WorldWideScience

Sample records for solve nonlinear partial

  1. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  2. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  3. Solving Nonlinear Partial Differential Equations with Maple and Mathematica

    CERN Document Server

    Shingareva, Inna K

    2011-01-01

    The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple an

  4. A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mountassir Hamdi Cherif

    2017-11-01

    Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

  5. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2014-01-01

    Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

  6. Multivariate Padé Approximation for Solving Nonlinear Partial Differential Equations of Fractional Order

    Directory of Open Access Journals (Sweden)

    Veyis Turut

    2013-01-01

    Full Text Available Two tecHniques were implemented, the Adomian decomposition method (ADM and multivariate Padé approximation (MPA, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo sense. First, the fractional differential equation has been solved and converted to power series by Adomian decomposition method (ADM, then power series solution of fractional differential equation was put into multivariate Padé series. Finally, numerical results were compared and presented in tables and figures.

  7. Solving nonlinear, High-order partial differential equations using a high-performance isogeometric analysis framework

    KAUST Repository

    Cortes, Adriano Mauricio; Vignal, Philippe; Sarmiento, Adel; Garcí a, Daniel O.; Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.

    2014-01-01

    In this paper we present PetIGA, a high-performance implementation of Isogeometric Analysis built on top of PETSc. We show its use in solving nonlinear and time-dependent problems, such as phase-field models, by taking advantage of the high-continuity of the basis functions granted by the isogeometric framework. In this work, we focus on the Cahn-Hilliard equation and the phase-field crystal equation.

  8. An ansatz for solving nonlinear partial differential equations in mathematical physics.

    Science.gov (United States)

    Akbar, M Ali; Ali, Norhashidah Hj Mohd

    2016-01-01

    In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.

  9. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.

    2014-12-01

    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  10. Nonlinear partial differential equations of second order

    CERN Document Server

    Dong, Guangchang

    1991-01-01

    This book addresses a class of equations central to many areas of mathematics and its applications. Although there is no routine way of solving nonlinear partial differential equations, effective approaches that apply to a wide variety of problems are available. This book addresses a general approach that consists of the following: Choose an appropriate function space, define a family of mappings, prove this family has a fixed point, and study various properties of the solution. The author emphasizes the derivation of various estimates, including a priori estimates. By focusing on a particular approach that has proven useful in solving a broad range of equations, this book makes a useful contribution to the literature.

  11. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  12. Nonlinear elliptic partial differential equations an introduction

    CERN Document Server

    Le Dret, Hervé

    2018-01-01

    This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.

  13. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  14. Convergence criteria for systems of nonlinear elliptic partial differential equations

    International Nuclear Information System (INIS)

    Sharma, R.K.

    1986-01-01

    This thesis deals with convergence criteria for a special system of nonlinear elliptic partial differential equations. A fixed-point algorithm is used, which iteratively solves one linearized elliptic partial differential equation at a time. Conditions are established that help foresee the convergence of the algorithm. Under reasonable hypotheses it is proved that the algorithm converges for such nonlinear elliptic systems. Extensive experimental results are reported and they show the algorithm converges in a wide variety of cases and the convergence is well correlated with the theoretical conditions introduced in this thesis

  15. Non-linear partial differential equations an algebraic view of generalized solutions

    CERN Document Server

    Rosinger, Elemer E

    1990-01-01

    A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

  16. Solving nonlinear evolution equation system using two different methods

    Science.gov (United States)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  17. Handbook of Nonlinear Partial Differential Equations

    CERN Document Server

    Polyanin, Andrei D

    2011-01-01

    New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with Maple(t), Mathematica(R), and MATLAB(R) Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They

  18. Nonlinear partial differential equations and their applications

    CERN Document Server

    Lions, Jacques Louis

    2002-01-01

    This book contains the written versions of lectures delivered since 1997 in the well-known weekly seminar on Applied Mathematics at the Collège de France in Paris, directed by Jacques-Louis Lions. It is the 14th and last of the series, due to the recent and untimely death of Professor Lions. The texts in this volume deal mostly with various aspects of the theory of nonlinear partial differential equations. They present both theoretical and applied results in many fields of growing importance such as Calculus of variations and optimal control, optimization, system theory and control, op

  19. Direct approach for solving nonlinear evolution and two-point

    Indian Academy of Sciences (India)

    Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples ...

  20. Exp-function method for solving fractional partial differential equations.

    Science.gov (United States)

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  1. Reproducing Kernel Method for Solving Nonlinear Differential-Difference Equations

    Directory of Open Access Journals (Sweden)

    Reza Mokhtari

    2012-01-01

    Full Text Available On the basis of reproducing kernel Hilbert spaces theory, an iterative algorithm for solving some nonlinear differential-difference equations (NDDEs is presented. The analytical solution is shown in a series form in a reproducing kernel space, and the approximate solution , is constructed by truncating the series to terms. The convergence of , to the analytical solution is also proved. Results obtained by the proposed method imply that it can be considered as a simple and accurate method for solving such differential-difference problems.

  2. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    Nonlinear partial differential equations (NPDEs) are encountered in various ... such as physics, mechanics, chemistry, biology, mathematics and engineering. ... In §3, this method is applied to the generalized forms of Klein–Gordon equation,.

  3. Partially integrable nonlinear equations with one higher symmetry

    International Nuclear Information System (INIS)

    Mikhailov, A V; Novikov, V S; Wang, J P

    2005-01-01

    In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function. (letter to the editor)

  4. Solving Partial Differential Equations Using a New Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Natee Panagant

    2014-01-01

    Full Text Available This paper proposes an alternative meshless approach to solve partial differential equations (PDEs. With a global approximate function being defined, a partial differential equation problem is converted into an optimisation problem with equality constraints from PDE boundary conditions. An evolutionary algorithm (EA is employed to search for the optimum solution. For this approach, the most difficult task is the low convergence rate of EA which consequently results in poor PDE solution approximation. However, its attractiveness remains due to the nature of a soft computing technique in EA. The algorithm can be used to tackle almost any kind of optimisation problem with simple evolutionary operation, which means it is mathematically simpler to use. A new efficient differential evolution (DE is presented and used to solve a number of the partial differential equations. The results obtained are illustrated and compared with exact solutions. It is shown that the proposed method has a potential to be a future meshless tool provided that the search performance of EA is greatly enhanced.

  5. New Efficient Fourth Order Method for Solving Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Farooq Ahmad

    2013-12-01

    Full Text Available In a paper [Appl. Math. Comput., 188 (2 (2007 1587--1591], authors have suggested and analyzed a method for solving nonlinear equations. In the present work, we modified this method by using the finite difference scheme, which has a quintic convergence. We have compared this modified Halley method with some other iterative of fifth-orders convergence methods, which shows that this new method having convergence of fourth order, is efficient.

  6. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  7. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  8. Entropy and convexity for nonlinear partial differential equations.

    Science.gov (United States)

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  9. On multilevel RBF collocation to solve nonlinear PDEs arising from endogenous stochastic volatility models

    Science.gov (United States)

    Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl

    2018-06-01

    The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.

  10. A New Fractional Projective Riccati Equation Method for Solving Fractional Partial Differential Equations

    International Nuclear Information System (INIS)

    Feng Qing-Hua

    2014-01-01

    In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained. (general)

  11. Taylor's series method for solving the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

  12. Nonlinear partial differential equation in engineering

    CERN Document Server

    Ames, William F

    1972-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  13. Direct method of solving finite difference nonlinear equations for multicomponent diffusion in a gas centrifuge

    International Nuclear Information System (INIS)

    Potemki, Valeri G.; Borisevich, Valentine D.; Yupatov, Sergei V.

    1996-01-01

    This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner's basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker's form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author)

  14. SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    H. Jafari

    2010-07-01

    Full Text Available In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM.Comparisons are made between the Adomian decomposition method (ADM, the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

  15. Various Newton-type iterative methods for solving nonlinear equations

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2013-10-01

    Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

  16. New Exact Solutions for New Model Nonlinear Partial Differential Equation

    OpenAIRE

    Maher, A.; El-Hawary, H. M.; Al-Amry, M. S.

    2013-01-01

    In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.

  17. Nonlinear Scattering from Partially Closed Cracks and Imperfect Interfaces

    International Nuclear Information System (INIS)

    Pecorari, Claudio

    2004-05-01

    This project has investigated the potential offered by nonlinear scattering phenomena to detect stress-corrosion, surface-breaking cracks, and regions of extended interfaces which are often invisible to conventional inspection methods because of their partial closure and/or the high background noise generated by the surrounding microstructure. The investigation has looked into the basic physics of the interaction between ultrasonic waves and rough surfaces in contact, since the latter offers a prototypical example of a mechanical system which is characterized by a dynamics similar to that of a partially closed crack. To this end, three fundamental mechanisms which may be activated by an inspecting ultrasonic wave have been considered. The first mechanism is described by the Hertz force law which governs the interaction between asperities in contact that are subjected to a normal load. The second mechanism considers the dynamics of two spherical asperities subjected to an oscillating tangential load. To this end, the model developed by Mindlin and Deresiewizc has been used. The third mechanism accounts for the effect of forces of adhesion, and can be described by a model developed by Greenwood and Johnson. The validity of this model is rather general and covers the extreme cases of very soft and very rigid contacts. This model aims at describing the effect of fluid layers with thickness of atomic size, which may be present within a crack. Statistical models accounting for the topography of the two rough surfaces in contact have been developed, and the macroscopic stiffness of the interface recovered. These results have been used to formulate effective boundary conditions to be enforced at the interface, and the reflection and transmission problem has been solved in a variety of situations of experimental significance. The main conclusion of this part of the project is that the second harmonic component is the dominant feature of the nonlinear response of an

  18. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  19. Advances in nonlinear partial differential equations and stochastics

    CERN Document Server

    Kawashima, S

    1998-01-01

    In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

  20. Nonlinear analysis of shear deformable beam-columns partially ...

    African Journals Online (AJOL)

    In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary ...

  1. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  2. Superdiffusions and positive solutions of nonlinear partial differential equations

    CERN Document Server

    Dynkin, E B

    2004-01-01

    This book is devoted to the applications of probability theory to the theory of nonlinear partial differential equations. More precisely, it is shown that all positive solutions for a class of nonlinear elliptic equations in a domain are described in terms of their traces on the boundary of the domain. The main probabilistic tool is the theory of superdiffusions, which describes a random evolution of a cloud of particles. A substantial enhancement of this theory is presented that can be of interest for everybody who works on applications of probabilistic methods to mathematical analysis.

  3. Nonlinear partial differential equations for scientists and engineers

    CERN Document Server

    Debnath, Lokenath

    1997-01-01

    "An exceptionally complete overview. There are numerous examples and the emphasis is on applications to almost all areas of science and engineering. There is truly something for everyone here. This reviewer feels that it is a very hard act to follow, and recommends it strongly. [This book] is a jewel." ---Applied Mechanics Review (Review of First Edition) This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Methods and properties of solutions are presented, along with their physical significance, making the book more useful for a diverse readership. Topics and key features: * Thorough coverage of derivation and methods of soluti...

  4. Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility

    International Nuclear Information System (INIS)

    El-Sabbagh, Mostafa F.; Ahmad, Ali T.

    2011-01-01

    The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples illustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries. (general)

  5. A new nonlinear turbulence model based on Partially-Averaged Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Liu, J T; Wu, Y L; Cai, C; Liu, S H; Wang, L Q

    2013-01-01

    Partially-averaged Navier-Stokes (PANS) Model was recognized as a Reynolds-averaged Navier-Stokes (RANS) to direct numerical simulation (DNS) bridging method. PANS model was purported for any filter width-from RANS to DNS. PANS method also shared some similarities with the currently popular URANS (unsteady RANS) method. In this paper, a new PANS model was proposed, which was based on RNG k-ε turbulence model. The Standard and RNG k-ε turbulence model were both isotropic models, as well as PANS models. The sheer stress in those PANS models was solved by linear equation. The linear hypothesis was not accurate in the simulation of complex flow, such as stall phenomenon. The sheer stress here was solved by nonlinear method proposed by Ehrhard. Then, the nonlinear PANS model was set up. The pressure coefficient of the suction side of the NACA0015 hydrofoil was predicted. The result of pressure coefficient agrees well with experimental result, which proves that the nonlinear PANS model can capture the high pressure gradient flow. A low specific centrifugal pump was used to verify the capacity of the nonlinear PANS model. The comparison between the simulation results of the centrifugal pump and Particle Image Velocimetry (PIV) results proves that the nonlinear PANS model can be used in the prediction of complex flow field

  6. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  7. Numerical solution of two-dimensional non-linear partial differential ...

    African Journals Online (AJOL)

    linear partial differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be ...

  8. On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations

    International Nuclear Information System (INIS)

    An Hengbin; Mo Zeyao; Xu Xiaowen; Liu Xu

    2009-01-01

    The 2-D 3-T heat conduction equations can be used to approximately describe the energy broadcast in materials and the energy swapping between electron and photon or ion. To solve the equations, a fully implicit finite volume scheme is often used as the discretization method. Because the energy diffusion and swapping coefficients have a strongly nonlinear dependence on the temperature, and some physical parameters are discontinuous across the interfaces between the materials, it is a challenge to solve the discretized nonlinear algebraic equations. Particularly, as time advances, the temperature varies so greatly in the front of energy that it is difficult to choose an effective initial iterate when the nonlinear algebraic equations are solved by an iterative method. In this paper, a method of choosing a nonlinear initial iterate is proposed for iterative solving this kind of nonlinear algebraic equations. Numerical results show the proposed initial iterate can improve the computational efficiency, and also the convergence behavior of the nonlinear iteration.

  9. Solving eigenvalue response matrix equations with nonlinear techniques

    International Nuclear Information System (INIS)

    Roberts, Jeremy A.; Forget, Benoit

    2014-01-01

    Highlights: • High performance solvers were applied within ERMM for the first time. • Accelerated fixed-point methods were developed that reduce computational times by 2–3. • A nonlinear, Newton-based ERMM led to similar improvement and more robustness. • A 3-D, SN-based ERMM shows how ERMM can apply fine-mesh methods to full-core analysis. - Abstract: This paper presents new algorithms for use in the eigenvalue response matrix method (ERMM) for reactor eigenvalue problems. ERMM spatially decomposes a domain into independent nodes linked via boundary conditions approximated as truncated orthogonal expansions, the coefficients of which are response functions. In its simplest form, ERMM consists of a two-level eigenproblem: an outer Picard iteration updates the k-eigenvalue via balance, while the inner λ-eigenproblem imposes neutron balance between nodes. Efficient methods are developed for solving the inner λ-eigenvalue problem within the outer Picard iteration. Based on results from several diffusion and transport benchmark models, it was found that the Krylov–Schur method applied to the λ-eigenvalue problem reduces Picard solver times (excluding response generation) by a factor of 2–5. Furthermore, alternative methods, including Picard acceleration schemes, Steffensen’s method, and Newton’s method, are developed in this paper. These approaches often yield faster k-convergence and a need for fewer k-dependent response function evaluations, which is important because response generation is often the primary cost for problems using responses computed online (i.e., not from a precomputed database). Accelerated Picard iteration was found to reduce total computational times by 2–3 compared to the unaccelerated case for problems dominated by response generation. In addition, Newton’s method was found to provide nearly the same performance with improved robustness

  10. Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method

    Directory of Open Access Journals (Sweden)

    Eman M. A. Hilal

    2014-01-01

    Full Text Available The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the variational iteration method, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.

  11. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  12. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  13. A Table Lookup Method for Exact Analytical Solutions of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Ji Juan-Juan

    2017-01-01

    Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.

  14. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  15. Direct approach for solving nonlinear evolution and two-point ...

    Indian Academy of Sciences (India)

    2013-12-01

    Dec 1, 2013 ... 1School of Mathematics and Applied Statistics, University of Wollongong, Wollongong,. NSW 2522 ... the nonlinear phenomena as well as their further applications in the real-life situations, it is ... concentration gradient. Thus ...

  16. Nonlinear acoustic waves in partially ionized collisional plasmas

    International Nuclear Information System (INIS)

    Rao, N.N.; Kaup, D.J.; Shukla, P.K.

    1991-01-01

    Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)

  17. A novel algebraic procedure for solving non-linear evolution equations of higher order

    International Nuclear Information System (INIS)

    Huber, Alfred

    2007-01-01

    We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

  18. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  19. Projection-iteration methods for solving nonlinear operator equations

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Tran thi Lan Anh; Tran Quoc Binh

    1989-09-01

    In this paper, the authors investigate a nonlinear operator equation in uniformly convex Banach spaces as in metric spaces by using stationary and nonstationary generalized projection-iteration methods. Convergence theorems in the strong and weak sense were established. (author). 7 refs

  20. Application of the trial equation method for solving some nonlinear ...

    Indian Academy of Sciences (India)

    Therefore, our aim is just to find the function F. Liu has obtained a number of exact solutions to many nonlinear differential equations when F(u) is a polynomial or a rational function. ... In this study, we apply the trial equation method to seek exact solutions of the ... twice and setting the integration constant to zero, we have.

  1. Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations

    International Nuclear Information System (INIS)

    Lu, Bin

    2012-01-01

    In this Letter, the fractional derivatives in the sense of modified Riemann–Liouville derivative and the Bäcklund transformation of fractional Riccati equation are employed for constructing the exact solutions of nonlinear fractional partial differential equations. The power of this manageable method is presented by applying it to several examples. This approach can also be applied to other nonlinear fractional differential equations. -- Highlights: ► Backlund transformation of fractional Riccati equation is presented. ► A new method for solving nonlinear fractional differential equations is proposed. ► Three important fractional differential equations are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained.

  2. Sufficient Descent Conjugate Gradient Methods for Solving Convex Constrained Nonlinear Monotone Equations

    Directory of Open Access Journals (Sweden)

    San-Yang Liu

    2014-01-01

    Full Text Available Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be applied to solve large-scale nonsmooth equations.

  3. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  4. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  5. DISPL-1, 2. Order Nonlinear Partial Differential Equation System Solution for Kinetics Diffusion Problems

    International Nuclear Information System (INIS)

    Leaf, G.K.; Minkoff, M.

    1982-01-01

    1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code

  6. Recent topics in non-linear partial differential equations 4

    CERN Document Server

    Mimura, M

    1989-01-01

    This fourth volume concerns the theory and applications of nonlinear PDEs in mathematical physics, reaction-diffusion theory, biomathematics, and in other applied sciences. Twelve papers present recent work in analysis, computational analysis of nonlinear PDEs and their applications.

