applying the formulas rather than to reason. This disappointing result is clear from the outcomes of questionnaires meant to measure the ability to calculate the mass of a sample from the number of atoms and vice versa. A suggestion from the cognitive load theory has proved a useful way to improve students’ skills for this type of problems: the use of worked out examples. The repetition after two weeks of the Friedel-Maloney test after the use of worked examples shows that students' skills significantly improve. Successful students in all questions jumped from 2 to 64%.

  3. Learning Matlab a problem solving approach

    CERN Document Server

    Gander, Walter

    2015-01-01

    This comprehensive and stimulating introduction to Matlab, a computer language now widely used for technical computing, is based on an introductory course held at Qian Weichang College, Shanghai University, in the fall of 2014.  Teaching and learning a substantial programming language aren’t always straightforward tasks. Accordingly, this textbook is not meant to cover the whole range of this high-performance technical programming environment, but to motivate first- and second-year undergraduate students in mathematics and computer science to learn Matlab by studying representative problems, developing algorithms and programming them in Matlab. While several topics are taken from the field of scientific computing, the main emphasis is on programming. A wealth of examples are completely discussed and solved, allowing students to learn Matlab by doing: by solving problems, comparing approaches and assessing the proposed solutions.

  4. Solving-Problems and Hypermedia Systems

    Directory of Open Access Journals (Sweden)

    Ricardo LÓPEZ FERNÁNDEZ

    2009-06-01

    Full Text Available The solving problems like the transfer constitute two nuclei, related, essential in the cognitive investigation and in the mathematical education. No is in and of itself casual that, from the first moment, in the investigations on the application gives the computer science to the teaching the mathematics, cybernetic models were developed that simulated processes problem solving and transfer cotexts (GPS, 1969 and IDEA (Interactive Decision Envisioning Aid, Pea, BrunerCohen, Webster & Mellen, 1987. The present articulates it analyzes, that can contribute to the development in this respect the new technologies hypermedias, give applications that are good to implement processes of learning the heuristic thought and give the capacity of «transfer». From our perspective and from the experience that we have developed in this field, to carry out a function gives analysis and the theories on the problem solving, it requires that we exercise a previous of interpretation the central aspsects over the theories gives the solving problem and transfer starting from the classic theories on the prosecution of the information. In this sense, so much the theory gives the dual memory as the most recent, J. Anderson (1993 based on the mechanisms activation nodes information they allow to establish an interpretation suggester over the mental mechanism that you/they operate in the heuristic processes. On this analysis, the present articulates it develops a theoritical interpretation over the function gives the supports based on technology hypermedia advancing in the definition of a necessary theoretical body, having in it counts that on the other hand the practical experimentation is permanent concluding in the efficiency and effectiveness gives the support hypermedia like mechanism of comunication in the processes heuristic learning.

  5. Problem solving in nuclear engineering using supercomputers

    International Nuclear Information System (INIS)

    Schmidt, F.; Scheuermann, W.; Schatz, A.

    1987-01-01

    The availability of supercomputers enables the engineer to formulate new strategies for problem solving. One such strategy is the Integrated Planning and Simulation System (IPSS). With the integrated systems, simulation models with greater consistency and good agreement with actual plant data can be effectively realized. In the present work some of the basic ideas of IPSS are described as well as some of the conditions necessary to build such systems. Hardware and software characteristics as realized are outlined. (orig.) [de

  6. Students’ difficulties in solving linear equation problems

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  7. Comprehension and computation in Bayesian problem solving

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson

    2015-07-01

    Full Text Available Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian reasoning relative to normalized formats (e.g. probabilities, percentages, both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on transparent Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e. transparent problem structures at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct versus incorrect reasoners depart, and how individual difference might influence this time point.

  8. [Methods for teaching problem-solving in medical schools].

    Science.gov (United States)

    Shumway, J M; Vargas, M E; Heller, L E

    1984-01-01

    , teachers of medicine can improve their students' performance by adjusting these available methods to their particular needs and to those of their schools. The problem-solving methods described can help teachers shape the learning environment so as to develop in their students the most coherent, logical, concrete and complete set of skills possible. These methods can so be of value in improving the training of future doctors and the quality of their decisions to the benefit of their patients.

  9. Exploiting Quantum Resonance to Solve Combinatorial Problems

    Science.gov (United States)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  10. The Effect of Problem Solving Teaching with Texts of Turkish Lesson on Students’ Problem Solving Skills

    OpenAIRE

    Havva ILGIN; Derya ARSLAN

    2012-01-01

    In this research, by carrying out activities based on texts, effect of providing problem solving skill on students’ levels of problem solving attainment was tried to be identified. Research was performed according to pretest-posttest Experimental Model with Control Group, in 2008-2009 educational year at second grade of an elementary school in Denizli province. For nine weeks, four hours in a week, while teacher guide book was being followed in control group in Turkish language lesson, texts ...

  11. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    Science.gov (United States)

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  12. Teaching Problem Solving Skills to Elementary Age Students with Autism

    Science.gov (United States)

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  13. Scaffolding for solving problem in static fluid: A case study

    Science.gov (United States)

    Koes-H, Supriyono; Muhardjito, Wijaya, Charisma P.

    2018-01-01

    Problem solving is one of the basic abilities that should be developed from learning physics. However, students still face difficulties in the process of non-routine problem-solving. Efforts are necessary to be taken in order to identify such difficulties and the solutions to solve them. An effort in the form of a diagnosis of students' performance in problem solving can be taken to identify their difficulties, and various instructional scaffolding supports can be utilized to eliminate the difficulties. This case study aimed to describe the students' difficulties in solving static fluid problems and the effort to overcome such difficulties through different scaffolding supports. The research subjects consisted of four 10-grade students of (Public Senior High School) SMAN 4 Malang selected by purposive sampling technique. The data of students' difficulties were collected via think-aloud protocol implemented on students' performance in solving non-routine static fluid problems. Subsequently, combined scaffolding supports were given to the students based on their particular difficulties. The research findings pointed out that there were several conceptual difficulties discovered from the students when solving static fluid problems, i.e. the use of buoyancy force formula, determination of all forces acting on a plane in a fluid, the resultant force on a plane in a fluid, and determination of a plane depth in a fluid. An effort that can be taken to overcome such conceptual difficulties is providing a combination of some appropriate scaffolding supports, namely question prompts with specific domains, simulation, and parallel modeling. The combination can solve students' lack of knowledge and improve their conceptual understanding, as well as help them to find solutions by linking the problems with their prior knowledge. According to the findings, teachers are suggested to diagnose the students' difficulties so that they can provide an appropriate combination of

  14. A Problem Solving Intervention for hospice caregivers: a pilot study.

    Science.gov (United States)

    Demiris, George; Oliver, Debra Parker; Washington, Karla; Fruehling, Lynne Thomas; Haggarty-Robbins, Donna; Doorenbos, Ardith; Wechkin, Hope; Berry, Donna

    2010-08-01

    The Problem Solving Intervention (PSI) is a structured, cognitive-behavioral intervention that provides people with problem-solving coping skills to help them face major negative life events and daily challenges. PSI has been applied to numerous settings but remains largely unexplored in the hospice setting. The aim of this pilot study was to demonstrate the feasibility of PSI targeting informal caregivers of hospice patients. We enrolled hospice caregivers who were receiving outpatient services from two hospice agencies. The intervention included three visits by a research team member. The agenda for each visit was informed by the problem-solving theoretical framework and was customized based on the most pressing problems identified by the caregivers. We enrolled 29 caregivers. Patient's pain was the most frequently identified problem. On average, caregivers reported a higher quality of life and lower level of anxiety postintervention than at baseline. An examination of the caregiver reaction assessment showed an increase of positive esteem average and a decrease of the average value of lack of family support, impact on finances, impact on schedules, and on health. After completing the intervention, caregivers reported lower levels of anxiety, improved problem solving skills, and a reduced negative impact of caregiving. Furthermore, caregivers reported high levels of satisfaction with the intervention, perceiving it as a platform to articulate their challenges and develop a plan to address them. Findings demonstrate the value of problem solving as a psycho-educational intervention in the hospice setting and call for further research in this area.

  15. A literature review of expert problem solving using analogy

    OpenAIRE

    Mair, C; Martincova, M; Shepperd, MJ

    2009-01-01

    We consider software project cost estimation from a problem solving perspective. Taking a cognitive psychological approach, we argue that the algorithmic basis for CBR tools is not representative of human problem solving and this mismatch could account for inconsistent results. We describe the fundamentals of problem solving, focusing on experts solving ill-defined problems. This is supplemented by a systematic literature review of empirical studies of expert problem solving of non-trivial pr...

  16. Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving

    Science.gov (United States)

    Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.

    2012-01-01

    People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…

  17. Improvement of Word Problem Solving and Basic Mathematics Competencies in Students with Attention Deficit/Hyperactivity Disorder and Mathematical Learning Difficulties

    Science.gov (United States)

    González-Castro, Paloma; Cueli, Marisol; Areces, Débora; Rodríguez, Celestino; Sideridis, Georgios

    2016-01-01

    Problem solving represents a salient deficit in students with mathematical learning difficulties (MLD) primarily caused by difficulties with informal and formal mathematical competencies. This study proposes a computerized intervention tool, the integrated dynamic representation (IDR), for enhancing the early learning of basic mathematical…

  18. Domain decomposition methods for solving an image problem

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  19. Data completion problems solved as Nash games

    International Nuclear Information System (INIS)

    Habbal, A; Kallel, M

    2012-01-01

    The Cauchy problem for an elliptic operator is formulated as a two-player Nash game. Player (1) is given the known Dirichlet data, and uses as strategy variable the Neumann condition prescribed over the inaccessible part of the boundary. Player (2) is given the known Neumann data, and plays with the Dirichlet condition prescribed over the inaccessible boundary. The two players solve in parallel the associated Boundary Value Problems. Their respective objectives involve the gap between the non used Neumann/Dirichlet known data and the traces of the BVP's solutions over the accessible boundary, and are coupled through a difference term. We prove the existence of a unique Nash equilibrium, which turns out to be the reconstructed data when the Cauchy problem has a solution. We also prove that the completion algorithm is stable with respect to noise, and present two 3D experiments which illustrate the efficiency and stability of our algorithm.

  20. Programming languages for business problem solving

    CERN Document Server

    Wang, Shouhong

    2007-01-01

    It has become crucial for managers to be computer literate in today's business environment. It is also important that those entering the field acquire the fundamental theories of information systems, the essential practical skills in computer applications, and the desire for life-long learning in information technology. Programming Languages for Business Problem Solving presents a working knowledge of the major programming languages, including COBOL, C++, Java, HTML, JavaScript, VB.NET, VBA, ASP.NET, Perl, PHP, XML, and SQL, used in the current business computing environment. The book examin

  1. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    Science.gov (United States)

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  2. Investigasi Kemampuan Problem Solving dan Problem Posing Matematis Mahasiswa Via Pendekatan Realistic

    OpenAIRE

    Afriansyah, Ekasatya Aldila

    2016-01-01

    Mathematical problem solving and problem posing skill are the mathematical skills that need to be owned by students. By having this skill, students can be more creative in expressing ideas by connecting the knowledge that they held previously. But in reality, there are some students who are lack of problem solving skill; therefore it is really important to improve learning through appropriate approach. Realistic approach had been chosen as the learning theory to be applied in the class. This ...

  3. Can You Teach a Teen New Tricks? Problem Solving Skills Training Improves Oral Medication Adherence in Pediatric Patients with Inflammatory Bowel Disease Participating in a Randomized Trial.

    Science.gov (United States)

    Greenley, Rachel N; Gumidyala, Amitha P; Nguyen, Eve; Plevinsky, Jill M; Poulopoulos, Natasha; Thomason, Molly M; Walter, Jennifer G; Wojtowicz, Andrea A; Blank, Ellen; Gokhale, Ranjana; Kirschner, Barbara S; Miranda, Adrian; Noe, Joshua D; Stephens, Michael C; Werlin, Steven; Kahn, Stacy A

    2015-11-01

    Medication nonadherence is associated with higher disease activity, greater health care utilization, and lower health-related quality of life in pediatric inflammatory bowel diseases (IBD). Problem solving skills training (PSST) is a useful tool to improve adherence in patients with chronic diseases but has not been fully investigated in IBD. This study assessed feasibility, acceptability, and preliminary efficacy of PSST in pediatric IBD. Recruitment occurred during outpatient clinic appointments. After completion of baseline questionnaires, families were randomized to a treatment group or wait-list comparison group. The treatment group received either 2 or 4 PSST sessions. Youth health-related quality of life was assessed at 3 time points, and electronic monitoring of oral medication adherence occurred for the study duration. Seventy-six youth (ages 11-18 years) on an oral IBD maintenance medication participated. High retention (86%) and treatment fidelity rates (95%) supported feasibility. High satisfaction ratings (mean values ≥4.2 on 1-5 scale) supported intervention acceptability. Modest increases in adherence occurred after 2 PSST sessions among those with imperfect baseline adherence (d = 0.41, P 0.05). Phone-delivered PSST was feasible and acceptable. Efficacy estimates were similar to those of lengthier interventions conducted in other chronic illness populations. Older adolescents benefited more from the intervention than their younger counterparts.

  4. Vitamin B12 and Folic Acid Improve Gross Motor and Problem-Solving Skills in Young North Indian Children: A Randomized Placebo-Controlled Trial.

    Science.gov (United States)

    Kvestad, Ingrid; Taneja, Sunita; Kumar, Tivendra; Hysing, Mari; Refsum, Helga; Yajnik, Chittaranjan S; Bhandari, Nita; Strand, Tor A

    2015-01-01

    Deficiencies of vitamin B12 and folate are associated with delayed development and neurological manifestations. The objective of this study was to measure the effect of daily supplementation of vitamin B12 and/or folic acid on development in young North Indian children. In a randomized, double blind trial, children aged six to 30 months, received supplement with placebo or vitamin B12 and/or folic acid for six months. Children were allocated in a 1:1:1:1 ratio in a factorial design and in blocks of 16. We measured development in 422 children by the Ages and Stages Questionnaire 3rd ed. at the end of the intervention. Compared to placebo, children who received both vitamin B12 and folic acid had 0.45 (95% CI 0.19, 0.73) and 0.28 (95% CI 0.02, 0.54) higher SD-units in the domains of gross motor and problem solving functioning, respectively. The effect was highest in susceptible subgroups consisting of stunted children, those with high plasma homocysteine (> 10 μmol/L) or in those who were younger than 24 at end study. With the exception of a significant improvement on gross motor scores by vitamin B12 alone, supplementation of either vitamin alone had no effect on any of the outcomes. Our findings suggest that supplementation of vitamin B12 and folic acid benefit development in North Indian Children. ClinicalTrials.gov NCT00717730.

  5. Pendekatan Problem Solving berbantuan Komputer dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Laswadi Laswadi

    2015-06-01

    Full Text Available Creating effective mathematics learning is a complex and continuous undertaking. Using the right approach of learning and utilizing technological developments is an attempt to improve the quality of learning. This paper examines the problem solving learning computer-assisted and how its potential in developing high-order thinking skills of students. 

