WorldWideScience

Sample records for solve algebra word

  1. The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems

    Science.gov (United States)

    Ng, Swee Fong; Lee, Kerry

    2009-01-01

    Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…

  2. The Role of Cognitive Processes, Foundational Math Skill, and Calculation Accuracy and Fluency in Word-Problem Solving versus Pre-Algebraic Knowledge

    Science.gov (United States)

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.

    2016-01-01

    The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534

  3. Assessing Algebraic Solving Ability: A Theoretical Framework

    Science.gov (United States)

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  4. Some Applications of Algebraic System Solving

    Science.gov (United States)

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  5. Solving Absolute Value Equations Algebraically and Geometrically

    Science.gov (United States)

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  6. Student Obstacles in Solving Algebraic Thinking Problems

    Science.gov (United States)

    Andini, W.; Suryadi, D.

    2017-09-01

    The aim of this research is to analize the student obstacles on solving algebraic thinking problems in low grades elementary school. This research is a preliminary qualitative research, and involved 66 students of grade 3 elementary school. From the analysis student test results, most of student experience difficulty in solving algebraic thinking problems. The main obstacle is the student’s difficulty in understanding the problem of generalizing the pattern because the students are not accustomed to see the rules that exist in generalize the pattern.

  7. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  8. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R; Fuchs, Lynn S

    2014-08-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2 nd - grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty.

  9. Does Early Algebraic Reasoning Differ as a Function of Students’ Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044

  10. Three-M in Word Problem Solving

    Science.gov (United States)

    Hajra, Sayonita Ghosh; Kofman, Victoria

    2018-01-01

    We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…

  11. Gender differences in algebraic thinking ability to solve mathematics problems

    Science.gov (United States)

    Kusumaningsih, W.; Darhim; Herman, T.; Turmudi

    2018-05-01

    This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.

  12. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    Science.gov (United States)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  13. Study of solving a Toda dynamic system with loop algebra

    International Nuclear Information System (INIS)

    Zhu Qiao; Yang Zhanying; Shi Kangjie; Wen Junqing

    2006-01-01

    The authors construct a Toda system with Loop algebra, and prove that the Lax equation L=[L,M] can be solved by means of solving a regular Riemann-Hilbert problem. In our system, M in Lax pair is an antisymmetrical matrix, while L=L + + M, and L + is a quasi-upper triangular matrix of loop algebra. In order to check our result, the authors exactly solve an R-H problem under a given initial condition as an example. (authors)

  14. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  15. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    Science.gov (United States)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  16. Using Cognitive Tutor Software in Learning Linear Algebra Word Concept

    Science.gov (United States)

    Yang, Kai-Ju

    2015-01-01

    This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…

  17. From dissecting ignorance to solving algebraic problems

    International Nuclear Information System (INIS)

    Ayyub, Bilal M.

    2004-01-01

    Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters

  18. From dissecting ignorance to solving algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Ayyub, Bilal M

    2004-09-01

    Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters.

  19. Using Computer Symbolic Algebra to Solve Differential Equations.

    Science.gov (United States)

    Mathews, John H.

    1989-01-01

    This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)

  20. W-algebra for solving problems with fuzzy parameters

    Science.gov (United States)

    Shevlyakov, A. O.; Matveev, M. G.

    2018-03-01

    A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.

  1. Strategies of solving arithmetic word problems in students with learning difficulties in mathematics

    OpenAIRE

    Kalan, Marko

    2015-01-01

    Problem solving as an important skill is, beside arithmetic, measure and algebra, included in standards of school mathematics (National Council of Teachers of Mathematics) (NCTM, 2000) and needed as a necessary skill for successfulness in science, technology, engineering and mathematics (STEM) (National Mathematics Advisory Panel, 2008). Since solving of human problems is connected to the real life, the arithmetic word problems (in short AWP) are an important kind of mathematics tasks in scho...

  2. Algebraic Reasoning in Solving Mathematical Problem Based on Learning Style

    Science.gov (United States)

    Indraswari, N. F.; Budayasa, I. K.; Ekawati, R.

    2018-01-01

    This study aimed to describe algebraic reasoning of secondary school’s pupils with different learning styles in solving mathematical problem. This study begins by giving the questionnaire to find out the learning styles and followed by mathematical ability test to get three subjects of 8th-grade whereas the learning styles of each pupil is visual, auditory, kinesthetic and had similar mathematical abilities. Then it continued with given algebraic problems and interviews. The data is validated using triangulation of time. The result showed that in the pattern of seeking indicator, subjects identified the things that were known and asked based on them observations. The visual and kinesthetic learners represented the known information in a chart, whereas the auditory learner in a table. In addition, they found the elements which makes the pattern and made a relationship between two quantities. In the pattern recognition indicator, they created conjectures on the relationship between two quantities and proved it. In the generalization indicator, they were determining the general rule of pattern found on each element of pattern using algebraic symbols and created a mathematical model. Visual and kinesthetic learners determined the general rule of equations which was used to solve problems using algebraic symbols, but auditory learner in a sentence.

  3. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

    Science.gov (United States)

    Hoover, Jerome D; Healy, Alice F

    2017-12-01

    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  4. Solving the generalized Langevin equation with the algebraically correlated noise

    International Nuclear Information System (INIS)

    Srokowski, T.; Ploszajczak, M.

    1997-01-01

    The Langevin equation with the memory kernel is solved. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated at the assumption that the system is in the thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Levy walks with divergent moments of the velocity distribution. The motion of a Brownian particle is considered both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle. (author)

  5. Effects of Modified Schema-Based Instruction on Real-World Algebra Problem Solving of Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    Science.gov (United States)

    Root, Jenny Rose

    2016-01-01

    The current study evaluated the effects of modified schema-based instruction (SBI) on the algebra problem solving skills of three middle school students with autism spectrum disorder and moderate intellectual disability (ASD/ID). Participants learned to solve two types of group word problems: missing-whole and missing-part. The themes of the word…

  6. The Leibniz-Hopf algebra and Lyndon words

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1996-01-01

    textabstractLet ${cal Z$ denote the free associative algebra ${ol Z langle Z_1 , Z_2 , ldots rangle$ over the integers. This algebra carries a Hopf algebra structure for which the comultiplication is $Z_n mapsto Sigma_{i+j=n Z_i otimes Z_j$. This the noncommutative Leibniz-Hopf algebra. It carries a

  7. Structuring students’ analogical reasoning in solving algebra problem

    Science.gov (United States)

    Lailiyah, S.; Nusantara, T.; Sa'dijah, C.; Irawan, E. B.; Kusaeri; Asyhar, A. H.

    2018-01-01

    The average achievement of Indonesian students’ mathematics skills according to Benchmark International Trends in Mathematics and Science Study (TIMSS) is ranked at the 38th out of 42 countries and according to the survey result in Program for International Student Assessment (PISA) is ranked at the 64th out of 65 countries. The low mathematics skill of Indonesian student has become an important reason to research more deeply about reasoning and algebra in mathematics. Analogical reasoning is a very important component in mathematics because it is the key to creativity and it can make the learning process in the classroom become effective. The major part of the analogical reasoning is about structuring including the processes of inferencing and decision-making happens. Those processes involve base domain and target domain. Methodologically, the subjects of this research were 42 students from class XII. The sources of data were derived from the results of thinks aloud, the transcribed interviews, and the videos taken while the subject working on the instruments and interviews. The collected data were analyzed using qualitative techniques. The result of this study described the structuring characteristics of students’ analogical reasoning in solving algebra problems from all the research subjects.

  8. A novel algebraic procedure for solving non-linear evolution equations of higher order

    International Nuclear Information System (INIS)

    Huber, Alfred

    2007-01-01

    We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

  9. Primary School Students' Strategies in Early Algebra Problem Solving Supported by an Online Game

    Science.gov (United States)

    van den Heuvel-Panhuizen, Marja; Kolovou, Angeliki; Robitzsch, Alexander

    2013-01-01

    In this study we investigated the role of a dynamic online game on students' early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10-12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying quantities. Special software monitored the…

  10. Primary school students’ strategies in early algebra problem solving supported by an online game

    NARCIS (Netherlands)

    van den Heuvel-Panhuizen, M.H.A.M; Kolovou, A.; Robitzsch, A.

    2013-01-01

    In this study we investigated the role of a dynamic online game on students’ early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10–12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying

  11. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...

  12. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  13. Is Word-Problem Solving a Form of Text Comprehension?

    Science.gov (United States)

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study's hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of…

  14. Secondary School Pre-Service Mathematics Teachers' Content Knowledge of Algebraic Word Problem in Nigeria

    Science.gov (United States)

    Usman, Ahmed Ibrahim

    2015-01-01

    Knowledge and understanding of mathematical operations serves as a pre-reequisite for the successful translation of algebraic word problems. This study explored pre-service teachers' ability to recognize mathematical operations as well as use of those capabilities in constructing algebraic expressions, equations, and their solutions. The outcome…

  15. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    Science.gov (United States)

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  16. Essential linear algebra with applications a problem-solving approach

    CERN Document Server

    Andreescu, Titu

    2014-01-01

    This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory;  • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them.   Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course.    ...

  17. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    kofi.mereku

    Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.

  18. An introduction to the history of algebra solving equations from Mesopotamian times to the Renaissance

    CERN Document Server

    Sesiano, Jacques

    2009-01-01

    This text should not be viewed as a comprehensive history of algebra before 1600, but as a basic introduction to the types of problems that illustrate the earliest forms of algebra. It would be particularly useful for an instructor who is looking for examples to help enliven a course on elementary algebra with problems drawn from actual historical texts. -Warren Van Egmond about the French edition for MathSciNet This book does not aim to give an exhaustive survey of the history of algebra up to early modern times but merely to present some significant steps in solving equations and, wherever

  19. Solving algebraic computational problems in geodesy and geoinformatics the answer to modern challenges

    CERN Document Server

    Awange, Joseph L

    2004-01-01

    While preparing and teaching 'Introduction to Geodesy I and II' to - dergraduate students at Stuttgart University, we noticed a gap which motivated the writing of the present book: Almost every topic that we taughtrequiredsomeskillsinalgebra,andinparticular,computeral- bra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In preparing this book therefore, we haveattemptedtoputtogetherbasicconceptsofabstractalgebra which underpin the techniques for solving algebraic problems. Algebraic c- putational algorithms useful for solving problems which require exact solutions to nonlinear systems of equations are presented and tested on various problems. Though the present book focuses mainly on the two ?elds,theconceptsand techniquespresented hereinarenonetheless- plicable to other ?elds where algebraic computational problems might be encountered. In Engineering for example, network densi?cation and robo...

  20. Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving

    Science.gov (United States)

    Engerman, Jason; Rusek, Matthew; Clariana, Roy

    2014-01-01

    This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…

  1. Solving the nuclear shell model with an algebraic method

    International Nuclear Information System (INIS)

    Feng, D.H.; Pan, X.W.; Guidry, M.

    1997-01-01

    We illustrate algebraic methods in the nuclear shell model through a concrete example, the fermion dynamical symmetry model (FDSM). We use this model to introduce important concepts such as dynamical symmetry, symmetry breaking, effective symmetry, and diagonalization within a higher-symmetry basis. (orig.)

  2. Is Word-Problem Solving a Form of Text Comprehension?

    Science.gov (United States)

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study’s hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of the 2nd grade, children (n = 206; on average, 7 years, 6 months) were assessed on general language comprehension, working memory, nonlinguistic reasoning, processing speed (a control variable), and foundational skill (arithmetic for WPs; word reading for text comprehension). In spring, they were assessed on WP-specific language comprehension, WPs, and text comprehension. Path analytic mediation analysis indicated that effects of general language comprehension on text comprehension were entirely direct, whereas effects of general language comprehension on WPs were partially mediated by WP-specific language. By contrast, effects of working memory and reasoning operated in parallel ways for both outcomes. PMID:25866461

  3. Solving the Unknown with Algebra: Poster/Teaching Guide for Pre-Algebra Students. Expect the Unexpected with Math[R

    Science.gov (United States)

    Actuarial Foundation, 2013

    2013-01-01

    "Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…

  4. Algorithm for solving polynomial algebraic Riccati equations and its application

    Czech Academy of Sciences Publication Activity Database

    Augusta, Petr; Augustová, Petra

    2012-01-01

    Roč. 1, č. 4 (2012), s. 237-242 ISSN 2223-7038 R&D Projects: GA ČR GPP103/12/P494 Institutional support: RVO:67985556 Keywords : Numerical algorithms * algebraic Riccati equation * spatially distributed systems * optimal control Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=8b4876d6a57d

  5. Solving Langevin equation with the stochastic algebraically correlated noise

    International Nuclear Information System (INIS)

    Ploszajczak, M.; Srokowski, T.

    1996-01-01

    Long time tail in the velocity and force autocorrelation function has been found recently in the molecular dynamics simulations of the peripheral collisions of ions. Simulation of those slowly decaying correlations in the stochastic transport theory requires the development of new methods of generating stochastic force of arbitrarily long correlation times. The Markovian process and the multidimensional Kangaroo process which permit describing various algebraic correlated stochastic processes are proposed. (author)

  6. Cognitive Load in Algebra: Element Interactivity in Solving Equations

    Science.gov (United States)

    Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing

    2015-01-01

    Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…

  7. An algebraic method to solve the Tavis-Cummings problem

    International Nuclear Information System (INIS)

    Vadejko, I.P.; Miroshnichenko, G.P.; Rybin, A.V.; Timonen, J.

    2003-01-01

    We study cooperative behaviour of the system of two-level atoms coupled to a single mode of the electromagnetic field in the resonator. We have developed a general procedure allowing one to rewrite a polynomial deformed SU(2) algebra in terms of another polynomial deformation. Using these methods, we have constructed a perturbation series for the Tavis-Cummings Hamiltonian and diagonalized it in the third order. Based on the zero-order Hamiltonian we calculate the intensity of spontaneous emission of N two-level atoms inside a cavity, which are in thermal equilibrium with the reservoir. The atom-atom correlation determining superradiance in the system is analyzed

  8. Expert Strategies in Solving Algebraic Structure Sense Problems: The Case of Quadratic Equations

    Science.gov (United States)

    Jupri, Al; Sispiyati, R.

    2017-02-01

    Structure sense, an intuitive ability towards symbolic expressions, including skills to interpret, to manipulate, and to perceive symbols in different roles, is considered as a key success in learning algebra. In this article, we report results of three phases of a case study on solving algebraic structure sense problems aiming at testing the appropriateness of algebraic structure sense tasks and at investigating expert strategies dealing with the tasks. First, we developed three tasks on quadratic equations based on the characteristics of structure sense for high school algebra. Next, we validated the tasks to seven experts. In the validation process, we requested these experts to solve each task using two different strategies. Finally, we analyzing expert solution strategies in the light of structure sense characteristics. We found that even if eventual expert strategies are in line with the characteristics of structure sense; some of their initial solution strategies used standard procedures which might pay less attention to algebraic structures. This finding suggests that experts have reconsidered their procedural work and have provided more efficient solution strategies. For further investigation, we consider to test the tasks to high school algebra students and to see whether they produce similar results as experts.

  9. Application of symbolic and algebraic manipulation software in solving applied mechanics problems

    Science.gov (United States)

    Tsai, Wen-Lang; Kikuchi, Noboru

    1993-01-01

    As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.

  10. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training

    Science.gov (United States)

    Boonen, Anton J. H.; de Koning, Björn B.; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME. PMID:26925012

  11. Word problem solving in contemporary math education: A plea for reading comprehension skills training

    Directory of Open Access Journals (Sweden)

    Anton eBoonen

    2016-02-01

    Full Text Available Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME, however, students primarily learn to apply the first of these skills (i.e., representational skills in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more prominent role during word problem solving instruction in RME.