  7. New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics

    International Nuclear Information System (INIS)

    Yao Ruo-Xia; Wang Wei; Chen Ting-Hua

    2014-01-01

    Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. (general)

  8. Computer programs for solving systems of nonlinear equations

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1978-03-01

    Computer programs to find a solution, usually the one closest to some guess, of a system of simultaneous nonlinear equations are provided for real functions of the real arguments. These are based on quasi-Newton methods or projection methods, which are briefly reviewed in the present report. Benchmark tests were performed on these subroutines to grasp their characteristics. As the program not requiring analytical forms of the derivatives of the Jacobian matrix, we have dealt with NS01A of Powell, NS03A of Reid for a system with the sparse Jacobian and NONLIN of Brown. Of these three subroutines of quasi-Newton methods, NONLIN is shown to be the most useful because of its stable algorithm and short computation time. On the other hand, as the subroutine for which the derivatives of the Jacobian are to be supplied analytically, we have tested INTECH of a quasi-Newton method based on the Boggs' algorithm, PROJA of Georg and Keller based on the projection method and an option of NS03A. The results have shown that INTECH, treating variables which appear only linearly in the functions separately, takes the shortest computation time, on the whole, while the projection method requires further research to find an optimal algorithm. (auth.)

  9. The Convergence Study of the Homotopy Analysis Method for Solving Nonlinear Volterra-Fredholm Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Behzad Ghanbari

    2014-01-01

    Full Text Available We aim to study the convergence of the homotopy analysis method (HAM in short for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.

  10. 3D early embryogenesis image filtering by nonlinear partial differential equations.

    Science.gov (United States)

    Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O

    2010-08-01

    We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which

  11. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  12. On new classes of solutions of nonlinear partial differential equations in the form of convergent special series

    Science.gov (United States)

    Filimonov, M. Yu.

    2017-12-01

    The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.

  13. The numerical dynamic for highly nonlinear partial differential equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  14. Solving Nonlinear Fractional Differential Equation by Generalized Mittag-Leffler Function Method

    Science.gov (United States)

    Arafa, A. A. M.; Rida, S. Z.; Mohammadein, A. A.; Ali, H. M.

    2013-06-01

    In this paper, we use Mittag—Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.

  15. Assessment of Two Analytical Methods in Solving the Linear and Nonlinear Elastic Beam Deformation Problems

    DEFF Research Database (Denmark)

    Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari

    2010-01-01

    and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...

  16. The generalized tanh method to obtain exact solutions of nonlinear partial differential equation

    OpenAIRE

    Gómez, César

    2007-01-01

    In this paper, we present the generalized tanh method to obtain exact solutions of nonlinear partial differential equations, and we obtain solitons and exact solutions of some important equations of the mathematical physics.

  17. Iterative Adaptive Dynamic Programming for Solving Unknown Nonlinear Zero-Sum Game Based on Online Data.

    Science.gov (United States)

    Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun

    2017-03-01

    H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.

  18. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

    Science.gov (United States)

    Biala, T A; Jator, S N

    2015-01-01

    In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

  19. Derivative free Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations

    Science.gov (United States)

    Mamat, M.; Dauda, M. K.; Mohamed, M. A. bin; Waziri, M. Y.; Mohamad, F. S.; Abdullah, H.

    2018-03-01

    Research from the work of engineers, economist, modelling, industry, computing, and scientist are mostly nonlinear equations in nature. Numerical solution to such systems is widely applied in those areas of mathematics. Over the years, there has been significant theoretical study to develop methods for solving such systems, despite these efforts, unfortunately the methods developed do have deficiency. In a contribution to solve systems of the form F(x) = 0, x ∈ Rn , a derivative free method via the classical Davidon-Fletcher-Powell (DFP) update is presented. This is achieved by simply approximating the inverse Hessian matrix with {Q}k+1-1 to θkI. The modified method satisfied the descent condition and possess local superlinear convergence properties. Interestingly, without computing any derivative, the proposed method never fail to converge throughout the numerical experiments. The output is based on number of iterations and CPU time, different initial starting points were used on a solve 40 benchmark test problems. With the aid of the squared norm merit function and derivative-free line search technique, the approach yield a method of solving symmetric systems of nonlinear equations that is capable of significantly reducing the CPU time and number of iteration, as compared to its counterparts. A comparison between the proposed method and classical DFP update were made and found that the proposed methodis the top performer and outperformed the existing method in almost all the cases. In terms of number of iterations, out of the 40 problems solved, the proposed method solved 38 successfully, (95%) while classical DFP solved 2 problems (i.e. 05%). In terms of CPU time, the proposed method solved 29 out of the 40 problems given, (i.e.72.5%) successfully whereas classical DFP solves 11 (27.5%). The method is valid in terms of derivation, reliable in terms of number of iterations and accurate in terms of CPU time. Thus, suitable and achived the objective.

  20. Analytic continuation of solutions of some nonlinear convolution partial differential equations

    Directory of Open Access Journals (Sweden)

    Hidetoshi Tahara

    2015-01-01

    Full Text Available The paper considers a problem of analytic continuation of solutions of some nonlinear convolution partial differential equations which naturally appear in the summability theory of formal solutions of nonlinear partial differential equations. Under a suitable assumption it is proved that any local holomorphic solution has an analytic extension to a certain sector and its extension has exponential growth when the variable goes to infinity in the sector.

  1. Conservation laws for certain time fractional nonlinear systems of partial differential equations

    Science.gov (United States)

    Singla, Komal; Gupta, R. K.

    2017-12-01

    In this study, an extension of the concept of nonlinear self-adjointness and Noether operators is proposed for calculating conserved vectors of the time fractional nonlinear systems of partial differential equations. In our recent work (J Math Phys 2016; 57: 101504), by proposing the symmetry approach for time fractional systems, the Lie symmetries for some fractional nonlinear systems have been derived. In this paper, the obtained infinitesimal generators are used to find conservation laws for the corresponding fractional systems.

  2. The modified simplest equation method to look for exact solutions of nonlinear partial differential equations

    OpenAIRE

    Efimova, Olga Yu.

    2010-01-01

    The modification of simplest equation method to look for exact solutions of nonlinear partial differential equations is presented. Using this method we obtain exact solutions of generalized Korteweg-de Vries equation with cubic source and exact solutions of third-order Kudryashov-Sinelshchikov equation describing nonlinear waves in liquids with gas bubbles.

  3. Role reversal and problem solving in international negotiations: the Partial Nuclear Test Ban case

    International Nuclear Information System (INIS)

    King, T.D.

    1978-01-01

    To facilitate finding bargaining space and to reinforce cooperative potential, a number of analysts have promoted the use of role reversal and problem solving. Role reversal involves restating the positions of one's adversary to demonstrate understanding and to develop empathy, while problem solving involves searching for alternatives that promote joint interests. The case of the negotiations in the Eighteen Nation Disarmament Conference from 1962--1963 leading to the Partial Nuclear Test Ban Treaty provided the context for examining bargaining relationships involving role reversal and problem solving. Interactions among the United States, the United Kingdom, and the Soviet Union, as recorded in transcripts of 112 sessions, were coded using Bargaining Process Analysis II, a content analysis instrument used to classify negotiation behaviors. Role reversal was measured by the frequency of paraphrases of the adversary's positions. Problem solving was measured by the frequency of themes promoting the exploration of alternatives and the search for mutually beneficial outcomes. The findings on the use of paraphrasing suggest that it can be used to restrict exploration as well as to promote it. The exploratory focus of problem solving was somewhat limited by its use in association with demands, suggesting that problem solving was interpreted as a sign of weakness

  4. The Adomian decomposition method for solving partial differential equations of fractal order in finite domains

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, A.M.A. [Faculty of Science University of Alexandria (Egypt)]. E-mail: amasyed@hotmail.com; Gaber, M. [Faculty of Education Al-Arish, Suez Canal University (Egypt)]. E-mail: mghf408@hotmail.com

    2006-11-20

    The Adomian decomposition method has been successively used to find the explicit and numerical solutions of the time fractional partial differential equations. A different examples of special interest with fractional time and space derivatives of order {alpha}, 0<{alpha}=<1 are considered and solved by means of Adomian decomposition method. The behaviour of Adomian solutions and the effects of different values of {alpha} are shown graphically for some examples.

  5. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-01

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  6. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-07

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  7. An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    M. Bishehniasar

    2017-01-01

    Full Text Available The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs. The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE. Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD method and standard finite difference (SFD technique, which are popular in the literature for solving engineering problems.

  8. Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear H∞ control.

    Science.gov (United States)

    Wu, Huai-Ning; Luo, Biao

    2012-12-01

    It is well known that the nonlinear H∞ state feedback control problem relies on the solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that has proven to be impossible to solve analytically. In this paper, a neural network (NN)-based online simultaneous policy update algorithm (SPUA) is developed to solve the HJI equation, in which knowledge of internal system dynamics is not required. First, we propose an online SPUA which can be viewed as a reinforcement learning technique for two players to learn their optimal actions in an unknown environment. The proposed online SPUA updates control and disturbance policies simultaneously; thus, only one iterative loop is needed. Second, the convergence of the online SPUA is established by proving that it is mathematically equivalent to Newton's method for finding a fixed point in a Banach space. Third, we develop an actor-critic structure for the implementation of the online SPUA, in which only one critic NN is needed for approximating the cost function, and a least-square method is given for estimating the NN weight parameters. Finally, simulation studies are provided to demonstrate the effectiveness of the proposed algorithm.

  9. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin Chen

    2009-12-07

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  10. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Chen, Jin

    2009-01-01

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  11. A semi-analytical approach for solving of nonlinear systems of functional differential equations with delay

    Science.gov (United States)

    Rebenda, Josef; Šmarda, Zdeněk

    2017-07-01

    In the paper, we propose a correct and efficient semi-analytical approach to solve initial value problem for systems of functional differential equations with delay. The idea is to combine the method of steps and differential transformation method (DTM). In the latter, formulas for proportional arguments and nonlinear terms are used. An example of using this technique for a system with constant and proportional delays is presented.

  12. Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management

    Science.gov (United States)

    Koleva, M. N.

    2011-11-01

    In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.

  13. On Newton-Kantorovich Method for Solving the Nonlinear Operator Equation

    Directory of Open Access Journals (Sweden)

    Hameed Husam Hameed

    2015-01-01

    Full Text Available We develop the Newton-Kantorovich method to solve the system of 2×2 nonlinear Volterra integral equations where the unknown function is in logarithmic form. A new majorant function is introduced which leads to the increment of the convergence interval. The existence and uniqueness of approximate solution are proved and a numerical example is provided to show the validation of the method.

  14. Derivation of a macroscale formulation for a class of nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Pantelis, G.

    1995-05-01

    A macroscale formulation is constructed from a system of partial differential equations which govern the microscale dependent variables. The construction is based upon the requirement that the solutions of the macroscale partial differential equations satisfy, in some approximate sense, the system of partial differential equations associated with the microscale. These results are restricted to the class of nonlinear partial differential equations which can be expressed as polynomials of the dependent variables and their partial derivatives up to second order. A linear approximation of transformations of second order contact manifolds is employed. 6 refs

  15. An explicit MOT scheme for solving the TD-EFVIE on nonlinear and dispersive scatterers

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, H. Arda; Bagci, Hakan

    2017-01-01

    An explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) on nonlinear and dispersive scatterers is described. The unknown electric field intensity, electric flux density, and polarization densities representing Kerr nonlinearity along with Lorentz dispersion relation, all of which are induced inside the scatterer upon excitation, are expanded using half and full Schaubert-Wilton-Glisson functions in space. The TD-EFVIE and the constitutive relations between polarization, field, and flux terms are cast in the form of a first-order ordinary differential equation. The resulting matrix system is integrated in time using a predictor-corrector scheme to obtain the time dependent unknown expansion coefficients. The resulting MOT scheme is explicit and accounts for nonlinearity by simple function evaluations.

  16. An explicit MOT scheme for solving the TD-EFVIE on nonlinear and dispersive scatterers

    KAUST Repository

    Sayed, Sadeed Bin

    2017-10-25

    An explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) on nonlinear and dispersive scatterers is described. The unknown electric field intensity, electric flux density, and polarization densities representing Kerr nonlinearity along with Lorentz dispersion relation, all of which are induced inside the scatterer upon excitation, are expanded using half and full Schaubert-Wilton-Glisson functions in space. The TD-EFVIE and the constitutive relations between polarization, field, and flux terms are cast in the form of a first-order ordinary differential equation. The resulting matrix system is integrated in time using a predictor-corrector scheme to obtain the time dependent unknown expansion coefficients. The resulting MOT scheme is explicit and accounts for nonlinearity by simple function evaluations.

  17. Differential geometry techniques for sets of nonlinear partial differential equations

    Science.gov (United States)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  18. TENSOLVE: A software package for solving systems of nonlinear equations and nonlinear least squares problems using tensor methods

    Energy Technology Data Exchange (ETDEWEB)

    Bouaricha, A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Schnabel, R.B. [Colorado Univ., Boulder, CO (United States). Dept. of Computer Science

    1996-12-31

    This paper describes a modular software package for solving systems of nonlinear equations and nonlinear least squares problems, using a new class of methods called tensor methods. It is intended for small to medium-sized problems, say with up to 100 equations and unknowns, in cases where it is reasonable to calculate the Jacobian matrix or approximate it by finite differences at each iteration. The software allows the user to select between a tensor method and a standard method based upon a linear model. The tensor method models F({ital x}) by a quadratic model, where the second-order term is chosen so that the model is hardly more expensive to form, store, or solve than the standard linear model. Moreover, the software provides two different global strategies, a line search and a two- dimensional trust region approach. Test results indicate that, in general, tensor methods are significantly more efficient and robust than standard methods on small and medium-sized problems in iterations and function evaluations.

  19. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  20. Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems

    Science.gov (United States)

    Razzak, M. A.; Alam, M. Z.; Sharif, M. N.

    2018-03-01

    In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.

  1. Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Shaheed N. Huseen

    2013-01-01

    Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.

  2. Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-12-01

    Full Text Available The boundary layer flow of a viscous incompressible fluid toward a porous nonlinearly stretching sheet is considered in this analysis. Velocity slip is considered instead of no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equation corresponding to the momentum equation into nonlinear ordinary differential equation. Numerical solution of this equation is obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter.

  3. Soliton solution for nonlinear partial differential equations by cosine-function method

    International Nuclear Information System (INIS)

    Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.

    2007-01-01

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations

  4. Passivation and control of partially known SISO nonlinear systems via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    Reyes-Reyes J.

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  5. Solving variational problems and partial differential equations that map between manifolds via the closest point method

    Science.gov (United States)

    King, Nathan D.; Ruuth, Steven J.

    2017-05-01

    Maps from a source manifold M to a target manifold N appear in liquid crystals, color image enhancement, texture mapping, brain mapping, and many other areas. A numerical framework to solve variational problems and partial differential equations (PDEs) that map between manifolds is introduced within this paper. Our approach, the closest point method for manifold mapping, reduces the problem of solving a constrained PDE between manifolds M and N to the simpler problems of solving a PDE on M and projecting to the closest points on N. In our approach, an embedding PDE is formulated in the embedding space using closest point representations of M and N. This enables the use of standard Cartesian numerics for general manifolds that are open or closed, with or without orientation, and of any codimension. An algorithm is presented for the important example of harmonic maps and generalized to a broader class of PDEs, which includes p-harmonic maps. Improved efficiency and robustness are observed in convergence studies relative to the level set embedding methods. Harmonic and p-harmonic maps are computed for a variety of numerical examples. In these examples, we denoise texture maps, diffuse random maps between general manifolds, and enhance color images.

  6. A multiple-scale power series method for solving nonlinear ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2016-02-01

    Full Text Available The power series solution is a cheap and effective method to solve nonlinear problems, like the Duffing-van der Pol oscillator, the Volterra population model and the nonlinear boundary value problems. A novel power series method by considering the multiple scales $R_k$ in the power term $(t/R_k^k$ is developed, which are derived explicitly to reduce the ill-conditioned behavior in the data interpolation. In the method a huge value times a tiny value is avoided, such that we can decrease the numerical instability and which is the main reason to cause the failure of the conventional power series method. The multiple scales derived from an integral can be used in the power series expansion, which provide very accurate numerical solutions of the problems considered in this paper.

  7. A MODIFIED DECOMPOSITION METHOD FOR SOLVING NONLINEAR PROBLEM OF FLOW IN CONVERGING- DIVERGING CHANNEL

    Directory of Open Access Journals (Sweden)

    MOHAMED KEZZAR

    2015-08-01

    Full Text Available In this research, an efficient technique of computation considered as a modified decomposition method was proposed and then successfully applied for solving the nonlinear problem of the two dimensional flow of an incompressible viscous fluid between nonparallel plane walls. In fact this method gives the nonlinear term Nu and the solution of the studied problem as a power series. The proposed iterative procedure gives on the one hand a computationally efficient formulation with an acceleration of convergence rate and on the other hand finds the solution without any discretization, linearization or restrictive assumptions. The comparison of our results with those of numerical treatment and other earlier works shows clearly the higher accuracy and efficiency of the used Modified Decomposition Method.

  8. Modeling Solution of Nonlinear Dispersive Partial Differential Equations using the Marker Method

    International Nuclear Information System (INIS)

    Lewandowski, Jerome L.V.

    2005-01-01

    A new method for the solution of nonlinear dispersive partial differential equations is described. The marker method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some details

  9. A New Method to Solve Numeric Solution of Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Min Hu

    2016-01-01

    Full Text Available It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.

  10. Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Huiping Cao

    2014-01-01

    Full Text Available Schubert’s method is an extension of Broyden’s method for solving sparse nonlinear equations, which can preserve the zero-nonzero structure defined by the sparse Jacobian matrix and can retain many good properties of Broyden’s method. In particular, Schubert’s method has been proved to be locally and q-superlinearly convergent. In this paper, we globalize Schubert’s method by using a nonmonotone line search. Under appropriate conditions, we show that the proposed algorithm converges globally and superlinearly. Some preliminary numerical experiments are presented, which demonstrate that our algorithm is effective for large-scale problems.

  11. Intuitionistic Fuzzy Goal Programming Technique for Solving Non-Linear Multi-objective Structural Problem

    Directory of Open Access Journals (Sweden)

    Samir Dey

    2015-07-01

    Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.

  12. Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations

    Science.gov (United States)

    Mamat, Mustafa; Dauda, M. K.; Waziri, M. Y.; Ahmad, Fadhilah; Mohamad, Fatma Susilawati

    2016-10-01

    The Newton method has some shortcomings which includes computation of the Jacobian matrix which may be difficult or even impossible to compute and solving the Newton system in every iteration. Also, the common setback with some quasi-Newton methods is that they need to compute and store an n × n matrix at each iteration, this is computationally costly for large scale problems. To overcome such drawbacks, an improved Method for solving systems of nonlinear equations via PSB (Powell-Symmetric-Broyden) update is proposed. In the proposed method, the approximate Jacobian inverse Hk of PSB is updated and its efficiency has improved thereby require low memory storage, hence the main aim of this paper. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.