  6. RUPS: Research Utilizing Problem Solving. Administrators Version. Participant Materials.

    Science.gov (United States)

    Jung, Charles; And Others

    These materials are the handouts for school administrators participating in RUPS (Research Utilizing Problem Solving) workshops. The purposes of the workshops are to develop skills for improving schools and to increase teamwork skills. The handouts correspond to the 16 subsets that make up the five-day workshop: (1) orientation; (2) identifying…

  7. Team Self-Assessment: Problem Solving for Small Workgroups.

    Science.gov (United States)

    LoBue, Robert

    2002-01-01

    Describes team self-assessment, a task force approach involving frontline workers/supervisors in solving problems or improving performance. Provides examples and discusses its theoretical bases: control self-assessment, Belbin's team roles research, and the team climate inventory. (Contains 23 references.) (SK)

  8. Medical Problem-Solving: A Critique of the Literature.

    Science.gov (United States)

    McGuire, Christine H.

    1985-01-01

    Prescriptive, decision-analysis of medical problem-solving has been based on decision theory that involves calculation and manipulation of complex probability and utility values to arrive at optimal decisions that will maximize patient benefits. The studies offer a methodology for improving clinical judgment. (Author/MLW)

  9. Adventures in Exercise Physiology: Enhancing Problem Solving and Assessment

    Science.gov (United States)

    FitzPatrick, Kathleen A.

    2004-01-01

    I altered the format of an exercise physiology course from traditional lecture to emphasizing daily reading quizzes and group problem-solving activities. I used the SALGains evaluation to compare the two approaches and saw significant improvements in the evaluation ratings of students who were taught using the new format. Narrative responses…

  10. Exploring mathematics problem-solving and proof

    CERN Document Server

    Grieser, Daniel

    2018-01-01

    Have you ever faced a mathematical problem and had no idea how to approach it? Or perhaps you had an idea but got stuck halfway through? This book guides you in developing your creativity, as it takes you on a voyage of discovery into mathematics. Readers will not only learn strategies for solving problems and logical reasoning, but they will also learn about the importance of proofs and various proof techniques. Other topics covered include recursion, mathematical induction, graphs, counting, elementary number theory, and the pigeonhole, extremal and invariance principles. Designed to help students make the transition from secondary school to university level, this book provides readers with a refreshing look at mathematics and deep insights into universal principles that are valuable far beyond the scope of this book. Aimed especially at undergraduate and secondary school students as well as teachers, this book will appeal to anyone interested in mathematics. Only basic secondary school mathematics is requi...

  11. Solving fault diagnosis problems linear synthesis techniques

    CERN Document Server

    Varga, Andreas

    2017-01-01

    This book addresses fault detection and isolation topics from a computational perspective. Unlike most existing literature, it bridges the gap between the existing well-developed theoretical results and the realm of reliable computational synthesis procedures. The model-based approach to fault detection and diagnosis has been the subject of ongoing research for the past few decades. While the theoretical aspects of fault diagnosis on the basis of linear models are well understood, most of the computational methods proposed for the synthesis of fault detection and isolation filters are not satisfactory from a numerical standpoint. Several features make this book unique in the fault detection literature: Solution of standard synthesis problems in the most general setting, for both continuous- and discrete-time systems, regardless of whether they are proper or not; consequently, the proposed synthesis procedures can solve a specific problem whenever a solution exists Emphasis on the best numerical algorithms to ...

  12. Solving a Deconvolution Problem in Photon Spectrometry

    CERN Document Server

    Aleksandrov, D; Hille, P T; Polichtchouk, B; Kharlov, Y; Sukhorukov, M; Wang, D; Shabratova, G; Demanov, V; Wang, Y; Tveter, T; Faltys, M; Mao, Y; Larsen, D T; Zaporozhets, S; Sibiryak, I; Lovhoiden, G; Potcheptsov, T; Kucheryaev, Y; Basmanov, V; Mares, J; Yanovsky, V; Qvigstad, H; Zenin, A; Nikolaev, S; Siemiarczuk, T; Yuan, X; Cai, X; Redlich, K; Pavlinov, A; Roehrich, D; Manko, V; Deloff, A; Ma, K; Maruyama, Y; Dobrowolski, T; Shigaki, K; Nikulin, S; Wan, R; Mizoguchi, K; Petrov, V; Mueller, H; Ippolitov, M; Liu, L; Sadovsky, S; Stolpovsky, P; Kurashvili, P; Nomokonov, P; Xu, C; Torii, H; Il'kaev, R; Zhang, X; Peresunko, D; Soloviev, A; Vodopyanov, A; Sugitate, T; Ullaland, K; Huang, M; Zhou, D; Nystrand, J; Punin, V; Yin, Z; Batyunya, B; Karadzhev, K; Nazarov, G; Fil'chagin, S; Nazarenko, S; Buskenes, J I; Horaguchi, T; Djuvsland, O; Chuman, F; Senko, V; Alme, J; Wilk, G; Fehlker, D; Vinogradov, Y; Budilov, V; Iwasaki, T; Ilkiv, I; Budnikov, D; Vinogradov, A; Kazantsev, A; Bogolyubsky, M; Lindal, S; Polak, K; Skaali, B; Mamonov, A; Kuryakin, A; Wikne, J; Skjerdal, K

    2010-01-01

    We solve numerically a deconvolution problem to extract the undisturbed spectrum from the measured distribution contaminated by the finite resolution of the measuring device. A problem of this kind emerges when one wants to infer the momentum distribution of the neutral pions by detecting the it decay photons using the photon spectrometer of the ALICE LHC experiment at CERN {[}1]. The underlying integral equation connecting the sought for pion spectrum and the measured gamma spectrum has been discretized and subsequently reduced to a system of linear algebraic equations. The latter system, however, is known to be ill-posed and must be regularized to obtain a stable solution. This task has been accomplished here by means of the Tikhonov regularization scheme combined with the L-curve method. The resulting pion spectrum is in an excellent quantitative agreement with the pion spectrum obtained from a Monte Carlo simulation. (C) 2010 Elsevier B.V. All rights reserved.

  13. Solving the Examination Timetabling Problem in GPUs

    Directory of Open Access Journals (Sweden)

    Vasileios Kolonias

    2014-07-01

    Full Text Available The examination timetabling problem belongs to the class of combinatorial optimization problems and is of great importance for every University. In this paper, a hybrid evolutionary algorithm running on a GPU is employed to solve the examination timetabling problem. The hybrid evolutionary algorithm proposed has a genetic algorithm component and a greedy steepest descent component. The GPU computational capabilities allow the use of very large population sizes, leading to a more thorough exploration of the problem solution space. The GPU implementation, depending on the size of the problem, is up to twenty six times faster than the identical single-threaded CPU implementation of the algorithm. The algorithm is evaluated with the well known Toronto datasets and compares well with the best results found in the bibliography. Moreover, the selection of the encoding of the chromosomes and the tournament selection size as the population grows are examined and optimized. The compressed sparse row format is used for the conflict matrix and was proven essential to the process, since most of the datasets have a small conflict density, which translates into an extremely sparse matrix.

  14. Solving Math Problems Approximately: A Developmental Perspective.

    Directory of Open Access Journals (Sweden)

    Dana Ganor-Stern

    Full Text Available Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults' ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger than the exact answer and when it was far (vs. close from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner.

  15. Using qualitative problem-solving strategies to highlight the role of conceptual knowledge in solving problems

    Science.gov (United States)

    Leonard, William J.; Dufresne, Robert J.; Mestre, Jose P.

    1996-12-01

    We report on the use of qualitative problem-solving strategies in teaching an introductory, calculus-based physics course as a means of highlighting the role played by conceptual knowledge in solving problems. We found that presenting strategies during lectures and in homework solutions provides an excellent opportunity to model for students the type of concept-based, qualitative reasoning that is valued in our profession, and that student-generated strategies serve a diagnostic function by providing instructors with insights on students' conceptual understanding and reasoning. Finally, we found strategies to be effective pedagogical tools for helping students both to identify principles that could be applied to solve specific problems, as well as to recall the major principles covered in the course months after it was over.

  16. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    Science.gov (United States)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  17. Translation among Symbolic Representations in Problem-Solving. Revised.

    Science.gov (United States)

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  18. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents

    Science.gov (United States)

    Stacey, Kaye

    2005-01-01

    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  19. An Assessment of the Effect of Collaborative Groups on Students' Problem-Solving Strategies and Abilities

    Science.gov (United States)

    Cooper, Melanie M.; Cox, Charles T., Jr.; Nammouz, Minory; Case, Edward; Stevens, Ronald

    2008-01-01

    Improving students' problem-solving skills is a major goal for most science educators. While a large body of research on problem solving exists, assessment of meaningful problem solving is very difficult, particularly for courses with large numbers of students in which one-on-one interactions are not feasible. We have used a suite of software…

  20. Problem-Solving Rubrics Revisited: Attending to the Blending of Informal Conceptual and Formal Mathematical Reasoning

    Science.gov (United States)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-01-01

    Much research in engineering and physics education has focused on improving students' problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student's expertise in solving problems using these strategies. These rubrics value "communication" between the…

  1. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    Science.gov (United States)

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  2. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    Science.gov (United States)

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  3. The Effect of Problem Solving and Problem Posing Models and Innate Ability to Students Achievement

    Directory of Open Access Journals (Sweden)

    Ratna Kartika Irawati

    2015-04-01

    Full Text Available Pengaruh Model Problem Solving dan Problem Posing serta Kemampuan Awal terhadap Hasil Belajar Siswa   Abstract: Chemistry concepts understanding features abstract quality and requires higher order thinking skills. Yet, the learning on chemistry has not boost the higher order thinking skills of the students. The use of the learning model of Problem Solving and Problem Posing in observing the innate ability of the student is expected to resolve the issue. This study aims to determine the learning model which is effective to improve the study of the student with different level of innate ability. This study used the quasi-experimental design. The research data used in this research is the quiz/test of the class which consist of 14 multiple choice questions and 5 essay questions. The data analysis used is ANOVA Two Ways. The results showed that Problem Posing is more effective to improve the student compared to Problem Solving, students with high level of innate ability have better outcomes in learning rather than the students with low level of innate ability after being applied with the Problem solving and Problem posing model, further, Problem Solving and Problem Posing is more suitable to be applied to the students with high level of innate ability. Key Words: problem solving, problem posing, higher order thinking skills, innate ability, learning outcomes   Abstrak: Pemahaman konsep-konsep kimia yang bersifat abstrak membutuhkan keterampilan berpikir tingkat tinggi. Pembelajaran kimia belum mendorong siswa melakukan keterampilan berpikir tingkat tinggi. Penggunaan model pembelajaran Problem Solving dan Problem Posing dengan memperhatikan kemampuan awal siswa diduga dapat mengatasi masalah tersebut. Penelitian ini bertujuan untuk mengetahui model pembelajaran yang efektif dalam meningkatkan hasil belajar dengan kemampuan awal siswa yang berbeda. Penelitian ini menggunakan rancangan eksperimen semu. Data penelitian menggunakan tes hasil belajar

  4. Use of native species to improve carbon sequestration and contribute towards solving the environmental problems of the timberlands in Biscay, northern Spain.

    Science.gov (United States)

    Rodríguez-Loinaz, Gloria; Amezaga, Ibone; Onaindia, Miren

    2013-05-15

    The rapid transformation of natural forest areas into fast-growing exotic species plantations, where the main objective is timber and pulp production, has led to a neglect of other services forests provide in many parts of the world. One example of such a problem is the county of Biscay, where the management of these plantations has negative impacts on the environment, creating the necessity to evaluate alternative tree species for use in forestry. The actual crisis in the forest sector of the region could be an opportunity to change to native species plantations that could help restore ecosystem structure and function. However, forest managers of the region are using the current interest on carbon sequestration by forest to persist with the "pine and eucalyptus culture", arguing that these species provide a big C sequestration service. Moreover, they are promoting the expansion of eucalyptus plantations to obtain biomass for the pulp and paper industry and for bioenergy. The aim of this paper is to answer the following questions: Is this argument used by the foresters well-founded? or, could the use of native species in plantations improve the C sequestration service in Biscay while avoiding the environmental problems the actual plantations cause? To answer these questions we created three alternative future scenarios: a) the Services scenario, where there is a substitution of fast-growing exotic plantations by native broadleaf species plantations; b) the Biomass scenario, where there is a bet on eucalyptus plantations; and c) the Business as usual scenario. The changes in the C stock in living biomass in these scenarios have been simulated by a hybrid approach utilising inventories and models, and the period considered was 150 years. Our results show that the substitution of existing exotic plantations by plantations of native species has the greatest potential for increasing C sequestration. Although short- and mid-term outcomes may differ, when the long

  5. Use of EPR to Solve Biochemical Problems

    Science.gov (United States)

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  6. Modeling and Solving the Train Pathing Problem

    Directory of Open Access Journals (Sweden)

    Chuen-Yih Chen

    2009-04-01

    Full Text Available In a railroad system, train pathing is concerned with the assignment of trains to links and tracks, and train timetabling allocates time slots to trains. In this paper, we present an optimization heuristic to solve the train pathing and timetabling problem. This heuristic allows the dwell time of trains in a station or link to be dependent on the assigned tracks. It also allows the minimum clearance time between the trains to depend on their relative status. The heuristic generates a number of alternative paths for each train service in the initialization phase. Then it uses a neighborhood search approach to find good feasible combinations of these paths. A linear program is developed to evaluate the quality of each combination that is encountered. Numerical examples are provided.

  7. Relative Effects of Problem-Solving and Concept Mapping ...

    African Journals Online (AJOL)

    Relative Effects of Problem-Solving and Concept Mapping Instructional ... mapping strategies are also discussed and their significance and importance to students. ... development of problem solving skills before the end of SSCE Programmebr ...

  8. Spontaneous gestures influence strategy choices in problem solving.

    Science.gov (United States)

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  9. The Automatic Generation of Knowledge Spaces From Problem Solving Strategies

    NARCIS (Netherlands)

    Milovanovic, Ivica; Jeuring, Johan

    2016-01-01

    In this paper, we explore theoretical and practical aspects of the automatic generation of knowledge spaces from problem solving strategies. We show how the generated spaces can be used for adapting strategy-based problem solving learning environments (PSLEs).

  10. Students' Competence in some Problem Solving Skills throughout ...

    African Journals Online (AJOL)

    Students' Competence in some Problem Solving Skills throughout their B.Sc. Course. ... there is a need for explicitly identifying important cognitive skills and strategies and ... Keywords: Cognitive skills, thinking skills, problem solving, students' ...

  11. LDRD final report for improving human effectiveness for extreme-scale problem solving : assessing the effectiveness of electronic brainstorming in an industrial setting.