  12. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training.

    Science.gov (United States)

    Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.

  13. Solving differential–algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas

    2006-01-01

    of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....

  14. Solving differential-algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph

    2006-01-01

    of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....

  15. Solving of Clock Problems Using An Algebraic Approach And Developing An Application For Automatic Conversion

    Science.gov (United States)

    Lakshmi Devaraj, Shanmuga

    2018-04-01

    The recent trend in learning Mathematics is through android apps like Byju’s. The clock problems asked in aptitude tests could be learnt using such computer applications. The Clock problems are of four categories namely: 1. What is the angle between the hands of a clock at a particular time 2. When the hands of a clock will meet after a particular time 3. When the hands of a clock will be at right angle after a particular time 4. When the hands of a clock will be in a straight line but not together after a particular time The aim of this article is to convert the clock problems which were solved using the traditional approach to algebraic equations and solve them. Shortcuts are arrived which help in solving the questions in just a few seconds. Any aptitude problem could be converted to an algebraic equation by tracing the way the problem proceeds by applying our analytical skills. Solving of equations would be the easiest part in coming up with the solution. Also a computer application could be developed by using the equations that were arrived at in the analysis part. The computer application aims at solving the four different problems in Clocks. The application helps the learners of aptitude for CAT and other competitive exams to know the approach of the problem. Learning Mathematics with a gaming tool like this would be interesting to the learners. This paper provides a path to creating gaming apps to learn Mathematics.

  16. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 second-grade students, we administered: (1) measures of calculations and…

  17. A Systematic Approach for Solving the Great Circle Track Problems based on Vector Algebra

    Directory of Open Access Journals (Sweden)

    Chen Chih-Li

    2016-04-01

    Full Text Available A systematic approach, based on multiple products of the vector algebra (S-VA, is proposed to derive the spherical triangle formulae for solving the great circle track (GCT problems. Because the mathematical properties of the geometry and algebra are both embedded in the S-VA approach, derivations of the spherical triangle formulae become more understandable and more straightforward as compared with those approaches which use the complex linear combination of a vector basis. In addition, the S-VA approach can handle all given initial conditions for solving the GCT problems simpler, clearer and avoid redundant formulae existing in the conventional approaches. With the technique of transforming the Earth coordinates system of latitudes and longitudes into the Cartesian one and adopting the relative longitude concept, the concise governing equations of the S-VA approach can be easily and directly derived. Owing to the advantage of the S-VA approach, it makes the practical navigator quickly adjust to solve the GCT problems. Based on the S-VA approach, a program namely GCTPro_VA is developed for friendly use of the navigator. Several validation examples are provided to show the S-VA approach is simple and versatile to solve the GCT problems.

  18. Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development

    Science.gov (United States)

    Bae, Young Seh

    2013-01-01

    Mathematical Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development Young Seh Bae This study investigated mathematical word problem solving and the factors associated with the solution paths adopted by two groups of participants (N=40), students with autism spectrum disorders (ASDs) and typically…

  19. Model Drawing Strategy for Fraction Word Problem Solving of Fourth-Grade Students with Learning Disabilities

    Science.gov (United States)

    Sharp, Emily; Shih Dennis, Minyi

    2017-01-01

    This study used a multiple probe across participants design to examine the effects of a model drawing strategy (MDS) intervention package on fraction comparing and ordering word problem-solving performance of three Grade 4 students. MDS is a form of cognitive strategy instruction for teaching word problem solving that includes explicit instruction…

  20. The Motivation of Secondary School Students in Mathematical Word Problem Solving

    Science.gov (United States)

    Gasco, Javier; Villarroel, Jose-Domingo

    2014-01-01

    Introduction: Motivation is an important factor in the learning of mathematics. Within this area of education, word problem solving is central in most mathematics curricula of Secondary School. The objective of this research is to detect the differences in motivation in terms of the strategies used to solve word problems. Method: It analyzed the…

  1. The Impact of Metacognitive Strategies and Self-Regulating Processes of Solving Math Word Problems

    Science.gov (United States)

    Vula, Eda; Avdyli, Rrezarta; Berisha, Valbona; Saqipi, Blerim; Elezi, Shpetim

    2017-01-01

    This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners' achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems.…

  2. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  3. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    Science.gov (United States)

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  4. The impact of metacognitive strategies and self-regulating processes of solving math word problems

    OpenAIRE

    Eda Vula; Rrezarta Avdyli; Valbona Berisha; Blerim Saqipi; Shpetim Elezi

    2017-01-01

    This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners’ achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems. Two hundred sixty-three learners, of three classes of third graders (N=130) and four classes of fifth ...

  5. Teacher-Student Interaction in Joint Word Problem Solving. The Role of Situational and Mathematical Knowledge in Mainstream Classrooms

    Science.gov (United States)

    Rosales, Javier; Vicente, Santiago; Chamoso, Jose M.; Munez, David; Orrantia, Josetxu

    2012-01-01

    Word problem solving involves the construction of two different mental representations, namely, mathematical and situational. Although educational research in word problem solving has documented different kinds of instruction at these levels, less is known about how both representational levels are evoked during word problem solving in day-to-day…

  6. Helping Students with Emotional and Behavioral Disorders Solve Mathematics Word Problems

    Science.gov (United States)

    Alter, Peter

    2012-01-01

    The author presents a strategy for helping students with emotional and behavioral disorders become more proficient at solving math word problems. Math word problems require students to go beyond simple computation in mathematics (e.g., adding, subtracting, multiplying, and dividing) and use higher level reasoning that includes recognizing relevant…

  7. Algebra

    CERN Document Server

    Sepanski, Mark R

    2010-01-01

    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  8. Arithmetic and algebraic problem solving and resource allocation: the distinct impact of fluid and numerical intelligence.

    Science.gov (United States)

    Dix, Annika; van der Meer, Elke

    2015-04-01

    This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation. Copyright © 2014 Society for Psychophysiological Research.

  9. Implicative Algebras

    African Journals Online (AJOL)

    Tadesse

    In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

  10. Syntactic Awareness and Arithmetic Word Problem Solving in Children with and without Learning Disabilities

    Science.gov (United States)

    Peake, Christian; Jiménez, Juan E.; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca

    2015-01-01

    Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in…

  11. Processing of Words Related to the Demands of a Previously Solved Problem

    Directory of Open Access Journals (Sweden)

    Kowalczyk Marek

    2014-06-01

    Full Text Available Earlier research by the author brought about findings suggesting that people in a special way process words related to demands of a problem they previously solved, even when they do not consciously notice this relationship. The findings concerned interference in the task in which the words appeared, a shift in affective responses to them that depended on sex of the participants, and impaired memory of the words. The aim of this study was to replicate these effects and to find out whether they are related to working memory (WM span of the participants, taken as a measure of the individual’s ability to control attention. Participants in the experimental group solved a divergent problem, then performed an ostensibly unrelated speeded affective classification task concerning each of a series of nouns, and then performed an unexpected cued recall task for the nouns. Afterwards, a task measuring WM span was administered. In the control group there was no problem-solving phase. Response latencies for words immediately following problem-related words in the classification task were longer in the experimental than in the control group, but there was no relationship between this effect and WM span. Solving the problem, in interaction with sex of the participants and, independently, with their WM span, influenced affective responses to problem-related words. Recall of these words, however, was not impaired in the experimental group.

  12. Algebraic Thinking in Solving Linier Program at High School Level: Female Student’s Field Independent Cognitive Style

    Science.gov (United States)

    Hardiani, N.; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.

  13. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    Science.gov (United States)

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  14. Text Comprehension and Oral Language as Predictors of Word-Problem Solving: Insights into Word-Problem Solving as a Form of Text Comprehension.

    Science.gov (United States)

    Fuchs, Lynn S; Gilbert, Jennifer K; Fuchs, Douglas; Seethaler, Pamela M; Martin, BrittanyLee N

    2018-01-01

    This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory, and foundational skill (word identification, arithmetic) and (b) year-end WP solving, WP-language processing (understanding WP statements, without calculation demands), and calculations. Multivariate, multilevel path analysis, accounting for classroom and school effects, indicated that TC was a significant and comparably strong predictor of all outcomes. Start-of-year language was a significantly stronger predictor of both year-end WP outcomes than of calculations, whereas start-of-year arithmetic was a significantly stronger predictor of calculations than of either WP measure. Implications are discussed in terms of WP solving as a form of TC and a theoretically coordinated approach, focused on language, for addressing TC and WP-solving instruction.

  15. Text Comprehension and Oral Language as Predictors of Word-Problem Solving: Insights into Word-Problem Solving as a Form of Text Comprehension

    Science.gov (United States)

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Fuchs, Douglas; Seethaler, Pamela M.; Martin, BrittanyLee N.

    2018-01-01

    This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory, and foundational skill (word identification, arithmetic) and (b) year-end WP solving, WP-language processing (understanding WP statements, without calculation demands), and calculations. Multivariate, multilevel path analysis, accounting for classroom and school effects, indicated that TC was a significant and comparably strong predictor of all outcomes. Start-of-year language was a significantly stronger predictor of both year-end WP outcomes than of calculations, whereas start-of-year arithmetic was a significantly stronger predictor of calculations than of either WP measure. Implications are discussed in terms of WP solving as a form of TC and a theoretically coordinated approach, focused on language, for addressing TC and WP-solving instruction. PMID:29643723

  16. Effectiveness of Word Solving: Integrating Morphological Problem-Solving within Comprehension Instruction for Middle School Students

    Science.gov (United States)

    Goodwin, Amanda P.

    2016-01-01

    This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…

  17. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

    Directory of Open Access Journals (Sweden)

    Tsugio Fukuchi

    2014-06-01

    Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

  18. Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story

    Science.gov (United States)

    Gunbas, N.

    2015-01-01

    The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…

  19. The Efficacy of Using Diagrams When Solving Probability Word Problems in College

    Science.gov (United States)

    Beitzel, Brian D.; Staley, Richard K.

    2015-01-01

    Previous experiments have shown a deleterious effect of visual representations on college students' ability to solve total- and joint-probability word problems. The present experiments used conditional-probability problems, known to be more difficult than total- and joint-probability problems. The diagram group was instructed in how to use tree…

  20. Learning to Solve Addition and Subtraction Word Problems in English as an Imported Language

    Science.gov (United States)

    Verzosa, Debbie Bautista; Mulligan, Joanne

    2013-01-01

    This paper reports an intervention phase of a design study aimed to assist second-grade Filipino children in solving addition word problems in English, a language they primarily encounter only in school. With Filipino as the medium of instruction, an out-of-school pedagogical intervention providing linguistic and representational scaffolds was…

  1. Primary School Text Comprehension Predicts Mathematical Word Problem-Solving Skills in Secondary School

    Science.gov (United States)

    Björn, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik

    2016-01-01

    This longitudinal study aimed to investigate the extent to which primary school text comprehension predicts mathematical word problem-solving skills in secondary school among Finnish students. The participants were 224 fourth graders (9-10 years old at the baseline). The children's text-reading fluency, text comprehension and basic calculation…

  2. Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking

    Science.gov (United States)

    Pearn, Catherine; Stephens, Max

    2015-01-01

    Many researchers argue that a deep understanding of fractions is important for a successful transition to algebra. Teaching, especially in the middle years, needs to focus specifically on those areas of fraction knowledge and operations that support subsequent solution processes for algebraic equations. This paper focuses on the results of Year 6…

  3. Factors Related to Problem Solving by College Students in Developmental Algebra.

    Science.gov (United States)

    Schonberger, Ann K.

    A study was conducted to contrast the characteristics of three groups of college students who completed a developmental algebra course at the University of Maine at Orono during 1980-81. On the basis of a two-part final examination, involving a multiple-choice test of algebraic concepts and skills and a free-response test of problem-solving…

  4. A broad look at the literature on math word problem-solving interventions for third graders

    Directory of Open Access Journals (Sweden)

    Sheri Kingsdorf

    2016-12-01

    Full Text Available Though research on effective instruction in math word problem solving is prominent at the middle and secondary levels, much less work has been done in elementary grades. In this article, we review the research on varied problem-solving instructional interventions at the third-grade level for students across ability levels. Third grade was chosen as the focus due to the fact that word problem-solving requirements are first introduced into the curriculum and standardized assessment at this point in time. Drawing on quantitative studies using single subject, quasi-experimental, and randomized controlled trial designs, we examine the instructional components and instructional content identified as effective across the 13 studies that met search criteria. Conclusions focus on current understanding of best practices, limitations of the existing research, and important considerations for future research.

  5. Working memory components as predictors of children's mathematical word problem solving.

    Science.gov (United States)

    Zheng, Xinhua; Swanson, H Lee; Marcoulides, George A

    2011-12-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N=310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM, reading, and math calculation. Structural equation modeling analyses indicated that (a) all three WM components significantly predicted problem-solving accuracy, (b) reading skills and calculation proficiency mediated the predictive effects of the central executive system and the phonological loop on solution accuracy, and (c) academic mediators failed to moderate the relationship between the visual-spatial sketchpad and solution accuracy. The results support the notion that all components of WM play a major role in predicting problem-solving accuracy, but basic skills acquired in specific academic domains (reading and math) can compensate for some of the influence of WM on children's mathematical word problem solving. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Are middle school mathematics teachers able to solve word problems without using variable?

    Science.gov (United States)

    Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tuğba; Soylu, Yasin

    2018-01-01

    Many people consider problem solving as a complex process in which variables such as x, y are used. Problems may not be solved by only using 'variable.' Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is obvious that mathematics teachers should solve problems through concrete processes. In this context, middle school mathematics teachers' skills to solve word problems without using variables were examined in the current study. Through the case study method, this study was conducted with 60 middle school mathematics teachers who have different professional experiences in five provinces in Turkey. A test consisting of five open-ended word problems was used as the data collection tool. The content analysis technique was used to analyze the data. As a result of the analysis, it was seen that the most of the teachers used trial-and-error strategy or area model as the solution strategy. On the other hand, the teachers who solved the problems using variables such as x, a, n or symbols such as Δ, □, ○, * and who also felt into error by considering these solutions as without variable were also seen in the study.

  7. Student’s thinking process in solving word problems in geometry

    Science.gov (United States)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-05-01

    This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.

  8. The impact of metacognitive strategies and self-regulating processes of solving math word problems

    Directory of Open Access Journals (Sweden)

    Eda Vula

    2017-09-01

    Full Text Available This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners’ achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems. Two hundred sixty-three learners, of three classes of third graders (N=130 and four classes of fifth graders (N=133 of the elementary cycle from two urban schools of Kosovo, participated in the study. Almost half of the total number of the third and fifth-graderswere exposed to metacognitive instruction. The rest of the learners were included in control classes in which they performed tasks without having been given any specific guidance, based exclusively on traditional methods and respective textbooks. All the learners were tested in math word problems twice, before the intervention and after it. Research findings have shown that metacognitive strategies and self-regulating processes that learners use to control their actions, to reason, and to reflect, are one of the main resources that influence their success in solving a math word problem. Although the difference between the pre-test and the post-test resultswas statistically significant solely with the fifth-grade experimental classes, yet an improved performance was observed in third-grade experimental learners’ classes compared to control classes. Theoretical and practical implications of the research are discussed in the end of the study.

  9. Students’ Representation in Mathematical Word Problem-Solving: Exploring Students’ Self-efficacy

    Science.gov (United States)

    Sahendra, A.; Budiarto, M. T.; Fuad, Y.