  13. Nonlinear partial least squares with Hellinger distance for nonlinear process monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-02-16

    This paper proposes an efficient data-based anomaly detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions. The performances of the developed anomaly detection using NLPLS-based HD technique is illustrated using simulated plug flow reactor data.

  14. Nonlinear partial least squares with Hellinger distance for nonlinear process monitoring

    KAUST Repository

    Harrou, Fouzi; Madakyaru, Muddu; Sun, Ying

    2017-01-01

    This paper proposes an efficient data-based anomaly detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions. The performances of the developed anomaly detection using NLPLS-based HD technique is illustrated using simulated plug flow reactor data.

  15. Nonlinear perturbations of systems of partial differential equations with constant coefficients

    Directory of Open Access Journals (Sweden)

    Carmen J. Vanegas

    2000-01-01

    Full Text Available In this article, we show the existence of solutions to boundary-value problems, consisting of nonlinear systems of partial differential equations with constant coefficients. For this purpose, we use the right inverse of an associated operator and a fix point argument. As illustrations, we apply this method to Helmholtz equations and to second order systems of elliptic equations.

  16. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

  17. An approximation theory for nonlinear partial differential equations with applications to identification and control

    Science.gov (United States)

    Banks, H. T.; Kunisch, K.

    1982-01-01

    Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.

  18. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    Science.gov (United States)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  19. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.

    Science.gov (United States)

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus

    2014-01-01

    In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.

  20. Programmable Solution for Solving Non-linearity Characteristics of Smart Sensor Applications

    Directory of Open Access Journals (Sweden)

    S. Khan

    2007-10-01

    Full Text Available This paper presents a simple but programmable technique to solve the problem of non-linear characteristics of sensors used in more sensitive applications. The nonlinearity of the output response becomes a very sensitive issue in cases where a proportional increase in the physical quantity fails to bring about a proportional increase in the signal measured. The nonlinearity is addressed by using the interpolation method on the characteristics of a given sensor, approximating it to a set of tangent lines, the tangent points of which are recognized in the code of the processor by IF-THEN code. The method suggested here eliminates the use of external circuits for interfacing, and eases the programming burden on the processor at the cost of proportionally reduced memory requirements. The mathematically worked out results are compared with the simulation and experimental results for an IR sensor selected for the purpose and used for level measurement. This work will be of paramount importance and significance in applications where the controlled signal is required to follow the input signal precisely particularly in sensitive robotic applications.

  1. Solving nonlinear nonstationary problem of heat-conductivity by finite element method

    Directory of Open Access Journals (Sweden)

    Антон Янович Карвацький

    2016-11-01

    Full Text Available Methodology and effective solving algorithm of non-linear dynamic problems of thermal and electric conductivity with significant temperature dependence of thermal and physical properties are given on the basis of finite element method (FEM and Newton linearization method. Discrete equations system FEM was obtained with the use of Galerkin method, where the main function is the finite element form function. The methodology based on successive solving problems of thermal and electrical conductivity has been examined in the work in order to minimize the requirements for calculating resources (RAM. in particular. Having used Mathcad software original programming code was developed to solve the given problem. After investigation of the received results, comparative analyses of accurate solution data and results of numerical solutions, obtained with the use of Matlab programming products, was held. The geometry of one fourth part of the finite sized cylinder was used to test the given numerical model. The discretization of the calculation part was fulfilled using the open programming software for automated Gmsh nets with tetrahedral units, while ParaView, which is an open programming code as well, was used to visualize the calculation results. It was found out that the maximum value violation of potential and temperature determination doesn`t exceed 0,2-0,83% in the given work according to the problem conditions

  2. A New Approach and Solution Technique to Solve Time Fractional Nonlinear Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Inci Cilingir Sungu

    2015-01-01

    Full Text Available A new application of the hybrid generalized differential transform and finite difference method is proposed by solving time fractional nonlinear reaction-diffusion equations. This method is a combination of the multi-time-stepping temporal generalized differential transform and the spatial finite difference methods. The procedure first converts the time-evolutionary equations into Poisson equations which are then solved using the central difference method. The temporal differential transform method as used in the paper takes care of stability and the finite difference method on the resulting equation results in a system of diagonally dominant linear algebraic equations. The Gauss-Seidel iterative procedure then used to solve the linear system thus has assured convergence. To have optimized convergence rate, numerical experiments were done by using a combination of factors involving multi-time-stepping, spatial step size, and degree of the polynomial fit in time. It is shown that the hybrid technique is reliable, accurate, and easy to apply.

  3. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    Science.gov (United States)

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  4. A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Lin-Jie, Chen; Chang-Feng, Ma

    2010-01-01

    This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form u t + αuu x + βu n u x + γu xx + δu xxx + ζu xxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. (general)

  5. Inexact Newton–Landweber iteration for solving nonlinear inverse problems in Banach spaces

    International Nuclear Information System (INIS)

    Jin, Qinian

    2012-01-01

    By making use of duality mappings, we formulate an inexact Newton–Landweber iteration method for solving nonlinear inverse problems in Banach spaces. The method consists of two components: an outer Newton iteration and an inner scheme providing the increments by applying the Landweber iteration in Banach spaces to the local linearized equations. It has the advantage of reducing computational work by computing more cheap steps in each inner scheme. We first prove a convergence result for the exact data case. When the data are given approximately, we terminate the method by a discrepancy principle and obtain a weak convergence result. Finally, we test the method by reporting some numerical simulations concerning the sparsity recovery and the noisy data containing outliers. (paper)

  6. The spectral transform as a tool for solving nonlinear discrete evolution equations

    International Nuclear Information System (INIS)

    Levi, D.

    1979-01-01

    In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)

  7. Partial regularity of weak solutions to a PDE system with cubic nonlinearity

    Science.gov (United States)

    Liu, Jian-Guo; Xu, Xiangsheng

    2018-04-01

    In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.

  8. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets

    Science.gov (United States)

    Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.

    2018-01-01

    The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.

  9. A pertinent approach to solve nonlinear fuzzy integro-differential equations.

    Science.gov (United States)

    Narayanamoorthy, S; Sathiyapriya, S P

    2016-01-01

    Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.

  10. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  11. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  12. Quasi-stability of a vector trajectorial problem with non-linear partial criteria

    Directory of Open Access Journals (Sweden)

    Vladimir A. Emelichev

    2003-10-01

    Full Text Available Multi-objective (vector combinatorial problem of finding the Pareto set with four kinds of non-linear partial criteria is considered. Necessary and sufficient conditions of that kind of stability of the problem (quasi-stability are obtained. The problem is a discrete analogue of the lower semicontinuity by Hausdorff of the optimal mapping. Mathematics Subject Classification 2000: 90C10, 90C05, 90C29, 90C31.

  13. Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks

    Science.gov (United States)

    Rozdeba, Paul J.

    The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.

  14. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    Science.gov (United States)

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  15. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cé cile

    2012-01-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper

  16. Analysis of MPPT Failure and Development of an Augmented Nonlinear Controller for MPPT of Photovoltaic Systems under Partial Shading Conditions

    Directory of Open Access Journals (Sweden)

    Mingxuan Chen

    2017-01-01

    Full Text Available The output–voltage–power curves of photovoltaic (PV arrays exhibit complex multi-peak shapes when local shading occurs. The existing maximum power point tracking (MPPT algorithms to solve this multi-peak problem do not consider the possibility of tracking failures due to the time of the irradiance change. In this study, first, the reason for the failure of the global MPPT (GMPPT algorithm is analyzed based on the PV array mathematical model and its output characteristics under partial shading conditions; then, in order to estimate the MPP voltage, an artificial neural network (ANN is trained using environmental information such as irradiance. A hybrid MPPT method using an augmented state feedback precise linearization (AFL controller combined with an ANN is proposed to solve problems such as the shift of the static operating point of the DC/DC boost converter. Finally, numerical simulations are conducted to validate the proposed method and eliminate the possibility of MPPT failure. The proposed hybrid MPPT method is compared with the conventional perturb and observe (P & O method and the improved P & O method through simulations. Using the proposed neural network and nonlinear control strategy, the MPP can be tracked rapidly, accurately, and statically, proving that the method is feasible and effective.

  17. Performance prediction of gas turbines by solving a system of non-linear equations

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J

    1998-09-01

    This study presents a novel method for implementing the performance prediction of gas turbines from the component models. It is based on solving the non-linear set of equations that corresponds to the process equations, and the mass and energy balances for the engine. General models have been presented for determining the steady state operation of single components. Single and multiple shad arrangements have been examined with consideration also being given to heat regeneration and intercooling. Emphasis has been placed upon axial gas turbines of an industrial scale. Applying the models requires no information of the structural dimensions of the gas turbines. On comparison with the commonly applied component matching procedures, this method incorporates several advantages. The application of the models for providing results is facilitated as less attention needs to be paid to calculation sequences and routines. Solving the set of equations is based on zeroing co-ordinate functions that are directly derived from the modelling equations. Therefore, controlling the accuracy of the results is easy. This method gives more freedom for the selection of the modelling parameters since, unlike for the matching procedures, exchanging these criteria does not itself affect the algorithms. Implicit relationships between the variables are of no significance, thus increasing the freedom for the modelling equations as well. The mathematical models developed in this thesis will provide facilities to optimise the operation of any major gas turbine configuration with respect to the desired process parameters. The computational methods used in this study may also be adapted to any other modelling problems arising in industry. (orig.) 36 refs.

  18. Method for solving the problem of nonlinear heating a cylindrical body with unknown initial temperature

    Science.gov (United States)

    Yaparova, N.

    2017-10-01

    We consider the problem of heating a cylindrical body with an internal thermal source when the main characteristics of the material such as specific heat, thermal conductivity and material density depend on the temperature at each point of the body. We can control the surface temperature and the heat flow from the surface inside the cylinder, but it is impossible to measure the temperature on axis and the initial temperature in the entire body. This problem is associated with the temperature measurement challenge and appears in non-destructive testing, in thermal monitoring of heat treatment and technical diagnostics of operating equipment. The mathematical model of heating is represented as nonlinear parabolic PDE with the unknown initial condition. In this problem, both the Dirichlet and Neumann boundary conditions are given and it is required to calculate the temperature values at the internal points of the body. To solve this problem, we propose the numerical method based on using of finite-difference equations and a regularization technique. The computational scheme involves solving the problem at each spatial step. As a result, we obtain the temperature function at each internal point of the cylinder beginning from the surface down to the axis. The application of the regularization technique ensures the stability of the scheme and allows us to significantly simplify the computational procedure. We investigate the stability of the computational scheme and prove the dependence of the stability on the discretization steps and error level of the measurement results. To obtain the experimental temperature error estimates, computational experiments were carried out. The computational results are consistent with the theoretical error estimates and confirm the efficiency and reliability of the proposed computational scheme.

  19. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    OpenAIRE

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  20. Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type. Part II

    Directory of Open Access Journals (Sweden)

    Akira Shirai

    2015-01-01

    Full Text Available In this paper, we study the following nonlinear first order partial differential equation: \\[f(t,x,u,\\partial_t u,\\partial_x u=0\\quad\\text{with}\\quad u(0,x\\equiv 0.\\] The purpose of this paper is to determine the estimate of Gevrey order under the condition that the equation is singular of a totally characteristic type. The Gevrey order is indicated by the rate of divergence of a formal power series. This paper is a continuation of the previous papers [Convergence of formal solutions of singular first order nonlinear partial differential equations of totally characteristic type, Funkcial. Ekvac. 45 (2002, 187-208] and [Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type, Surikaiseki Kenkyujo Kokyuroku, Kyoto University 1431 (2005, 94-106]. Especially the last-mentioned paper is regarded as part I of this paper.

  1. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)

    2016-02-15

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

  2. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    KAUST Repository

    Calatroni, Luca

    2013-08-01

    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.

  3. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    KAUST Repository

    Calatroni, Luca; Dü ring, Bertram; Schö nlieb, Carola-Bibiane

    2013-01-01

    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.

  4. New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2013-01-01

    Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.

  5. Intrinsic Nonlinearities and Layout Impacts of 100 V Integrated Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    Parasitic capacitances of power semiconductors are a part of the key design parameters of state-of-the-art very high frequency (VHF) power supplies. In this poster, four 100 V integrated power MOSFETs with different layout structures are designed, implemented, and analyzed in a 0.18 ȝm partial...... Silicon-on-Insulator (SOI) process with a die area 2.31 mm2.  A small-signal model of power MOSFETs is proposed to systematically analyze the nonlinear parasitic capacitances in different transistor states: off-state, sub-threshold region, and on-state in the linear region. 3D plots are used to summarize...

  6. A new efficient analytical method for a system of vibration. Structural analysis using a new technique of partially solving method

    International Nuclear Information System (INIS)

    Gunyasu, Kenzo; Hiramoto, Tsuneyuki; Tanimoto, Mitsumori; Osano, Minetada

    2002-01-01

    We describe a new method for solving large-scale system of linear equations resulting from discretization of ordinary differential equation and partial differential equation directly. This new method effectively reduces the memory capacity requirements and computing time problems for analyses using finite difference method and finite element method. In this paper we have tried to solve one-million linear equations directly for the case that initial displacement and boundary displacement are known about the finite difference scheme of second order inhomogeneous differential equation for vibration of a 10 story structure. Excellent results were got. (author)

  7. Solving of some Problems with On-Line Mode Measurement of Partial Discharges

    Directory of Open Access Journals (Sweden)

    Karel Zalis

    2004-01-01

    Full Text Available This paper deals with the problems discussing the transition from off-line diagnostic methods to on-line ones. Based on the experience with commercial partial discharge measuring equipment a new digital system for the evaluation of partial discharge measurement including software and hardware facilities has been developed at the Czech Technical University in Prague. Two expert systems work in this complex evaluating system: a rule-based expert system performing an amplitude analysis of partial discharge impulses for determining the damage of the insulation system, and a neural network which is used for a phase analysis of partial discharge impulses to determine the kind of partial discharge activity. Problem of the elimination of disturbances is also discussed.

  8. Nonlinear analysis of fetal heart rate dynamics in fetuses compromised by asymptomatic partial placental abruption.

    Science.gov (United States)

    Choi, Won-Young; Hoh, Jeong-Kyu

    2015-12-01

    We analyzed fetal heart rate (FHR) parameters, dynamics, and outcomes in pregnancies with asymptomatic partial placental abruption (PPA) compared with those in normal pregnancies. We examined nonstress test (NST) data acquired from 2003 to 2012 at our institution. Normal pregnancies (N = 170) and PPA cases (N = 17) were matched for gestational age, fetal sex, and mean FHR. NSTs were performed at 33-42 weeks of gestation. FHR parameters obtained from the NST and perinatal outcomes were analyzed using linear methods. Nonlinear indices, including approximate entropy (ApEn), sample entropy (SampEn), short-term and long-term scaling exponents (α1 and α2), and correlation dimension (CD), were used to interpret FHR dynamics and system complexity. The area under a receiver operating characteristic curve (AUC) was used to evaluate the nonlinear indices. There were no significant differences in general characteristics and FHR parameters between the PPA and control groups. However, gestational age at delivery, birth weight, 5-min Apgar scores, ApEn, SampEn, and CD were significantly lower in the PPA group than in the control group (P Nonlinear dynamic indices of FHR in asymptomatic PPA were qualitatively different from those in normal pregnancies, whereas the conventional FHR parameters were not significantly different. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  10. Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method

    Directory of Open Access Journals (Sweden)

    Uswah Qasim

    2016-03-01

    Full Text Available A homotopy method is presented for the construction of frozen Jacobian iterative methods. The frozen Jacobian iterative methods are attractive because the inversion of the Jacobian is performed in terms of LUfactorization only once, for a single instance of the iterative method. We embedded parameters in the iterative methods with the help of the homotopy method: the values of the parameters are determined in such a way that a better convergence rate is achieved. The proposed homotopy technique is general and has the ability to construct different families of iterative methods, for solving weakly nonlinear systems of equations. Further iterative methods are also proposed for solving general systems of nonlinear equations.

  11. Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study

    Directory of Open Access Journals (Sweden)

    U. Filobello-Nino

    2015-01-01

    Full Text Available We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM. Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.

  12. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Directory of Open Access Journals (Sweden)

    Shahid Hasnain

    2017-07-01

    Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  13. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Science.gov (United States)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  14. Applications of IBSOM and ETEM for solving the nonlinear chains of atoms with long-range interactions

    Science.gov (United States)

    Foroutan, Mohammadreza; Zamanpour, Isa; Manafian, Jalil

    2017-10-01

    This paper presents a number of new solutions obtained for solving a complex nonlinear equation describing dynamics of nonlinear chains of atoms via the improved Bernoulli sub-ODE method (IBSOM) and the extended trial equation method (ETEM). The proposed solutions are kink solitons, anti-kink solitons, soliton solutions, hyperbolic solutions, trigonometric solutions, and bellshaped soliton solutions. Then our new results are compared with the well-known results. The methods used here are very simple and succinct and can be also applied to other nonlinear models. The balance number of these methods is not constant contrary to other methods. The proposed methods also allow us to establish many new types of exact solutions. By utilizing the Maple software package, we show that all obtained solutions satisfy the conditions of the studied model. More importantly, the solutions found in this work can have significant applications in Hamilton's equations and generalized momentum where solitons are used for long-range interactions.

  15. Partial fourier and parallel MR image reconstruction with integrated gradient nonlinearity correction.

    Science.gov (United States)

    Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Weavers, Paul T; Huston, John; Gray, Erin M; Bernstein, Matt A

    2016-06-01

    To describe how integrated gradient nonlinearity (GNL) correction can be used within noniterative partial Fourier (homodyne) and parallel (SENSE and GRAPPA) MR image reconstruction strategies, and demonstrate that performing GNL correction during, rather than after, these routines mitigates the image blurring and resolution loss caused by postreconstruction image domain based GNL correction. Starting from partial Fourier and parallel magnetic resonance imaging signal models that explicitly account for GNL, noniterative image reconstruction strategies for each accelerated acquisition technique are derived under the same core mathematical assumptions as their standard counterparts. A series of phantom and in vivo experiments on retrospectively undersampled data were performed to investigate the spatial resolution benefit of integrated GNL correction over conventional postreconstruction correction. Phantom and in vivo results demonstrate that the integrated GNL correction reduces the image blurring introduced by the conventional GNL correction, while still correcting GNL-induced coarse-scale geometrical distortion. Images generated from undersampled data using the proposed integrated GNL strategies offer superior depiction of fine image detail, for example, phantom resolution inserts and anatomical tissue boundaries. Noniterative partial Fourier and parallel imaging reconstruction methods with integrated GNL correction reduce the resolution loss that occurs during conventional postreconstruction GNL correction while preserving the computational efficiency of standard reconstruction techniques. Magn Reson Med 75:2534-2544, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2015-01-01

    Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of

  17. An economic order quantity model with nonlinear holding cost, partial backlogging and ramp-type demand

    Science.gov (United States)

    San-José, Luis A.; Sicilia, Joaquín; González-de-la-Rosa, Manuel; Febles-Acosta, Jaime

    2018-07-01

    In this article, a deterministic inventory model with a ramp-type demand depending on price and time is developed. The cumulative holding cost is assumed to be a nonlinear function of time. Shortages are allowed and are partially backlogged. Thus, the fraction of backlogged demand depends on the waiting time and on the stock-out period. The aim is to maximize the total profit per unit time. To do this, a procedure that determines the economic lot size, the optimal inventory cycle and the maximum profit is presented. The inventory system studied here extends diverse inventory models proposed in the literature. Finally, some numerical examples are provided to illustrate the theoretical results previously propounded.