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Courtney C.; Stevens, Susan Marie; Davidson, George S.; Hendrickson, Stacey M. Langfitt

    2008-09-01

    An experiment was conducted comparing the effectiveness of individual versus group electronic brainstorming in order to address difficult, real world challenges. While industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term, laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges over the course of four days. Employees and contractors at a national security laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a 'wickedly' difficult problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p<0.05) out-performed the group working together. When idea quality is used as the benchmark of success, these data indicate that work-relevant challenges are better solved by aggregating electronic individual responses, rather than electronically convening a group. This research suggests that industrial reliance upon electronic problem solving groups should be tempered, and large nominal groups might be the more appropriate vehicle for solving wicked corporate issues.

  12. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees

    2003-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential

  13. Writing Plays Using Creative Problem-Solving.

    Science.gov (United States)

    Raiser, Lynne; Hinson, Shirley

    1995-01-01

    This article describes a project which involved inner city elementary grade children with disabilities in writing and performing their own plays. A four-step playwriting process focuses on theme and character development, problem finding, and writing dialogue. The project has led to improved reading skills, attention, memory skills,…

  14. Acquisition and performance of a problem-solving skill.

    Science.gov (United States)

    Morgan, B. B., Jr.; Alluisi, E. A.

    1971-01-01

    The acquisition of skill in the performance of a three-phase code transformation task (3P-COTRAN) was studied with 20 subjects who solved 27 3P-COTRAN problems during each of 8 successive sessions. The purpose of the study was to determine the changes in the 3P-COTRAN factor structure resulting from practice, the distribution of practice-related gains in performance over the nine measures of the five 3P-COTRAN factors, and the effects of transformation complexities on the 3P-COTRAN performance of subjects. A significant performance gain due to practice was observed, with improvements in speed continuing even when accuracy reached asymptotic levels. Transformation complexity showed no effect on early performances but the 3- and 4-element transformations were solved quicker than the 5-element transformation in the problem-solving Phase III of later skilled performances.

  15. Problem-Solving Phase Transitions During Team Collaboration.

    Science.gov (United States)

    Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M

    2018-01-01

    Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.

  16. Projective geometry solved problems and theory review

    CERN Document Server

    Fortuna, Elisabetta; Pardini, Rita

    2016-01-01

    This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of ...

  17. Problem-solving in a Constructivist Environment

    Directory of Open Access Journals (Sweden)

    Lee Chien Sing

    1999-01-01

    Full Text Available The dynamic challenges of an increasingly borderless world buoyed by advances in telecommunications and information technology has resulted in educational reform and subsequently, a reconceptualisation of what constitutes a learner, learning and the influence of the learning environment on the process of learning. In keeping up with the changing trends and challenges of an increasingly networked, dynamic and challenging international community, means to provide an alternative environment that stimulates inquiry and equips learners with the skills needed to manage technological change and innovations must be considered. This paper discusses the importance of interaction, cognition and context, collaboration in a networked computer-mediated environment, the problem-solving approach as a catalyst in stimulating creative and critical thinking and in providing context for meaningful interaction and whether the interactive environment created through computer-mediated collaboration will motivate learners to be responsible for their own learning and be independent thinkers. The sample involved learners from three schools in three different countries. Findings conclude that a rich interactive environment must be personally relevant to the learner by simulating authentic problems without lowering the degree of cognitive complexity. Review in curriculum, assessment and teacher training around constructivist principles are also imperative as these interrelated factors form part of the learning process system.

  18. Teacher Practices with Toddlers during Social Problem Solving Opportunities

    Science.gov (United States)

    Gloeckler, Lissy; Cassell, Jennifer

    2012-01-01

    This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…

  19. Using Systemic Problem Solving (SPS) to Assess Student ...

    African Journals Online (AJOL)

    This paper focuses on the uses of systemic problem solving in chemistry at the tertiary level. Traditional problem solving (TPS) is a useful tool to help teachers examine recall of information, comprehension, and application. However, systemic problem solving (SPS) can challenge students and probe higher cognitive skills ...

  20. The Role of Expository Writing in Mathematical Problem Solving

    Science.gov (United States)

    Craig, Tracy S.

    2016-01-01

    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  1. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    Science.gov (United States)

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  2. Capturing Problem-Solving Processes Using Critical Rationalism

    Science.gov (United States)

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  3. Systematic Problem Solving in Production: The NAX Approach

    DEFF Research Database (Denmark)

    Axelsdottir, Aslaug; Nygaard, Martin; Edwards, Kasper

    2017-01-01

    This paper outlines the NAX problem solving approach developed by a group of problem solving experts at a large Danish Producer of medical equipment. The company, “Medicmeter” is one of Denmark’s leading companies when it comes to lean and it has developed a strong problem solving culture. The ma...

  4. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    Science.gov (United States)

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  5. Using Analogy to Solve a Three-Step Physics Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2010-10-01

    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two-step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  6. A real-time spoken-language system for interactive problem-solving, combining linguistic and statistical technology for improved spoken language understanding

    Science.gov (United States)

    Moore, Robert C.; Cohen, Michael H.

    1993-09-01

    Under this effort, SRI has developed spoken-language technology for interactive problem solving, featuring real-time performance for up to several thousand word vocabularies, high semantic accuracy, habitability within the domain, and robustness to many sources of variability. Although the technology is suitable for many applications, efforts to date have focused on developing an Air Travel Information System (ATIS) prototype application. SRI's ATIS system has been evaluated in four ARPA benchmark evaluations, and has consistently been at or near the top in performance. These achievements are the result of SRI's technical progress in speech recognition, natural-language processing, and speech and natural-language integration.

  7. Find the Dimensions: Students Solving a Tiling Problem

    Science.gov (United States)

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  8. Writing and mathematical problem solving in Grade 3

    Directory of Open Access Journals (Sweden)

    Belinda Petersen

    2017-06-01

    Full Text Available This article looks at writing tasks as a methodology to support learners’ mathematical problemsolving strategies in the South African Foundation Phase context. It is a qualitative case study and explores the relation between the use of writing in mathematics and development of learners’ problem-solving strategies and conceptual understanding. The research was conducted in a suburban Foundation Phase school in Cape Town with a class of Grade 3 learners involved in a writing and mathematics intervention. Writing tasks were modelled to learners and implemented by them while they were engaged in mathematical problem solving. Data were gathered from a sample of eight learners of different abilities and included written work, interviews, field notes and audio recordings of ability group discussions. The results revealed an improvement in the strategies and explanations learners used when solving mathematical problems compared to before the writing tasks were implemented. Learners were able to reflect critically on their thinking through their written strategies and explanations. The writing tasks appeared to support learners in providing opportunities to construct and apply mathematical knowledge and skills in their development of problem-solving strategies.

  9. A Framework for Distributed Problem Solving

    Science.gov (United States)

    Leone, Joseph; Shin, Don G.

    1989-03-01

    This work explores a distributed problem solving (DPS) approach, namely the AM/AG model, to cooperative memory recall. The AM/AG model is a hierarchic social system metaphor for DPS based on the Mintzberg's model of organizations. At the core of the model are information flow mechanisms, named amplification and aggregation. Amplification is a process of expounding a given task, called an agenda, into a set of subtasks with magnified degree of specificity and distributing them to multiple processing units downward in the hierarchy. Aggregation is a process of combining the results reported from multiple processing units into a unified view, called a resolution, and promoting the conclusion upward in the hierarchy. The combination of amplification and aggregation can account for a memory recall process which primarily relies on the ability of making associations between vast amounts of related concepts, sorting out the combined results, and promoting the most plausible ones. The amplification process is discussed in detail. An implementation of the amplification process is presented. The process is illustrated by an example.

  10. Can Architecture Design Solve Social Problem?

    Science.gov (United States)

    Ginting, S. W.; TSB Darjosanjoto, E.; Sulistyarso, H.

    2017-03-01

    Most of architects and urban designers believe physical design gives impact on our social life. For example, a sign or landmark in the middle of a city makes people find orientation easier. In vice verse, most of social scientists believe it is social dynamic that plays role in shaping our space. How people spend their time moving from real space into cyber space is a proof that life style and IT give impact to space usage. This paper argues that interaction between physical design and social change is a two ways process. Both design aspect and social dynamic influence each other. This paper aims to examine how designing of gated community plays important role in increasing or decreasing segregation, both spatially and socially. The paper explores some architectural design principles applied in a gated community called CitraLand in west Surabaya, Indonesia, and addresses segregation between CitraLanders and outside kampung. We find CitraLand is designed openly and fully accessible for outsiders. It provides public spaces and several accessible gates and streets without walls and fences making all places inside and outside CitraLand spatially integrated. What’s interesting is it still reinforces social segregation due to its policy on prohibiting using the public park. We believe CitraLand’s planning and designing has successfully solved segregation problem spatially not socially.

  11. Solved Problems in Quantum and Statistical Mechanics

    CERN Document Server

    Cini, Michele; Sbragaglia, Mauro

    2012-01-01

    This work arises from our teaching this subject during many years. The vast majority of these exercises are the exams we gave to our students in this period. We carefully selected the subjects of the exercises to cover all the material which is most needed  and which is treated in the most well known texts on these subjects. Each exercise is carefully solved in full details, explaining the theory behind the solution with particular care for those issues that, from our experience, are found most difficult from the average student. Indeed, several exercises are designed to throw light on  aspects of the theory that, for one reason or another, are usually neglected with the result to make the students feel uneasy about them. In fact most students get acquainted just with the more common manipulations,  which are illustrated by  many examples in textbooks. Our exercises never require extensive calculations  but tend to be somewhat unusual  and force the solver  to think about the problem starting from the ...

  12. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    Science.gov (United States)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  13. Insight and analysis problem solving in microbes to machines.

    Science.gov (United States)

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright

  14. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    Science.gov (United States)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  15. Strategies, Not Solutions: Involving Students in Problem Solving.

    Science.gov (United States)

    Von Kuster, Lee N.

    1984-01-01

    Defines problem solving, discusses the use of problems developed by students that are relevant to their own lives, presents examples of practical mathematics problems that deal with local situations, discusses fringe benefits of this type of problem solving, and addresses teachers' concern that this method consumes too much time. (MBR)

  16. Using a general problem-solving strategy to promote transfer.

    Science.gov (United States)

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. When problem size matters: differential effects of brain stimulation on arithmetic problem solving and neural oscillations.

    Directory of Open Access Journals (Sweden)

    Bruno Rütsche

    Full Text Available The problem size effect is a well-established finding in arithmetic problem solving and is characterized by worse performance in problems with larger compared to smaller operand size. Solving small and large arithmetic problems has also been shown to involve different cognitive processes and distinct electroencephalography (EEG oscillations over the left posterior parietal cortex (LPPC. In this study, we aimed to provide further evidence for these dissociations by using transcranial direct current stimulation (tDCS. Participants underwent anodal (30min, 1.5 mA, LPPC and sham tDCS. After the stimulation, we recorded their neural activity using EEG while the participants solved small and large arithmetic problems. We found that the tDCS effects on performance and oscillatory activity critically depended on the problem size. While anodal tDCS improved response latencies in large arithmetic problems, it decreased solution rates in small arithmetic problems. Likewise, the lower-alpha desynchronization in large problems increased, whereas the theta synchronization in small problems decreased. These findings reveal that the LPPC is differentially involved in solving small and large arithmetic problems and demonstrate that the effects of brain stimulation strikingly differ depending on the involved neuro-cognitive processes.

  18. Problem solving therapy - use and effectiveness in general practice.

    Science.gov (United States)

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  19. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna

    1989-01-01

    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  20. Managing BTSs to Solve Handover Problem in Mobile Network

    Directory of Open Access Journals (Sweden)

    Wael Etaiwi

    2011-01-01

    Full Text Available Handover is a key solution that improves the telecommunication services using GSM by assure the continual service delivery between two mobiles regardless of location's changes of the sender or receiver, and now GSM technology becomes applicable all over the world and the customers become more satisfied to the dealer's services delivery, But Handover suffers from a major problem refers to the limitation of hardware capacity of the BTS (Base Transfer Station. This approach consists of three schemes, the first one based on reserve an extra ports for handover purposes by implementing a software solution that control BTS ports. The second alternative scheme based on channel exchange between adjacent BTSs by shifting a chosen allocated signal to another adjacent free BTS and then allocating the new signal to the new free port. The third schema depends on carrying the Handover problem to another BTS to solve it if it didn't solved in the second schema.

  1. Digital literacy and problem solving in technology-rich environments

    Directory of Open Access Journals (Sweden)

    Vesna Dolničar

    2015-07-01

    Full Text Available Rapid development and progress, as well as the growing presence of information and communications technologies dictate the need for more highly developed digital skills in individuals. The paper focuses on the concepts of digital skills and problem solving in technology-rich environments. It examines these on the basis of empirical data obtained in the international study PIAAC. The introductory part presents an overview of the literature and the results of previous research in the field of measurement of digital skills, and data on the use of information society services among the EU Member States. The second part of the article refers to the results obtained in the study PIAAC. The results, confirmed by the results of other studies, showed the impact of age and education level on the problem solving in technology-rich environments. Article concludes with suggestions for improving the current state of integration of all population groups in training programs in the field of digital skills.

  2. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    Full Text Available This paper addresses a network problem that described as follows. There are n ports that interact, and p of those will be designated as hubs. All hubs are fully interconnected. Each spoke will be allocated to only one of available hubs. Direct connection between two spokes is allowed only if they are allocated to the same hub. The latter is a distinct characteristic that differs it from pure hub-and-spoke system. In case of pure hub-and-spoke system, direct connection between two spokes is not allowed. The problem is where to locate hub ports and to which hub a spoke should be allocated so that total transportation cost is minimum. In the first model, there are some additional aspects are taken into consideration in order to achieve a better representation of the problem. The first, weekly service should be accomplished. Secondly, various vessel types should be considered. The last, a concept of inter-hub discount factor is introduced. Regarding the last aspect, it represents cost reduction factor at hub ports due to economies of scale. In practice, it is common that the cost rate for inter-hub movement is less than the cost rate for movement between hub and origin/destination. In this first model, inter-hub discount factor is assumed independent with amount of flows on inter-hub links (denoted as flow-independent discount policy. The results indicated that the patterns of enlargement of container ship size, to some degree, are similar with those in Kurokawa study. However, with regard to hub locations, the results have not represented the real practice. In the proposed model, unsatisfactory result on hub locations is addressed. One aspect that could possibly be improved to find better hub locations is inter-hub discount factor. Then inter-hub discount factor is assumed to depend on amount of inter-hub flows (denoted as flow-dependent discount policy. There are two discount functions examined in this paper. Both functions are characterized by

  3. IMPACT OF HEURISTIC STRATEGIES ON PUPILS’ ATTITUDES TO PROBLEM SOLVING

    Directory of Open Access Journals (Sweden)

    NOVOTNÁ, Jarmila

    2015-03-01

    Full Text Available The paper is a sequel to the article (Novotná et al., 2014, where the authors present the results of a 4-month experiment whose main aim was to change pupils’ culture of problem solving by using heuristic strategies suitable for problem solving in mathematics education. (Novotná et al., 2014 focused on strategies Analogy, Guess – check – revise, Systematic experimentation, Problem reformulation, Solution drawing, Working backwards and Use of graphs of functions. This paper focuses on two other heuristic strategies convenient for improvement of pupils’ culture of problem solving: Introduction of an auxiliary element and Omitting a condition. In the first part, the strategies Guess – Check – Revise, Working backwards, Introduction of an auxiliary element and Omitting a condition are characterized in detail and illustrated by examples of their use in order to capture their characteristics. In the second part we focus on the newly introduced strategies and analyse work with them in lessons using the tools from (Novotná et al., 2014. The analysis of results of the experiment indicates that, unlike in case of the strategy Introduction of an auxiliary element, successful use of the strategy Omitting a condition requires longer teacher’s work with the pupils. The following analysis works with the strategy Systematic experimentation, which seemed to be the easiest to master in (Novotná et al., 2014; we focus on the dangers it bears when it is used by pupils. The conclusion from (Novotná et al., 2014, which showed that if pupils are introduced to an environment that supports their creativity, their attitude towards problem solving changes in a positive way already after the period of four months, is confirmed.