    2018-01-01

    This descriptive qualitative research aims at investigating student represented in mathematical word problem solving based on self-efficacy. The research subjects are two eighth graders at a school in Surabaya with equal mathematical ability consisting of two female students with high and low self-efficacy. The subjects were chosen based on the results of test of mathematical ability, documentation of the result of middle test in even semester of 2016/2017 academic year, and results of questionnaire of mathematics word problem in terms of self-efficacy scale. The selected students were asked to do mathematical word problem solving and be interviewed. The result of this study shows that students with high self-efficacy tend to use multiple representations of sketches and mathematical models, whereas students with low self-efficacy tend to use single representation of sketches or mathematical models only in mathematical word problem-solving. This study emphasizes that teachers should pay attention of student’s representation as a consideration of designing innovative learning in order to increase the self-efficacy of each student to achieve maximum mathematical achievement although it still requires adjustment to the school situation and condition.

  10. Original article Key factors for successful solving of mathematical word problems in fifth-grade learners

    Directory of Open Access Journals (Sweden)

    Marija Kavkler

    2014-05-01

    Full Text Available BACKGROUND Difficulties in solving mathematical word problems (MWP are one of the most common reasons for weak mathematics performance, and poor mathematical literacy has important implications for an individual’s further education, employment opportunities, mental health and quality of life in today’s modern technological society. The purpose of the study was to examine whether Slovenian good and poor MWP solvers differ in arithmetic knowledge and skills, non-verbal reasoning, pupils’ self-evaluations of MWP abilities, teachers’ assessment of their mathematical knowledge and what strategies fifth- grade learners use in solving MWP. PARTICIPANTS AND PROCEDURE The larger sample included 233 pupils from 14 fifth-grade classes (mean age 10 years 3 months and 14 teachers. On the basis of the teachers’ opinions and the results of MWP solving two sub-samples of 24 students were formed, good and poor MWP solvers. Several tests were used to determine MWP solving ability, automation of arithmetic facts and procedures as well as Raven’s SPM. Questionnaires for pupils were used to assess pupils’ estimations of MWP tasks’ difficulty, their own ability to solve them and the strategies used. To assess pupils’ knowledge a questionnaire for teachers was used. RESULTS Slovenian 5 th graders in the larger sample generally used very few empirically proven effective cognitive and metacognitive strategies to solve MWP. Pupils with lower achievement in solving MWP, compared to pupils with higher achievement demonstrated significantly less automated arithmetic facts and procedures of the algorithm, less flexible use of arithmetic skills, as well as qualitatively different MWP solving, which is also related to their lower non-verbal reasoning. Teachers’ assessments and pupils’ self-assessments matched the achieved test results. CONCLUSIONS The results exposed important key factors for successful solving of mathematical word problems with

  11. Using Metacognitive Strategies to Improve Reading Comprehension and Solve a Word Problem

    Directory of Open Access Journals (Sweden)

    Tomo Djudin

    2017-03-01

    Full Text Available This article describes briefly the theories of metacognition and the impacts of metacognitive skills on learning. The differences between cognitive strategy and metacognitive strategy were mentioned. Some strategies to improve students’ meta cognition skills in the classroom explored as well. Based on the theories, two models of metacognitive strategies instruction for deeply understanding in reading textbook and for finding a solution of words physics problem solving were developed. These models will enable students to be independent and strategic learners.

  12. Language, arithmetic word problems, and deaf students: Linguistic strategies used to solve tasks

    Science.gov (United States)

    Zevenbergen, Robyn; Hyde, Merv; Power, Des

    2001-12-01

    There has been limited examination of the intersection between language and arithmetic in the performance of deaf students, although some previous research has shown that deaf and hearing-impaired1 students are delayed in both their language acquisition and arithmetic performance. This paper examines the performance of deaf and hearing-impaired students in South-East Queensland, Australia, in solving arithmetic word problems. It was found that the subjects' solutions of word problems confirmed trends for hearing students, but that their performance was delayed in comparison. The results confirm other studies where deaf and hearing-impaired students are delayed in their language acquisition and this impacts on their capacity to successfully undertake the resolution of word problems.

  13. Quadratic algebras

    CERN Document Server

    Polishchuk, Alexander

    2005-01-01

    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  14. The Use of a Bar Model Drawing to Teach Word Problem Solving to Students with Mathematics Difficulties

    Science.gov (United States)

    Morin, Lisa L.; Watson, Silvana M. R.; Hester, Peggy; Raver, Sharon

    2017-01-01

    For students with mathematics difficulties (MD), math word problem solving is especially challenging. The purpose of this study was to examine the effects of a problem-solving strategy, bar model drawing, on the mathematical problem-solving skills of students with MD. The study extended previous research that suggested that schematic-based…

  15. The effects of stating problems in bilingual students' first and second languages on solving mathematical word problems.

    Science.gov (United States)

    Bernardo, Allan B I; Calleja, Marissa O

    2005-03-01

    Researchers have suggested that among bilinguals, solving word problems in mathematics is influenced by linguistic factors (K. Durkin & B. Shire, 1991; L. Verschaffel, B. Greer, & E. De Corte, 2000). Others have suggested that students exhibit a strong tendency to exclude real-world constraints in solving mathematics word problems (L. Verschaffel, E. De Corte, & S. Lasure, 1994). In the present study, the authors explored the effects of stating word problems in either Filipino or English on how Filipino-English bilingual students solved word problems in which the solution required the application of real-world knowledge. The authors asked bilingual students to solve word problems in either their first or second language. For some of the word problems, real-life constraints prevented straightforward application of mathematical procedures. The authors analyzed the students' solutions to determine whether the language of the word problems affected the tendency to apply real-life constraints in the solution. Results showed that the bilingual students (a) rarely considered real-life constraints in their solutions, (b) were more successful in understanding and solving word problems that were stated in their first language, and (c) were more likely to experience failure in finding a solution to problems stated in their second language. The results are discussed in terms of the relationship between linguistic and mathematical problem-solving processes among bilinguals.

  16. Moving beyond Solving for "x": Teaching Abstract Algebra in a Liberal Arts Mathematics Course

    Science.gov (United States)

    Cook, John Paul

    2015-01-01

    This paper details an inquiry-based approach for teaching the basic notions of rings and fields to liberal arts mathematics students. The task sequence seeks to encourage students to identify and comprehend core concepts of introductory abstract algebra by thinking like mathematicians; that is, by investigating an open-ended mathematical context,…

  17. The effects of using diagramming as a representational technique on high school students' achievement in solving math word problems

    Science.gov (United States)

    Banerjee, Banmali

    Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (pvocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success through careful attention to the creation and labeling of diagrams to represent the mathematics involved in standard word problems. Although Learnertype (ELL, EFLL

  18. Investigation of the Practical Possibility of Solving Problems on Generalized Cellular Automata Associated with Cryptanalysis by Mean Algebraic Methods

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available A number of previous author’s papers proposed methods for constructing various cryptographic algorithms, including block ciphers and cryptographic hash functions, based on generalized cellular automata. This one is aimed at studying a possibility to use the algebraic cryptanalysis methods related to the construction of Gröbner bases for the generalized cellular automata to be applied in cryptography, i.e. this paper studies the possibility for using algebraic cryptanalysis methods to solve the problems of inversion of a generalized cellular automaton and recovering the key of such an automaton.If the cryptographic algorithm is represented as a system of polynomial equations over a certain finite field, then its breach is reduced to solving this system with respect to the key. Although the problem of solving a system of polynomial equations in a finite field is NP-difficult in the general case, the solution of a particular system can have low computational cost.Cryptanalysis based on the construction of a system of polynomial equations that links plain text, cipher-text and key, and its solution by algebraic methods, is usually called algebraic cryptanalysis. Among the main methods to solve systems of polynomial equations are those to construct Gröbner bases.Cryptanalysis of ciphers and hash functions based on generalized cellular automata can be reduced to various problems. We will consider two such problems: the problem of inversion of a generalized cellular automaton, which, in case we know the values of the cells after k iterations, enables us to find the initial values. And the task of recovering the key, which is to find the initial values of the remaining cells, using the cell values after k steps and the initial values of a part of the cells.A computational experiment was carried out to solve the two problems above stated in order to determine the maximum size of a generalized cellular automaton for which the solution of these

  19. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    Science.gov (United States)

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  20. The Algebra Teacher's Activity-a-Day, Grades 6-12 Over 180 Quick Challenges for Developing Math and Problem-Solving Skills

    CERN Document Server

    Thompson, Frances McBroom

    2010-01-01

    Fun-filled math problems that put the emphasis on problem-solving strategies and reasoning. The Algebra Teacher's Activity-a-Day offers activities for test prep, warm-ups, down time, homework, or just for fun. These unique activities are correlated with national math education standards and emphasize problem-solving strategies and logical reasoning skills. In many of the activities, students are encouraged to communicate their different approaches to other students in the class.: Filled with dozens of quick and fun algebra activities that can be used inside and outside the classroom; Designed

  1. Synthesis of models for order-sorted first-order theories using linear algebra and constraint solving

    Directory of Open Access Journals (Sweden)

    Salvador Lucas

    2015-12-01

    Full Text Available Recent developments in termination analysis for declarative programs emphasize the use of appropriate models for the logical theory representing the program at stake as a generic approach to prove termination of declarative programs. In this setting, Order-Sorted First-Order Logic provides a powerful framework to represent declarative programs. It also provides a target logic to obtain models for other logics via transformations. We investigate the automatic generation of numerical models for order-sorted first-order logics and its use in program analysis, in particular in termination analysis of declarative programs. We use convex domains to give domains to the different sorts of an order-sorted signature; we interpret the ranked symbols of sorted signatures by means of appropriately adapted convex matrix interpretations. Such numerical interpretations permit the use of existing algorithms and tools from linear algebra and arithmetic constraint solving to synthesize the models.

  2. Facilitating case reuse during problem solving in algebra-based physics

    Science.gov (United States)

    Mateycik, Frances Ann

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual clinical interviews were conducted and quantitative examination data were collected to assess students' conceptual understanding, knowledge organization, and problem solving performance on a variety of problem tasks. The study began with a short one-time treatment of two independent, research-based strategies chosen to facilitate case reuse. Exploration of students' perceptions and use of the strategies lead investigators to select one of the two strategies to be implemented over a full semester of focus group interviews. The strategy chosen was structure mapping. Structure maps are defined as visual representations of quantities and their associations. They were created by experts to model the appropriate mental organization of knowledge elements for a given physical concept. Students were asked to use these maps as they were comfortable while problem solving. Data obtained from this phase of our study (Phase I) offered no evidence of improved problem solving schema. The 11 contact hour study was barely sufficient time for students to become comfortable using the maps. A set of simpler strategies were selected for their more explicit facilitation of analogical reasoning, and were used together during two more semester long focus group treatments (Phase II and Phase III of this study). These strategies included the use of a step-by-step process aimed at reducing cognitive load associated with mathematical procedure, direct reflection of principles involved in a given set of problems, and the direct comparison of problem pairs designed to be void of surface similarities (similar objects or object orientations) and sharing

  3. Working memory components that predict word problem solving: Is it merely a function of reading, calculation, and fluid intelligence?

    Science.gov (United States)

    Fung, Wenson; Swanson, H Lee

    2017-07-01

    The purpose of this study was to assess whether the differential effects of working memory (WM) components (the central executive, phonological loop, and visual-spatial sketchpad) on math word problem-solving accuracy in children (N = 413, ages 6-10) are completely mediated by reading, calculation, and fluid intelligence. The results indicated that all three WM components predicted word problem solving in the nonmediated model, but only the storage component of WM yielded a significant direct path to word problem-solving accuracy in the fully mediated model. Fluid intelligence was found to moderate the relationship between WM and word problem solving, whereas reading, calculation, and related skills (naming speed, domain-specific knowledge) completely mediated the influence of the executive system on problem-solving accuracy. Our results are consistent with findings suggesting that storage eliminates the predictive contribution of executive WM to various measures Colom, Rebollo, Abad, & Shih (Memory & Cognition, 34: 158-171, 2006). The findings suggest that the storage component of WM, rather than the executive component, has a direct path to higher-order processing in children.

  4. Cognitive Strategies, Working Memory, and Growth in Word Problem Solving in Children With Math Difficulties.

    Science.gov (United States)

    Swanson, H Lee; Lussier, Catherine M; Orosco, Michael J

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on word problem solving accuracy in children with (n = 100) and without (n = 92) math difficulties (MD). Within classrooms, children in Grades 2 and 3 were randomly assigned to one of four treatment conditions: verbal-only strategies (e.g., underlining question sentence), verbal + visual strategies, visual-only strategies (e.g., correctly placing numbers in diagrams), or untreated control. Strategy interventions included 20 sessions in both Year 1 and Year 2. The intent-to-treat as well as the "as-treated" analyses showed that treatment effects were significantly moderated by WMC. In general, treatment outcomes were higher when WMC was set to a high rather than low level. When set to a relatively high WMC level, children with MD performed significantly better under visual-only strategy conditions and children without MD performed better under verbal + visual conditions when compared to control conditions. © Hammill Institute on Disabilities 2013.

  5. Putting Two and Two Together: Middle School Students' Morphological Problem-Solving Strategies for Unknown Words

    Science.gov (United States)

    Pacheco, Mark B.; Goodwin, Amanda P.

    2013-01-01

    Adolescents often use root word and affix knowledge to figure out unknown words. Anglin (1993) found that younger readers favor the Part-to-Whole strategy, and Tyler and Nagy (1989) confirmed the importance of root-word knowledge for middle school students. This study seeks to understand the different strategies middle school readers use so that…

  6. Are Middle School Mathematics Teachers Able to Solve Word Problems without Using Variable?

    Science.gov (United States)

    Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tugba; Soylu, Yasin

    2018-01-01

    Many people consider problem solving as a complex process in which variables such as "x," "y" are used. Problems may not be solved by only using "variable." Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is…

  7. From Rota-Baxter algebras to pre-Lie algebras

    International Nuclear Information System (INIS)

    An Huihui; Ba, Chengming

    2008-01-01

    Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

  8. The relation between early constructive play and mathematical word problem solving is mediated by spatial ability. A path analysis in sixth grade students.

    NARCIS (Netherlands)

    Oostermeijer, M.; Boonen, A.J.H.; Jolles, J.

    2014-01-01

    The scientific literature shows that constructive play activities are positively related to children's spatial ability. Likewise, a close positive relation is found between spatial ability and mathematical word problem-solving performances. The relation between children's constructive play and their

  9. Enhancing Arithmetic and Word-Problem Solving Skills Efficiently by Individualized Computer-Assisted Practice

    Science.gov (United States)

    Schoppek, Wolfgang; Tulis, Maria

    2010-01-01

    The fluency of basic arithmetical operations is a precondition for mathematical problem solving. However, the training of skills plays a minor role in contemporary mathematics instruction. The authors proposed individualization of practice as a means to improve its efficiency, so that the time spent with the training of skills is minimized. As a…

  10. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities.

    Science.gov (United States)

    Swanson, H Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures.

  11. It's Not a Math Lesson--We're Learning to Draw! Teachers' Use of Visual Representations in Instructing Word Problem Solving in Sixth Grade of Elementary School

    Science.gov (United States)

    Boonen, Anton J. H.; Reed, Helen C.; Schoonenboom, Judith; Jolles, Jelle

    2016-01-01

    Non-routine word problem solving is an essential feature of the mathematical development of elementary school students worldwide. Many students experience difficulties in solving these problems due to erroneous problem comprehension. These difficulties could be alleviated by instructing students how to use visual representations that clarify the…

  12. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  13. Gender Differences in Solving Mathematics Problems among Two-Year College Students in a Developmental Algebra Class and Related Factors.

    Science.gov (United States)

    Schonberger, Ann K.