  18. Use of fast Fourier transforms for solving partial differential equations in physics

    CERN Document Server

    Le Bail, R C

    1972-01-01

    The use of fast Fourier techniques for the direct solution of an important class of elliptic, parabolic, and hyperbolic partial differential equations in two dimensions is described. Extensions to higher-order and higher-dimension equations as well as to integrodifferential equations are presented, and several numerical examples with their resulting precision and timing are reported. (12 refs).

  19. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.

    Science.gov (United States)

    Kiumarsi, Bahare; Lewis, Frank L

    2015-01-01

    This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.

  20. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cécile

    2012-05-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in . R3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time. © 2012 Elsevier Inc.

  1. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br [Associate Laboratory for Computing and Applied Mathematics - LAC, Brazilian National Institute for Space Research - INPE (Brazil); Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de [Department of Physics and Astronomy, University of Potsdam, Germany and Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.

  2. ICM: an Integrated Compartment Method for numerically solving partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1981-05-01

    An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.

  3. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.

    Science.gov (United States)

    Neilson, Peter D; Neilson, Megan D

    2005-09-01

    Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.

  4. Solving non-linear Horn clauses using a linear Horn clause solver

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2016-01-01

    In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...... dimension. We constructed a prototype implementation of this approach and performed some experiments on a set of verification problems, which shows some promise....

  5. Direct application of Padé approximant for solving nonlinear differential equations.

    Science.gov (United States)

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Garcia-Gervacio, Jose Luis; Huerta-Chua, Jesus; Morales-Mendoza, Luis Javier; Gonzalez-Lee, Mario

    2014-01-01

    This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method, homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant. 34L30.

  6. Two-dimensional differential transform method for solving linear and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Ravi Kanth, A.S.V.; Aruna, K.

    2009-01-01

    In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  7. Uniqueness of global quasi-classical solutions of the Cauchy problems for first-order nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Tran Duc Van

    1994-01-01

    The notion of global quasi-classical solutions of the Cauchy problems for first-order nonlinear partial differential equations is presented, some uniqueness theorems and a stability result are established by the method based on the theory of differential inclusions. In particular, the answer to an open problem of S.N. Kruzhkov is given. (author). 10 refs, 1 fig

  8. Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order

    Science.gov (United States)

    Owolabi, Kolade M.

    2017-03-01

    In this paper, some nonlinear space-fractional order reaction-diffusion equations (SFORDE) on a finite but large spatial domain x ∈ [0, L], x = x(x , y , z) and t ∈ [0, T] are considered. Also in this work, the standard reaction-diffusion system with boundary conditions is generalized by replacing the second-order spatial derivatives with Riemann-Liouville space-fractional derivatives of order α, for 0 Fourier spectral method is introduced as a better alternative to existing low order schemes for the integration of fractional in space reaction-diffusion problems in conjunction with an adaptive exponential time differencing method, and solve a range of one-, two- and three-components SFORDE numerically to obtain patterns in one- and two-dimensions with a straight forward extension to three spatial dimensions in a sub-diffusive (0 reaction-diffusion case. With application to models in biology and physics, different spatiotemporal dynamics are observed and displayed.

  9. Statistical study of the non-linear propagation of a partially coherent laser beam

    International Nuclear Information System (INIS)

    Ayanides, J.P.

    2001-01-01

    This research thesis is related to the LMJ project (Laser MegaJoule) and thus to the study and development of thermonuclear fusion. It reports the study of the propagation of a partially-coherent laser beam by using a statistical modelling in order to obtain mean values for the field, and thus bypassing a complex and costly calculation of deterministic quantities. Random fluctuations of the propagated field are supposed to comply with a Gaussian statistics; the laser central wavelength is supposed to be small with respect with fluctuation magnitude; a scale factor is introduced to clearly distinguish the scale of the random and fast variations of the field fluctuations, and the scale of the slow deterministic variations of the field envelopes. The author reports the study of propagation through a purely linear media and through a non-dispersive media, and then through slow non-dispersive and non-linear media (in which the reaction time is large with respect to grain correlation duration, but small with respect to the variation scale of the field macroscopic envelope), and thirdly through an instantaneous dispersive and non linear media (which instantaneously reacts to the field) [fr

  10. Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure

    Czech Academy of Sciences Publication Activity Database

    Fränzle, M.; Herde, C.; Teige, T.; Ratschan, Stefan; Schubert, T.

    2007-01-01

    Roč. 1, - (2007), s. 209-236 ISSN 1574-0617 Grant - others:AVACS(DE) SFB/TR 14 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval-based arithmetic constraint solving * SAT modulo theories Subject RIV: BA - General Mathematics

  11. New Quasi-Newton Method for Solving Systems of Nonlinear Equations

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2017-01-01

    Roč. 62, č. 2 (2017), s. 121-134 ISSN 0862-7940 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : nonlinear equations * systems of equations * trust-region methods * quasi-Newton methods * adjoint Broyden methods * numerical algorithms * numerical experiments Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.618, year: 2016 http://hdl.handle.net/10338.dmlcz/146699

  12. Solving Boundary Value Problem for a Nonlinear Stationary Controllable System with Synthesizing Control

    Directory of Open Access Journals (Sweden)

    Alexander N. Kvitko

    2017-01-01

    Full Text Available An algorithm for constructing a control function that transfers a wide class of stationary nonlinear systems of ordinary differential equations from an initial state to a final state under certain control restrictions is proposed. The algorithm is designed to be convenient for numerical implementation. A constructive criterion of the desired transfer possibility is presented. The problem of an interorbital flight is considered as a test example and it is simulated numerically with the presented method.

  13. A linearizing transformation for the Korteweg-de Vries equation; generalizations to higher-dimensional nonlinear partial differential equations

    NARCIS (Netherlands)

    Dorren, H.J.S.

    1998-01-01

    It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of

  14. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids

    International Nuclear Information System (INIS)

    Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist

    2007-01-01

    This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable

  15. A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations

    OpenAIRE

    Gao, Er; Song, Songhe; Zhang, Xinjian

    2012-01-01

    We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which sh...

  16. A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    Er Gao

    2012-01-01

    Full Text Available We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which shows that the new algorithm is efficient and accurate.

  17. Bifurcations of solitary wave solutions for (two and three)-dimensional nonlinear partial differential equation in quantum and magnetized plasma by using two different methods

    Science.gov (United States)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-06-01

    In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.

  18. An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs

    Directory of Open Access Journals (Sweden)

    Eman S. Alaidarous

    2013-01-01

    Full Text Available In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which is different from Adomain decomposition method (Motsa and Sibanda, 2013. The reported method is very general and can be extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013. In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension Bratu and Frank-Kamenetzkii equations.

  19. Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2012-01-01

    Full Text Available This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution ( is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution ( is obtained and it is proved to converge to the exact solution (. Furthermore, the proposed method has an advantage that it is possible to pick any point in the interval of integration and as well the approximate solution and its derivative will be applicable. Numerical examples are included to demonstrate the accuracy and applicability of the presented technique. The results reveal that the method is very effective and simple.

  20. solveME: fast and reliable solution of nonlinear ME models

    DEFF Research Database (Denmark)

    Yang, Laurence; Ma, Ding; Ebrahim, Ali

    2016-01-01

    Background: Genome-scale models of metabolism and macromolecular expression (ME) significantly expand the scope and predictive capabilities of constraint-based modeling. ME models present considerable computational challenges: they are much (>30 times) larger than corresponding metabolic reconstr......Background: Genome-scale models of metabolism and macromolecular expression (ME) significantly expand the scope and predictive capabilities of constraint-based modeling. ME models present considerable computational challenges: they are much (>30 times) larger than corresponding metabolic...... reconstructions (M models), are multiscale, and growth maximization is a nonlinear programming (NLP) problem, mainly due to macromolecule dilution constraints. Results: Here, we address these computational challenges. We develop a fast and numerically reliable solution method for growth maximization in ME models...

  1. Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws

    International Nuclear Information System (INIS)

    Ibragimov, N Kh; Avdonina, E D

    2013-01-01

    The method of nonlinear self-adjointness, which was recently developed by the first author, gives a generalization of Noether's theorem. This new method significantly extends approaches to constructing conservation laws associated with symmetries, since it does not require the existence of a Lagrangian. In particular, it can be applied to any linear equations and any nonlinear equations that possess at least one local conservation law. The present paper provides a brief survey of results on conservation laws which have been obtained by this method and published mostly in recent preprints of the authors, along with a method for constructing exact solutions of systems of partial differential equations with the use of conservation laws. In most cases the solutions obtained by the method of conservation laws cannot be found as invariant or partially invariant solutions. Bibliography: 23 titles

  2. A three operator split-step method covering a larger set of non-linear partial differential equations

    Science.gov (United States)

    Zia, Haider

    2017-06-01

    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  3. New Traveling Wave Solutions of the Higher Dimensional Nonlinear Partial Differential Equation by the Exp-Function Method

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2012-01-01

    Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.

  4. A nonlinear boundary integral equations method for the solving of quasistatic elastic contact problem with Coulomb friction

    Directory of Open Access Journals (Sweden)

    Yurii M. Streliaiev

    2016-06-01

    Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.

  5. Non-linear algorithms solved with the help of the GIBIANE macro-language

    International Nuclear Information System (INIS)

    Ebersolt, L.; Combescure, A.; Millard, A.; Verpeaux, P.

    1987-01-01

    Non linear finite element problems are often solved with the help of iteratives procedures. In the finite element program CASTEM 2000, the syntax of the dataset permits the user to derive his own algorithm and tune it to his problem. These basic ideas, simple to imagine, needed a proper frame to be materialized in a general purpose finite element program, and three concepts emerged: Operators, the Gibiane macro-language. In the two first paragraphs, we will detail these concepts, in the third paragraph, we will describe the different possibilities of the program, in the fourth paragraph, we will show, by combining operators in a proper order, how to obtain the desired algorithm. (orig./GL)

  6. Optimization of Nonlinear Figure-of-Merits of Integrated Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Jørgensen, Ivan Harald Holger; Knott, Arnold

    2016-01-01

    State-of-the-art power semiconductor industry uses figure-of-merits (FOMs) for technology-to-technology and/or device-to-device comparisons. However, the existing FOMs are fundamentally nonlinear due to the nonlinearities of the parameters such as the gate charge and the output charge versus...

  7. Gap-metric-based robustness analysis of nonlinear systems with full and partial feedback linearisation

    Science.gov (United States)

    Al-Gburi, A.; Freeman, C. T.; French, M. C.

    2018-06-01

    This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.

  8. Prediction of partial synchronization in delay-coupled nonlinear oscillators, with application to Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    Ünal, Hakkı Ulaş; Michiels, Wim

    2013-01-01

    The full synchronization of coupled nonlinear oscillators has been widely studied. In this paper we investigate conditions for which partial synchronization of time-delayed diffusively coupled systems arises. The coupling configuration of the systems is described by a directed graph. As a novel quantitative result we first give necessary and sufficient conditions for the presence of forward invariant sets characterized by partially synchronous motion. These conditions can easily be checked from the eigenvalues and eigenvectors of the graph Laplacian. Second, we perform stability analysis of the synchronized equilibria in a (gain,delay) parameter space. For this analysis the coupled nonlinear systems are linearized around the synchronized equilibria and then the resulting characteristic function is factorized. By such a factorization, it is shown that the relation between the behaviour of different agents at the zero of the characteristic function depends on the structure of the eigenvectors of the weighted Laplacian matrix. By determining the structure of the solutions in the unstable manifold, combined with the characterization of invariant sets, we predict which partially synchronous regimes occur and estimate the corresponding coupling gain and delay values. We apply the obtained results to networks of coupled Hindmarsh–Rose neurons and verify the occurrence of the expected partially synchronous regimes by using a numerical simulation. We also make a comparison with an existing approach based on Lyapunov functionals. (paper)

  9. On an adaptive time stepping strategy for solving nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Chen, K.; Baines, M.J.; Sweby, P.K.

    1993-01-01

    A new time step selection procedure is proposed for solving non- linear diffusion equations. It has been implemented in the ASWR finite element code of Lorenz and Svoboda [10] for 2D semiconductor process modelling diffusion equations. The strategy is based on equi-distributing the local truncation errors of the numerical scheme. The use of B-splines for interpolation (as well as for the trial space) results in a banded and diagonally dominant matrix. The approximate inverse of such a matrix can be provided to a high degree of accuracy by another banded matrix, which in turn can be used to work out the approximate finite difference scheme corresponding to the ASWR finite element method, and further to calculate estimates of the local truncation errors of the numerical scheme. Numerical experiments on six full simulation problems arising in semiconductor process modelling have been carried out. Results show that our proposed strategy is more efficient and better conserves the total mass. 18 refs., 6 figs., 2 tabs

  10. Utilizing a Coupled Nonlinear Schrödinger Model to Solve the Linear Modal Problem for Stratified Flows

    Science.gov (United States)

    Liu, Tianyang; Chan, Hiu Ning; Grimshaw, Roger; Chow, Kwok Wing

    2017-11-01

    The spatial structure of small disturbances in stratified flows without background shear, usually named the `Taylor-Goldstein equation', is studied by employing the Boussinesq approximation (variation in density ignored except in the buoyancy). Analytical solutions are derived for special wavenumbers when the Brunt-Väisälä frequency is quadratic in hyperbolic secant, by comparison with coupled systems of nonlinear Schrödinger equations intensively studied in the literature. Cases of coupled Schrödinger equations with four, five and six components are utilized as concrete examples. Dispersion curves for arbitrary wavenumbers are obtained numerically. The computations of the group velocity, second harmonic, induced mean flow, and the second derivative of the angular frequency can all be facilitated by these exact linear eigenfunctions of the Taylor-Goldstein equation in terms of hyperbolic function, leading to a cubic Schrödinger equation for the evolution of a wavepacket. The occurrence of internal rogue waves can be predicted if the dispersion and cubic nonlinearity terms of the Schrödinger equations are of the same sign. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.

  11. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    OpenAIRE

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  12. Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F

    International Nuclear Information System (INIS)

    Jain, R.K.; Das, A.C.

    1978-01-01

    The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)

  13. Symbolic computation of exact solutions expressible in rational formal hyperbolic and elliptic functions for nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Wang Qi; Chen Yong

    2007-01-01

    With the aid of symbolic computation, some algorithms are presented for the rational expansion methods, which lead to closed-form solutions of nonlinear partial differential equations (PDEs). The new algorithms are given to find exact rational formal polynomial solutions of PDEs in terms of Jacobi elliptic functions, solutions of the Riccati equation and solutions of the generalized Riccati equation. They can be implemented in symbolic computation system Maple. As applications of the methods, we choose some nonlinear PDEs to illustrate the methods. As a result, we not only can successfully obtain the solutions found by most existing Jacobi elliptic function methods and Tanh-methods, but also find other new and more general solutions at the same time

  14. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    Science.gov (United States)

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  15. An Efficient Implementation of Partial Condensing for Nonlinear Model Predictive Control

    DEFF Research Database (Denmark)

    Frison, Gianluca; Kouzoupis, Dimitris; Jørgensen, John Bagterp

    2016-01-01

    -horizon trade-off is investigated from a theoretical point of view (based on algorithms flop count) as well as by benchmarking (in practice, the performance of linear algebra routines for different matrix sizes plays a key role). Partial condensing can also be seen as a technique to replace many operations...... on small matrices with fewer operations on larger matrices, where linear algebra routines perform better. Therefore, in case of small-scale MPC problems, partial condensing can greatly improve performance beyond the flop count reduction....

  16. Nonlinear Parasitic Capacitance Modelling of High Voltage Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    : off-state, sub-threshold region, and on-state in the linear region. A high voltage power MOSFET is designed in a partial Silicon on Insulator (SOI) process, with the bulk as a separate terminal. 3D plots and contour plots of the capacitances versus bias voltages for the transistor summarize...

  17. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    Science.gov (United States)

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  18. The Multi-Wave Method for Exact Solutions of Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2018-02-01

    Full Text Available In this research, we use the multi-wave method to obtain new exact solutions for generalized forms of 5th order KdV equation and fth order KdV (fKdV equation with power law nonlinearity. Computations are performed with the help of the mathematics software Mathematica. Then, periodic wave solutions, bright soliton solutions and rational function solutions with free parameters are obtained by this approach. It is shown that this method is very useful and effective.

  19. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations

    Science.gov (United States)

    Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher

    2015-07-01

    Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.

  20. A Method for Generating Approximate Similarity Solutions of Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mazhar Iqbal

    2014-01-01

    Full Text Available Standard application of similarity method to find solutions of PDEs mostly results in reduction to ODEs which are not easily integrable in terms of elementary or tabulated functions. Such situations usually demand solving reduced ODEs numerically. However, there are no systematic procedures available to utilize these numerical solutions of reduced ODE to obtain the solution of original PDE. A practical and tractable approach is proposed to deal with such situations and is applied to obtain approximate similarity solutions to different cases of an initial-boundary value problem of unsteady gas flow through a semi-infinite porous medium.

  1. Nonlinear Schroedinger Approximations for Partial Differential Equations with Quadratic and Quasilinear Terms

    Science.gov (United States)

    Cummings, Patrick

    We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.

  2. Exact solutions and transformation properties of nonlinear partial differential equations from general relativity

    International Nuclear Information System (INIS)

    Fischer, E.

    1977-01-01

    Various families of exact solutions to the Einstein and Einstein--Maxwell field equations of general relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations. The physical situations in which such equations arise include: the external gravitational field of an axisymmetric, uncharged steadily rotating body, cylindrical gravitational waves with two degrees of freedom, colliding plane gravitational waves, the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein--Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa. The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables

  3. Issues in developing parallel iterative algorithms for solving partial differential equations on a (transputer-based) distributed parallel computing system

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Jethra, A.; Khare, A.N.; Ghodgaonkar, M.D.; Srivenkateshan, R.; Menon, S.V.G.