  4. The semantic system is involved in mathematical problem solving.

    Science.gov (United States)

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The effects of monitoring environment on problem-solving performance.

    Science.gov (United States)

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  6. Threshold Concepts in the Development of Problem-Solving Skills

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; MacKay, Bruce

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  7. Problem-Solving during Shared Reading at Kindergarten

    Science.gov (United States)

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

    2015-01-01

    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  8. Glogs as Non-Routine Problem Solving Tools in Mathematics

    Science.gov (United States)

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  9. Solving the minimum flow problem with interval bounds and flows

    Indian Academy of Sciences (India)

    ... with crisp data. In this paper, the idea of Ghiyasvand was extended for solving the minimum flow problem with interval-valued lower, upper bounds and flows. This problem can be solved using two minimum flow problems with crisp data. Then, this result is extended to networks with fuzzy lower, upper bounds and flows.

  10. Social problem-solving among adolescents treated for depression.

    Science.gov (United States)

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    Science.gov (United States)

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  12. Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students

    Science.gov (United States)

    Budak, Ibrahim

    2012-01-01

    Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…

  13. Problem solving and Program design using the TI-92

    NARCIS (Netherlands)

    Ir.ing. Ton Marée; ir Martijn van Dongen

    2000-01-01

    This textbook is intended for a basic course in problem solving and program design needed by scientists and engineers using the TI-92. The TI-92 is an extremely powerful problem solving tool that can help you manage complicated problems quickly. We assume no prior knowledge of computers or

  14. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    Science.gov (United States)

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  15. Transformational and transactional leadership and problem solving in restaurant industry

    OpenAIRE

    Huhtala, Nina

    2013-01-01

    The study tries to give information on the leadership behavior of restaurant managers in their problem solving. The results of the study were collected by evaluating three restaurant managers by interviewing them. The restaurant managers’ answers were compared to transformational and transactional leadership model and the aspects of it. Their problem solving skills were evaluated by the help of a rational and creative problem solving model. The study showed that restaurant managers have both ...

  16. Understanding adults’ strong problem-solving skills based on PIAAC

    OpenAIRE

    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano

    2017-01-01

    Purpose Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic, work-related and everyday life factors that are associated with a strong problem-solving performance. Design/methodology/approach The study builds...

  17. The Unified Problem-Solving Method Development Language UPML

    OpenAIRE

    Fensel, Dieter; Motta, Enrico; van Harmelen, Frank; Benjamins, V. Richard; Crubezy, Monica; Decker, Stefan; Gaspari, Mauro; Groenboom, Rix; Grosso, William; Musen, Mark; Plaza, Enric; Schreiber, Guus; Studer, Rudi; Wielinga, Bob

    2003-01-01

    Problem-solving methods provide reusable architectures and components for implementing the reasoning part of knowledge-based systems. The UNIFIED PROBLEM-SOLVING METHOD DESCRIPTION LANGUAGE (UPML) has been developed to describe and implement such architectures and components to facilitate their semi-automatic reuse and adaptation. In a nutshell, UPML is a framework for developing knowledge-intensive reasoning systems based on libraries ofg eneric problem-solving components. The paper describe...

  18. Enhanced Critical Thinking Skills through Problem-Solving Games in Secondary Schools

    Science.gov (United States)

    McDonald, Scott Douglas

    2017-01-01

    Aim/Purpose: Students face many challenges improving their soft skills such as critical thinking. This paper offers one possible solution to this problem. Background: This paper considers one method of enhancing critical thinking through a problem-solving game called the Coffee Shop. Problem-solving is a key component to critical thinking, and…

  19. Innovation and problem solving: a review of common mechanisms.

    Science.gov (United States)

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Solving Dynamic Battlespace Movement Problems Using Dynamic Distributed Computer Networks

    National Research Council Canada - National Science Library

    Bradford, Robert

    2000-01-01

    .... The thesis designs a system using this architecture that invokes operations research network optimization algorithms to solve problems involving movement of people and equipment over dynamic road networks...

  1. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

    Science.gov (United States)

    Nunokawa, Kazuhiko

    1996-01-01

    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  2. Student’s scheme in solving mathematics problems

    Science.gov (United States)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  3. Toward High-Performance Communications Interfaces for Science Problem Solving

    Science.gov (United States)

    Oviatt, Sharon L.; Cohen, Adrienne O.

    2010-12-01

    From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work practice, can preserve students' attentional focus on their learning task. In this research, we asked the question: What type of interface input capabilities provide best support for science problem solving in both low- and high- performing students? High school students' ability to solve a diverse range of biology problems was compared over longitudinal sessions while they used: (1) hardcopy paper and pencil (2) a digital paper and pen interface (3) pen tablet interface, and (4) graphical tablet interface. Post-test evaluations revealed that time to solve problems, meta-cognitive control, solution correctness, and memory all were significantly enhanced when using the digital pen and paper interface, compared with tablet interfaces. The tangible pen and paper interface also was the only alternative that significantly facilitated skill acquisition in low-performing students. Paradoxically, all students nonetheless believed that the tablet interfaces provided best support for their performance, revealing a lack of self-awareness about how to use computational tools to best advantage. Implications are discussed for how pen interfaces can be optimized for future educational purposes, and for establishing technology fluency curricula to improve students' awareness of the impact of digital tools on their performance.

  4. Solving Complex Problems to Create Charter Extension Options

    DEFF Research Database (Denmark)

    Tippmann, Esther; Nell, Phillip Christopher

    undertaken by 29 subsidiary units supports our hypotheses, demonstrating that these activities are a means to systematically reduce inherent problem solving biases. This study contributes to problem solving theory, the literature on headquarters’ roles in complex organizations, as well as the literature......This study examines subsidiary-driven problem solving processes and their potential to create advanced solutions for charter extension options. Problem solving theory suggests that biases in problem formulation and solution search can confine problem solving potential. We thus argue that balanced...... solution search, or activities to reconcile the need for some solution features to be locally-tailored while others can be internationally standardized, mediates the relationships between problem complexity/headquarters involvement and the capacity to create advanced solutions. An analysis of 67 projects...

  5. Block Model Approach in Problem Solving: Effects on Problem Solving Performance of the Grade V Pupils in Mathematics

    Science.gov (United States)

    de Guzman, Niño Jose P.; Belecina, Rene R.

    2012-01-01

    The teaching of mathematics involves problem solving skills which prove to be difficult on the part of the pupils due to misrepresentation of the word problems. Oftentimes, pupils tend to represent the phrase "more than" as addition and the word difference as "- ". This paper aims to address the problem solving skills of grade…

  6. Understanding catastrophizing from a misdirected problem-solving perspective.

    Science.gov (United States)

    Flink, Ida K; Boersma, Katja; MacDonald, Shane; Linton, Steven J

    2012-05-01

    The aim is to explore pain catastrophizing from a problem-solving perspective. The links between catastrophizing, problem framing, and problem-solving behaviour are examined through two possible models of mediation as inferred by two contemporary and complementary theoretical models, the misdirected problem solving model (Eccleston & Crombez, 2007) and the fear-anxiety-avoidance model (Asmundson, Norton, & Vlaeyen, 2004). In this prospective study, a general population sample (n= 173) with perceived problems with spinal pain filled out questionnaires twice; catastrophizing and problem framing were assessed on the first occasion and health care seeking (as a proxy for medically oriented problem solving) was assessed 7 months later. Two different approaches were used to explore whether the data supported any of the proposed models of mediation. First, multiple regressions were used according to traditional recommendations for mediation analyses. Second, a bootstrapping method (n= 1000 bootstrap resamples) was used to explore the significance of the indirect effects in both possible models of mediation. The results verified the concepts included in the misdirected problem solving model. However, the direction of the relations was more in line with the fear-anxiety-avoidance model. More specifically, the mediation analyses provided support for viewing catastrophizing as a mediator of the relation between biomedical problem framing and medically oriented problem-solving behaviour. These findings provide support for viewing catastrophizing from a problem-solving perspective and imply a need to examine and address problem framing and catastrophizing in back pain patients. ©2011 The British Psychological Society.

  7. The process model of problem solving difficulty

    NARCIS (Netherlands)

    Pala, O.; Rouwette, E.A.J.A.; Vennix, J.A.M.

    2002-01-01

    Groups and organizations, or in general multi-actor decision-making groups, frequently come across complex problems in which neither the problem definition nor the interrelations of parts that make up the problem are well defined. In these kinds of situations, members of a decision-making group

  8. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  9. Cognitive Predictors of Everyday Problem Solving across the Lifespan.

    Science.gov (United States)

    Chen, Xi; Hertzog, Christopher; Park, Denise C

    2017-01-01

    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  10. Branch and bound algorithms to solve semiring constraint satisfaction problems

    CSIR Research Space (South Africa)

    Leenen, L

    2008-12-01

    Full Text Available The Semiring Constraint Satisfaction Problem (SCSP) framework is a popular approach for the representation of partial constraint satisfaction problems. Considerable research has been done in solving SCSPs, but limited work has been done in building...

  11. Lean process management implementation through enhanced problem solving capabilities

    Directory of Open Access Journals (Sweden)

    Perumal Puvanasvaran

    2010-12-01

    Full Text Available All Original Equipment Manufacturers (OEM organizations in Aerospace, Automotive and Electronics industries had to upgrade their functions. These organizations including suppliers and solutions providers are duty bound to improve their functions through strategic initiatives. One such initiative is Lean Process Management. Lean Process Management has proven to aid organizations in developing manufacturing and administrative management solutions and make the organization a leaner at the same time a ‘fitter’ one, achieving World Class standards in terms of production, quality, marketing, etc, etc. The issue or problem is, although a number of authors, experts, researchers have discussed the lean process management as part organization centric issues, they failed to provide an effective lean process management system. Besides the need to formulate an effective lean process as suggested by some authors, another important reason suggested is the employee’s development aspect regarding how to unlock the infinite potential of their workforce. This employee’s development is basically the problem solving capabilities of the employees while implementing the Lean through clear cutting protocols or processes of Lean Process Management. The employees need to be developed and equipped to contribute optimally to the process. Because of this scenario, the main objective of this study is to develop an employees development system which the author has acronym or trademark it as People Development System (PDS to enhance problem solving capability among its employees while implementing the lean process management there. Although, the PDS can be implemented throughout the organization, if it is implemented in a particular department in an organization, it will be feasible to study and analyze its effectiveness in-depth. So, this study documents and analyzes the implementation of Lean process in the Kitting Department of the aerospace company, ABC Company

  12. An approach to solve replacement problems under intuitionistic fuzzy nature

    Science.gov (United States)

    Balaganesan, M.; Ganesan, K.

    2018-04-01

    Due to impreciseness to solve the day to day problems the researchers use fuzzy sets in their discussions of the replacement problems. The aim of this paper is to solve the replacement theory problems with triangular intuitionistic fuzzy numbers. An effective methodology based on fuzziness index and location index is proposed to determine the optimal solution of the replacement problem. A numerical example is illustrated to validate the proposed method.

  13. Students' Epistemological Framing in Quantum Mechanics Problem Solving

    Science.gov (United States)

    Modir, Bahar; Thompson, John D.; Sayre, Eleanor C.

    2017-01-01

    Students' difficulties in quantum mechanics may be the result of unproductive framing and not a fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of epistemological framing, we investigated four…

  14. Measuring Problem Solving Skills in Plants vs. Zombies 2

    Science.gov (United States)

    Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin

    2015-01-01

    We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…

  15. Emergent Leadership in Children's Cooperative Problem Solving Groups

    Science.gov (United States)

    Sun, Jingjng; Anderson, Richard C.; Perry, Michelle; Lin, Tzu-Jung

    2017-01-01

    Social skills involved in leadership were examined in a problem-solving activity in which 252 Chinese 5th-graders worked in small groups on a spatial-reasoning puzzle. Results showed that students who engaged in peer-managed small-group discussions of stories prior to problem solving produced significantly better solutions and initiated…

  16. Instructional Design-Based Research on Problem Solving Strategies

    Science.gov (United States)

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  17. Problem Solving and the Development of Expertise in Management.

    Science.gov (United States)

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  18. Schema Knowledge for Solving Arithmetic Story Problems: Some Affective Components.

    Science.gov (United States)

    Marshall, Sandra P.

    This report discusses the role of affect in cognitive processing. The importance of affect in processing mathematical information is described in the context of solving arithmetic story problems. Some ideas are offered about the way affective responses to mathematical problem solving situations influence the development, maintenance, and retrieval…

  19. A theory of intelligence: networked problem solving in animal societies

    OpenAIRE

    Shour, Robert

    2009-01-01

    A society's single emergent, increasing intelligence arises partly from the thermodynamic advantages of networking the innate intelligence of different individuals, and partly from the accumulation of solved problems. Economic growth is proportional to the square of the network entropy of a society's population times the network entropy of the number of the society's solved problems.

  20. Visual Attention Modulates Insight versus Analytic Solving of Verbal Problems

    Science.gov (United States)

    Wegbreit, Ezra; Suzuki, Satoru; Grabowecky, Marcia; Kounios, John; Beeman, Mark

    2012-01-01

    Behavioral and neuroimaging findings indicate that distinct cognitive and neural processes underlie solving problems with sudden insight. Moreover, people with less focused attention sometimes perform better on tests of insight and creative problem solving. However, it remains unclear whether different states of attention, within individuals,…

  1. High School Students' Use of Meiosis When Solving Genetics Problems.

    Science.gov (United States)

    Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy

    2001-01-01

    Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…

  2. RUPS: Research Utilizing Problem Solving. Administrators Version. Leader's Manual.

    Science.gov (United States)

    Jung, Charles; And Others

    This manual is to be used by leaders of RUPS (Research Utilizing Problem Solving) workshops for school or district administrators. The workshop's goal is for administrators to develop problem solving skills by using the RUPS simulation situations in a teamwork setting. Although workshop leaders should be familiar with the RUPS materials and…

  3. Best Known Problem Solving Strategies in "High-Stakes" Assessments

    Science.gov (United States)

    Hong, Dae S.