    A study was conducted at the University of Maine at Orono (UMO) to examine gender differences with respect to mathematical problem-solving ability, visual spatial ability, abstract reasoning ability, field independence/dependence, independent learning style, and developmental problem-solving ability (i.e., formal reasoning ability). Subjects…

  14. Solving multi-customer FPR model with quality assurance and discontinuous deliveries using a two-phase algebraic approach.

    Science.gov (United States)

    Chiu, Yuan-Shyi Peter; Chou, Chung-Li; Chang, Huei-Hsin; Chiu, Singa Wang

    2016-01-01

    A multi-customer finite production rate (FPR) model with quality assurance and discontinuous delivery policy was investigated in a recent paper (Chiu et al. in J Appl Res Technol 12(1):5-13, 2014) using differential calculus approach. This study employs mathematical modeling along with a two-phase algebraic method to resolve such a specific multi-customer FPR model. As a result, the optimal replenishment lot size and number of shipments can be derived without using the differential calculus. Such a straightforward method may assist practitioners who with insufficient knowledge of calculus in learning and managing the real multi-customer FPR systems more effectively.

  15. Convergence of the standard RLS method and UDUT factorisation of covariance matrix for solving the algebraic Riccati equation of the DLQR via heuristic approximate dynamic programming

    Science.gov (United States)

    Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.

    2015-08-01

    The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.

  16. Pre-Algebra Lexicon.

    Science.gov (United States)

    Hayden, Dunstan; Cuevas, Gilberto

    The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…

  17. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  18. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  19. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  20. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  1. Extended conformal algebras

    International Nuclear Information System (INIS)

    Goddard, Peter

    1990-01-01

    The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

  2. S-matrix for the theories that admit closure of the algebra with the aid of auxiliary fields. Auxiliary fields in supergravity. [Word identities

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.

    1978-08-19

    A minimal set of auxiliary fields (scalarpseudoscalar and pseudovector) providing the closed algebra in supergravity is constructed. A compact scheme for the generating functional with closed gauge algebra is proposed. The S-matrix and the Ward identities for arbitrary theory that admits the closing of the algebra by introducing auxiliary fields is obtained.

  3. Algebraic partial Boolean algebras

    International Nuclear Information System (INIS)

    Smith, Derek

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  4. A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.

    Science.gov (United States)

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2016-12-01

    Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effects of computer-based graphic organizers to solve one-step word problems for middle school students with mild intellectual disability: A preliminary study.

    Science.gov (United States)

    Sheriff, Kelli A; Boon, Richard T

    2014-08-01

    The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Strategy Choice in Solving Arithmetic Word Problems: Are There Differences between Students with Learning Disabilities, G-V Poor Performance, and Typical Achievement Students?

    Science.gov (United States)

    Gonzalez, Juan E. Jimenez; Espinel, Ana Isabel Garcia

    2002-01-01

    A study was designed to test whether there are differences between Spanish children (ages 7-9) with arithmetic learning disabilities (n=60), garden-variety (G-V) poor performance (n=44), and typical children (n=44) in strategy choice when solving arithmetic word problems. No significant differences were found between children with dyscalculia and…

  7. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  8. Application of Computer Algebra Systems to the Construction of the Collocations and Least Residuals Method for Solving the 3D Navier–Stokes Equations

    Directory of Open Access Journals (Sweden)

    V. P. Shapeev

    2014-01-01

    Full Text Available The method of collocations and least residuals (CLR, which was proposed previously for the numerical solution of two-dimensional Navier–Stokes equations governing the stationary flows of a viscous incompressible fluid, is extended here for the three-dimensional case. The solution is sought in the implemented version of the method in the form of an expansion in the basis solenoidal functions. At all stages of the CLR method construction, a computer algebra system (CAS is applied for the derivation and verification of the formulas of the method and for their translation into arithmetic operators of the Fortran language. For accelerating the convergence of iterations a sufficiently universal algorithm is proposed, which is simple in its implementation and is based on the use of the Krylov’s subspaces. The obtained computational formulas of the CLR method were verified on the exact analytic solution of a test problem. Comparisons with the published numerical results of solving the benchmark problem of the 3D driven cubic cavity flow show that the accuracy of the results obtained by the CLR method corresponds to the known high-accuracy solutions.

  9. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  10. Grassmann algebras

    International Nuclear Information System (INIS)

    Garcia, R.L.

    1983-11-01

    The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt

  11. Vertex algebras and algebraic curves

    CERN Document Server

    Frenkel, Edward

    2004-01-01

    Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

  12. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  13. Ansiedade e aprendizagem: um estudo com díades resolvendo problemas algébricos Anxiety and learning: peer interaction in solving algebraic problems

    Directory of Open Access Journals (Sweden)

    Helga Loos

    2004-12-01

    Full Text Available Partindo de uma perspectiva construtivista e interacionista, pesquisadores têm apontado o conflito sócio-cognitivo como situação que favorece o desenvolvimento cognitivo em estudantes que resolvem problemas conjuntamente. Com base no pressuposto de que elementos afetivos estão interligados aos sociais e cognitivos, o estudo teve por objetivo observar como oito duplas de estudantes de sexta e sétima séries gerenciavam, simultaneamente, a busca de solução para quatro problemas algébricos, a relação interpessoal e a ansiedade gerada pelas dificuldades eventualmente encontradas. As sessões foram videografadas e analisadas qualitativamente. Observou-se que: (1 todas as duplas manifestaram ansiedade relacionada às dificuldades da tarefa; (2 uma boa interação facilitou o gerenciamento dessa ansiedade; (3 uma má interação piorou o desempenho, sendo fonte adicional de ansiedade e desencorajando o desencadeamento de conflitos sócio-cognitivos; (4 uma boa interação e um gerenciamento adequado da ansiedade não puderam garantir um bom desempenho na tarefa quando, a pelo menos um dos participantes, faltavam os requisitos cognitivos mínimos para dominá-la.From a constructionist and interactionist perspective, researchers have shown that the socio-cognitive conflict leads to a cognitive development by students in solving-problem tasks in small groups. Based on the paradigm that affective factors are interconnected to the social and cognitive ones, this study aimed to observe sixteen 6th and 7th grade students in working in pairs, how they manage simultaneously: the solution search to four given algebraic problems, the interpersonal relationship and the anxiety generated by the difficulties eventually found. The sessions were recorded in video and qualitatively analyzed. It was observed that: (1 all groups manifested anxiety related to the difficulties of the task; (2 good interactions facilitated anxiety management; (3 bad interactions

  14. A Review of the Effects of Visual-Spatial Representations and Heuristics on Word Problem Solving in Middle School Mathematics

    Science.gov (United States)

    Kribbs, Elizabeth E.; Rogowsky, Beth A.

    2016-01-01

    Mathematics word-problems continue to be an insurmountable challenge for many middle school students. Educators have used pictorial and schematic illustrations within the classroom to help students visualize these problems. However, the data shows that pictorial representations can be more harmful than helpful in that they only display objects or…

  15. Discourses on Algebra

    Indian Academy of Sciences (India)

    BOOK REVIEW ... To the Indian reader, the word discourse, evokes a respected ... I dug a bit deeper with Google trans- late, and ... published in a journal of mathematics educa- tion. ... The article on Shafarevich's work elsewhere ... goal then, is to develop the basics of algebra in ... ometric Greeks, and works like a magician.

  16. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  17. Boolean algebra

    CERN Document Server

    Goodstein, R L

    2007-01-01

    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  18. Implementing the Standards: Teaching Informal Algebra.

    Science.gov (United States)

    Schultz, James E.

    1991-01-01

    Presents suggestions for developing algebraic concepts beginning in the early grades to develop a gradual building from informal to formal algebraic concepts that progresses over the K-12 curriculum. Includes suggestions for representing relationships, solving equations, employing meaningful applications of algebra, and using of technology. (MDH)

  19. Jordan algebras versus C*- algebras

    International Nuclear Information System (INIS)

    Stormer, E.

    1976-01-01

    The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

  20. Head First Algebra A Learner's Guide to Algebra I

    CERN Document Server

    Pilone, Tracey

    2008-01-01

    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  1. Separable algebras

    CERN Document Server

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  2. Classical versus Computer Algebra Methods in Elementary Geometry

    Science.gov (United States)

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  3. Problems in abstract algebra

    CERN Document Server

    Wadsworth, A R

    2017-01-01

    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  4. Elementary Algebra Connections to Precalculus

    Science.gov (United States)

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  5. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  6. Edix: A Software for Editing Algebraic Expressions.

    OpenAIRE

    Bouhineau , Denis; Nicaud , Jean-François; Pavard , X.

    2001-01-01

    International audience; The paper presents a computer software, called Edix, devoted to the edition of algebraic expressions in their usual 2D representation. At present, many systems display fine algebraic expressions, but the edition of such expressions is weak. Systems like Word and FrameMaker place sub-expressions in too many boxes so that many editing actions are not simple, while usual CAS (computer algebra systems) just use a 1D representation for the edition. Furthermore, Edix allows ...

  7. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  8. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  9. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  10. Words, Words, Words: English, Vocabulary.

    Science.gov (United States)

    Lamb, Barbara

    The Quinmester course on words gives the student the opportunity to increase his proficiency by investigating word origins, word histories, morphology, and phonology. The course includes the following: dictionary skills and familiarity with the "Oxford,""Webster's Third," and "American Heritage" dictionaries; word…

  11. Algebraic entropy for algebraic maps

    International Nuclear Information System (INIS)

    Hone, A N W; Ragnisco, Orlando; Zullo, Federico

    2016-01-01

    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  12. Algebraic Thinking: Conceptions of Elementary School Teachers

    OpenAIRE

    Rodrigues Rézio, Ana Sofia

    2015-01-01

    Students’ algebraic reasoning, at the beginning of their schooling years, includes the development and promotion of functional thinking and the understanding of mathematical properties, which can be stimulated by solving problems. In the latest Portuguese Program for Mathematics Elementary Education, we do not see the topic Algebra in the first year of school although some other topics include objectives of algebraic nature. This fact showed the importance of research about the introduction o...

  13. The bubble algebra: structure of a two-colour Temperley-Lieb Algebra

    International Nuclear Information System (INIS)

    Grimm, Uwe; Martin, Paul P

    2003-01-01

    We define new diagram algebras providing a sequence of multiparameter generalizations of the Temperley-Lieb algebra, suitable for the modelling of dilute lattice systems of two-dimensional statistical mechanics. These algebras give a rigorous foundation to the various 'multi-colour algebras' of Grimm, Pearce and others. We determine the generic representation theory of the simplest of these algebras, and locate the nongeneric cases (at roots of unity of the corresponding parameters). We show by this example how the method used (Martin's general procedure for diagram algebras) may be applied to a wide variety of such algebras occurring in statistical mechanics. We demonstrate how these algebras may be used to solve the Yang-Baxter equations

  14. An Application of Linear Algebra over Lattices

    Directory of Open Access Journals (Sweden)

    M. Hosseinyazdi

    2008-03-01

    Full Text Available In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given

  15. An Application of Linear Algebra over Lattices

    OpenAIRE

    M. Hosseinyazdi

    2008-01-01

    In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given

  16. Algebraic computing

    International Nuclear Information System (INIS)

    MacCallum, M.A.H.

    1990-01-01

    The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)

  17. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  18. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  19. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  20. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  1. Basic algebra

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  2. Solving Differential Equations in R: Package deSolve

    Science.gov (United States)

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  3. Solving Differential Equations in R: Package deSolve

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.

    2010-01-01

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

  4. ALGEBRAIC TOPOLOGY

    Indian Academy of Sciences (India)

    tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).

  5. Algebraic stacks

    Indian Academy of Sciences (India)

    Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.

  6. Computers in nonassociative rings and algebras

    CERN Document Server

    Beck, Robert E

    1977-01-01

    Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer.Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, str

  7. Inequalities, Assessment and Computer Algebra

    Science.gov (United States)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…

  8. Quasi exactly solvable operators and abstract associative algebras

    International Nuclear Information System (INIS)

    Brihaye, Y.; Kosinski, P.

    1998-01-01

    We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra

  9. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  10. Algebraic characterizations of measure algebras

    Czech Academy of Sciences Publication Activity Database

    Jech, Thomas

    2008-01-01

    Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008

  11. Schwarz maps of algebraic linear ordinary differential equations

    Science.gov (United States)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  12. Quantum W-algebras and elliptic algebras

    International Nuclear Information System (INIS)

    Feigin, B.; Kyoto Univ.; Frenkel, E.

    1996-01-01

    We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

  13. On 2-Banach algebras

    International Nuclear Information System (INIS)

    Mohammad, N.; Siddiqui, A.H.

    1987-11-01

    The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs

  14. The algebras of large N matrix mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  15. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  16. Current algebra

    International Nuclear Information System (INIS)

    Jacob, M.

    1967-01-01

    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

  17. Homogeneous Buchberger algorithms and Sullivant's computational commutative algebra challenge

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    2005-01-01

    We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge.......We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge....

  18. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  19. Introduction to computational linear algebra

    CERN Document Server

    Nassif, Nabil; Erhel, Jocelyne

    2015-01-01

    Introduction to Computational Linear Algebra introduces the reader with a background in basic mathematics and computer programming to the fundamentals of dense and sparse matrix computations with illustrating examples. The textbook is a synthesis of conceptual and practical topics in ""Matrix Computations."" The book's learning outcomes are twofold: to understand state-of-the-art computational tools to solve matrix computations problems (BLAS primitives, MATLAB® programming) as well as essential mathematical concepts needed to master the topics of numerical linear algebra. It is suitable for s

  20. Upper bound for the length of commutative algebras

    International Nuclear Information System (INIS)

    Markova, Ol'ga V

    2009-01-01

    By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field one means the least positive integer k such that the words of length not exceeding k span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, an upper bound for the length of a commutative algebra in terms of a function of two invariants of the algebra, the dimension and the maximal degree of the minimal polynomial for the elements of the algebra, is obtained. As a corollary, a formula for the length of the algebra of diagonal matrices over an arbitrary field is obtained. Bibliography: 8 titles.

  1. Solving Linear Differential Equations

    NARCIS (Netherlands)

    Nguyen, K.A.; Put, M. van der

    2010-01-01

    The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend

  2. Generalized symmetry algebras

    International Nuclear Information System (INIS)

    Dragon, N.

    1979-01-01

    The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

  3. Hom-Novikov algebras

    International Nuclear Information System (INIS)

    Yau, Donald

    2011-01-01

    We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.

  4. Algebraic polynomial system solving and applications

    NARCIS (Netherlands)

    Bleylevens, I.W.M.

    2010-01-01

    The problem of computing the solutions of a system of multivariate polynomial equations can be approached by the Stetter-Möller matrix method which casts the problem into a large eigenvalue problem. This Stetter-Möller matrix method forms the starting point for the development of computational

  5. Algebraic functions

    CERN Document Server

    Bliss, Gilbert Ames

    1933-01-01

    This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

  6. Iterated Leavitt Path Algebras

    International Nuclear Information System (INIS)

    Hazrat, R.

    2009-11-01

    Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

  7. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  8. Cognitive Skills Used to Solve Mathematical Word Problems and Numerical Operations: A Study of 6- to 7-Year-Old Children

    Science.gov (United States)

    Bjork, Isabel Maria; Bowyer-Crane, Claudine

    2013-01-01

    This study investigates the relationship between skills that underpin mathematical word problems and those that underpin numerical operations, such as addition, subtraction, division and multiplication. Sixty children aged 6-7 years were tested on measures of mathematical ability, reading accuracy, reading comprehension, verbal intelligence and…

  9. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...

  10. Open algebraic surfaces

    CERN Document Server

    Miyanishi, Masayoshi

    2000-01-01

    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  11. Relation of deformed nonlinear algebras with linear ones

    International Nuclear Information System (INIS)

    Nowicki, A; Tkachuk, V M

    2014-01-01

    The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)

  12. Current algebra for parafields

    International Nuclear Information System (INIS)

    Palev, Ch.D.