    1990-01-01

    Issues relating to implementing iterative procedures, for numerical solution of elliptic partial differential equations, on a distributed parallel computing system are discussed. Preliminary investigations show that a speed-up of about 3.85 is achievable on a four transputer pipeline network. (author). 2 figs., 3 a ppendixes., 7 refs

  4. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2017-11-01

    Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines

  5. Quaternion Approach to Solve Coupled Nonlinear Schrödinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems

    International Nuclear Information System (INIS)

    Liu Lan-Lan; Wu Chong-Qing; Wang Jian; Gao Kai-Qiang; Shang Chao

    2015-01-01

    The quaternion approach to solve the coupled nonlinear Schrödinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quaternion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Gbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4 mW, the crosstalk effect can be neglected; when the power is larger than 20 mW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincaré sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link. (paper)

  6. Fitted Fourier-pseudospectral methods for solving a delayed reaction-diffusion partial differential equation in biology

    Science.gov (United States)

    Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.

    2017-07-01

    In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.

  7. A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations

    Science.gov (United States)

    Bhrawy, A. H.; Zaky, M. A.

    2015-01-01

    In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.

  8. Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA

    International Nuclear Information System (INIS)

    Khalili-Damghani, Kaveh; Amiri, Maghsoud

    2012-01-01

    In this paper, a procedure based on efficient epsilon-constraint method and data envelopment analysis (DEA) is proposed for solving binary-state multi-objective reliability redundancy allocation series-parallel problem (MORAP). In first module, a set of qualified non-dominated solutions on Pareto front of binary-state MORAP is generated using an efficient epsilon-constraint method. In order to test the quality of generated non-dominated solutions in this module, a multi-start partial bound enumeration algorithm is also proposed for MORAP. The performance of both procedures is compared using different metrics on well-known benchmark instance. The statistical analysis represents that not only the proposed efficient epsilon-constraint method outperform the multi-start partial bound enumeration algorithm but also it improves the founded upper bound of benchmark instance. Then, in second module, a DEA model is supplied to prune the generated non-dominated solutions of efficient epsilon-constraint method. This helps reduction of non-dominated solutions in a systematic manner and eases the decision making process for practical implementations. - Highlights: ► A procedure based on efficient epsilon-constraint method and DEA was proposed for solving MORAP. ► The performance of proposed procedure was compared with a multi-start PBEA. ► Methods were statistically compared using multi-objective metrics.

  9. Solving a Local Boundary Value Problem for a Nonlinear Nonstationary System in the Class of Feedback Controls

    Science.gov (United States)

    Kvitko, A. N.

    2018-01-01

    An algorithm convenient for numerical implementation is proposed for constructing differentiable control functions that transfer a wide class of nonlinear nonstationary systems of ordinary differential equations from an initial state to a given point of the phase space. Constructive sufficient conditions imposed on the right-hand side of the controlled system are obtained under which this transfer is possible. The control of a robotic manipulator is considered, and its numerical simulation is performed.

  10. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...

  11. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....

  12. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    Science.gov (United States)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  13. Nonlinear dynamics of quadratically cubic systems

    International Nuclear Information System (INIS)

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  14. The nonlinear dynamics of family problem solving in adolescence: the predictive validity of a peaceful resolution attractor.

    Science.gov (United States)

    Dishion, Thomas J; Forgatch, Marion; Van Ryzin, Mark; Winter, Charlotte

    2012-07-01

    In this study we examined the videotaped family interactions of a community sample of adolescents and their parents. Youths were assessed in early to late adolescence on their levels of antisocial behavior. At age 16-17, youths and their parents were videotaped interacting while completing a variety of tasks, including family problem solving. The interactions were coded and compared for three developmental patterns of antisocial behavior: early onset, persistent; adolescence onset; and typically developing. The mean duration of conflict bouts was the only interaction pattern that discriminated the 3 groups. In the prediction of future antisocial behavior, parent and youth reports of transition entropy and conflict resolution interacted to account for antisocial behavior at age 18-19. Families with low entropy and peaceful resolutions predicted low levels of youth antisocial behavior at age 18-19. These findings suggest the need to study both attractors and repellers to understand family dynamics associated with health and social and emotional development.

  15. A numerical method for solving singular De`s

    Energy Technology Data Exchange (ETDEWEB)

    Mahaver, W.T.

    1996-12-31

    A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

  16. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.

    Science.gov (United States)

    Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-10-01

    The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. A nonlinear plate control without linearization

    Directory of Open Access Journals (Sweden)

    Yildirim Kenan

    2017-03-01

    Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

  18. Reduced differential transform method for partial differential equations within local fractional derivative operators

    Directory of Open Access Journals (Sweden)

    Hossein Jafari

    2016-04-01

    Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.

  19. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  20. Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations

    CERN Document Server

    Aliyu, MDS

    2011-01-01

    A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter

  1. Multigrid methods for partial differential equations - a short introduction

    International Nuclear Information System (INIS)

    Linden, J.; Stueben, K.

    1993-01-01

    These notes summarize the multigrid methods and emphasis is laid on the algorithmic concepts of multigrid for solving linear and non-linear partial differential equations. In this paper there is brief description of the basic structure of multigrid methods. Detailed introduction is also contained with applications to VLSI process simulation. (A.B.)

  2. A procedure to construct exact solutions of nonlinear fractional differential equations.

    Science.gov (United States)

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  3. A Nonlinear Dynamic Subscale Model for Partially Resolved Numerical Simulation (PRNS)/Very Large Eddy Simulation (VLES) of Internal Non-Reacting Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, nan-Suey

    2010-01-01

    A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.

  4. Traveling wave solutions to some nonlinear fractional partial differential equations through the rational (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    Tarikul Islam

    2018-03-01

    Full Text Available In this article, the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW equation are successfully examined by the recently established rational (G′/G-expansion method. The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform. Consequently, the theories of the ordinary differential equations are implemented effectively. Three types closed form traveling wave solutions, such as hyperbolic function, trigonometric function and rational, are constructed by using the suggested method in the sense of conformable fractional derivative. The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel. It is observed that the performance of the rational (G′/G-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.

  5. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    Science.gov (United States)

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for

  6. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  7. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

    DEFF Research Database (Denmark)

    Miansari, Mo; Miansari, Me; Barari, Amin

    2009-01-01

    In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...

  8. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    Science.gov (United States)

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  9. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Science.gov (United States)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  10. Solving Differential Equations in R: Package deSolve

    Science.gov (United States)

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  11. Solving Differential Equations in R: Package deSolve

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.

    2010-01-01

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

  12. Partial least squares methods for spectrally estimating lunar soil FeO abundance: A stratified approach to revealing nonlinear effect and qualitative interpretation

    Science.gov (United States)

    Li, Lin

    2008-12-01

    Partial least squares (PLS) regressions were applied to lunar highland and mare soil data characterized by the Lunar Soil Characterization Consortium (LSCC) for spectral estimation of the abundance of lunar soil chemical constituents FeO and Al2O3. The LSCC data set was split into a number of subsets including the total highland, Apollo 16, Apollo 14, and total mare soils, and then PLS was applied to each to investigate the effect of nonlinearity on the performance of the PLS method. The weight-loading vectors resulting from PLS were analyzed to identify mineral species responsible for spectral estimation of the soil chemicals. The results from PLS modeling indicate that the PLS performance depends on the correlation of constituents of interest to their major mineral carriers, and the Apollo 16 soils are responsible for the large errors of FeO and Al2O3 estimates when the soils were modeled along with other types of soils. These large errors are primarily attributed to the degraded correlation FeO to pyroxene for the relatively mature Apollo 16 soils as a result of space weathering and secondary to the interference of olivine. PLS consistently yields very accurate fits to the two soil chemicals when applied to mare soils. Although Al2O3 has no spectrally diagnostic characteristics, this chemical can be predicted for all subset data by PLS modeling at high accuracies because of its correlation to FeO. This correlation is reflected in the symmetry of the PLS weight-loading vectors for FeO and Al2O3, which prove to be very useful for qualitative interpretation of the PLS results. However, this qualitative interpretation of PLS modeling cannot be achieved using principal component regression loading vectors.

  13. Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method

    International Nuclear Information System (INIS)

    Bekir Ahmet; Güner Özkan

    2013-01-01

    In this paper, we use the fractional complex transform and the (G′/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann—Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations

  14. Explicit Solutions for Generalized (2+1)-Dimensional Nonlinear Zakharov-Kuznetsov Equation

    International Nuclear Information System (INIS)

    Sun Yuhuai; Ma Zhimin; Li Yan

    2010-01-01

    The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equation are explored by the method of the improved generalized auxiliary differential equation. Many explicit analytic solutions of the Z-K equation are obtained. The methods used to solve the Z-K equation can be employed in further work to establish new solutions for other nonlinear partial differential equations. (general)

  15. System Entropy Measurement of Stochastic Partial Differential Systems

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2016-03-01

    Full Text Available System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs. To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3. Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.

  16. Linear and non-linear calculations of the hose instability in the ion-focused regime

    International Nuclear Information System (INIS)

    Buchanan, H.L.

    1982-01-01

    A simple model is adopted to study the hose instability of an intense relativistic electron beam in a partially neutralized, low density ion channel (ion focused regime). Equations of motion for the beam and the channel are derived and linearized to obtain an approximate dispersion relation. The non-linear equations of motion are then solved numerically and the results compared to linearized data

  17. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...

  18. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  19. A Novel Partial Differential Algebraic Equation (PDAE) Solver

    DEFF Research Database (Denmark)

    Lim, Young-il; Chang, Sin-Chung; Jørgensen, Sten Bay

    2004-01-01

    For solving partial differential algebraic equations (PDAEs), the space-time conservation element/solution element (CE/SE) method is addressed in this study. The method of lines (MOL) using an implicit time integrator is compared with the CE/SE method in terms of computational efficiency, solution...... or nonlinear adsorption isotherm are solved by the two methods. The CE/SE method enforces both local and global flux conservation in space and time, and uses a simple stencil structure (two points at the previous time level and one point at the present time level). Thus, accurate and computationally...

  20. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  1. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  2. Partial Differential Equations and Solitary Waves Theory

    CERN Document Server

    Wazwaz, Abdul-Majid

    2009-01-01

    "Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...

  3. Clawpack: building an open source ecosystem for solving hyperbolic PDEs

    KAUST Repository

    Mandli, Kyle T.

    2016-08-08

    Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model.

  4. Clawpack: building an open source ecosystem for solving hyperbolic PDEs

    KAUST Repository

    Mandli, Kyle T.; Ahmadia, Aron J.; Berger, Marsha; Calhoun, Donna; George, David L.; Hadjimichael, Yiannis; Ketcheson, David I.; Lemoine, Grady I.; LeVeque, Randall J.

    2016-01-01

    Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model.

  5. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  6. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  7. A technique for determining the optimum mix of logistics service providers of a make-to-order supply chain by formulating and solving a constrained nonlinear cost optimization problem

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Roy

    2013-04-01

    Full Text Available In this paper, a technique has been developed to determine the optimum mix of logistic service providers of a make-to-order (MTO supply chain. A serial MTO supply chain with different stages/ processes has been considered. For each stage different logistic service providers with different mean processing lead times, but same lead time variances are available. A realistic assumption that for each stage, the logistic service provider who charges more for his service consumes less processing lead time and vice-versa has been made in our study. Thus for each stage, for each service provider, a combination of cost and mean processing lead time is available. Using these combinations, for each stage, a polynomial curve, expressing cost of that stage as a function of mean processing lead time is fit. Cumulating all such expressions of cost for the different stages along with incorporation of suitable constraints arising out of timely delivery, results in the formulation of a constrained nonlinear cost optimization problem. On solving the problem using mathematica, optimum processing lead time for each stage is obtained. Using these optimum processing lead times and by employing a simple technique the optimum logistic service provider mix of the supply chain along with the corresponding total cost of processing is determined. Finally to examine the effect of changes in different parameters on the optimum total processing cost of the supply chain, sensitivity analysis has been carried out graphically.

  8. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  9. Darboux transformations and linear parabolic partial differential equations

    International Nuclear Information System (INIS)

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  10. Exponential function method for solving nonlinear ordinary ...

    Indian Academy of Sciences (India)

    [14] introduced a new system of rational. 79 ..... Also, for k-power of function f (η), by induction, we have ..... reliability and efficiency of the method. .... electric field and the polarization effects are negligible and B(x) is assumed by Chaim [8] as.

  11. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

    2014-01-01

    residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully

  12. Nonlinear Approaches in Engineering Applications

    CERN Document Server

    Jazar, Reza

    2012-01-01

    Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...

  13. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs

    Science.gov (United States)

    Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.

    2016-01-01

    Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.

  14. Nonlinear elliptic equations and nonassociative algebras

    CERN Document Server

    Nadirashvili, Nikolai; Vlăduţ, Serge

    2014-01-01

    This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...

  15. A reliable treatment for nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A.

    2007-01-01

    Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schroedinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation

  16. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy

    Directory of Open Access Journals (Sweden)

    T. Sajid

    2018-03-01

    Full Text Available The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.

  17. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two

  18. A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods

    Science.gov (United States)

    Parand, K.; Nikarya, M.

    2017-11-01

    In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.

  19. Nonlinear dynamics of two-phase flow

    International Nuclear Information System (INIS)

    Rizwan-uddin

    1986-01-01

    Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques

  20. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  1. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  2. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu

    2008-01-01

    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  3. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks.

    Science.gov (United States)

    Yan, Zheng; Wang, Jun

    2014-03-01

    This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.

  4. A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations

    Science.gov (United States)

    Whiteley, J. P.

    2017-10-01

    Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.

  5. Adaptive nonlinear control for a research reactor

    International Nuclear Information System (INIS)

    Benitez R, J.S.

    1994-01-01

    Linearization by feedback of states is based on the idea of transform the nonlinear dynamic equation of a system in a linear form. This linear behavior can be achieve well in a complete way (input state) or in partial way (input output). This can be applied to systems of single or multiple inputs, and can be used to solve problems of stabilization and tracking of references trajectories. Comparing this method with conventional ones, linearization by feedback of states is exact in certain region of the space of state, instead of linear approximations of the equations in a certain point of the operation. In the presence of parametric uncertainties in the model of the system, the introduction of adaptive schemes provide a type toughness to the control system by nonlinear feedback, which gives as result the eventual cancellation of the nonlinear terms in the dynamic relationship between the output and the input of the auxiliary control. In the same way, it has been presented the design of a nonlinearizing control for the non lineal model of a TRIGA Mark III type reactor, with the aim of tracking a predetermined power profile. The asymptotic tracking of such profile is, at the present moment, in the stage of verification by computerized simulation the relative easiness in the design of auxiliary variable of control, as well as the decoupling action of the output variable, make very attractive the utilization of the method herein presented. (Author)

  6. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  7. NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi

    2005-01-01

    Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.

  8. Bright and dark soliton solutions for some nonlinear fractional differential equations

    International Nuclear Information System (INIS)

    Guner, Ozkan; Bekir, Ahmet

    2016-01-01

    In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space–time fractional modified Benjamin–Bona–Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional derivatives are described in the modified Riemann–Liouville sense. (paper)

  9. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  10. Parameter Estimation for Partial Differential Equations by Collage-Based Numerical Approximation

    Directory of Open Access Journals (Sweden)

    Xiaoyan Deng

    2009-01-01

    into a minimization problem of a function of several variables after the partial differential equation is approximated by a differential dynamical system. Then numerical schemes for solving this minimization problem are proposed, including grid approximation and ant colony optimization. The proposed schemes are applied to a parameter estimation problem for the Belousov-Zhabotinskii equation, and the results show that the proposed approximation method is efficient for both linear and nonlinear partial differential equations with respect to unknown parameters. At worst, the presented method provides an excellent starting point for traditional inversion methods that must first select a good starting point.

  11. Unified algorithm for partial differential equations and examples of numerical computation

    International Nuclear Information System (INIS)

    Watanabe, Tsuguhiro

    1999-01-01

    A new unified algorithm is proposed to solve partial differential equations which describe nonlinear boundary value problems, eigenvalue problems and time developing boundary value problems. The algorithm is composed of implicit difference scheme and multiple shooting scheme and is named as HIDM (Higher order Implicit Difference Method). A new prototype computer programs for 2-dimensional partial differential equations is constructed and tested successfully to several problems. Extension of the computer programs to 3 or more higher order dimension problems will be easy due to the direct product type difference scheme. (author)

  12. New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2017-01-01

    Full Text Available A simply supported plate fluttering in hypersonic flow is investigated considering both the airflow and structural nonlinearities. Third-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the nonlinear strain-displacement relation. The Galerkin method is applied to project the partial differential governing equations (PDEs into a set of ordinary differential equations (ODEs in time, which is then solved by numerical integration method. In observation of limit cycle oscillations (LCO and evolution of dynamic behaviors, nonlinear aerodynamic loading produces a smaller positive deflection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity is considered more complex motions are obtained, which is important in the evaluation of fatigue life. The parameters of Mach number, dynamic pressure, and in-plane thermal stresses all affect the aerodynamic nonlinearity. For a specific Mach number, there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature, a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated, based on which the nonlinear aerodynamic formulation has been simplified.

  13. PARALLEL SOLUTION METHODS OF PARTIAL DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    Korhan KARABULUT

    1998-03-01

    Full Text Available Partial differential equations arise in almost all fields of science and engineering. Computer time spent in solving partial differential equations is much more than that of in any other problem class. For this reason, partial differential equations are suitable to be solved on parallel computers that offer great computation power. In this study, parallel solution to partial differential equations with Jacobi, Gauss-Siedel, SOR (Succesive OverRelaxation and SSOR (Symmetric SOR algorithms is studied.

  14. Constructing general partial differential equations using polynomial and neural networks.

    Science.gov (United States)

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

    Science.gov (United States)

    Sweilam, N. H.; Abou Hasan, M. M.

    2017-05-01

    In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

  16. Nonlinear approaches in engineering applications 2

    CERN Document Server

    Jazar, Reza N

    2013-01-01

    Provides updated principles and applications of the nonlinear approaches in solving engineering and physics problems Demonstrates how nonlinear approaches may open avenues to better, safer, cheaper systems with less energy consumption Has a strong emphasis on the application, physical meaning, and methodologies of nonlinear approaches in different engineering and science problems

  17. Recent topics in nonlinear PDE

    International Nuclear Information System (INIS)

    Mimura, Masayasu; Nishida, Takaaki

    1984-01-01

    The meeting on the subject of nonlinear partial differential equations was held at Hiroshima University in February, 1983. Leading and active mathematicians were invited to talk on their current research interests in nonlinear pdes occuring in the areas of fluid dynamics, free boundary problems, population dynamics and mathematical physics. This volume contains the theory of nonlinear pdes and the related topics which have been recently developed in Japan. (Auth.)

  18. Parallel Algorithm Solves Coupled Differential Equations

    Science.gov (United States)

    Hayashi, A.

    1987-01-01

    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  19. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    The system of non-linear differential equations was solved numerically using Runge-kutta. Nystroms method. ... artery occlusion. Keywords: Mathematical modeling, Intraretinal oxygen pressure, Retinal capillaries, Oxygen ..... Mass transfer,.