    2011-01-01

    In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…

  4. Solving L-L Extraction Problems with Excel Spreadsheet

    Science.gov (United States)

    Teppaitoon, Wittaya

    2016-01-01

    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  5. Relationship between Problem-Solving Ability and Career Maturity ...

    African Journals Online (AJOL)

    This study investigated the relationship between problem-solving ability and career maturity of secondary school students in Ibadan, Oyo State, Nigeria. 230 final year secondary school students completed self-report measures of problem solving and career maturity. Multiple regression analysis was used to analyse the data ...

  6. Concept Learning versus Problem Solving: Is There a Difference?

    Science.gov (United States)

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  7. The Relationship between Students' Problem Solving Frames and Epistemological Beliefs

    Science.gov (United States)

    Wampler, Wendi N.

    2013-01-01

    Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. "Matter and Interactions"…

  8. Social Problem Solving and Aggression: The Role of Depression

    Science.gov (United States)

    Ozdemir, Yalcin; Kuzucu, Yasar; Koruklu, Nermin

    2013-01-01

    The purpose of the present study was to examine direct and indirect relations among social problem-solving, depression, and aggression, as well as the mediating role of depression in the link between social problem-solving and aggression among Turkish youth. Data for the present study were collected from 413 adolescents. The participants' age…

  9. Extricating Justification Scheme Theory in Middle School Mathematical Problem Solving

    Science.gov (United States)

    Matteson, Shirley; Capraro, Mary Margaret; Capraro, Robert M.; Lincoln, Yvonna S.

    2012-01-01

    Twenty middle grades students were interviewed to gain insights into their reasoning about problem-solving strategies using a Problem Solving Justification Scheme as our theoretical lens and the basis for our analysis. The scheme was modified from the work of Harel and Sowder (1998) making it more broadly applicable and accounting for research…

  10. Determining Students' Attitude towards Physics through Problem-Solving Strategy

    Science.gov (United States)

    Erdemir, Naki

    2009-01-01

    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…

  11. Problem Solving Frameworks for Mathematics and Software Development

    Science.gov (United States)

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley

    2012-01-01

    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  12. Logo Programming, Problem Solving, and Knowledge-Based Instruction.

    Science.gov (United States)

    Swan, Karen; Black, John B.

    The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…

  13. Interpersonal Problem-Solving Deficits in Self-Poisoning Patients.

    Science.gov (United States)

    McLeavey, Breda C.; And Others

    1987-01-01

    Compared self-poisoning patients with psychiatric patients and nonpatient controls on problem-solving skills and locus of control. The psychiatric and self-poisoning groups showed deficits on interpersonal problem solving compared with nonpatient controls. The self-poisoning group performed below or at the level of the psychiatric group. Locus of…

  14. Decision-Making Styles and Problem-Solving Appraisal.

    Science.gov (United States)

    Phillips, Susan D.; And Others

    1984-01-01

    Compared decision-making style and problem-solving appraisal in 243 undergraduates. Results suggested that individuals who employ rational decision-making strategies approach problematic situations, while individuals who endorse dependent decisional strategies approach problematic situations without confidence in their problem-solving abilities.…

  15. An approach for solving linear fractional programming problems ...

    African Journals Online (AJOL)

    The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...

  16. Using Everyday Materials To Promote Problem Solving in Toddlers.

    Science.gov (United States)

    Segatti, Laura; Brown-DuPaul, Judy; Keyes, Tracy L.

    2003-01-01

    Outlines benefits of and skills involved in problem solving. Details how an environment rich in materials that foster cause-and-effect or trial-and-error explorations promote cognitive development among toddlers. Offers examples of problem-solving experiences and lists materials for use in curriculum planning. Describes the teacher' role as one of…

  17. A problem solving model for regulatory policy making

    NARCIS (Netherlands)

    Boer, A.; van Engers, T.; Sileno, G.; Wyner, A.; Benn, N.

    2011-01-01

    In this paper we discuss how the interests and field theory promoted by public administration as a stakeholder in policy argumentation, directly arise from its problem solving activities, using the framework for public administration problem solving we proposed in [1,2]. We propose that calls for

  18. Elementary School Students Perception Levels of Problem Solving Skills

    Science.gov (United States)

    Yavuz, Günes; Yasemin, Deringöl; Arslan, Çigdem

    2017-01-01

    The purpose of this study is to reveal the perception levels of problem solving skills of elementary school students. The sample of the study is formed by totally 264 elementary students attending to 5th, 6th, 7th and 8th grade in a big city in Turkey. Data were collected by means of "Perception Scale for Problem Solving Skills" which…

  19. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    Science.gov (United States)

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Solving the rectangular assignment problem and applications

    NARCIS (Netherlands)

    Bijsterbosch, J.; Volgenant, A.

    2010-01-01

    The rectangular assignment problem is a generalization of the linear assignment problem (LAP): one wants to assign a number of persons to a smaller number of jobs, minimizing the total corresponding costs. Applications are, e.g., in the fields of object recognition and scheduling. Further, we show

  1. Behavioral flexibility and problem solving in an invasive bird.

    Science.gov (United States)

    Logan, Corina J

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  2. Analysis of problem solving in terms of cognitive style

    Science.gov (United States)

    Anthycamurty, Rr C. C.; Mardiyana; Saputro, D. R. S.

    2018-03-01

    The purpose of this study was to analyze the problem solving based on the type of cognitive style. Subjects used in this study are students of class X SMK located in Purworejo. The method used in this research is qualitative descriptive. Data collection techniques used in this research is a problem-solving test to determine student problem solving and GEFT to determine the type of cognitive style possessed by students. The result of this research is to determine the mastery of each type in cognitive style, that is Field Independent type and Field Dependent type on problem solving indicator. The impact of this research is the teacher can know the mastery of student problem solving on each type of cognitive style so that teacher can determine the proper way of delivering to student at next meeting.

  3. Social problem solving ability predicts mental health among undergraduate students.

    Science.gov (United States)

    Ranjbar, Mansour; Bayani, Ali Asghar; Bayani, Ali

    2013-11-01

    The main objective of this study was predicting student's mental health using social problem solving- ability. In this correlational. descriptive study, 369 (208 female and 161 male) from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson's correlation, t test, and stepwise regression analysis. Data analysis showed significant relationship between social problem solving ability and mental health (P Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P social problem solving ability and mental health.

  4. Pre-Service Mathematics Teachers’ Problem Solving Processes with Geometer’s Sketchpad: Mirror Problem

    OpenAIRE

    ÖÇAL, Mehmet Fatih; ŞİMŞEK, Mertkan

    2016-01-01

    Problem solving skill is the core of mathematics education and its importance cannot be denied. This study specifically examined 56 freshmen pre-service mathematics teachers’ problem solving processes on a specific problem with the help of Geometer’s Sketchpad (GSP). They were grouped into two-person teams to solve a problem called "the mirror problem". They were expected to solve it by means of GSP. According to their works on GSP and related reflections, there appeared two differe...

  5. Negotiation as a metaphor for distributed problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Smith, R.G.

    1983-01-01

    The authors describe the concept of distributed problem solving and defines it as the cooperative solution of problems by a decentralized and loosely coupled collection of problem solvers. This approach to problem solving offers the promise of increased performance and provides a useful medium for exploring and developing new problem-solving techniques. A framework is presented called the contract net that specifies communication and control in a distribution problem solver. Task distribution is viewed as an interactive process, a discussion carried on between a node with a task to be executed and a group of nodes that may be able to execute the task. The kinds of information are described that must be passed between nodes during the discussion in order to obtain effective problem-solving behavior. This discussion is the origin of the negotiation metaphor: task distribution is viewed as a form of contract negotiation. 32 references.

  6. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ

    2010-01-01

    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.

  7. A Conceptual Model for Solving Percent Problems.

    Science.gov (United States)

    Bennett, Albert B., Jr.; Nelson, L. Ted

    1994-01-01

    Presents an alternative method to teaching percent problems which uses a 10x10 grid to help students visualize percents. Offers a means of representing information and suggests different approaches for finding solutions. Includes reproducible student worksheet. (MKR)

  8. Solved problems in dynamical systems and control

    CERN Document Server

    Tenreiro-Machado, J; Valério, Duarte; Galhano, Alexandra M

    2016-01-01

    This book presents a collection of exercises on dynamical systems, modelling and control. Each topic covered includes a summary of the theoretical background, problems with solutions, and further exercises.

  9. Integrating video and animation with physics problem- solving exercises on the World Wide Web

    Science.gov (United States)

    Titus, Aaron Patrick

    1998-10-01

    Problem solving is of paramount importance in teaching and learning physics. An important step in solving a problem is visualization. To help students visualize a problem, we included video clips with homework questions delivered via the World Wide Web. Although including video with physics problems has a positive effect with some problems, we found that this may not be the best way to integrate multimedia with physics problems since improving visualization is probably not as helpful as changing students' approach. To challenge how students solve problems and to help them develop a more expert-like approach, we developed a type of physics exercise called a multimedia-focused problem where students take data from an animation in order to solve a problem. Because numbers suggestive of a solution are not given in the text of the question, students have to consider the problem conceptually before analyzing it mathematically. As a result, we found that students had difficulty solving such problems compared to traditional textbook-like problems. Students' survey responses showed that students indeed had difficulty determining what was needed to solve a problem when it was not explicitly given to them in the text of the question. Analyzing think-aloud interviews where students verbalized their thoughts while solving problems, we found that multimedia-focused problems indeed required solid conceptual understanding in order for them to be solved correctly. As a result, we believe that when integrated with instruction, multimedia-focused problems can be a valuable tool in helping students develop better conceptual understanding and more expert-like problem solving skills by challenging novice beliefs and problem solving approaches. Multimedia-focused problems may also be useful for diagnosing conceptual understanding and problem skills.

  10. Threshold Concepts in the Development of Problem-solving Skills

    Directory of Open Access Journals (Sweden)

    Shelly Wismath

    2015-03-01

    Full Text Available Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called Problems and Puzzles, which introduced students to the theory and practice of problem solving via puzzles. Based on classroom observation and other qualitative data collected over three semesters, we have identified three significant changes in student behaviour at specific points in the course. These changes can be posited to reveal three underlying threshold concepts in the evolution and establishment of students’ problem-solving skills.

  11. Dimensional analysis and qualitative methods in problem solving: II

    International Nuclear Information System (INIS)

    Pescetti, D

    2009-01-01

    We show that the underlying mathematical structure of dimensional analysis (DA), in the qualitative methods in problem-solving context, is the algebra of the affine spaces. In particular, we show that the qualitative problem-solving procedure based on the parallel decomposition of a problem into simple special cases yields the new original mathematical concepts of special points and special representations of affine spaces. A qualitative problem-solving algorithm piloted by the mathematics of DA is illustrated by a set of examples.

  12. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

    Science.gov (United States)

    Mills, Nadia Monrose

    2015-01-01

    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  13. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    Science.gov (United States)

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  14. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    Science.gov (United States)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  15. The Missing Curriculum in Physics Problem-Solving Education

    Science.gov (United States)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  16. Psychoeducation with problem-solving (PEPS) therapy for adults with personality disorder: a pragmatic randomised controlled trial to determine the clinical effectiveness and cost-effectiveness of a manualised intervention to improve social functioning.

    Science.gov (United States)

    McMurran, Mary; Crawford, Mike J; Reilly, Joe; Delport, Juan; McCrone, Paul; Whitham, Diane; Tan, Wei; Duggan, Conor; Montgomery, Alan A; Williams, Hywel C; Adams, Clive E; Jin, Huajie; Lewis, Matthew; Day, Florence

    2016-07-01

    If effective, less intensive treatments for people with personality disorder have the potential to serve more people. To compare the clinical effectiveness and cost-effectiveness of psychoeducation with problem-solving (PEPS) therapy plus usual treatment against usual treatment alone in improving social problem-solving with adults with personality disorder. Multisite two-arm, parallel-group, pragmatic randomised controlled superiority trial. Community mental health services in three NHS trusts in England and Wales. Community-dwelling adults with any personality disorder recruited from community mental health services. Up to four individual sessions of psychoeducation, a collaborative dialogue about personality disorder, followed by 12 group sessions of problem-solving therapy to help participants learn a process for solving interpersonal problems. The primary outcome was measured by the Social Functioning Questionnaire (SFQ). Secondary outcomes were service use (general practitioner records), mood (measured via the Hospital Anxiety and Depression Scale) and client-specified three main problems rated by severity. We studied the mechanism of change using the Social Problem-Solving Inventory. Costs were identified using the Client Service Receipt Inventory and quality of life was identified by the European Quality of Life-5 Dimensions questionnaire. Research assistants blinded to treatment allocation collected follow-up information. There were 739 people referred for the trial and 444 were eligible. More adverse events in the PEPS arm led to a halt to recruitment after 306 people were randomised (90% of planned sample size); 154 participants received PEPS and 152 received usual treatment. The mean age was 38 years and 67% were women. Follow-up at 72 weeks after randomisation was completed for 62% of participants in the usual-treatment arm and 73% in the PEPS arm. Intention-to-treat analyses compared individuals as randomised, regardless of treatment received or

  17. Enhancing the Effectiveness of Problem-Solving Processes through Employee Motivation and Involvement

    Directory of Open Access Journals (Sweden)

    Andrea Chlpeková

    2014-12-01

    indicators into the motivation system. The question to be answered is how to effectively use the intellectual capital of problem-solving teams and increase employees’ satisfaction in the broader context of the improvement of the effectiveness of problem-solving methodology.

  18. Research Utilizing Problem Solving (RUPS) - Classroom Version. Description of Teacher Inservice Education Materials.

    Science.gov (United States)

    National Education Association, Washington, DC. Project on Utilization of Inservice Education R & D Outcomes.

    The workshop instructional materials described here are designed to try out a systematic problem solving process as a way of working toward improvements in the school setting. Topics include diagnosis using force field technique, small group dynamics, planning for action, and planning a RUPS (Research Using Problem Solving) project. This…

  19. An analysis of the Six Sigma DMAIC method from the perspective of problem solving

    NARCIS (Netherlands)

    de Mast, J.; Lokkerbol, J.

    2012-01-01

    The DMAIC (Define-Measure-Analyze-Improve-Control) method in Six Sigma is often described as an approach for problem solving. This paper compares critically the DMAIC method with insights from scientific theories in the field of problem solving. As a single authoritative account of the DMAIC method

  20. Sociodrama: Group Creative Problem Solving in Action.

    Science.gov (United States)

    Riley, John F.

    1990-01-01

    Sociodrama is presented as a structured, yet flexible, method of encouraging the use of creative thinking to examine a difficult problem. An example illustrates the steps involved in putting sociodrama into action. Production techniques useful in sociodrama include the soliloquy, double, role reversal, magic shop, unity of opposites, and audience…

  1. Regularization method for solving the inverse scattering problem

    International Nuclear Information System (INIS)

    Denisov, A.M.; Krylov, A.S.