    1976-01-01

    Within the framework of the Lagrangean QFT a generalization of canonical commutation and anticommutation relations in terms of three-linear commutation relations, corresponding to the parastatistics, s discussed. A detailed derivation of these three-linear relations for a set of parafermi fields is presented. Then for a Lagrangean, depending of a family of parabose fields and a family of paraferm fields, is shown that the fundamental hypothesis of current algebra is valid. In other words, the currents corresponding to the linear gauge transformations are found to meet the commutation relation: [Jsub(f)sup(0)(x), Jsub(g)sup(0)]sub(x 0 =y 0 ) = -idelta(x vector - y vector)Jsub([f,g])sup(0) (x), where Jsub(f)sup(0) is a time component of the current, corresponding to transformation f. (S.P.)

  13. Linear algebra

    CERN Document Server

    Said-Houari, Belkacem

    2017-01-01

    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  14. Improvement of Word Problem Solving and Basic Mathematics Competencies in Students with Attention Deficit/Hyperactivity Disorder and Mathematical Learning Difficulties

    Science.gov (United States)

    González-Castro, Paloma; Cueli, Marisol; Areces, Débora; Rodríguez, Celestino; Sideridis, Georgios

    2016-01-01

    Problem solving represents a salient deficit in students with mathematical learning difficulties (MLD) primarily caused by difficulties with informal and formal mathematical competencies. This study proposes a computerized intervention tool, the integrated dynamic representation (IDR), for enhancing the early learning of basic mathematical…

  15. Calculation and Word Problem-Solving Skills in Primary Grades--Impact of Cognitive Abilities and Longitudinal Interrelations with Task-persistent Behaviour

    Science.gov (United States)

    Jõgi, Anna-Liisa; Kikas, Eve

    2016-01-01

    Background: Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. Aims: The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and…

  16. Gauss Elimination: Workhorse of Linear Algebra.

    Science.gov (United States)

    1995-08-05

    linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also

  17. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  18. Calculation and word problem-solving skills in primary grades - Impact of cognitive abilities and longitudinal interrelations with task-persistent behaviour.

    Science.gov (United States)

    Jõgi, Anna-Liisa; Kikas, Eve

    2016-06-01

    Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and task-persistent behaviour in Grade 1 and Grade 3, and the effect of non-verbal intelligence, linguistic abilities, and executive functioning on math skills and task persistence. Participants were 864 students (52.3% boys) from 33 different schools in Estonia. Students were tested twice - at the end of Grade1 and at the end of Grade 3. Calculation and problem-solving skills, and teacher-rated task-persistent behaviour were measured at both time points. Non-verbal intelligence, linguistic abilities, and executive functioning were measured in Grade 1. Cross-lagged structural equation modelling indicated that calculation skills depend on previous math skills and linguistic abilities, while problem-solving skills require also non-verbal intelligence, executive functioning, and task persistence. Task-persistent behaviour in Grade 3 was predicted by previous problem-solving skills, linguistic abilities, and executive functioning. Gender and mother's educational level were added as covariates. The findings indicate that math skills and self-regulation are strongly related in primary grades and that solving complex tasks requires executive functioning and task persistence from children. Findings support the idea that instructional practices might benefit from supporting self-regulation in order to gain domain-specific, complex skill achievement. © 2015 The British Psychological Society.

  19. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  20. Numerical linear algebra with applications using Matlab

    CERN Document Server

    Ford, William

    2014-01-01

    Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for

  1. Novikov-Jordan algebras

    OpenAIRE

    Dzhumadil'daev, A. S.

    2002-01-01

    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  2. Introduction to relation algebras relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  3. On alphabetic presentations of Clifford algebras and their possible applications

    NARCIS (Netherlands)

    Toppan, F.; Verbeek, P.W.

    2009-01-01

    In this paper, we address the problem of constructing a class of representations of Clifford algebras that can be named “alphabetic (re)presentations.” The Clifford algebra generators are expressed as m-letter words written with a three-character or a four-character alphabet. We formulate the

  4. Wavelets and quantum algebras

    International Nuclear Information System (INIS)

    Ludu, A.; Greiner, M.

    1995-09-01

    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  5. Banach Synaptic Algebras

    Science.gov (United States)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  6. Some words on Word

    NARCIS (Netherlands)

    Janssen, Maarten; Visser, A.

    In many disciplines, the notion of a word is of central importance. For instance, morphology studies le mot comme tel, pris isol´ement (Mel’ˇcuk, 1993 [74]). In the philosophy of language the word was often considered to be the primary bearer of meaning. Lexicography has as its fundamental role

  7. Quantum cluster algebras and quantum nilpotent algebras

    Science.gov (United States)

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  8. Inequalities, assessment and computer algebra

    Science.gov (United States)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.

  9. Ten-Year-Old Students Solving Linear Equations

    Science.gov (United States)

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  10. Development of a Web Application: Recording Learners' Mouse Trajectories and Retrieving their Study Logs to Identify the Occurrence of Hesitation in Solving Word-Reordering Problems

    Directory of Open Access Journals (Sweden)

    Mitsumasa Zushi

    2014-04-01

    Full Text Available Most computer marking systems evaluate the results of the answers reached by learners without looking into the process by which the answers are produced, which will be insufficient to ascertain learners' understanding level because correct answers may well include lucky hunches, namely accidentally correct but not confident answers. In order to differentiate these lucky answers from confident correct ones, we have developed a Web application that can record mouse trajectories during the performance of tasks. Mathematical analyses of these trajectories have revealed that some parameters for mouse movements can be useful indicators to identify the occurrence of hesitation resulting from lack of knowledge or confidence in solving problems.

  11. Leavitt path algebras

    CERN Document Server

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  12. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  13. The Weyl group of the Cuntz algebra

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    The Weyl group of the Cuntz algebra O_n is investigated. This is (isomorphic to) the group of polynomial automorphisms lambda_u of O_n, namely those induced by unitaries u that can be written as finite sums of words in the canonical generating isometries S_i and their adjoints. A necessary...

  14. Learning and teaching college algebra: challenges and ...

    African Journals Online (AJOL)

    nokello

    else where in this study, for their poor performance in College Algebra. Key words: ... needs to be augmented in education to equip students with skills necessary for achieving .... There are five main deficits which cause mathematical disabilities in many people. ... abstract or conceptual aspects of mathematics with reality.

  15. Combinatorial algebra syntax and semantics

    CERN Document Server

    Sapir, Mark V

    2014-01-01

    Combinatorial Algebra: Syntax and Semantics provides a comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of  more than 20 fundamental results, both classical and modern. This includes Golod–Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass–Guivarc'h theorem about the growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several ``universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata.   With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified...

  16. Solution of systems of linear algebraic equations by the method of summation of divergent series

    International Nuclear Information System (INIS)

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  17. Using CAS to Solve Classical Mathematics Problems

    Science.gov (United States)

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  18. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  19. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  20. Introduction to quantum algebras

    International Nuclear Information System (INIS)

    Kibler, M.R.

    1992-09-01

    The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs

  1. Applications of Lie algebras in the solution of dynamic problems

    International Nuclear Information System (INIS)

    Fellay, G.

    1983-01-01

    The purpose of this paper is to give some insight into the Lie-algebras and their applications. The first part introduces the elementary properties of such algebras, e.g. nilpotency, solvability, etc. The second part shows how to use the demonstrated theory for solving differential equations with time-dependent coefficients. (Auth.)

  2. Langevin equation with the deterministic algebraically correlated noise

    International Nuclear Information System (INIS)

    Ploszajczak, M.; Srokowski, T.

    1995-01-01

    Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author)

  3. The structure of algebraic problem in high schools

    OpenAIRE

    Chio, José Angel; Álvarez, Aida; Estrada, Pablo

    2010-01-01

    The paper is aimed at discussing the importance of pupil’s knowledge of algebraic problem structure. The research started by diagnosing pupil’s actual command of algebraic problem structure. Finally suggestions to teachers of mathematics for facing difficulties in solving problems are given.

  4. The structure of algebraic problem in high schools

    Directory of Open Access Journals (Sweden)

    Chio, José Angel

    2010-01-01

    Full Text Available The paper is aimed at discussing the importance of pupil’s knowledge of algebraic problem structure. The research started by diagnosing pupil’s actual command of algebraic problem structure. Finally suggestions to teachers of mathematics for facing difficulties in solving problems are given.

  5. Computing one of Victor Moll's irresistible integrals with computer algebra

    Directory of Open Access Journals (Sweden)

    Christoph Koutschan

    2008-04-01

    Full Text Available We investigate a certain quartic integral from V. Moll's book “Irresistible Integrals” and demonstrate how it can be solved by computer algebra methods, namely by using non-commutative Gröbner bases. We present recent implementations in the computer algebra systems SINGULAR and MATHEMATICA.

  6. Generalized EMV-Effect Algebras

    Science.gov (United States)

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

    2018-04-01

    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  7. Classification and identification of Lie algebras

    CERN Document Server

    Snobl, Libor

    2014-01-01

    The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain cl...

  8. Families talen en algebra

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1976-01-01

    Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.

  9. Rudiments of algebraic geometry

    CERN Document Server

    Jenner, WE

    2017-01-01

    Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

  10. Applied linear algebra and matrix analysis

    CERN Document Server

    Shores, Thomas S

    2018-01-01

    In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...

  11. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  12. Categories and Commutative Algebra

    CERN Document Server

    Salmon, P

    2011-01-01

    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  13. Algebraic properties of generalized inverses

    CERN Document Server

    Cvetković‐Ilić, Dragana S

    2017-01-01

    This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...

  14. Abstract algebra for physicists

    International Nuclear Information System (INIS)

    Zeman, J.

    1975-06-01

    Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)

  15. Combinatorial commutative algebra

    CERN Document Server

    Miller, Ezra

    2005-01-01

    Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

  16. Basic math and pre-algebra practice problems for dummies

    CERN Document Server

    Zegarelli, Mark

    2013-01-01

    1001 Basic Math & Pre- Algebra Practice Problems For  Dummies   Practice makes perfect-and helps deepen your understanding of basic math and pre-algebra 1001 Basic Math & Pre-Algebra Practice Problems For Dummies, with free access to online practice problems, takes you beyond the instruction and guidance offered in Basic Math & Pre-Algebra For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in your math course. You begin with some basic arithmetic practice, move on to fractions, decimals, and per

  17. Teachers' Understanding of Algebraic Generalization

    Science.gov (United States)

    Hawthorne, Casey Wayne

    Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive

  18. Linearizing W-algebras

    International Nuclear Information System (INIS)

    Krivonos, S.O.; Sorin, A.S.

    1994-06-01

    We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs

  19. Algebraic topological entropy

    International Nuclear Information System (INIS)

    Hudetz, T.

    1989-01-01

    As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)

  20. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  1. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  2. Titration Calculations with Computer Algebra Software

    Science.gov (United States)

    Lachance, Russ; Biaglow, Andrew

    2012-01-01

    This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…

  3. Elementary Business Calculus with Computer Algebra.

    Science.gov (United States)

    Judson, Phoebe T.

    1990-01-01

    Described are various ways that a computer algebra system (MAPLE) was used to facilitate the resequencing of skills and applications within an elementary college-level business calculus course. Experimental results confirmed earlier findings that skills acquisition is not a prerequisite to conceptual understanding or problem-solving ability. (JJK)

  4. Threading homology through algebra selected patterns

    CERN Document Server

    Boffi, Giandomenico

    2006-01-01

    Aimed at graduate students and researchers in mathematics, this book takes homological themes, such as Koszul complexes and their generalizations, and shows how these can be used to clarify certain problems in selected parts of algebra, as well as their success in solving a number of them.

  5. Differential equations from the algebraic standpoint

    CERN Document Server

    Ritt, Joseph Fels

    1932-01-01

    This book can be viewed as a first attempt to systematically develop an algebraic theory of nonlinear differential equations, both ordinary and partial. The main goal of the author was to construct a theory of elimination, which "will reduce the existence problem for a finite or infinite system of algebraic differential equations to the application of the implicit function theorem taken with Cauchy's theorem in the ordinary case and Riquier's in the partial." In his 1934 review of the book, J. M. Thomas called it "concise, readable, original, precise, and stimulating", and his words still rema

  6. On one method of realization of commutation relation algebra

    International Nuclear Information System (INIS)

    Sveshnikov, K.A.

    1983-01-01

    Method for constructing the commulation relation representations based on the purely algebraic construction of joined algebraic representation with specially selected composition law has been suggested9 Purely combinatorial construction realizing commulation relations representation has been obtained proceeding from formal equivalence of operatopr action on vector and adding a simbol to a sequences of symbols. The above method practically has the structure of calculating algorithm, which assigns some rule of ''word'' formation of an initial set of ''letters''. In other words, a computer language with definite relations between words (an analogy between quantum mechanics and computer linguistics has been applied)

  7. Fifth and Sixth Grade Students' Deficiencies on Word Problem Solving and Failures in the Problem Solving Process [Beşinci ve Altıncı Sınıf Öğrencilerinin Sözel Problemleri Çözme Konusundaki Yetersizlikleri ve Problem Çözümlerindeki Hataları

    Directory of Open Access Journals (Sweden)

    Dilek Sezgin Memnun

    2014-08-01

    Full Text Available In this research, it was aimed to determine the deficiencies of secondary school fifth- and sixth-grade students on word problem solving and their failures in this process. For this purpose, four separate word problems were asked to the students and their written answers were taken at the implementation process. The analysis of the data suggests that a significant part of these secondary school students had deficiencies during word problem solving and their failures in this process. Moreover, these deficiencies and failures were reported to be related to the understanding of word problems and the planning for solutions in the solving process. In addition, it was found that the fifth- and sixth- grade students rarely attempted to use drawing in order to solve the word problems. They mostly had deficiencies in deciding which arithmetic operations to be used while approaching the problems and they had failures at their arithmetic operations. [Bu araştırmada, ortaokul beşinci ve altıncı sınıf öğrencilerinin sözel problemleri çözme konusundaki yetersizlikleri ile bu tür problem çözümlerindeki hatalarının belirlenmesi amaçlanmıştır. Bu amaçla, beşinci ve altıncı sınıf öğrencilerine dört farklı sözel problem sorulmuş ve cevapları yazılı olarak alınmıştır. Ulaşılan verilerin analizi, ortaokul öğrencilerinin önemli bir kısmının sözel problemleri çözme konusunda yetersizlikleri ve problem çözümlerinde hataları bulunduğunu göstermiştir. Ayrıca, bu yetersizlik ve hatalarının çoğunlukla problem çözme süreci kapsamında problemin anlaşılması ve çözüm için plan yapma aşamalarına ilişkin olduğu belirlenmiştir. Bununla birlikte, beşinci ve altıncı sınıf öğrencilerinin sözel problem çözümlerinde şekil çizmeye çok az yer verdikleri anlaşılmıştır. Öğrenciler problemlere yaklaşımlarında kullanacakları uygun aritmetik işlemlere karar vermede çoğunlukla yetersiz

  8. Algebraic conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  9. Wn(2) algebras

    International Nuclear Information System (INIS)

    Feigin, B.L.; Semikhatov, A.M.

    2004-01-01

    We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras

  10. Signal Words

    Science.gov (United States)

    SIGNAL WORDS TOPIC FACT SHEET NPIC fact sheets are designed to answer questions that are commonly asked by the ... making decisions about pesticide use. What are Signal Words? Signal words are found on pesticide product labels, ...

  11. Bicovariant quantum algebras and quantum Lie algebras

    International Nuclear Information System (INIS)

    Schupp, P.; Watts, P.; Zumino, B.