  20. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile

  1. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  2. Solution of a few nonlinear problems in aerodynamics by the finite elements and functional least squares methods. Ph.D. Thesis - Paris Univ.; [mathematical models of transonic flow using nonlinear equations

    Science.gov (United States)

    Periaux, J.

    1979-01-01

    The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.

  3. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  4. A comparison of the Method of Lines to finite difference techniques in solving time-dependent partial differential equations. [with applications to Burger equation and stream function-vorticity problem

    Science.gov (United States)

    Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.

    1978-01-01

    Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.

  5. One-dimensional nonlinear theory for rectangular helix traveling-wave tube

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong; Ju, Yongfeng [Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai' an 223003 (China); Wei, Yanyu [School of Physical Electronics, University of Electronic and Technology of China, Chengdu 610054 (China)

    2016-08-15

    A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.

  6. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  7. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  8. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  9. Solution of Fractional Partial Differential Equations in Fluid Mechanics by Extension of Some Iterative Method

    Directory of Open Access Journals (Sweden)

    A. A. Hemeda

    2013-01-01

    Full Text Available An extension of the so-called new iterative method (NIM has been used to handle linear and nonlinear fractional partial differential equations. The main property of the method lies in its flexibility and ability to solve nonlinear equations accurately and conveniently. Therefore, a general framework of the NIM is presented for analytical treatment of fractional partial differential equations in fluid mechanics. The fractional derivatives are described in the Caputo sense. Numerical illustrations that include the fractional wave equation, fractional Burgers equation, fractional KdV equation, fractional Klein-Gordon equation, and fractional Boussinesq-like equation are investigated to show the pertinent features of the technique. Comparison of the results obtained by the NIM with those obtained by both Adomian decomposition method (ADM and the variational iteration method (VIM reveals that the NIM is very effective and convenient. The basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems in fractional calculus.

  10. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  11. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow

    International Nuclear Information System (INIS)

    Knoll, D.A.

    1998-01-01

    The authors study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. They use Newton's method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. They investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, mesh sequencing, and a pseudotransient continuation technique is used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with incomplete lower-upper (ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a mesh sequencing implementation provides significant CPU savings for fine grid calculations. Performance comparisons of modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented

  12. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  13. Nonlinear Dynamics of Electrostatically Actuated MEMS Arches

    KAUST Repository

    Al Hennawi, Qais M.

    2015-01-01

    In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using

  14. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr

  15. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  16. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  17. Partial Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...

  18. International Conference on Applications in Nonlinear Dynamics

    CERN Document Server

    Longhini, Patrick; Palacios, Antonio

    2017-01-01

    This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.

  19. Controllability and Stabilization of Bilinear and Semilinear Partial Differential Equations

    DEFF Research Database (Denmark)

    Krishnaswamy, Vijayaraghavan

    The topic of the thesis is the investigation of the question of controllability of weakly nonlinear partial differntial equations. The method is based on the Hilbert Uniqueness Method.......The topic of the thesis is the investigation of the question of controllability of weakly nonlinear partial differntial equations. The method is based on the Hilbert Uniqueness Method....

  20. Solving Differential Equations in R: Package deSolve

    Directory of Open Access Journals (Sweden)

    Karline Soetaert

    2010-02-01

    Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in

  1. NR-code: Nonlinear reconstruction code

    Science.gov (United States)

    Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming

    2018-04-01

    NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

  2. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  3. Calculation of similarity solutions of partial differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1980-08-01

    When a partial differential equation in two independent variables is invariant to a group G of stretching transformations, it has similarity solutions that can be found by solving an ordinary differential equation. Under broad conditions, this ordinary differential equation is also invariant to another stretching group G', related to G. The invariance of the ordinary differential equation to G' can be used to simplify its solution, particularly if it is of second order. Then a method of Lie's can be used to reduce it to a first-order equation, the study of which is greatly facilitated by analysis of its direction field. The method developed here is applied to three examples: Blasius's equation for boundary layer flow over a flat plate and two nonlinear diffusion equations, cc/sub t/ = c/sub zz/ and c/sub t/ = (cc/sub z/)/sub z/

  4. Cosmological effects of nonlinear electrodynamics

    International Nuclear Information System (INIS)

    Novello, M; Goulart, E; Salim, J M; Bergliaffa, S E Perez

    2007-01-01

    It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology

  5. Partial processing

    International Nuclear Information System (INIS)

    1978-11-01

    This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing

  6. Partial gigantism

    Directory of Open Access Journals (Sweden)

    М.М. Karimova

    2017-05-01

    Full Text Available A girl with partial gigantism (the increased I and II fingers of the left foot is being examined. This condition is a rare and unresolved problem, as the definite reason of its development is not determined. Wait-and-see strategy is recommended, as well as correcting operations after closing of growth zones, and forming of data pool for generalization and development of schemes of drug and radial therapeutic methods.

  7. One class of meromorphic solutions of general two-dimensional nonlinear equations, connected with the algebraic inverse scattering method.

    Science.gov (United States)

    Chudnovsky, D V

    1978-09-01

    For systems of nonlinear equations having the form [L(n) - ( partial differential/ partial differentialt), L(m) - ( partial differential/ partial differentialy)] = 0 the class of meromorphic solutions obtained from the linear equations [Formula: see text] is presented.

  8. Nonlinearity management and diffraction management for the ...

    Indian Academy of Sciences (India)

    Variational equations and partial differential equation have been simulated numerically. Analytical and numerical studies have shown that nonlinearity management and diffraction management stabilize the pulse against decay or collapse providing undisturbed propagation even for larger energies of the incident beam.

  9. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  10. Nonlinear data assimilation

    CERN Document Server

    Van Leeuwen, Peter Jan; Reich, Sebastian

    2015-01-01

    This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

  11. New method for solving multidimensional scattering problem

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1991-01-01

    A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed

  12. Solving inversion problems with neural networks

    Science.gov (United States)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  13. Parameter Estimation of Nonlinear Models in Forestry.

    OpenAIRE

    Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.

    1999-01-01

    Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...

  14. A Positivity-Preserving Numerical Scheme for Nonlinear Option Pricing Models

    Directory of Open Access Journals (Sweden)

    Shengwu Zhou

    2012-01-01

    Full Text Available A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this paper. The numerical method is based on a nonstandard approximation of the second partial derivative. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted oscillations of the numerical solution. The numerical results for European put option and European butterfly spread are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.

  15. Dynamics of partial differential equations

    CERN Document Server

    Wayne, C Eugene

    2015-01-01

    This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation.   The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...

  16. Nonlinear systems

    National Research Council Canada - National Science Library

    Drazin, P. G

    1992-01-01

    This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...

  17. Nonlinear analysis

    CERN Document Server

    Gasinski, Leszek

    2005-01-01

    Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.

  18. Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2016-01-31

    The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)

  19. Nonlinear Hamiltonian systems

    DEFF Research Database (Denmark)

    Jørgensen, Michael Finn

    1995-01-01

    It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...... particular configurations of the Discrete Self-Trapping (DST) system are shown to be completely solvable. One of these systems includes the Toda lattice in a certain limit. An explicit integration is carried through for this Near-Toda lattice. The Near-Toda lattice is then generalized to include singular...

  20. Automated, non-linear registration between 3-dimensional brain map and medical head image

    International Nuclear Information System (INIS)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao

    1998-01-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  1. Nonlinear Dynamic Buckling of Damaged Composite Cylindrical Shells

    Institute of Scientific and Technical Information of China (English)

    WANG Tian-lin; TANG Wen-yong; ZHANG Sheng-kun

    2007-01-01

    Based on the first order shear deformation theory(FSDT), the nonlinear dynamic equations involving transverse shear deformation and initial geometric imperfections were obtained by Hamilton's philosophy. Geometric deformation of the composite cylindrical shell was treated as the initial geometric imperfection in the dynamic equations, which were solved by the semi-analytical method in this paper. Stiffness reduction was employed for the damaged sub-layer, and the equivalent stiffness matrix was obtained for the delaminated area. By circumferential Fourier series expansions for shell displacements and loads and by using Galerkin technique, the nonlinear partial differential equations were transformed to ordinary differential equations which were finally solved by the finite difference method. The buckling was judged from shell responses by B-R criteria, and critical loads were then determined. The effect of the initial geometric deformation on the dynamic response and buckling of composite cylindrical shell was also discussed, as well as the effects of concomitant delamination and sub-layer matrix damages.

  2. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lui, S H

    2011-01-01

    A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis

  3. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  4. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  5. Dynamics and vibrations progress in nonlinear analysis

    CERN Document Server

    Kachapi, Seyed Habibollah Hashemi

    2014-01-01

    Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...

  6. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.; Scacchi, S.; Zampini, Stefano

    2015-01-01

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  7. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.

    2015-07-18

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  8. Branch and bound algorithms to solve semiring constraint satisfaction problems

    CSIR Research Space (South Africa)

    Leenen, L

    2008-12-01

    Full Text Available The Semiring Constraint Satisfaction Problem (SCSP) framework is a popular approach for the representation of partial constraint satisfaction problems. Considerable research has been done in solving SCSPs, but limited work has been done in building...

  9. Solving Variable Coefficient Fourth-Order Parabolic Equation by ...

    African Journals Online (AJOL)

    Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.

  10. A credit policy approach in a two-warehouse inventory model for deteriorating items with price- and stock-dependent demand under partial backlogging

    Science.gov (United States)

    Panda, Gobinda Chandra; Khan, Md. Al-Amin; Shaikh, Ali Akbar

    2018-04-01

    Advertisement of the product is an important factor in inventory analysis. Also, price and stock have an important role to attract more customers in the competitive business situations. Trade credit policy is another important role in inventory analysis. We have combined these three factors together in a two-warehouse inventory model and represented it mathematically. In addition, we have added deteriorating factor of our proposed problem with price- and stock-dependent demand under partial backlogged shortage and solved. The frequency of advertisement is considered constant for a year in this paper. The proposed model is highly nonlinear in nature. Due to highly nonlinearity, we could not find the closed form solution. In this paper, trade credit facility is taken in the perspective of retailer, and all the possible cases and subcases of the model are discussed and solved using lingo 10.0 software. The results of sensitivity analysis prove the effectiveness of the proposed model.

  11. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  12. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  13. On the strong solution of a class of partial differential equations that arise in the pricing of mortgage backed securities

    KAUST Repository

    Parshad, Rana; Bayazit, Derviş; Barlow, Nathaniel S.; Prasad, V. Ramchandra

    2011-01-01

    We consider a reduced form pricing model for mortgage backed securities, formulated as a non-linear partial differential equation. We prove that the model possesses a weak solution. We then show that under additional regularity assumptions on the initial data, we also have a mild solution. This mild solution is shown to be a strong solution via further regularity arguments. We also numerically solve the reduced model via a Fourier spectral method. Lastly, we compare our numerical solution to real market data. We observe interestingly that the reduced model captures a number of recent market trends in this data, that have escaped previous models.

  14. A conservative numerical scheme for modeling nonlinear acoustic propagation in thermoviscous homogeneous media

    Science.gov (United States)

    Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.

    2018-06-01

    A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.

  15. Simultaneous multigrid techniques for nonlinear eigenvalue problems: Solutions of the nonlinear Schrödinger-Poisson eigenvalue problem in two and three dimensions

    Science.gov (United States)

    Costiner, Sorin; Ta'asan, Shlomo

    1995-07-01

    Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.

  16. Non-linear numerical studies of the tearing mode

    International Nuclear Information System (INIS)

    Schnack, D.D. Jr.

    1978-01-01

    A non-linear, time dependent, hydromagnetic model is developed and applied to the tearing mode, one of a class of instabilities which can occur in a magnetically confined plasma when the constraint of infinite conductivity is relaxed. The model is based on the eight partial differential equations of resistive magnetohydrodynamics (MHD). The equations are expressed as a set of conservation laws which conserves magnetic flux, momentum, mass, and total energy. These equations are then written in general, orthogonal, curvilinear coordinates in two space dimensions, so that the model can readily be applied to a variety of geometries. No assumption about the ordering of terms is made. The resulting equations are then solved by the method of finite differences on an Eulerian mesh. The model is applied to several geometries

  17. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  18. Analysis and classification of nonlinear dispersive evolution equations in the potential representation

    International Nuclear Information System (INIS)

    Eichmann, U.A.; Draayer, J.P.; Ludu, A.

    2002-01-01

    A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class. (author)

  19. Introduction to nonlinear finite element analysis

    CERN Document Server

    Kim, Nam-Ho

    2015-01-01

    This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: ·         Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems ·         Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory ·    ...

  20. Nonlinear magnetohydrodynamics of edge localized mode precursors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)

    2015-02-15

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.

  1. Nonlinear analysis of pupillary dynamics.

    Science.gov (United States)

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  2. Automatic interpretation of magnetic data using Euler deconvolution with nonlinear background

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.; Ramana, M.V.; Desa, M.; Shailaja, B.

    are close to each other. A possible solution to these problems is prposed by simultaneously estimating the source location, depth and structural index assuming nonlinear background. The Euler equation is solved in a nonlinear fashion using the optimization...

  3. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  4. Teaching Creative Problem Solving.

    Science.gov (United States)

    Christensen, Kip W.; Martin, Loren

    1992-01-01

    Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)

  5. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.; Al-Mulla, Noah

    2014-01-01

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  6. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.

    2014-01-06

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  7. The application of He's exp-function method to a nonlinear differential-difference equation

    International Nuclear Information System (INIS)

    Dai Chaoqing; Cen Xu; Wu Shengsheng

    2009-01-01

    This paper applies He's exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear partial differential equations (NPDEs) or coupled nonlinear partial differential equations (CNPDEs), to a nonlinear differential-difference equation, and some new travelling wave solutions are obtained.

  8. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  9. Multiparameter extrapolation and deflation methods for solving equation systems

    Directory of Open Access Journals (Sweden)

    A. J. Hughes Hallett

    1984-01-01

    Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.

  10. Solving PDEs in Python the FEniCS tutorial I

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

  11. Interactive Nonlinear Multiobjective Optimization Methods

    OpenAIRE

    Miettinen, Kaisa; Hakanen, Jussi; Podkopaev, Dmitry

    2016-01-01

    An overview of interactive methods for solving nonlinear multiobjective optimization problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory Pareto optimal solution can be found for her or his. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the...

  12. expansion method for solving nonlinear space–time fractional

    Indian Academy of Sciences (India)

    2016-07-06

    Jul 6, 2016 ... Department of Mathematics, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey. ∗ ... of fractional calculus dates back to three hundred years ago. ... tions by fractional complex transformation [12,13].

  13. Neoclassical transport including collisional nonlinearity.

    Science.gov (United States)

    Candy, J; Belli, E A

    2011-06-10

    In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  14. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  15. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    Science.gov (United States)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  16. Variational iteration method for solving coupled-KdV equations

    International Nuclear Information System (INIS)

    Assas, Laila M.B.

    2008-01-01

    In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations

  17. Lectures in nonlinear mechanics and chaos theory

    CERN Document Server

    Stetz, Albert W

    2016-01-01

    This elegant book presents a rigorous introduction to the theory of nonlinear mechanics and chaos. It turns out that many simple mechanical systems suffer from a peculiar malady. They are deterministic in the sense that their motion can be described with partial differential equations, but these equations have no proper solutions and the behavior they describe can be wildly unpredictable. This is implicit in Newtonian physics, and although it was analyzed in the pioneering work of Poincaré in the 19th century, its full significance has only been realized since the advent of modern computing. This book follows this development in the context of classical mechanics as it is usually taught in most graduate programs in physics. It starts with the seminal work of Laplace, Hamilton, and Liouville in the early 19th century and shows how their formulation of mechanics inevitably leads to systems that cannot be 'solved' in the usual sense of the word. It then discusses perturbation theory which, rather than providing...

  18. On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking

    International Nuclear Information System (INIS)

    Manakov, S V; Santini, P M

    2008-01-01

    We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking

  19. On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking

    Energy Technology Data Exchange (ETDEWEB)

    Manakov, S V [Landau Institute for Theoretical Physics, Moscow (Russian Federation); Santini, P M [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazz.le Aldo Moro 2, I-00185 Rome (Italy)

    2008-02-08

    We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking.

  20. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    Science.gov (United States)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  1. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications

    Science.gov (United States)

    Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun

    In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.

  2. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, D.A.; McHugh, P.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-12-31

    We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

  3. Combined algorithms in nonlinear problems of magnetostatics

    International Nuclear Information System (INIS)

    Gregus, M.; Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1988-01-01

    To solve boundary problems of magnetostatics in unbounded two- and three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method of nonlinear magnetostatic problem without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in non-linear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given too. 14 refs.; 2 figs.; 1 tab

  4. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  5. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  6. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  7. Solving Environmental Problems

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph

    2017-01-01

    for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...

  8. A Sequential, Implicit, Wavelet-Based Solver for Multi-Scale Time-Dependent Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Donald A. McLaren

    2013-04-01

    Full Text Available This paper describes and tests a wavelet-based implicit numerical method for solving partial differential equations. Intended for problems with localized small-scale interactions, the method exploits the form of the wavelet decomposition to divide the implicit system created by the time-discretization into multiple smaller systems that can be solved sequentially. Included is a test on a basic non-linear problem, with both the results of the test, and the time required to calculate them, compared with control results based on a single system with fine resolution. The method is then tested on a non-trivial problem, its computational time and accuracy checked against control results. In both tests, it was found that the method requires less computational expense than the control. Furthermore, the method showed convergence towards the fine resolution control results.

  9. Exact solutions for nonlinear variants of Kadomtsev–Petviashvili (n,n ...

    Indian Academy of Sciences (India)

    2013-12-05

    Dec 5, 2013 ... 1Department of Engineering Sciences, Faculty of Technology and Engineering, ... mathematics, for a nonlinear partial differential equation (PDE), .... The functional variable method definitely can be applied to nonlinear PDEs.

  10. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal; Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

    2015-01-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  11. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Aziz, Arsalan [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Ahmad, Bashir [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2016-06-15

    This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter. - Highlights: • Constitutive relation for second grade fluid is employed. • Flow is caused by a nonlinear stretching surface. • Magnetic field applied is in transverse direction. • Nanofluid model consists of Brownian motion and thermophoresis. • Magnetic Reynolds number is assumed small.

  12. Aeroelastic oscillations of a cantilever with structural nonlinearities: theory and numerical simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Brandon [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Rocha da Costa, Leandro Jose [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Poirel, Dominique [Royal Military College of Canada, Kingston (Canada). Dept. of Mechanical and Aerospace Engineering; Pettit, Chris [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical and Aerospace Engineering; Khalil, Mohammad [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sarkar, Abhijit [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering

    2017-09-01

    Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from the fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.

  13. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal

    2015-08-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  14. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet

    International Nuclear Information System (INIS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2016-01-01

    This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter. - Highlights: • Constitutive relation for second grade fluid is employed. • Flow is caused by a nonlinear stretching surface. • Magnetic field applied is in transverse direction. • Nanofluid model consists of Brownian motion and thermophoresis. • Magnetic Reynolds number is assumed small.