    1985-01-01

    The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table

  2. An Approach for Solving Linear Fractional Programming Problems

    OpenAIRE

    Andrew Oyakhobo Odior

    2012-01-01

    Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...

  3. Threshold Concepts in the Development of Problem-solving Skills

    OpenAIRE

    Shelly Wismath; Doug Orr; Bruce MacKay

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called Problems and Puzzles, which introduced students to the theory and practice of problem solving via puzzles. Based on classroom observation and other qualitative data collected over three semesters, we have identified three significant changes in student behaviour at specific points in the course....

  4. THINK ALOUD PAIR PROBLEM SOLVING (TAPPS STRATEGY IN TEACHING READING

    Directory of Open Access Journals (Sweden)

    Muhammad Zuhri Dj

    2015-12-01

    Full Text Available This research is aim to know what extent the achievement of students’ reading comprehension by using Think Aloud Pair Problem Solving (TAPPS strategy at the tenth grade students of SMKN 3 Watampone. the objectives of the research is to know what extent the achievement of student’s reading comprehension by using Think Aloud Pair Problem Solving (TAPPS strategy. The population of this research is the tenth grade students of SMKN 3 Watampone which has 149 students. The writers applied random sampling, because the school has students more than 100 students. The X Multimedia Class is taken as the sample, because it has many students who have low values in English subject based on their teacher report. This research employs an instrument based on the problem statements investigated, It is Reading comprehension test. After several meetings, this research finds out the achievement of students’ reading comprehension significantly effective to improve the student’s reading comprehension. The result of this research shows that the mean score obtained by the students through pretest was 46.545 and posttest was 88.364; the t-test value was higher than the t-table (49.385 > 2.080. It means that there is a significant difference between the result of the students’ pretest and posttest

  5. Learning disabilities and social problem solving skills

    Directory of Open Access Journals (Sweden)

    Pina Filippello

    2013-09-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Recent studies showed that children with learning disabilities present significant difficulties in learning as well as in social skills (Siperstein, 2009.Therefore, it was observed how it is difficult for these children to establish adequate relationships, especially to advise coping strategies to face interpersonal conflicts (Oliva & LaGreca, 1988. Accordingly to this argument and with reference to Agaliotis e Kalyva (2004, 2009, this study examines the preferences for strategies to solve an hypothetical conflict on a sample of children with LD in comparison to typical developing peers. They used the method of social story to conduct this research. In fact, researchers asked to the children, after they have listened a short story describing an interpersonal conflict interaction between adult and peers,  which strategies they would have chosen if they were in the same situation and the strategies that would be most appropriate to resolve a conflict. Results obtained from the experiment corroborated literature data and demonstrated that children with LD, in comparison to typical developing peers, use and prefer dysfunctional coping strategies, aggressive or passive, also in relation to the partner interaction (adult or peers to face interpersonal conflict.

  6. Interference thinking in constructing students’ knowledge to solve mathematical problems

    Science.gov (United States)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  7. [Investigation of problem solving skills among psychiatric patients].

    Science.gov (United States)

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  8. Solving the uncommon reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1980-01-01

    The common reactor core neutronics problems have fundamental neutron space, energy spectrum solutions. Typically the most positive eigenvalue is associated with an all-positive flux for the pseudo-steady-state condition (k/sub eff/), or the critical state is to be effected by selective adjustment of some variable such as the fuel concentration. With sophistication in reactor analysis has come the demand for solutions of other, uncommon neutronics problems. Importance functionss are needed for sensitivity and uncertainty analyses, as for ratios of intergral reaction rates such as the fuel conversion (breeding) ratio. The dominant higher harmonic solution is needed in stability analysis. Typically the desired neutronics solution must contain negative values to qualify as a higher harmonic or to satisfy a fixed source containing negative values. Both regular and adjoint solutions are of interest as are special integrals of the solutions to support analysis

  9. Modeling crowdsourcing as collective problem solving

    Science.gov (United States)

    Guazzini, Andrea; Vilone, Daniele; Donati, Camillo; Nardi, Annalisa; Levnajić, Zoran

    2015-11-01

    Crowdsourcing is a process of accumulating the ideas, thoughts or information from many independent participants, with aim to find the best solution for a given challenge. Modern information technologies allow for massive number of subjects to be involved in a more or less spontaneous way. Still, the full potentials of crowdsourcing are yet to be reached. We introduce a modeling framework through which we study the effectiveness of crowdsourcing in relation to the level of collectivism in facing the problem. Our findings reveal an intricate relationship between the number of participants and the difficulty of the problem, indicating the optimal size of the crowdsourced group. We discuss our results in the context of modern utilization of crowdsourcing.

  10. How to solve nuclear siting problems

    International Nuclear Information System (INIS)

    Inhaber, H.

    1992-01-01

    In recent years, finding sites for nuclear facilities, both reactors and waste repositories, has become more of a problem. While all agree that the difficulties are more than technical, a technical solution is presently pursued. The reverse Dutch auction generates a solution to siting. It produces a volunteer community or state, at the same time retaining public safety and environmental standards. No coercion is required. Elements of the system already exist in a number of public policy areas. (orig.) [de

  11. A New Method for Solving Supervised Data Classification Problems

    Directory of Open Access Journals (Sweden)

    Parvaneh Shabanzadeh

    2014-01-01

    Full Text Available Supervised data classification is one of the techniques used to extract nontrivial information from data. Classification is a widely used technique in various fields, including data mining, industry, medicine, science, and law. This paper considers a new algorithm for supervised data classification problems associated with the cluster analysis. The mathematical formulations for this algorithm are based on nonsmooth, nonconvex optimization. A new algorithm for solving this optimization problem is utilized. The new algorithm uses a derivative-free technique, with robustness and efficiency. To improve classification performance and efficiency in generating classification model, a new feature selection algorithm based on techniques of convex programming is suggested. Proposed methods are tested on real-world datasets. Results of numerical experiments have been presented which demonstrate the effectiveness of the proposed algorithms.

  12. Perbedaan Keterampilan Pemecahan Masalah pada Pembelajaran Fisika Menggunakan Metode Problem Posing dan Problem Solving

    OpenAIRE

    Rahman, Adetya; Hartini, Sri; An'nur, Syubhan

    2015-01-01

    Teachers should be able to choose the method of learning that can help students in learning physics, namely the method of problem posing and problem solving method. The purposes of this study are : (1) describe the learning physics skills by using problem posing method, (2) describe the learning physics skills by using problem solving method, and (3) know difference between learning physics skills by using problem posing method and problem solving method in class XI of Science SMAN 6 Banjarma...

  13. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    Science.gov (United States)

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  14. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  15. 1000 Solved Problems in Modern Physics

    CERN Document Server

    Kamal, Ahmad A

    2010-01-01

    This book basically caters to the needs of undergraduates and graduates physics students in the area of modern physics, specially particle and nuclear physics. Lecturers/tutors may use it as a resource book. The contents of the book are based on the syllabi currently used in the undergraduate courses in USA, U.K., and other countries. The book is divided into 10 chapters, each chapter beginning with a brief but adequate summary and necessary formulas, tables and line diagrams followed by a variety of typical problems useful for assignments and exams. Detailed solutions are provided at the end of each chapter.

  16. ITOUGH2: Solving TOUGH inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Pruess, K. [Lawrence Berkeley Laboratory, CA (United States)

    1995-03-01

    ITOUGH2 is a program that provides inverse modeling capabilities for the TOUGH2 code. While the main purpose of ITOUGH2 is to estimate two-phase hydraulic properties of calibrating a TOUGH2 model to laboratory or field data, the information obtained by evaluating parameter sensitivities can also be used to optimize the design of an experiment, and to analyze the uncertainty of model predictions. ITOUGH2 has been applied to a number of laboratory and field experiments on different scales. Three examples are discussed in this paper, demonstrating the code`s capability to support test design, data analysis, and model predictions for a variety of TOUGH problems.

  17. Solving the problem of valve stem leakage

    International Nuclear Information System (INIS)

    Dixon, D.F.

    1976-01-01

    Engineering solutions to valve stem leakage, in systems carrying expensive heavy water under pressure, have progressed from changing packing brands (failure) to leak collection (partial success) to elimination of small packed valves and an improved valve packing strategy involving stable packing materials, live Belleville spring-loading of packing, and issuance of a detailed stuffing box specification (success). (E.C.B.)

  18. Solving process industry problems with specialty stainlesses

    International Nuclear Information System (INIS)

    Montrone, E.D.

    1977-01-01

    Substantial steel industry efforts have been devoted to improving the properties of stainless steels by changing the level of alloying elements. Rapid progress has produced materials to meet many of the diversified service conditions existing in process plants. The performance characteristics of seven stainless steels are compared. The emphasis is on steels which avoid the effects of corrosion. 4 figures, 3 tables

  19. Nudging Students' Creative Problem-Solving Skills

    Science.gov (United States)

    Griffin, Dana

    2011-01-01

    People often make choices that go against their own best interests. In the controversial bestseller "Nudge," Richard Thaler and Cass Sunstein argue that people can benefit from simple "nudges" to improve their decision-making. In an upper-level undergraduate course on political decision-making, I created a series of assignments around "Nudge." In…

  20. From dissecting ignorance to solving algebraic problems

    International Nuclear Information System (INIS)

    Ayyub, Bilal M.

    2004-01-01

    Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters

  1. From dissecting ignorance to solving algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Ayyub, Bilal M

    2004-09-01

    Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters.

  2. Transformational and derivational strategies in analogical problem solving.

    Science.gov (United States)

    Schelhorn, Sven-Eric; Griego, Jacqueline; Schmid, Ute

    2007-03-01

    Analogical problem solving is mostly described as transfer of a source solution to a target problem based on the structural correspondences (mapping) between source and target. Derivational analogy (Carbonell, Machine learning: an artificial intelligence approach Los Altos. Morgan Kaufmann, 1986) proposes an alternative view: a target problem is solved by replaying a remembered problem-solving episode. Thus, the experience with the source problem is used to guide the search for the target solution by applying the same solution technique rather than by transferring the complete solution. We report an empirical study using the path finding problems presented in Novick and Hmelo (J Exp Psychol Learn Mem Cogn 20:1296-1321, 1994) as material. We show that both transformational and derivational analogy are problem-solving strategies realized by human problem solvers. Which strategy is evoked in a given problem-solving context depends on the constraints guiding object-to-object mapping between source and target problem. Specifically, if constraints facilitating mapping are available, subjects are more likely to employ a transformational strategy, otherwise they are more likely to use a derivational strategy.

  3. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    Science.gov (United States)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  4. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    OpenAIRE

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach problem-solving skills. The present study, as a first study in Turkey, may provide valuable insight for nurse academicians employed at üniversities. Purpose of ...

  5. A descriptive model of information problem solving while using internet

    NARCIS (Netherlands)

    Brand-Gruwel, Saskia; Wopereis, Iwan; Walraven, Amber

    2009-01-01

    This paper presents the IPS-I-model: a model that describes the process of information problem solving (IPS) in which the Internet (I) is used to search information. The IPS-I-model is based on three studies, in which students in secondary and (post) higher education were asked to solve information

  6. Solving the uncalibrated photometric stereo problem using total variation

    DEFF Research Database (Denmark)

    Quéau, Yvain; Lauze, Francois Bernard; Durou, Jean-Denis

    2013-01-01

    In this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both...

  7. Is Word-Problem Solving a Form of Text Comprehension?

    Science.gov (United States)

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study's hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of…

  8. Information theory and coding solved problems

    CERN Document Server

    Ivaniš, Predrag

    2017-01-01

    This book is offers a comprehensive overview of information theory and error control coding, using a different approach then in existed literature. The chapters are organized according to the Shannon system model, where one block affects the others. A relatively brief theoretical introduction is provided at the beginning of every chapter, including a few additional examples and explanations, but without any proofs. And a short overview of some aspects of abstract algebra is given at the end of the corresponding chapters. The characteristic complex examples with a lot of illustrations and tables are chosen to provide detailed insights into the nature of the problem. Some limiting cases are presented to illustrate the connections with the theoretical bounds. The numerical values are carefully selected to provide in-depth explanations of the described algorithms. Although the examples in the different chapters can be considered separately, they are mutually connected and the conclusions for one considered proble...

  9. Solving the decompactification problem in string theory

    CERN Document Server

    Kiritsis, Elias B; Petropoulos, P M; Rizos, J

    1996-01-01

    We investigate heterotic ground states in four dimensions in which N=4 supersymmetry is spontaneously broken to N=2. N=4 supersymmetry is restored at a decompactification limit corresponding to m_{3/2}\\to 0. We calculate the full moduli dependent threshold corrections and confirm that they are supressed in the decompactification limit m_{3/2}\\to 0 as expected from the restauration of N=4 supersymmetry. This should be contrasted with the behavior of the standard N=2 groundstates where the coupling blow up linearly with the volume of the decompactifying manifold. This mechanism provides a solution to the decompactification problem for the gauge coupling constants. We also discuss how the mechanism can be implemented in ground states with lower supersymmetry.

  10. Neurogenetic Algorithm for Solving Combinatorial Engineering Problems

    Directory of Open Access Journals (Sweden)

    M. Jalali Varnamkhasti

    2012-01-01

    Full Text Available Diversity of the population in a genetic algorithm plays an important role in impeding premature convergence. This paper proposes an adaptive neurofuzzy inference system genetic algorithm based on sexual selection. In this technique, for choosing the female chromosome during sexual selection, a bilinear allocation lifetime approach is used to label the chromosomes based on their fitness value which will then be used to characterize the diversity of the population. The motivation of this algorithm is to maintain the population diversity throughout the search procedure. To promote diversity, the proposed algorithm combines the concept of gender and age of individuals and the fuzzy logic during the selection of parents. In order to appraise the performance of the techniques used in this study, one of the chemistry problems and some nonlinear functions available in literature is used.

  11. Creative Problem Solving as a Learning Process

    Directory of Open Access Journals (Sweden)

    Andreas Ninck

    2013-12-01

    Full Text Available The Business School at the Bern University of Applied Sciences is offering a new MScBA degree program in business development. The paper presents a practical report about the action learning approach in the course 'Business Analysis and Design'. Our problem-based approach is more than simply 'learning by doing'. In a world of increasing complexity, taking action alone will not result in a learning effect per se. What is imperative is to structure and facilitate the learning process on different levels: individual construction of mental models; understanding needs and developing adequate solutions; critical reflection of methods and processes. Reflective practice, where individuals are learning from their own professional experiences rather than from formal teaching or knowledge transfer, may be the most important source for lifelong learning.