    1993-01-01

    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

  12. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  13. Construction Example for Algebra System Using Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    FangAn Deng

    2015-01-01

    Full Text Available The construction example of algebra system is to verify the existence of a complex algebra system, and it is a NP-hard problem. In this paper, to solve this kind of problems, firstly, a mathematical optimization model for construction example of algebra system is established. Secondly, an improved harmony search algorithm based on NGHS algorithm (INGHS is proposed to find as more solutions as possible for the optimization model; in the proposed INGHS algorithm, to achieve the balance between exploration power and exploitation power in the search process, a global best strategy and parameters dynamic adjustment method are present. Finally, nine construction examples of algebra system are used to evaluate the optimization model and performance of INGHS. The experimental results show that the proposed algorithm has strong performance for solving complex construction example problems of algebra system.

  14. Nonflexible Lie-admissible algebras

    International Nuclear Information System (INIS)

    Myung, H.C.

    1978-01-01

    We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type

  15. Recoupling Lie algebra and universal ω-algebra

    International Nuclear Information System (INIS)

    Joyce, William P.

    2004-01-01

    We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

  16. Hurwitz Algebras and the Octonion Algebra

    Science.gov (United States)

    Burdik, Čestmir; Catto, Sultan

    2018-02-01

    We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

  17. Extended Virasoro algebra and algebra of area preserving diffeomorphisms

    International Nuclear Information System (INIS)

    Arakelyan, T.A.

    1990-01-01

    The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs

  18. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  19. Introduction to W-algebras

    International Nuclear Information System (INIS)

    Takao, Masaru

    1989-01-01

    We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)

  20. Representations of quantum bicrossproduct algebras

    International Nuclear Information System (INIS)

    Arratia, Oscar; Olmo, Mariano A del

    2002-01-01

    We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra

  1. On hyper BCC-algebras

    OpenAIRE

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

    2006-01-01

    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  2. On hyper BCC-algebras

    Directory of Open Access Journals (Sweden)

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  3. Simple relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  4. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  5. Twisted classical Poincare algebras

    International Nuclear Information System (INIS)

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

    1993-11-01

    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  6. Applied algebra codes, ciphers and discrete algorithms

    CERN Document Server

    Hardy, Darel W; Walker, Carol L

    2009-01-01

    This book attempts to show the power of algebra in a relatively simple setting.-Mathematical Reviews, 2010… The book supports learning by doing. In each section we can find many examples which clarify the mathematics introduced in the section and each section is followed by a series of exercises of which approximately half are solved in the end of the book. Additional the book comes with a CD-ROM containing an interactive version of the book powered by the computer algebra system Scientific Notebook. … the mathematics in the book are developed as needed and the focus of the book lies clearly o

  7. Algebras of holomorphic functions and control theory

    CERN Document Server

    Sasane, Amol

    2009-01-01

    This accessible, undergraduate-level text illustrates the role of algebras of holomorphic functions in the solution of an important engineering problem: the stabilization of a linear control system. Its concise and self-contained treatment avoids the use of higher mathematics and forms a bridge to more advanced treatments. The treatment consists of two components: the algebraic framework, which serves as the abstract language for posing and solving the problem of stabilization; and the analysis component, which examines properties of specific rings of holomorphic functions. Elementary, self-co

  8. Word Problems: A "Meme" for Our Times.

    Science.gov (United States)

    Leamnson, Robert N.

    1996-01-01

    Discusses a novel approach to word problems that involves linear relationships between variables. Argues that working stepwise through intermediates is the way our minds actually work and therefore this should be used in solving word problems. (JRH)

  9. Teaching materials of algebraic equation

    Science.gov (United States)

    Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi

    2017-12-01

    The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.

  10. Cohomology of Effect Algebras

    Directory of Open Access Journals (Sweden)

    Frank Roumen

    2017-01-01

    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  11. Basic notions of algebra

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    2005-01-01

    This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches

  12. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  13. Quiver W-algebras

    Science.gov (United States)

    Kimura, Taro; Pestun, Vasily

    2018-06-01

    For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  14. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

  15. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    N.W. van den Hijligenberg; R. Martini

    1995-01-01

    textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

  16. International Conference on Semigroups, Algebras and Operator Theory

    CERN Document Server

    Meakin, John; Rajan, A

    2015-01-01

    This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...

  17. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu

    2008-01-01

    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  18. Algebraic monoids, group embeddings, and algebraic combinatorics

    CERN Document Server

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

    2014-01-01

    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  19. Doing words together

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Østergaard, Svend; Raczaszek-Leonardi, Joanna

    In this paper we test the effects of social interactions in embodied problem solving by employing a Scrabble-like setting. 28 pairs of participants had to generate as many words as possible from 2 balanced sets of 7 letters, which they could manipulate, either individually or collectively...

  20. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  1. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  2. Learning Activity Package, Algebra.

    Science.gov (United States)

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  3. Who Takes College Algebra?

    Science.gov (United States)

    Herriott, Scott R.; Dunbar, Steven R.

    2009-01-01

    The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

  4. Analytic real algebras.

    Science.gov (United States)

    Seo, Young Joo; Kim, Young Hee

    2016-01-01

    In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.

  5. Computer algebra applications

    International Nuclear Information System (INIS)

    Calmet, J.

    1982-01-01

    A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)

  6. Algebraic Description of Motion

    Science.gov (United States)

    Davidon, William C.

    1974-01-01

    An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

  7. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  8. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  9. Multicore Performance of Block Algebraic Iterative Reconstruction Methods

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik B.; Hansen, Per Christian

    2014-01-01

    Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely on semiconv......Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely...... on semiconvergence. Block versions of these methods, based on a partitioning of the linear system, are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT. These block methods separate into two classes: those that, in each iteration, access the blocks in a sequential manner...... a fixed relaxation parameter in each method, namely, the one that leads to the fastest semiconvergence. Computational results show that for multicore computers, the sequential approach is preferable....

  10. Cluster algebras bases on vertex operator algebras

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2016-01-01

    Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300

  11. Algebraic K-theory and algebraic topology

    Energy Technology Data Exchange (ETDEWEB)

    Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)

    2003-09-15

    This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.

  12. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  13. An introduction to algebraic geometry and algebraic groups

    CERN Document Server

    Geck, Meinolf

    2003-01-01

    An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

  14. Mathematical Tasks without Words and Word Problems: Perceptions of Reluctant Problem Solvers

    Science.gov (United States)

    Holbert, Sydney Margaret

    2013-01-01

    This qualitative research study used a multiple, holistic case study approach (Yin, 2009) to explore the perceptions of reluctant problem solvers related to mathematical tasks without words and word problems. Participants were given a choice of working a mathematical task without words or a word problem during four problem-solving sessions. Data…

  15. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  16. Problems and proofs in numbers and algebra

    CERN Document Server

    Millman, Richard S; Kahn, Eric Brendan

    2015-01-01

    Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove theorems and solve problem sets in-depth; that is, where multiple steps are needed to prove or solve. This proof technique is developed by examining two specific content themes and their applications in-depth: number theory and algebra. This choice of content themes enables students to develop an understanding of proof technique in the context of topics with which they are already familiar, as well as reinforcing natural and conceptual understandings of mathematical methods and styles. The key to the text is its interesting and intriguing problems, exercises, theorems, and proofs, showing how students will transition from the usual, more routine calculus to abstraction while also learning how to “prove” or “sol...

  17. Auxiliary representations of Lie algebras and the BRST constructions

    International Nuclear Information System (INIS)

    Burdik, C.; Pashnev, A.I.; Tsulaya, M.M.

    2000-01-01

    The method of construction of auxiliary representations for a given Lie algebra is discussed in the framework of the BRST approach. The corresponding BRST charge turns out to be nonhermitian. This problem is solved by the introduction of the additional kernel operator in the definition of the scalar product in the Fock space. The existence of the kernel operator is proved for any Lie algebra

  18. Langevin equation with the deterministic algebraically correlated noise

    Energy Technology Data Exchange (ETDEWEB)

    Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Srokowski, T. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author). 58 refs.

  19. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  20. Quantitative Algebraic Reasoning

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon

    2016-01-01

    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  1. Topology general & algebraic

    CERN Document Server

    Chatterjee, D

    2007-01-01

    About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the

  2. Adaptive algebraic reconstruction technique

    International Nuclear Information System (INIS)

    Lu Wenkai; Yin Fangfang

    2004-01-01

    Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency

  3. Brauer algebras of type B

    NARCIS (Netherlands)

    Cohen, A.M.; Liu, S.

    2011-01-01

    For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular

  4. Profinite algebras and affine boundedness

    OpenAIRE

    Schneider, Friedrich Martin; Zumbrägel, Jens

    2015-01-01

    We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...

  5. Pseudo-Riemannian Novikov algebras

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn

    2008-08-08

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

  6. On the PR-algebras

    International Nuclear Information System (INIS)

    Lebedenko, V.M.

    1978-01-01

    The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language

  7. Algebraic geometry in India

    Indian Academy of Sciences (India)

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  8. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  9. Algebraic Semantics for Narrative

    Science.gov (United States)

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  10. Groebner Finite Path Algebras

    OpenAIRE

    Leamer, Micah J.

    2004-01-01

    Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

  11. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

  12. Gauging the octonion algebra

    International Nuclear Information System (INIS)

    Waldron, A.K.; Joshi, G.C.

    1992-01-01

    By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs

  13. Summing Boolean Algebras

    Institute of Scientific and Technical Information of China (English)

    Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA

    2004-01-01

    In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

  14. Polynomials in algebraic analysis

    OpenAIRE

    Multarzyński, Piotr

    2012-01-01

    The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...

  15. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  16. Currents on Grassmann algebras

    International Nuclear Information System (INIS)

    Coquereaux, R.; Ragoucy, E.

    1993-09-01

    Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs

  17. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  18. The Boolean algebra of Galois algebras

    Directory of Open Access Journals (Sweden)

    Lianyong Xue

    2003-02-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  19. Real division algebras and other algebras motivated by physics

    International Nuclear Information System (INIS)

    Benkart, G.; Osborn, J.M.

    1981-01-01

    In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

  20. Special set linear algebra and special set fuzzy linear algebra

    OpenAIRE

    Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.

    2009-01-01

    The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

  1. Experimental and Theoretical Methods in Algebra, Geometry and Topology

    CERN Document Server

    Veys, Willem; Bridging Algebra, Geometry, and Topology

    2014-01-01

    Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research f...

  2. Hecke algebras with unequal parameters

    CERN Document Server

    Lusztig, G

    2003-01-01

    Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

  3. Axis Problem of Rough 3-Valued Algebras

    Institute of Scientific and Technical Information of China (English)

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  4. On identities of free finitely generated alternative algebras over a field of characteristic 3

    International Nuclear Information System (INIS)

    Pchelintsev, S V

    2001-01-01

    In 1981 Filippov solved in the affirmative Shestakov's problem on the strictness of the inclusions in the chains of varieties generated by free alternative and Mal'cev algebras of finite rank over a field of characteristic distinct from 2 and 3. In the present paper an analogous result is proved for alternative algebras over a field of characteristic 3. The proof is based on the construction of three families of identities that hold on the algebras of the corresponding rank. A disproof of the identities on algebras of larger rank is carried out with the help of a prime commutative alternative algebra. It is also proved that in varieties of alternative algebras of finite basis rank over a field of characteristic 3 every soluble algebra is nilpotent

  5. Word form Encoding in Chinese Word Naming and Word Typing

    Science.gov (United States)

    Chen, Jenn-Yeu; Li, Cheng-Yi

    2011-01-01

    The process of word form encoding was investigated in primed word naming and word typing with Chinese monosyllabic words. The target words shared or did not share the onset consonants with the prime words. The stimulus onset asynchrony (SOA) was 100 ms or 300 ms. Typing required the participants to enter the phonetic letters of the target word,…

  6. Reachability for Finite-State Process Algebras Using Static Analysis

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya; Nielson, Flemming

    2011-01-01

    of the Data Flow Analysis are used in order to “cut off” some of the branches in the reachability analysis that are not important for determining, whether or not a state is reachable. In this way, it is possible for our reachability algorithm to avoid building large parts of the system altogether and still......In this work we present an algorithm for solving the reachability problem in finite systems that are modelled with process algebras. Our method uses Static Analysis, in particular, Data Flow Analysis, of the syntax of a process algebraic system with multi-way synchronisation. The results...... solve the reachability problem in a precise way....

  7. Positive projections of symmetric matrices and Jordan algebras

    DEFF Research Database (Denmark)

    Fuglede, Bent; Jensen, Søren Tolver

    2013-01-01

    An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....

  8. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  9. C*-algebras by example

    CERN Document Server

    Davidson, Kenneth R

    1996-01-01

    The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

  10. Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.

    Science.gov (United States)

    Sialaros, Michalis; Christianidis, Jean

    2016-06-01

    Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.

  11. Math word problems for dummies

    CERN Document Server

    Sterling, Mary Jane

    2008-01-01

    Covers percentages, probability, proportions, and moreGet a grip on all types of word problems by applying them to real lifeAre you mystified by math word problems? This easy-to-understand guide shows you how to conquer these tricky questions with a step-by-step plan for finding the right solution each and every time, no matter the kind or level of problem. From learning math lingo and performing operations to calculating formulas and writing equations, you''ll get all the skills you need to succeed!Discover how to: * Translate word problems into plain English* Brush up on basic math skills* Plug in the right operation or formula* Tackle algebraic and geometric problems* Check your answers to see if they work

  12. Algebraic K-theory

    CERN Document Server

    Srinivas, V

    1996-01-01

    Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...

  13. Regularity of C*-algebras and central sequence algebras

    DEFF Research Database (Denmark)

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  14. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  15. Quantum cluster algebra structures on quantum nilpotent algebras

    CERN Document Server

    Goodearl, K R

    2017-01-01

    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  16. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    Science.gov (United States)

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  17. Searching dependency between algebraic equations: An algorithm applied to automated reasoning

    International Nuclear Information System (INIS)

    Yang Lu; Zhang Jingzhong

    1990-01-01

    An efficient computer algorithm is given to decide how many branches of the solution to a system of algebraic also solve another equation. As one of the applications, this can be used in practice to verify a conjecture with hypotheses and conclusion expressed by algebraic equations, despite the variety of reducible or irreducible. (author). 10 refs

  18. Identities and derivations for Jacobian algebras

    International Nuclear Information System (INIS)

    Dzhumadil'daev, A.S.

    2001-09-01

    Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)

  19. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  20. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  1. Algebraic design theory

    CERN Document Server

    Launey, Warwick De

    2011-01-01

    Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...

  2. Complex Algebraic Varieties

    CERN Document Server

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

    1992-01-01

    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  3. Higher regulators, algebraic

    CERN Document Server

    Bloch, Spencer J

    2000-01-01

    This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.

  4. Applied linear algebra

    CERN Document Server

    Olver, Peter J

    2018-01-01

    This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...

  5. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  6. Algebraic topology a primer

    CERN Document Server

    Deo, Satya

    2018-01-01

    This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...

  7. The relation between quantum W algebras and Lie algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1994-01-01

    By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

  8. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  9. Converting nested algebra expressions into flat algebra expressions

    NARCIS (Netherlands)

    Paredaens, J.; Van Gucht, D.