  15. Modulated Langmuir waves and nonlinear Landau damping

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Oikawa, Masayuki; Satsuma, Junkichi; Namba, Chusei.

    1975-01-01

    The nonlinear Schroedinger euqation with an integral term, iusub(t)+P/2.usub(xx)+Q/u/ 2 u+RP∫sub(-infinity)sup(infinity)[/u(x',t)/ 2 /(x-x')]dx'u=0, which describes modulated Langmuir waves with the nonlinear Landau damping effect, is solved by numerical calculations. Especially, the effects of nonlinear Landau damping on solitary wave solutions are studied. For both cases, PQ>0 and PQ<0, the results show that the solitary waves deform in an asymmetric way changing its velocity. (auth.)

  16. On Stabilization of Nonautonomous Nonlinear Systems

    International Nuclear Information System (INIS)

    Bogdanov, A. Yu.

    2008-01-01

    The procedures to obtain the sufficient conditions of asymptotic stability for nonlinear nonstationary continuous-time systems are discussed. We consider different types of the following general controlled system: x = X(t,x,u) = F(t,x)+B(t,x)u, x(t 0 ) = x 0 . (*) The basis of investigation is limiting equations, limiting Lyapunov functions, etc. The improved concept of observability of the pair of functional matrices is presented. By these results the problem of synthesis of asymptotically stable control nonlinear nonautonomous systems (with linear parts) involving the quadratic time-dependent Lyapunov functions is solved as well as stabilizing a given unstable system with nonlinear control law.

  17. Nonlinear single-spin spectrum analyzer.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  18. Introspection in Problem Solving

    Science.gov (United States)

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  19. Problem Solving in Practice

    Science.gov (United States)

    Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia

    2017-01-01

    Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…

  20. Solving Linear Differential Equations

    NARCIS (Netherlands)

    Nguyen, K.A.; Put, M. van der

    2010-01-01

    The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend

  1. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  2. Electric Current Solves Mazes

    Science.gov (United States)

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  3. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  4. On Solving Linear Recurrences

    Science.gov (United States)

    Dobbs, David E.

    2013-01-01

    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  5. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  6. Toward Solving the Problem of Problem Solving: An Analysis Framework

    Science.gov (United States)

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  7. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  8. Up-regulation of visfatin expression in subjects with hyperthyroidism and hypothyroidism is partially relevant to a nonlinear regulation mechanism between visfatin and tri-iodothyronine with various concentrations.

    Science.gov (United States)

    Han, Jing; Zhang, Tian-ou; Xiao, Wen-hua; Chang, Cui-qing; Ai, Hua

    2012-03-01

    hyperthyroidism and hypothyroidism are possibly due to an increase of visfatin mRNA expression in visceral fat, and a nonlinear regulation mechanism on visfatin mRNA expression under various T3 concentrations might be involved.

  9. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr

  10. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  11. Relation of deformed nonlinear algebras with linear ones

    International Nuclear Information System (INIS)

    Nowicki, A; Tkachuk, V M

    2014-01-01

    The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)

  12. Flutter analysis of an airfoil with multiple nonlinearities and uncertainties

    Directory of Open Access Journals (Sweden)

    Haitao Liao

    2013-09-01

    Full Text Available An original method for calculating the limit cycle oscillations of nonlinear aero-elastic system is presented. The problem of determining the maximum vibration amplitude of limit cycle is transformed into a nonlinear optimization problem. The harmonic balance method and the Floquet theory are selected to construct the general nonlinear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the proposed approach is validated and used to analyse the limit cycle oscillations of an airfoil with multiple nonlinearities and uncertainties. Numerical examples show that the coexistence of multiple nonlinearities may lead to low amplitude limit cycle oscillation.

  13. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    Science.gov (United States)

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  14. Variational iteration method for one dimensional nonlinear thermoelasticity

    International Nuclear Information System (INIS)

    Sweilam, N.H.; Khader, M.M.

    2007-01-01

    This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems

  15. Introduction to nonlinear dispersive equations

    CERN Document Server

    Linares, Felipe

    2015-01-01

    This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...

  16. MINPACK-1, Subroutine Library for Nonlinear Equation System

    International Nuclear Information System (INIS)

    Garbow, Burton S.

    1984-01-01

    1 - Description of problem or function: MINPACK1 is a package of FORTRAN subprograms for the numerical solution of systems of non- linear equations and nonlinear least-squares problems. The individual programs are: Identification/Description: - CHKDER: Check gradients for consistency with functions, - DOGLEG: Determine combination of Gauss-Newton and gradient directions, - DPMPAR: Provide double precision machine parameters, - ENORM: Calculate Euclidean norm of vector, - FDJAC1: Calculate difference approximation to Jacobian (nonlinear equations), - FDJAC2: Calculate difference approximation to Jacobian (least squares), - HYBRD: Solve system of nonlinear equations (approximate Jacobian), - HYBRD1: Easy-to-use driver for HYBRD, - HYBRJ: Solve system of nonlinear equations (analytic Jacobian), - HYBRJ1: Easy-to-use driver for HYBRJ, - LMDER: Solve nonlinear least squares problem (analytic Jacobian), - LMDER1: Easy-to-use driver for LMDER, - LMDIF: Solve nonlinear least squares problem (approximate Jacobian), - LMDIF1: Easy-to-use driver for LMDIF, - LMPAR: Determine Levenberg-Marquardt parameter - LMSTR: Solve nonlinear least squares problem (analytic Jacobian, storage conserving), - LMSTR1: Easy-to-use driver for LMSTR, - QFORM: Accumulate orthogonal matrix from QR factorization QRFAC Compute QR factorization of rectangular matrix, - QRSOLV: Complete solution of least squares problem, - RWUPDT: Update QR factorization after row addition, - R1MPYQ: Apply orthogonal transformations from QR factorization, - R1UPDT: Update QR factorization after rank-1 addition, - SPMPAR: Provide single precision machine parameters. 4. Method of solution - MINPACK1 uses the modified Powell hybrid method and the Levenberg-Marquardt algorithm

  17. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  18. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  19. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2004-01-01

    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  20. Creativity and problem Solving

    Directory of Open Access Journals (Sweden)

    René Victor Valqui Vidal

    2004-12-01

    Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.

  1. A note on the Lie symmetries of complex partial differential

    Indian Academy of Sciences (India)

    Folklore suggests that the split Lie-like operators of a complex partial differential equation are symmetries of the split system of real partial differential equations. However, this is not the case generally. We illustrate this by using the complex heat equation, wave equation with dissipation, the nonlinear Burgers equation and ...

  2. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  3. Noninteracting control of nonlinear systems based on relaxed control

    NARCIS (Netherlands)

    Jayawardhana, B.

    2010-01-01

    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  4. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, a generalized auxiliary equation method is proposed to construct more general exact solutions to two types of NLPDEs. First, we present new family of solutions to a nonlinear Klein-Gordon equation, by using this auxiliary equation method including a new first-order nonlinear ODE with six-degree nonlinear term proposed by Sirendaoreji. Then, we apply an indirect F-function method very close to the F-expansion method to solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully nonlinear convection C(l,n,p). Taking advantage of the new first-order nonlinear ODE with six degree nonlinear term, this indirect F-function method is used to map the solutions of C(l,n,p) equations to those of that nonlinear ODE. As a result, we can successfully obtain in a unified way, many exact solutions

  5. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  6. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  7. Feedback options in nonlinear numerical finance

    DEFF Research Database (Denmark)

    Hugger, Jens; Mashayekhi, Sima

    2012-01-01

    on an infinite slab is presented and boundary values on a bounded domain are derived. This bounded, nonlinear, 2 dimensional initial-boundary value problem is solved numerically using a number of standard finite difference schemes and the methods incorporated in the symbolic software Maple™....

  8. Introduction to partial differential equations and Hilbert space methods

    CERN Document Server

    Gustafson, Karl E

    1997-01-01

    Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.

  9. Nonlinear Fredholm Integral Equation of the Second Kind with Quadrature Methods

    Directory of Open Access Journals (Sweden)

    M. Jafari Emamzadeh

    2010-06-01

    Full Text Available In this paper, a numerical method for solving the nonlinear Fredholm integral equation is presented. We intend to approximate the solution of this equation by quadrature methods and by doing so, we solve the nonlinear Fredholm integral equation more accurately. Several examples are given at the end of this paper

  10. Symmetry reduction for nonlinear wave equations in Riemannian and pseudo-Riemannian spaces

    International Nuclear Information System (INIS)

    Grundland, A.M.; Harnad, J.; Winternitz, P.

    1984-01-01

    The authors show how group theory can be systematically employed to reduce nonlinear partial differential equations in n independent variables to partial differential equations in fewer variables and in particular, to ordinary differential equations. (Auth.)

  11. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

    Science.gov (United States)

    Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

    2018-06-01

    This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

  12. Controllability of partial differential equations governed by multiplicative controls

    CERN Document Server

    Khapalov, Alexander Y

    2010-01-01

    The goal of this monograph is to address the issue of the global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. The mathematical models we examine include the linear and nonlinear parabolic and hyperbolic PDE's, the Schrödinger equation, and coupled hybrid nonlinear distributed parameter systems modeling the swimming phenomenon. The book offers a new, high-quality and intrinsically nonlinear methodology to approach the aforementioned highly nonlinear controllability problems.

  13. Strain-dependent partial slip on rock fractures under seismic-frequency torsion

    Science.gov (United States)

    Saltiel, Seth; Bonner, Brian P.; Ajo-Franklin, Jonathan B.

    2017-05-01

    Measurements of nonlinear modulus and attenuation of fractures provide the opportunity to probe their mechanical state. We have adapted a low-frequency torsional apparatus to explore the seismic signature of fractures under low normal stress, simulating low effective stress environments such as shallow or high pore pressure reservoirs. We report strain-dependent modulus and attenuation for fractured samples of Duperow dolomite (a carbon sequestration target reservoir in Montana), Blue Canyon Dome rhyolite (a geothermal analog reservoir in New Mexico), and Montello granite (a deep basement disposal analog from Wisconsin). We use a simple single effective asperity partial slip model to fit our measured stress-strain curves and solve for the friction coefficient, contact radius, and full slip condition. These observations have the potential to develop into new field techniques for measuring differences in frictional properties during reservoir engineering manipulations and estimate the stress conditions where reservoir fractures and faults begin to fully slip.

  14. New travelling wave solutions for nonlinear stochastic evolution ...

    Indian Academy of Sciences (India)

    expansion method to look for travelling wave solutions of nonlinear partial differential equations. It is interesting to mention that, in this method the sign of the parameters can be used to judge the numbers and types of travelling wave solutions.

  15. Solitary wave solutions to nonlinear evolution equations in ...

    Indian Academy of Sciences (India)

    1Computer Engineering Technique Department, Al-Rafidain University College, Baghdad, ... applied to extract solutions are tan–cot method and functional variable approaches. ... Consider the nonlinear partial differential equation in the form.

  16. Exact travelling wave solutions for some important nonlinear ...

    Indian Academy of Sciences (India)

    The study of nonlinear partial differential equations is an active area of research in applied mathematics, theoretical physics and engineering fields. In particular ... In [16–18], the author applied this method to construct the exact solutions of.

  17. Jacobian elliptic function expansion solutions of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Wei Caimin; Xia Zunquan; Tian Naishuo

    2005-01-01

    Jacobian elliptic function expansion method is extended and applied to construct the exact solutions of the nonlinear Wick-type stochastic partial differential equations (SPDEs) and some new exact solutions are obtained via this method and Hermite transformation

  18. Stopping test of iterative methods for solving PDE

    International Nuclear Information System (INIS)

    Wang Bangrong

    1991-01-01

    In order to assure the accuracy of the numerical solution of the iterative method for solving PDE (partial differential equation), the stopping test is very important. If the coefficient matrix of the system of linear algebraic equations is strictly diagonal dominant or irreducible weakly diagonal dominant, the stopping test formulas of the iterative method for solving PDE is proposed. Several numerical examples are given to illustrate the applications of the stopping test formulas

  19. On an improved method for solving evolution equations of higher ...

    African Journals Online (AJOL)

    In this paper we introduce a new algebraic procedure to compute new classes of solutions of (1+1)-nonlinear partial differential equations (nPDEs) both of physical and technical relevance. The basic assumption is that the unknown solution(s) of the nPDE under consideration satisfy an ordinary differential equation (ODE) of ...

  20. Appreciative Problem Solving

    DEFF Research Database (Denmark)

    Hansen, David

    2012-01-01

    Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...

  1. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2006-01-01

    as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  2. Planning and Problem Solving

    Science.gov (United States)

    1982-10-01

    Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and Problem ’Solving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R

  3. Nonlinear Dynamics of Nanomechanical Resonators

    Science.gov (United States)

    Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym

    2007-03-01

    Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).

  4. Point source identification in nonlinear advection–diffusion–reaction systems

    International Nuclear Information System (INIS)

    Mamonov, A V; Tsai, Y-H R

    2013-01-01

    We consider a problem of identification of point sources in time-dependent advection–diffusion systems with a nonlinear reaction term. The linear counterpart of the problem in question can be reduced to solving a system of nonlinear algebraic equations via the use of adjoint equations. We extend this approach by constructing an algorithm that solves the problem iteratively to account for the nonlinearity of the reaction term. We study the question of improving the quality of source identification by adding more measurements adaptively using the solution obtained previously with a smaller number of measurements. (paper)

  5. Convex models and probabilistic approach of nonlinear fatigue failure

    International Nuclear Information System (INIS)

    Qiu Zhiping; Lin Qiang; Wang Xiaojun

    2008-01-01

    This paper is concerned with the nonlinear fatigue failure problem with uncertainties in the structural systems. In the present study, in order to solve the nonlinear problem by convex models, the theory of ellipsoidal algebra with the help of the thought of interval analysis is applied. In terms of the inclusion monotonic property of ellipsoidal functions, the nonlinear fatigue failure problem with uncertainties can be solved. A numerical example of 25-bar truss structures is given to illustrate the efficiency of the presented method in comparison with the probabilistic approach

  6. Nonlinear dynamics of intense EM pulses in plasma

    International Nuclear Information System (INIS)

    Mahajan, Ranju; Gill, Tarsem Singh; Kaur, Ravinder

    2010-01-01

    The evolution of laser beam in underdense/overdense plasma medium which is key to understanding of several nonlinear processes and underlying physics is governed by nonlinear parabolic equation. The nonlinearity considered here is of relativistic as well as of ponderomotive type. We have set Lagrangian for the problem and reduced Lagrangian problem is solved using appropriate trial function. Equation for the beam width and phase are derived. Further, these equations are used to solve eigenvalue problem for the stability of laser beam evolution and Hurwitz condition is satisfied.

  7. On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation

    Science.gov (United States)

    Şenol, Mehmet; Alquran, Marwan; Kasmaei, Hamed Daei

    2018-06-01

    In this paper, we present analytic-approximate solution of time-fractional Zakharov-Kuznetsov equation. This model demonstrates the behavior of weakly nonlinear ion acoustic waves in a plasma bearing cold ions and hot isothermal electrons in the presence of a uniform magnetic field. Basic definitions of fractional derivatives are described in the Caputo sense. Perturbation-iteration algorithm (PIA) and residual power series method (RPSM) are applied to solve this equation with success. The convergence analysis is also presented for both methods. Numerical results are given and then they are compared with the exact solutions. Comparison of the results reveal that both methods are competitive, powerful, reliable, simple to use and ready to apply to wide range of fractional partial differential equations.

  8. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  9. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    system of the second-order with nonlinearity of the type "quadratic friction" in combination with nonlinearity of the type "dry friction", was developed a software to simulate a process for providing pseudo experimental data containing random accuracy and to determine the parameters of the system. A conducted computational experiment enabled an estimate of the accuracy with which the proposed algorithm determines the parameters of the system. The illustrative numerical simulation has demonstrated that with using the proposed nonlinear dynamic system identification algorithm in frequency hodograph the accuracy of determining the coefficient values of the frequency transfer function of the second order system with a dry and quadratic friction is comparable with the range of measurement accuracy of experimental samples of this system hodograph. Well-known publications do not mention this identification method of the nonlinear dynamic systems. The nonlinear dynamical systems identification method the article describes can find application when determining parameters of various kinds of actuators. The using method of harmonic linearization and identification of dynamical systems by hodographs is promising for solving the problem of the identification of nonlinear systems with different types of nonlinearities.

  10. The Cousin problems in the viewpoint of partial differential equations

    International Nuclear Information System (INIS)

    Le Hung Son.

    1990-01-01

    In this paper we consider the Cousin problems for overdetermined systems of partial differential equations, which are generalizations of the Cauchy-Riemann system. The general methods for solving these problems are given. Applying the given methods we can solve the Cousin problems for many important systems in theoretical physics. (author). 19 refs

  11. Application of HPEM to investigate the response and stability of nonlinear problems in vibration

    DEFF Research Database (Denmark)

    Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.

    2010-01-01

    In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...

  12. FEATURES APPLICATION CIRCUIT MOMENT FINITE ELEMENT (MSSE) NONLINEAR CALCULATIONS OF PLATES AND SHELLS

    OpenAIRE

    Bazhenov V.A.; Sacharov A.S.; Guliar A. I.; Pyskunov S.O.; Maksymiuk Y.V.

    2014-01-01

    Based MSSE created shell CE general type, which allows you to analyze the stress-strain state of axisymmetrical shells and plates in problems of physical and geometric nonlinearity. The principal nonlinear elasticity theory, algorithms for solving systems of nonlinear equations for determining the temperature and plastic deformation.

  13. FEATURES APPLICATION CIRCUIT MOMENT FINITE ELEMENT (MSSE NONLINEAR CALCULATIONS OF PLATES AND SHELLS

    Directory of Open Access Journals (Sweden)

    Bazhenov V.A.

    2014-06-01

    Full Text Available Based MSSE created shell CE general type, which allows you to analyze the stress-strain state of axisymmetrical shells and plates in problems of physical and geometric nonlinearity. The principal nonlinear elasticity theory, algorithms for solving systems of nonlinear equations for determining the temperature and plastic deformation.

  14. Analytical construction of peaked solutions for the nonlinear ...

    African Journals Online (AJOL)

    These results demonstrate the existence of peaked pulses propagating through a pair plasma. The algebraic decay rate of the pulses are determined analytically, as well. The method discussed here can be applied to approximate solutions to similar nonlinear partial differential equations of nonlinear Schrödinger type.

  15. A nonlinear complementarity approach for the national energy modeling system

    International Nuclear Information System (INIS)

    Gabriel, S.A.; Kydes, A.S.