  12. Cognitive functioning and social problem-solving skills in schizophrenia.

    Science.gov (United States)

    Hatashita-Wong, Michi; Smith, Thomas E; Silverstein, Steven M; Hull, James W; Willson, Deborah F

    2002-05-01

    This study examined the relationships between symptoms, cognitive functioning, and social skill deficits in schizophrenia. Few studies have incorporated measures of cognitive functioning and symptoms in predictive models for social problem solving. For our study, 44 participants were recruited from consecutive outpatient admissions. Neuropsychological tests were given to assess cognitive function, and social problem solving was assessed using structured vignettes designed to evoke the participant's ability to generate, evaluate, and apply solutions to social problems. A sequential model-fitting method of analysis was used to incorporate social problem solving, symptom presentation, and cognitive impairment into linear regression models. Predictor variables were drawn from demographic, cognitive, and symptom domains. Because this method of analysis was exploratory and not intended as hierarchical modelling, no a priori hypotheses were proposed. Participants with higher scores on tests of cognitive flexibility were better able to generate accurate, appropriate, and relevant responses to the social problem-solving vignettes. The results suggest that cognitive flexibility is a potentially important mediating factor in social problem-solving competence. While other factors are related to social problem-solving skill, this study supports the importance of cognition and understanding how it relates to the complex and multifaceted nature of social functioning.

  13. Anger in Middle School: The Solving Problems Together Model

    Science.gov (United States)

    Hall, Kimberly R.; Rushing, Jeri L.; Owens, Rachel B.

    2009-01-01

    Problem-focused interventions are considered to be one of the most effective group counseling strategies with adolescents. This article describes a problem-focused group counseling model, Solving Problems Together (SPT), with a small group of adolescent African American boys struggling with anger management. Adapted from the teaching philosophy of…

  14. Solving satisfiability problems by the ground-state quantum computer

    International Nuclear Information System (INIS)

    Mao Wenjin

    2005-01-01

    A quantum algorithm is proposed to solve the satisfiability (SAT) problems by the ground-state quantum computer. The scale of the energy gap of the ground-state quantum computer is analyzed for the 3-bit exact cover problem. The time cost of this algorithm on the general SAT problems is discussed

  15. A Problem-Solving Model for Literacy Coaching Practice

    Science.gov (United States)

    Toll, Cathy A.

    2017-01-01

    Literacy coaches are more effective when they have a clear plan for their collaborations with teachers. This article provides details of such a plan, which involves identifying a problem, understanding the problem, deciding what to do differently, and trying something different. For each phase of the problem-solving model, there are key tasks for…

  16. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David M.

    2010-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However, ...

  17. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Ryan, David; Lusby, Richard Martin

    2009-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However, ...

  18. Solving a chemical batch scheduling problem by local search

    NARCIS (Netherlands)

    Brucker, P.; Hurink, Johann L.

    1999-01-01

    A chemical batch scheduling problem is modelled in two different ways as a discrete optimization problem. Both models are used to solve the batch scheduling problem in a two-phase tabu search procedure. The method is tested on real-world data.

  19. Productive and Re-Productive Thinking in Solving Insight Problems

    Science.gov (United States)

    Cunningham, J. Barton; MacGregor, James N.

    2014-01-01

    Many innovations in organizations result when people discover insightful solutions to problems. Insightful problem-solving was considered by Gestalt psychologists to be associated with productive, as opposed to re-productive, thinking. Productive thinking is characterized by shifts in perspective which allow the problem solver to consider new,…

  20. Human Performance on Insight Problem Solving: A Review

    Science.gov (United States)

    Chu, Yun; MacGregor, James N.

    2011-01-01

    The article provides a review of recent research on insight problem-solving performance. We discuss what insight problems are, the different types of classic and newer insight problems, and how we can classify them. We also explain some of the other aspects that affect insight performance, such as hints, analogs, training, thinking aloud, and…

  1. Solving potential field problems in composite media with complicated geometries

    International Nuclear Information System (INIS)

    Yeh, H.

    1977-01-01

    Recently, Yeh developed a method of solving potential field problems for complicated geometries and theorems of piecewise continuous eigenfunctions which can be used to solve boundary-value problems in composite media by the separation of variables. This paper shows that by a proper arrangement of matching conditions and boundary conditions, this method and these theorems can be applied simultaneously so that the problems in composite media with complicated geometries can be solved. To illustrate this, a heat-conduction problem in a composite cylinder with an abrupt change in cross-section area is solved. Also presented in this paper are the method of handling the nonhomogeneous boundary conditions for composite media and the extension of one of the above-mentioned theorems to include imperfect contact on material boundaries

  2. Students' Competence in some Problem Solving Skills throughout ...

    African Journals Online (AJOL)

    NICO

    Cognitive skills, thinking skills, problem solving, students' difficulties with cognitive skills. 1. Introduction ... storage of information in memory, and the retrieval and use of ..... 18 P. Eggen and D. Kauchak, Educational Psychology, Windows on.

  3. Social problem solving ability predicts mental health among undergraduate students

    Directory of Open Access Journals (Sweden)

    Mansour Ranjbar

    2013-01-01

    Methods : In this correlational- descriptive study, 369 (208 female and 161 male from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson′s correlation, t test, and stepwise regression analysis. Results : Data analysis showed significant relationship between social problem solving ability and mental health (P < 0.01. Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P < 0.01. Conclusions: The results of our study demonstrated that there is a significant correlation between social problem solving ability and mental health.

  4. Problem solving in foundation engineering using foundationPro

    CERN Document Server

    Yamin, Mohammad

    2016-01-01

    This book is at once a supplement to traditional foundation engineering textbooks and an independent problem-solving learning tool. The book is written primarily for university students majoring in civil or construction engineering taking foundation analysis and design courses to encourage them to solve design problems. Its main aim is to stimulate problem solving capability and foster self-directed learning. It also explains the use of the foundationPro software, available at no cost, and includes a set of foundation engineering applications. Taking a unique approach, Dr. Yamin summarizes the general step-by-step procedure to solve various foundation engineering problems, illustrates traditional applications of these steps with longhand solutions, and presents the foundationPro solutions. The special structure of the book allows it to be used in undergraduate and graduate foundation design and analysis courses in civil and construction engineering. The book stands as valuable resource for students, faculty, ...

  5. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  6. Examining Multiscale Movement Coordination in Collaborative Problem Solving

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Steffensen, Sune Vork

    2017-01-01

    During collaborative problem solving (CPS), coordination occurs at different spatial and temporal scales. This multiscale coordination should, at least on some scales, play a functional role in facilitating effective collaboration outcomes. To evaluate this, we conducted a study of computer...

  7. The Association of DRD2 with Insight Problem Solving.

    Science.gov (United States)

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene ( DRD2 ) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.

  8. Spreadsheet-Enhanced Problem Solving in Context as Modeling

    Directory of Open Access Journals (Sweden)

    Sergei Abramovich

    2003-07-01

    development through situated mathematical problem solving. Modeling activities described in this paper support the epistemological position regarding the interplay that exists between the development of mathematical concepts and available methods of calculation. The spreadsheet used is Microsoft Excel 2001

  9. Making Sure you Solve the Right Problem

    Directory of Open Access Journals (Sweden)

    Kim Cartledge

    2009-12-01

    Full Text Available Macleod et al. have given us an admirable case study and argued that "... there is an urgent need to create stronger and more transparent, integrated, and adaptive linkages between opening-up and closing down mechanisms at the science-policy interface." Two questions must be addressed: what sorts of managerial reform would be required to achieve this? and Is this likely to happen? A natural subsidiarity makes large institutions more inclined to "closing down" (specification actions and smaller ones more inclined to open problems up. The method of boundary judgments developed in integrative research could be applied to the science-policy interface but there are political and sociological reasons why this is unlikely to happen. Receptiveness to opening up actions is a prerequisite of innovation. Innovations are suppressed in times of geopolitical and economic stress. The result is often an ill-structured, co-evolutionary dynamic in which the actions of one species or population reduce the fitness of another.

  10. Neural bases for basic processes in heuristic problem solving: Take solving Sudoku puzzles as an example.

    Science.gov (United States)

    Qin, Yulin; Xiang, Jie; Wang, Rifeng; Zhou, Haiyan; Li, Kuncheng; Zhong, Ning

    2012-12-01

    Newell and Simon postulated that the basic steps in human problem-solving involve iteratively applying operators to transform the state of the problem to eventually achieve a goal. To check the neural basis of this framework, the present study focused on the basic processes in human heuristic problem-solving that the participants identified the current problem state and then recalled and applied the corresponding heuristic rules to change the problem state. A new paradigm, solving simplified Sudoku puzzles, was developed for an event-related functional magnetic resonance imaging (fMRI) study in problem solving. Regions of interest (ROIs), including the left prefrontal cortex, the bilateral posterior parietal cortex, the anterior cingulated cortex, the bilateral caudate nuclei, the bilateral fusiform, as well as the bilateral frontal eye fields, were found to be involved in the task. To obtain convergent evidence, in addition to traditional statistical analysis, we used the multivariate voxel classification method to check the accuracy of the predictions for the condition of the task from the blood oxygen level dependent (BOLD) response of the ROIs, using a new classifier developed in this study for fMRI data. To reveal the roles that the ROIs play in problem solving, we developed an ACT-R computational model of the information-processing processes in human problem solving, and tried to predict the BOLD response of the ROIs from the task. Advances in human problem-solving research after Newell and Simon are then briefly discussed. © 2012 The Institute of Psychology, Chinese Academy of Sciences and Blackwell Publishing Asia Pty Ltd.

  11. Teaching problem-solving skills to nuclear engineering students

    Science.gov (United States)

    Waller, E.; Kaye, M. H.

    2012-08-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and accurate analysis of the problems, design of solutions (focusing on public safety, environmental stewardship and ethics), solution execution and monitoring results. A three-month course in problem solving, modelling and simulation was designed and a collaborative approach was undertaken with instructors from both industry and academia. Training was optimised for the laptop-based pedagogy, which provided unique advantages for a course that includes modelling and simulation components. The concepts and tools learned as part of the training were observed to be utilised throughout the duration of student university studies and interviews with students who have entered the workforce indicate that the approaches learned and practised are retained long term.

  12. The role of qualitative discussion in problem solving

    International Nuclear Information System (INIS)

    Cerny, V.

    1998-01-01

    The paper contributes to the methodology of problem solving in physics. We argue that the task of solving a problem does not end by obtaining the result. We claim that a question like 'Why the result came out as it did?' can be meaningfully posed and that deeper understanding of the subject comes out as a result of a discussion on possible answers to such a question (Author)

  13. ENGAGE: A Game Based Learning and Problem Solving Framework

    Science.gov (United States)

    2012-07-13

    Gamification Summit 2012  Mensa Colloquium 2012.2: Social and Video Games  Seattle Science Festival  TED Salon Vancouver : http...From - To) 6/1/2012 – 6/30/2012 4. TITLE AND SUBTITLE ENGAGE: A Game Based Learning and Problem Solving Framework 5a. CONTRACT NUMBER N/A 5b...Popović ENGAGE: A Game Based Learning and Problem Solving Framework (Task 1 Month 4) Progress, Status and Management Report Monthly Progress

  14. The art and science of participative problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...... solving facilitation both as science and art will be presented. A case study related to examinations planning will be discussed to illustrate the main concepts in practice. In addition, other cases studies will also be shortly presented....

  15. Comparison of mathematical problem solving strategies of primary school pupils

    OpenAIRE

    Wasilewská, Eliška

    2016-01-01

    The aim of this dissertation is to describe the role of educational strategy especially in field of the teaching of mathematics and to compare the mathematical problem solving strategies of primary school pupils which are taught by using different educational strategies. In the theoretical part, the main focus is on divergent educational strategies and their characteristics, next on factors affected teaching/learning process and finally on solving the problems. The empirical part of the disse...

  16. Using a genetic algorithm to solve fluid-flow problems

    International Nuclear Information System (INIS)

    Pryor, R.J.

    1990-01-01

    Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe

  17. Problem solving teaching practices: Observer and teacher's view

    OpenAIRE

    Felmer , Patricio; Perdomo-Díaz , Josefa; Giaconi , Valentina; Espinoza , Carmen ,

    2015-01-01

    International audience; In this article, we report on an exploratory study on teaching practices related to problem solving of a group of 29 novel secondary mathematics teachers. For this purpose, two independent instruments were designed, the first one is based on lesson observations, and the second one is a questionnaire answered by teachers about their teaching practices while working on non-routine problem solving with their students. For each instrument, we perform a statistical analysis...

  18. Emotion Oriented Programming: Computational Abstractions for AI Problem Solving

    OpenAIRE

    Darty , Kevin; Sabouret , Nicolas

    2012-01-01

    International audience; In this paper, we present a programming paradigm for AI problem solving based on computational concepts drawn from Affective Computing. It is believed that emotions participate in human adaptability and reactivity, in behaviour selection and in complex and dynamic environments. We propose to define a mechanism inspired from this observation for general AI problem solving. To this purpose, we synthesize emotions as programming abstractions that represent the perception ...

  19. DESIGN AND EXAMINATION OF ALGORITHMS FOR SOLVING THE KNAPSACK PROBLEM

    Directory of Open Access Journals (Sweden)

    S. Kantsedal

    2015-07-01

    Full Text Available The use of methods of branches and boundaries as well as the methods of dynamic programming at solving the problem of «knapsack» is grounded. The main concepts are expounded. The methods and algorithms development for solving the above specified problem are described. Recommendations on practical application of constructed algorithms based on their experimental investigation and carrying out charactheristics comparison are presented.

  20. Social Problem Solving Ability Predicts Mental Health Among Undergraduate Students

    OpenAIRE

    Ranjbar, Mansour; Bayani, Ali Asghar; Bayani, Ali

    2013-01-01

    Background : The main objective of this study was predicting student′s mental health using social problem solving- ability . Methods : In this correlational- descriptive study, 369 (208 female and 161 male) from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson′s correlation, t tes...

  1. Social problem solving among depressed adolescents is enhanced by structured psychotherapies

    Science.gov (United States)

    Dietz, Laura J.; Marshal, Michael P.; Burton, Chad M.; Bridge, Jeffrey A.; Birmaher, Boris; Kolko, David; Duffy, Jamira N.; Brent, David A.