    1992-01-01

    Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its

  10. Stealthy Hardware Trojan Based Algebraic Fault Analysis of HIGHT Block Cipher

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2017-01-01

    Full Text Available HIGHT is a lightweight block cipher which has been adopted as a standard block cipher. In this paper, we present a bit-level algebraic fault analysis (AFA of HIGHT, where the faults are perturbed by a stealthy HT. The fault model in our attack assumes that the adversary is able to insert a HT that flips a specific bit of a certain intermediate word of the cipher once the HT is activated. The HT is realized by merely 4 registers and with an extremely low activation rate of about 0.000025. We show that the optimal location for inserting the designed HT can be efficiently determined by AFA in advance. Finally, a method is proposed to represent the cipher and the injected faults with a merged set of algebraic equations and the master key can be recovered by solving the merged equation system with an SAT solver. Our attack, which fully recovers the secret master key of the cipher in 12572.26 seconds, requires three times of activation on the designed HT. To the best of our knowledge, this is the first Trojan attack on HIGHT.

  11. On Associative Conformal Algebras of Linear Growth

    OpenAIRE

    Retakh, Alexander

    2000-01-01

    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  12. Word classes

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2007-01-01

    in grammatical descriptions of some 50 languages, which together constitute a representative sample of the world’s languages (Hengeveld et al. 2004: 529). It appears that there are both quantitative and qualitative differences between word class systems of individual languages. Whereas some languages employ...... a parts-of-speech system that includes the categories Verb, Noun, Adjective and Adverb, other languages may use only a subset of these four lexical categories. Furthermore, quite a few languages have a major word class whose members cannot be classified in terms of the categories Verb – Noun – Adjective...... – Adverb, because they have properties that are strongly associated with at least two of these four traditional word classes (e.g. Adjective and Adverb). Finally, this article discusses some of the ways in which word class distinctions interact with other grammatical domains, such as syntax and morphology....

  13. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  14. Algebra for Gifted Third Graders.

    Science.gov (United States)

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  15. Gradings on simple Lie algebras

    CERN Document Server

    Elduque, Alberto

    2013-01-01

    Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

  16. Tensor spaces and exterior algebra

    CERN Document Server

    Yokonuma, Takeo

    1992-01-01

    This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

  17. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  18. Projector bases and algebraic spinors

    International Nuclear Information System (INIS)

    Bergdolt, G.

    1988-01-01

    In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors

  19. Contractions of quantum algebraic structures

    International Nuclear Information System (INIS)

    Doikou, A.; Sfetsos, K.

    2010-01-01

    A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Polynomial Heisenberg algebras

    International Nuclear Information System (INIS)

    Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M

    2004-01-01

    Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively

  1. Classical algebraic chromodynamics

    International Nuclear Information System (INIS)

    Adler, S.L.

    1978-01-01

    I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance

  2. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  3. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  4. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  5. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  6. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  7. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  8. Algebraic curves and cryptography

    CERN Document Server

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  9. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  10. Helmholtz algebraic solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2010-01-01

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  11. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  12. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  13. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  14. Linear Algebra Thoroughly Explained

    CERN Document Server

    Vujičić, Milan

    2008-01-01

    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  15. Development of abstract mathematical reasoning: the case of algebra.

    Science.gov (United States)

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.

  16. Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras

    International Nuclear Information System (INIS)

    Gebert, R.W.

    1993-09-01

    The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)

  17. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  18. Difference sets connecting algebra, combinatorics, and geometry

    CERN Document Server

    Moore, Emily H

    2013-01-01

    Difference sets belong both to group theory and to combinatorics. Studying them requires tools from geometry, number theory, and representation theory. This book lays a foundation for these topics, including a primer on representations and characters of finite groups. It makes the research literature on difference sets accessible to students who have studied linear algebra and abstract algebra, and it prepares them to do their own research. This text is suitable for an undergraduate capstone course, since it illuminates the many links among topics that the students have already studied. To this end, almost every chapter ends with a coda highlighting the main ideas and emphasizing mathematical connections. This book can also be used for self-study by anyone interested in these connections and concrete examples. An abundance of exercises, varying from straightforward to challenging, invites the reader to solve puzzles, construct proofs, and investigate problems--by hand or on a computer. Hints and solutions are...

  19. Computer Algebra Recipes for Mathematical Physics

    CERN Document Server

    Enns, Richard H

    2005-01-01

    Over two hundred novel and innovative computer algebra worksheets or "recipes" will enable readers in engineering, physics, and mathematics to easily and rapidly solve and explore most problems they encounter in their mathematical physics studies. While the aim of this text is to illustrate applications, a brief synopsis of the fundamentals for each topic is presented, the topics being organized to correlate with those found in traditional mathematical physics texts. The recipes are presented in the form of stories and anecdotes, a pedagogical approach that makes a mathematically challenging subject easier and more fun to learn. Key features: * Uses the MAPLE computer algebra system to allow the reader to easily and quickly change the mathematical models and the parameters and then generate new answers * No prior knowledge of MAPLE is assumed; the relevant MAPLE commands are introduced on a need-to-know basis * All MAPLE commands are indexed for easy reference * A classroom-tested story/anecdote format is use...

  20. On the algebraic structure of the holomorphic anomaly for c-circumflex 3 topological strings

    International Nuclear Information System (INIS)

    Lopez, E.

    1995-01-01

    An introduction to topological field theories and topological strings have been made. t t-bar-equations as consistency conditions of a contact term algebra are solved. The holomorphic anomaly for correlators is derived. 16 refs

  1. Spin-4 extended conformal algebras

    International Nuclear Information System (INIS)

    Kakas, A.C.

    1988-01-01

    We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)

  2. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  3. On Weak-BCC-Algebras

    Science.gov (United States)

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  4. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  5. Process Algebra and Markov Chains

    NARCIS (Netherlands)

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  6. Process algebra and Markov chains

    NARCIS (Netherlands)

    Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.

    2001-01-01

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  7. Algebraic Methods to Design Signals

    Science.gov (United States)

    2015-08-27

    to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory

  8. Characterizing the Nature of Students' Feature Noticing-and-Using with Respect to Mathematical Symbols across Different Levels of Algebra Exposure

    Science.gov (United States)

    Sullivan, Patrick

    2013-01-01

    The purpose of this study is to examine the nature of what students notice about symbols and use as they solve unfamiliar algebra problems based on familiar algebra concepts and involving symbolic inscriptions. The researcher conducted a study of students at three levels of algebra exposure: (a) students enrolled in a high school pre-calculus…

  9. Grade 11 Students' Interconnected Use of Conceptual Knowledge, Procedural Skills, and Strategic Competence in Algebra: A Mixed Method Study of Error Analysis

    Science.gov (United States)

    Egodawatte, Gunawardena; Stoilescu, Dorian

    2015-01-01

    The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…

  10. Discovering Steiner Triple Systems through Problem Solving

    Science.gov (United States)

    Sriraman, Bharath

    2004-01-01

    An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.

  11. Probabilistic thread algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2015-01-01

    We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution

  12. Thinking Visually about Algebra

    Science.gov (United States)

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  13. The algebraic collective model

    International Nuclear Information System (INIS)

    Rowe, D.J.; Turner, P.S.

    2005-01-01

    A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei

  14. College Algebra I.

    Science.gov (United States)

    Benjamin, Carl; And Others

    Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…

  15. Algebraic K-theory

    CERN Document Server

    Swan, R G

    1968-01-01

    From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."

  16. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  17. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  18. Diagrams benefit symbolic problem-solving.

    Science.gov (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  19. Operator algebras and topology

    International Nuclear Information System (INIS)

    Schick, T.

    2002-01-01

    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  20. Advanced modern algebra part 2

    CERN Document Server

    Rotman, Joseph J

    2017-01-01

    This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.

  1. q-deformed Poincare algebra

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1992-01-01

    The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)

  2. Embodied, Symbolic and Formal Thinking in Linear Algebra

    Science.gov (United States)

    Stewart, Sepideh; Thomas, Michael O. J.

    2007-01-01

    Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…

  3. Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses

    Science.gov (United States)

    Martínez-Sierra, Gustavo; García-González, María del Socorro

    2016-01-01

    Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…

  4. Algebra 2u, Mathematics (Experimental): 5216.26.

    Science.gov (United States)

    Crawford, Glenda

    The sixth in a series of six guidebooks on minimum course content for second-year algebra, this booklet presents an introduction to sequences, series, permutation, combinations, and probability. Included are arithmetic and geometric progressions and problems solved by counting and factorials. Overall course goals are specified, a course outline is…

  5. Algebraic Functions, Computer Programming, and the Challenge of Transfer

    Science.gov (United States)

    Schanzer, Emmanuel Tanenbaum

    2015-01-01

    Students' struggles with algebra are well documented. Prior to the introduction of functions, mathematics is typically focused on applying a set of arithmetic operations to compute an answer. The introduction of functions, however, marks the point at which mathematics begins to focus on building up abstractions as a way to solve complex problems.…

  6. Versal deformation of the Lie algebra $L_2$

    NARCIS (Netherlands)

    Fialowski, A.; Post, Gerhard F.

    1999-01-01

    We investigate deformations of the infinite dimensional vector field Lie algebra spanned by the fields $e_i = z^{i+1}d/dz$, where $i \\ge 2 $. The goal is to describe the base of a ``versal'' deformation; such a versal deformation induces all the other nonequivalent deformations and solves the

  7. Versal deformation of the Lie algebra L_2

    NARCIS (Netherlands)

    Post, Gerhard F.; Fialowski, Alice

    2001-01-01

    We investigate deformations of the infinite-dimensional vector-field Lie algebra spanned by the fields ei = zi + 1d/dz, where i ≥ 2. The goal is to describe the base of a “versal” deformation; such a versal deformation induces all the other nonequivalent deformations and solves the deformation

  8. Algebraic Bethe ansatz for 19-vertex models with reflection conditions

    International Nuclear Information System (INIS)

    Utiel, Wagner

    2003-01-01

    In this work we solve the 19-vertex models with the use of algebraic Bethe ansatz for diagonal reflection matrices (Sklyanin K-matrices). The eigenvectors, eigenvalues and Bethe equations are given in a general form. Quantum spin chains of spin one derived from the 19-vertex models were also discussed

  9. Finding the radical of an algebra of linear transformations

    NARCIS (Netherlands)

    Cohen, A.M.; Ivanyos, G.; Wales, D.B.

    1997-01-01

    We present a method that reduces the problem of computing the radical of a matrix algebra over an arbitrary field to solving systems of semilinear equations. The complexity of the algorithm, measured in the number of arithmetic operations and the total number of the coefficients passed to an oracle

  10. Geometric and Algebraic Approaches in the Concept of Complex Numbers

    Science.gov (United States)

    Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.

    2006-01-01

    This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…

  11. Analysis of junior high school students' attempt to solve a linear inequality problem

    Science.gov (United States)

    Taqiyuddin, Muhammad; Sumiaty, Encum; Jupri, Al

    2017-08-01

    Linear inequality is one of fundamental subjects within junior high school mathematics curricula. Several studies have been conducted to asses students' perform on linear inequality. However, it can hardly be found that linear inequality problems are in the form of "ax + b condition leads to the research questions concerning students' attempt on solving a simple linear inequality problem in this form. In order to do so, the written test was administered to 58 students from two schools in Bandung followed by interviews. The other sources of the data are from teachers' interview and mathematics books used by students. After that, the constant comparative method was used to analyse the data. The result shows that the majority approached the question by doing algebraic operations. Interestingly, most of them did it incorrectly. In contrast, algebraic operations were correctly used by some of them. Moreover, the others performed expected-numbers solution, rewriting the question, translating the inequality into words, and blank answer. Furthermore, we found that there is no one who was conscious of the existence of all-numbers solution. It was found that this condition is reasonably due to how little the learning components concern about why a procedure of solving a linear inequality works and possibilities of linear inequality solution.

  12. Periodic words connected with the Fibonacci words

    Directory of Open Access Journals (Sweden)

    G. M. Barabash

    2016-06-01

    Full Text Available In this paper we introduce two families of periodic words (FLP-words of type 1 and FLP-words of type 2 that are connected with the Fibonacci words and investigated their properties.

  13. Learning words

    DEFF Research Database (Denmark)

    Jaswal, Vikram K.; Hansen, Mikkel

    2006-01-01

    Children tend to infer that when a speaker uses a new label, the label refers to an unlabeled object rather than one they already know the label for. Does this inference reflect a default assumption that words are mutually exclusive? Or does it instead reflect the result of a pragmatic reasoning...... process about what the speaker intended? In two studies, we distinguish between these possibilities. Preschoolers watched as a speaker pointed toward (Study 1) or looked at (Study 2) a familiar object while requesting the referent for a new word (e.g. 'Can you give me the blicket?'). In both studies......, despite the speaker's unambiguous behavioral cue indicating an intent to refer to a familiar object, children inferred that the novel label referred to an unfamiliar object. These results suggest that children expect words to be mutually exclusive even when a speaker provides some kinds of pragmatic...

  14. Hopf algebras in noncommutative geometry

    International Nuclear Information System (INIS)

    Varilly, Joseph C.

    2001-10-01

    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  15. On Dunkl angular momenta algebra

    Energy Technology Data Exchange (ETDEWEB)

    Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2015-11-17

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  16. Continuum analogues of contragredient Lie algebras

    International Nuclear Information System (INIS)

    Saveliev, M.V.; Vershik, A.M.

    1989-03-01

    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  17. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    International Nuclear Information System (INIS)

    Marquette, Ian

    2013-01-01

    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently

  18. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  19. Algebra de Clifford

    Directory of Open Access Journals (Sweden)

    María Carolina Spinel G.

    1990-01-01

    Con esta base, en posteriores artículos de divulgación, presentaremos algunas aplicaciones que muestren la ventaja de su empleo en la descripción de sistema físico. Dado el amplio conocimiento que se tiene de los espacios vectoriales. La estructura y propiedades del algebra de Clifford suele presentarse con base en los elementos de un espacio vectorial. En esta dirección, en la sección 2 se define la notación y se describe la estructura de un algebra de Clifford Gn, introduciendo con detalle las operaciones básicas entre los elementos del álgebra. La sección 3 se dedica a describir una base tensorial de Gn.

  20. Linear {GLP}-algebras and their elementary theories

    Science.gov (United States)

    Pakhomov, F. N.

    2016-12-01

    The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.

  1. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  2. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  3. The Algebra Artist

    Science.gov (United States)

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  4. Algebras of Information States

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Vít

    2017-01-01

    Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016

  5. Clifford Algebras and Spinors

    International Nuclear Information System (INIS)

    Todorov, Ivan

    2010-12-01

    Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)

  6. Algebra & trigonometry II essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  7. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  8. An approach for solving linear fractional programming problems ...

    African Journals Online (AJOL)

    The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...

  9. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  10. Priority in Process Algebras

    Science.gov (United States)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  11. Algebraic Side-Channel Attack on Twofish

    Directory of Open Access Journals (Sweden)

    Chujiao Ma

    2017-05-01

    Full Text Available While algebraic side-channel attack (ASCA has been successful in breaking simple cryptographic algorithms, it has never been done on larger or more complex algorithms such as Twofish. Compared to other algorithms that ASCA has been used on, Twofish is more difficult to attack due to the key-dependent S-boxes as well as the complex key scheduling. In this paper, we propose the first algebraic side-channel attack on Twofish, and examine the importance of side-channel information in getting past the key-dependent S-boxes and the complex key scheduling. The cryptographic algorithm and side-channel information are both expressed as boolean equations and a SAT solver is used to recover the key. While algebraic attack by itself is not sufficient to break the algorithm, with the help of side-channel information such as Hamming weights, we are able to correctly solve for 96 bits of the 128 bits key in under 2 hours with known plaintext/ciphertext.