    1995-01-01

    The National Energy Modeling System (NEMS) is a large-scale mathematical model that computes equilibrium fuel prices and quantities in the U.S. energy sector. At present, to generate these equilibrium values, NEMS sequentially solves a collection of linear programs and nonlinear equations. The NEMS solution procedure then incorporates the solutions of these linear programs and nonlinear equations in a nonlinear Gauss-Seidel approach. The authors describe how the current version of NEMS can be formulated as a particular nonlinear complementarity problem (NCP), thereby possibly avoiding current convergence problems. In addition, they show that the NCP format is equally valid for a more general form of NEMS. They also describe several promising approaches for solving the NCP form of NEMS based on recent Newton type methods for general NCPs. These approaches share the feature of needing to solve their direction-finding subproblems only approximately. Hence, they can effectively exploit the sparsity inherent in the NEMS NCP

  16. Continuous nonlinear optimization for engineering applications in GAMS technology

    CERN Document Server

    Andrei, Neculai

    2017-01-01

    This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical opti...

  17. A hierarchy of systems of nonlinear equations

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1985-01-01

    Imposing isospectral invariance for the one-dimensional Dirac operator yields an infinite hierarchy of systems of chiral invariant nonlinear partial differential equations. The same system is obtained through a Lax pair construction and finally a formulation in terms of Kac-Moody generators is given. (Author)

  18. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  19. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  20. Solved problems in electrochemistry

    International Nuclear Information System (INIS)

    Piron, D.L.

    2004-01-01

    This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems

  1. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    Science.gov (United States)

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  2. A study of discrete nonlinear systems

    International Nuclear Information System (INIS)

    Dhillon, H.S.

    2001-04-01

    An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)

  3. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  4. First-order partial differential equations

    CERN Document Server

    Rhee, Hyun-Ku; Amundson, Neal R

    2001-01-01

    This first volume of a highly regarded two-volume text is fully usable on its own. After going over some of the preliminaries, the authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and some methods of solution; linear and semilinear equations; chromatographic equations with finite rate expressions; homogeneous and nonhomogeneous quasilinear equations; formation and propagation of shocks; conservation equations, weak solutions, and shock layers; nonlinear equations; and variational problems. Exercises appear at the end of mo

  5. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  6. Jacobian projection reduced-order models for dynamic systems with contact nonlinearities

    Science.gov (United States)

    Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.

    2018-02-01

    In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.

  7. Decomposition of a hierarchy of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Geng Xianguo

    2003-01-01

    The generalized Hamiltonian structures for a hierarchy of nonlinear evolution equations are established with the aid of the trace identity. Using the nonlinearization approach, the hierarchy of nonlinear evolution equations is decomposed into a class of new finite-dimensional Hamiltonian systems. The generating function of integrals and their generator are presented, based on which the finite-dimensional Hamiltonian systems are proved to be completely integrable in the Liouville sense. As an application, solutions for the hierarchy of nonlinear evolution equations are reduced to solving the compatible Hamiltonian systems of ordinary differential equations

  8. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  9. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla

    2015-04-13

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  10. Pure soliton solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Fuchssteiner, B.

    1977-01-01

    A general approach is given to obtain the system of ordinary differential equations which determines the pure soliton solutions for the class of generalized Korteweg-de Vries equations. This approach also leads to a system of ordinary differential equations for the pure soliton solutions of the sine-Gordon equation. (orig.) [de

  11. Essays on partial retirement

    NARCIS (Netherlands)

    Kantarci, T.

    2012-01-01

    The five essays in this dissertation address a range of topics in the micro-economic literature on partial retirement. The focus is on the labor market behavior of older age groups. The essays examine the economic and non-economic determinants of partial retirement behavior, the effect of partial

  12. On a partial differential equation method for determining the free energies and coexisting phase compositions of ternary mixtures from light scattering data.

    Science.gov (United States)

    Ross, David S; Thurston, George M; Lutzer, Carl V

    2008-08-14

    In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.

  13. Boundary value problems and partial differential equations

    CERN Document Server

    Powers, David L

    2005-01-01

    Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples

  14. Overlapping Schwarz for Nonlinear Problems. An Element Agglomeration Nonlinear Additive Schwarz Preconditioned Newton Method for Unstructured Finite Element Problems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X C; Marcinkowski, L; Vassilevski, P S

    2005-02-10

    This paper extends previous results on nonlinear Schwarz preconditioning ([4]) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The non-local finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in [8]. Then, the algebraic construction from [9] of the corresponding non-linear finite element subproblems is applied to generate the subspace based nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method. Numerical illustration is also provided.

  15. Solving a robust airline crew pairing problem with column generation

    NARCIS (Netherlands)

    Muter, I.; Birbil, S.I.; Bülbül, K.; Sahin, G.; Yenigün, H.; Tas, D.; Tüzün, D.

    2013-01-01

    In this study, we solve a robust version of the airline crew pairing problem. Our concept of robustness was partially shaped during our discussions with small local airlines in Turkey which may have to add a set of extra flights into their schedule at short notice during operation. Thus, robustness

  16. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  17. Exploring hadronic physics by solving QCD with a teraflops computer

    International Nuclear Information System (INIS)

    Negele, J.

    1993-01-01

    Quantum chromodynamics, the theory believed to govern the nucleons, mesons, and other strongly interacting particles making up most of the known mass of the universe is such a challenging, nonlinear many-body problem that it has never been solved using conventional analytical techniques. This talk will describe how this theory can be solved numerically on a space-time lattice, show what has already been understood about the structure of hadrons and the quark gluon phase transition. and describe an exciting initiative to build a dedicated Teraflops computer capable of performing 10 12 operations per second to make fundamental advances in QCD

  18. Numerical Analysis of Strongly Nonlinear Oscillation Systems using He's Max-Min Method

    DEFF Research Database (Denmark)

    Babazadeh, H; Domairry, G; Barari, Amin

    2011-01-01

    Nonlinear functions are crucial points and terms in engineering problems. Actual and physical problems can be solved by solving and processing such functions. Thus, most scientists and engineers focus on solving these equations. This paper presents a novel method called the max-min method...

  19. New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Yang Qin; Dai Chaoqing; Zhang Jiefang

    2005-01-01

    Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.

  20. Recurrent Partial Words

    Directory of Open Access Journals (Sweden)

    Francine Blanchet-Sadri

    2011-08-01

    Full Text Available Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible with all letters; partial words without holes are said to be full words (or simply words. Given an infinite partial word w, the number of distinct full words over the alphabet that are compatible with factors of w of length n, called subwords of w, refers to a measure of complexity of infinite partial words so-called subword complexity. This measure is of particular interest because we can construct partial words with subword complexities not achievable by full words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we establish connections between subword complexity and recurrence in this more general framework.

  1. Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering

    Science.gov (United States)

    Ablowitz, Mark J.

    1994-12-01

    Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.

  2. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

    International Nuclear Information System (INIS)

    Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

    2011-01-01

    This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.

  3. The presentation of explicit analytical solutions of a class of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Feng Jinshun; Guo Mingpu; Yuan Deyou

    2009-01-01

    In this paper, we introduce a function set Ω m . There is a conjecture that an arbitrary explicit travelling-wave analytical solution of a real constant coefficient nonlinear evolution equation is necessarily a linear (or nonlinear) combination of the product of some elements in Ω m . A widespread applicable approach for solving a class of nonlinear evolution equations is established. The new analytical solutions to two kinds of nonlinear evolution equations are described with the aid of the guess.

  4. Analytical solution of strongly nonlinear Duffing oscillators

    OpenAIRE

    El-Naggar, A.M.; Ismail, G.M.

    2016-01-01

    In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m...

  5. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc

    2011-05-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  6. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan

    2011-01-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  7. MOOSE: A parallel computational framework for coupled systems of nonlinear equations

    International Nuclear Information System (INIS)

    Gaston, Derek; Newman, Chris; Hansen, Glen; Lebrun-Grandie, Damien

    2009-01-01

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics expressions are modularized into 'Kernels,' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics-based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.

  8. Domain decomposition methods for solving an image problem

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  9. Characteristics of students in comparative problem solving

    Science.gov (United States)

    Irfan, M.; Sudirman; Rahardi, R.

    2018-01-01

    Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.

  10. Nonlinear Single Spin Spectrum Analayzer

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.

  11. Exp-function method for solving Maccari's system

    International Nuclear Information System (INIS)

    Zhang Sheng

    2007-01-01

    In this Letter, the Exp-function method is used to seek exact solutions of Maccari's system. As a result, single and combined generalized solitonary solutions are obtained, from which some known solutions obtained by extended sine-Gordon equation method and improved hyperbolic function method are recovered as special cases. It is shown that the Exp-function method provides a very effective and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics

  12. On Solving the Lorenz System by Differential Transformation Method

    International Nuclear Information System (INIS)

    Al-Sawalha, M. Mossa; Noorani, M. S. M.

    2008-01-01

    The differential transformation method (DTM) is employed to solve a nonlinear differential equation, namely the Lorenz system. Numerical results are compared to those obtained by the Runge–Kutta method to illustrate the preciseness and effectiveness of the proposed method. In particular, we examine the accuracy of the (DTM) as the Lorenz system changes from a non-chaotic system to a chaotic one. It is shown that the (DTM) is robust, accurate and easy to apply

  13. AZTEC: A parallel iterative package for the solving linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  14. The solution of a coupled system of nonlinear physical problems using the homotopy analysis method

    International Nuclear Information System (INIS)

    El-Wakil, S A; Abdou, M A

    2010-01-01

    In this article, the homotopy analysis method (HAM) has been applied to solve coupled nonlinear evolution equations in physics. The validity of this method has been successfully demonstrated by applying it to two nonlinear evolution equations, namely coupled nonlinear diffusion reaction equations and the (2+1)-dimensional Nizhnik-Novikov Veselov system. The results obtained by this method show good agreement with the ones obtained by other methods. The proposed method is a powerful and easy to use analytic tool for nonlinear problems and does not need small parameters in the equations. The HAM solutions contain an auxiliary parameter that provides a convenient way of controlling the convergence region of series solutions. The results obtained here reveal that the proposed method is very effective and simple for solving nonlinear evolution equations. The basic ideas of this approach can be widely employed to solve other strongly nonlinear problems.

  15. Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems

    International Nuclear Information System (INIS)

    Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris

    2011-01-01

    Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)

  16. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    Science.gov (United States)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  17. A parametric FE modeling of brake for non-linear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed,Ibrahim; Fatouh, Yasser [Automotive and Tractors Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Aly, Wael [Refrigeration and Air-Conditioning Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt)

    2013-07-01

    A parametric modeling of a drum brake based on 3-D Finite Element Methods (FEM) for non-contact analysis is presented. Many parameters are examined during this study such as the effect of drum-lining interface stiffness, coefficient of friction, and line pressure on the interface contact. Firstly, the modal analysis of the drum brake is also studied to get the natural frequency and instability of the drum to facilitate transforming the modal elements to non-contact elements. It is shown that the Unsymmetric solver of the modal analysis is efficient enough to solve this linear problem after transforming the non-linear behavior of the contact between the drum and the lining to a linear behavior. A SOLID45 which is a linear element is used in the modal analysis and then transferred to non-linear elements which are Targe170 and Conta173 that represent the drum and lining for contact analysis study. The contact analysis problems are highly non-linear and require significant computer resources to solve it, however, the contact problem give two significant difficulties. Firstly, the region of contact is not known based on the boundary conditions such as line pressure, and drum and friction material specs. Secondly, these contact problems need to take the friction into consideration. Finally, it showed a good distribution of the nodal reaction forces on the slotted lining contact surface and existing of the slot in the middle of the lining can help in wear removal due to the friction between the lining and the drum. Accurate contact stiffness can give a good representation for the pressure distribution between the lining and the drum. However, a full contact of the front part of the slotted lining could occur in case of 20, 40, 60 and 80 bar of piston pressure and a partially contact between the drum and lining can occur in the rear part of the slotted lining.

  18. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  19. Mathematical programming model for heat exchanger design through optimization of partial objectives

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2013-01-01

    Highlights: • Rigorous design of shell-and-tube heat exchangers according to TEMA standards. • Division of the problem into sets of equations that are easier to solve. • Selected heuristic objective functions based on the physical behavior of the problem. • Sequential optimization approach to avoid solutions stuck in local minimum. • The results obtained with this model improved the values reported in the literature. - Abstract: Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature

  20. Homogenized description and retrieval method of nonlinear metasurfaces

    Science.gov (United States)

    Liu, Xiaojun; Larouche, Stéphane; Smith, David R.

    2018-03-01

    A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry

  1. Exploiting partial knowledge for efficient model analysis

    OpenAIRE

    Macedo, Nuno; Cunha, Alcino; Pessoa, Eduardo José Dias

    2017-01-01

    The advancement of constraint solvers and model checkers has enabled the effective analysis of high-level formal specification languages. However, these typically handle a specification in an opaque manner, amalgamating all its constraints in a single monolithic verification task, which often proves to be a performance bottleneck. This paper addresses this issue by proposing a solving strategy that exploits user-provided partial knowledge, namely by assigning symbolic bounds to the problem’s ...

  2. On Poisson Nonlinear Transformations

    Directory of Open Access Journals (Sweden)

    Nasir Ganikhodjaev

    2014-01-01

    Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.

  3. Convergence of method of lines approximations to partial differential equations

    International Nuclear Information System (INIS)

    Verwer, J.G.; Sanz-Serna, J.M.

    1984-01-01

    Many existing numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as method of lines (MOL) schemes. This paper treats the convergence of one-step MOL schemes. The main purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic equation and the cubic Schroedinger equation are used for illustrating the ideas. (Auth.)

  4. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    model is presented in the form of partial differential equations (PDE). Galerkin's method is then applied to obtain a set of ordinary differential equations such that the cable model is approximated by a FEM model. Based on the FEM model, a nonlinear observer is designed to estimate the cable...

  5. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    according to the standards of the journal. The selection of papers in this issue aims to bring together recent developments and findings, even though it consists of only a fraction of the impressive developments in recent years which have affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular automata, representations of quantum groups, symmetries of difference equations, discrete geometry, among others. The special issue begins with four review papers: Integrable models in nonlinear optics and soliton solutions Degasperis [1] reviews integrable models in nonlinear optics. He presents a number of approximate models which are integrable and illustrates the links between the mathematical and applicative aspects of the theory of integrable dynamical systems. In particular he discusses the recent impact of boomeronic-type wave equations on applications arising in the context of the resonant interaction of three waves. Hamiltonian PDEs: deformations, integrability, solutions Dubrovin [2] presents classification results for systems of nonlinear Hamiltonian partial differential equations (PDEs) in one spatial dimension. In particular he uses a perturbative approach to the theory of integrability of these systems and discusses their solutions. He conjectures universality of the critical behaviour for the solutions, where the notion of universality refers to asymptotic independence of the structure of solutions (at the point of gradient catastrophe) from the choice of generic initial data as well as from the choice of a generic PDE. KP solitons in shallow water Kodama [3] presents a survey of recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. A large variety of exact soliton solutions of the KP equation are presented and classified. The study includes numerical analysis of the stability of the found solution as well as numerical simulations of the initial value problems which

  6. On partial stabilization of a system of the Euler-Bernoulli beam equations

    International Nuclear Information System (INIS)

    Zuyev, Alexander

    2003-11-01

    The paper is focused on the stabilization problem for the following system of differential equations ∂ 2 (t) = v, t ≥ 0, (∂ 2 ω i (x,t))/∂t 2 + c 2 (∂ 4 ω i (x,t))/∂x 4 = ∂ 2 (t)ω i (x,t) - (x+d)v, x is an element of [0,l], i = 1,2,...,k, where v is an element of R is the control parameter. The above system describes a rotating rigid body endowed with a number of elastic beams. To solve the stabilization problem, we prove a sufficient condition for partial strong asymptotic stability which is valid for general nonlinear dynamical systems in a Banach space. This result is applied to deriving a feedback control explicitly. In addition, we prove strong (non-asymptotic) stability in the sense of Lyapunov as well as precompacness of the trajectories for the corresponding nonlinear semigroup. Some simulation results are given in conclusion. (author)

  7. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating

    International Nuclear Information System (INIS)

    Fu, Y; Xu, O; Yang, W; Zhou, L; Wang, J

    2017-01-01

    To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately. (paper)

  8. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  9. Topological approximation methods for evolutionary problem of nonlinear hydrodynamics

    CERN Document Server

    Zvyagin, Victor

    2008-01-01

    The authors present functional analytical methods for solving a class of partial differential equations. The results have important applications to the numerical treatment of rheology (specific examples are the behaviour of blood or print colours) and to other applications in fluid mechanics. A class of methods for solving problems in hydrodynamics is presented.

  10. Difficulties in Genetics Problem Solving.

    Science.gov (United States)

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  11. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  12. Problem Solving on a Monorail.

    Science.gov (United States)

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  13. Solving complex fisheries management problems

    DEFF Research Database (Denmark)

    Petter Johnsen, Jahn; Eliasen, Søren Qvist

    2011-01-01

    A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related...

  14. Nonlinear programming with feedforward neural networks.

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.

    1999-06-02

    We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.

  15. Nonlinear evolution equations having a physical meaning

    International Nuclear Information System (INIS)

    Nakach, R.

    1976-06-01

    The non stationary self-similar solutions of the nonlinear evolution equations which can be solved by the inverse scattering method are studied. It turns out, as shown by means of several examples, that when the L linear operator associated with these equations, is of second order and only then, the self-similar solutions can be expressed in terms of the various Painleve's transcendents [fr

  16. Picosecond optical nonlinearities in symmetrical and unsymmetrical ...

    Indian Academy of Sciences (India)

    It is evident that the saturable absorption (SA) behaviour changed to reverse sat- urable absorption (RSA) and the nonlinear coefficients were obtained using the equation α = α0I/[1 + (I/Is)]. The open-aperture scans were fitted by solving the propagation equation for homogeneous medium dI/dz = {−α0I/[1+(I/Is)]}−βI2.

  17. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  18. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  19. Nonlinear acceleration of SN transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fichtl, Erin D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Calef, Matthew T [Los Alamos National Laboratory

    2010-12-20

    The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we present a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application.

  20. Nonlinear theory of electroelastic and magnetoelastic interactions

    CERN Document Server

    Dorfmann, Luis

    2014-01-01

    This book provides a unified theory of nonlinear electro-magnetomechanical interactions of soft materials capable of large elastic deformations. The authors include an overview of the basic principles of the classical theory of electromagnetism from the fundamental notions of point charges and magnetic dipoles through to distributions of charge and current in a non-deformable continuum, time-dependent electromagnetic fields and Maxwell’s equations. They summarize the basic ingredients of continuum mechanics that are required to account for the deformability of material and present nonlinear constitutive frameworks for electroelastic and magnetoelastic interactions in a highly deformable material. The equations contained in the book are used to formulate and solve a variety of representative boundary-value problems for both nonlinear electroelasticity and magnetoelasticity.