    2014-01-01

    Objective Changes in adolescent interpersonal behavior before and after an acute course of psychotherapy were investigated as outcomes and mediators of remission status in a previously described treatment study of depressed adolescents. Maternal depressive symptoms were examined as moderators of the association between psychotherapy condition and changes in adolescents’ interpersonal behavior. Method Adolescents (n = 63, mean age = 15.6 years, 77.8% female, 84.1% Caucasian) engaged in videotaped interactions with their mothers before randomization to cognitive behavior therapy (CBT), systemic behavior family therapy (SBFT), or nondirective supportive therapy (NST), and after 12–16 weeks of treatment. Adolescent involvement, problem solving and dyadic conflict were examined. Results Improvements in adolescent problem solving were significantly associated with CBT and SBFT. Maternal depressive symptoms moderated the effect of CBT, but not SBFT, on adolescents’ problem solving; adolescents experienced increases in problem solving only when their mothers had low or moderate levels of depressive symptoms. Improvements in adolescents’ problem solving were associated with higher rates of remission across treatment conditions, but there were no significant indirect effects of SBFT on remission status through problem solving. Exploratory analyses revealed a significant indirect effect of CBT on remission status through changes in adolescent problem solving, but only when maternal depressive symptoms at study entry were low. Conclusions Findings provide preliminary support for problem solving as an active treatment component of structured psychotherapies for depressed adolescents and suggest one Pathway by which maternal depression may disrupt treatment efficacy for depressed adolescents treated with CBT. PMID:24491077

  2. Patterns of problem-solving in children's literacy and arithmetic.

    Science.gov (United States)

    Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James

    2009-11-01

    Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years I and 2 on the arithmetic (addition and subtraction) than literacy-based tasks (reading and spelling). However, across all four tasks, the children showed a tendency to move from less sophisticated procedural-based strategies, which included phonological strategies for reading and spelling and counting-all and finger modellingfor addition and subtraction, to more efficient retrieval methods from Years I to 2. Distinct patterns in children's problem-solving skill were identified on the literacy and arithmetic tasks using two separate cluster analyses. There was a strong association between these two profiles showing that those children with more advanced problem-solving skills on the arithmetic tasks also showed more advanced profiles on the literacy tasks. The results highlight how different-aged children show flexibility in their use of problem-solving strategies across literacy and arithmetical contexts and reinforce the importance of studying variations in children's problem-solving skill across different educational contexts.

  3. Teaching effective problem solving skills to radiation protection students

    International Nuclear Information System (INIS)

    Waller, Edward

    2008-01-01

    Full text: Problem solving skills are essential for all radiation protection personnel. Although some students have more natural problem solving skills than others, all students require practice to become comfortable using these skills. At the University of Ontario Institute of Technology (UOIT), a unique one-semester course was developed as part of the core curriculum to teach students problem solving skills and elements of modelling and simulation. The underlying emphasis of the course was to allow students to develop their own problem solving strategies, both individually and in groups. Direction was provided on how to examine problems from different perspectives, and how to determine the proper root problem statement. A five-point problem solving strategy was presented as: 1) Problem definition; 2) Solution generation; 3) Decision; 4) Implementation; 5) Evaluation. Within the strategy, problem solving techniques were integrated from diverse areas such as: De Bono 's six thinking hats, Kepner-Tregoe decision analysis, Covey's seven habits of highly effective people, Reason's swiss cheese theory of complex failure, and Howlett's common failure modes. As part of the evaluation step, students critically explore areas such as ethics and environmental responsibility. In addition to exploring problem solving methods, students learn the usefulness of simulation methods, and how to model and simulate complex phenomena of relevance to radiation protection. Computational aspects of problem solving are explored using the commercially available MATLAB computer code. A number of case studies are presented as both examples and problems to the students. Emphasis was placed on solutions to problems of interest to radiation protection, health physics and nuclear engineering. A group project, pertaining to an accident or event related to the nuclear industry is a course requirement. Students learn to utilize common time and project management tools such as flowcharting, Pareto

  4. Solving Large Clustering Problems with Meta-Heuristic Search

    DEFF Research Database (Denmark)

    Turkensteen, Marcel; Andersen, Kim Allan; Bang-Jensen, Jørgen

    In Clustering Problems, groups of similar subjects are to be retrieved from data sets. In this paper, Clustering Problems with the frequently used Minimum Sum-of-Squares Criterion are solved using meta-heuristic search. Tabu search has proved to be a successful methodology for solving optimization...... problems, but applications to large clustering problems are rare. The simulated annealing heuristic has mainly been applied to relatively small instances. In this paper, we implement tabu search and simulated annealing approaches and compare them to the commonly used k-means approach. We find that the meta-heuristic...

  5. Does Solving Insight-Based Problems Differ from Solving Learning-Based Problems? Some Evidence from an ERP Study

    Science.gov (United States)

    Leikin, Roza; Waisman, Ilana; Leikin, Mark

    2016-01-01

    We asked: "What are the similarities and differences in mathematical processing associated with solving learning-based and insight-based problems?" To answer this question, the ERP research procedure was employed with 69 male adolescent subjects who solved specially designed insight-based and learning-based tests. Solutions of…

  6. Problem Solving and Critical Thinking Skills of Undergraduate Nursing Students

    Directory of Open Access Journals (Sweden)

    Yalçın KANBAY

    2013-12-01

    Full Text Available Due to the fact that critical thinking and problem solving skills are essential components of educational and social lives of individuals, this present study which investigate critical thinking and problem solving skills of undergraduate students of nursing was planned. This is a descriptive study. The study population consisted of undergraduate nursing students of a university during the 2011-2012 academic year. Any specific sampling method was not determined and only the voluntary students was enrolled in the study . Several participants were excluded due to incomplete questionnaires, and eventually a total of 231 nursing students were included in the final sampling. Socio Demographic Features Data Form and the California Critical Thinking Disposition Scale and Problem Solving Inventory were used for data collection. The mean age of 231 subjects (148 girls, 83 boys was 21.34. The mean score of critical thinking was 255.71 for the first-grade, 255.57 for the second-grade, 264.73 for the third-grade, and 256.468 for the forth-grade students. The mean score of critical thinking was determined as 257.41 for the sample, which can be considered as an average value. Although there are mean score differences of critical thinking between the classes , they were not statistically significant (p> 0.05. With regard to the mean score of problem solving, the first-grade students had 92.86, the second-grade students had 94. 29, the third-grade students had 87.00, and the forth-grade students had 92.87. The mean score of problem solving was determined as 92.450 for the sample. Although there are differences between the classes in terms of mean scores of problem solving, it was not found statistically significant (p> 0.05. In this study, statistically significant correlation could not be identified between age and critical thinking skills of the subjects (p>0.05. However, a negative correlation was identified at low levels between critical thinking skills and

  7. Psychosocial dimensions of solving an indoor air problem.

    Science.gov (United States)

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  8. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    Science.gov (United States)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  9. Solving Multiple Timetabling Problems at Danish High Schools

    DEFF Research Database (Denmark)

    Kristiansen, Simon

    name; Elective Course Student Sectioning. The problem is solved using ALNS and solutions are proven to be close to optimum. The algorithm has been implemented and made available for the majority of the high schools in Denmark. The second Student Sectioning problem presented is the sectioning of each...... high schools. Two types of consultations are presented; the Parental Consultation Timetabling Problem (PCTP) and the Supervisor Consultation Timetabling Problem (SCTP). One mathematical model containing both consultation types has been created and solved using an ALNS approach. The received solutions...... problems as mathematical models and solve them using operational research techniques. Two of the models and the suggested solution methods have resulted in implementations in an actual decision support software, and are hence available for the majority of the high schools in Denmark. These implementations...

  10. Development and validation of the diabetes adolescent problem solving questionnaire.

    Science.gov (United States)

    Mulvaney, Shelagh A; Jaser, Sarah S; Rothman, Russell L; Russell, William E; Pittel, Eric J; Lybarger, Cindy; Wallston, Kenneth A

    2014-10-01

    Problem solving is a critical diabetes self-management skill. Because of a lack of clinically feasible measures, our aim was to develop and validate a self-report self-management problem solving questionnaire for adolescents with type 1 diabetes (T1D). A multidisciplinary team of diabetes experts generated questionnaire items that addressed diabetes self-management problem solving. Iterative feedback from parents and adolescents resulted in 27 items. Adolescents from two studies (N=156) aged 13-17 were recruited through a pediatric diabetes clinic and completed measures through an online survey. Glycemic control was measured by HbA1c recorded in the medical record. Empirical elimination of items using principal components analyses resulted in a 13-item unidimensional measure, the diabetes adolescent problem solving questionnaire (DAPSQ) that explained 56% of the variance. The DAPSQ demonstrated internal consistency (Cronbach's alpha=0.92) and was correlated with diabetes self-management (r=0.53, pproblem solving in youth with T1D and is associated with better self-management behaviors and glycemic control. The DAPSQ is a clinically feasible self-report measure that can provide valuable information regarding level of self-management problem solving and guide patient education. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. From employee representation to problem-solving: Mainstreaming OHS management

    DEFF Research Database (Denmark)

    Hasle, Peter; Seim, Rikke; Refslund, Bjarke

    2016-01-01

    . The role of OHS representatives has accordingly changed to focus on solving specific problems in the workplace as an integrated part of daily operations. Both management and colleagues consider the OHS representatives as a resource that can be utilized to manage the work environment. The consequences......The role of occupational health and safety representatives is changing. A study in 60 Danish enterprises indicates that representation, and especially negotiation on behalf of colleagues, has diminished. The work environment is mainstreamed in many enterprises and is rarely an area of conflict...... of this development for the employees may be a stronger joint management–employee effort to improve the work environment, but also management domination and an accordingly weaker employee voice in some companies....

  12. Rumination, Social Problem Solving and Suicide Intent Among Egyptians With a Recent Suicide Attempt.

    Science.gov (United States)

    Sharaf, Amira Y; Lachine, Ola A; Thompson, Elaine A

    2018-02-01

    The more complex influences of social problem-solving abilities and rumination-specifically brooding and reflection-on suicide intent is not well understood. We hypothesized that social problem solving would moderate the association between reflection and suicide intent, and mediate the influence of brooding on suicide intent. A convenience sample (N=186) of individuals hospitalized for recent suicide attempt was interviewed, assessing suicide intent, social problem solving, brooding, reflection and depression. Brooding and reflection were positively associated with suicide intent. The mediating, but not the moderating, hypothesis was supported. Brooding was not significant (β=0.15, t=1.92, p=0.06) with social problem solving controlled. Interventions to disengage rumination and improve social problem-solving skills are underscored. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Enhanced Critical Thinking Skills through Problem-Solving Games in Secondary Schools

    OpenAIRE

    Scott D McDonald

    2017-01-01

    Aim/Purpose: Students face many challenges improving their soft skills such as critical thinking. This paper offers one possible solution to this problem. Background: This paper considers one method of enhancing critical thinking through a problem-solving game called the Coffee Shop. Problem-solving is a key component to critical thinking, and game-playing is one method of enhancing this through an interactive teaching method. Methodology: Three classes of Vietnamese high school stude...

  14. The Enhancement of Communication Skill and Prediction Skill in Colloidal Concept by Problem Solving Learning

    OpenAIRE

    Anggraini, Agita Dzulhajh; Fadiawati, Noor; Diawati, Chansyanah

    2012-01-01

    Accuracy educators in selecting and implementing learning models influence students' science process skills. Models of learning that can be applied to improve science process skills and tend constructivist among athers learning model of problem solving. This research was conducted to describe the effectiveness of the learning model of problem solving in improving communication skills and prediction skills. Subjects in this research were students of high school YP Unila Bandar Lampung Even ...

  15. Problem Solving Interventions for Diabetes Self-management and Control: A Systematic Review of the Literature

    Science.gov (United States)

    Fitzpatrick, Stephanie L.; Schumann, Kristina P.; Hill-Briggs, Felicia

    2013-01-01

    Aims Problem solving is deemed a core skill for patient diabetes self-management education. The purpose of this systematic review is to examine the published literature on the effect of problem-solving interventions on diabetes self-management and disease control. Data Sources We searched PubMed and PsychINFO electronic databases for English language articles published between November 2006 and September 2012. Reference lists from included studies were reviewed to capture additional studies. Study Selection Studies reporting problem-solving intervention or problem solving as an intervention component for diabetes self-management training and disease control were included. Twenty-four studies met inclusion criteria. Data Extraction Study design, sample characteristics, measures, and results were reviewed. Data Synthesis Sixteen intervention studies (11 adult, 5 children/adolescents) were randomized controlled trials, and 8 intervention studies (6 adult, 2 children/adolescents) were quasi-experimental designs. Conclusions Studies varied greatly in their approaches to problem-solving use in patient education. To date, 36% of adult problem-solving interventions and 42% of children/adolescent problem-solving interventions have demonstrated significant improvement in HbA1c, while psychosocial outcomes have been more promising. The next phase of problem-solving intervention research should employ intervention characteristics found to have sufficient potency and intensity to reach therapeutic levels needed to demonstrate change. PMID:23312614

  16. Personality and problem-solving in common mynas (Acridotheres tristis).

    Science.gov (United States)

    Lermite, Françoise; Peneaux, Chloé; Griffin, Andrea S

    2017-01-01

    Animals show consistent individual differences in behaviour across time and/or contexts. Recently, it has been suggested that proactive personality types might also exhibit fast cognitive styles. The speed with which individuals sample environmental cues is one way in which correlations between personality and cognition might arise. Here, we measured a collection of behavioural traits (competitiveness, neophobia, neophilia, task-directed motivation and exploration) in common mynas (Acridotheres tristis) and measured their relationship with problem solving. We predicted that fast solving mynas would interact with (i.e. sample) the problem solving task at higher rates, but also be more competitive, less neophobic, more neophilic, and more exploratory. Mynas that were faster to solve a novel foraging problem were no more competitive around food and no more inclined to take risks. Unexpectedly, these fast-solving mynas had higher rates of interactions with the task, but also displayed lower levels of exploration. It is possible that a negative relation between problem solving and spatial exploration arose as a consequence of how inter-individual variation in exploration was quantified. We discuss the need for greater consensus on how to measure exploratory behaviour before we can advance our understanding of relationships between cognition and personality more effectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Teaching science problem solving: an overview of experimental work

    NARCIS (Netherlands)

    Taconis, R.; Ferguson-Hessler, M.G.M.; Broekkamp, H.

    2001-01-01

    The traditional approach to teaching science problem solving is having the students work individually on a large number of problems. This approach has long been overtaken by research suggesting and testing other methods, which are expected to be more effective. To get an overview of the

  18. Evaluating Students' Beliefs in Problem Solving Process: A Case Study

    Science.gov (United States)

    Ozturk, Tugba; Guven, Bulent

    2016-01-01

    Problem solving is not simply a process that ends when an answer is found; it is a scientific process that evolves from understanding the problem to evaluating the solution. This process is affected by several factors. Among these, one of the most substantial is belief. The purpose of this study was to evaluate the beliefs of high school students…

  19. The Importance of Monitoring Skills in Physics Problem Solving

    Science.gov (United States)

    Ali, Marlina; Talib, Corrienna-Abd; Hasniza Ibrahim, Nor; Surif, Johari; Halim Abdullah, Abdul

    2016-01-01

    The purpose of this paper is to show how important "monitoring" is as metacognitive skills in solving physics problems in the field mechanics. Based on test scores, twenty one students were divided into two groups: more successful (MS) and less successful (LS) problem solvers. Students were allowed to think-aloud while they worked on…

  20. Solving the Liner Shipping Fleet Repositioning Problem with Cargo Flows

    DEFF Research Database (Denmark)

    Tierney, Kevin; Askelsdottir, Björg; Jensen, Rune Møller

    2015-01-01

    We solve a central problem in the liner shipping industry called the liner shipping fleet repositioning problem (LSFRP). The LSFRP poses a large financial burden on liner shipping firms. During repositioning, vessels are moved between routes in a liner shipping network. Liner carriers wish...