  12. Analytical-Algebraic Approach to Solving Chaotic System

    Czech Academy of Sciences Publication Activity Database

    Beran, Zdeněk; Čelikovský, Sergej

    2016-01-01

    Roč. 26, č. 3 (2016), č. článku 1650051. ISSN 0218-1274 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Laplace transform * Laplace-Adomian decomposition * Adomian polynomials * nonlinear systems * chaos Subject RIV: BC - Control Systems Theory Impact factor: 1.329, year: 2016 http://library.utia.cas.cz/separaty/2016/TR/beran-0458430.pdf

  13. Contextualizing Arithmetic into Developmental Elementary Algebra Using Guided Problem Solving

    Science.gov (United States)

    Guy, G. Michael; Cornick, Jonathan; Puri, Karan

    2016-01-01

    Many colleges are finding that the use of acceleration in developmental education is a promising direction for improved student progress toward a degree or certificate. Acceleration has been defined in the literature as the reorganization of curricula and instruction in ways that facilitate the completion of educational requirements in an…

  14. The impact of fraction magnitude knowledge on algebra performance and learning.

    Science.gov (United States)

    Booth, Julie L; Newton, Kristie J; Twiss-Garrity, Laura K

    2014-02-01

    Knowledge of fractions is thought to be crucial for success with algebra, but empirical evidence supporting this conjecture is just beginning to emerge. In the current study, Algebra 1 students completed magnitude estimation tasks on three scales (0-1 [fractions], 0-1,000,000, and 0-62,571) just before beginning their unit on equation solving. Results indicated that fraction magnitude knowledge, and not whole number knowledge, was especially related to students' pretest knowledge of equation solving and encoding of equation features. Pretest fraction knowledge was also predictive of students' improvement in equation solving and equation encoding skills. Students' placement of unit fractions (e.g., those with a numerator of 1) was not especially useful for predicting algebra performance and learning in this population. Placement of non-unit fractions was more predictive, suggesting that proportional reasoning skills might be an important link between fraction knowledge and learning algebra. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Does "Word Coach" Coach Words?

    Science.gov (United States)

    Cobb, Tom; Horst, Marlise

    2011-01-01

    This study reports on the design and testing of an integrated suite of vocabulary training games for Nintendo[TM] collectively designated "My Word Coach" (Ubisoft, 2008). The games' design is based on a wide range of learning research, from classic studies on recycling patterns to frequency studies of modern corpora. Its general usage…

  16. Quantum algebras as quantizations of dual Poisson–Lie groups

    International Nuclear Information System (INIS)

    Ballesteros, Ángel; Musso, Fabio

    2013-01-01

    A systematic computational approach for the explicit construction of any quantum Hopf algebra (U z (g), Δ z ) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δ z is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λ g ) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by the dual map δ*. From this perspective, the coproduct for U z (g) is just the pull-back of the group law for G*, and the Poisson analogues of the quantum commutation rules for U z (g) are given by the unique Poisson–Lie structure Λ g on G* whose linearization is the Poisson analogue of the initial Lie algebra g. This approach is shown to be a very useful technical tool in order to solve the Lie bialgebra quantization problem explicitly since, once a Lie bialgebra (g, δ) is given, the full dual Poisson–Lie group (G*, Λ) can be obtained either by applying standard Poisson–Lie group techniques or by implementing the algorithm presented here with the aid of symbolic manipulation programs. As a consequence, the quantization of (G*, Λ) will give rise to the full U z (g) quantum algebra, provided that ordering problems are appropriately fixed through the choice of certain local coordinates on G* whose coproduct fulfils a precise ‘quantum symmetry’ property. The applicability of this approach is explicitly demonstrated by reviewing the construction of several instances of quantum deformations of physically relevant Lie algebras such as sl(2,R), the (2+1) anti-de Sitter algebra so(2, 2) and the Poincaré algebra in (3+1) dimensions. (paper)

  17. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  18. Fusion rules of chiral algebras

    International Nuclear Information System (INIS)

    Gaberdiel, M.

    1994-01-01

    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  19. Einstein algebras and general relativity

    International Nuclear Information System (INIS)

    Heller, M.

    1992-01-01

    A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

  20. Word wheels

    CERN Document Server

    Clark, Kathryn

    2013-01-01

    Targeting the specific problems learners have with language structure, these multi-sensory exercises appeal to all age groups including adults. Exercises use sight, sound and touch and are also suitable for English as an Additional Lanaguage and Basic Skills students.Word Wheels includes off-the-shelf resources including lesson plans and photocopiable worksheets, an interactive CD with practice exercises, and support material for the busy teacher or non-specialist staff, as well as homework activities.

  1. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  2. Relativistic algebraic spinors and quantum motions in phase space

    International Nuclear Information System (INIS)

    Holland, P.R.

    1986-01-01

    Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C 4 , a Jordan-Wigner algebra G 4 , and Wigner transformations. To do this we solve the problem of the conditions under which elements in C 4 generate minimal ideals, and extend this to G 4 . This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations

  3. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees

    2003-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential

  4. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  5. Chiral algebras of class S

    CERN Document Server

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2015-01-01

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  6. Applications of Computer Algebra Conference

    CERN Document Server

    Martínez-Moro, Edgar

    2017-01-01

    The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.

  7. Chiral algebras for trinion theories

    International Nuclear Information System (INIS)

    Lemos, Madalena; Peelaers, Wolfger

    2015-01-01

    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  8. Computational aspects of algebraic curves

    CERN Document Server

    Shaska, Tanush

    2005-01-01

    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  9. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

    International Nuclear Information System (INIS)

    Ayupov, Shavkat; Kudaybergenov, Karimbergen

    2016-01-01

    The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)

  10. A Quantitative Reasoning Approach to Algebra Using Inquiry-Based Learning

    Directory of Open Access Journals (Sweden)

    Victor I. Piercey

    2017-07-01

    Full Text Available In this paper, I share a hybrid quantitative reasoning/algebra two-course sequence that challenges the common assumption that quantitative literacy and reasoning are less rigorous mathematics alternatives to algebra and illustrates that a quantitative reasoning framework can be used to teach traditional algebra. The presentation is made in two parts. In the first part, which is somewhat philosophical and theoretical, I explain my personal perspective of what I mean by “algebra” and “doing algebra.” I contend that algebra is a form of communication whose value is precision, which allows us to perform algebraic manipulations in the form of simplification and solving moves. A quantitative reasoning approach to traditional algebraic manipulations rests on intentional and purposeful use of simplification and solving moves within contextual situations. In part 2, I describe a 6-week instructional module intended for undergraduate business students that was delivered to students who had placed into beginning algebra. The perspective described in part 1 heavily informed the design of this module. The course materials, which involve the use of Excel in multiple authentic contexts, are built around the use of inquiry-based learning. Upon completion of this module, the percentage of students who successfully complete model problems in an assessment is in the same range as surveyed students in precalculus and calculus, approximately two “grade levels” ahead of their placement.

  11. Monte Carlo method for solving a parabolic problem

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.

  12. Dynamical entropy of C* algebras and Von Neumann algebras

    International Nuclear Information System (INIS)

    Connes, A.; Narnhofer, H.; Thirring, W.

    1986-01-01

    The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)

  13. Abstract Algebra to Secondary School Algebra: Building Bridges

    Science.gov (United States)

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  14. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    NARCIS (Netherlands)

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  15. Topological أ-algebras with Cأ-enveloping algebras II

    Indian Academy of Sciences (India)

    necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.

  16. A modal characterization of Peirce algebras

    NARCIS (Netherlands)

    M. de Rijke (Maarten)

    1995-01-01

    textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.

  17. Quantum deformation of the affine transformation algebra

    International Nuclear Information System (INIS)

    Aizawa, N.; Sato, Haru-Tada

    1994-01-01

    We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)

  18. Algebra in Cuneiform

    DEFF Research Database (Denmark)

    Høyrup, Jens

    with basic Assyriology but otherwise philological details are avoided. All of these texts are from the second half of the Old Babylonian period, that is, 1800–1600 BCE. It is indeed during this period that the “algebraic” discipline, and Babylonian mathematics in general, culminates. Even though a few texts...... particular culture. Finally, it describes the origin of the discipline and its impact in later mathematics, not least Euclid’s geometry and genuine algebra as created in medieval Islam and taken over in European medieval and Renaissance mathematics....

  19. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...

  20. Elements of abstract algebra

    CERN Document Server

    Clark, Allan

    1984-01-01

    This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)

  1. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  2. Matlab linear algebra

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  3. Handbook of algebra

    CERN Document Server

    Hazewinkel, M

    2008-01-01

    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  4. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    Science.gov (United States)

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  5. Advanced Numerical-Algebraic Thinking: Constructing the Concept of Covariation as a Prelude to the Concept of Function

    Science.gov (United States)

    Hitt, Fernando; Morasse, Christian

    2009-01-01

    Introduction: In this document we stress the importance of developing in children a structure for advanced numerical-algebraic thinking that can provide an element of control when solving mathematical situations. We analyze pupils' conceptions that induce errors in algebra due to a lack of control in connection with their numerical thinking. We…

  6. The Unitality of Quantum B-algebras

    Science.gov (United States)

    Han, Shengwei; Xu, Xiaoting; Qin, Feng

    2018-02-01

    Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.

  7. Fractional supersymmetry and infinite dimensional lie algebras

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    2001-01-01

    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  8. New examples of continuum graded Lie algebras

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1989-01-01

    Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

  9. Analysis of Elementary School students’ algebraic perceptions and procedures

    Directory of Open Access Journals (Sweden)

    Sandra Mara Marasini

    2012-12-01

    Full Text Available This study aims to verify how students in elementary school see themselves in relation to mathematics and, at the same time, analyze the procedures used to solve algebraic tasks. These students in the 8th year of elementary school, and first and third years of high school, from two State schools in Passo Fundo/RS, answered a questionnaire about their own perceptions of the mathematics lessons, the subject mathematics and algebraic content. The analysis was based mainly on authors from the athematical education and the historic-cultural psychology areas. It was verifi ed that even among students who claimed to be happy with the idea of having mathematicsclasses several presented learning diffi culties regarding algebraic contents, revealed by the procedures employed. It was concluded that it is necessary to design proposals with didactic sequences, mathematically and pedagogically based, which can effi cientlyoptimize the appropriation of meaning from the concepts approached and their application in different situations.

  10. Algorithmic and experimental methods in algebra, geometry, and number theory

    CERN Document Server

    Decker, Wolfram; Malle, Gunter

    2017-01-01

    This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved.  The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It off...

  11. An algorithm for analysis of the structure of finitely presented Lie algebras

    Directory of Open Access Journals (Sweden)

    Vladimir P. Gerdt

    1997-12-01

    Full Text Available We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most general mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering applications ranging from mathematical physics to combinatorial algebra. Some particular applications are constructionof prolongation algebras in the Wahlquist-Estabrook method for integrability analysis of nonlinear partial differential equations and investigation of Lie algebras arising in different physical models. The finite presentations also indicate a way to q-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic transformations which is sharply increased with growth of the number of generators and relations. For this reason, in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer results illustrating our algorithmand its actual implementation are also presented.

  12. Word Domain Disambiguation via Word Sense Disambiguation

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-04

    Word subject domains have been widely used to improve the perform-ance of word sense disambiguation al-gorithms. However, comparatively little effort has been devoted so far to the disambiguation of word subject do-mains. The few existing approaches have focused on the development of al-gorithms specific to word domain dis-ambiguation. In this paper we explore an alternative approach where word domain disambiguation is achieved via word sense disambiguation. Our study shows that this approach yields very strong results, suggesting that word domain disambiguation can be ad-dressed in terms of word sense disam-biguation with no need for special purpose algorithms.

  13. Embedding Number-Combinations Practice Within Word-Problem Tutoring

    Science.gov (United States)

    Powell, Sarah R.; Fuchs, Lynn S.; Fuchs, Douglas

    2012-01-01

    Two aspects of mathematics with which students with mathematics learning difficulty (MLD) often struggle are word problems and number-combination skills. This article describes a math program in which students receive instruction on using algebraic equations to represent the underlying problem structure for three word-problem types. Students also learn counting strategies for answering number combinations that they cannot retrieve from memory. Results from randomized-control trials indicated that embedding the counting strategies for number combinations produces superior word-problem and number-combination outcomes for students with MLD beyond tutoring programs that focus exclusively on number combinations or word problems. PMID:22661880

  14. Graded associative conformal algebras of finite type

    OpenAIRE

    Kolesnikov, Pavel

    2011-01-01

    In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...

  15. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  16. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    1995-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  17. Smarandache hyper BCC-algebra

    OpenAIRE

    Ahadpanah, A.; Borumand Saeid, A.

    2011-01-01

    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  18. General distributions in process algebra

    NARCIS (Netherlands)

    Katoen, Joost P.; d' Argenio, P.R.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    2001-01-01

    This paper is an informal tutorial on stochastic process algebras, i.e., process calculi where action occurrences may be subject to a delay that is governed by a (mostly continuous) random variable. Whereas most stochastic process algebras consider delays determined by negative exponential

  19. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  20. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    2012-06-14

    Jun 14, 2012 ... They form a group G which acts on the (affine) space of ... The curvature F of A is defined by (notice that in this paper the bracket is defined ... This purely algebraic formulation easily extends to the consideration of the Lie algebra of vector .... namely the case of perturbatively renormalizable theories in four ...

  1. Logarithmic residues in Banach algebras

    NARCIS (Netherlands)

    H. Bart (Harm); T. Ehrhardt; B. Silbermann

    1994-01-01

    textabstractLet f be an analytic Banach algebra valued function and suppose that the contour integral of the logarithmic derivative f′f-1 around a Cauchy domain D vanishes. Does it follow that f takes invertible values on all of D? For important classes of Banach algebras, the answer is positive. In

  2. Modular specifications in process algebra

    NARCIS (Netherlands)

    R.J. van Glabbeek (Rob); F.W. Vaandrager (Frits)

    1987-01-01

    textabstractIn recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality,

  3. Galois Connections for Flow Algebras

    DEFF Research Database (Denmark)

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis

    2011-01-01

    to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...

  4. The Algebra of Complex Numbers.

    Science.gov (United States)

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  5. Donaldson invariants in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  6. Learning Algebra from Worked Examples

    Science.gov (United States)

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  7. Covariant representations of nuclear *-algebras

    International Nuclear Information System (INIS)

    Moore, S.M.

    1978-01-01

    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  8. Practical algebraic renormalization

    International Nuclear Information System (INIS)

    Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias

    2001-01-01

    A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ

  9. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  10. Invariants of triangular Lie algebras

    International Nuclear Information System (INIS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-01-01

    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated

  11. Waterloo Workshop on Computer Algebra

    CERN Document Server

    Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday

    2018-01-01

    This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

  12. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  13. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  14. (Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras

    Directory of Open Access Journals (Sweden)

    Dusko Pavlovic

    2017-01-01

    Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.

  15. Algebra of pseudo-differential operators over C*-algebra

    International Nuclear Information System (INIS)

    Mohammad, N.

    1982-08-01

    Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra

  16. Rota-Baxter algebras and the Hopf algebra of renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, K.

    2006-06-15

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  17. Rota-Baxter algebras and the Hopf algebra of renormalization

    International Nuclear Information System (INIS)

    Ebrahimi-Fard, K.

    2006-06-01

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  18. Problem Solving Frameworks for Mathematics and Software Development

    Science.gov (United States)

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley

    2012-01-01

    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  19. Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS

    Science.gov (United States)

    Landsman, N. P.

    Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.

  20. WordPress 3 Cookbook

    CERN Document Server

    Shreves, Ric

    2011-01-01

    This is a Packt Cookbook, which means it contains step-by-step instructions to achieve a particular goal or solve a particular problem. There are plenty of screenshots and explained practical tasks to make comprehension quick and easy. This book is not specifically for developers or programmers; rather it can be used by anyone who wants to get more out of their WordPress blog by following step-by-step instructions. A basic knowledge of PHP/XHTML/CSS/WordPress is desirable but not necessary.